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The complexity and heterogeneity of neuroimaging findings in individuals with autism spectrum disorder has
suggested that many of the underlying alterations are subtle and involve many brain regions and networks.
The ability to account for multivariate brain features and identify neuroimaging measures that can be used to
characterize individual variation have thus become increasingly important for interpreting and understanding
the neurobiological mechanisms of autism. In the present study, we utilize the Mahalanobis distance, a multidi-
mensional counterpart of the Euclidean distance, as an informative index to characterize individual brain varia-
tion and deviation in autism. Longitudinal diffusion tensor imaging data from 149 participants (92 diagnosed
with autism spectrum disorder and 57 typically developing controls) between 3.1 and 36.83 years of age were
acquired over a roughly 10-year period and used to construct the Mahalanobis distance from regional measures
of white matter microstructure. Mahalanobis distances were significantly greater andmore variable in the autis-
tic individuals as compared to control participants, demonstrating increased atypicalities and variation in the
group of individuals diagnosed with autism spectrum disorder. Distributions of multivariate measures were
also found to provide greater discrimination andmore sensitive delineation between autistic and typically devel-
oping individuals than conventional univariatemeasures, while also being significantly associatedwith observed
traits of the autism group. These results help substantiate autism as a truly heterogeneous neurodevelopmental
disorder, while also suggesting that collectively considering neuroimagingmeasures frommultiple brain regions
provides improved insight into the diversity of brain measures in autism that is not observed when considering
the same regions separately. Distinguishing multidimensional brain relationships may thus be informative for
identifying neuroimaging-based phenotypes, as well as help elucidate underlying neural mechanisms of brain
variation in autism spectrum disorders.

© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Neuroimaging has played an important role in understanding the
neurobiological basis of many neurodevelopmental and psychiatric
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disorders. The majority of these studies have examined brain differ-
ences at a group level, often comparing a population of interest to a
healthy or psychiatric control population. These studies are informative
for identifying patterns of brain differences associated with a particular
group or disorder; however, the assumption that the pathology of these
disorders are consistent across all individuals with the disorder is inher-
ently implied and implausible (Kim et al., 2013). While general mor-
phological, organizational, and functional features of the brain are
conserved during typical development within our species, and consis-
tency of brain differences between individuals with developmental
neuropsychiatric disorders and other groups may exist, the human
brain is remarkably variable across individuals (Frost and Goebel,
2012; Kennedy et al., 1998; Lange et al., 1997; Mueller et al., 2013;
Rademacher et al., 2001; Zilles and Amunts, 2013), suggesting that pat-
terns of individual brain differences may help elucidate the neural
mechanisms involved. This may be especially likely in clinically multi-
faceted, etiologically heterogeneous neurodevelopmental disorders,
such as autism spectrum disorder (ASD), which emerges and is
sustained in the midst of a complex cascade of interacting biological
events and life experiences.

ASD results from atypical brain development and is clinically recog-
nized by clustering, within affected individuals, of behaviors indicating
abnormal development of reciprocal social interaction and social com-
munication and unusual patterns of highly restricted and repetitive be-
haviors and interests (American Psychiatric Association, 2013). The
term “spectrum” reflects that it is not yet possible to reliably distinguish
or validate clinicallymeaningful subcategories of ASD at the clinical, bio-
marker, or neuroimaging level. In addition, ASD presents with a wide
range of diverse symptom that may vary in severity (Geschwind and
Levitt, 2007), frequent association with a variety of co-occurring neuro-
psychiatric and medical conditions, some symptom overlap with other
disorders (Hutton et al., 2008; Tuchman, 2015; Zafeiriou et al., 2007)
and variable (but typically early) age of onset across diagnosed individ-
uals (Ozonoff et al., 2008;Werner andDawson, 2005). Though the prev-
alence of the disorder has recently been estimated to affect 1 in 68
children (CDC, 2014), some children begin to show delays within the
first 12 months of life, while others (25%–40%) regress from typical de-
velopment to autism-like behaviors between 12 and 24 months
(Werner and Dawson, 2005). Moreover, individual phenotypes of ASD
are likely influenced by complex gene-environment interactions. For in-
stance, many genes of small effect are heritable and contribute to the
observable characteristics of ASD, while these characteristics are further
modulated by one's environment via epigenetic mechanisms
(Abrahams and Geschwind, 2008; Jeste and Geschwind, 2014).

The heterogeneity of the autism phenotype has similarly made the
interpretation of brain imaging studies examining the neurobiological
basis of ASD challenging. Magnetic resonance imaging (MRI) studies
have suggested that the pathogenesis of autism involves alterations to
brain volume (Courchesne et al., 2001; Hazlett et al., 2005; McAlonan
et al., 2005; Piven et al., 1995), aswell aswidespread region-specific dif-
ferences across the brain, involving the cerebellum, amygdala, and thal-
amus (Hardan et al., 2006; Hazlett et al., 2005; Nacewicz et al., 2006;
Schumann et al., 2004), among others (for review, see (Amaral et al.,
2008; Anagnostou and Taylor, 2011; Ecker and Murphy, 2014;
Lainhart, 2006; Verhoeven et al., 2010)). Similarly, diffusion tensor im-
aging (DTI) studies have further revealed differences across white mat-
ter microstructure (for review, see (Travers et al., 2012)), while other
imaging strategies have associated ASD with alterations of cortical
thickness (Hazlett et al., 2011; Wallace et al., 2015; Zielinski et al.,
2014) and brain connectivity (Anderson et al., 2011; Belmonte et al.,
2004; Just et al., 2012; Kleinhans et al., 2008; Vissers et al., 2012). Fur-
thermore, group differences have been observed to be dynamic, as re-
cent studies have highlighted disparities of developmental trajectories
between individuals with and without autism (Hazlett et al., 2011;
Lange et al., 2015; Travers et al., 2015b; Wolff et al., 2015; 2012;
Zielinski et al., 2014).
Despite a growing body of literature showing significant group dif-
ferences across an assortment of neuroimaging techniques, there has
been poor replication across studies of autism, while many of these
studies report greater neuroanatomical variability across the ASD
group (Amaral et al., 2008; Anagnostou and Taylor, 2011; Byrge et al.,
2015; Hahamy et al., 2015; Hasson et al., 2009; Minshew and Keller,
2010; Travers et al., 2012).While this variabilitymay stem from the var-
iation of study populations or different analytical techniques, it is clear
from the range of findings that the neuroanatomy of ASD, as its behav-
ioral counterpart, is not restricted to a single brain region, specific net-
work or even a common biological mechanism. Instead, these
differences appear to be subtle and widespread (Ecker et al., 2010),
and these differences potentially vary from person-to-person. Being
able to characterize each person with ASD based on the degree of how
the multidimensional measures of his/her brain differ from the general
population would provide a method to numerically represent the de-
gree of brain abnormality in each individual. Thus, there is a critical
need to better characterize the distributions of these previousmeasures
on the individual level in order to advance the clinical utility of brain im-
aging findings in autism.

The extent to which multivariate brain relationships may enable
better characterization and discrimination at the individual level, as
compared to commonly utilized univariate measures, remains unclear.
Distinguishing such relationships, however, is critical as a multivariate
description could be informative for identifying phenotypical sub-
groups, better understanding individual brain changes, and guiding per-
sonalized therapies or interventions (Brammer, 2009; Kumar, 2011; Li,
2011). Multivariate analysis techniques, which seek to evaluate multi-
plemeasures simultaneously, have great potential to discern underlying
relationships in a wide variety of neuroimaging applications, including
assessment of clinical outcomes and diagnosis, characterizing disease
etiology and progression, as well as evaluating neurodevelopmental
and neurodegenerative diseases (Habeck et al., 2010; Levman and
Takahashi, 2015; McIntosh and Mišić, 2013). While a wide variety of
multivariate strategies exist, one such multivariate measure which is
an extension of the Euclidean distance, known as the Mahalanobis dis-
tance (DM; (Mahalanobis, 1936)),may be informative for distinguishing
such multivariate brain relationships. DM has been applied and shown
to be informative in various neuroimaging contexts, including signal
outlier detection (Fritsch et al., 2012), differentiating brain tissue
types (Taxt and Lundervold, 1994), classifying neurological diseases
(Caprihan et al., 2008; Lindemer et al., 2015), and evaluating relation-
ships of development (Kulikova et al., 2014) and connectivity
(Shehzad et al., 2014). Hence, DM may be advantageous to detect indi-
vidual brain differences in neurodevelopmental disorders, such as
ASD, however, this remains unapproached.

In this study, we utilize DM to characterize individual brain differ-
ences in a large, longitudinal sample of individuals with and without
ASD. Specifically, we describe a framework which to measure DM from
this longitudinal cohort and investigate whether multivariate white
matter microstructural features distinguish individuals with ASD from
their typically developing peers. We further examine the degree to
which microstructural characteristics are associated with measures of
autism symptom severity.

2. Materials and methods

2.1. Participants

The institutional review boards of the University of Utah andUniver-
sity ofWisconsin-Madison approved the studyprotocol andprocedures.
Participants consisted of 92 individualswith ASD and 57 typically devel-
oping controls (TDC), selected from a broader longitudinal study of
brain development in autism and typical development (Lange et al.,
2015; Travers et al., 2015b; 2015a; 2014; Zielinski et al., 2014). Consent
was obtained from all adult participants, and both parental consent and



Table 1
Demographic characteristics of the longitudinal ASD and TDC groups.

ASD TDC p-Value

Number of subjects 92 57 –
Mean age (years) 18.15 (8.47) 19.16 (7.95) 0.23
Mean scans per subject (Std. dev) 2.96 (1.13) 2.61 (1.05) 0.06
Mean inter-scan interval (Std. dev)
[years]

2.82 (0.83) 2.77 (1.02) 0.69

Total number of scans 272 149 –
Number of scans at time 1 92 57 –
Number of scans at time 2 78 48 –
Number of scans at time 3 60 29 –
Number of scans at time 4 42 15 –
Mean FSIQ (Std. dev) 99.42 (17.70) 118.17

(13.23)
b0.001

Mean PIQ (Std. dev) 102.24
(18.10)

116.34
(14.76)

b0.001

Mean VIQ (Std. dev) 95.06 (21.63) 114.72
(13.21)

b0.001

Mean total raw SRS (Std. dev) 99.73 (30.30) 15.57 (11.79) b0.001
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participant assent were obtained for participants under the age of
18 years. Exclusion criteria consisted of: history of severe head inju-
ry, seizure disorder, hypoxia-ischemia, genetic disorder associated
with ASD (identified with Fragile-X testing or karyotype), known
medical cause of ASD diagnosis (e.g. known patient history, and
physical exam), and/or other neurological disorders. All participants
were male and ranged in age from 3.3 and 36.8 years at the time of
enrollment. Participants were recruited and clinically assessed;
they underwent MRI scanning one to four times as part of an acceler-
ated longitudinal study design over an approximately 10-year period
(Harezlak et al., 2005; see Fig. 1). Fifty-seven participants had four
scans (42 ASD and 15 TDC), 32 participants had three scans (18
ASD and 14 TDC), 37 participants had two scans (18 ASD and 19
TDC), and 23 participants had one scan (14 ASD and 9 TDC). The av-
erage interval between scans was 2.6 years. See Table 1 for additional
participant information.

Participants with ASD were diagnosed according to the Autism
Diagnostic Interview-Revised (ADI-R; (Lord et al., 1994)), Autism Di-
agnostic Observation Schedule-Generic (ADOS-G; (Lord et al.,
2000)), Diagnostic Statistical Manual-IV (American Psychiatric
Association, 1994), and the International Statistical Classification of
Diseases and Related Health Problems-10th revision (ICD-10)
criteria (World Health Organization, 2007). Typical development
was confirmed by performing standardized psychiatric assessment,
neuropsychological assessment, IQ testing and assessment with the
ADOS-G (Lord et al., 2000). All ASD and TDC participants received
IQ testing at each time point, providing indices of verbal (VIQ), per-
formance (PIQ) and full-scale (FSIQ) IQ. The Social Responsiveness
Scale (SRS; Constantino, 2002), a standardized parent-report ques-
tionnaire that assesses the degree of ASD symptom severity, was ad-
ditionally completed; however, as the age range of the present study
extended beyond the normed age range for the SRS (4–18 years),
total raw scores are reported. Individuals with less socially reciprocal
behavior are indicated by higher total raw SRS scores.
Fig. 1. Longitudinal sampling of ASD and TDC participants. Ages of the 149 subjects at each sca
measurements are connected with a solid line. Individuals diagnosed with ASD (red) and TDC
2.2. Imaging protocol

A total of 421 scans were acquired from the participants (272 ASD,
149 TDC). All magnetic resonance images were collected on a Siemens
Tim Trio 3.0 T scanner at the University of Utah. At each time point, dif-
fusion-weighted imaging (DWI) data were obtained using a single shot
spin-echo echo-planar imaging pulse sequence. Bipolar gradients with
dual-echo refocusing was used to reduce eddy currents (Reese et al.,
2003), while parallel acquisition, with a geometric reduction factor of
two, was used to reduce image distortions frommagnetic field inhomo-
geneities and acquisition time. Imaging parameters consisted of: repeti-
tion time: 7000ms; echo time: 84ms at time 1, and 91ms at times 2, 3,
4; and bandwidth: 1346 Hz/pixel. A 25.6 cm × 25.6 cm imaging field of
viewwas used in conjunctionwith an acquisitionmatrix of 128 × 128 to
provide a 2 mm × 2 mm in-plane resolution. Coverage across the
n. The age of each subject at each time point is denoted along each row and the repeated
(blue) are additionally distinguished.

Image of Fig. 1
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cerebrum and cerebellum was achieved by acquiring 60 axial-oriented
contiguous slices with a slice thickness of 2.5 mm. Diffusion data were
acquired with diffusion encoded along 12 non-collinear directions
with b = 1000s/mm2 and a single non-diffusion weighted (b =
0 s/mm2) image. The acquisition was averaged across four repeats for
a total imaging time of 6.5 min.

To improve prospects of successful DTI acquisition, participants
were able to practice lying in a mockMRI scanner. Sedation was offered
to youngparticipantswith ASD, using a combination of remifentanil and
propofol, if needed to improve data quality. In total, 47 of the 434 longi-
tudinal scans were acquired under a strict clinical sedation protocol ap-
proved by the University of Utah's Institutional Review Board and that
was performed and monitored by an onsite faculty anesthesiologist. A
total motion index (TMI) was recorded to account for the effects of po-
tential group differences in head motion during MRI scanning (Benner
et al., 2011; Yendiki et al., 2014) and used in later analyses. Between
times 1 and 2, the scanner hardware and software underwent an up-
grade, resulting in a head coil change (8-channel receive-only coil at
time 1 and a 12-channel receive-only coil at times 2, 3, 4) and alteration
of the DWI echo time (described above), however, there was no signif-
icant group difference of the proportion of scans prior to and following
the scanner upgrade (Z = −0.51; p = 0.61).

2.3. Image analysis

All image processing and analyses were conducted at the University
of Wisconsin-Madison and were processed using methods previously
described (Travers et al., 2015b). Individual diffusion weighted images
were co-registered to account for any subtle distortion, translation
and rotation from bulk head motion and eddy currents using an affine
registration tool (Jenkinson et al., 2002) from the FMRIB software li-
brary (FSL; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/) suite, while gradient di-
rections were corrected for rotations (Leemans and Jones, 2009). FSL's
brain extraction tool (BET; (Smith, 2002)) was used to remove non-pa-
renchyma signals. Diffusion tensors were fit at each voxel using the ro-
bust estimation of tensors by outlier rejection (RESTORE; (Chang et al.,
2005)) algorithm as part of the Camino software package (Cook et al.,
2006). Eigenvalues (λ1, λ2, λ3) were calculated from these voxel-wise
estimates of the diffusion tensor and quantitative maps of fractional an-
isotropy (FA – normalized standard deviation of the eigenvalues
reflecting the relative degree of diffusion anisotropy), mean diffusivity
(MD – average of the eigenvalues), axial diffusivity (AD – largest eigen-
value), and radial diffusivity (RD – third eigenvalue corresponding to
diffusion perpendicular to the major eigenvector were derived (Basser
and Pierpaoli, 1996). Quantitative maps were visually inspected for ar-
tifacts (i.e. slice intensity banding, FA hyper-intensities, distortions,
and/or blurring).

To reduce subtle alignment inconsistencies that might result from
not accounting for the repeated measurements (Aubert-Broche et al.,
2013; Dean et al., 2014b), a longitudinal registration pipelinewas devel-
oped to align individual DTI measurements to a common template
space. For each participant, an initial diffusion tensor template was cre-
ated from all the acquired longitudinal time points using affine and
diffeomorphic diffusion tensor registration, as implemented in DTI-TK
(Zhang et al., 2006). DTI-TKwas then used to generate an overall, un-bi-
ased population-specific template from these subject-specific diffusion
tensor templates. White matter tracts from the JHU ICBM-DTI-81 tem-
plate (Mori et al., 2005; Oishi et al., 2008) were spatially aligned to
this population template using the Advanced Normalization Tools
diffeomorphic spatial registration (Avants et al., 2008) and nearest
neighbor interpolation. The normalized JHU ICBM-DTI-81 template
was warped into each subject's native space by applying the inverse of
the spatial transformations estimated in the population- and subject-
specific template generation step. A subset of 11 regions of interest
(ROIs) reported to be implicated in ASD (Travers et al., 2012) were se-
lected from the available 48 labels contained within the JHU template
for subsequent analyses. These regions included: genu, body, and
spleniumof the corpus callosum; superior longitudinal fasciculus, inter-
nal capsules (anterior and posterior portions); corticospinal tract; unci-
nate fasciculus; cingulum; superior fronto-occipital fasciculus; and
sagittal stratum (i.e. inferior longitudinal fasciculus and inferior
fronto-occipital fasciculus). Left and right homologous pairs were addi-
tionally used where appropriate, for a total of 19 ROIs examined. For
each longitudinal time point and anatomical region, the median FA,
MD, AD, and RD values were extracted from each participant's corre-
sponding native-space FA MD, AD, and RD maps, as the median is less
sensitive to voxels with extreme values (van Belle et al., 2004).

2.4. Calculating the Mahalanobis distance

The Mahalanobis distance (DM; (Mahalanobis, 1936)) is a multivar-
iate extension of the Euclidean distance, measuring the distance of each
member of a set ofmultivariatemeasures to themean of their multivar-
iate distribution. For each subject, DM is calculated using the following
formula:

DM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x!−μ

� �
S−1 x!−μ

� �T
r

ð1Þ

where x! corresponds to the set of multivariate neuroimaging observa-
tions for each individual, μ is themean of themultivariate distribution of
neuroimaging measures, and S is the variance-covariance matrix be-
tweenmeasures. For example, ifmmeasures are collected from each in-
dividual, x!and μ correspond to a 1×m vector, S corresponds to anm×m
matrix, and DM from Eq. (1) is a scalar. In this way, DM accounts for the
variance of individual observations as well as the covariance between
the set of observations, homologous to the Euclidean distance in univar-
iate analysis. In the present study, we estimate DM for individuals with
ASD from their corresponding DTI brain measures, using the TDC as
the population reference. In this case, DM corresponds to how close an
ASD individual's brain measures are to the multivariate mean of the
TDC population, where larger DM represents increased distance from
the center of the typically developing population.

In constructing DM from longitudinal measurements, it is important
to account for neurodevelopmental processes (Dean et al., 2014b;
2014a; Lebel and Beaulieu, 2011; Lebel et al., 2012; Snook et al.,
2005). Generalized additivemixedmodels (GAMM's)were fit to the re-
gional developmental trajectories of the DTI parameters (FA, MD, AD,
and RD) of the TDC group to characterize the observed age-related
white matter changes and establish a normative growth trajectory for
each brain region. Generalized additive mixed models were utilized to
characterize the age-related changes as these models have been de-
signed specifically for cohort-sequential longitudinal designs (Wood,
2006, 2012) and for their ability to account for repeated measurements
from the same individual. Furthermore, since the growthmodel that de-
scribes white matter is unknown, the semi-parametric nature of these
spline models provides flexibility in capturing subtle developmental
changes compared to parametric growth models (Travers et al.,
2015b). Longitudinal modeling analyses were performed using R ver-
sion 3.2.1 (R Development Team, 2014), while accounting for the nui-
sance variables of head coil (due to upgrade discussed earlier) and
total motion index.

Upon determining the best fit model of the TDC group, thesemodels
were used to predict FA, MD, AD and RD along themodeled TDC growth
trajectory for every ASD participant at each time point and for each
brain region. The difference between the participants' parameter values
from these predicted values (i.e. the model residuals) were calculated,
corresponding to the vertical distance between the participant parame-
termeasurements and the TDC reference growth trajectory. DM for each
time pointwas calculated from these residuals using eq. (1), where x!−
μ corresponds to the difference between observed measurements ( x!)

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/
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and modeled values (μ), and S is the variance-covariance matrix of the
modeled residuals from the TDC group.

DM was similarly calculated for each TDC individual. However, to
avoid including an individual's measurements in the model fitting
when establishing the reference growth trajectory, a leave-one-out ap-
proach was used when modeling regional FA, MD, AD and RD develop-
mental trajectories. For a given TDC subject, FA, MD, AD, and RD
longitudinal measurements were removed prior to modeling and par-
ticipant-specific residuals and DMwas calculated as before. This process
was repeated for each TDC participant.

After calculating DM for each longitudinal time point, an average
across these time points was computed for each participant, providing
a single, representative DM value for each individual. Supplementary
Fig. 1 displays a representative schematic illustrating the process of cal-
culating DM. Distributions of Mahalanobis distances were generated for
both the ASD and TDC groups and the Bhattacharyya coefficient (Mo et
al., 2015) was computed to assess the degree of overlap between the
Fig. 2.Developmental trajectories of whitematter in ASD and TDC participants. Representative d
capsule (top), right hemispheric superior longitudinal fasciculus (middle), and right hemispheric
by circles while dashed lines connect repeated time points for specific subjects. The solid blue l
the normative reference growth trajectory.
group distributions, where smaller Bhattacharyya coefficients corre-
spond to a lesser degree of overlap. DM was additionally calculated by
considering regional DTI parameters (FA, MD, AD, and RD) separately.

2.5. Construction of univariate DTI distributions

Standard scores were similarly calculated for each ROI and DTI pa-
rameter (i.e. FA, MD, AD, RD). Longitudinal mixed effects models were
used to characterize the age-related changes of the TDC group and es-
tablish a normative reference growth curve. Model residuals were cal-
culated and normalized by the standard deviation of fit residuals.
Standard scores for TDC participants were again calculated using a
leave-one-out approach. Individual time points were aggregated by cal-
culating the mean of individual time point standard scores, producing a
single standard score for each individual. Distributions of regional stan-
dard scoreswere generated and again the Bhattacharyya coefficientwas
computed to measure distributional overlap.
evelopmental trajectories of FA andMD from left hemispheric anterior limb of the internal
sagittal stratum(bottom). ASD (red) and TDC(blue) longitudinal observations are denoted
ine corresponds to the best fit generalized additive mixed-effects model, corresponding to

Image of Fig. 2


Fig. 4. Combined FA andMDMahalanobis distance distribution. ASD (red) and TDC (blue)
distributions of Mahalanobis distance (DM) calculated from combined FA and MD
measurements. Representative normal curves for each group are overlaid onto these
distributions to illustrate the rightward shift and increased variability of DM values in
ASD subjects.
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3. Results

Representative FA and MD trajectories for the ASD and TDC group
are displayed in Fig. 2 (AD and RD trajectories displayed in Supplemen-
tal Fig. 2). These trajectories highlight the significant age-related chang-
es of DTI parameters that occur across the first four decades of life as
well as visually depict neurodevelopmental differences between the
ASD and TDC groups. It can be appreciated that the age-related changes
are non-linear, with rapid changes (i.e. increases in FA and decreases in
MD, AD, and RD) occurring at early ages and slower changes occurring
into adulthood. To characterize the overall shape of the TDC growth
curve and establish a population reference, generalized additive
mixed-effects models were used. These models depict the complexity
of the TDC growth trajectory by smoothly bending to the data at impor-
tant nonlinear growth spurts or declines.

3.1. Mahalanobis distances

Average DM were computed for each ASD and TDC individual from
the set of combined longitudinal regional brain FA, MD, AD, and RD
measurements. The distribution of DM across participants is shown in
Fig. 3. It is evident that the ASD distribution of DM values is shifted to
the right and does not overlap with that of the TDC group, suggesting
a larger mean and greater degree of microstructural deviation from
the normative reference group. In comparing these group distributions,
DM values were found to be increased (t(141)=27.911, p b 0.001) and
more variable (F(91,56) = 23.17, p b 0.001) for the ASD individuals
compared to the TDC participants. In particular, 92 of the 92 (100%)
ASD participants had a DM value greater than the TDC DM mean
(1.03), while 92 (%) had values greater than two standard deviations
away from the TDC mean.

We additionally calculated DM from the set of longitudinal FA and
MD measures (i.e. removing AD and RD), as these are most commonly
reported DTI measures in the literature. The distribution of DM calculat-
ed from FA andMD is shown in Fig. 4. Similar to the previous results, the
ASD distribution of DM values is shifted to the right compared to the TDC
Fig. 3. Mahalanobis distance distributions of white matter. ASD (red) and TDC (blue)
distributions of Mahalanobis distance (DM) calculated from combined FA, MD, AD and
RD measurements. Representative normal curves for each group are overlaid onto these
distributions to illustrate the rightward shift and increased variability of DM values in
ASD subjects.
group, suggesting a larger mean and greater degree of microstructural
deviation from the normative reference group. In comparing these
group distributions, DM values were found to be increased (t(141) =
11.28, p b 0.001) and more variable (F(91,56) = 6.91, p b 0.001) for
the ASD individuals compared to the TDC participants. In this case, 91
of the 92 (98.9%) ASD participants had a DM value greater than the
TDC DM mean (1.55), while 65 (70.7%) had values greater than two
standard deviations away from the TDC mean.

In addition, DM was calculated separately for FA, MD, AD, and RD
(Fig. 5a–d). Similar to DM computed from combinedDTImeasurements,
the distributions of DM for each DTI parameter appear increased and
more variable within the ASD group, suggesting each individual DTI pa-
rameter contributes to the microstructural deviations in ASD. In partic-
ular, the mean and standard deviations of the FA-, MD-, AD-, and RD-
based ASD DM distributions were found to be significantly different
from the respective TDC distributions (FA-based DM: t(141) = 6.91,
p b 0.001; F(91,56) = 5.16, p b 0.001; MD-based DM: t(141) = 6.01,
p b 0.001; F(91,56) = 5.22, p b 0.001; AD-based DM: t(141) = 4.34,
p b 0.001; F(91,56) = 3.30, p b 0.001; RD-based DM: t(141) = 6.01,
p b 0.001; F(91,56) = 5.22, p b 0.001). With respect to the FA-based
DM values, 78 of 92 (84.8%) ASD individuals had scores greater than
the TDC mean (2.08), and 35 of 92 (38.0%) had values greater than
two standard deviations from the TDC mean. Similarly, 68 (73.9%) and
31 (33.7%) ASD individuals had MD-based DM values greater than the
TDC mean (1.81) and two standard deviations from the mean, respec-
tively. For AD, 61 (66.3%) of ASD individuals had values greater than
the TDC mean (2.02) and 22 (23.9%) had values greater than two stan-
dard deviations from the TDCmean, whereas 76 (82.6%) and 34 (40.9%)
ASD individuals had RD-based DM values greater than the TDC mean
(1.63) and two standard deviations from the mean, respectively.

The distributions of DM computed using all the DTI parameters be-
tween the ASD and TDC individuals were completely disjoint and there-
fore yielded a Bhattacharyya coefficient of zero. The next smallest
Bhattacharyya coefficient was for the combined FA and MD coefficients
(8.60), followed by RD-based DM values (13.96), AD-based DM values
(15.81), FA-based DM values (16.03), and finally the MD-based DM

Image of Fig. 3
Image of Fig. 4


Fig. 5. FA, MD, AD, and RDMahalanobis distance distributions. Mahalanobis distance (DM) distributions calculated from (A) FA measurements only, (B) MDmeasurements only, (C) AD
measurements only, and (D) RDmeasurements only. ASD individuals are shown in redwhile TDCparticipants are shown in blue. Representative normal curves for each group are overlaid
onto these distributions to illustrate the rightward shift and increased variability of DM values in ASD subjects.
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values (16.09). This indicates that ASD and TDC distributions of DM

values have the greatest separation when calculated from each of the
DTI parameters, suggesting each parameter is informative for assessing
microstructural brain deviations of ASD.

3.2. Univariate DTI distributions

We further compared the distribution of DM values to univariate dis-
tributions of FA, MD, AD, and RD standard scores. Representative uni-
variate distributions of the DTI parameters are shown in Fig. 6. To
make these univariate measures comparable to DM values, the absolute
value of the standard score was taken. In most brain regions, standard
scores are larger within the ASD group, suggesting larger FA, MD, AD,
and RD deviations from the normative growth curve. Table 2 provides
details for both the ASD and TDC group mean differences of these uni-
variate distributions as well as whether the variability of these distribu-
tions differed. Of the examined brain regions, FA and RD of the body of
the corpus callosum and AD and MD of the left posterior limb of the in-
ternal capsule had the largest group difference, while FA and RD in the
genu of the corpus callosum, MD in the left superior fronto-occipital
fasciculus, and AD in the left uncinate fasciculus had the least overlap
between univariate standard score distributions. Comparing univariate
Bhattacharyya coefficients to the Bhattacharyya coefficients derived
from theDMdistributions highlights that DMmeasures have less overlap
(i.e. greater delineation) between ASD and TDC individuals than univar-
iate-based measures.

3.3. Associations with sample characteristics

To investigate whether microstructural differences corresponded to
phenotypic characteristics of the sample, correlations between DM and
full-scale IQ, verbal IQ, performance IQ and the Social Responsiveness
Scale total raw score were computed. Scatter plots depicting these cor-
relations are shown in Fig. 7. Correlations betweenDM and IQ character-
istics were not observed to be significant in control participants,
however, a negative relationship between SRS total raw score and DM

was observed (r = −0.29, p = 0.04). In autism participants, increased
DM was significantly associated with lower full-scale IQ (r = −0.28,
p= 0.01), lower performance IQ (r=−0.27, p= 0.01), and lower ver-
bal IQ (r = −0.21, p = 0.05). SRS total raw score showed a positive

Image of Fig. 5


Fig. 6. Standard score distributions of white matter. Representative FA, MD, AD, and RD distributions of univariate standard scores from the genu of the corpus callosum (top), right
hemispheric superior fronto-occipital fasciculus (middle), and left hemispheric cingulum (bottom). Compared to distributions of DM, univariate distributions are less variable between
ASD and TDC individuals.
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relationship with DM (increased autism severity were associated with
increased deviation from normal); however, this also did not reach sta-
tistical significance (r = 0.12, p = 0.27).

4. Discussion

In this work, we have used theMahalanobis distance (DM) as a met-
ric to characterize complex and subtle relationships of multivariate
measures of individual brain microstructure within a longitudinal sam-
ple of individuals with autism spectrum disorder. We show that DM

formed from DTI measures of FA, MD, AD, and RD across regions of
white matter provides the greatest separation between ASD and TDC
groups compared to univariate measures and to DM computed from
these parameters separately. These results substantiate that ASD im-
pacts not only a single brain region or white matter tract, but rather
that ASD affects multiple brain regions, re-confirming that it is a hetero-
geneous neurodevelopmental disorder. Furthermore, our findings sug-
gest that DM may be effective at characterizing the degree of brain
differences within individuals with ASD as well as informing themicro-
structural heterogeneity and phenotypic characteristics of individuals.

Evaluation of the degree to which an individual deviates from a nor-
mative reference is informative for assessing brain differences and
shifting from analyses focused on group-based differences to measures
aimed at characterizing individual differences. Standardized scores of
head circumference, brain volume, and other brain features have been
routinely used to assess the distribution of brain characteristics in
individuals with ASD (Barnea-Goraly et al., 2004; Courchesne et al.,
2003; Herbert et al., 2004; Lainhart et al., 2006; 1997; Miles et al.,
2000; Prigge et al., 2013), aswell as other disorders, includingmild trau-
matic brain injury (Kim et al., 2013; Lipton et al., 2012), bipolar disorder
(Johnson et al., 2015), multiple sclerosis (Poonawalla et al., 2010), and
Alzheimer's disease (Matsuda, 2014), among others. However, as it be-
comes commonplace to acquire multi-modal information from study
participants, it becomes necessary to account for the multidimensional
aspects of data. DM provides a direct multivariate extension of a com-
mon univariate score, while, importantly, accounting for the variance
of each variable and covariance between variables. This is essential
given that neuroimaging measures can have different scales and be in-
herently correlated within and between different imaging modalities
(Hao et al., 2013; Kulikova et al., 2014). Hence, while the current
study has presented DM in ASD, this measure may be informative to as-
sess individual brain differences in a broader range of disorders, includ-
ing mild traumatic brain injury, bipolar disorder, and Alzheimer's
disease.

To our knowledge, the current study is the first to use the
Mahalanobis distance to evaluate brain variation in ASD. Recently,
Kulikova et al., (2014) used DM to combine complementary measures
of white matter to examine the brain development in healthy infants
and found that DM captured maturational relationships more reliably
than univariate measures (Kulikova et al., 2014). DM has additionally
been used to differentiate individuals with Alzheimer's disease and
mild cognitive impairment (Lindemer et al., 2015) and distinguish

Image of Fig. 6
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individuals with schizophrenia from healthy controls (Caprihan et al.,
2008). Similarly, our findings suggest that multivariate approaches
may be advantageous for describing individual brain deviations in ASD
compared to univariate techniques. These results are consistent with
other recent efforts that have utilized alternative multivariate analysis
strategies in the study of ASD (for a review, see (Levman and
Takahashi, 2015)). For example, support vectormachines and otherma-
chine learning strategies have demonstrated the ability to accurately
distinguish individuals with ASD from typically developing controls
using a variety of neuroimaging measures as well as identify salient
brain regions and networks that are implicated in core behavioral and
social deficits (Ecker et al., 2010; Jin et al., 2015; Just et al., 2014;
Lange et al., 2010; Uddin et al., 2011, Wee et al., 2014). Taken together,
this corpus of research suggests that these analysis strategies improve
our ability disentangle complementary information provided by multi-
variate brain measures and thus better characterize the anatomical,
functional, and microstructural heterogeneity of ASD. This is essential
for being able to identify possible ASD subgroups or specific individuals
with unique brain features that are significantly different from both un-
affected controls and peers with ASD.

Neuroimaging studies have provided great insight into the neurobi-
ological changes that occur in ASD and have provided extensive evi-
dence of widespread brain alterations that take place over the lifespan
(for a review see Ameis and Catani, 2015; Ecker et al., 2015; Travers et
al., 2012). However, while many of these studies have highlighted the
complexity of these brain differences,where numerous regions and net-
works across the brain are involved, these brain regions and networks
have typically been studied separately. Such approaches are instructive
to understand the role of each particular brain region or network; how-
ever, the diversity of neuroimaging findings continues to suggest that a
specific disparity may not be experienced by all individuals with ASD.
Indeed, in comparing white matter regions between ASD and TDC
groups, we observed differences across white matter in both the
group mean and variance of the standard score distributions of DTI pa-
rameters (i.e. FA, MD, AD, and RD), particularly in the corpus callosum
(genu and body), superior longitudinal fasciculi, and superior fronto-oc-
cipital fasciculi. Nevertheless, by combining regional measures of white
matter microstructure across the brain to formDM, we are able to lever-
age themultivariate information fromeach of these brain regions to cal-
culate a measure that describes the degree to which these collective
brain measures differ from a normative reference.

In addition to DM providing a measure of brain deviation, examina-
tion of the distributions of DM (Figs. 3–5) and regional standardized
scores (Fig. 6) across individuals provided insights into the microstruc-
tural heterogeneity of ASD. In particular, the variance of DM distribu-
tions were found to be significantly increased, while this increased
variationwas observed in only a small proportion of univariate distribu-
tions. Increased variation has similarly been reported throughout stud-
ies of autism (Alexander et al., 2007; Lainhart, 2006; Lange et al., 2010;
Miles et al., 2000; Prigge et al., 2013; Travers et al., 2015b), which sug-
gests brain alterations do not necessarily impact specific brain regions
in the same way, but rather have a varied impact across individuals
with ASD. The use ofmultivariate techniques is, therefore, advantageous
over other approaches, such as the use of signal histograms and
univariate distributions, as they enable a broader characterization of un-
derlying alterations. Furthermore, unlike signal histograms, DM can in-
corporate multiple image contrasts that provide an additional
dimension of capturing brain alteration. The ability to identify and char-
acterize the heterogeneous alterations observed in ASD, as presented in
the current study, is thus an important aspect for both identifying and
understanding specific neurobiological mechanisms of autism.

For individuals with autism, we found that increased DM (i.e. in-
creased brain deviation) was associated with decreased full-scale, per-
formance, and verbal IQ's. However, while the relationship between
SRS total raw scores and DM was positive, the correlations were not ob-
served to be significant. Consistent with our results, other studies have



Fig. 7.Associations ofMahalanobis distancewith phenotypic characteristics. Scatter plots of the relationships between DM and full-scale IQ (A), verbal IQ (B), performance IQ (C), and SRS
total raw scores (D). Correlations within the ASD group (left panel) were found to be significant between DM and full-scale, verbal and performance IQ. Correlations with IQ were not
observed to be significant in the TDC participants (right panel). In the ASD group, a positive trend between SRS total raw and DM was observed, however this association was not
significant. Please note the ordinate axis scale differences between ASD and TDC scatter plots.
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found connections between microstructural neuroimaging indices and
phenotypic and symptomology measures (Alexander et al., 2007;
Noriuchi et al., 2010; Travers et al., 2015a). These associations are partic-
ularly informative in identifying neural mechanisms as these measures
are consistently used to assess core diagnostic and phenotypic charac-
teristics in autism. In all, this collective body of research indicates a
link between underlying white matter microstructure and ASD
symptomology and severity.

Despite our findings suggesting widespread white matter micro-
structural differences in ASD, DM does not provide information into
which specificmicrostructural feature(s) drives the observed individual
difference. For example, one individual may be observed to have an ab-
normal corpus callosum microstructure while having a normal
appearing anterior internal capsule. Another individual may have a
deviant anterior internal capsule microstructure, but appear to have a
normative corpus callosum. Even still, another individual may have a
differential developmental trajectory in both of these regions. Yet, the
DM for each of these cases could be identical. As observed in the current
study, including multiple DTI parameters may increase the separability
of the ASD and TDC distributions, which suggests that each of these
measures uniquely contribute to DM. However, DM provides an omnibus
measure of individual brain difference and therefore interpretation of
the specific microstructural characteristics or processes resulting in
the observed difference, such as a difference in the developmental tra-
jectory, is limited. The use of decomposition methods, such as principal
component analysis (PCA), could be used in combination with DM to
identify the underlying brain feature(s) that are subsequently altered.
Furthermore, while measures derived from DTI (i.e. FA and MD) are

Image of Fig. 7
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sensitive to underlying changes of white matter, these parameters lack
specificity to underlying microstructural changes (Alexander et al.,
2011; Beaulieu, 2002; Jones et al., 2013). Incorporating additional mea-
sures, such as head circumference (Courchesne et al., 2003; Lainhart et
al., 2006; 1997), volumetric measurements (Bigler et al., 2010;
McAlonan et al., 2005), indices of cortical thickness (Zielinski et al.,
2014) and functional connectivity (Anderson et al., 2011; Cherkassky
et al., 2006) as well as other white matter markers (Alexander et al.,
2011; Dean et al., 2016; Deoni et al., 2014; Zhang et al., 2012) will likely
alter the covariance between parameters and alter the values of DM. This
may help to improve the interpretation of brain differences observed in
ASD aswell as provide further improvements in discriminating between
ASD and TDC individuals.

In addition to understanding themacrostructural andmicrostructur-
al characteristics of the brain that may be disrupted in ASD, converging
evidence points to altered brain development as having a fundamental
role (Courchesne, 2004; Lainhart, 2003; Lange et al., 2015; Lewis and
Elman, 2008; Travers et al., 2015b; Wolff et al., 2012). The human
brain undergoes great changes over the course of the lifespan (Casey
et al., 2005; Croteau-Chonka et al., 2016; Dean et al., 2014b; Deoni et
al., 2012; Evans and Brain Development Cooperative Group, 2006;
Giedd et al., 1999; Giedd and Rapoport, 2010; Lange et al., 1997; Lebel
and Beaulieu, 2011),while such developmental processes have a critical
role in establishing both structural and functional brain networks that
ultimately enable the processing of complex information (Durston and
Casey, 2006). Here, generalized additive mixed effects models were
used to characterize longitudinal developmental trajectories of the ex-
amined white matter regions, allowing us to account for nonlinear
neurodevelopmental changes across our sample and enabling a direct
comparison of groups and individuals of all ages. However, while the
variability of brain imaging measures beyond the average growth tra-
jectory may change with age, individual brain deviations at one age
may differ at another age. While in the current study we averaged
across the longitudinal time points to establish an overall individual
measure of deviation, future studies may examine the changes of DM

with age. Indeed, DM has been used to depict the development of
whitematter in healthy infants (Kulikova et al., 2014), and thus such fu-
ture studies investigating the age-relationships of DM in ASD may pro-
vide important insights about the timing of abnormal brain deviations
in ASD and help identify when such brain changes first begin to appear.

While the presented study provides strong evidence of DM as an in-
formative measure of individual brain deviation, there are several limi-
tations to this study. First, the formation DM relies on the assumption
that the TDC growth trajectory can be used as a normative reference
for the examined sample. Although typical developmentwas confirmed
using extensive neuropsychological assessments and detailed medical
history information, it is possible that some participants may later de-
velop atypically and thus not be representative of a normal population.
Similarly, we presumed that the smoothed splines of the generalized
additivemixed effectsmodels used herein provided a characteristic rep-
resentation of the typically developing growth trajectory. While these
models have been shown to effectively model growth trajectories in
the corpus callosum (Travers et al., 2015b), additional models have
been used to characterize the developmental trajectories of DTI (Lebel
and Beaulieu, 2011; Sadeghi et al., 2013) and other imaging parameters
(Dean et al., 2014a; Shaw et al., 2008; Zielinski et al., 2014). Future stud-
ies comparing growth models that describe the neurodevelopmental
trajectories are therefore needed to determine the best current models
of brain development in ASD. Lastly, DM provides limited interpretabil-
ity beyond being able to characterize the magnitude of deviation. For
example, it may be informative to identify whether certain ASD brain
regions are abnormally enlarged or reduced compared to that of typical-
ly developing individuals. Incorporatingmeasures of DM with multivar-
iate classification techniques (Ecker et al., 2010; Lange et al., 2010;
Uddin et al., 2011) may help determine the relative weighting that
each brain region contributes to the overall distance measure.
5. Conclusion

Heterogeneity of brain-based descriptors is a fundamental feature of
ASD that makes identification of neuroimaging-based phenotypes chal-
lenging. However, multivariate measures, such as the Mahalanobis dis-
tance, are able to incorporate this inherent heterogeneity and provide
an informative descriptor about an individual's overall deviation from
a representative reference sample. In particular, the results from the
present study suggest that the Mahalanobis distance formed frommul-
tiple measures of whitematter microstructure can provide an increased
degree of separation between individuals with and without autism,
compared tomore commonly used univariate approaches. In particular,
these results suggest that the Mahalanobis distance of brain features
may provide a novel measure that may be informative to identify au-
tism sub-groups or severely-impaired individuals with autism. This
has particular value for future studies evaluating genetic and environ-
mental risk factors that are associated with specific neurobiological
mechanisms of autism.

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.nicl.2017.01.002.
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