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Abstract  

 

Heart disease is a major health threat for Duchenne/Becker muscular dystrophy patients 

and carriers.  Expression of a 6 to 8-kb mini-dystrophin gene in the heart holds promise to 

dramatically change the disease course.  However the mini-dystrophin gene cannot be easily 

studied with adeno-associated virus (AAV) gene delivery because the size of the minigene 

exceeds AAV packaging capacity.  We previously studied cardiac protection of the ∆H2-R19 

minigene using the cardiac specific transgenic approach.  Although this minigene fully 

normalized skeletal muscle force, it only partially corrected ECG and heart hemodynamics in 

dystrophin-null mdx mice that had moderate cardiomyopathy.  Here, we evaluated the ∆H2-R15 

minigene using the same transgenic approach in mdx mice that had more severe cardiomyopathy.  

In contrast to the ∆H2-R19 minigene, the ∆H2-R15 minigene carries dystrophin spectrin-like 

repeats 16 to 19 (R16-19), a region that has been suggested to protect the heart in clinical studies.  

Cardiac expression of the ∆H2-R15 minigene normalized all aberrant ECG changes and 

improved hemodynamics.  Importantly, it corrected the end-diastolic volume, an important 

diastolic parameter not rescued by ∆H2-R19 mini-dystrophin.  We conclude that that ∆H2-R15 

mini-dystrophin is a superior candidate gene for heart protection. This finding has important 

implications in the design of the mini/micro-dystrophin gene for Duchenne cardiomyopathy 

therapy. 
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Introduction 

Loss of dystrophin results in Duchenne muscular dystrophy (DMD).  While skeletal 

muscle presentations start at the toddler age, symptoms of myocardial involvement are rarely 

seen before teenage.  Despite the later onset, up to 40% of patients may die from heart failure 

and/or sudden cardiac death 
1-3

.  Currently, there is no etiology-based treatment for Duchenne 

cardiomyopathy.  Gene therapy may solve the fundamental problem of dystrophin deficiency 
4-6

.  

Some serotypes of adeno-associated virus (AAV) have the intrinsic property of reaching all body 

muscles (including the heart) after a single intravascular delivery 
7-11

.  This makes AAV a 

favored vector for DMD gene therapy.  Unfortunately, the dystrophin gene is one of the largest 

genes in the genome and AAV is one of the smallest viruses.  As a matter of fact, the size of the 

full-length dystrophin coding sequence is about three times the size of the AAV genome.  

Development of minimized dystrophin may open the door for AAV-mediated DMD gene 

therapy.  

Dystrophin is a 427-kD rod-shaped protein encoded by 79 exons.  It has four major 

domains.  The N-terminal domain interacts with filamentous cytoskeletal γ-actin.  Immediately 

following the N-terminal domain is the rod domain which accounts for more than 70% of the 

molecular weight of dystrophin.  The rod domain can be further divided in 24 spectrin-like 

repeats (R) and four intervening hinges (H).  The rod domain contains the second actin-binding 

domain and neuronal nitric oxide synthase (nNOS) binding domain.  Towards the carboxyl end 

is the cysteine-rich (CR) domain and the C-terminal domain.  The CR domain interacts with 

transmembrane protein dystroglycan.  The C-terminal domain binds to syntrophin and 

dystrobrevin.  Abbreviated dystrophins have been generated largely based on our understanding 

of the structure-function relationship of dystrophin in skeletal muscle.  Of particular interest is 
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the notion that most part of the rod domain can be deleted without significant consequences on 

function 
12, 13

.  A 6.2-kb ∆17-48 minigene was found in a 61-year-old ambulant patient 
13

.  The 

Chamberlain lab optimized this 6.2-kb minigene into the 6-kb ∆H2-R19 minigene.  Transgenic 

expression of the ∆H2-R19 minigene yielded better skeletal muscle protection than the ∆17-48 

minigene in dystrophin-null mdx mice.  Importantly, ∆H2-R19 mini-dystrophin fully restored 

muscle force 
12, 14

.  In light of these encouraging skeletal muscle data on the ∆H2-R19 minigene 

12, 14
, we generated cardiac specific ∆H2-R19 min-dystrophin transgenic mdx mice 

15
. We studied 

heart protection of ∆H2-R19 min-dystrophin in 21-m-old male mdx mice which show moderate 

cardiomyopathy 
15-18

.  In contrast to what was seen in skeletal muscle 
12, 14

, expression of ∆H2-

R19 min-dystrophin in the heart only partially corrected ECG and cardiac hemodynamic 

deficiencies 
15

.  This unexpected result suggests that ∆H2-R19 mini-dystrophin may lack 

domain(s) important for heart function.   

On reviewing the clinical literature, we found that patients with deletion mutations in the 

region of R16 to R19 often display early onset and/or more severe heart disease 
19-33

.  We 

wondered whether inclusion of R16-19 might lead to a better cardiac protection.  To this end, we 

inserted R16-19 to ∆H2-R19 mini-dystrophin and made ∆H2-R15 mini-dystrophin (Figure 1A).  

We then generated cardiac-specific ∆H2-R15 mini-dystrophin transgenic mice 
15

. To increase the 

stringency of the study, we focused on a more severe model that showed classic end-stage dilated 

cardiomyopathy found in human patients 
16-18, 34

.  Despite the fact that the ∆H2-R15 minigene 

was tested in mice with more severe heart disease, surprisingly, several physiological parameters 

that were not corrected by the ∆H2-R19 minigene in the less severe model were now normalized 

by ∆H2-R15 mini-dystrophin.  Our results suggest that inclusion of R16-19 in synthetic mini-

dystrophins can enhance cardiac rescue.  
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Materials and Methods 

Experimental Animals.  All animal experiments were approved by the institutional animal care 

and use committee and were in accordance with NIH guidelines.  FVB mice were used as the 

wild type control mice.  They were generated in a barrier facility using breeders purchased from 

The Jackson Laboratory (Bar Harbor, ME).  Congenic FVB background mdx mice were 

generated as we described before 
35

.  The transgenic founder lines were generated on the FVB 

background at the University of Missouri transgenic core.  These mice express the ∆H2-R15 

mini-dystrophin gene under the transcriptional control of the cardiac muscle specific α-myosin 

heavy chain (αMHC) promoter.  Mini-dystrophin transgenic mdx mice were generated by 

crossing transgenic found mice with FVB background mdx mice.  Two founder lines (line 271 

and line 272) were generated.  In our studies, we combined the data from both lines in our result 

section because (1) we have previously shown that 5-fold to 50-fold transgenic over-expression 

of mini-dystrophin in the heart yielded similar protection and (2) we did not detect a statistically 

significant difference between these two lines (Supplementary Table 1).  Below we further 

clarify the source of the mice used in each figure.  The representative images for transgenic mice 

in Figure 1 are from line 271 animals.  For the ECG analysis (Figure 2) we have used mice n=22 

from line 271 and n=10 from line 272.  For the left ventricle hemodynamics (Figure 3) we have 

used n=19 from line 271 and n=6 from line 272.  We have used n=3 from lines 271 and 272 for 

the western blot quantification shown in Figure 4.  For the Supplementary figure 1, we have used 

n=2 from line 271 and n=1 from line 272.  The average age of the mice was 23.3±0.20 and 

22.9±.0.05 months for lines 271 and 272 respectively.   For the Supplementary table 1, we have 

used n=19 from line 271 and n=6 from line 272.  All mice were maintained in a specific-

pathogen free animal care facility on a 12-hour light (25 lux):12-hour dark cycle with access to 
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food and water ad libitum.  Mice were euthanized following functional assays to harvest tissues.  

All histology and physiology studies were performed in mice that were 23-m-old (23.22 ± 0.16 

months) (Table 1).  

 

Morphological studies.  Dystrophin expression was evaluated by immunofluorescence staining 

using three independent dystrophin monoclonal antibodies including Dys2 (1:30; Vector 

Laboratories), DysB (1:80, clone 34C5, IgG1; Novocastra) and Mandys8 (1:200; Sigma 

Aldrich).  Dys2 and DysB react with ∆H2-R15 mini-dystrophin.  Mandys8 recognizes an epitope 

in dystrophin repeat 11, which is absent in ∆H2-R15 mini-dystrophin 
36, 37

.  General histology 

was examined by hematoxylin and eosin (HE) staining.  Fibrosis was examined by Masson 

trichrome staining as we described before 
38

.  Slides were viewed at the identical exposure 

setting using a Nikon E800 fluorescence microscope.  Photomicrographs were taken with a 

QImage Retiga 1300 camera 
38

.  The fibrotic tissue deposition was quantified using 

photomicrographs of Masson trichrome stained images using Photoshop Software.  Briefly, the 

measurement scale was set up for the relevant magnification for the microscope and using the 

lasso tool in Photoshop, the fibrotic area was marked in individual images.  The fibrotic area 

from multiple images were averaged per individual animal and the total area of fibrosis is 

calculated for 3-4 animal for each strain.    

 

Western blot.  Whole heart and muscle lysate was prepared as we described before 
39

.  Briefly, 

the tissues were snap frozen in liquid nitrogen.  The frozen tissue samples were ground to fine 

powder in liquid nitrogen followed by homogenization in a buffer containing 10% sodium 

dodecyl sulfate, 5mM ethylenediaminetetraacetic acid, 62.5mM Tris-HCl at pH6.8 and the 
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protease inhibitor cocktail (Roche, Indianapolis, IN).  The crude lysates were heated at 95°C for 

3 min, chilled on ice for 2 min and then centrifuged at 14,000 rpm for 2 min.  Supernatant was 

collected as the whole muscle lysate.  Protein concentration was measured using the DC protein 

assay kit (Bio-Rad, Hercules, CA).  Dystrophin was detected with the Dys2 antibody (1:100, 

Novocastra).  The calcium handling proteins were detected using antibodies against 

sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a, 1:2,500 Badrilla, Leeds 

UK) and phospholamban (1:2,500 Badrilla, Leeds UK).  Proteins involved in cellular signaling 

were detected using antibodies for c-jun N-terminal kinase (JNK1, 1:1,000 BD Pharmingen San 

Jose, CA), p38α (1:500, Santa Cruz Biotechnology, Dallas, TX), Akt (1:1,000, Cell Signaling 

Technology, Danvers, MA), and endothelin-A receptor (ET-A, 1:5,000, Abcam, Cambridge, 

MA).  For the loading control, we used antibodies against glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH, 1:3,000; Millipore, Billerica, MA) and vinculin (1:2,000, Abcam, 

Cambridge, MA).   

Western blot quantification was performed using the LI-COR Image Studio Version 

5.0.21 software (https://www.licor.com).  The intensity of the respective protein band was 

normalized to the corresponding loading control in the same blot.  The relative band intensity 

was normalized to the wild type control group. 

 

ECG and hemodynamic assay.  Cardiac functions were evaluated using our published 

protocols as described in the standard operating protocol in the Cardiac Protocols for Duchenne 

Animal Models 

(http://www.parentprojectmd.org/site/PageServer?pagename=Advance_researchers_sops) 
40, 41

.  

Specifically, a 12-lead ECG assay was performed using a commercial system from AD 
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Instruments (Colorado Springs, CO) 
38, 42

.  The Q wave amplitude was determined using the lead 

I tracing.  Other ECG parameters were analyzed using the lead II tracing.  The QTc interval was 

determined by correcting the QT interval with the heart rate as described by Mitchell et al 
43

.  

The cardiomyopathy index was calculated by dividing the QT interval by the PQ segment 
44

.  

Left ventricular hemodynamics was evaluated using a closed chest approach as we have 

previously described 
38, 40

.  The resulting PV loops were analyzed with the PVAN software 

(Millar Instruments, Houston, TX).  

 

Statistical analysis.  Data from individual experimental subject are presented using the scatter 

plots.  Data from the experimental group are presented as mean ± stand error of mean.  One-way 

ANOVA with Bonferroni’s multiple comparison analysis was performed using GraphPad 

PRISM software version 7.0 for Mac OSX (GraphPad Software, La Jolla California USA, 

www.graphpad.com).  A p < 0.05 was considered statistically significant.  
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Results  

 

Generation of αMHC.∆H2-R15 mini-dystrophin transgenic mdx mice.  To study the cardiac 

benefit of ∆H2-R15 mini-dystrophin, we generated cardiac specific αMHC.∆H2-R15 minigene 

transgenic mice (Figure 1A).  Cardiac specific expression was regulated by the αMHC promoter 

and the bovine growth hormone gene polyadenylation sequence.  Two founder lines (line 271 

and line 272) were generated on the FVB background and subsequently crossed to the FVB 

background mdx mice.   

The progression of Duchenne cardiomyopathy undergoes several distinctive phases from 

pre-symptomatic stage to compensatory hypertrophic cardiomyopathy and eventually dilated 

cardiomyopathy 
16, 17

.  We recently discovered that only ≥21-m-old female mdx mice display 

severe end-stage dilated cardiomyopathy 
18

.  Hence, we focused the current study on 23-m-old 

female mdx mice.  Cardiac expression of the ∆H2-R15 minigene was confirmed by dystrophin 

immunofluorescence staining in both founder lines using Dys2, DysB and Mandys8 antibodies.  

DysB and Dys2 recognize H1-R2 and the C-terminal domain, respectively while Mandys8 reacts 

with R11 which is absent in ∆H2-R15 mini-dystrophin (Figure 1B).  Heart lysate western blot 

revealed the right size band at levels 7.5 and 13-folds higher than that of full-length dystrophin in 

a normal heart (Figure 1C).  We have previously shown that transgenic mini-dystrophin 

expression in the mdx heart at 5- to 50-fold higher than that of full-length dystrophin in wild type 

mice yielded similar levels of histological and physiological rescue 
45

.  Hence, quantification 

data presented in the rest of the manuscript are from both lines.  On HE staining and Masson 

trichrome staining, we detected nominal inflammation and fibrosis in the heart of αMHC.∆H2-

R15 mice (Figure 1D, Supplementary Figure 1).  On quantification, the fibrotic area in the 

heart of αMHC.∆H2-R15 mice was significantly lower than that of mdx mice and actually it was 
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comparable to that of wild type mice (Supplementary Figure 1).  As expected, skeletal muscle 

of αMHC.∆H2-R15 mice had no dystrophin expression and displayed characteristic degeneration 

and fibrosis comparable to those of mdx mice (Figure 1E) 
35

.  

 

∆H2-R15 mini-dystrophin normalized aberrant ECG changes.  To determine therapeutic 

benefits on cardiac electrophysiology, we performed the 12-lead ECG assay 
40, 41

.  Except for the 

lack of tachycardia, we observed all other characteristic ECG abnormalities in transgene-

negative mdx mice (Figure 2).  Specifically, the PR interval was significantly reduced, QRS 

duration and Mitchell’s corrected QT (QTc) interval were significantly prolonged, the absolute 

value of the Q wave amplitude and the cardiomyopathy index were significantly increased 

(Figure 2).  These abnormal changes were completely corrected in αMHC.∆H2-R15 mice 

(Figure 2).  

 

∆H2-R15 mini-dystrophin prevented heart dilation.  Hemodynamics was examined using left 

ventricular catheterization (Figure 3, Supplementary Table 1) 
15, 42

.  Similar to our previous 

report 
18

, we observed characteristic signs of dilated cardiomyopathy such as a significant 

increase of the end systolic volume and end diastolic volume in transgene-negative mdx mice 

(Figure 3).  Transgenic expression of ∆H2-R15 mini-dystrophin in the heart normalized the end-

systolic volume, dP/dt maximum, end-diastolic volume and ejection fraction.  A trend of 

improvement was also seen in the maximal pressure, dP/dt minimum, stroke volume and cardiac 

output (Figure 3).  Nevertheless, the isovolumetric relaxation time constant tau was not 

corrected (Figure 3).  In contrast, the mean tau value was significantly increased compared to 

that of wild type controls.   
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Anatomic examination revealed cardiac hypertrophy in αMHC.∆H2-R15 mice.  At the end 

of in-life study, we measured body weight (BW), heart weight (HW), ventricular weight (VW), 

tibia length (TL) and TA muscle weight (TW) (Table 1).  Compared to that of wild type control, 

TW was significantly reduced in αMHC.∆H2-R15 mice, consistent with skeletal muscle disease-

related limb muscle atrophy.  Interestingly, HW and VW of αMHC.∆H2-R15 mice were 

significantly (~14%) higher than those of wild type controls.  The HW/TW and VW/TW ratios 

of αMHC.∆H2-R15 mice were also significantly increased compared to those of wild type 

control mice, suggesting cardiac hypertrophy in αMHC.∆H2-R15 mice.  Since TW was affected 

by skeletal muscle disease, we evaluated TL normalized HW and VW 
34, 46

.  Compared to those 

of wild type control mice, the HW/TL and VW/TL ratios of αMHC.∆H2-R15 mice were 

significantly higher, thus confirming cardiac hypertrophy in αMHC.∆H2-R15 mice.  

 

Evaluation of calcium handling proteins and cardiac hypertrophy related signaling 

proteins.  To begin to understand the mechanisms of heart protection by ∆H2-R15 mini-

dystrophin, we quantified the expression of SERCA2a and phospholamban, two important 

calcium handling proteins that are known to regulate heart contractility (Figure 4).  Compared to 

wild type control mice, both SERCA2a and phospholamban appeared reduced in mdx mice.  

Their levels were increased in αMHC.∆H2-R15 mice but did not reach statistical significance.  

 Many signaling pathways have been implicated in cardiac hypertrophy (Reviewed in 
47-

51
).  As the first step towards elucidation of the molecular processes underlying myocardial 

hypertrophy seen in αMHC.∆H2-R15 mice, we examined several proteins in the mitogen-

activated protein kinase (MAPK) pathway, Akt signaling and G-protein coupled receptor 
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signaling (Figure 4) 
51-60

.  These pathways have been implicated in either pathological or 

physiological cardiac hypertrophy.  JNK1 and p38α are two important branches of the MAPK 

signaling cascade. We did not detect statistically significant difference (Figure 4).  Endothelin 

receptor A (ET-A) is a G-protein coupled receptor.  Western blot on ET-A and Akt did not show 

noticeable trends (Figure 4).   In light of the substantial individual differences (especially for 

Akt) and the small sample size (n=3 for αMHC.∆H2-R15 mice), we could not draw a solid 

conclusion on the involvement of the Akt signaling and G-protein receptor signaling.   
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Discussion  

 Two distinctive strategies have been used to study the structure-function relationship of 

dystrophin, namely the transgenic approach and AAV-mediated gene transfer.  Systemic AAV 

delivery results in simultaneous transduction of both skeletal muscle and heart.  This creates a 

challenge for sorting out cardiac specific effect because it is controversial whether treating 

skeletal muscle can reduce or aggravate heart disease in mdx mice 
38, 61, 62

.  To get a definitive 

answer on the cardiac specific effect, here we opted using the transgenic approach instead of 

AAV delivery to avoid confounding influences from skeletal muscle dystrophin expression.  

 Dystrophin is essential for the survival and function of both skeletal muscle and cardiac 

muscle.  However, recent studies suggest that there may exist important differences between 

skeletal muscle dystrophin and cardiac dystrophin.  For example, dystrophin directly binds to 

neuronal nitric oxide synthase (nNOS) in skeletal muscle and this interaction is critical to the 

sarcolemmal localization of nNOS in skeletal muscle 
14, 63

.  But in cardiac muscle, dystrophin 

dose not interact with nNOS and nNOS is localized in the sarcoplasmic reticulum and 

mitochondria in the heart 
64-67

.  Cytosolic nNOS compromises muscle function in mdx mice by 

inducing nitrosative stress but cytosolic over-expression of nNOS in the heart improves cardiac 

function in aged mdx mice 
39, 67

.  Cardiac dystrophin directly associates with myofibrils at the Z-

disk but skeletal muscle dystrophin does not interact with myofibrils 
68

.  Recent proteomic 

studies have further identified cellular proteins that selectively interact with dystrophin in the 

heart but not in skeletal muscle 
66

.  Collectively, these observations suggest that dystrophin may 

play overlapping but distinctive roles in the heart and skeletal muscle.  It is thus important to 

determine whether a therapeutic candidate dystrophin gene that can protect skeletal muscle can 

also protect the heart.   

Page 15 of 43

Mary Ann Liebert, Inc., 140 Huguenot Street, New Rochelle, NY 10801

Human Gene Therapy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review ONLY/Not for Distribution

 

 

14

The ∆H2-R19 minigene and ∆H2-R15 minigene have both been shown to fully rescue 

skeletal muscle contractility 
12, 14, 69

.  Interestingly, cardiac-specific expression of the ∆H2-R19 

minigene in transgenic mice failed to completely correct ECG abnormalities.  In the 

hemodynamic assay, the ∆H2-R19 minigene also did not correct the end-diastolic volume, an 

important parameter in the context of Duchenne cardiomyopathy.  It was unclear whether the 

∆H2-R15 minigene can lead to better rescue.  To address this question, we generated 

αMHC.∆H2-R15 minigene transgenic mice (Figure 1) and then compared cardiac 

histopathology, anatomy and function among normal, transgene-positive and transgene negative 

mdx mice when they reached 23 months of age.   In the absence of the minigene, mdx mice 

showed ECG and hemodynamic features that are characteristic for dilated cardiomyopathy 

(Figures 2 and 3).  All aberrant ECG changes were normalized in αMHC.∆H2-R15 minigene 

transgenic mice (Figure 2).  On the cardiac catheter assay, the enlarged end-diastolic and end-

systolic volumes were normalized by ∆H2-R15 mini-dystrophin, the reduced dP/dt max was 

returned to the wild type level, and ejection fraction was normalized (Figure 3).  Collectively, 

these results suggest that the ∆H2-R15 minigene is an outstanding candidate gene for treating 

Duchenne dilated cardiomyopathy.   

The exact molecular mechanisms underlying superior cardiac rescue by the ∆H2-R15 

minigene will have to wait until future in-depth studies.   Nevertheless, we speculate that it may 

at least partially due to the presence of R16-19 in this minigene.  Nigro et al studied 284 patients 

and found that deletion of exons 48 and 49 (R19) correlates with severe cardiac disease 
23

.  In a 

more recent study, Kaspar et al analyzed 78 patients and discovered the N-terminal domain and 

R17-19 might protect the heart.  Deletion of one these two regions often result in early onset 

heart disease 
33

.  Numerous clinical studies on Becker muscular dystrophy (a mild form of DMD) 
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and X-linked dilated cardiomyopathy (a disease caused by selective dystrophin deficiency in the 

heart) from other groups also pointed towards a potential cardiac protective role of R16-19 
19-33

.   

Our results aligned well with these patient oriented studies.  Collectively, these data suggest that 

R16-19 may represent a putative heart protection domain in dystrophin.  

It is worth noting that the existence of the tissue-specific domain in dystrophin has been 

well documented in the literature.  For example, repeats 16 and 17 are essential for anchoring 

nNOS to the sarcolemma in skeletal muscle 
14

.  The C-terminal domain appears to be required 

for normal electroretinography and mutations in the C-terminal domain often associate with 

cognitive deficiency 
70, 71

.  However, except for the nNOS-binding R16/17 domain for skeletal 

muscle, dystrophin tissue-specific domains have rarely been studied and/or validated in animal 

models.  The study described here is the first to try to experimentally determine whether certain 

regions of dystrophin can result in better heart rescue.  While our results are encouraging, 

additional studies are needed before we can draw a solid conclusion.  Some of these studies may 

include exploration of cardiac-specific dystrophin interacting proteins such as cavin-1 and αB-

crystalline 
66

.  Cavin-1 is particularly interesting because several recent studies suggest that 

cavin-1 deficiency contributes to the pathogenesis of cardiomyopathy and muscular dystrophy 
72-

74
. 

An intriguing finding of our study is the presence of myocardial hypertrophy in 

αMHC.∆H2-R15 mice (Table 1).  While the molecular trigger for cardiac hypertrophy in 

αMHC.∆H2-R15 mice remains elusive (Figure 4), it certainly suggests a reverse of the disease 

course from heart failure associated dilated cardiomyopathy to compensatory hypertrophic 

remodeling 
16, 17

.  
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We would like to point out that we have used the transgenic approach in the hope of (1) 

comparing with our previously published data from αMHC.∆H2-R19 transgenic mdx mice, and 

(2) more clearly delineating the cardiac specific effect of dystrophin R16-19.  However, the 

transgenic approach cannot be directly applied to gene therapy.  While the size of the ∆H2-R15 

minigene (~ 7-kb) exceeds the packaging capacity of a single AAV vector, it can be expressed 

using various dual AAV vector strategies.  Specifically, the minigene expression cassette can be 

split into two parts and separately packaged with two independent AAV virions.  Co-delivery 

and intermolecular recombination would allow expression of the ∆H2-R15 minigene.  Future 

studies with a set of ∆H2-R15 minigene dual AAV vectors will be necessary to further 

corroborate transgenic findings described here.  Alternatively, the therapeutic benefit of R16-19 

may be investigated using AAV-mediated expression of a micro-dystrophin gene.  In this case, 

one will have to engineer a novel synthetic microgene (≤ 4-kb) that contains R16-19.    

In summary, we have provided the first animal study evidence supporting inclusion of 

R16-19 in a therapeutic candidate gene could be beneficial for treating Duchenne 

cardiomyopathy.   
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Figure 3A-C  
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Figure Legends 

Figure 1. Heart-specific expression of ∆H2-R15 mini-dystrophin ameliorated cardiac but 

not skeletal muscle pathology.  A, Illustrations of ∆H2-R19 and ∆H2-R15 mini-dystrophin.  

Dotted box marks the region deleted from full-length dystrophin.  Mini-dystrophin expression is 

under the control of the heart-specific α-myosin heavy chain (αMHC) promoter.  B, 

Representative photomicrographs of dystrophin immunofluorescence staining in the heart of wild 

type, mdx and αMHC.∆H2-R15 transgenic mdx mice.  DysB, Dys2 and Mandys8 are dystrophin 

monoclonal antibodies used in the study.  DysB and Dys2 recognize H1-R2 and the C-terminal 

domain of dystrophin, respectively.  The epitope for Mandys8 (R11) is absent in ∆H2-R15 mini-

dystrophin.  C, Representative western blots of dystrophin (Dys2) in the heart of two lines of 

αMHC.∆H2-R15 transgenic mdx mice and normal wild type control mice.  The right panel 

shows dystrophin densitometry quantification.  D, Representative photomicrographs of HE and 

Masson trichrome staining in the heart of wild type, mdx and αMHC.∆H2-R15 transgenic mdx 

mice.  E, Representative photomicrographs of HE, Masson trichrome (MT) and Dys2 

immunofluorescence staining in the tibialis anterior muscle (TA) and diaphragm of wild type, 

mdx and αMHC.∆H2-R15 transgenic mdx mice (top three panels).  The bottom panel shows 

representative dystrophin (Dys2) western blots from skeletal muscle (TA and diaphragm) of wild 

type, mdx and αMHC.∆H2-R15 transgenic mdx mice. 

 

Figure 2. ∆H2-R15 mini-dystrophin completely rescued ECG abnormalities. A, Quantitative 

evaluation of the heart rate, PR interval, QRS duration, QTc interval, Q amplitude and 

cardiomyopathy index.  Asterisk, significantly different from the indicated group.  B, 
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Representative lead II ECG tracing from wild type, mdx and αMHC.∆H2-R15 transgenic mdx 

mice.   The PR interval was reduced in the mdx mouse but normalized in αMHC.∆H2-R15 

transgenic mdx mouse.  C, Representative lead I ECG tracing from wild type, mdx and 

αMHC.∆H2-R15 transgenic mdx mice.   The deep Q wave in the mdx mouse was normalized in 

αMHC.∆H2-R15 transgenic mdx mice. 

 

Figure 3. ∆H2-R15 mini-dystrophin improved the left ventricular hemodynamics.  A, 

Quantitative evaluation of systolic function.  B, Quantitative evaluation of diastolic function.  C, 

Quantitative evaluation of overall heart function in wild type, mdx and αMHC.∆H2-R15 

transgenic mdx mice.  Asterisk, significantly different from the indicated group.  D, Selected 

pressure-volume loops from wild type, mdx and αMHC.∆H2-R15 transgenic mdx mice.  

Different scenarios (including some extreme cases) are presented to reflect individual 

differences.  For example, in the top right panel the PV loop from the transgenic mouse is almost 

identical to that of a normal mouse but the PV loop from the mdx mouse does not show the 

typical enlargement of the end-diastolic volume.  The top left panel is the representative PV 

loops from all experimental groups. 

 

Figure 4.  Evaluation of calcium handling proteins and cardiac hypertrophy-related 

signaling proteins.  A, Representative immunoblots for sarcoplasmic/endoplasmic reticulum 

calcium ATPase 2a (SERCA2a), phospholamban (PLN), c-jun N-terminal kinase 1 (JNK1), 

endothelin receptor A (ET-A).  Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) or 
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vinculin was used the loading control.  B, Densitometry quantification of the expression level 

(N=3-6 for each group).  
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Tables 

 

Table 1. Weights and weight ratios 
    

  FVB   Mdx/FVB   αMHC.∆H2-R15   

Sample Size (N) 25   13   38   

Age (m) 23.50 ± 0.17  21.03 ± 0.32
a
  23.22 ± 0.16  

BW (g) 29.05 ± 1.11 
 

27.08 ± 1.03 
 

30.13 ± 1.10 
 

HW (mg) 113.16 ± 3.23 
 

122.28 ± 3.97 
 

128.38 ± 3.09
b
 

 
VW (mg) 103.20± 3.05 

 
112.59 ± 3.60 

 
118.95 ± 2.83

b
 

 
TL (mm) 18.79 ± 0.08 

 
19.05 ± 0.07 

 
18.90 ± 0.05 

 
TW (mg) 36.79 ± 0.90

a
 

 
32.35 ± 0.96 

 
31.83 ± 0.86 

 
HW/BW (mg/g) 4.00 ± 0.15 

 
4.57 ± 0.18 

 
4.34 ± 0.13 

 
HW/TL (mg/mm) 6.02 ± 0.17 

 
6.38 ± 0.21 

 
6.58 ± 0.16

b
 

 
HW/TW (mg/g) 3.09 ± 0.08

a
 

 
3.81 ± 0.13 

 
4.12 ± 0.12 

 
VW/BW (mg/g) 3.66 ± 0.14 

 
4.20 ± 0.16 

 
4.02 ± 0.12 

 
VW/TL (mg/mm) 5.48 ± 0.16 

 
5.89 ± 0.19 

 
6.10 ± 0.15

b
 

 
VW/TW (mg/g) 2.81 ± 0.07

a
   3.51 ± 0.12   3.82 ± 0.11 

 
 

Abbreviations: BW, body weight; HW, heart weight; VW, ventricle weight; TL, tibia length; 

TW, anterior tibialis muscle weight. 

a
, significantly different from other two groups  

b
, significantly different from FVB  
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Supplementary Figure legend 

 

Supplementary Figure 1.  Myocardial fibrosis is significantly reduced in ααααMHC.∆∆∆∆H2-R15 

transgenic mice.  A, Representative photomicrographs of whole heart cross section of Masson 

trichrome staining.  B, Quantification of area of fibrosis in each strain. The left panel shows the 

absolute area of fibrotic area in the heart and the right panel shows the percentage of fibrotic area 

in the whole heart cross section.  
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Supplementary Table 

 

 

Supplementary Table 1.  Hemodynamic comparison of two transgenic lines with wild type and mdx included as references. 

 

        Wild type   Mdx   
αMHC.∆H2-R15 

L271 
  

αMHC.∆H2-R15 

L272 

Sample Size (N)        19 
 

 13             19 
 

          6 

ESV (µL) 6.79± 1.35 
 

16.19 ± 2.43 
 

7.30± 1.15 
 

6.91 ± 1.76 

MaxP (mmHg) 89.36 ± 2.7 
 

81.93 ± 2.69 
 

89.92 ± 2.05 
 

90.46 ± 2.90 

dP/dt max (KmmHg/sec) 11.40 ± 0.36 
 

9.40± 0.46 
 

11.80 ± 0.43 
 

10.88± 0.83 

EDV (µL) 18.89 ± 1.73 
 

23.83± 2.72 
 

17.84 ± 1.36 
 

16.87 ± 2.02 

dP/dt min (mmHg/sec) -8.90 ± 0.30 
 

-7.20 ± 0.68 
 

-8.21 ± 0.32 
 

-6.95 ± 0.68 

Tau (ms) 8.66 ± 0.43 
 

10.26 ± 0.65 
 

12.24 ± 0.47 
 

13.02 ± 1.72 

SV (µL) 14.30 ± 0.91 
 

10.71 ± 1.01 
 

12.24 ± 0.93 
 

11.93 ± 1.94 

EF (%) 72.54 ± 0.91 
 

44.51 ± 3.49 
 

66.42 ± 4.41 
 

64.62 ± 8.04 

CO (mL/sec) 8.45 ± 0.54   6.11± 0.56   7.36 ± 0.55   6.66± 1.18 

 

ESV, end systolic volume; MaxP, maximum pressure; dP/dt max, maximum dP/dt; EDV, end-diastolic volume; dP/dt min, minimum 

dP/dt; Tau, isovolumetric relaxation time constant; SV, stroke volume; EF, ejection fraction; CO, cardiac output.  The statistical 

analysis between the two transgenic lines (line L271 and line L272) failed to yield any significant difference between the two lines.  
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