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Background Bipolar affective disorder (BPD) is a severe
mood disorder with a prevalence of ∼ 1.5% in the
population. The pathogenesis of BPD is poorly understood;
however, a strong heritable component has been identified.
Previous genome-wide association studies have indicated a
region on 6q25, coding for the SYNE1 gene, which increases
disease susceptibility. SYNE1 encodes the synaptic nuclear
envelope protein-1, nesprin-1. A brain-specific splice variant
of SYNE1, CPG2 encoding candidate plasticity gene 2, has
been identified. The intronic single-nucleotide
polymorphism with the strongest genome-wide significant
association in BPD, rs9371601, is present in both SYNE1
and CPG2.

Methods We screened 937 BPD samples for genetic
variation in SYNE1 exons 14–33, which covers the CPG2
region, using high-resolution melt analysis. In addition, we
screened two regions of increased transcriptional activity,
one of them proposed to be the CPG2 promoter region.

Results and Conclusion We identified six nonsynonymous
and six synonymous variants. We genotyped three rare
nonsynonymous variants, rs374866393, rs148346599 and
rs200629713, in a total of 1099 BPD samples and 1056
controls. Burden analysis of these rare variants did not show

a significant association with BPD. However, nine patients
are compound heterozygotes for variants in SYNE1/CPG2,
suggesting that rare coding variants may contribute
significantly towards the complex genetic architecture
underlying BPD. Imputation analysis in our own whole-
genome sequencing sample of 99 BPD individuals
identified an additional eight risk variants in the CPG2
region of SYNE1. Psychiatr Genet 27:81–88 Copyright ©
2017 The Author(s). Published by Wolters Kluwer Health,
Inc.
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Introduction
Bipolar affective disorder (BPD) is a severe mood dis-

order characterized by episodes of mania and depression

and has a lifetime risk of up to 1.5% (Merikangas et al.,
2011). Heritability estimates for BPD range between 79

and 83% (Kendler et al., 1996; McGuffin et al., 2003;
Kieseppa et al., 2004; Barnett and Smoller, 2009)and twin

studies have found concordance rates of 40–70% for

monozygotic twins (Burmeister et al., 2008). Relatives of
individuals with BPD are at increased risk for other

psychiatric diseases such as schizophrenia and major

depression, with which BPD shares phenotypic simila-

rities (Craddock et al., 2005). Linkage studies have sug-

gested evidence for linkage between genetic markers and

BPD on several chromosomal regions (Badner and

Gershon, 2002; Segurado et al., 2003; Hamshere et al.,
2005; Lambert et al., 2005; McQueen et al., 2005;

Buttenschon et al., 2010; Greenwood et al., 2012). Fine
mapping of BPD genes using tests of linkage dis-

equilibrium has been advanced by the HapMap

Consortium (International HapMap Consortium, 2003;

Song et al., 2010; Ceulemans et al., 2011). Candidate gene
studies have implicated several genes (Craddock and

Forty, 2006), although replication of findings has been

slow (Chen et al., 2011; Dizier et al., 2012; Seifuddin et al.,
2012). No single causal genetic variant of BPD has been

identified. However, there are many genes of major

effect that seem to harbour variation that may increase

susceptibility to BPD. Large samples sizes required to

establish consistency of results and genome-wide asso-

ciation studies (GWAS) have presented significant evi-

dence for several areas of association (Ferreira et al., 2008;
Djurovic et al., 2010; Cichon et al., 2011; Psychiatric

GWAS Consortium Bipolar Disorder Working Group,

2011; Sklar et al., 2011; Yosifova et al., 2011; Lencz et al.,
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2013; Seifuddin et al., 2013; Gonzalez et al., 2014;

Muhleisen et al., 2014; Xu et al., 2014). There is

replicated evidence for a genome-wide significant asso-

ciation in the ankyrin-3 (or ankyrin-G), ANK3 and the

voltage-dependent L-type calcium channel α1C subunit,

CACNA1C, genes in BPD (Schulze et al., 2009; Scott et al.,
2009; Smith et al., 2009; Lett et al., 2011; Takata et al.,
2011; Tesli et al., 2011; Dedman et al., 2012; Gonzalez

et al., 2013; Zhang et al., 2013; Green et al., 2013b; Erk
et al., 2014; Fiorentino et al., 2014).

Linkage analysis identified an association in the chro-

mosome 6q25 region with susceptibility to schizophrenia

in a small study (Lindholm et al., 2001) and autism

(Philippe et al., 1999). One of the genes in this locus is

SYNE1, encoding synaptic nuclear envelope protein-1

(also known as enaptin or nesprin-1). The SYNE1 single-

nucleotide polymorphism (SNP) rs9371601, located in

intron 16, passed the genome-wide significance threshold

(P< 5.0× 10− 8) in large BPD GWAS (Ferreira et al.,
2008; Sklar et al., 2011), followed by later replications

(Psychiatric GWAS Consortium Bipolar Disorder

Working Group, 2011; Green et al., 2013a; Xu et al., 2014).
However, this SNP has subsequently been shown to be

only nominally significantly associated with BPD at

P= 2.72× 10− 4 in the largest GWAS to date of 9784 BPD

patients and 30 471 controls (Hou et al., 2016). Nesprin-1

has been suggested to play several roles in cytoplasmic

nuclear positioning, inner nuclear envelop function and

Golgi structure maintenance (Gough et al., 2003).

Nesprin-1 is an exceptionally large spectrin family

member and is expressed in a range of tissues, including

the central nervous system. Expression of nesprin-1 is

greatest in the cell bodies of Purkinje cells and in olivary

body neurons of the lower brainstem. Mutations in

SYNE1 lead to rare Mendelian phenotypes such as

autosomal recessive arthrogryposis and autosomal reces-

sive cerebellar ataxia 1 or ARCA1 (Dupre et al., 1993;
Gros-Louis et al., 2007; Attali et al., 2009). Furthermore,

SNPs in SYNE1 have previously been noted in a meta-

analysis of genome-wide association data of BPD and

major depressive disorder (Liu et al., 2011).

Like SYNE1, the ANK3 gene has been repeatedly

implicated by GWAS to specifically increase suscept-

ibility to BPD (Ferreira et al., 2008; Sklar et al., 2011;
Shinozaki and Potash, 2014). Among a list of 180 genes,

both SYNE1 and ANK3 were implicated in central ner-

vous system development, neural projections, synaptic

transmission, various cytoplasmic organelles and cellular

processes and contributed towards 20–30% of the genetic

load across six major neuropsychiatric disorders-attention

deficit hyperactivity disorder, anxiety disorders, autistic

spectrum disorders, BPD, major depressive disorder and

schizophrenia (Cross-Disorder Group of the Psychiatric

Genomics Consortium, 2013; Lotan et al., 2014). Both the

ankyrin-G and nesprin-1 proteins contain a highly con-

served spectrin-binding domain, which is suggested to

link proteins to the spectrin actin cytoskeleton. Nesprin-

1 has been implicated to play a role in the function of

ankyrin-G (Devarajan et al., 1996; Yang et al., 2007).

However, no evidence for ankyrin-G and nesprin-1 pro-

tein interaction has been shown to date.

The top GWAS SYNE1 SNP, rs9371601, was not found

to be associated with structural brain alterations in BPD

(Tesli et al., 2013). The strongest nonsynonymous SNP

in SYNE1, rs214976, associated with BPD is also present

in the candidate plasticity gene 2, CPG2, a brain-specific
splice variant of exons 16 to 33 of SYNE1, which was first

characterized in the rat (Cottrell et al., 2004). CPG2
encodes a protein present exclusively in the postsynaptic

endocytotic zone of excitatory synapses and is upregu-

lated by kainite-induced seizures in rat hippocampus

dentate gyrus (Nedivi et al., 1993, 1996; Cottrell et al.,
2004). In this paper, we present data from an SYNE1/
CPG2 gene scan in BPD.

Here, we have screened SYNE1 exons 14–33 for variants

in BPD samples using high-resolution melt (HRM) ana-

lysis, a PCR-based method for identifying DNA

sequence variations by detecting changes in the melting

of DNA duplexes. Human CPG2/SYNE1 cDNA

sequence alignments with the human genome include an

additional two SYNE1 exons (14 and 15), which were

screened. In addition, the putative promoter region of

CPG2 in intron 14 of SYNE1 and a potentially retained

CPG2 intron corresponding to SYNE1 intron 33 (Cottrell

et al., 2004) were also screened for polymorphisms.

Nonsynonymous variants were subsequently genotyped

in the University College London (UCL) BPD

case–control sample.

Methods
University College London clinical sampling
The UCL BPD cohort consists of 1099 individuals.

These were sampled in two cohorts. The first cohort

(UCL1) comprised 506 bipolar I cases (Ferreira et al.,
2008; Sklar et al., 2011), whereas the second cohort

(UCL2) comprised 409 bipolar I (69%) and 184 bipolar II

cases (Dedman et al., 2012). Among the UCL1 BPD cases

were 143 with comorbid alcohol-dependence syndrome

according to Research Diagnostic Criteria (RDC) (Lydall

et al., 2011). All UCL bipolar cases were interviewed by a

psychiatrist using the lifetime version of the Schedule for

Affective Disorders and Schizophrenia schedule (Spitzer

and Endicott, 1977), rated with the 90-item Operational

Criteria Checklist (McGuffin et al., 1991) and fulfilled

diagnostic criteria for bipolar disorder according to RDC

(Spitzer et al., 1978). The sample of 1056 normal controls

comprised 672 screened controls who were interviewed

with the initial clinical screening questions of the

Schedule for Affective Disorders and Schizophrenia-

Lifetime Version and selected on the basis of not hav-

ing a family history of schizophrenia, alcohol dependence

or BPD, for having no past or present personal history of
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any RDC-defined mental disorder and were not heavy

drinkers, in addition to 384 unscreened British normal

volunteers provided by European Collection of Animal

Cell Cultures. All cases and controls were selected to be

of UK or Irish ancestry as described previously (Datta

et al., 2010). UK National Health Service multicentre and

local research ethics approvals were obtained and signed

informed consent was provided by all participants.

Genomic DNA was obtained from frozen whole-blood

samples for cases and controls in UCL1 and from saliva

samples for the cases in UCL2. DNA was extracted for all

samples using methods that we have published pre-

viously (Pereira et al., 2011) and quantified with

PicoGreen (Invitrogen, Paisley, UK) by fluorimetry.

High-resolution melt curve screening
A total of 937 BPD samples from UCL1 and UCL2

cohorts were scanned using HRM. Primers to amplify

exons 14–33 within SYNE1, as well as for the putative

CPG2 promoter region on SYNE1 intron 33 and a region

of increased transcriptional activity on SYNE1 intron 14

can be found in Supplementary eTable 1 (Supplemental

digital content 1, http://links.lww.com/PG/A178). Mutation

screening was performed using Sensixmix HRM reagents

(Bioline, London, UK), Accumelt HRM SuperMix

(Quanta Biosciences, Gaithersburg, Maryland, USA) and

Lightscanner Master Mix (BioFire Diagnostics Inc., Salt

Lake City, Utah, USA) with the Roche LightCycler 480

(Roche, Burgess Hill, UK). Optimal HRM amplification

conditions for each primer pair can be found in

Supplementary eTable 1 (Supplemental digital content

1, http://links.lww.com/PG/A178).

Sequencing
Samples that showed altered or shifted HRM melt curve

profiles were selected for sequencing. Sequencing was

performed using the Big Dye terminator v3.1 Cycle

Sequencing kit (Applied Biosystems, Warrington, UK) on

an ABI 3730xl DNA Analyser (Applied Biosystems) and

analysed using the Staden Package (Staden, 1996).

Genotyping and association analysis
To determine whether potentially aetiological non-

synonymous variants in SYNE1 increase susceptibility to

BPD, fluorescent allele-specific PCR (KASPar) (LGC

Genomics, Hoddesdon, UK) genotyping assays were

designed. The three SYNE1 variants identified by HRM,

rs374866393, rs148346599 and rs200629713, were

KASPar genotyped on a LightCycler 480 RealTime PCR

System (Roche) in all 1099 UCL1 and UCL2 BPD and

control samples. Quality control to confirm the reprodu-

cibility of genotypes was performed as described pre-

viously (Dedman et al., 2012). All these data were

analysed to confirm Hardy–Weinberg equilibrium.

Genotypic and allelic associations as well as burden

analysis for rare single-nucleotide variants were deter-

mined using Fisher’s exact tests. Significance values

shown for all analyses are uncorrected for multiple testing

and a cutoff significance value of P less than 0.05

was used.

Data analysis
Bioinformatic analysis to predict the effect of nonsynon-

ymous variants on the function of SYNE1 and the pro-

posed CPG2 region was carried out using the UCSC

genome browser (http://genome.ucsc.edu), Polyphen-2 (http://
genetics.bwh.harvard.edu/pph2/index.shtml ) (Adzhubei et al.,
2010) and SIFT BLink (http://sift.jcvi.org/www/SIFT_
BLink_submit.html ) (Kumar et al., 2009). The protein

reference for SIFT used was gi:220675590. The effect of a

synonymous mutation on the exon was predicted using

Genscript Rare Codon Analysis (http://www.genscript.com/
cgi-bin/tools/rare_codon_analysis). The codon adaptation

index is a measure of synonymous codon usage bias where

higher values indicate a higher proportion of the most

abundant codons and possibly a higher chance of expres-

sion (Sharp and Li, 1987). Project Hope (http://www.cmbi.
ru.nl/hope/input) was accessed to analyse the protein

structure of the mutations in CPG2 (Venselaar et al., 2010).

1000 Genomes Phase3 data (1000 Genomes Project

Consortium, 2010) were used alongside our own BPD

whole-genome sequencing reference panel from 99

individuals (Fiorentino et al., 2014) to impute additional

significantly associated variants in the CPG2 region of

SYNE1 from the UCL Psychiatric Genomics Consortium

1 BPD samples (Sklar et al., 2008). Imputation analysis

was carried out using IMPUTE2 (Howie et al., 2009,

2011) and an association analysis was carried out using

SNPTEST, version 2.5.1 using the frequentist associa-

tion test (Marchini and Howie, 2010). The Ensembl

Variant Effect Predictor (McLaren et al., 2010) was used
to predict the functional consequences of known and

unknown variants and regulatory region variants were

analysed in the ENCODE data (ENCODE Project

Consortium, 2011). In our modest sample size, the fre-

quency of nonsynonymous SNPs likely to affect protein

function were summed across the cases and controls in a

burden analysis to assess the overall impact of rare

mutations in the gene (Knight et al., 2009).

Results
High-resolution melt curve screening for variants
Common single-nucleotide polymorphism detection
Following HRM analysis, several differently shaped melt

curves were detected in SYNE1 (Table 1). Two SNPs,

rs4343926 and rs4331993, were found in the untranslated

region between SYNE1 exon 14 and SYNE1 exon 15. It

should be noted that rs4331993 occurred only in combination

with rs4343926. Several samples with an abnormal melting

profile were sequenced and variants rs62427038, rs34610829,

rs17082709, rs214976 and rs17082701 were identified in

exons 18, 22, 23, 26 and 27, respectively. Polyphen and SIFT

predictions of how well nonsynonymous variants would be
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tolerated by the protein can be found in Table 1. We found

the synonymous variants, rs149670417 and rs138705766,

using HRM gene scanning of SYNE1 exons 19 and 31,

respectively, which induce an increase in the GC content

from 46.23 to 46.09% and 57.74 to 58.26%, respectively

(Genscript). Both variants lead to a minor decrease in the

likelihood of the gene being expressed with a 0.01 reduction

in the codon adaptation index from 0.66, where 1 represents

100% expression (Genscript).

It should be noted that two individuals were compound

heterozygotes for rs62427038 and either rs149670417 or

rs214976. Similarly, three individuals were compound

heterozygotes for rs138705766 and rs17082701, whereas

another individual carried mutant alleles for

rs138705766, rs17082701 and rs4343926. Three indivi-

duals carried the variant alleles of rs4343926 as well as

that of one of the following SNPs: rs17082709,

rs17082701 or rs138705766. Therefore, nine patients are

compound heterozygotes for rare variants in SYNE1/
CPG2, suggesting that there may be an additive effect of

these base pair changes.

Genotyping of rare nonsynonymous variants
HRM identified three rare nonsynonymous variants in

the CPG2 region of SYNE1, which we genotyped in our

case–control sample (Table 2). In SYNE1 exon 20, one

BPD sample harboured the missense mutation,

rs374866393, where the methionine residue would be

larger and more hydrophobic than the wild-type threo-

nine, which could result in a loss of hydrogen bonds and

may disrupt correct protein folding (Project Hope). In

SYNE1 exon 25, HRM screening identified that one

BPD patient carried the G>A nonsynonymous variant,

rs148346599, leading to a change from glutamic acid to

lysine. The glutamate residue is negatively charged,

whereas lysine is a larger residue with a positive charge,

which might lead to repulsion with other residues as well

as to the repulsion of ligands (Project Hope). We iden-

tified a third nonsynonymous variant in SYNE1 exon 29,

rs200629713, which leads to an alanine to valine amino

acid change and predicted to increase the size of the

residue (Project Hope). Burden analysis does not show a

significant difference between the number of rare var-

iants in BPD cases and controls (Fisher’s exact test,

P= 1.00, d.f.= 1, n= 5963).

Imputed tests of association in SYNE1 in bipolar
affective disorder
Imputation analysis using IMPUTE2 and SNPTEST

predicted that eight intronic or promoter regulatory

region SNPs, located in both the SYNE1 and CPG2
transcripts, are significantly associated in the UCL BPD

samples (Supplementary eTable 2, Supplemental digital

content 2, http://links.lww.com/PG/A179). None of the

imputed intronic or regulatory region variants were pre-

dicted to be in regions showing enrichment for theTa
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H3K27Ac histone mark, which is the acetylation of lysine

27 of the H3 histone protein, often found near active

regulatory elements (ENCODE) (ENCODE Project

Consortium, 2011).

Discussion
We have screened exons 14–33 and the intronic regions

14 and 33 of SYNE1, overlapping the CPG2 transcript,

using HRM in 937 BPD cases. Six synonymous and six

nonsynonymous variants were identified. We genotyped

three rare nonsynonymous variants in the UCL

case–control sample of 2155 individuals, which were

predicted to increase the size of the protein residue and

may affect bending of the peptide chain. Unfortunately,

we did not find a significant association between these

three nonsynonymous variants in SYNE1 or CPG2 and

BPD using burden analysis.

Nine samples carried more than one of the variants

detected from scanning the SYNE1 gene. Thus, multiple

variants may have a compound effect on protein function,

similar to Parkin compound heterozygous mutations

associated with Parkinson’s disease (Malek et al., 2016).
To date, there is no replicated evidence that compound

heterozygosity contributes towards BPD (Knight et al.,
2009; Kember et al., 2015) or schizophrenia (Rees et al.,
2015; Ruderfer et al., 2015). However, additive and

interactive combinations of rare coding variants in the

ABCA13 gene have been suggested to contribute towards

the complex phenotypes of both BPD and schizophrenia

(Knight et al., 2009). The compound heterozygous var-

iants in SYNE1/CPG2 identified here reinforce the pos-

sibility of interactive effects of rare coding variants

contributing significantly towards the aetiology of BPD.

Genetic variants in the SYNE1/CPG2 genes may impair

CPG2 function or disrupt protein interaction in BPD

patient carriers. Expression of the brain-specific SYNE1
splice variant, CPG2, was first discovered to be upregu-

lated by kainite-induced seizures in the rat dentate gyrus

(Nedivi et al., 1993). The CPG2 protein contains several

spectrin repeats and coils. Proteins with similar motifs

often play a role in the organization of protein complexes

(Burkhard et al., 2001). The CPG2 protein localizes

to the postsynaptic component of dendritic spines and

shafts in human hippocampal neurons and regulates

the rapid cycling of synaptic glutamate receptors by

clathrin-mediated endocytosis (Loebrich et al., 2016).

Interestingly, CPG2-knockdown reduces glutamate

receptor internalization and membrane insertion, increa-

ses the number of postsynaptic clathrin-coated vesicles

and decreases dendritic spine size (Cottrell et al., 2004).
Synaptic glutamate receptor internalization in dendritic

spines is dependent on F-actin physically binding to

CPG2. Thus, CPG2 bound to F-actin functionally med-

iates postsynaptic endocytosis in the spine cytoskeleton

necessary for vesicle uncoating (Loebrich et al., 2013).
Furthermore, CPG2 appears to play a role in processes

underlying long-term depression of neuronal synapses

(Cottrell et al., 2004). Altered glutamate levels in plasma,

serum, brain tissue and cerebrospinal fluid; disrupted

glutamate receptor function (Cherlyn et al., 2010); and
decreased N-methyl-D-aspartate receptor expression

and cellular plasticity cascades (McCullumsmith et al.,
2007) have been associated with BPD. It would be

interesting to characterize the functional effects of the

variants reported here on CPG2-mediated glutamatergic

N-methyl-D-aspartate receptor signalling (Cottrell et al.,
2004) and AMPAR surface expression (Gong and de

Camilli, 2008).

In this study, we identified 12 genetic variants in SYNE1
and/or CPG2, which did not appear to play a significant

role in susceptibility to BPD. However, imputation ana-

lysis of our whole-genome sequencing data identified

eight SNPs that were associated significantly with BPD.

The association between BPD and common variants in

the SYNE1 gene warrants further investigation in a much

larger sample. Further work is also necessary to char-

acterize the functional effects of compound heterozygous

rare variants on CPG2 and nesprin-1 proteins.

Table 2 Tests of association with SYNE1/CPG2 rare variants in University College London bipolar disorder samples relative to the controls

Variant IDa Position Chr6b
Base pair
changec

Amino acid
change

Bipolar disorder vs.
controls N

Minor allele
frequency Genotype counts P valued

rs374866393 152 783 949 C> T T725M Case 1069 0.0005 TT 0, CT 1, CC 1068 1.00e

Control 926 0 TT 0, CT 0, CC 926
rs148346599 152 774 753 C> T E999K Case 1073 0.0014 TT 0, CT 3, CC 1070 0.71f

Control 908 0.0022 TT 0, CT 4, CC 904
rs200629713 152 768 615 C> T A1216V Case 1069 0.0005 TT 0, CT 1, CC 1068 1.00g

Control 918 0.0005 TT 0, CT 1, CC 917

aSingle-nucleotide polymorphism reference identifier number.
bNCBI37/hg19 human genome version.
cNesprin-1, isoform 1 protein NCBI reference sequence, NP_892006.3.
dP value, probability value determined with Fisher’s exact test analysis.
ers374866393 Fisher’s exact test (d.f.=1, N=1995).
fChr6:15277475 Fisher’s exact test (d.f.=1, N=1981).
grs200629713 Fisher’s exact test (d.f.=1, N=1987).
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