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ABSTRACT 

Segmentation of the levator hiatus in ultrasound allows to extract biometrics which are of importance for pelvic floor 
disorder assessment. In this work, we present a fully automatic method using a convolutional neural network (CNN) to 
outline the levator hiatus in a 2D image extracted from a 3D ultrasound volume. In particular, our method uses a recently 
developed scaled exponential linear unit (SELU) as a nonlinear self-normalising activation function. SELU has important 
advantages such as being parameter-free and mini-batch independent. A dataset with 91 images from 35 patients all 
labelled by three operators, is used for training and evaluation in a leave-one-patient-out cross-validation. Results show a 
median Dice similarity coefficient of 0.90 with an interquartile range of 0.08, with equivalent performance to the three 
operators (with a Williams’ index of 1.03), and outperforming a U-Net architecture without the need for batch 
normalisation. We conclude that the proposed fully automatic method achieved equivalent accuracy in segmenting the 
pelvic floor levator hiatus compared to a previous semi-automatic approach.  

Keywords: levator hiatus, automatic segmentation, SNN, ultrasound, CNN  
 

1. INTRODUCTION  
Pelvic Organ Prolapse (POP) is the abnormal downward descent of pelvic organs including, i.e., the bladder, uterus and/or 
the rectum or small bowel, through the genital hiatus, resulting in a protrusion through the vagina. In a previous study, 
27,342 women between the age of 50-79 years were examined and found that about 41% showed some degree of prolapse1. 
At present, ultrasound is the most widely used imaging modality to assess the anatomical integrity and function of pelvic 
floor, because of availability and non-invasiveness. During a transperineal ultrasound examination, 3D volumes are 
acquired during Valsalva manoeuvre (act of expiration while closing the airways after a full inspiration), at pelvic floor 
muscle contraction and during rest. The hiatal dimensions and its area are then recorded by manually outlining the levator 
hiatus in the oblique axial 2D plane at the level of minimal anterioposterior hiatal dimensions (referred to as the C-plane 
hereinafter)2 as these biometrics have been correlated with severity of prolapse, levator muscle avulsion and even prolapse 
recurrence after surgery2–4. The main limitation of this technique is the high variability between operators in assessing the 
images and the operator time required. Sindhwani et al.5 earlier proposed a semi-automatic method to segment the levator 
hiatus in a predefined C-plane which was shown to reduce interoperator variability in comparison to manual segmentation. 
Overall, despite interesting results, the procedure still lacks of automation, limiting its reproducibility, and requires 
operator inputs and, consequently, time.  

Recently, convolutional neural networks (CNN) have been shown to be able to successfully perform several tasks such as 
classify, detect or segment objects in the context of medical image analysis6. Litjens et al.7 provide a good review on deep 
learning in medical image analysis. In this work, we propose a fully automatic method to segment, in manually defined 
2D C-planes, the levator hiatus from ultrasound volumes thereby further automating the process of outlining the pelvic 
floor. In particular, we employ a self-normalising neural network (SNN) using a recently developed scaled exponential 
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linear unit (SELU) as a nonlinear activation function, with and without SELU-dropout8, showing competitive results 
compared to the equivalent network not using SELU. To the best of our knowledge, our work is the first attempt to combine 
SELU with CNN. SNNs have clear benefits in many medical imaging applications. These include the parameter-free and 
mini-batch independence nature of SNNs. In deep learning for medical imaging applications, memory constraints are 
frequently reached during training. Having opportunities to reduce the complexity of the network and being able to use a 
smaller mini-batch size (in contrast to batch normalisation), without sacrificing the generalisation performance, are both 
crucial for many applications. Full details of this work can be found in Bonmati et al.9 

2. METHOD 

2.1 Self-normalising neural networks for ultrasound segmentation 

In this work, segmenting anatomical regions of interest in medical images is posed as a joint classification problem for all 
image pixels using a convolutional neural network. Ultrasound images, which contain relatively sparse features that are 
depth- and orientation-dependent representation of the anatomy, pose a challenging task for traditional CNNs. Therefore, 
the appropriate regularisation and robustness of the training may be important to successfully segment ultrasound images. 
In recent years, rectified linear units, has become the de facto standard nonlinear activation function for many CNN 
architectures due to its simplicity and provides partially constant, non-saturating gradient, while batch normalisation, 
retains a similar importance by effectively reducing the internal variate shift and therefore regularises and accelerates the 
network training10. However, the stochastic gradient descent with relatively small data and mini-batch sizes (commonly 
found in medical image analysis applications) may significantly perturb the training so that the variance of the training 
error becomes large. This work explores an alternative construction of the nonlinear activation function used in a self-
normalising neural network, a recent development suggesting to use a scaled exponential linear unit (SELU) function8. 
The proposed SELU constructs a particular form of parameter-free scaled exponential linear unit so that the mapped 
variance can be effectively normalised. As a result, batch-dependent normalisation may not be needed. The SELU 
activation function is defined as: ܷܵܮܧሺݔሻ = ൜ ߣ  ݔ ݂݅                         ݔ > ௫݁ߙ0 − ≥ ݔ ݂݅            ߙ 0 ,                                                     (1) 
 

where scale ߣ = 1.0507 and ߙ = 1.6733 (see Klambauer et al.8 for details on the derivation of these two parameters). 
This specific form in Equation 1 ensures the mapped variance by the SELU activation is effectively bounded8 thereby 
leading to a self-normalising property.  

2.2 Network architecture 

We adapt a U-Net architecture11,12 as a baseline CNN to assess the segmentation algorithms. We refer to the proposed self-
normalising U-Net-based network as SU-Net hereinafter. The detailed network architecture is illustrated in Figure 1. Each 
block consists of two convolutions, with a kernel size of 2x2, each followed by a SELU activation. Down-sampling is 
achieved with a max-pooling with a kernel size of 2x2 and stride 2x2 which halves the sizes of the feature maps preserving 
the number of channels, while up-sampling doubles the feature map sizes, also preserving the number of channels. Up-
sampling is performed by a transposed convolution with a 2x2 stride. After each up-sampling, the feature maps are 
concatenated with the last feature maps of the same size (before pooling). The last block contains an extra convolution and 
the corresponding SELU activation. As shown in Figure 2, all the batch normalisation with rectified linear units (ReLU) 
blocks are replaced by a single SELU activation (described in Section 2.1). For the case of SU-Net with SELU-dropout, 
the dropout was applied after each convolution. SELU-dropout works with scaled exponential linear units by randomly 
setting activations to the negative saturation value (in contrast to zero variance in ReLU), in order to keep the mean and 
variance. The weighted sum of a L2 regularisation loss with of the probabilistic Dice score using label smoothing is used 
as a loss function13,14. 
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Figure 1. Network architecture, where S1 and S2 correspond to the spatial dimension and nc to the number of channels. For 

the U-Net, the SELU unit is replaced by batch normalisation and ReLU, and for the U-Net with dilated convolution (U-
Net+DC), the last layer is also replaced by a dilated convolution. 

 
Figure 2. SU-Net architecture (a) versus a U-Net architecture (b). 

2.3 Networks evaluation and metrics 

Our benchmark include the proposed SU-Net using SELU (SU-Net), the SU-Net also using SELU-dropout (SU-
Net+dropout), and a baseline U-Net using batch normalisation and ReLU (U-Net) sharing the same architecture as the SU-
Net (Figure 1. ). Other hyper-parameters are kept fixed for all these architectures. Additionally, similar to Vigneault et 
al.12, we also compare the results with a U-Net in which the last layer convolutions are replaced by dilated convolutions 
(U-Net+DC), and with a ResNet architecture15. Hyper-parameters used in the implementation of the U-Net+DC and 
ResNet networks are described in Section 3.2. Evaluation is performed in a leave-one-patient-out cross-validation, in which 
the networks are trained 35 times using data from 34 patients while the contours from the different images of the left-out 
patient are used in testing. As a result, 91 automatic segmentations are obtained from the 35-fold validation, corresponding 
to the size of the original dataset. 

Results are evaluated using two region-based measures: Dice similarity coefficient16 and Jaccard coefficient17, and two 
distance-based measures: symmetric Hausdorff distance and mean absolute distance (MAD). The choice of this 
comprehensive set of metrics aims to allow direct comparison with the results from a previous study using the same 
dataset5. Additionally, we include two more region-based measures, the false positive Dice (FPD) and the false negative 
Dice (FND)18 and one distance-based measure, the symmetric mean absolute distance (SMAD) which is the symmetric 
version of MAD.  

2.4 Statistical comparative analysis  

Performance is quantified and compared by evaluating the computer-to-observer differences (COD) to determine the 
agreement between the automatic segmentation and the manual segmentations. A pairwise comparison approach between 
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each label obtained with the automatic method and the three labels available for each image is performed by considering 
all the metrics described in Section 2.3. Performance quantification is presented for all network architectures described. 
Furthermore, statistical analysis employing a paired two-sample Student’s t-test is used to test whether the differences in 
performance between SU-Net and U-Net, U-Net+DC, ResNet and SU-Net+dropout are statistically significant different. 
Using a similar pairwise approach, interobserver differences (IOD) are quantified to determine the agreement between 
manual segmentations from the three operators and to allow a further comparison with the automatic methods.  

The level of agreement between the automatic and manual segmentations is tested using the extended Williams’ index 
(WI) and the metrics defined in Section 2.3. The WI is a statistical test for numeric multivariate data to test the null 
hypothesis that the automatic method agrees with the three operators, and that the three operators agree with each other19,20. 
This index quantifies the ratio of agreement by calculating the number of times that the automatic boundaries are within 
the observer boundaries. If the 95% confidence interval (CI) of the WI contains the value 1.0, it implies that the test fails 
in rejecting the null hypothesis that the agreement between the automatic method and the three operators is not significantly 
different.  

2.5 Clinical impact 

The dimensions of the levator hiatus on ultrasound is a biometric measurement used to assess the status of the levator 
hiatus, and is associated both with symptoms and signs of prolapse as well as with recurrence after surgical treatment2. 
Therefore, we include the area measurement from the manual and automatic segmentations in our analysis to provide 
further clinical relevance in assessing the segmentation algorithms. Evaluation is performed by grouping the images in the 
three different stages: during rest, Valsalva and contraction. WI is used to test the level of agreement between the automatic 
and manual labels.  

3. EXPERIMENTS 

3.1 Imaging 

A dataset containing 91 ultrasound images, corresponding to the oblique axial plane at the level of minimal anteroposterior 
hiatal (C-plane), from 35 patients was used for validation5. All C-planes were selected by the same operator. The dataset 
had 35 images acquired during Valsalva, 20 images during contraction and 36 images at rest to cover all the stages during 
a standard diagnosis with some extreme cases and large anatomical variability. Images had a mean pixel size and standard 
deviation (SD) of 0.54±0.07 mm, with variable image resolutions ([199-286]×[176-223] pixels, for width and length, 
respectively). All 91 images were manually segmented by 3 different operators with at least 6 months of experience in 
evaluating pelvic floor 3D ultrasound images. More details on the dataset can be found in the work of Sindhwani et al.5. 

3.2 Implementation details 

All original US images were automatically cropped or padded to 214x262 pixels primarily for normalisation and removing 
unnecessary background. In training, for the SU-Net and U-Net, we used a mini-batch size of 32 images, we linearly 
resized the data to 107x131 pixels and used a data augmentation strategy by applying an affine transformation with 6 
degrees-of-freedom. The number of channels was fixed to 64. For the SU-Net with SELU-dropout, a dropout rate of 0.5 
was used. During training, the images and labels from the three operators were both shuffled before feeding into respective 
mini-batches. The networks were implemented in TensorFlow21 and trained with an Adam optimiser22 with a learning rate 
of 0.0001, on a desktop with a 24GB NVIDIA Quadro P6000. For each automatic segmentation obtained, post-processing 
morphological operators to fill holes (i.e., flood fill of pixels that cannot be reached from the boundary of the image) and 
remove unconnected regions by selecting the region with the largest area, were also applied. For the U-Net+DC and ResNet 
we used a mini-batch size of 10, 128 initial channels and a learning rate of 0.001 (all the rest of hyper-parameters, pre-
processing and post-processing were kept the same). 

4. RESULTS 
First, using the three manual labels available for each image as a ground truth, we evaluated the performance of the 
proposed network using the pairwise comparison strategy defined in Section 2.4 with the metrics described in Section 2.3. 
For comparison purposes, we also report the results obtained with the baseline U-Net architecture, and the U-Net+DC and 
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ResNet architectures. Median values and interquartile ranges for each metric are shown in Table 1. Statistical analysis 
comparing the mean values for each image (average of the operators) obtained with the U-Net and the SU-Net showed a 
statistically significant difference for the Dice, Jaccard, Hausdorff, SMAD and FPD metrics (p-values=0.030, 0.022, 0.004, 
0.027, 0.031, respectively), and no significant difference for MAD an FND metrics (p-values=0.064, 0.183, respectively). 
However, when comparing the values of all metrics using SELU-dropout and without SELU-dropout, no statistically 
significant difference was found (all p-values>0.37). Furthermore, no statistically significant difference was found when 
comparing the SU-Net and U-Net+DC (all p-values>0.30), or when comparing the SU-Net with ResNet (all p-
values>0.08). Differences between the three operators (i.e., interoperator differences), not considering the automatic 
segmentations, are reported using the same metrics and shown in Table 2. WIs are reported in Table 3 to compare the 
agreement between automatic and manual segmentations with the agreement among manual segmentations using the 
metrics described in Section 2.3. Table 4 shows the mean differences in area of the segmented regions in terms of computer-
to-operator differences and interoperator differences during the three different stages, and with the corresponding WIs 
testing the performances. 

Table 1. Performance of the SU-Net, SU-Net+dropout, U-Net, U-Net+DC and ResNet networks by employing a pairwise 
comparison with the three manual labels available for each ultrasound image. This table also contains results from a 
previous study (Sindhwani et al.5). Results are reported using median [interquartile range].  

Method Dice Jaccard Hausdorff  
(in mm) 

MAD  
(in mm) 

SMAD  
(in mm) 

FPD FND 

SU-Net 0.90 [0.08] 0.82 [0.12] 4.21 [3.92] 1.19 [1.15] 1.16 [1.02] 0.07 [0.13] 0.09 [0.16] 
SU-Net+dropout 0.90 [0.08] 0.81 [0.13] 3.90 [3.83] 1.21 [1.16] 1.23 [1.09] 0.07 [0.13] 0.09 [0.16] 
U-Net 0.89 [0.11] 0.80 [0.18] 4.49 [5.67] 1.31 [1.42] 1.34 [1.41] 0.07 [0.16] 0.08 [0.16] 
U-Net+DC 0.90 [0.08] 0.82 [0.13] 3.97 [3.87] 1.18 [3.86] 1.17 [1.23] 0.05 [0.13] 0.11 [0.15] 
ResNet 0.91 [0.08] 0.83 [0.14] 3.59 [4.22] 1.13 [1.14] 1.10 [1.07] 0.06 [0.14] 0.07 [0.13] 
Sindhwani et al.5 0.92 [0.05] 0.85 [0.09] 5.73 [3.90] 2.10 [1.54] - - - 

 

Table 2. IOD results reported using median [interquartile range]. 

Dice Jaccard Hausdorff  
(in mm) 

MAD  
(in mm) 

SMAD 
(in mm) 

FPD FND 

0.92 [0.06] 0.85 [0.10] 3.05 [2.33] 1.01 [0.85] 1.01 [0.81] 0.03 [0.08] 0.08 [0.15] 
 

Table 3. WIs [95% CI] for the SU-Net, SU-Net+dropout, U-Net, U-Net+DC and ResNet architectures for each metric.  

Method WI Dice WI Jaccard WI Hausdorff 
(in mm) 

WI MAD 
(in mm) 

WI SMAD 
(in mm) 

WI FPD WI FND 

SU-Net 1.032 
[1.03,1.03] 

1.052 
[1.05,1.06] 

0.677 
[0.67,0.69] 

0.738 
[0.73,0.75] 

0.776 
[0.77,0.79] 

0.425 
[0.40,0.45] 

0.588 
[0.57,0.61] 

SU-Net+dropout 1.032 
[1.03,1.03] 

1.051 
[1.05,1.05] 

0.701 
[0.69,0.71] 

0.751 
[0.74,0.76] 

0.784 
[0.77,0.80] 

0.420 
[0.40,0.44] 

0.591 
[0.57,0.62] 

U-Net 1.085 
[1.08,1.09] 

1.111 
[1.10,1.12] 

0.530 
[0.52,0.54] 

0.577 
[0.56,0.59] 

0.538 
[0.52,0.56] 

0.281 
[0.26,0.30] 

0.439 
[0.42,0.46] 

U-Net+DC 1.033 
[1.03,1.04] 

1.053 
[1.05,1.06] 

0.712 
[0.70,0.72] 

0.723 
[0.71,0.74] 

0.756 
[0.74,0.77] 

0.395 
[0.37,0.42] 

0.706 
[0.69,0.72] 

ResNet 1.037 
[1.03,1.04] 

1.061 
[1.06,1.07] 

0.717 
[0.71,0.73] 

0.726 
[0.71,0.74] 

0.731 
[0.72,0.74] 

0.533 
[0.50,0.57] 

0.52 
[0.5,0.54] 

 
Table 4. COD and IOD using SU-Net with the corresponding WIs and the 95% CI. Results are reported using mean (±SD). 

Stage Contraction Valsalva Rest 
COD 0.62±0.91 0.86±1.89 0.60±1.22 
IOD 0.52±0.70 0.62±1.03 0.61±0.92 
WI [95% CI] 0.80 [0.72,0.89] 0.72 [0.68,0.76] 0.85 [0.80,0.90] 

 

Figure 3 shows examples of original images with the corresponding segmentation results obtained with the automatic 
method together with the three manual labels used as a ground truth, and Figure 4 shows examples at the three different 
stages: rest, Valsalva and during contraction.  
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Figure 3. Segmentation of the levator hiatus using with the SU-Net architecture (blue) compared with the three manual 
labels (red) for the following percentiles of the Dice coefficient: 0th (a), 25th (b), 50th (c), 75th (d) and 100th (e). 

 
Figure 4. Segmentation examples of the levator hiatus at the three different stages (contraction, Valsalva and rest) using the proposed 

method (blue) compared to the outlines provided by the operators (red). Cases were chosen at the 75th percentile of the mean Dice 
coefficient considering the three operators. 

5. DISCUSSION AND CONCLUSION 
In this work, we have presented a fully automatic method, using a convolutional neural network, to segment the pelvic 
floor levator hiatus on a 2D image plane extracted from a 3D ultrasound volume. A large number of female patients may 
potentially benefit globally from this approach. We have adopted a recently proposed self-normalising neural network that 
replaces the batch normalisation with a SELU unit, which for the first time, has been applied in medical imaging to tackle 
a clinically important application, obtaining either superior or equivalent segmentation results compared to a number of 
state-of the-art network architectures with clear additional benefits in terms of complexity and memory requirements. We 
show that the method presented outperformed the U-Net-based architecture by considering region-based and contour-based 
metrics and confirmed by statistical tests. On the other hand, no statistical significant difference was found when SELU-
dropout, U-Net+DC or ResNet were used. Therefore, SELU can potentially provide equivalent or improved results without 
the mini-batch size limitation.  

Comparing the COD (Table 1) with IOD (Table 2), WIs CIs show that the automatic method strongly agrees with the 
observers in terms of Dice and Jaccard coefficients with a value very close to 1, but it is not the case for the distance 
metrics. This result may be due to a disagreement on local parts of the boundaries as shown in Figure 3 (c), which gives a 
higher Hausdorff distance value, or due to a larger part of the boundary in disagreement with the operators as shown in 
Figure 3 (b) which results in a higher SMAD value. 

As a clinically relevant metric, we evaluated the differences in area at three different stages (contraction, Valsalva and 
rest). In this case, WIs were smaller than 1, showing some level of disagreement with the operators (Table 4). We believe 
that the results can be further improved by increasing the number of images during training, as the current dataset size is 
limited and contains some extreme cases with a high variability. Compared to a previous study5, in which at least three 
anatomical points have to be manually identified on the C-plane, we proposed a fully-automatic segmentation algorithm 
that is able to segment the pelvic floor on the C-plane without operator input of any form, achieving comparable accuracy. 
Note that, the previous study already achieved competitive results obtaining a good agreement with the three operators and 
demonstrated to be clinically useful. Furthermore, compared to a solution that requires human interaction (i.e. manual 
definition of several anatomical landmarks), fully-automatic methods, such as the one proposed in this work, have 
significant advantages including minimising subjective factors due to intra- and inter observer variations, simpler clinical 
workflow with minimal uncertainty and quantifiable, repeatable procedure outcome.  

 
(a) (b) (c) (d) (e) 

Proc. of SPIE Vol. 10576  105760K-6

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/17/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 
 

ACKNOWLEDGMENTS 
The authors would like to thank Dr. Friyan Tuyrel, Dr. Ixora Atan for providing the data and the manual ground truth 
labels used in this study. This work was supported by the Wellcome/EPSRC [203145Z/16/Z, WT101957, NS/A000027/1]; 
and the Royal Society [RG160569]. 

REFERENCES 
[1]  Hendrix, S. L., Clark, A., Nygaard, I., Aragaki, A., Barnabei, V. and McTiernan, A., “Pelvic organ prolapse in 

the Women’s Health Initiative: gravity and gravidity.,” American journal of obstetrics and gynecology 186(6), 
1160–1166 (2002). 

[2]  Dietz, H. P., Shek, C. and Clarke, B., “Biometry of the pubovisceral muscle and levator hiatus by three-
dimensional pelvic floor ultrasound,” Ultrasound in Obstetrics and Gynecology 25(6), 580–585 (2005). 

[3]  Abdool, Z., Shek, K. L. and Dietz, H. P., “The effect of levator avulsion on hiatal dimension and function,” 
American Journal of Obstetrics and Gynecology 201(1), 89.e1-89.e5 (2009). 

[4]  Dietz, H. P., Chantarasorn, V. and Shek, K. L., “Levator avulsion is a risk factor for cystocele recurrence,” 
Ultrasound in Obstetrics and Gynecology 36(1), 76–80 (2010). 

[5]  Sindhwani, N., Barbosa, D., Alessandrini, M., Heyde, B., Dietz, H. P., D’Hooge, J. and Deprest, J., “Semi-
automatic outlining of levator hiatus,” Ultrasound in Obstetrics & Gynecology 48(1), 98–105 (2016). 

[6]  Gibson, E., Li, W., Sudre, C., Fidon, L., Shakir, D. I., Wang, G., Eaton-Rosen, Z., Gray, R., Doel, T., Hu, Y., 
Whyntie, T., Nachev, P., Modat, M., Barratt, D. C., Ourselin, S., Cardoso, M. J. and Vercauteren, T., “NiftyNet: 
a deep-learning platform for medical imaging” (2017). 

[7]  Litjens, G., Kooi, T., I.Sánchez, B., Bejnordi, E., Setio, A. A. A., Clara, G., Ciompi, F., Ghafoorian, M., Laak, J. 
A. W. M. va. der, Ginneken, B. van and Sánchez, C. I., “A survey on deep learning in medical image analysis,” 
Medical Image Analysis 42, 60–88 (2017). 

[8]  Klambauer, G., Unterthiner, T., Mayr, A. and Hochreiter, S., “Self-Normalizing Neural Networks,” Advances in 
Neural Information Processing Systems (2017). 

[9]  Bonmati, E., Hu, Y., Sindhwani, N., Dietz, H. P., D’hooge, J., Barratt, D., Deprest, J. and Vercauteren, T., 
“Automatic segmentation method of pelvic floor levator hiatus in ultrasound using a self-normalizing neural 
network,” Journal of Medical Imaging 5(2), 1 (2018). 

[10]  Ioffe, S. and Szegedy, C., “Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift” (2015). 

[11]  Ronneberger, O., Fischer, P. and Brox, T., “U-Net: Convolutional Networks for Biomedical Image 
Segmentation” (2015). 

[12]  Vigneault, D. M., Xie, W., Bluemke, D. A. and Noble, J. A., “Feature Tracking Cardiac Magnetic Resonance via 
Deep Learning and Spline Optimization” (2017). 

[13]  Pereyra, G., Tucker, G., Chorowski, J., Kaiser, Ł. and Hinton, G., “Regularizing Neural Networks by Penalizing 
Confident Output Distributions” (2017). 

[14]  Milletari, F., Navab, N. and Ahmadi, S.-A., “V-Net: Fully Convolutional Neural Networks for Volumetric 
Medical Image Segmentation” (2016). 

[15]  Li, W., Wang, G., Fidon, L., Ourselin, S., Cardoso, M. J. and Vercauteren, T., “On the Compactness, Efficiency, 
and Representation of 3D Convolutional Networks: Brain Parcellation as a Pretext Task,” Springer, Cham, 348–
360 (2017). 

[16]  Dice, L. R., “Measures of the Amount of Ecologic Association Between Species,” Ecology 26(3), 297–302 
(1945). 

[17]  Jaccard, P., “The distribution of the flora in the alpine zone,” New Phytologist 11(2), 37–50 (1912). 
[18]  Babalola, K. O., Patenaude, B., Aljabar, P., Schnabel, J., Kennedy, D., Crum, W., Smith, S., Cootes, T., 

Jenkinson, M. and Rueckert, D., “An evaluation of four automatic methods of segmenting the subcortical 
structures in the brain,” NeuroImage 47(4), 1435–1447 (2009). 

[19]  Chalana, V. and Kim, Y., “A methodology for evaluation of boundary detection algorithms on medical images,” 
IEEE Transactions on Medical Imaging 16(5), 642–652 (1997). 

[20]  Williams, G. W., “Comparing the joint agreement of several raters with another rater,” Biometrics 32(3), 619–
627 (1976). 

[21]  Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, 
M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., 

Proc. of SPIE Vol. 10576  105760K-7

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/17/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



 
 

 
 

 
 

et al., “TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems” (2016). 
[22]  Kingma, D. P. and Ba, J., “Adam: A Method for Stochastic Optimization” (2014). 
 
 

Proc. of SPIE Vol. 10576  105760K-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/17/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


