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ABSTRACT 

Huntington’s disease (HD) is a genetic neurodegenerative disease characterised by 

motor, cognitive and psychiatric symptoms. Atrophy of subcortical brain structures has been 

well characterised and changes in the white matter are being mapped with increasing 

frequency, but structural changes in the cortex have been relatively overlooked in previous 

research. With recently trialled therapies specifically targeting the cortex, a better 

understanding of the pattern and progression of atrophy in this region should provide valuable 

measures for determining the impact of these novel treatments on the degenerative process.  

This thesis performs a methodological comparison aimed at optimising techniques to 

measure cortical characteristics in an HD cohort, and then applies the optimised techniques in 

a group of HD gene carriers undergoing conversion from pre-manifest HD to manifest HD 

quantifying cortical change during this critical period. Several tools for the quantification of 

cortical volume and cortical thickness are examined via detailed analyses using two datasets. 

This investigation results in a series of recommendations for the use of such tools, as well as 

the selection of the most appropriate measures for use in the second part of this thesis. In 

addition, since subcortical atrophy measures are widely used in HD research, the performance 

of one of the segmentation tools was evaluated by comparison with manual segmentations of 

the caudate and putamen. Finally, a novel multivariate analysis method is applied, based on 

the principles of DCM, to measure the rate, timing and acceleration of cortical GM change in a 

subgroup of 49 motor converters from the TRACK-HD cohort. This cortical atrophy is then 

related both to the biological underpinning of the disease in terms of CAG length and also the 

behavioural presentation of motor and cognitive symptoms. These findings present the first 

detailed characterisation of cortical grey matter change in HD, and have important 

implications for the understanding of HD progression. 
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AIMS OF THIS THESIS 

In the period immediately prior to Huntington’s Disease (HD) motor diagnosis there is 

an increase in symptom severity that is thought to be accompanied by an increase in atrophy 

within the cortical grey matter (CGM) in the brain (Tabrizi et al. 2013). The pattern of CGM 

atrophy that occurs during the transition from pre-manifest HD (pre-HD) to manifest HD has 

not been fully characterised and its relationship to the onset of symptoms is currently unclear. 

Magnetic resonance imaging (MRI) can be used to capture images of the brain in vivo across 

many stages of HD, and is subsequently a vital tool in the characterization of atrophy in HD. 

However, it is challenging to accurately quantify cortical change from MRI despite the 

availability of many software tools designed to achieve this goal. Automated tools are regularly 

used to analyse a number of cortical features, such as volume and thickness of the grey 

matter, yet due to a large range of individual differences along with the complicated 

gyrification within the human cortex these tools often suffer from errors in segmentation that 

can result in inconsistent findings between studies. In addition, while previous studies have 

been designed to quantify cortical change in HD the majority of these studies have used mass-

univariate linear methods, which are difficult to apply in cohorts with data from variable time 

points and do not provide information about potential accelerations or decelerations in 

atrophy across disease stages. These issues combined with a number of other methodological 

problems have contributed to a relatively limited understanding about the trajectory of 

cortical change in HD. To understand the relationship between neurological change and HD 

progression, a detailed characterisation of the changes that occur in the cortex during 

symptom onset is required. 

 

OVERALL AIM 

This thesis aims to evaluate and optimise the most accurate tools for quantifying 

cortical atrophy from MRI scans in a large cohort of gene carriers across the HD disease 

spectrum and to undertake a characterisation of CGM change during HD motor onset. 

 

SPECIFIC AIMS 

 To investigate the most appropriate methods to detect and measure CGM changes in 

HD and to optimise these techniques resulting in a ready-to-use pipeline for analysis.  

 To conduct a detailed characterisation of what CGM changes occur during the period 

immediately surrounding HD diagnosis. 
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 To investigate how CGM brain changes relate to the biological underpinning and 

behavioural manifestation of HD. 
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1. INTRODUCTION 

This chapter will provide an overview of key topics covered by this thesis. An 

introduction to Huntington’s disease (HD) will be provided, followed by a summary of the 

process of generating MRI scans. Different MRI analysis techniques will be discussed, and an 

overview of findings from previous work studying neural atrophy in HD using structural MRI 

(sMRI) will be reviewed. Finally, an outline of the current thesis will be provided within the 

context of previous literature. 

1.1. Huntington’s disease 

HD is a genetic neurodegenerative disease characterised by motor, cognitive and 

psychiatric symptoms. The disease is caused by an expanded CAG repeat in the HTT gene and 

it is fully penetrant and incurable (Tabrizi et al. 2012; Tabrizi et al. 2013). An individual can be 

identified as gene positive many years before the onset of symptoms but the formal diagnosis 

is only made in the presence of motor symptoms via use of the Unified Huntington’s Disease 

Rating Scale (UHDRS; Huntington Study Group 1996).  

HD is caused by an expanded CAG trinucleotide repeated in HTT, the gene responsible 

for encoding the protein huntingtin. The expanded CAG repeat results in the production of a 

mutant form of huntingtin that has an unusually long polyglutamine (polyQ) sequence (Bates 

et al. 2015). Mutant huntingtin (mHTT) exhibits toxic properties that cause cellular dysfunction 

and neuronal death. The medium spiny neurons found in the striatum are the most vulnerable 

to damage by mHTT, however neurons in other brain regions are also damaged by mHTT, 

leading to widespread neural atrophy over the course of HD. While HD has typically been 

viewed as a disease affecting the central nervous system, it is now understood to affect the 

whole body, with symptoms such as weight loss, muscle changes and changes to the 

peripheral immune system commonly occurring in patients alongside neurological symptoms 

(Björkqvist et al. 2008; Carroll et al. 2015).  

1.1.1. Mechanisms and pathophysiology 

Within the HTT gene is a CAG repeat that has varying length in the normal population. 

The length of this CAG repeat can be measured in any individual, with the length determining 

penetrance of HD. The healthy length of CAG repeats is between 6-35 repeats. For individuals 

with ≥40 repeats the disease will be fully penetrant. Repeat lengths of 36-39 are classed as 
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reduced penetrance, with some individuals in this range showing no signs of HD throughout 

their lives and others being clinically diagnosed as having HD, although generally later in life.  

HD is autosomal dominant, meaning that if one parent is affected each child has a 50% 

chance of inheriting the expanded CAG repeat. In addition, the CAG repeat shows instability 

between parents and children, with longer CAG repeats often also having greater instability. 

Between generations the repeat can typically increase or decrease by a small number of CAGs, 

although large increases in CAG repeat length are sometimes seen; in some cases this may 

result in the appearance of a new mutation with an unaffected parent passing on a CAG repeat 

length in the pathogenic range.  CAG repeat length not only predicts whether an individual will 

develop HD, but also predicts the age at which symptom onset occurs. Within the most 

common CAG range measured in individuals with HD, 40-55 repeats, approximately 56% of the 

variation in age at motor onset is accounted for by CAG length. Of the remaining variation, a 

large percentage (38-56%) can be attributed to genetic modifiers of onset and progression, 

although little is currently known about genetic modifiers in HD (Moss et al. 2017).  

The normal form of huntingtin is expressed throughout the whole body, with the level 

of expression varying across different regions of the body. The function of huntingtin is not 

well understood, however it is believed to be important for the development of the nervous 

system, for cell adhesion and is understood to affect brain-derived neurotropic factor (BDNF), 

a protein supporting neuronal survival and growth (Bates et al. 2015). Currently, a detailed 

understanding of how huntingtin affects these processes is lacking, but it is hypothesised that 

the polyglutamine expansion results in the loss or modulation of normal huntingtin functioning 

and that a critical level of this abnormal huntingtin causes enough damage to cause symptom 

onset.  

1.1.2. Epidemiology 

Within Western populations, the prevalence of HD is thought to be between 10.6-13.7 

individuals per 100,000 (Fisher & Hayden 2014; Evans et al. 2013; Morrison et al. 2011), with 

higher prevalence in individuals with European ancestry. In Asian and African cultures, there 

are typically lower rates of HD (diagnosis seems to occur around one-tenth as frequently), 

however often the results of epidemiology studies in these regions are based on case studies 

and thus the exact prevalence is unclear. There have also been pockets of extremely high 

prevalence reported, with the most widely studied being the Venezuelan cohort in Maracaibo 

which led to the discovery of the HD gene (The U.S.-Venezuela Collaborative et al. 2004). 
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Over the last few decades, the rates of HD appear to have increased (Bates et al. 

2015). This is likely to be due to the development and subsequent increasing availability of a 

genetic test for HD. Estimations of prevalence described before the development of genetic 

testing possibly underestimated sporadic cases of HD (5-8% of cases). Furthermore, the 

genetic test can now confirm late-onset HD, which may have previously been underestimated 

due to concurrent aging or other related factors. Finally, longer lifespans are also probable 

contributors to increasing rates of prevalence, with longer lifespans resulting in more late-

onset cases of HD.  

1.1.3. Diagnosis and symptomology 

The official clinical diagnosis threshold for HD is based on motor symptoms, however 

there is a long pre-HD phase whereby subtle symptoms of the disease begin to emerge. This 

phase can last for 10-15 years before motor diagnosis and includes psychiatric disturbances 

such as depression, anxiety or aggression, and cognitive symptoms including worsening short-

term memory and attentional deficits. During this phase, subtle and progressively worsening 

motor symptoms are typically experienced. Onset of the pre-HD phase is related to CAG 

length, but typically starts during an individual’s late thirties to mid-forties.  

The initial symptoms of HD experienced during this phase are highly variable between 

patients (Papp et al. 2011), but as the disease progresses symptoms become more consistent; 

with visuomotor performance and working memory largely affected in late premanifest HD 

and motor symptoms beginning to become more obvious (Papp et al. 2011). Diagnosis of HD 

occurs in the presence of irrefutable motor symptoms (as defined by the UHDRS) and a 

confirmed family history of HD or positive genetic test (Huntington Study Group 1996). The 

UHDRS rating scale ranges from 0 to 4, with 0 indicating no motor abnormalities suggestive of 

HD, and 4 indicating motor symptoms that are ≥99% likely to be due to HD. A score of 4 

defines motor onset, and symbolises the period known as ‘manifest’ HD.  

After onset, motor, cognitive and behavioural symptoms continue to advance in a 

variable pattern until death. In addition to being associated with earlier age at onset, longer 

CAG repeat length is associated with faster progression once symptoms have begun, although 

this relationship is not as robust as that between CAG length and onset (Ross et al. 2014).  

The discovery of the HD gene was made in 1993 (MacDonald et al. 1993), and since 

then genetic testing has been used as both a diagnostic tool and a predictive test in HD. If a 

patient comes to a clinic with symptoms that are characteristic of HD, a genetic test might be 

used to diagnose or exclude HD as a cause of these symptoms. Alternatively, genetic testing 
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can be performed as a predictive test many years before onset. The implications of receiving a 

positive genetic test result are significant, and so in 1994 a set of international guidelines were 

developed to reduce negative psychological and physical harm that may be associated with a 

positive result (Anon 1994). These guidelines recommended that in order to undergo 

predictive testing an individual should be given genetic counselling and a psychological 

assessment, along with a neurological examination and time to reconsider whether they 

definitely want the test performed. In addition, the guidelines stipulate that results should be 

provided in person with the opportunity to receive post-test support. Children under 18 should 

not be tested unless they are symptomatic. These recommendations were recently updated 

and now include advice on the provision of information about preimplantation genetic 

diagnosis (PGD; MacLeod et al. 2013). The rate of testing in individuals at risk from HD varies, 

ranging from 3-4% in Germany, Austria and Switzerland to 24% in Denmark. The rate of 

predictive testing in the UK is reported to be around 18% (Tibben 2007).  

1.1.3.1. Motor symptoms 

Motor symptoms are the most widely recognised and visible signs of HD. They 

generally fall into two broad categories. The first category is involuntary movement, with 

chorea being the most common motor symptom of HD (Bates et al. 2015). Chorea is 

characterised by quick, irregular and unpredictable movements, often of the limbs.  The 

second category of motor symptoms is the impairment of voluntary movements, which 

includes lack of coordination and bradykinesia. Bradykinesia refers to the slowing of 

movement, and encompasses an inability to move the body quickly. Bradykinesia is typically 

associated with long CAG repeats, and is especially prevalent in juvenile HD, although it also 

occurs in the later stages of typical HD progression. Motor symptoms are slowly progressing in 

most individuals, and are measured using the Total Motor Score section of the UHDRS 

(Huntington Study Group 1996). This scale examines different features of motor disturbance in 

HD, including chorea, bradykinesia, speech, eye movements, gait and other features.  

1.1.3.2. Cognitive symptoms 

Cognitive symptoms are another key element of HD progression. Similarly to motor 

progression, changes in cognition occur slowly. Subtle cognitive symptoms can be seen around 

10 years prior to clinical diagnosis, with the earliest cognitive signs including problems with 

visuomotor integration, psychomotor speed, emotion recognition and executive functioning 

(Bates et al. 2015).  As a patient progresses, problems are also experienced with attention, 
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mental flexibility, learning, episodic and working memory along with more general slowing in 

cognition. Semantic memory, spatial awareness and language do not show significant 

deterioration as in other neurodegenerative conditions, such as Alzheimer’s.  

1.1.3.3. Psychiatric symptoms 

The psychiatric symptoms associated with HD are much more variable than both 

motor and cognitive symptoms (Bates et al. 2015). Depression is commonly experienced in HD 

gene carriers, both before and after disease onset. In addition, apathy and irritability are both 

seen frequently in HD. Apathy increases with increasing disease progression, getting 

increasingly debilitating.   

1.1.3.4. Impact of Huntington’s disease on quality of life 

As HD progresses, quality of life patients is reduced for many by the increasing severity 

of HD symptoms (Read et al. 2013). Depressive mood and decreases in functional ability 

(ability to work, feed oneself, cook etc.) have been shown as two of the greatest contributors 

to reduced quality of life (Ho et al. 2009), with apathy also being been linked to worse quality 

of life in HD (Ready et al. 2008). By end-stage disease, patients are incapacitated and are often 

receiving care in a specialised care facility. Treatments should aim to improve quality of life 

where possible.   

1.1.4. Models of HD onset and progression 

Due to the strong relationship between age and CAG, these two variables can be used 

to predict estimated disease onset and progression, and to categorise participants on their 

disease severity and exposure to the mutant form of huntingtin. A number of models exist to 

scale participants on these factors, with three commonly used models described here. 

1.1.4.1. Disease-burden score 

One of the commonly used models is the disease-burden score. This model was 

developed by Penney et al. (1997) and is based on the relationship between post-mortem 

striatal atrophy, age at death and CAG repeat length. Their study found that these three 

factors were linearly related and had an intercept at 35.5, and concluded that 35.5 was the 

largest CAG repeat whereby no pathology would develop in the striatum. They also 

hypothesised that the pathological process would develop from birth in a linear way. Thus they 

modelled: disease burden = (CAG – 35.5) x current age. This approximation of disease burden 
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is frequently used as a theoretical model in HD studies, including the TRACK-HD and TrackOn-

HD studies to scale participants based on their approximate exposure to the mutant huntingtin 

protein and thus approximate disease stage. However, the model was based on post-mortem 

data and is thus biased towards end-stage disease, and assumes that atrophy progresses 

linearly from birth. This model also does not take into account other environmental or genetic 

factors, which may influence the progression and onset of HD.  

 

1.1.4.2. Predicted years-to-onset 

In addition, there are models of estimated disease onset. The most widely used is that 

developed by Langbehn et al. (2004). This model is a parametric survival model that estimates 

how far a participant is from clinical onset. Data from approximately 3000 pre-HD and 

manifest participants were used to develop the model.  The calculation uses a conditional 

probability model, which means that given an individual’s CAG repeat and age, and given that 

motor onset has not yet occurred, the probability that they will undergo motor onset by a 

given age can be calculated. A strength of the Langbehn model is that by incorporating a large 

number of both pre-HD and manifest participants selection biases are reduced.  

1.1.4.3. CAG age product scaled 

The CAG age product scaled (CAP) is a more recent method of estimating disease stage. The 

CAP score was developed on PREDICT-HD data, and validated using a longitudinal receiver 

operating characteristic analysis to show that it was a strong predictor of onset, especially if 

onset was within two years of calculation (Zhang et al. 2011). CAP score is often used as a 

normalised measure of onset, and can be used across pre-HD and manifest participants. Figure 

1.1 shows a schematic representing the hypothesised course of HD symptoms with age, 

normalised CAP score and motor diagnosis (Ross et al. 2014).  
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Figure 1.1. A schematic representation of the course of HD, showing the typical adult onset 
and normalised CAP scores vs. symptom onset. Adapted from Ross et al. (2014). 

 

1.1.5. Management and therapeutic trials 

There are currently no disease-modifying treatments for HD. Instead, clinicians focus 

on managing the symptoms of HD. There are two drugs specifically approved for the treatment 

of chorea in HD: tetrabenazine and deutetrabenazine, which show a moderate effect for 

reducing chorea (Rodrigues & Wild 2017). In addition to these drugs, commonly used 

psychiatric drugs are often prescribed to reduce psychiatric symptoms associated with HD.  

Further to treatment with drugs, the management of HD can involve a wide range of 

health professionals since the disease has an impact on many aspects of a patient’s life. In 

addition to neurologists and psychiatrists or psychologists, a patient may also require care 

from occupational health practitioners and physiotherapists to provide help in adjusting to HD-

related movement or balance issues.  

There have been almost 100 clinical trials aimed at testing disease-modifying 

treatments for HD, none of which have been successful (Rodrigues & Wild 2017). There are 

also a number of on-going clinical trials in HD. Some of the most promising approaches include 

targeting the transcription of HTT or the translation of HTT mRNA (Wild & Tabrizi 2017). In 

2016 a landmark clinical trial began aimed at reducing the production of mutant huntingtin by 

targeting the pre-mRNA transcript of the HTT gene. The trial was phase IB/IIA with the initial 

aims being safety and tolerability. Following positive safety results, the study has been rolled 

into an open label extension trial, beginning in late 2017. This is the first trial aimed at this type 
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of intervention, however more trials testing different techniques of HTT lowering are due to 

begin soon.  

1.1.6. Post-mortem results in HD 

The neural atrophy that occurs over the course of HD has been characterised via a 

number of pathological studies measuring the brains of HD patients post-mortem (Vonsattel et 

al. 1985; De La Monte et al. 1988; Mann et al. 1993). While even the earliest post-mortem 

studies report that the most striking feature of these brains is atrophy of the caudate and 

putamen, there is also atrophy of the white matter (WM) and cortex noted in most studies. 

Figure 1.2. shows an example of a post-mortem brain damaged from HD. One study reported 

that the volume of the caudate was reduced by 53% and the putamen by 46% in end-stage HD 

patients compared to controls. This study also showed a reduction of the WM (13%), and 

relatively uniform atrophy of the cortex, with overall cortical volume reduced by 23% 

compared to controls, and only the temporal lobes being relatively spared from atrophy 

(Halliday et al. 1998). Within the cortex, the occipital lobe showed the greatest difference 

compared to controls (28%), frontal and parietal regions were reduced by 22%, and the 

temporal lobe was 17% lower than in control participants. This study also reported that the 

extent of atrophy present in the cortex, but not the subcortical regions, correlated with CAG 

repeat length (Halliday et al. 1998).  

More recently, the cell loss in the motor cortex was associated with level of motor 

dysfunction in HD (Thu et al. 2010). The same study also found that patients rated as having 

more severe mood symptoms had greater cellular loss in the cingulate cortex, a region known 

to process emotion, indicating a link between cortical atrophy and HD symptomology.  

While the majority of post-mortem results are from patients who are at end-stage 

disease, they are indicative of widespread volume loss that occurs over a number of years 

extending beyond the striatum. Due to the small number of post-mortem brains available from 

other stages of HD, it is only via in-vivo techniques including MRI that we can measure the 

progression of atrophy and understand changes occurring in earlier phases of the disease.  
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Figure 1.2. An example of a post-mortem HD brain, left, compared to a healthy brain, right.  
Adapted from https://hbtrc.mclean.harvard.edu/about/tour/slideview.php?page=41. 

 

1.1.1. Biomarkers in HD 

In order to quantify the effects of therapeutic interventions, the validation of accurate 

and sensitive biomarkers is essential. A biomarker is a measureable indicator of a medical state 

or disease. It should be objective, easy to measure and understand, quantifiable, sensitive and 

preferably non-invasive (Paulsen 2009). The TRACK-HD study was designed to test a range of 

potential biomarkers in HD (Tabrizi et al. 2009). By collecting cognitive, psychological, motor 

and imaging data for controls, pre-HD and manifest HD participants over 4 years the best 

markers of disease progression at different stages of HD could be selected.  

In the TRACK-HD analysis conducted after 24 months of data collection the effect sizes 

of potential biomarkers were compared in a large cohort which included 123 controls, 120 pre-

HD and 123 early HD participants at baseline (Tabrizi et al. 2012). Change in caudate volume 

showed the greatest effect size for both pre-HD (1·17) and manifest HD (2.04) groups 

compared to controls. Cognitive biomarkers all had relatively low effect sizes in pre-HD (<.20), 

but the symbol digit modality test (SDMT; Smith 1991), a measure of visuomotor integration 

with components of visual scanning and tracking, was the most sensitive cognitive measure in 

manifest HD (effect size = 1.00). Quantitative motor measures, designed to be objective 

quantitative measures of motor symptoms, were not as robust as imaging measures, with 

speeded-tapping mean inter-tap interval for the non-dominant hand having the largest effect 

size in pre-HD participants (.38), and the log of speeded-tapping tap duration variability for 
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non-dominant hand giving the largest effect size for manifest participants (.68). The clinical 

rating scale of motor progression showed larger effect sizes than quantitative motor 

measures. The UHDRS motor score had an effect size of .79 for pre-HD and .81 for manifest 

HD. Despite these and other results demonstrating that macrostructural MRI biomarkers are 

robust and sensitive measures of HD progression (Georgiou-Karistianis et al. 2013), the most 

widely used biomarkers are still clinical measures of progression that are more relevant to the 

daily life experiences of an HD patient, with MRI biomarkers currently being used as secondary 

endpoints for clinical trials (Scahill et al. 2012).  

Recently, fluid biomarkers for HD have been gaining increased interest. While imaging 

and clinical biomarkers provide indirect measures of the disease, fluid biomarkers offer the 

potential to provide direct measures of biochemical changes occurring during the course of HD 

(Byrne & Wild 2016; Johnson et al. 2018). Biomarkers of cerebrospinal fluid (CSF) and plasma 

are currently being characterised, with neurofilament light protein (NfL), a biomarker thought 

to measure axonal degeneration, hypothesised to be a promising marker of cross-sectional 

disease stage but also a strong predictor of HD progression in the subsequent period (Byrne et 

al. 2017). NfL has also been shown to predict regionally specific atrophy in subcortical regions, 

regions of the cortex and the WM (Johnson et al. 2018). While showing great promise, fluid 

biomarkers require more validation, especially prior to use as surrogate disease markers in 

clinical trials. 

1.1.2. Summary 

HD is a devastating disease, characterised by a triad of slowly progressing motor, 

cognitive and psychiatric symptoms. There is no cure and no effective treatment, however 

clinical trials are underway aimed at developing disease-modifying treatments. At end-stage 

disease, atrophy in the caudate and putamen is the most pronounced neuropathological 

finding, however global neural atrophy suggests a slow progression of widespread neuronal 

damage. By using MRI to measure characteristics of the brain in-vivo, we can hope to better 

understand the trajectory of neural atrophy in HD.  

1.2. MRI methods 

MRI is a technique employed to examine the structure and function of the brain and 

body in-vivo. MRI scans allow measurement of neuropathological change as it occurs over 

repeated time points and without invasive procedures. While MRI scans are not used in the 

diagnosis of HD due to the availability of a genetic test the analysis of MRI data is regularly 

used in HD research studies and clinical trials to monitor the progression of neural change. An 
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MRI scanner is capable of collecting many types of data however this PhD will focus on sMRI 

scans, which provide a way of measuring structure and morphometry of the brain. A brief 

overview of MRI hardware and acquisition of images will be covered, followed by an 

examination of neuroimaging in HD.    

1.2.1. Acquisition of MRI data 

MRI scans utilise a magnet and radiofrequency pulses to change the state of hydrogen 

atoms in the body, and the energy created by these changes in state can be measured and 

outputted in the form of an image (Currie et al. 2013). Varying MRI acquisitions can be used to 

capture different characteristics and functions of the brain.  

1.2.1.1. Hardware 

An MRI scanner consists of two main components; the MRI scanner and the control 

console. The control console is the computer console that allows the programming and 

running of different scans. It is typically in a different room to the MRI scanner. The MRI 

scanner is a machine that uses a strong magnetic field that enables us to capture images.  

The Maxwell equations stipulate that an electric current running through a wire 

creates a magnetic field surrounding the wire (Currie et al. 2013). An MRI scanner makes use 

of this principle, and uses a current running through a series of superconducting metal coils 

cooled to absolute zero to generate strong magnetic fields (called B0). The strength of the 

magnetic field is described in units of Tesla (T), with higher Tesla scanners usually resulting in 

higher resolution images. Most modern scanners are either 1.5T or 3T in strength.  

A set of gradient coils are also present in the scanner, which are used to distort the 

main magnetic field in a predictable pattern and then allows spatial encoding of the measured 

signal so images can be mapped in the x, y and z directions to create 3D images. An MRI 

scanner also has radiofrequency (RF) coils that transmit an RF signal to the tissues being 

examined, and then receives the induced signal from the tissue. Finally, in order to collect 

good quality images, shim coils are used to ensure consistency, known as homogeneity, within 

the magnetic field. This translates to increased homogeneity within the MRI images when 

processed. 

1.2.1.2. Obtaining images 

MRI scanners use the hardware described to create images via the manipulation of 

atoms within the body. The source of most MRI images is the hydrogen nuclei. Within each 



 

37 

hydrogen nuclei there is a single proton with a positive electrical charge. Each proton is 

constantly spinning; since a spinning electrical charge is a current, each proton has a tiny 

magnetic field. These magnetic fields are called magnetic moments, and each magnetic 

moment is normally in a random orientation (Currie et al. 2013). However, when a uniform 

magnetic field (such as B0) is applied to magnetic moments they align to B0 in either a parallel 

or an antiparallel fashion. More protons will align parallel to B0 since this is the alignment 

requiring less energy, although the difference between the number of protons in parallel and 

antiparallel alignment depends on factors such as the strength of B0 and the temperature of 

the tissue.   

In addition to aligning with B0, when an external magnetic field is applied to the 

protons they spin in a particular motion, called ‘precession’. The protons precess at a 

frequency determined by the strength of B0 multiplied by , a constant value relative to the 

properties of each type of proton, this is called the Lamor Equation (Currie et al. 2013). The 

protons pointing in parallel and antiparallel directions cancel each other in all directions except 

for the z-axis of B0, so when a person is in B0 their hydrogen protons align with B0 creating a 

magnetic field for the patient aligned with B0. This field is called longitudinal magnetisation.  

To create a signal a brief RF pulse is applied which creates a transfer of energy from 

the RF pulse to the protons, disturbing the protons so they fall out of line with B0 (Currie et al. 

2013). To do this, the RF pulse must be applied at the same frequency as the frequency at 

which protons are precessing.  This RF pulse reduces the longitudinal magnetisation and 

rotates the net magnetisation into the x-y plane as the protons absorb the energy, called 

excitation. It also causes the protons to precess in phase, i.e. in the same direction, at the 

same time. A simple schematic demonstrates this process in Figure 1.3. 

Once the RF pulse has been switched off, the protons begin to return to their original 

alignment with B0 via two types of relaxation (Currie et al. 2013). The energy absorbed from 

the RF pulse is released and the protons move back into the z plane in line with B0. This 

process is called T1 relaxation. Each tissue has a different T1 relaxation time depending on 

how tightly bound the protons are in their environment. For example, within the CSF where 

hydrogen atoms and protons move more freely, the T1 relaxation time is longer. These tissue-

dependent differences in relaxation time result in the ability to distinguish between different 

tissue types from MRI scans.  

The protons also begin to fall out of phase once the RF pulse is switched off. This is 

called T2 relaxation, and is caused by the fact that the magnetic fields from neighbouring 
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protons influence each other and push each other out of phase. When combined with small 

inhomogeneity within B0, the result is differing T2 relaxation across the image.   

T1 and T2 relaxation are independent, but occur at the same time. T1 relaxation 

happens more slowly than T2 relaxation, though.  When the protons undergo T1 and T2 

relaxation, they re-emit the energy absorbed from the RF pulse and this energy is measured by 

the MRI scanner and used to construct an image. The gradient coils described earlier are used 

to collect spatial information from the re-emitted energy. The raw data is captured from the 

scanner and stored in a data matrix called k-space. This data is then converted from k-space 

into an image via an inverse Fourier transform.   

These two types of relaxation can be measured independently to create the most 

commonly used types of structural images, T1 and T2 weighted images. T1 images measure 

the T1 relaxation and T2 images measure the T2 relaxation and have different contrast based 

on the properties of the image acquisition.  Figure 1.4 shows an example of a T1 and T2 image 

from the TRACK-HD study, demonstrating the different contrast seen in these two scan types. 

An MRI acquisition can specify not only the contrast in the image, but the quality of the image, 

and the size of the voxels. Image quality and MRI artefacts are discussed further in Chapter 2.  

 

Figure 1.3. A schematic illustrating the spin of hydrogen atoms before a magnetic field is 
applied, whilst in a magnetic field, and during and after an RF pulse is applied. Adapted from 
https://www.khanacademy.org/test-prep/mcat/physical-processes/proton-nuclear-magnetic-
resonance/a/magnetic-resonance-imaging-mri. 
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Figure 1.4. An example of 3D T1 and T2 weighted images from the TrackOn-HD study showing 
(A) A T1 scan in coronal view, (B) A T1 scan in axial view and (C) A T1 scan in sagittal view, (D) A 
T2 scan in coronal view, (E) A T2 scan in axial view and (F) A T2 scan in sagittal view. 

1.2.1. Types of MRI data 

A number of types of MRI data can be collected from MRI scanners, with each type 

representing different neural characteristics. Three types of data frequently collected for use 

in HD research are structural, diffusion and functional MRI data. 

1.2.1.1. Structural 

sMRI provide static anatomical information about the brain. They are typically used to 

measure characteristics of different brain regions, such as volume, both cross-sectionally and 

longitudinally and will be the main focus of this research. sMRI is currently the most robust 

type of MRI imaging to be replicated reliably across multiple study sites (Georgiou-Karistianis 

et al. 2013), and structural imaging measures show the greatest effect sizes in detecting 

longitudinal HD pathology (Hobbs et al. 2013). The majority of studies that have previously 

reported on sMRI changes within HD participants have used three main techniques: regional 

volumetric, voxel-based morphometry (VBM) and CT analyses, to be discussed in section 1.3.  

1.2.1.2. Diffusion 

Diffusion tensor imaging (DTI) detects the coherence of water flow through tracts of 

the brain, and is hypothesised to reflect aspects of tissue microstructure such as myelination 
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(Le Bihan et al. 2001). A number of different metrics can be extracted from DTI images 

representing different properties of the tracts such as fractional anisotropy, which represents 

overall coherence, and mean diffusivity, which represents mean diffusion along the tracts.  In 

HD individuals, changes in these characteristics are believed to represent underlying pathology 

that precedes change detected in the WM by sMRI.  

1.2.1.3. Functional  

Functional MRI (fMRI) quantifies increases or decreases in blood flow (Blood 

Oxygenation Level Dependent signal) to regions of the brain during rest or the performance of 

different tasks (Ogawa et al. 1990).  The regional changes in blood flow are due to the varying 

demand for oxygen across different brain regions. Differences between groups or over time 

are often attributed to differences in pathology. It is hypothesised that as HD progresses, 

alternative brain networks compensate for damaged networks to complete a task or function 

thus resulting in differences in BOLD signal between controls and HD gene carriers (Klöppel et 

al. 2015; Gregory et al. 2017). fMRI can be collected in a number of ways, with two commonly 

used paradigms. Task based fMRI measures BOLD signal during the completion of a task in the 

MRI scanner, for example, increases or decreases in signal could be measured during a finger 

tapping task. Resting state fMRI (rs-fMRI), in contrast, measures BOLD signal during rest in the 

scanner, and is rs-fMRI data quantifies the underlying blood flow and regional interactions 

taking place at rest. 

1.3. Analysis of sMRI data 

The processing of sMRI data to quantify group differences or longitudinal change can 

be divided into two broad approaches, region of interest (ROI) analyses and whole-brain 

analyses. Both methods offer complementary information, and within these broad techniques 

there are a multitude of different measurements that can be performed.   

1.3.1. Region of interest analysis 

ROI analyses involves the delineation of structural regions, for example the whole-

brain or caudate, to provide precise measurements of differing characteristics of a region. 

Measures such as volume, thickness of the GM cortex or gyrification can all be examined using 

ROI studies. The delineation of ROIs can be performed manually or automatically (see section 

2.3 for an explanation of different processing methods), and after a region is delineated a 

value can be extracted. Figure 1.5A shows an example of a manually delineated caudate ROI 

used to measure caudate volume. ROI studies often show high sensitivity for detecting group 
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differences and longitudinal change and thus can be very useful for examining specific 

hypotheses, however, in order to obtain accurate data the ROIs need to be precisely defined. 

The manual measurement of ROIs is a highly accurate method for measuring the 

characteristics of some regions, yet they are also very time-consuming and can be impractical 

when measuring multiple anatomically complex regions. Automated measures can be 

performed more quickly and easily, however they often bring an increased level of error. 

These costs and benefits should be weighed up for each study using ROI methods. 

In addition to issues with measurement, the nature of ROI studies can result in group 

differences or volumetric change remaining unobserved due to the highly specific nature of 

the analysis. In order to avoid harsh statistical corrections for multiple comparisons, regions 

should be carefully selected for examination prior to analysis based on a priori hypotheses. 

However, this can result in significant results being overlooked if they occur outside of the 

chosen ROIs. ROI examinations are frequently used in HD studies, especially when measuring 

subcortical structures such as the caudate and putamen. A number of HD studies use manual 

ROIs to characterise change (Tabrizi et al. 2009; Tabrizi et al. 2012; Tabrizi et al. 2013; Tabrizi 

et al. 2011), and some of these measures are described in 2.3.3. Often, additional exploratory 

whole-brain methods are used to supplement a priori ROI investigations of sMRI data.  

1.3.2. Whole-brain analysis  

Whole-brain techniques are used to perform comparisons between groups or 

longitudinally across all regions of the brain, Figure 1.5B shows the results of a whole-brain 

group analysis using VBM (section 2.3.4.2.1). Whole-brain analyses involve the statistical 

comparison of every voxel across the brain, and thus the performance of mass-univariate 

statistical tests require strict correction for multiple-comparisons (see section 2.4.4). However, 

whole-brain analyses offer the chance to look for regional differences that may be overlooked 

in ROI analyses. They have been widely used in HD imaging studies to measure both volume 

and cortical thickness (CT), and help to provide an understanding of the different regions that 

may be affected by atrophy in HD. Whole-brain analyses generally offer limited flexibility in 

terms of design (e.g. the options can be limited when using data sets with multiple time points, 

or missing data) and thus can be limited in their applications. 

VBM is the most commonly used whole-brain approach in HD, with SPM the most 

commonly used software. This involves a series of steps (Ashburner & Friston 2000), with the 

first step an integrated process registering all scans to create a template whilst also 

segmenting them into three tissue types (GM, WM and CSF). Following this, the scans are 
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aligned to the template space created in the first step, all voxels are modulated based on the 

warping parameters to account for volumetric changes that may have occurred during 

registration, and smoothed to reduce errors associated with registration. A general linear 

model statistical comparison can then be specified that can be used to compare voxel-wise 

volumetric differences between participants, or to examine associations between volume and 

performance on a cognitive task. 

 

 

Figure 1.5. (A) Shows a manually delineated caudate region on a scan from the TRACK-HD 
study; (B) Shows the results of a cross-sectional whole-brain analysis comparing the volume of 
GM and WM in different HD groups to controls from the TRACK-HD study (Tabrizi et al. 2009). 

 

1.4. sMRI findings in HD 

Both cross-sectional and longitudinal sMRI studies aimed at characterising neural 

atrophy in HD have been performed on a range of cohorts. Generally, the results suggest that 

prior to diagnosis there is significant subcortical GM loss and some WM loss (Tabrizi et al. 

2009; Paulsen et al. 2008), but that cortical atrophy begins closer to the time of diagnosis 

(Tabrizi et al. 2009). Atrophy across all tissue types and regions continues to advance after 

diagnosis and throughout the course of the disease (Tabrizi et al. 2013; Tabrizi et al. 2011; 

Tabrizi et al. 2012; Aylward et al. 1997). These findings will be covered in more detail here.  

1.4.1. Regional atrophy in HD 

A large amount of research has been focused on characterising atrophy in basal 

ganglia regions based on early pathology studies showing that the basal ganglia undergo 

particularly pronounced atrophy in HD (Vonsattel et al. 1985). Findings from MRI studies 

indicate that the striatum is the earliest region to undergo atrophy (Nopoulos et al. 2010; 

Aylward et al. 1997; Aylward et al. 2004; Tabrizi et al. 2009; Tabrizi et al. 2011). Cross-sectional 
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differences between controls and HD gene carriers can be found in the striatum up to 15 years 

prior to disease onset (Paulsen et al. 2010), and work is currently underway to examine 

participants who are even further from onset to determine when differences in the striatum 

can be detected. Putamen volume is also significantly lower in pre-HD participants than in 

control participants more than 15 years prior to symptom onset (Majid et al. 2011; Paulsen et 

al. 2010). There is currently a lack of clarity as to whether the caudate and putamen begin to 

undergo atrophy at the same stage and rate, or whether they progress differently, with 

different studies showing slightly different patterns of atrophy. The divergence between 

results is probably due to differing cohorts and measurement techniques (Georgiou-Karistianis 

et al. 2013). Despite this, it is clear that for both putamen and caudate structural differences 

continue to get more pronounced with increasing disease progression.  

Additionally, longitudinal studies have found significant striatal volume change in HD 

over very short periods of time. While annual rates of change can vary between studies 

depending on the cohort and analysis method, rates of around 3-4% reduction per year have 

been reported (Georgiou-Karistianis et al. 2013). Furthermore, volumetric change in both the 

caudate and putamen is significant over 12 months in both pre-HD and manifest HD compared 

to controls (Tabrizi et al. 2011; Hobbs et al. 2015), and over 6 and 9 months in the caudate in 

manifest HD compared to controls (Hobbs et al. 2015).  

Beyond the striatum, differences in whole-brain volume can also be detected between 

controls and pre-HD participants who are less than 10 years from disease onset (Tabrizi et al. 

2009). Additionally, whole-brain volume change is significant over 1 year in these participants, 

and significant over 6 months in early HD patients (Henley et al. 2006; Tabrizi et al. 2011; 

Hobbs et al. 2015). Change in total WM is also detectable over one year in participants more 

than 10 years from disease onset, with the rate of atrophy increasing closer to and after 

disease onset (Tabrizi et al. 2011). In manifest HD, WM volume shows significantly greater 

decline over 6, 9 and 15 months than in control participants (Hobbs et al. 2015). Small 

differences in total GM volume (with total GM including both subcortical and cortical GM) 

have been found between controls and pre-HD participants who are over 10 years from 

disease onset, however the greatest GM changes occur in participants close to disease onset 

and those with manifest HD (Nopoulos et al. 2010; Tabrizi et al. 2012), with total GM again 

showing significantly greater change in as little as six months in manifest HD compared to 

controls (Hobbs et al. 2015). 

In addition to quantifying change over time, many of the volumetric findings have 

been tested as predictors of disease progression. In the TRACK-HD cohort, striatal and GM 
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volume measures were able to predict diagnosis in pre-HD individuals, and whole-brain, 

caudate, putamen, ventricular and GM volumes can significantly predict decline in total 

functional capacity in early HD participants, supporting a strong relationship between neural 

atrophy and clinical change (Tabrizi et al. 2013). Furthermore, in the PREDICT-HD cohort, cross-

sectional and longitudinal volume of the putamen, hippocampus, CSF, accumbens, globus 

pallidus and caudate could predict motor onset (Paulsen, Long, Ross, et al. 2014). Figure 1.6 

shows a schematic diagram of the hypothesised progression of imaging biomarkers in relation 

to CAP score (Ross et al. 2014).  

 

 

Figure 1.6. A schematic representing hypothesized progression of imaging biomarkers 
commonly used in HD. Adapted from Ross et al. (2014).   
 

1.4.2. Cortical atrophy in Huntington’s disease 

As previously described, widespread cortical atrophy is regularly reported in post-

mortem studies of end-stage HD patients. However, in-vivo imaging studies have found 

inconsistent results when measuring cortical change. While results suggest that atrophy is 

occurring by early-stage HD, the quantification of cortical atrophy in different cohorts via 

different techniques has resulted in a range of findings.  

Most studies examining atrophy in the cortex have been cross-sectional whole-brain 

studies performed using VBM. Within the TRACK-HD study, reduced cortical volume has been 

detected in the cingulate, precentral and prefrontal regions as well as the occipital, parietal, 
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and small regions of the temporal lobes in manifest HD compared to controls (Tabrizi et al. 

2009). In addition to the findings shown in the TRACK-HD cohort, group differences between 

pre-HD and control participants have been described in other cohorts within the motor 

regions, as well as within occipital and frontal regions (Thieben et al. 2002; Gómez-Ansón et al. 

2009; Sormani et al. 2004). Between controls and manifest HD participants, there have also 

been significant differences reported in the precentral and postcentral regions (Douaud et al. 

2006; Kassubek et al. 2004; Wolf et al. 2009), as well as in frontal and parietal regions (Wolf et 

al. 2009; Gavazzi et al. 2007). Atrophy of the frontal lobe has also been reported in an early 

ROI study, with a volume reduction of 17% in early-HD participants compared to controls 

(Aylward et al. 1998). 

Longitudinally, both pre-HD participants nearing onset and manifest participants from 

the TRACK-HD cohort showed significantly greater cortical change than control participants 

over 24 months. Volumetric reduction in the occipital cortex was the most striking change over 

24 months in pre-HD and manifest groups, with additional atrophy occurring in parietal and 

frontal regions in manifest participants (Tabrizi et al. 2012). One other longitudinal study 

reported increased atrophy in the occipital, frontal and parietal cortices over 24 months in 

early-HD participants compared to controls (Hobbs, Henley, et al. 2010).  In addition, another 

VBM study detected atrophy over 12 months in the caudate, pallidum, putamen, insula, 

cingulate cortex, cerebellum, orbitofrontal cortex, medial temporal lobes and middle frontal 

gyri. However, this was in a cohort of 49 participants that included juvenile HD participants (as 

young as 7 years old) who show a different pattern of symptom progression, with juvenile HD 

often undergoing more rapid disease acceleration then adult onset HD. It is likely that 

registering and analysing juvenile and adult HD brain scans together would result in differing 

findings than when just measuring change in adult onset HD, and thus the results are not 

representative of a true pattern of adult onset HD progression (Ruocco et al. 2008).     

To attempt to collate and summarise the results of 17 VBM studies performed on HD 

cohorts a meta-analysis was conducted in 2013. After the results from all studies were 

combined, the only cortical region to show differences between pre-HD and controls was a 

region in the right occipital lobe (Dogan et al. 2013). In manifest HD, there were significant 

differences with controls found in the frontal cortex, primary motor, premotor and 

somatosensory regions, as well as in the intraparietal sulcus, the midcingulate cortex and the 

secondary somatosensory cortex (Dogan et al. 2013). The results from this meta-analysis 

suggest a pattern of atrophy that begins prior to onset in the occipital lobe, and extends to the 

frontal lobe, key motor regions and further into the occipital lobe after onset of HD. Taken 



 

46 

together, the results of these studies provide evidence that atrophy is occurring in both pre-

HD and manifest HD participants, with frontal, motor regions and occipital regions showing 

significant group-differences or change in a number of studies. However, they do not provide 

detailed information about the timing or regional progression of atrophy. 

As well as volumetric change, a number of studies have measured CT in pre- and 

manifest HD compared to controls. CT is the distance between the WM/GM boundary and the 

GM/CSF boundary. Significant differences in the thickness of GM have been reported between 

controls and HD gene carriers in both pre-HD and manifest stages of the disease (Rosas et al. 

2008; Rosas et al. 2002; Rosas et al. 2011). Results suggest that the earliest change in CT is in 

the occipital and posterior regions of the brain, with more anterior regions affected later in the 

disease (Rosas et al. 2002; Rosas et al. 2011). However, CT studies are almost exclusively cross 

sectional. One longitudinal study of CT found significant change in early HD participants over 

one year, with the main changes seen in sensorimotor and fronto-parietal motor regions. 

However, the number of participants in this study was small (N=22, split into three groups), 

there was no control group, and the authors did not control for multiple comparisons (Rosas et 

al. 2011). A more recent study using a large cohort to study the effect sizes of different 

imaging biomarkers, reports poor longitudinal sensitivity for CT in HD, especially when 

compared to volumetric measures, indicating that perhaps CT is not a sensitive measure of 

neural change in HD  (Hobbs et al. 2015).  

Recently, more complex methods of characterising GM change have been applied to 

HD cohorts with the aim of better understanding the progression of atrophy in HD. Two 

studies have attempted to map the co-variance of GM changes in HD. Co-variation analyses 

are designed to estimate the dependencies between regions of the brain showing volumetric 

reduction in HD, which are then thought to represent networks that undergo atrophy 

simultaneously. One study conducted a large-scale analysis of pre-HD participants (N=831) 

compared to controls (N=219), initially performing VBM in SPM to determine regions of lower 

GM concentration, and then performing source-based morphometry (SBM; Ciarochi et al. 

2016).  SBM uses a whole-brain multivariate approach to capture co-occurring patterns of 

different GM concentration across the brain in HD compared to controls. SBM analysis involves 

performing the same processing steps as VBM, followed by an independent component 

analysis (ICA) to identify regions of change that occur together, called components (Xu et al. 

2009). An ICA is a statistical approach used to categorise sub-components of a measure into 

larger hidden components that are thought to represent over-arching constructs. Statistical 

analyses can then be used to determine which components show a significant pattern of co-
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occurrence and to test relationships between these components and other variables (Xu et al. 

2009). From the VBM analysis, the authors report significant group differences in GM 

concentration in the caudate, frontal lobe, occipital lobe, as well as the hippocampus and 

thalamus. A number of components were identified by the SBM, and these regions were then 

related to HD disease stage. Participants were divided into groups based on estimated time 

until onset, with far, medium and close to onset groups.  One of the components identified by 

the SBM was made up of frontal and some motor regions (precentral, supplementary motor), 

and this was the earliest component showing atrophy in the far from onset group.  In addition, 

parietal and occipital atrophy was found to be co-occurring, but in those closer to onset. A 

range of other components showed increasing atrophy with proximity to onset. While these 

results indicate interesting patterns of co-occurring GM loss, visual inspection of the VBM 

results suggests a spatial misalignment during processing as the VBM map is poorly aligned 

with the template. This could mean that the results from both the VBM and SBM have been 

mislabelled and thus should be interpreted with caution. In addition, the authors reported GM 

concentration on unmodulated data. Modulation is a processing step that aims to preserve 

differences in morphology which may have been affected by the inter-subject alignment 

performed during processing of VBM data (Henley et al. 2010; Keller et al. 2004). By failing to 

modulate the data these results are likely to be less sensitive to neuroanatomical differences 

than in data that is modulated. Together, these issues mean that the results of both the VBM 

and the SBM analysis could be inaccurate, and thus require further validation. 

A second study with 30 pre-HD participants, 30 HD participants and 30 controls also 

looked at structural co-variance of GM changes, using a similar methodology but via a 

technique included as part of FSL’s software library (Coppen et al. 2016). This study also 

performed VBM first, with the greatest differences between pre-HD and controls seen in the 

caudate and putamen and small differences found in the cortex in the insula and in the 

parietal regions of the planum temporale, parietal operculum as well as the posterior 

supramarginal gyrus. Cortical differences were more widespread when comparing the controls 

to HD participants, with significant differences found in the precentral and postcentral regions, 

supplementary motor cortex, lateral occipital cortex and the frontal pole. The results of the 

SBM identified 10 structural GM networks, with two of these networks showing significantly 

reduced network integrity in both pre-HD and HD compared to controls. One network 

incorporated the caudate, the nucleus accumbens, putamen, pallidum and precuneus. The 

other included the parahippocampul gyrus, the cerebellum, the pallidum and the planum 

polare. Furthermore, one network made up of the precuneus, cuneus, lateral occipital and 
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lingual regions showed significantly lower network integrity in HD compared to controls. The 

reduced structural integrity seen in these three networks was interpreted by the authors as a 

demonstration of the general breakdown of associated GM structures in HD. Again, these 

results demonstrate an interesting pattern of co-variation in GM change, indicating early 

change in parietal, motor and occipital regions, however the linear modelling used in this 

analysis does not allow for possible accelerations or decelerations in change across the 

disease. In addition, by measuring the co-occurrence of regional differences, it is assumed that 

that within each network the regions undergo the same temporal progression within the same 

disease stage. However, it is biologically plausible that different regions show differing rates of 

atrophy and variable patterns of acceleration and deceleration. Until there is a detailed 

understanding of the overall pattern of atrophy, the measurement of network changes could 

also be seen as premature since more basic information about the progression of cortical 

atrophy is not yet well understood.  

Another recent study used a different methodology to examine the pattern of brain 

changes via both sMRI and diffusion MRI on data from the PREDICT-HD cohort. The authors 

used a multivariate linear regression model to detect inflections points (change-points) in 

different measures in relation to predicted years to onset. The change-points represent 

changes in the linear trajectory of a measure, reflecting the disease stage at which each 

measure begins to show significant change in pre-HD. The data was a cross-sectional selection 

of 85 controls and 212 pre-HD participants for the sMRI analysis, and 79 controls and 178 pre-

HD participants for the DTI measures. Significant volumetric loss and significant change points 

were seen in both subcortical and WM regions, suggesting that subcortical and WM regions 

undergo significant volumetric decline in different stages of pre-HD. No cortical regions had 

significant change-points. However, significant volumetric expansion and change-points were 

seen in a number of sulcal regions, including the occipital and Sylvain fissures. The authors 

argued that sulcal expansion is an indirect measure of cortical change. This study used a novel 

framework to compare different neuronal markers of disease progression, and while the 

integrated analysis of subcortical, WM and cortical measures as well as diffusion metrics is 

required to understand the relationship between different indicators of neural change, it is 

possible that the large number of regions and contrasts resulted in poor power to detect 

cortical change, especially based on previous findings suggesting that cortical change is likely 

to be more subtle than that seen in other regions (Tabrizi et al. 2012). It is important that more 

work is done to characterise the overall pattern of CGM change prior to integrating it with 

other metrics of neural change. 
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1.4.3. Limitations of these findings  

Despite the amount of research that has been designed with the aim of characterising 

neural change in the cortex in HD, the conclusions we can draw from these studies are limited 

by several factors. As described, there are a number of different software packages available 

to calculate sMRI measures. While several studies have previously examined methods of 

quantifying these characteristics, it is unclear which CGM characteristics and which software 

packages provide the most accurate and sensitive measures of between-groups differences 

and within-groups change in CGM in HD. The majority of available software used to 

characterise the CGM was developed and validated on healthy participants (Irimia et al. 2012). 

Applying these tools to brains showing neural pathology, such as the scans from HD 

participants, can result in poor performance and inaccurate measures of CGM characteristics 

(Irimia et al. 2012). Recent work has identified poor segmentations as a possible driver in 

variability within volumetric sMRI studies across neuroimaging (Ashburner et al. 2016). 

Furthermore, a number of tools commonly used in HD to quantify cortical atrophy show issues 

with accuracy (Katuwal et al. 2016). It is thus vital that prior to measuring CGM atrophy in HD 

the tools used to calculate CGM characteristics are evaluated.  

Additionally, most previous work has utilised simple univariate analyses calculating 

VBM or CT measures. These investigations do not allow for complex analysis of several time 

points, or for the examination of non-linear patterns of accelerations or decelerations in 

atrophy rates. They can also suffer from potential over- or under-correction for multiple 

comparisons. Multivariate analyses provide a more powerful approach to infer network-wide 

patterns of atrophy and because they are not limited by the use of stringent corrections for 

multiple comparisons (McIntosh & Misic 2013; Habeck 2010). However, to date, the 

multivariate analyses performed examining CGM change have all used cross-sectional data and 

models that make an assumption of linearity in the progression of atrophy. In addition, one of 

the studies has used data from different scanner strengths across >20 sites, with another using 

from 23 sites. While the use of multiple sites is common in neuroimaging studies, there is a risk 

that subtle cortical atrophy may not be detected due to between-scanner variance and noise.  

A final issue that limits the conclusions from these studies concerns the division of 

participants into groups based on estimated years to onset. While group separation in HD 

studies is commonly done via calculated estimates of predicted years to onset, different 

algorithms and variable definitions of groups are used between studies. Furthermore, since 

predicted years to onset is not always an accurate measure of onset, heterogeneity within 

groups could be masking the earliest atrophy in the cortex. Most previous studies in HD have 
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tended to maintain groups based on status at study baseline rather than re-categorising or 

separately examining those participants who undergo diagnosis during the study. A small 

number of studies have observed brain changes over transition to HD (Tabrizi et al. 2013; 

Aylward et al. 2012), with one study investigating global brain change and the other striatal 

change. Since previous results suggest that there is an increase in CGM atrophy around the 

time that symptom severity also increases (Tabrizi et al. 2012), it appears that CGM atrophy 

could be a factor in the progression of HD symptom onset. CGM atrophy has implications for 

biomarker development, the timing of interventions and even the identification of new 

therapeutic targets, thus it is important that a thorough examination of participants 

undergoing the transition from pre-HD HD to manifest HD is conducted.  

1.5. Theories of the progression of neural pathology in HD 

There are a number of theories of how HD pathology develops throughout the brain. 

These have been generated from current understandings of HD biology, as well as from 

imaging findings in HD and other neurodegenerative diseases. Most theories first depend upon 

an understanding of basal ganglia cortical networks, described briefly here. 

The basal ganglia includes the striatum (caudate and putamen), substantia nigra, the 

subthamanic nucleus and the globus pallidus (Jahanshahi et al. 2015). The basal ganglia was 

initially thought to be involved only in motor tasks, but is now understood to also contribute 

during both cognitive and emotional processing, such as during reinforcement learning, 

decision making and a number of other tasks. There are three main circuits that are thought to 

be driving performance on these domains, the motor, associative (cognitive) and limbic 

(emotional) circuits (Jahanshahi et al. 2015). These three networks utilise the basal ganglia and 

different cortical regions, and are often required to integrate in order to successfully perform 

actions. Figure 1.7 shows a schematic of these three networks.  

In HD, a number of theories have been hypothesised that link GM, WM and functional 

changes to a disruption within these circuits. One theory that was proposed for multiple 

neurodegenerative diseases suggested that pathology might spread based on a prion 

hypothesis of disease progression. The hypothesis of prion-like disease progression argues that 

pathology spreads throughout the brain in a cell-to-cell manner, and thus brain regions that 

are close to the epicentre of disease or that are strongly linked to that area will undergo 

degeneration prior to those further away or less closely linked. While a number of researchers 

have argued that their work demonstrates evidence of this theory (Raj et al. 2012; Raj et al. 

2015; Zhou et al. 2012) because they have shown that regions in close proximity to the disease 
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epicentre or highly connected regions undergo damage earlier than unconnected regions, this 

theory has not been directly demonstrated, especially in HD. 

Alternatively, McColgan et al.  (2017; 2015) proposed that instead of prion-like spread, 

the progression of atrophy in HD could be related to connectivity across the brain, with regions 

that have more connections to other brain regions (rich club regions) undergo greater damage 

due to the metabolic demand placed on these regions and connections. McColgan (2015) 

found that cortico-striatal regions were more affected in those with HD, showing reduced 

connectivity between striatal regions and both frontal and parietal/occipital regions. These 

regions are rich club regions, and also part of the motor and associative circuits, and could 

indicate a susceptibility for degeneration in HD within these two networks that are frequently 

recruited in day-to-day functioning.  

These theories do not explain the degeneration commonly reported within other 

regions in HD, especially within the occipital cortex. There is no hypothesis that has provided 

sufficient evidence to explain degeneration in this region, especially given that visual 

disturbances are not typically reported in HD. The most commonly cited suggestion is that 

atrophy within this region is due to high metabolic demand placed on this region (Rosas et al. 

2008; Feigin et al. 2001).  While there is no conclusive evidence to explain the pattern of 

pathological spread in HD, as imaging methodology advances it is hoped that new techniques 

will continue to improve our understanding and to support work investigating the biological 

components of HD. 
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Figure 1.7. A schematic demonstrating the three proposed circuits connecting basal ganglia to the cortex 
(Jahanshahi et al. 2015).  

 

1.6. The current thesis  

The aims of this thesis have been motivated by the lack of research that has 

performed detailed characterisations of the cortical changes in the period surrounding HD 

motor diagnosis. While a range of work has studied atrophy in pre- and manifest HD, most 

analyses have utilised univariate techniques applied on cross-sectional cohorts, offering 

limited conclusions. More recently there has been a shift towards multivariate techniques, 

albeit mostly still using linear models, however the range of participants included in these 

studies and the use of a predicted onset could mask the detection of cortical atrophy. 

Furthermore, the techniques commonly used to quantify CGM in these studies require 

detailed validation in HD. This work aims to undertake a comparison of CGM methods and to 

then provide a detailed analysis of CGM changes in HD motor converters. 

First, a thorough validation of the available tools for CGM measurement will be 

undertaken. Using the results of this validation, the most sensitive and accurate methods for 

quantifying disease-related CGM change in HD will be selected. These methods will then be 

applied in an examination of the distribution and trajectory of CGM atrophy during motor 

onset in HD. The investigation of cortical atrophy will be performed on a sub-set of pre-HD 

participants who underwent conversion to manifest-HD during data collection for the TRACK-
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HD and TrackOn-HD studies. The analysis will use a dynamical approach to perform structural 

modelling. This newly developed technique enables the quantification of net atrophy in a given 

time period, the rate of linear atrophy as well as non-linear accelerations or decelerations of 

atrophy. By understanding the progression of transition phase cortical change, we gain a 

greater understanding of the progression of HD more generally. The results will provide novel 

and clinically relevant information helping to characterise and understand the process of 

neural atrophy in HD. 
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2. GENERAL METHODOLOGY 

This chapter will describe the general methodology used throughout this thesis. 

Further elaboration will be provided within each chapter for the specific application of these 

methods. The cohorts used in the analyses will be covered, along with information on the MRI 

acquisition parameters, pre-processing steps and methods of quantifying outcomes from sMRI 

data. Finally, some of the statistical methods used in this thesis will be described. 

2.1. Cohorts 

MRI data from four sources were used during this thesis. Freely available phantom 

data from the BrainWeb dataset were used for the methodological comparisons conducted in 

Chapter 3. Data from the TRACK-HD, TrackOn-HD and PADDINGTON studies were also used 

throughout this thesis. Descriptions of these cohorts and the data are provided here.  

2.1.1. BrainWeb 

Due to the nature of in vivo MRI scans it is impossible to measure the ground truth 

(GT) of various brain characteristics, such as the ‘true’ value of GM volume. Even established 

manual brain measures are likely to include some degree of error. Because of this, a number of 

the comparisons included in the methodological development section of this thesis were 

initially run on simulated data from the BrainWeb dataset 

(http://www.bic.mni.mcgill.ca/brainweb/; Aubert-Broche et al. 2006). The simulated data 

provides artificially created MRI scans and corresponding GT segmentations. The GT 

segmentations are regions used to create the phantom MRI scans and are designed to enable 

comparison with the performance of different software tools.  The BrainWeb phantom data 

can be processed by different software, and the results can be compared to the GT regions to 

determine the accuracy of the tools. The BrainWeb data is artificial and based on healthy 

brains and so is not a true representation of human MRI data, especially in brains with 

abnormal pathology, yet it is a useful way of examining software performance. The BrainWeb 

dataset used in the current study contains a set of 20 freely available simulated brains (Aubert-

Broche et al. 2006). The participants were 10 females and 10 males, with a mean age of 29.6 

years and an age range of 24-37 years. Construction of the data is detailed in section 2.2.1.1.  
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2.1.2. TRACK-HD 

TRACK-HD was a longitudinal multi-site observational study that began in 2008. 

Participants returned on a yearly basis, with the concluding visit in 2011. TRACK-HD aimed to 

recruit 360 participants at baseline, 120 control participants, 120 pre-HD participants, who had 

tested positive for the genetic expansion that causes HD but were not yet symptomatic, and 

120 participants with manifest HD.  

Recruitment of people at risk from HD was limited to those who had previously 

undergone genetic testing, with preliminary screening involving the self-report of genetic 

result. At baseline of TRACK-HD, gene positive participants were required to have a positive 

genetic test of ≥40 CAG repeats, which was confirmed via a blood test conducted at their first 

visit.  

Pre-HD and HD participants were also required to have a burden of pathology score > 

250 (as described in section 1.1.4.1; Penney et al. 1997). The burden of pathology score uses 

two of the most significant predictors of disease onset, age and CAG repeat, to estimate the 

burden of disease. A higher score indicates a higher burden and represents an individual’s 

lifetime exposure to MTT.  This criterion ensured that pre-HD participants were not too far 

from predicted disease onset to detect meaningful group differences when compared to 

controls; including participants who were further away from disease onset would have 

required larger group sizes to detect differences. Pre-HD participants were also required to 

have a Total Motor Score (TMS) on the Unified Huntington’s Disease Rating Scale (UHDRS) of < 

5 (Huntington Study Group 1996). The TMS measures the presence of motor symptoms with a 

score of <5 indicating no substantial motor symptoms.  

The pre-HD cohort was separated into two groups based on the median expected 

years to disease onset as calculated by a survival analysis formula previously described 

(Langbehn et al. 2010);  those estimated to be more than 10.8 years from disease onset were 

classified as the preHD-A and those less than 10.8 years from estimated onset preHD-B. Using 

the UHDRS (Huntington Study Group 1996) the HD cohort was also split into two groups. The 

participants were classified based on their Total Functional Capacity (TFC) scores as stage 1 

(HD1:TFC=11-13) or stage 2 (HD2:TFC=7-10). TFC measures someone’s ability to perform 

everyday activities such as domestic tasks, handling finances and working. The HD1 group 

included participants who showed higher functioning and were thus less affected by HD, and 

the HD2 group consisted of participants who were more affected by HD and had lower daily 

functioning scores. Since TMS <5 for this study, no participants showed substantial motor 

symptoms at baseline. Education was measured using the International Standard Classification 
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of Education (ISCED; UNESCO 1997). The ISCED comprises seven levels of education ranging 

from 0 ("pre-primary education") to 6 ("second stage of tertiary education, leading to an 

advanced research qualification"). 

Participants in the control group were selected to maintain as much consistency as 

possible with the gene carriers in terms of shared environment and thus the group was 

comprised of age- and sex-matched partners, spouses and gene-negative siblings of the gene-

carriers. In addition to the criteria described, participants were required to be aged between 

18-65, be able to tolerate both MRI and biosample collections and be suffering from no major 

psychiatric disorder or have a history of significant head injury at the time of recruitment. 

Generally, medication was not an exclusion factor unless it was medication being taken as part 

of a therapeutic trial.  Other comorbid medical conditions were also generally accepted, unless 

they were deemed to impact upon a participant’s ability to take part in the study. Ethical 

approval was given by the local ethical committees and written informed consent was 

obtained from each participant according to the Declaration of Helsinki.  Full selection criteria 

and data collection processes have been published previously (Tabrizi et al. 2009).  

At the end of the baseline visit, the TRACK-HD study had successfully enrolled 366 

participants, made up of 123 controls, 120 pre-HD and 123 HD participants.  

Table 2.1 shows demographic information for the full cohort at baseline, and the 

number of participants who returned for subsequent study visits. The most common reason 

for failing to participate in further visits was due to worsening of HD symptoms, with control 

participants most unlikely to return if their partner withdrew from the study or if they were 

experiencing relationship issues with their partner. During the course of TRACK-HD, 19 pre-HD 

participants converted to manifest HD as defined by having a new Diagnostic Confidence Score 

(DCS) score of ≥4, as described in section 1.1.3 (Huntington Study Group, 1996). At each visit, 

participants underwent a comprehensive battery of neuroimaging, cognitive, oculomotor, 

quantitative motor and neuropsychiatric testing. Many of the participants who were in TRACK-

HD followed on to complete TrackOn-HD (see section 2.1.3). 

2.1.3. TrackOn-HD 

TrackOn-HD began in 2012 with a focus on the pre-HD phase of the disease process 

and included 3 visits, conducted at yearly intervals. At baseline, TrackOn-HD had 112 controls, 

110 pre-HD and 21 early HD participants. Of these, 79 controls and 102 pre-HD participants 

were previous participants of TRACK-HD (with some pre-HD participants now classed as HD 

participants). An additional 33 controls and 30 pre-HD participants were also recruited. 
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Selection criteria were the same as for TRACK-HD, but participants who had previously taken 

part in TRACK-HD and who were older than 65 were able to enrol in TrackOn-HD. Demographic 

information for the baseline of TrackOn-HD is provided in Table 2.2. The range of assessments 

completed in TrackOn-HD was similar to that of TRACK-HD, but with more advanced imaging 

techniques, including task and resting state fMRI and diffusion imaging, performed at baseline, 

12 and 24 months (See Figure 2.1).  At 24 months two novel imaging sequences, Neurite 

Orientation and Dispersion Diffusion Imaging (NODDI; Zhang et al. 2012) and Chemical 

Exchange Saturation Transfer (CEST; Jones et al. 2006), were introduced. There were also some 

minor changes made to the cognitive, motor and neuropsychiatric batteries. 

2.1.3.1. TrackOn-HD data collection  

For the TrackOn-HD 2014 time point, data collection was performed as part of the 

work contributing to this thesis. Cognitive data collection and scoring for all participants who 

took part in the study at London was performed by myself as was over half of the MRI 

scanning (split with another team member). 

 

 

Figure 2.1. A schematic showing the participants and MRI modalities collected in TRACK-HD and 
TrackOn-HD. 
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Table 2.1 Demographic information for the TRACK-HD cohort at baseline. Data are mean (SD, 
range) or number (%). Disease-burden score=age x (CAG length - 35·5). Table adapted from 
Tabrizi et al. (2009).  

 Controls 
(n=123) 

preHD-A 
(n=62) 

preHD-B 
(n=58) 

HD1 
(n=77) 

HD2 
(n=46) 

Age (years) 46·1 
(10·2, 23·0–65·7) 

41·1 
(8·6, 18·6–59·4) 

40·6 
(9·2, 22·3–64·1) 

47·2 
(10·3, 22·8–64·1) 

51·4 
(8·6, 33·3–63·3) 

Women 68 (55%) 33 (53%) 33 (57%) 46 (60%) 21 (46%) 

Education 
(ISCED score) 

4·0 (1·3) 4·1 (1·1) 3·8 (1·3) 3·8 (1·3) 3·2 (1·4) 

Disease-burden 
score 

- 259·1 (30·1) 333·1 (30·0) 364·1 (74·3) 397·6 (67·5) 

Site (n) 

Leiden   30   16   14   16   14 
London   30   14   16   19   11 
Paris   30   14   16   26 4 
Vancouver   33   18   12   16   17 

Time point (n)      

Baseline   123   62   58   77   46 
12 Month   116   62   55   71     43 
24 Month   110   60   51   70   41 
36 Month 97  58 46 66 31 

 

 

Table 2.2. Demographic information for the TrackOn-HD cohort at baseline. Data are mean 
(SD, range) or number (%). Disease burden = (CAG – 35.5) x current age. 

 Controls 
(n=112) 

preHD 
(n=110) 

HD1 
(n=21) 

Age (years) 
48.14 (10.70) 
25.41-67.52 

42.88 (9.10) 
22.62-68.29 

44.92    (7.96) 
32.14-63.66 

Women 67 (60%) 55 (50%) 14 (67%) 

Education (ISCED 
score) 

3.94 (1.04)         
1-6 

4.02 (1.00) 
2-6 

3.74 (1.01) 
2-5 

CAG - 
42.93 (2.27)         

39-50 
44 (2.59) 39-50 

Disease-burden 
score 

- 
302.12 (53.04) 
178.91-443.00 

364.23 (56.69) 
222.81-466.02 

Site (n) 

Leiden 28 24 8 

London 29 27 5 

Paris 29 30 5 

Vancouver 26 29 3 

Time point (n)    

Baseline 112 110 21 

12 Month 105 101 20 

24 Month 101 99 18 
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2.1.4. PADDINGTON 

PADDINGTON (‘Pharmacodynamic Approaches to Demonstration of Disease-

Modification in Huntington’s Disease by SEN0014196’) was a follow up from TRACK-HD with a 

focus on manifest HD patients. The data used in this thesis comes from work package two 

(WP2), which was a subcomponent of the PADDINGTON study designed to further validate 

imaging measures for use in short-interval clinical trials (Hobbs et al. 2013). There were 40 

controls and 61 early HD participants in WP2. For this study there was a visit at baseline, 6 

months and 15 months.  

Participants were recruited across four sites: Leiden, London, Paris and Ulm. HD 

participants were required to have had a positive genetic test (CAG>36), be able to tolerate an 

MRI scan and sample donation and have no clinically significant and relevant history that could 

affect their involvement in the study. Control participants were mostly spouses or siblings of 

the HD participants who were tested negative for the expanded HD gene. Full selection criteria 

for the Paddington study is available (Hobbs et al. 2013). All participants gave written informed 

consent in accordance with the Decleration of Helsinki.  

 

2.2. MRI Imaging 

2.2.1. Acquisition  

2.2.1.1. BrainWeb 

The BrainWeb data is constructed from real MRI data, which was registered (aligned; 

see section 2.3.1), segmented and submitted to an MR simulator to create a ‘phantom’ version 

of the data. To create the 20 phantoms, 20 participants were scanned. All participants were 

scanned on a 1.5T Siemens Sonata Vision scanner. The T1 scan had 1mm isotropic voxels, with 

a 3-D spoiled gradient echo sequence (TR=22ms, TE=9.2ms). The scan was repeated four times 

to increase the signal-to-noise ratio and these four scans were averaged. All native images 

were corrected for intensity nonuniformity N3 bias correction (Sled et al. 1998). Registration 

was performed by randomly selecting one T1 from each subject and linearly registering this to 

the International Consortium for Brain Mapping (ICBM) average space. The remaining T1 

images were linearly registered (rigid body, six parameters) to the first native T1, and from 

native space they were then registered to ICBM space. Finally, the volumes for each 

participant were averaged to create one image. 
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Next, each of the 20 average images was classed into 11 tissue classes; GM, WM, CSF, 

skull, marrow, dura, fat, fat2, muscles, skin/muscle and vessels (Aubert-Broche et al. 2006). 

The voxel intensity modelled tissue contributions within the voxel ranging from 0 to 1.  The 

fuzzy volumes (PVE) defined the digital phantom. The next step was running the MR 

simulations to generate realistic 3-D images using both the PVE volumes from the anatomical 

phantom and parameters related to tissue, scan and coil aimed at making the simulation as 

realistic as possible.  The MR simulator used a three step process. Briefly, the initial step was 

calculation of the signal intensities for different tissue types. Following this, the PVE volumes 

were used to weight the tissue intensities for each tissue type. The last step was to correct the 

images based on scan-dependent effects including noise and inhomogeneity. 

Figure 2.1. shows the simulated MRI of one subject, alongside their real MRI and the 

phantom data on which the simulation was based. It should be acknowledged that there are 

discrepancies between the simulated data and the real data indicating that simulated data is 

not a perfect representation of a real MRI scan. 

 

 

Figure 2.2. Simulated data (left), real data (middle) and phantom data (right) for one subject 
from the BrainWeb dataset (Aubert-Broche et al. 2006). 

 

2.2.1.2. TRACK-HD, TrackOn-HD and PADDINGTON 

3T T1-weighted scans were acquired from four scanners for both TRACK-HD and 

TrackOn-HD. Two were Siemens and two were Philips scanners. The parameters for Siemens 
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were TR = 2200ms, TE = 2.2ms FOV = 28cm, matrix size = 256x256, 208. For Philips TR = 7.7ms, 

TE = 3.5ms, FOV = 24cm, matrix size = 242x224, 164. The acquisition was sagittal to cover the 

whole-brain. There was a slice thickness of 1mm, with no gap between slices. These 

acquisition protocols were validated for multi-site use (Tabrizi et al. 2009). All images were 

visually assessed for quality; specifically artefacts such as motion, distortion and poor tissue 

contrast (IXICO Ltd. and TRACK-HD imaging team, London, UK). Acquisition protocols were the 

same for both studies.  

For PADDINGTON, the scanners and imaging acquisition protocols were matched to 

those used in TRACK-HD for Leiden, London and Paris, for Ulm a Siemens Allegra scanner was 

used with slightly different acquisition paremeters, however this data will not be used in this 

thesis.  

 

2.2.2. Pre-processing 

2.2.2.1. BrainWeb 

BrainWeb scans and associated GM regions were downloaded from 

http://brainweb.bic.mni.mcgill.ca/brainweb/anatomic_normal_20.html and converted from 

minc file format to Neuroimaging Informatics Technology Initiative (NIfTI) format using the 

visualisation software MIPAV (McAuliffe et al. 2001). The GT segmentations provided by 

BrainWeb were initially of a different resolution to the native space simulated T1 images. They 

were resampled via FSLmaths (Jenkinson & Smith 2001; Jenkinson et al. 2002). All outputs 

were visually checked to ensure successful resampling. Images were processed in NIfTI format.  

2.2.2.2. TRACK-HD and TrackOn-HD 

Images underwent initial quality control (QC) consisting of meta-data checks and visual 

QC to ensure that scan parameters were correct and to ensure no gross artefacts or errors 

were present, including motion artefacts and incorrect field of view placement (IXICO, London, 

UK). Examples of motion artefact are shown in Figure 2.3. Image data were archived at the 

Laboratory of Neuroimaging (LONI), University of California Los Angeles. Images from all sites 

were then downloaded from the LONI website for processing by the UCL TRACK-HD imaging 

team.  
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Figure 2.3. An example of a T1 scan from the TRACK-HD study that failed visual quality control 
because of a significant movement artefact. 

 

Once downloaded, images were converted from dicom format to analyse format. MR 

images suffer from an artefact called intensity non-uniformity. This refers to the varying signal 

intensity that occurs across an MRI image, meaning that tissues of the same class have 

differing signal across T1-weighted scans. While this artefact has little impact on the ability to 

visually interpret an MRI scan, it can result in the failure of software to accurately delineate 

different tissue types. This is especially true for automated tools. Tissue non-uniformity is 

caused by a number of factors including radiofrequency coil homogeneity, local flip angle 

variations and participant anatomy (Sled et al. 1998; Boyes et al. 2008). To correct for this, 

images undergo a process called bias correction. This is a post-scanning process that calculates 

and corrects for the bias field within an image, Figure 2.4 shows a T1 scan both before and 

after bias correction. In the raw data, regions of high intensity can be seen in the medial 

sections of the scan. The bias corrected data appears to have more uniform tissue contrast 

across the brain. The non-parametric non-uniform intensity normalization (N3) method was 

used for all images in TRACK-HD, TrackOn-HD and PADDINGTON (Sled et al. 1998), with 

optimised parameters for 3T data as outlined in Boyes et al. (2008).  Following conversion and 

bias correction, images were again examined by the team at UCL, and excluded from analysis if 

artefacts that were expected to affect analysis were present. Table 2.3 shows how many scans 

were excluded due to motion at each site for both TRACK-HD and TrackOn-HD.  
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Figure 2.4. An example of a T1 scan (A) before and (B) after undergoing N3 bias correction, 
taken from the TrackOn-HD study. 

 

Table 2.3. The number of scans at each time point that failed due to the presence of severe motor 
artefacts for the TRACK-HD and TrackOn-HD studies. 

 2008 2009 2010 2011 2012 2013 2014 

Number of scans failed due to motion 7 11 12 6 3 5 1 

Total number of scans acquired 358 332 316 286 240 226 211 

 

 

2.3. Structural MRI analysis tools 

Measurement of different brain characteristics from sMRI can be performed using a 

number of different tools and techniques, including registration, segmentation and 

quantification of results. Throughout this thesis there are a number of methods consistently 

used to process T1 MRI scans. The most common methods are described here. 

2.3.1. Image space and registration 

MRI scans can be processed in a range of ‘spaces’, with a space referring to the 

position of the head within the 3D field of view (FOV). Native space is the space in which the 

scan was acquired, with the FOV and head in the position that the radiographer collected the 

data. Native space will be different for each scan collected, even for scans within the same 

scanning session if the FOV position was not copied between scans or the participant moved 

between scans. Standard space refers to a number of commonly used positions that are widely 

used across neuroimaging, which provide a common space to align different datasets to. The 

Montreal Neurological Institute space (MNI) is the most commonly used standard space. In 

addition, it is also possible to create a group template by concatenating all scans used in a 

particular study into a single study-specific template. 
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Typically, scans are aligned to a common space when performing cross-sectional group 

comparisons as this enables the direct comparison between different groups and participants. 

To align the position of a brain within the FOV to standard or template space, a registration 

needs to be performed. This is a process of alignment whereby a scan is moved from one 

space to another. Registrations can also be used to help quantify longitudinal change, 

especially for volumetric measures. During registration, Jacobian maps can be output and 

these can be used to quantify change. A Jacobian map is a 3D representation of voxel-wise 

contraction or expansion that occurs between each registered scan, and is based on the voxel-

intensity of two scans. By multiplying the Jacobian map by the voxel-wise tissue maps output 

from a segmentation (section 2.3.2), change within each voxel can be quantified. 

There are different types of registration and a number of different tools to perform 

these registrations, yet all registrations consist of two steps: a) calculation of registration 

parameters, b) application of these parameters to a scan.  

2.3.1.1. Linear registrations 

Linear registrations aim to achieve an alignment between scans, yet are restricted in 

the number of deformations that are performed. They aim to achieve a point-to-point 

mapping of two scans, however they will not correspond exactly especially when registering 

two brains from a longitudinal study that have undergone atrophy over time. Linear 

registrations perform the same action on all voxels and thus the content of the voxels 

themselves are not changed. During a linear registration, an MRI scan can be transformed via 

rotations, translations, shears and zooms, but not by the non-linear warping of the scan. The 

most basic type of linear registration is a rigid-registration, which uses 6 degrees of freedom 

allowing for three rotations and three translations to align the moving image to the target. 

Affine registration uses 12 degrees of freedom, which allows for three translations, three 

rotations, three shears and three zooms and enables more advanced co-registration of the 

scans. However, it may also result in some loss of information, particularly when registering 

atrophied brains that may show change over time.  

2.3.1.2. Non-Linear registrations  

Non-linear registrations allow for the scan to be warped in many dimensions, and they 

aim to achieve an exact correspondence between two or more images. A non-linear 

registration often initially starts with a linear registration step to roughly align the images, and 

then proceeds to a more detailed registration involving a large number of degrees of freedom 
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and warping in any direction. There are a number of types of non-linear registrations, with 

three methods used in this thesis described here. 

2.3.1.2.1. Fluid registration 

Fluid registration uses a model of a compressible viscous fluid to calculate the 

deformation (Crum et al. 2001; Freeborough & Fox 1998). Fluid models are typically performed 

on within-subject data, between two longitudinal scans consisting of a baseline and follow-up 

time points. This type of registration provides a good approximation of the gradual change 

seen in degenerating brains, whilst maintaining scan topology. Fluid registration is an iterative 

process that warps the follow-up scan to the baseline scan within the confines of the fluid 

model, while maximizing the correspondence within voxels of the two images. The result of a 

fluid registration is a follow-up scan that should correspond exactly to the baseline scan, along 

with a voxel-wise Jacobian deformation field mapping the transformations applied to each 

voxel. From this deformation field voxel compression maps can be calculated which enable 

visualization of voxel-wise expansion or contraction across the brain. In addition, volumetric 

change can be calculated between two scans by multiplying the baseline volumetric region by 

the Jacobian deformation field to quantify change. This is the method employed throughout 

TRACK-HD and TrackOn-HD studies to quantify regional change (Tabrizi et al. 2012; Tabrizi et 

al. 2013; Tabrizi et al. 2011).  

2.3.1.2.2. DARTEL 

Diffeomorphic Anatomical Registration Through Exponential Lie Algebra (DARTEL; 

Ashburner 2007) is a method of non-linear registration and template creation applied for 

between-subject normalization. It is included as part of the SPM toolbox, from version of 

SPM5, to improve between-subject registration prior to performing VBM (section 2.3.4.2). By 

using DARTEL, the scans from different participants are not only aligned but also used to 

create a study-specific template. When registering pathological brains to a standard template, 

errors can be introduced since the brains do not achieve good correspondence. By creating a 

study-specific template these biases and errors can be reduced. DARTEL aims to create a 

continuous and smooth one-to-one mapping that is invertible (reversible) and maintains 

topology.  

Images are first segmented into GM, WM and CSF tissue classes using SPM segment 

(section 2.3.4.2). During this process, the images are roughly aligned and deformation 

parameters are saved. When performing DARTEL, the tissue classes are first combined using 

the deformation parameters to create a mean image used as an initial template. Deformations 
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between this rough template and the individual images are computed, and the template is re-

generated using the inverse deformations to the images, and this is averaged. This is repeated 

7 times (by default) to iteratively improve the template.  The output is a GM and WM 

template, along with flow fields that contain the parameters to warp between the native scans 

and the template. 

2.3.1.2.3. Longitudinal serial registration 

A further registration that is applied in the current thesis is longitudinal serial 

registration. When performing quantification of atrophy across time points, it is important to 

ensure that between-scan noise and bias are reduced as much as possible. Previous methods 

of longitudinal registration were criticized for introducing additional bias by the process of 

registering all follow-up scans to the baseline scan (Ashburner & Ridgway 2012). It was 

suggested that the process of applying a non-symmetrical registration pipeline could result in 

the detection of false positive differences. Similarly to DARTEL, this technique uses generative 

modelling to create an average of multiple scans. However, here the scans are within-subject. 

Along with registering the scans and creating an average, the approach also includes an 

integrated correction for between-scan (differential) intensity homogeneity (Ashburner & 

Ridgway 2012). The method first applies a rigid-body transformation to ensure scans are in 

rough alignment, and then enters into a process of between-scan diffeomorphic iterative 

registration to create an average image and deformation parameters. These parameters can 

then be used to calculate longitudinal volumetric change across multiple time points. The 

method has been validated previously, and was shown to be a consistent method with 

biologically plausible results (Ashburner & Ridgway 2012). 

2.3.2. Partial volume effects 

The partial volume effect (PVE) refers to the inability of MRI to represent the true 

proportion of each tissue type within a voxel due to the resolution of voxels (Tohka 2014). For 

example, a 1x1x1mm voxel may contain only GM or a proportion of WM or GM. Partial volume 

of voxels is typically accounted for by giving each voxel a likeliness of belonging to each tissue 

type ranging from 0-1. Most segmentation techniques calculate probabilistic segmentation 

voxel-wise maps, which account for partial volume effects, whereby different tissue maps are 

created (e.g. for GM, WM, CSF) and for each tissue map every voxel is given a likelihood of 

belonging to that tissue ranging from 0-1. For example, we would expect a voxel within the 

middle of the lateral ventricles to be given a value of 1 for the CSF tissue map, but 0 for the 
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WM tissue map. Many tools also output ‘discrete’ volumes whereby each voxel is assigned to a 

particular tissue type in a binary 1 or 0 method. It is widely accepted that partial volume maps 

result in more accurate quantification of tissue volumes (Tohka 2014). Figure 2.5 shows 

examples of partial volume maps and discrete tissue maps for the same participant.  

 

 

Figure 2.5. A scan from the TRACK-HD study, showing a partial volume map of the cortex in (A) 
coronal, (B) axial and (C) sagittal views, and a discrete tissue map in (D) coronal (E) axial and (F) 
sagittal views. 

 

2.3.3. Manual delineation of regions using MIDAS 

Often considered a ‘gold standard’, manual delineation of brain regions can be 

performed to outline regions of interest and calculate the volume of these regions. This can be 

done in a variety of ways, but the method used in this thesis makes use of an in-house UCL 

software that has been used in a large number of studies examining brain volume in 

Alzheimer’s Disease and HD. The Medical Image Display and Analysis Software (MIDAS; 

Freeborough et al. 1997) is an interactive software that enables 3D processing of MRI scans. It 

has a wide variety of options for viewing and segmenting scans. Most processes begin with an 

intensity-based thresholding step defined by a pre-specified mean-brain intensity, followed by 

manual editing of the region. The use of pre-defined mean-brain intensity values ensures that 

consistent delineation can be performed on a particular scan. The first step is typically to 

measure the whole-brain volume, and this can then be used to calculate thresholds for other 

regions. After whole-brain segmentation is performed, the brain region is registered to 
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MNI305 standard space. By registering the whole-brain region and scan to standard space 

landmark-based cut-off points used when segmenting the other regions can be applied 

consistently within subsequent scans for the same participant and between all participants.  

The process of performing manual segmentation generally results in a high degree of 

reliability both within and between raters, and the regions tend to be visually accurate. 

However, it is also labour intensive and involves a rigorous period of training. In order to be 

qualified to segment images for a study within the HD Centre, a rater needs to pass a ‘test set’ 

of five scans, performing segmentation of the test set twice with a week in between the two 

repeated segmentations. The volumes for these five scans are required to be in line with set 

reliability thresholds, which are set at 1% difference for global measures, such as brain, total 

intracranial volume (TIV) and ventricle volumes, and 3% difference for regional segmentations 

such as the caudate.  Despite the intensive training and high reproducibility, it is important to 

acknowledge that while raters are blinded to disease stage of the participants, it is sometimes 

possible to determine disease status from scans in particularly atrophied brains, introducing 

possible rater bias.  

2.3.3.1. Whole-brain segmentation 

Whole-brain segmentation is performed in native space, with the first step being the 

selection of an appropriate threshold that excludes most non-brain tissue via an interactive 

threshold-selection process. The rater then manually edits this region where required, with the 

aim to perform as little manual editing as possible in order to limit rater bias. Whole-brain 

segmentations take between 45-60 minutes. Manual delineation of the whole-brain is 

performed at baseline, with baseline regions then propagated (i.e. registered and applied) to 

follow-up time points and manually edited where necessary if the propagation has leaked into 

non-brain regions. Figure 2.6 shows an example of whole-brain segmentation.  

To measure longitudinal atrophy, the Brain Boundary Shift Integral (BBSI) is calculated. 

This involves fluid registration of the follow-up scan and region to baseline, differential bias 

correction to adjust for any differences in intensity between the two scans, dilation of the 

baseline region, and quantification of the change in the boundary of the baseline region 

compared to the follow-up region (Freeborough & Fox 1997). Whole-brain segmentation has 

been demonstrated as a sensitive measure of group differences between pre-HD, HD and 

controls, and the BBSI has been found to be sensitive to longitudinal brain-atrophy in HD 

(Tabrizi et al. 2009; Tabrizi et al. 2012). It is currently being used in a number of on-going 

clinical trials for HD.  
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Figure 2.6. An example of a whole-brain segmentation from the TrackOn-HD study, shown in 
(A) coronal, (B) axial and (C) sagittal views. 

 

2.3.3.2. Ventricle segmentation 

Following whole-brain segmentation, the region is registered to standard space and 

ventricle segmentation is performed in standard space. A pre-specified upper intensity 

threshold of 60% of the mean brain intensity is used (measured from the previously 

segmented brain region). The lower threshold is set at the minimum possible value. Ventricle 

segmentation includes the lateral ventricles and temporal horn of the lateral ventricles, but 

not the third or fourth ventricles (Scahill et al. 2003). Figure 2.7 shows an example of a 

ventricle segmentation, which takes between 10-15 minutes to complete.  The ventricles were 

segmented at each time point in TRACK-HD. The Ventricle BSI (VBSI) is used to measure 

ventricle expansion, with a similar method to the BBSI applied. Again, ventricular volume and 

ventricular expansion are sensitive to between-groups differences and longitudinal change in 

HD (Tabrizi et al. 2009; Tabrizi et al. 2012). 

 

 

Figure 2.7. An example of a ventricle segmentation from the TrackOn-HD study, shown in (A) 
coronal, (B) axial and (C) sagittal views. 
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2.3.3.3. Caudate segmentation 

Caudate segmentation was performed on the standard-space registered scan, and 

includes the head and body of the caudate. The intensity thresholds are set at lower and upper 

values of 62% and 111% of the mean brain intensity respectively (Hobbs et al. 2009). The 

caudate regions generally require more manual editing than whole-brain and ventricular 

regions due to the reduced contrast between the caudate and WM. An example of a caudate 

segmentation is shown in Figure 2.8, and segmentations take between 60-90 minutes. The 

caudate was only segmented at baseline, and the Caudate BSI (CBSI) was used to measure 

caudate atrophy (Hobbs et al. 2009). Caudate atrophy is one of the most significant measures 

of structural volume change in HD (Tabrizi et al. 2013). 

 

 

Figure 2.8. An example of a caudate segmentation from the TrackOn-HD study, shown in (A) 
coronal, (B) axial and (C) sagittal views. 

 

2.3.3.4. Putamen segmentation 

Similarly to caudate segmentation, segmentation of the putamen is performed on the 

whole-brain registered to standard space. While this protocol has not been published, it 

underwent similar validation to the other methods cited here and has been applied in a 

number of research studies and HD trials (Hobbs et al. 2013; Hobbs et al. 2015). Intensity 

thresholds are set to 90% and 112% of the mean brain intensity, and the region extends 

superiorly until the last slice clearly containing putamen and inferiorly until the last slice in 

which the putamen is clearly separated from the caudate by the internal capsule. An example 

of a putamen segmentation is shown in Figure 2.9, and segmentations take between 60-90 

minutes. 
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Figure 2.9. An example of a putamen segmentation from the PADDINGTON study, shown in (A) 
coronal, (B) axial and (C) sagittal views. 

 

2.3.3.5. Total intracranial volume segmentation  

Total intracranial volume (TIV) is a measure of the total volume within the skull, 

including brain, meninges and CSF. TIV is regularly used to control for inter-subject variability 

in head size (see section 2.4.3), since it is associated with total and regional brain volumes 

(Malone et al. 2015). TIV is measured via first setting pre-specified thresholds of a lower 

threshold of 30% of the mean brain intensity, and an upper threshold at the maximum 

possible value. Starting at the base of the cerebellum, one slice every 10 slices is seeded 

resulting in selection of the outside of the dura, as shown in Figure 2.10. These regions are 

then filled and propagated, to create a region that fills the whole intracranial space. TIV 

segmentations take between 10-15 minutes. This measure has been demonstrated as highly 

reliable and preferable to performing automated quantification of TIV (Malone et al. 2015). 

 

 
Figure 2.10. An example of a TIV segmentation from the TrackOn-HD study, shown in (A) 
coronal, (B) axial and (C) sagittal views. The slices are filled to calculate volume within the 
region. 

 

2.3.3.6. Role within TrackOn-HD data processing  

For the TrackOn-HD 2013 visit I performed T1 data processing. This included data 

download, conversion and bias correction, visual QC and manual segmentation of the whole-



 

72 

brain and ventricles for all 2013 scans (see section 2.3.3). Furthermore, I performed 

retrospective segmentations for the 2012 time point, including all manual TIV and caudate 

segmentations, along with some brain and ventricle segmentations. Segmentations for other 

time-points and regions were performed by the TRACK-HD, TrackOn-HD and PADDINGTON 

imaging teams. 

2.3.4. Automated Delineation of Regions 

In addition to manual segmentation, there are a number of techniques that 

automatically delineate different brain regions. These techniques have varying requirements 

and can perform a number of different measurements, including measures of volume, CT and 

surface-based characteristics of the brain such as curvature. The measurement of volume and 

CT using these techniques is covered in more detail in Chapters 3 and 4, however a brief 

description of the most common methods referred to in this thesis are below.  

2.3.4.1. FMRIB Software Library 

The FMRIB Software Library (FSL; Jenkinson et al. 2012; 

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki) is a suite of tools for functional, structural and diffusion 

MRI analysis and statistical analysis. Within FSL, the FMRIB’s Automated Segmentation Tool 

(FAST) is frequently used to segment different regions of the brain. FAST corrects for 

inhomogeneity within the images and uses a hidden Markov random field model and an 

associated expectation-maximisation algorithm to segment an image into tissue types (Zhang 

et al. 2001). The segmentation process generates tissue classes (including GM, WM, CSF), and 

once the tissue classes are segmented masks can be applied to calculate volumes from sub-

regions of these tissues.   

2.3.4.2. Statistical Parametric Mapping 

The Statistical Parametric Mapping (SPM; http://www.fil.ion.ucl.ac.uk/spm/) 

programme is another tool that offers analysis options for structural, functional and diffusion 

data, as well as MEG and EEG data. It is frequently used in HD studies to perform volumetric 

segmentation, and was used throughout the TRACK-HD and TrackOn-HD studies to measure 

WM and GM total volume (Tabrizi et al. 2011; Tabrizi et al. 2009; Tabrizi et al. 2012; Tabrizi et 

al. 2013). Once segmentation has been run on an image, the tissues can also be used to 

perform a VBM analysis, see section 2.3.4.2. Tissue segmentation involves modelling of 

intensity distributions within the scan via Gaussians and tissue probability maps, with priors 
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used to weight classification (Ashburner & Friston 2005). This approach combines 

normalisation and segmentation. The two most commonly used versions of SPM currently in 

use are SPM8 and SPM12. SPM8 has two segmentation procedures, Unified Segment and New 

Segment. SPM12 has one main procedure, Segment, although it also provides access to 

Unified Segment.  

Unified Segment was first released in 2005 (Ashburner & Friston 2005) and it combines 

tissue classification, bias correction and image registration to segment the GM, WM and CSF 

via a voxel-wise approach. The tissue classification phase uses intensities to classify voxels into 

a tissue category. The intensity distributions are modelled by a mixture of Gaussians, and 

tissue probability maps (TPMs) registered to standard space (ICBM152) are used to improve 

classification (Ashburner & Friston 2005). The TPMs give the prior probability of any voxel 

being a member of GM, WM, or CSF. To align the TPMs with each individual brain, initial affine 

registrations are performed followed by non-linear registration to improve the fit, and the 

inverse of these registrations is used to align each brain to standard space. The output tissue 

values range from 0-1 and represent the probability that each voxel belongs to a certain tissue 

class.  

The New Segment toolbox is an extension of Unified Segment. This method is designed 

to treat the mixing proportions differently, use an improved registration model and process 

multi-spectral data (i.e. both T1 and T2 images). It also has an extended set of tissue 

probability maps allowing for voxels outside of the brain to be treated differently. The 

segmentation option in SPM12 is a modified version of New Segment, with some new default 

options.  

SPM is freely available, although it does require Matlab (which is not freely available). 

It is widely used within the neuroimaging field.   

2.3.4.2.1. Voxel Based Morphometry 

VBM is a voxel-wise approach to examining brain differences in sMRI. By registering 

the MRI scans for all participants to a template and then smoothing the scans, differences in 

brain volume can be compared between groups or across time within individuals at each voxel. 

VBM allows for examination of volumetric differences without specification of ROIs and can 

detect small regions of difference that may be overlooked when using larger regions to 

compare between groups. Different software can be used to perform VBM analyses, but here 

the application of SPM VBM is covered (Ashburner & Friston 2000). To perform VBM within 

SPM, images are first segmented in native space using SPM Segment as described previously. A 

group template is also created using the DARTEL toolbox (Ashburner 2007). The segmented 
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regions are then warped to the DARTEL template and modulated and smoothed to account for 

any changes that occurred during normalisation to the template. Following this, a statistical 

model is specified and group differences can be compared across the whole-brain. Regions of 

interest can also be specified using a mask, if there are a priori hypotheses about the location 

of group differences.  

2.3.4.3. BRAINS 

BRAINS (Brain Research: Analysis of Images, Networks, and Systems; Magnotta et al. 

2002) is another freely available automated technique that utilizes data from both T1- and T2-

weighted scans to perform brain segmentation. It uses a neural net trained on human rater 

definition of the putamen and atlas-based structure identification, followed by an additional 

boundary correction to ensure no structural overlap. While BRAINS has been used in a number 

of studies investigating the brain in HD (Nopoulos et al. 2011; Paulsen et al. 2006), including 

the TRACK-HD study (Tabrizi et al. 2009; Tabrizi et al. 2011; Tabrizi et al. 2012; Tabrizi et al. 

2013), it is not widely used. 

2.3.4.4. FreeSurfer   

FreeSurfer (https://surfer.nmr.mgh.harvard.edu/) is a widely used software that aims 

to segment, measure and analyse neuroimaging data. It has a volume-based stream and a 

surface-based stream. The volume-based stream aims to process MRI volumes and classify 

subcortical regions (Fischl et al. 2002; Fischl et al. 2004). The brain is affine registered to 

Talairach space (a frequently used standard space), and then an initial volumetric labelling step 

is performed followed by intensity correction. Following this, a high dimensional nonlinear 

volumetric alignment to a Talairach atlas is performed. In the final phase the volume is 

labelled. The volume-based stream has evolved separately to the surface-based stream and a 

number of the stages are different (i.e. the registration and bias field correction). The surface-

based stream measures features such as CT, surface area and curvature of the brain. Briefly, 

after correction for field inhomogeneity, affine-registration and skull stripping, the WM voxels 

are classified based on their intensity, their neighbours’ intensity, and their position. A 

triangular mesh is built around the WM, which is then smoothed and topologically corrected. 

The external cortical surface is created via expansion of the WM surface until it reaches a point 

of maximal contrast between the GM and CSF. 

FreeSurfer is widely used, and has been applied within HD research a number of times, 

although mostly for CT analysis or to use regional volumes as a seed region or an extraneous 

https://surfer.nmr.mgh.harvard.edu/
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variable in analyses (Rosas et al. 2008; McColgan et al. 2015). There are standard pipelines 

available and FreeSurfer is easy to implement.  

2.3.4.5. Advanced Normalization Tools (ANTs) 

ANTs is a more recently developed tool, and while the segmentation method has not 

been used in neurodegeneration research to date it is freely available and gaining popularity 

within the neuroimaging community. A fully automated stream that outputs volumetric 

measures and CT is available (Diffeomorphic Registration-based Cortical Thickness, DiReCT) 

along with a separate volumetric stream (Atropos; Das et al. 2009; Tustison et al. 2014). Firstly 

N4 bias correction (Tustison et al. 2010) is performed on the raw MRI image, followed by brain 

extraction. The brain segmentation uses a mixed segmentation and template-based extraction. 

Following this, tissue segmentation is performed via alternating between prior-based 

segmentation and N4 bias correction. To calculate CT a prior-constrained estimate of the 

distance between the GM/WM boundary and the GM/CSF boundary is used. ANTs pipelines 

are freely available and online support is provided.  

2.3.4.6. Multi-Atlas Label Propagation with Expectation-

Maximisation based refinement (MALP-EM) 

MALP-EM is another recently developed tool aimed at providing a fully automated 

segmentation method able to cope with severe brain pathologies (Ledig et al. 2015). It utilises 

a previously described registration approach (Heckemann et al. 2012), atlas-based 

segmentation, and intensity-based expectation maximisation to segment the brain into cortical 

and subcortical regions (Ledig et al. 2015). MALP-EM has been validated on traumatic brain 

injury patients and is able to stratify patients into favourable vs. unfavourable outcomes based 

on MALP-EM segmentations (Ledig et al. 2015). It is freely available and has recommended 

usage included.  

2.4. Statistical Analysis 

Different statistical analyses were used throughout this thesis. This section covers 

some of these methods, with further information provided where relevant later in the thesis. 

All statistical analyses were performed within STATA version 12.1, or within a neuroimaging 

analysis tool such as SPM.  

2.4.1. Measures of accuracy and reliability 
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Chapter 3 of this thesis aims to compare various tools that perform automated 

segmentation of MRI scans. Measuring the reliability of these tools is a recognised challenge 

(Bouix et al. 2007). If two tools produce volumetric values for a tissue type that correspond, 

there is no guarantee that they spatially overlap. Because of this, both real study MRI data 

from TRACK-HD and phantom data with corresponding GT segmentations were used in this 

thesis to assess the accuracy and reliability of segmentation tools. These statistical methods 

are described here, with implementation discussed in Chapter 3. 

When using data such as the BrainWeb dataset, which has a corresponding GT 

segmentation for each scan, overlap scores (the dice coefficient) can be calculated on a voxel-

wise basis as discussed in Crum, Camara and Hill (2006). The dice coefficient is a measure of 

spatial overlap and has been used to validate segmentation techniques in a number of studies 

previously (Zou et al. 2004). The technique developed by Crum et al. compares the voxel-map 

output by each segmentation tool to the corresponding GT in a voxel-by-voxel method to 

determine the overlap of whole images. It accounts for partial volume estimates thus enabling 

a precise measure of spatial overlap in MRI. In addition to spatial overlap, when using a GT 

measure of brain volume, paired t-tests can be performed to determine whether there are 

significant differences between the GT and a segmentation method. Finally, Bland Altman 

plots and Pitman’s Test of difference measure the agreement between the GT and the output 

from a segmentation tool. 

When calculating the reliability from back-to-back measurements, as also done in 

Chapter 3 on the TRACK-HD data, reliability can be measured using the intraclass correlation 

(ICC; Bartko, 1966). ICC measures the agreement between repeated ratings, and ranges from 

0-1 with higher values demonstrating better reliability. Mean repeatability for back-to-back 

scans was also calculated as percent variability error (Function 1; Jovicich et al. 2013; Tustison 

et al. 2014). This measure provides a percentage value of variability between repeated 

applications on the same cohort for each tool; lower values represent less variation. Finally, 

Spearman’s Rho was also used to test the correlation between each set of volumes extracted 

using each segmentation tool. 

 

 

Function 1: Mean repeatability calculation used on back-to-back scans from 2008. VolA 

represents the first baseline back-to-back scan, VolB Represents the second baseline back-to-

back scan.  
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2.4.2. Multiple regression 

Multiple regression uses a general linear model (GLM) to estimate the relationship 

between predictor variables (e.g. Huntington’s disease stage) and measured (criterion) 

variables (e.g. GM volume). Multiple regression enables the specification of multiple criterion 

variables so the unique contribution of variables to a predictor can be understood. Multiple 

regression is used throughout this thesis to understand different relationships between 

variables.   

2.4.3. Covariates 

Covariates are confounding variables that may be related to a variable of interest, but 

are not of interest in themselves. They can be statistically controlled for during analysis, 

resulting in a more direct measurement of the relationship between variables of interest. All 

analyses in this thesis controlled for age and sex, due to the known effects of these two 

variables on brain size (Barnes et al. 2010) In addition, site was used as a covariate to control 

for the multi-site nature of TRACK-HD and TrackOn-HD with the aim of reducing variance due 

to site. However, it should be noted that this does not fully account for effects of site, as sites 

are differentially affected by artefacts such as scanner drift, software upgrades and field 

inhomogeneity. All participants were scanned at the same time of day. Education was used as 

a covariate when examining cognitive variables, due to the relationship between education 

level and cognitive performance (Beeri et al. 2006), however was not used as a covariate in 

other analyses. This was done to maintain consistency with previous TRACK-HD analyses, 

which do not control for education unless performing analyses that include cognitive variables. 

This decision was made by the TRACK-HD steering committee in early TRACK-HD meetings. It 

was widely discussed by the imaging and cognitive teams prior to a decision being made. 

Medication was not included as a covariate. Due to the large number of medications being 

taken by participants throughout data collection of the TRACK-HD and TrackOn-HD studies, 

along with the variable doses taken across time-points, the data could not be accurately 

controlled for and was thus excluded from the covariates.  

TIV is a measure that has been frequently discussed as a potential covariate in 

neuroimaging literature (Malone et al. 2015; Barnes et al. 2010). TIV acts as a proxy to 

‘healthy’ brain volume, since TIV measures the total intracranial space and has been 

demonstrated to remain constant despite increasing neural atrophy (Whitwell et al. 2001; 

Matsumae et al. 1996). By controlling for TIV, variables of interest can be compared whilst 

taking into account differences due to head size. The TIV can be measured via manual 
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delineation of the region (Section 2.3.3.5), which has been demonstrated a valid method of 

calculating TIV (Malone et al. 2015). This technique was used for all data in this thesis. TIV was 

controlled for by either using it as a regressor in the statistical model, or a by expressing 

volume as a percentage of TIV. 

2.4.4. Correction for multiple comparisons 

The results of statistical analyses are prone to both Type I and Type II errors. A Type I 

error refers to the incorrect rejection of a true null hypothesis (a false positive). A Type II error 

is the acceptance of the null hypothesis when a true effect is present (a false negative). The 

more statistical comparisons performed in a given analysis, the more likely a Type I or Type II 

error is to occur. While an understanding of these two scenarios is relevant to all researchers 

undertaking statistical analysis, the nature of neuroimaging analysis and the sheer volume of 

statistical comparisons conducted during many types of neuroimaging analyses mean that they 

are more likely to occur than within other fields (Lindquist & Mejia 2015; Hupé 2015).  For 

example, when performing a group comparison using VBM via a GLM analysis, all of the voxels 

within a given region are statistically compared between groups to find regions of significant 

difference. This involves performing a univariate test at every voxel, resulting in thousands of 

comparisons.  

By performing correction for multiple comparisons, a researcher reduces the 

likelihood of Type I or Type II errors occurring. Correction for multiple comparisons is typically 

performed by adjusting a statistical threshold based on the number of comparisons being 

performed, with the Bonferroni correction the most widely known (Lindquist & Mejia 2015). 

Within neuroimaging there are two commonly used methods of correction: correction for 

family-wise error rate (FWE) and correction for false discovery rate (FDR).   

FWE refers to the likelihood of making one or more Type I errors in a family of tests 

(i.e. multiple tests), it includes the Bonferroni method. Correcting for FWE assumes that we 

want to limit the chance of a Type I error in any of our statistical tests, and is often too 

stringent, thus increasing Type II errors. FDR, in comparison, controls for the number of Type I 

errors across all significant results, and aims to reduce the number of false positives only 

within the subset of voxels found to be significant.  

2.5. Dynamic causal modelling 

It is known that while brain regions have functional specificity, they also interact with 

each other both functionally and structurally. The connections and strength of interaction 

between regions is dependent on the neural activity being performed. However, traditional 
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GLM methods and connectivity techniques used to analyse both sMRI and fMRI data cannot be 

used to estimate causal interactions between variable brain networks. Instead they are used to 

correlated volume or activity in different regions with each other or with external variables, 

such as task performance. Post hoc interpretations can then be drawn on the existence of 

inter-regional networks. Because of this limitation, a number of techniques have been 

developed to estimate models that enable the testing of hypothesised inter-connecting brain 

networks. In 2003 Dynamic causal modelling (DCM) was developed for this purpose (Friston et 

al. 2003). DCM is an analysis technique, typically used with fMRI or electrophysiological data, 

which aims to infer causal relationship between distributed neuronal populations. Different 

network models are hypothesised and tested, and Bayesian model selection (BMS) is then 

used to compare the different generative models in order to find the most appropriate model 

to fit the measured fMRI or electrophysiological data. Based on the strongest model, 

inferences can then be drawn on the biological structure of neuronal networks. Recently, the 

models and assumptions applied in DCM have been adapted for application to sMRI data in 

order to perform more powerful characterisations of both within-region and inter-regional 

atrophy than approaches such as VBM (Ziegler et al. 2017). 

DCM was developed to quantify effective causality, that is, to examine the causal 

influence that neuronal systems exert over each other. The model estimates the relationships, 

referred to as coupling, between brain regions and enables examination of how the coupling is 

influenced by changes in the experimental context. DCM creates realistic models of the 

temporal evolution of a set of neuronal states (x). The change within a region is dependent on 

the current state of the region (x), external inputs (C) that cause network-wide changes and 

the context-dependent connections to other regions (A), and modulatory parameters (B) 

which are factors that modulate activity  (Friston et al. 2003). These expressions are the main 

components of the basic DCM model, called the bilinear model, shown in Figure 2.11.  
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Figure 2.11. Shows (A) the bilinear state equation of DCM for fMRI, with an example (B) of the 
dynamics in a hierarchical visual system consisting of areas V1 and V5 and the superior parietal 
cortex (SPC). Each region has a state variable (x1, x2, x3), and connections between regions are 
represented by the black arrows. The external inputs are represented by grey arrows, and 
dotted arrows indicate the transformation from neural states into haemodynamic 
observations. Visual stimuli (photic) drives activity in V1 which is then propagated to V5 and 
the SPC, with the V1-V5 connection changing when stimuli are moving, and the SPC-V5 
connection is modulated by attention. The state equation for this scenario is shown on the 
right. Adapted from Stephan et al. (2007). 

 

DCM combines the bilinear model with a validated hemodynamic model, which 

describes the process of a BOLD signal being generated from neuronal activity. The 

hemodynamic model defines the change in blood volume and deoxyhaemoglobin, the basis of 

an fMRI signal, that is predicted when changes in regional neural activity result in vasodilation 

and a subsequent increase in blood flow.  

A model is specified based on the hypothesised hemodynamic model, and parameters 

are estimated such that both the modelled and measured BOLD signals reach maximal 

agreement. The model is grounded in priors that contain previous knowledge about the 

model, including the hypothesised hemodynamic response within regions but also the neural 

interactions between regions. The process of model estimation is iterative; the estimation is 

modelled based on the current parameters, results are then compared to the measured data, 

improvements are made on the model parameters and the cycle repeats. Different 

hypothesised models can be specified and estimated, with the final estimated models 

statistically compared. Bayesian model selection (BMS) is then used to determine the 

hypothesis that best explains the measured BOLD signal. 
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While this type of classical DCM is typically used in functional or electrophysiological 

data, recent work has adapted the framework to permit the application of similar 

methodology to sMRI data. The approach enables linear and non-linear modelling of 

longitudinal change in multiple structural regions, offering a unique approach to quantify 

structural change (Ziegler et al. 2017). Mass univariate methods of quantifying neural change 

typically involve whole-brain analyses, which can identify linear change associated with 

different correlates. The model by Ziegler et al. (Ziegler et al. 2017) uses similar principles as in 

DCM and the bilinear model to study structural changes in a systems-based perspective. This 

approach avoids issues of multiple comparison corrections that arise from mass-univariate 

methods, but also enables the comparison of multiple hypothesised models of neuronal 

change via BMS. Briefly, the model uses a hierarchical system to perform first- (individual) 

level and second- (group) level modelling. Similarly to DCM for functional data, a bilinear 

model is used that specifies the temporal progression of states, in this case volume, over time 

(multiple scanning sessions). The states are influenced by within-region connections (atrophy) 

and between-region influences, that is, the effect that regions have upon each other. The 

examination of between-region connections should be hypothesis driven since the model is 

specified by the user, and thus a good empirical basis for this model is essential. The 

trajectories of the volumetric states are also influenced by external factors, which can include 

known influences, such as genetic factors that may be related to neural atrophy and can be 

included in the model. External factors can also include unknown influences, for example 

unknown hormonal influences that could impact on atrophy.  

First-level individual models can be applied and compared, for example a quadratic fit 

could be compared to a linear fit to determine which model might best explain the data. 

Following selection of a first-level model the model is applied to all data and then second-level 

models can be used to construct group-wise progression trajectories. The second-level model 

also incorporates covariates to account for individual differences in age, sex and other 

variables that are not of interest.  

This analysis can be used to study within-region trajectories of change and also the 

interactions between regions, and can tolerate variability within time points and some missing 

data. This thesis uses the approach to undertake structural dynamical modelling of atrophy in 

the cortex in HD. See Chapter 6 for detailed information on the implementation of the model 

in this thesis.  
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3. COMPARISON OF AUTOMATED GREY MATTER 

SEGMENTATION TOOLS 

Grey matter volume is a frequently used measure of brain morphology; it is typically 

reliable and able to discriminate between healthy controls and clinical groups (Schwarz et al. 

2016). It is most often measured using automated software tools that separate GM from other 

tissue types. Thus, high quality delineation (segmentation) of GM, WM and cerebrospinal fluid 

(CSF) is critical in achieving accuracy for volumetric analyses. Recent work has demonstrated 

that variability between volumetric tools can result in inconsistencies within the literature, 

driving false conclusions about neurological conditions (Katuwal et al. 2016). There are a 

number of automated tools that can be used for performing GM segmentation, with each tool 

having differing characteristics. Methodological comparisons of these tools have focused on 

either comparing the automated segmentation software within standard neuroimaging 

analysis packages including SPM, FSL and FreeSurfer or on the optimisation of a single 

application (Clarkson et al. 2011; Eggert et al. 2012; Fellhauer et al. 2015; Gronenschild et al. 

2012; Iscan et al. 2015; Katuwal et al. 2016; Kazemi & Noorizadeh 2014; Klauschen et al. 2009; 

McCarthy et al. 2015). In short, using these methods on phantom data has shown that both 

SPM8 and FSL FAST (version 4.1) are reliable and accurate, whereas FreeSurfer (version 4.5) 

appears to be highly reliable but not necessarily accurate for measuring GM volume (Eggert et 

al. 2012), whereas SPM 5 and FSL were recommended for GM sensitivity in phantom and 

control data (Klauschen et al. 2009). 

Typically, GM segmentation tools have been developed and optimised for use on 

healthy brains (Irimia et al. 2012), and therefore may not show the same level of accuracy and 

reliability when used in clinical cohorts. Given the challenges associated with performing MRI 

scans in clinical groups, such as the effects of movement, the scans from a clinical research 

study may be of lower quality due to increased movement and reduced tissue contrast (Kong 

et al. 2012). Klauschen et al. (2009), for example, found that GM volume is often 

underestimated in poor quality images with poor contrast and noise, and overestimated in 

good quality images, indicating possible bias towards reduced GM in patient populations. 

Furthermore, greater anatomical variability is likely due to pathology in clinical cohorts leading 

to poor segmentation performance, particularly if software was not designed to cope with 

pathological abnormalities (Irimia et al. 2012). These key factors are thought to lead to 

inconsistent findings within clinical neuroimaging studies (Ashburner et al. 2016; Katuwal et al. 

2016).  
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There is evidence that some GM segmentation tools are sensitive to volumetric 

change in clinical populations, despite their validation in non-clinical populations. SPM8, 

SPM12, FSL 4.1.9, FreeSurfer 5.1.0 are all sensitive to disease-related change in Alzheimer’s 

disease (Fellhauer et al. 2015). SPM shows the best results for scans with increasing noise 

(Fellhauer et al. 2015), but performs with greater accuracy for CGM than subcortical GM as 

shown in Multiple Sclerosis patients (Derakhshan et al. 2010). However, SPM, FSL and 

FreeSurfer have all shown significant bias in GM measurements when comparing participants 

with Autism Spectrum Disorder to control participants, indicating that group differences may 

be due to segmentation related effects rather than true differences (Katuwal et al., 2016); and 

SPM has been demonstrated to overestimate group differences in healthy elderly participants 

with atypical anatomy, although this was in a VBM study (Callaert et al. 2014). Although these 

studies provide some explanation for the difficulty experienced with replication in sMRI 

studies, especially in clinical participants, these tools are regularly applied to patient cohorts 

without optimisation for unique brain pathology. 

In the following project a number of software tools used to process GM volume were 

examined to find the most reliable and sensitive means of detecting CGM change in HD 

participants from the TRACK-HD cohort. Initially, the methods were validated on the BrainWeb 

dataset, a set of 20 phantom scans with corresponding ‘ground truth’ segmentations (Aubert-

Broche et al. 2006). Following this, 100 TRACK-HD participants were processed to examine 

performance of the tools in both controls, pre-HD and manifest HD gene carriers. In the 

baseline 2008 TRACK-HD visit, all 100 participants had back-to-back MRI scans collected in the 

same scanning session. These back-to-back scans were used to determine the reliability of all 

tools. The 2011 follow-up scans allowed a comparison of sensitivity to change in the 

segmentation tools. Both qualitative and quantitative analyses were conducted to ensure that 

all aspects of performance were examined.  Following the analysis, a number of methods have 

been selected to apply to the clinical cohort in subsequent chapters of this research. 

3.1. Aims 

This project aimed to investigate the most accurate, reliable and sensitive methods of 

measuring cross-sectional CGM volume and longitudinal CGM volume change in HD. There was 

a focus on comparing methods that can be applied by a novice user rather than someone with 

advanced technical skills. It was deemed important that the results represent common clinical 

users of neuroimaging software in order to be replicable to the wider community, rather than 

users who can create their own software or perform detailed optimisation of the available 

software. In this way, the study aims to encourage use of more consistent methods within the 
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field and thus allow for better reproducibility of neuroimaging findings, whilst still being 

appropriate for further projects in this thesis. Total, cortical and lobular grey matter metrics 

were examined. 

3.2. Methods 

3.2.1. Segmentation techniques considered 

A number of methods are available for delineating (segmenting) GM volume and many 

of these were considered for inclusion in the study with a final selection made after initial 

review. 

3.2.1.1.  Manual delineation via MIDAS  

Manual delineation of CGM was initially proposed for comparison. It would be 

performed using MIDAS, previously described in Chapter 2 (Freeborough et al. 1997). While 

semi-automated whole-brain segmentation is often considered a ‘gold standard’ of volumetric 

segmentation, there is currently no validated technique for measuring only the CGM via 

MIDAS. Some initial testing was performed to ascertain the feasibility of developing a manual 

measure. Previously segmented whole-brain regions, which already have the surface between 

the CSF and GM delineated, were loaded. Thresholds, based on mean brain intensity, were 

applied to these regions to try to exclude WM. It was possible to achieve a GM region via this 

method, however different scanner types resulted in different contrast between the GM and 

WM and thresholds did not perform consistently for all brains. In addition, this technique was 

labour intensive with each slice requiring checking and manual editing due to the convolutions 

of the cortex, particularly where there was poor grey/white matter contrast. Due to the 

considerable time investment required for development, validation and application of a 

reliable technique using MIDAS, it was ruled out for inclusion in this study. In addition, since 

MIDAS is not currently a widely available software any measure developed would not be easily 

reproducible for other research groups. Manual GM measures were excluded from the analysis 

from this point onwards. 

3.2.1.2. FAST (FSL)  

As mentioned in Chapter 2, FSLs FAST segmentation procedure is a frequently used 

software tool (Zhang et al. 2001). FSL is freely available, commonly used in neuroimaging 

research and easy to implement. 
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3.2.1.3. SPM  

SPM is freely available, although it does require Matlab (which is not freely available) 

in order to run. It is widely used within neuroimaging research and has been used in a number 

of HD studies previously (Tabrizi et al. 2009; Hobbs, Henley, et al. 2010; Tabrizi et al. 2011) 

3.2.1.4. BRAINS 

While BRAINS has been used in some previous HD studies, particularly to quantify 

subcortical volume of the caudate and putamen, (Nopoulos et al. 2011; Paulsen et al. 2006), 

and was used in the TRACK-HD and TrackOn studies to measure volume of the putamen 

(Tabrizi et al. 2009; Tabrizi et al. 2011; Tabrizi et al. 2012; Tabrizi et al. 2013), it is not widely 

used, is not easy to use, and is somewhat out-dated. Discussion with the software developer 

responsible for implementing BRAINS in the TRACK-HD study prompted the decision to exclude 

it from the current study, after the suggestion that it has been surpassed by software that is 

more capable of accurately measuring GM volume. 

3.2.1.5. FreeSurfer   

FreeSurfer is commonly used, and has been applied within HD research a number of 

times, although most analyses are used to perform CT analysis. There are standard pipelines 

available, and FreeSurfer is easy to implement and freely available.    

3.2.1.6. ANTs 

Although ANTs is a more recently developed tool and has not been used in HD studies 

previously, it is freely available and becoming more widely cited in neuroimaging literature. It 

has variable options for processing datasets, with some fully automated streams available. 

ANTs pipelines are freely available and online support is provided.  

3.2.1.7. MALP-EM 

MALP-EM is another more recently developed tool that provides a fully automated 

segmentation, and has been demonstrated as able to cope with severe brain pathologies 

(Ledig et al. 2015). It has not been used in HD research to date, but it is freely available and has 

a recommended pipeline.  
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3.2.1.8. Final Measures 

The final methods for this analysis were selected based on ease of access, frequency of 

use within the literature and usability of the software. The final measures selected for the GM 

volumetric methodology comparison were: FSL FAST using FSL version 5.0.9, SPM version 8 

Unified Segment, SPM version 8 New Segment, SPM version 12 Segment, FreeSurfer version 

5.3.0, ANTs version 2.1.0 (final application compiled on 13-October-2015), and MALP-EM 

version 1.2.  

3.2.2. Cohorts 

3.2.2.1.  BrainWeb 

The BrainWeb cohort was used for an initial analysis. The cohort is described in section 

2.1.1. 

3.2.2.2. TRACK-HD  

Following on from the BrainWeb data analysis, the tools were applied to a subset of 

the TRACK-HD cohort in order to study the performance of these segmentation measures on 

atypical brains. The TRACK-HD cohort is described in section 2.1.2. Back-to-back scans from the 

baseline of TRACK-HD were used to examine the consistency of these tools. As there is no GT, 

importance was placed on visual checking of the output of all processing pipelines to examine 

accuracy.  The same participants were also examined at their 2011 time point to assess 

longitudinal change. 

100 participants from the TRACK-HD 2008 time point were selected for this study. 

Twenty controls, 20 pre-A, 20 pre-B, 20 HD1 and 20 HD2 participants were used. The 

participants were initially considered for inclusion based on whether they had back-to-back 

scans at baseline of TRACK-HD and follow up scans at the 2011 time point. Following this 

criteria, participants were randomly selected whilst trying to maintain an approximate age 

matching between the groups. Controls were examined first, followed by HD gene carriers to 

highlight potential issues that may occur when applying standard segmentation tools to 

patients. 

3.2.3. Segmentation, quality control and volume calculation  

Segmentations for FSL, FreeSurfer, ANTs and MALP-EM were run on a computer 

cluster (Legion@UCL). All SPM segmentation methods the segmentations were run on a Dell 
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Precision Power 7810 desktop computer. Following any manipulation of the images, scans 

were visually examined for quality. For this study, a processing step was categorised as a ‘fail’ 

if there was gross failure in performing the extraction or segmentation (Figure 3.1), rather than 

for more minor errors. Gross failures at any stage were initially checked to rule out user error. 

Processing changes were made to rectify software-based gross errors in two cases. Firstly, 

delineation of the GM performed by SPM8 Unified Segment may fail if the orientation of the 

brain deviates noticeably from the standard SPM templates (Figure 3.1). In a few cases 

adjustments were performed to shift the brain within the field of view to achieve a better 

match with standard space. Secondly, prior to segmentation using FSL, the Brain Extraction 

Tool (BET; Smith 2002) was run on all data. Using standard parameters BET failed to extract 

brains satisfactorily on the TRACK-HD cohort (Figure 3.1) and optimised BET parameters were 

substituted (see section 3.4.2). In addition to a small number of gross errors, all tools showed 

minor errors in segmentation, as discussed in the results (also shown in Figure 3.4). No manual 

intervention was made in the case of errors in segmentation because this would introduce 

increased subjectivity to the comparison. Recommendations for manual intervention are 

provided in the discussion.  

 

 

Figure 3.1. (A) An example of a gross failure on a TRACK-HD scan when using SPM8 Unified 
Segment. (B) An example of a gross failure on a TRACK-HD scan when using FSL BET brain 
extraction and FAST segmentation procedures.  

 

Partial volume estimates (PVE) were used for all tools except FreeSurfer, which instead 

of outputting either partial volume or discrete tissue maps outputs text files with regional 

volumes listed. These are calculated to account for PVE. Due to this, FreeSurfer volumes were 

calculated differently to other techniques in this analysis (see section 3.2.3.3 for details). 

Whilst probabilistic segmentation maps were used throughout this analysis as they should 

more accurately represent brain volume (Tohka 2014) for the first part of the analysis 

examining total GM volume in BrainWeb data two analyses were run in parallel. The first 

analysis was run on the discrete volumes and the second on partial volume segmentations. 
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This was done to allow for some understanding of how PVE and discrete volumes perform. 

Detailed information on the processing for each programme follows. 

3.2.3.1. SPM 

All versions of SPM were applied in native space and with default settings for both 

BrainWeb and TRACK-HD data. SPM only outputs partial volume maps, and so for the first 

BrainWeb analysis, all grey-matter segmentations were binarised at a threshold of 0.5 via 

FSLmaths in order to only include voxels that were classed as a majority grey-matter. For the 

remaining analyses the partial volume GM maps were used. 

3.2.3.2. FSL 

Prior to FAST being run, the Brain Extraction Tool (BET) was run on all data. For the 

BrainWeb data this was done with default settings in native space, but as previously 

mentioned optimised parameters were used for TRACK-HD data. The commands were: 

1. London and Paris participants: 
bet <input> <output> -f 0.65 -R -c 104 128 128 

2. Leiden participants: 
bet <input> <output>  -f 0.3 -R -c 82 120 120 

3. Vancouver participants:  
bet <input> <output> -f 0.3 -R -c 82 112 112 

Following BET, FAST was run with default settings in native space. FAST outputs both 

partial volume tissue classes and discrete tissue classes for each image. For the first BrainWeb 

analysis the discrete GM was used, for all subsequent analyses partial volume maps were used. 

3.2.3.3. FreeSurfer  

FreeSurfer was run via the default recon-all pipeline, with a flag that specifies that the 

scans were collected on a 3T scanner. The surface-based stream is mainly used for measuring 

CT and the volume-based stream is mainly used for calculating volume. Volumetric maps 

displaying PVE results are not output, meaning that a user cannot simply output the volume of 

a map. However, the FreeSurfer pipeline includes the automatic calculation of the volume of 

different regions. It combines the CT and volumetric results during processing and outputs a 

text file for each participant containing volumetric results. For example, CGM volume is output 

by FreeSurfer, but it is not calculated by simply measuring the size of the volumetric 

segmentation, instead it is calculated via a combination of volumetric and surface-based 

factors (https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats).  

https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats
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This means that it is difficult to replicate the volumes output from the FreeSurfer 

pipeline via manual extraction from the segmentations, and it is impossible to view the 

segmentations that contain the exact volume output within the volumetric text files. Based on 

the recommendations of FreeSurfer developers, the automatically optimised volumes were 

extracted for each participant and used in the current analysis 

(https://surfer.nmr.mgh.harvard.edu/fswiki/MorphometryStats). See section 3.2.4 for more 

detail. 

3.2.3.4. ANTs  

ANTs requires a template and priors to calculate volumes and thickness. The 

recommended default pipeline was followed and study-specific templates and priors were 

created for both datasets in this study (Avants, Tustison, Wu, et al. 2011). 

3.2.3.4.1. ANTs BrainWeb processing 

First, a template was created using all 20 BrainWeb scans. This was done using the 

command antsMultivariateTemplateConstruction.sh, which is included with ANTs. All settings 

were default, except that the options to allow for parallel computation were enabled. 

Following this, study-specific priors were created from the template. This was done via running 

the command antsCorticalThickness.sh on the template, using a downloaded template and 

priors as the required input for the brain mask and priors. The resulting tissue segmentations 

output from this command were then smoothed, and the CSF segmentation was subtracted 

from the other 5 segmentations, as recommended by the developers of ANTs (Tustison et al. 

2014). The study-specific template, extracted template brain and the corresponding priors 

could then be used to segment the 20 BrainWeb scans.  

ANTs has a segmentation pipeline, Atropos, which can be run in isolation but is also 

integrated into the CT pipeline along with brain extraction. After preliminary testing it was 

decided that the CT pipeline would be used for the BrainWeb data as segmentation was not 

successful using the Atropos pipeline on BrainWeb data. When using the Atropos pipeline, 

ANTs was unable to accurately distinguish between GM and WM on the BrainWeb scans and 

resulted in the failure of processing. Instead, the CT pipeline was run with default settings and 

the template-specific brain mask and priors were included. From the CT pipeline both partial 

volume tissue classes and regions with each voxel classified as a discrete tissue class are 

output. For the first analysis the discrete GM was used. For the second analysis, partial volume 

was used. 
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3.2.3.4.2. ANTs TRACK-HD processing 

For the TRACK-HD processing, a template was created for both of the back-to-back 

datasets from baseline, and an additional template was created for the final time point using 

the same participants. The templates and priors were created as described above using a 

subset of 25 TRACK-HD scans, 5 from each group following the process recommended in 

(Tustison et al. 2014). Following template creation, ANTs brain extraction was run on each 

participant using the brain mask from the study-specific template and study-specific priors. 

Atropos was run on the TRACK-HD data as it was easy to run and segmented the regions 

successfully. To run Atropos the extracted brain mask for each participant was used with the 

study-specific priors. 

3.2.3.5. MALP-EM  

MALP-EM was run using the default settings on both datasets. MALP-EM outputs both 

discrete and partial volume maps. 

3.2.4. Mask selection and registration  

A number of the selected segmentation software output combined cortical and 

subcortical GM segmentations, and it was decided that for the CGM and lobular volumes 

masks would be overlaid on total GM for each segmentation to output regional volumes rather 

than using each tools’ own regions. While possibly reducing the performance of some tools 

slightly by using a mask not optimised to that technique, consistency between techniques was 

ensured this way. One mask for each region was registered to each participant’s native space 

scan and used for all segmentation outputs.   

Time was spent selecting both the best registration tools and the best cortical and 

lobular GM masks to use. The CGM mask had to incorporate total CGM and exclude subcortical 

GM and cerebellar GM. In addition, the mask needed to be loose enough to capture any 

regions in the dura or WM that were incorrectly classified as CGM, as often happens in these 

segmentation techniques. Initially, the Harvard Oxford cortical mask was applied (Desikan et 

al. 2006). This was extracted in MNI space and registered via FLIRT and FNIRT to native space. 

The cortical coverage was good and it provided a balance between too loose and too tight. 

However, the mask included a lot of cerebellar GM. A cerebellum mask was then used to 

exclude cerebellar GM. Initially, the MNI cerebellar mask was used. After registration this mask 

was too loose, and overlapped the occipital CGM. Instead, a binary mask of the Buckner tight 

cerebellar segmentation was used (Buckner et al. 2011). This was downloaded in FreeSurfer-
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conformed space, and registered to MNI before being registered to native space for FSL and 

SPM outputs. It overlaid the cerebellum reasonably well, although in posterior regions it 

missed some sections of the cerebellum.  

It was noted that during registration, the masks were undergoing warping around the 

exterior surfaces and so following selection of the most appropriate cortical mask and 

cerebellar exclusion mask, a different registration tool was tested. The ants command, 

antsRegistrationSyNQuick.sh was used with default settings to convert the standard MNI 1mm 

brain from MNI space to native space for each participant. The resulting warp was then 

applied to the Harvard Oxford cortical mask and the cerebellar mask, with much greater 

alignment seen than when using FLIRT and FNIRT. This registration was also faster to perform 

and apply. An example of the CGM mask is shown in Figure 3.2. 

 

 

Figure 3.2. The CGM mask for BrainWeb scan 04, overlaid on the native T1 image shown in (A) 
coronal, (B) axial and (C) sagittal views. 

 

After the initial analysis, it was also decided that a lobular analysis would be 

performed to provide additional information on the performance of these tools. However, the 

Harvard Oxford cortical mask does not provide lobular regions. Due to this, it was decided that 

the MNI GM template included with the FSL package would be applied to output lobular 

volumes (Mazziotta et al. 2001). This mask was registered to the output images in the same 

manner as the MNI mask and the frontal, temporal, parietal, occipital and insular regions were 

extracted. An example of the lobular masks is shown in Figure 3.3. 

The only exception to this was FreeSurfer, as mentioned previously, where total GM 

and CGM volumes were extracted from an automatically created text file. The volumes used in 

this study were taken from the aseg.stats file created for each participant. The volumes were 

treated as partial volumes, as it is stated on the FreeSurfer website that the aseg.stats file does 

control for PVE (https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/QuestionAnswers).   
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However, the lobular volumes were calculated differently for the BrainWeb and 

TRACK-HD datasets. FreeSurfer provides additional steps to output lobular volumes, using pre-

defined regions of interest. For the BrainWeb study, the default FreeSurfer lobular values were 

extracted. Based on the results of this analysis, it was decided that for the TRACK-HD analysis 

the lobular masks used to calculate lobular volume for all other techniques should be used 

(see section 3.2.4). To do this, the lobular masks for each participant were transformed from 

native space into each subject’s FreeSurfer analysis space 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsAnat-to-NativeAnat) and used to extract 

volumes. As FreeSurfer regions have undergone significant optimisation during development, 

we would expect that FreeSurfer may have an advantage over the other tools and this should 

be considered when exploring the results. 

 

 

Figure 3.3. The lobular masks for BrainWeb scan 04, overlaid on the native T1 image shown in 
(A) coronal, (B) axial and (C) sagittal views. 
 

3.2.5. Analysis 

A qualitative examination of the data was performed prior to the quantitative analysis. 

There are various features of these segmentations that can only be understood by examining 

the volumetric maps. For example, minor but consistent over- or underestimation of GM 

within automatically- identified anatomical regions may not be detected by quantitative 

methods, but can be easily recognised by a neuroanatomical expert during visual examination. 

All scans were examined blinded to group and all errors were noted. From this, trends within 

each tool were detected. Over- and under-segmentation refers to regions whereby the 

boundary of the segmented region differed from the visible boundary on the T1. All 

segmentation tools also showed minor errors as discussed in the results section.  

 

 

https://surfer.nmr.mgh.harvard.edu/fswiki/FsAnat-to-NativeAnat
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3.2.5.1. BrainWeb 

Initially, summary statistics and plots were output to get an overview of the data.  

Paired t-tests were also conducted to determine whether differences between the GT and 

segmentation procedures were statistically significant. Scatterplots were produced for a 

visualisation of the relationship between the volume of the GT and each segmentation 

procedure. Following this, Bland Altman plots were output along with Pitman's Test of 

difference in variance to test the agreement between the ground-truth and each segmentation 

method. Overlap scores (dice coefficient) were also calculated on a voxel-wise basis as 

discussed in Crum, Camara and Hill (2006). These were calculated for both discrete GM 

volumes and partial volume maps, but were not calculated for FreeSurfer as voxel-wise maps 

are not available for the FreeSurfer data.  

3.2.5.2. TRACK-HD 

Total and CGM volumes were examined in all analyses, and a subset of analyses also 

examined lobular GM volume. First, summary statistics, including means, ranges and standard 

deviations for demographic information were calculated and between-group differences 

derived. Total, cortical and lobular GM mean volumes were calculated for both baseline and 

the follow-up scan for each participant. Additionally, reliability was tested for the back-to-back 

baseline scans using intraclass correlation (ICC; Bartko 1966). Mean repeatability for back-to-

back scans was also calculated as percent variability error, as shown in Function 1 in section 

2.4.1 (Jovicich et al. 2013; Tustison et al. 2014). Spearman’s Rho was also used to test the 

correlation between each set of volumes extracted using each segmentation tool. 

To measure the longitudinal sensitivity of each segmentation tool the control group 

was compared to all HD groups. Follow-up volume of total GM, CGM and lobular volumes were 

expressed as a percentage of baseline volumes and regression analyses were performed to 

determine whether there were significant differences in the rate of change between controls 

and each HD group. All results were adjusted for age, sex and site. 

3.3. Results 

3.3.1. Qualitative Results 

The output for each BrainWeb and TRACK-HD dataset and each tool were visually 

inspected. Notes were taken for every segmentation examined, and common themes were 

noted for the different segmentations. This examination was focused on CGM, with subcortical 
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structures not examined in detail. Table 3.1 provides a description of the performance of each 

tool on both datasets, and Figure 3.4 contains examples. 

3.3.2. BrainWeb Quantitative Results 

3.3.2.1. Whole-brain results  

Table 3.2 shows summary statistics for discrete and PVE total GM volumes, results of 

paired t-tests and summary statistics for the dice score. All techniques significantly 

underestimated grey matter compared to the GT in discrete segmentations (Figure 3.5 A); 

however the dice overlap values were still high for all techniques, ranging from .890 for ANTs 

to .920 for FAST.  

Figure 3.6 shows the relationship between the discrete GT volumes and discrete 

volumes output by each segmentation technique, indicating good correspondence for all 

techniques. In the discrete volumes, bias was detected via Pitman’s test of variance in all 

techniques excluding SPM8 Unified Segment (Figure 3.7). This indicates that the software had 

a tendency to underestimate GM volume compared to the GT in small brains, and 

overestimate it in larger brains. 

For PVE volumes, all versions of SPM, FAST and FreeSurfer significantly 

underestimated GM volume whereas ANTs and MALP-EM overestimated GM volume (Figure 

3.5 B). The overestimation for ANTs was significant but not for MALP-EM. Again overlap values 

were high, this time ranging from .882 for FAST to .904 (SPM8 New Segment).  
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Figure 3.8Figure 3.8 shows the relationship between the discrete GT volumes and 

discrete volumes output by each segmentation technique. There was again bias in all 

techniques for the PVE volumes (Figure 3.9). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 3.1. A description of the performance of each tool, with most common issues outlined. 
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Segmentation BrainWeb Performance Track-HD Performance 

Ground Truth  In a number of cases dura and skull 
was included in the volumes.  

 The GT volumes are somewhat 
inaccurate, and may over-estimate the 
actual GM volume in some cases. 

-- 

SPM8 Unified 

Segment 

 SPM8 Unified segment performed well 
on the BrainWeb scans 

 Tight around the GM/CSF lateral 
boundaries 

 Some WM voxels classed as GM 

 Good delineation of the sulci 

 Poor temporal delineation very common. 

 Occipital spillage and underestimation of 
frontal lobes in a number of scans.  

 6/400 scans segmented excluded from 
analysis due to gross failure (1 for 2008 
A, 2 for 2008 B non-registered, 2 for 2008 
B registered, 1 for 2011). 

SPM8 New 

Segment 

 Large number of voxels located within 
the skull and dura consistently classed 
as GM, could erroneously inflate the 
value total volume 

 

 Poor temporal delineation very common 

 Occipital spillage in a number of scans 

 Classified voxels in the skull and dura as 
GM in almost all segmentations  

 No scans failed segmentation  

ANTs Atropos  GM segmentations accurate overall, 
with good delineation of the sulci 

 Some overestimation of GM on 
WM/CSF boundary 

 Variable performance 

 Brain extraction determined 
segmentation quality; e.g. large brain 
mask meant dura included in the 
segmentation 

 Frequent overestimation of occipital GM 
and poorly delineated temporal lobes 

 No segmentation fails 

MALP-EM 

 

 Performed well overall, some GM cut-
off in a small number of scans due to 
tight brain mask 

 

 Fewer issues with overestimation of the 
occipital lobe  

 Generally better temporal lobe 
delineation  

 CGM underestimated in superior regions 
in a small number of cases 

 No segmentation fails 

FSL FAST 

 

 Performed well overall, clean 
boundaries although some 
segmentations classified skull as GM 

 Standard BET provided poor brain 
extractions on Track-HD data and was re-
run with an optimised BET procedure, 
although results of the optimised BET 
were still sub-optimal 

 Often underestimated GM volume, with 
occasional overestimation due to poor 
brain extraction 

 As a result, difficult to characterise GM 
segmentation 

 Two scans were rated as a complete fail 

FreeSurfer  Performed very poorly overall, large 
regions of the frontal, temporal and 
occipital lobes were regularly 
underestimated and missing from the 
segmentation.  

 GM tended to be very tight along CSF 
boundary, with a layer of voxels on the 
GM/CSF boundary typically excluded 
from the volume based segmentation  

 Within FreeSurfer volume is calculated 
via a combination of the volume and 
surface- based segmentations and so 
some of these excluded voxels would be 
included in the calculation if they are 
within the cortical surface 

 Spillage into the temporal CSF and 
occipital dura regularly seen with some 
cases classifying skull as GM 
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Figure 3.4. Examples of the GM output from each tool overlaid on one participant from the 
TRACK-HD study. The figure shows three coronal views, with Figure (A) showing the same 
slices with no segmentation. The first slice shows the frontal and temporal regions, the second 
slice is towards the middle of the brain, and the last slice shows the occipital lobe. All figures 
show default probabilistic segmentation maps for each software except for FreeSurfer, which 
shows volumetric and surface based regions. For the probabilistic segmentation maps, the 
brighter the yellow within a voxel, the more likely that the voxel contains GM. 
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Table 3.2. Discrete and PVE total GM volumes for the Ground Truth and all segmentation 
techniques, paired t-tests showing significant differences between the total GM Ground Truth 
volume and all segmentation techniques, for discrete and PVE volumes and summary statistics 
for the overlap metrics between Ground Truth and all techniques for both discrete and PVE 
volumes. 
 Discrete Volumes 

(ml) 
Mean 

(st Dev) 
Min-Max 

Discrete 
Volumes  

Paired t-tests 
 

Discrete 
Volumes Overlap 

Mean 
(st Dev) 

Min-Max 

PVE Volumes  
Mean 

(st Dev) 
Min-Max 

PVE Volumes  
Paired t-tests 

 

PVE Volumes 
Overlap 
Mean 

(st Dev) 
Min-Max 

Ground 
Truth 

1123.26 
(50.58) 

1028.46-1249.82 
-  

968.54 
(54.93) 

875.71-1093.04 
-  

SPM8 
Unified 
Segment 

950.54 
(42.65) 

864.73-1030.22 

-172.713 
t = -30.66 (19) 

p = .0000 

0.904 
(0.014) 

0.867-0.926 

947.90 
(42.06) 

861.36-1023.02 

-20.64 
t = -3.21 (19) 

p = .0046 

0.903 
(0.010) 

0.880-0.914 

SPM8 New 
Segment 

954.04 
(31.84) 

887.93-1016.01 

-169.22 
t = -29.87 (19) 

p = .0000 

0.902 
(0.010) 

0.873-0.920 

950.53 
(28.10) 

889.18-1007.49 

-18.01 
t = -2.36 (19) 

p = .0292 

0.904 
(0.007) 

0.888-0.914 
 

SPM12 
Segment 

945.52 
(38.18) 

863.20-1020.92 

-177.73 
t = -35.35 (19) 

p = .0000 

0.896 
(0.013) 

0.861-0.919 

941.67 
(37.81) 

857.29-1012.36 

-26.88 
t = -4.38 (19) 

p = .0003 

0.900 
(0.008) 

0.885-0.910 
 

ANTs 
1031.50 
(34.82) 

949.57-1096.22 

-91.75 
t = -16.39 (19) 

p = .0000 

0.890 
(0.016) 

0.855-0.919 

1041.76 
(31.21) 

967.25-1091.67 

73.22 
t = 8.94 (19) 

p = . 0000 

0.898 
(0.008) 

0.884-0.913 
 

MALP-EM  
949.32 
(368) 

862.65-995.46 

-173.94 
t =  -25.42 (19) 

p = .0000 

0.891 
(0.011) 

0.864-0.912 

984.84 
(36.45) 

893.97-1038.23 

16.29 
t = 1.87 (19) 

p = .0777 

0.886 
(0.010) 

0.859-0.899 
 

FAST 
906.10 
(41.99) 

832.49-1002.41 

-217.15 
t = -56.59 (19) 

p = .0000 

0.920  
(0.012)  

0.889-0.940 

957.07 
(47.80) 

876.51-1057.84 

-11.47 
t = -3.72 (19) 

p = .0015 

0.882 
(0.008) 

0.867-0.897 

FreeSurfer - - - 
919.91 
(40.77) 

851.88-1014.43 

-48.63 
t = -9.64 (19) 

p = .0000 
- 

 
 
 

 
Figure 3.5. (A) Boxplots showing total GM discrete volume for BrainWeb Ground Truth vs. 
segmentation methods (B) Boxplots showing partial volumes estimates for total GM volume 
for BrainWeb Ground Truth vs. segmentation methods. 

 



 

99 

 
Figure 3.6. Scatterplots showing the relationship between Ground Truth total discrete GM 
volume and discrete total GM volume for all segmentation techniques. Associated t-statistics 
and p values are shown for the results of paired t-tests comparing ground truth values and 
segmented values. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t = -30.66,  
p = .0000 

t = -29.87,  
p = .0000 

t = -35.35,  
p = .0000 

t = -16.39,  
p = .0000 

t = -25.42,  
p = .0000 

t = -56.59,  
p = .0000 
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SPM8 Unified Segment 
r =  0.325, n = 20, p = 0.161 
 

 
SPM8 New Segment 
r =  0.756, n = 20, p = 0.000 

 
SPM12 Segment 
r =  0.564, n = 20, p = 0.010 
 

 
ANTs 
r =  0.646, n = 20, p = 0.002 

 
MALP-EM 
r =  0.546, n = 20, p = 0.013 

 
FAST 
r =  0.507, n = 20, p = 0.023 

 
Figure 3.7. Bland Altman plots and Pitman's test of variance for the relationship between 
Ground Truth total discrete GM volume and discrete total GM volume for all segmentation 
techniques. 
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Figure 3.8. Scatterplots showing the relationship between Ground Truth total PVE GM volumes 
and PVE total GM volume for all segmentation techniques. Associated t-statistics and p values 
are shown for the results of paired t-tests comparing ground truth values and segmented 
values. 
 
 
 
 
 
 
 
 
 
 
 

 

t = -3.21,  
p = .0046 

t = -2.36,  
p = .0292 

t = -4.38,  
p = .0003 

t = 8.94,  
p = .0000 

t =1.87,  
p = .0777 

t = -3.72,  
p = .0015 

t =-9.64,  
p = .0000 
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SPM8 Unified Segment 
r =  0.465, n = 20, p = 0.039 

 
SPM8 New Segment 
r =  0.812, n = 20, p = 0.000 

 
SPM12 Segment 
r =  0.641, n = 20, p = 0.002 

 
ANTs 
r =  0.685, n = 20, p = 0.001 

 
MALP-EM 
r =  0.511, n = 20, p = 0.021 

 
FAST 
r =  0.520, n = 20, p = 0.019 

  
FreeSurfer 
r =  0.639, n = 20, p = 0.002 

 
Figure 3.9. Bland Altman plots and Pitman's test of variance for the relationship between 
Ground Truth total PVE GM volume and PVE total GM volume for all segmentation techniques. 
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3.3.2.2. Cortical GM Results 

All segmentation methods except ANTs underestimated CGM, as shown in Table 3.3 

and Figure 3.10. The difference between the GT mean volume and the mean volumes for each 

technique were significant for SPM8 Unified Segment, SPM12, ANTs and FAST at p <.05. Dice 

scores measuring the overlap between the GT and segmentations indicated that while all 

techniques showed substantial overlap with the GT, the lowest average overlap was seen in 

SPM8 New Segment (0.899), FAST had the largest overlap with total CGM (0.922). Scatterplots 

showing the relationship between the GT and each technique suggest that FAST also had the 

closest relationship with the GT (Figure 3.11). Furthermore, Pitman’s test of variance indicated 

bias in measuring CGM for all techniques excluding SPM8 Unified Segment (Figure 3.12). All 

techniques displaying bias in segmentation overestimated CGM in brains whereby the GT was 

large and underestimated CGM in brains whereby the GT was small.  

 

Table 3.3. Descriptive statistics for CGM volume in the BrainWeb dataset, paired t-test results 
showing significant differences between the cortical GT volume and all segmentation pipelines 
and dice scores for the overlap between each segmentation procedure and the GT for CGM. 

 Cortical Volumes (ml) 
Mean 

(st Dev) 
Min-Max 

Cortical Volumes  
Paired t-tests 

 

Cortical Volumes 
Overlap 
Mean 

(st Dev) 
Min-Max 

Ground Truth 
765.47 
(44.11) 

692.89-867.36 
- - 

SPM8 Unified 
Segment 

750.34 
(35.68) 

676.73-814.57 

-7.88 
t = -3.36 (19) 

p =.0033 

0.907 
(0.013) 

0.873-0.928 

SPM8 New 
Segment 

755.43 
(22.6) 

720.71-805.01 

-15.13 
t = -3.07 (19) 

p = .0063 

0.907 
(0.01) 

0.882-0.926 

SPM12 
Segment 

746.43 
(33.51) 

690.81-809.78 

-10.04 
t =  -1.67 (19) 

p = .1122 

0.899 
(0.012) 

0.868-0.922 

ANTs 
787.18 
(26.97) 

740.68-836.33 

-19.04 
t = -4.16  (19) 

p = .0005 

0.904  
(0.013) 

0.875-0.928 

MALP-EM 
761.64 
(29.58) 

701.22-809.94 

21.71 
t = 3.90 (19) 

p = .0010 

0.904 
(0.01) 

0.882-0.922 

FSL FAST 
757.59 
(39.13) 

685.55-841.65 

-3.83 
t = -0.58 (19) 

p = .5671 

0.922 
(0.011) 

0.895-0.942 

FreeSurfer 
699.32 
(34.07) 

639.91-779.9 

-66.15 
t = -18.53 (19) 

p = .0000 
- 
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Figure 3.10. Boxplots showing CGM volume for BrainWeb GT vs all segmentation methods 
 

 

 

 

Figure 3.11. Scatterplots showing the relationship between CGM PVE Ground Truth volumes 
and CGM PVE for all segmentation techniques. Associated t-statistics and p values are shown for 

the results of paired t-tests comparing ground truth values and segmented values. 
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A: SPM8 Unified Segment 
r =  0.395, n = 20, p = 0.085 

 
B: SPM8 New Segment 
r =  0.823, n = 20, p = 0.000 

 
C: SPM12 Segment 
r =  0.531, n = 20, p = 0.016 

 
D: ANTs 
r =  0.711, n = 20, p = 0.000 
 

 
E: MALP-EM 
r =  0.527, n = 20, p = 0.017 
 

 
F: FAST 
r =  0.477, n = 20, p = 0.033 
 

 
G: FreeSurfer 

       r =  0.637, n = 20, p = 0.003 
 
Figure 3.12. Bland-Altman plots showing the agreement between each measure and the 
Ground Truth for CGM. 
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3.3.2.3. Lobular GM Results 

Volumes, paired t-tests and overlap values are shown in Table 3.4. Mean volumes for 

the frontal lobe were all underestimated compared to the GT, except for the ANTs 

segmentation, which overestimated the volume. Frontal volume was significantly 

underestimated for all versions of SPM, FAST and FreeSurfer, and significantly overestimated 

for ANTs. The largest difference was between the GT and FreeSurfer. The overlap between GT 

and segmentations for the frontal lobe was highest for MALP-EM (.934).  

Temporal volumes were slightly overestimated by all segmentation techniques, and 

FreeSurfer greatly overestimated temporal volumes. This overestimation was significant for 

FreeSurfer, ANTs and FAST.  Again the overlap was highest for MALP-EM (dice score = .935), 

with other techniques also showing high overlap with the GT. 

Parietal volume was underestimated in all techniques except MALP-EM and ANTs, with 

significant underestimation in SPM8 Unified Segment, SPM12, FAST and FreeSurfer, and 

significant overestimation in ANTs. Overlap values ranged from 0.898 for SPM8 New Segment 

to .936 for MALP-EM. 

Occipital lobes were all underestimated compared to the GT, again with the exception 

of ANTs, which slightly overestimated the volumes. FreeSurfer, again, greatly underestimated 

occipital lobe volumes. The occipital lobe differences were significant for all techniques except 

SPM8 New Segment. MALP-EM showed the highest overlap with the GT. 

Insula lobe volumes were overestimated by all techniques, except FreeSurfer, with 

significant overestimation for SPM8 New Segment, ANTs, MALP-EM and FAST and significant 

underestimation for FreeSurfer. The overlap with GT was highest for MALP-EM, but again was 

high for all techniques. 
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Table 3.4. Descriptive statistics for GM lobes in the BrainWeb dataset, paired t-test results showing significant differences between the Ground Truth and all 
segmentation pipelines, and dice scores for the overlap between each segmentation tool and the Ground Truth. 

  Ground Truth 
SPM8 Unified 

Segment 
SPM8 New 
Segment 

SPM12 Segment ANTs MALP-EM FAST FreeSurfer 

Frontal 
Lobe 

Volume 
Mean (st Dev) Min-Max 

298.45 (20.68) 
264.21-351.21 

289.04 (17.08) 
257.27-322.37 

291.63 (13.26) 
270.77-321.49 

287.72 (16.06) 
259.19-320.78 

303.52 (14.26) 
278.54-330.62 

295.11 (15.25) 
263.34-321.68 

293.84 (18.43) 
262.78-335.59 

268.52 (14.02) 
249.97-302.92 

Paired t-tests - 
-9.41 

t = -5.06 (19) 
p = .0001 

-6.82 
t = -3.07 (19) 

p = .0063 

-10.73 
t = -6.01 (19) 

p = .0000 

5.07 
t = 2.29 (19) 

p = .0339 

-3.34 
t = -1.16 (19) 

p = .2613 

-4.61 
t = -4.98 (19) 

p = .0001 

-29.93 
t = -14.57 (19) 

p = 0.000 

Overlap  
Mean (st Dev) Min-Max 

- 
0.898 (0.020) 
0.852-0.921 

0.898 (0.015) 
0.874-0.924 

0.905 (0.020) 
0.858-0.941 

0.905 (0.015) 
0.876-0.931 

0.934 (0.012) 
0.907-0.955 

0.923 (0.012) 
0.895-0.942 

- 

Temporal 
Lobe 

Volume 
Mean (st Dev) Min-Max 

99.67 (8.68) 
84.49-116.62 

101.69 (8.43) 
87.28-123.55 

99.98 (7.42) 
89.14-122.10 

100.31 (8.74) 
84.57-124.10 

107.73 (7.02) 
95.29-126.47 

101.48 (7.49) 
89.02-119.99 

100.90 (9.08) 
85.06-123.82 

155.69 (7.73) 
144.45-169.69 

Paired t-tests - 
2.02 

t = 1.93 (19) 
p = .0689 

.30 
t = .28 (19) 
p = .7824 

.64 
t = .71 (19) 
p = .4868 

8.05 
t = 7.45 (19) 

p = . 0000 

1.81 
t = 1.66 (19) 

p = .1130 

1.23 
t = 2.23 (19) 

p = .0378 

56.02 
t = 27.74 (19) 

p = 0.000 

Overlap  
Mean (st Dev) Min-Max 

- 
0.898 (0.018) 
0.874-0.926 

0.897 (0.019) 
0.844-0.930 

0.906 (0.020) 
0.859-0.936 

0.906 (0.013) 
0.886-0.936 

0.935 (0.011) 
0.912-0.955 

0.923 (0.012) 
0.901-0.948 

- 

Parietal 
Lobe 

Volume 
Mean (st Dev) Min-Max 

172.18 (13.34) 
150.52-203.15 

167.93 (10.97) 
145.56-192.22 

170.11 (8.67) 
154.69-187.40 

166.90 (10.23) 
149.67-188.27 

176.82 (8.70) 
163.33-195.05 

175.35 (9.28) 
157.81-194.78 

169.39 (12.03) 
147.63-196.49 

161.66 (11.93) 
143.81-187.48 

Paired t-tests  
-4.25 

t = -3.26 (19) 
p = .0041 

-2.07 
t = -1.28 (19) 

p = .2175 

-5.28 
t = -4.26 (19) 

p = .0004 

4.64 
t = 3.03 (19) 

p = . 0070 

3.17 
t = 1.98 (19) 

p = .0627 

-2.79 
t = -4.48 (19) 

p = .0003 

-10.51 
t = -9.97 (19) 

p = .0000 

Overlap  
Mean (st Dev) Min-Max 

 
0.900 (0.017) 
0.869-0.935 

0.898 (0.021) 
0.843-0.935 

0.907 (0.021) 
0.851-0.952 

0.907 (0.015) 
0.871-0.942 

0.936 (0.013) 
0.900-0.964 

0.924 (0.011) 
0.892-0.946 

- 

Occipital 
Lobe 

Volume 
Mean (st Dev) Min-Max 

175.25 (9.52) 
154.19-193.17 

172.25 (8.27) 
156.88-190.23 

174.78 (7.38) 
157.46-186.79 

171.93 (8.10) 
155.88-188.12 

178.15 (7.95) 
162.44-192.53 

170.73 (7.44) 
154.06-183.17 

173.70 (8.42) 
156.19-190.75 

65.08 (5.60) 
55.59-74.11 

Paired t-tests  
-3.00 

t = -3.50 (19) 
p = .0024 

-.47 
t = -0.41 (19) 

p = .6828 

-3.32 
t = -4.22 (19) 

p = .0005 

2.90 
t = 3.24 (19) 

p = . 0043 

-4.52 
t = -3.85 (19) 

p = .0011 

-1.55 
t = -3.64 (19) 

p = .0017 

-110.17 
t = -54.95 (19) 

p = 0.000 

Overlap  
Mean (st Dev) Min-Max 

 
0.896 (0.024) 
0.841-0.929 

0.899 (0.019) 
0.855-0.927 

0.907 (0.020) 
0.877-0.942 

0.904 (0.015) 
0.881-0.928 

0.935 (0.009) 
0.916-0.953 

0.923 (0.014) 
0.897-0.956 

- 

Insula 

Volume 
Mean (st Dev) Min-Max 

21.27 (1.59) 
18.17-25.39 

21.29 (1.57) 
17.91-25.13 

21.60 (1.53) 
18.28-25.06 

21.30 (1.49) 
18.02-25.11 

22.12 (1.53) 
18.90-25.80 

21.73 (1.57) 
18.37-25.24 

21.56 (1.59) 
18.34-25.70 

20.18 (1.09) 
17.99-22.17 

Paired t-tests  
.03 

t = 0.38 (19) 
p = .7166 

.33 
t = 3.15 (19) 

p = .0053 

.03 
t = 0.41 (19) 

p = .6830 

.85 
t = 9.62 (19) 

p = . 0000 

.47 
t = 4.47 (19) 

p = .0003 

.30 
t = 7.65 (19) 

p = .0000 

-1.09 
t = -3.42 (19) 

p = .0000 

Overlap  
Mean (st Dev) Min-Max 

 
0.896 (0.021) 
0.846-0.924 

0.898 (0.017) 
0.851-0.921 

0.906 (0.022) 
0.858-0.942 

0.906 (0.013) 
0.878-0.928 

0.932 (0.012) 
0.908-0.949 

0.923 (0.015) 
0.892-0.956 

- 
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3.3.3. TRACK-HD quantitative results 

Participant demographics are given in Table 3.5. Age for the two HD groups was 

slightly higher than for controls and the pre-HD groups, but this difference was not significant. 

CAG was significantly higher in PreHD-B, HD1 and HD2 than in PreHD-A, and significantly 

higher for HD1 and HD2 than for PreHD-B. As would be expected, DBS was also increased in 

the HD groups. DBS in PreHD-B, HD1 and HD2 were all significantly higher than PreHD-A, and 

burden in HD1 and HD2 was significantly higher than PreHD-B.  

 

Table 3.5. Demographics for the participants included in the TRACK-HD analysis. 

 Controls 
(N=20) 

PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

Age  48.32 (9.28) 
30.73-62.97 

48.48 (6.70) 
37.27-59.41 

47.74 (7.72) 
38.11-64.13 

49.10 (8.19) 
31.11-59.63 

50.14 (8.94) 
33.26-62.41 

Sex  Females N=13 Females N=10 Females N=12 Females N=9 Females N=8 

Education 4.05 (1.28) 2-6 4.30 (2.27) 2-6 4.1 (2.03) 2-5 4.2 (1.36) 2-6 3.55 (2.32) 2-6 

CAG N/A 41 (1.21) 39-43 42.35 (1.27) 40-
44 

43.35 (1.90) 40-
47 

43.75 (2.45) 
41-52 

DBS N/A 259.80 (29.50) 
171-290.75 

318.43 (23.99) 
267.6-356.03 

372.35 (52.05) 
264.75-472.91 

399.15 (70.31) 
287.31-548.74 

  

3.3.3.1.  Volumetric measures 

Volumes of the total, cortical and lobular GM were extracted for control participants 

and participants at different stages of HD. Total, CGM and lobular volumes are described for 

both baseline and follow-up time points for each segmentation tool (Table 3.6), and Figures 

3.13 and 3.14 show volumes for total and cortical GM. For all techniques, both total and CGM 

volumes were lower in participants with more advanced disease stage.  

For lobular volumes, all tools showed more discrepancies in raw volume (Table 3.6). 

For the frontal lobe all techniques estimated higher GM volume in PreHD-A participants than 

in controls, with some techniques also estimating higher GM volume in PreHD-B compared to 

controls. Frontal lobe volume was reduced in HD1 and HD2 groups compared to control and 

pre-HD groups. Temporal lobe volumes were also higher in PreHD-A than in controls for all 

segmentation tools, with both SPM12 and MALP-EM estimating higher temporal volume in all 

groups compared to controls. Other tools showed slightly lower volumes in PreHD-B, HD1 and 

HD2 than in controls. Parietal lobe volumes showed more uniform volume differences 

between each technique, with all techniques except for FreeSurfer measuring higher parietal 

lobe volumes in PreHD-A, PreHD-B and HD1 compared to controls, and lower volume in HD2 
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compared to controls. FreeSurfer showed lower volumes in all groups from PreHD-B when 

compared to controls. For the occipital lobe, the results were variable for each technique, with 

most techniques showing higher volumes in PreHD-A than in controls, and slightly reduced 

volume with increasing disease progression. Only FreeSurfer showed large reductions in 

volume between each group. Finally, insula volume was largest in PreHD-B for all techniques 

except FreeSurfer, with between-group differences appearing minimal for most tools.  

 

 

Figure 3.13. Box plots showing total grey matter volumes for all groups and all tools for 2008 
and 2011 time points. Boxes show the first quartile, median, and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 

 

 

 

Figure 3.14 Box plots showing cortical grey matter volumes for all groups and all tools for 2008 
and 2011 time points. Boxes show the first quartile, median, and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
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Table 3.6. GM Volumes for all regions, groups, techniques and time points.  

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Total GM 

SPM8 
Unified 

2008 Scan A 644.72 (77.40) 
517.51-784.50 

667.41 (64.63) 
582.46-818.97 

650.36 (72.40) 
535.75-800.05 

617.39 (60.66) 
527.10-802.07 

598.58 (48.13) 
540.66-766.59 

2008 Scan B 642.71 (75.91) 
529.61-789.18 

668.16 (69.54) 
582.38-832.93 

651.36 (69.07) 
556.09-804.35 

616.83 (62.97) 
522.50-818.28 

597.25 (48.72) 
533.81-770.85 

2011 642.88 (77.28) 
511.55-791.30 

653.41 (67.68) 
549.42-831.86 

637.43 (81.73) 
508.94-795.31 

583.76 (53.99) 
491.05-673.19 

577.33 (51.22) 
517.65-757.70 

SPM8 New 
Segment 

2008 Scan A 678.94 (71.25) 
580.01-852.75 

703.62 (66.95) 
594.52-805.85 

683.88 (63.96) 
591.00-864.42 

682.13 (57.10) 
611.38-834.77 

673.07 (47.86) 
598.17-798.72 

2008 Scan B 679.28 (72.29) 
580.84-859.30 

702.94 (67.23) 
592.78-810.64 

684.49 (64.82) 
591.12-870.01 

682.36 (57.61) 
610.99-835.37 

672.53 (47.82) 
597.21-797.95 

2011 675.48 (67.24) 
598.10-851.22 

692.85 (64.90) 
592.63-791.93 

675.12 (63.58) 
592.57-855.63 

669.83 (54.54) 
604.48-817.85 

653.26 (55.78) 
506.65-788.99 

SPM12 2008 Scan A 671.50 (72.43) 
542.23-831.21 

691.43 (60.49) 
602.55-811.37 

663.25 (57.93) 
579.39-817.00 

629.56 (72.22) 
556.09-857.89 

607.31 (58.86) 
523.90-801.68 

2008 Scan B 671.98 (72.57) 
548.55-832.24 

689.10 (58.37) 
599.37-806.38 

661.92 (55.87) 
577.99-820.37 

628.62 (71.94) 
548.74-854.13 

604.27 (60.21) 
522.27-801.91 

2011 665.82 (70.42) 
557.72-826.72 

680.32 (59.33) 
610.00-806.47 

645.14 (61.23) 
573.01-805.50 

601.98 (72.38) 
525.19-818.94 

578.07 (61.30) 
482.20-771.05 

ANTS 2008 Scan A 619.58 (58.45) 
519.03-760.16 

631.63 (54.56) 
549.13-746.23 

610.96 (58.83) 
512.86-776.31 

596.48 (64.76) 
519.36-764.84 

587.03 (53.28) 
498.50-745.08 

2008 Scan B 614.92 (61.17) 
510.65-764.75 

624.97 (55.05) 
540.81-740.83 

607.81 (57.48) 
515.70-774.35 

592.71 (62.51) 
504.09-764.36 

581.45 (57.93) 
473.80-745.80 

2011 611.35 (63.58) 
507.70-763.61 

620.91 (53.98) 
553.39-730.49 

601.04 (61.41) 
514.44-765.50 

578.62 (64.08) 
503.29-735.35 

568.61 (65.08) 
424.38-740.74 

MALP-EM 2008 Scan A 690.71 (69.12) 
587.04-871.31 

716.21 (62.02) 
612.20-825.52 

699.34 (69.17) 
621.59-910.91 

688.33 (59.38) 
606.16-874.72 

673.63 (52.88) 
585.90-824.78 

2008 Scan B 689.55 (69.06) 
589.57-868.85 

713.93 (61.38) 
606.27-821.37 

698.56 (69.70) 
619.76-904.05 

686.89 (58.58) 
609.34-873.16 

672.44 (54.60) 
579.62-824.89 

2011 687.95 (65.36) 
582.47-849.07 

706.87 (59.69) 
608.90-810.98 

689.91 (70.09) 
609.88-893.67 

671.31 (58.60) 
592.95-854.57 

658.50 (59.41) 
516.56-821.83 

FAST 2008 Scan A 585.23 (55.70) 
502.10-723.89 

594.94 (43.79) 
540.27-695.97 

577.22 (50.07) 
500.41-722.76 

556.48 (55.90) 
495.60-737.27 

544.08 (42.93) 
478.45-684.04 

2008 Scan B 581.02 (55.94) 
495.50-724.37 

592.16 (42.67) 
538.38-682.38 

575.24 (50.79) 
496.78-725.17 

553.50 (56.12) 
490.22-739.64 

542.90 (44.63) 
482.26-685.93 

2011 582.28 (59.24) 
501.16-742.31 

583.09 (56.16) 
493.89-720.33 

566.74 (54.15) 
461.80-701.45 

543.78 (54.71) 
436.44-672.62 

510.72 (49.95) 
436.44-672.62 

FreeSurfer 2008 Scan A 600.05 (56.70) 
527.34-748.92 

611.24 (53.11) 
533.30-728.35 

595.52 (57.52) 
516.49-752.72 

576.89 (52.61) 
505.51-740.96 

550.74 (46.71) 
461.37-686.31 

2008 Scan B 596.88 (56.96) 
522.55-754.38 

607.92 (49.83) 
537.04-710.30 

592.10 (56.76) 
519.86-749.38 

574.23 (52.68) 
502.84-742.53 

549.92 (47.50) 
465.66-686.73 

2011 597.41 (56.33) 
526.80-749.19 

600.51 (53.06) 
529.69-715.26 

583.12 (56.77) 
501.32-732.18 

559.12 (50.66) 
487.13-719.53 

531.77 (47.57) 
435.12-676.07 

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Cortical GM 

SPM8 
Unified 

2008 Scan A 512.77 (68.98) 
373.73-628.56 

533.18 (51.24) 
478.05-654.50 

516.45 (60.60) 
424.98-638.92 

488.49 (55.33) 
403.99-660.65 

473.58 (41.97) 
422.11-620.20 

2008 Scan B 510.38 (67.91) 
383.03-632.56 

533.88 (55.06) 
475.51-664.79 

517.41 (58.61) 
442.98-643.06 

487.34 (57.17) 
400.61-674.21 

472.44 (42.15) 
416.66-623.85 

2011 505.72 (68.05) 
372.24-631.09 

524.44 (51.07) 
464.23-662.46 

510.59 (65.15) 
420.43-629.71 

460.43 (50.64) 
369.75-536.01 

454.58 (43.52) 
400.37-609.44 

SPM8 New 
Segment 

2008 Scan A 536.43 (62.37) 
452.89-683.11 

559.21 (51.87) 
487.27-650.20 

541.97 (52.80) 
468.18-690.29 

539.74 (50.30) 
473.83-684.56 

533.95 (40.36) 
469.86-645.25 

2008 Scan B 536.32 (63.46) 
455.09-689.86 

558.47 (52.10) 
485.55-650.99 

542.70 (53.96) 
466.88-694.94 

539.28 (50.29) 
474.23-685.15 

533.77 (40.47) 
469.95-645.02 
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2011 535.67 (63.61) 
459.16-689.79 

555.14 (52.30) 
484.16-647.05 

538.91 (52.49) 
468.62-685.50 

534.52 (48.84) 
471.89-669.97 

525.03 (47.10) 
404.13-640.42 

SPM12 2008 Scan A 533.51 (65.41) 
389.73-666.73 

552.73 (49.76) 
473.23-655.70 

526.07 (48.46) 
460.87-652.17 

498.74 (65.09) 
428.26-705.08 

480.93 (50.88) 
407.50-647.96 

2008 Scan B 533.76 (65.64) 
394.15-668.75 

550.80 (47.79) 
471.59-645.80 

525.06 (46.78) 
459.22-655.18 

497.70 (64.62) 
423.09-701.96 

478.57 (51.57) 
406.43-648.08 

2011 528.20 (63.27) 
403.20-662.02 

542.72 (48.25) 
481.15-642.66 

509.88 (51.62) 
449.76-638.26 

473.94 (65.99) 
396.61-670.31 

455.94 (52.03) 
380.94-619.42 

ANTS 2008 Scan A 495.87 (54.37) 
389.28-622.33 

509.72 (44.12) 
455.01-611.42 

489.45 (48.51) 
405.19-620.96 

477.14 (56.81) 
409.16-635.36 

466.91 (45.54) 
389.93-604.35 

2008 Scan B 491.64 (56.78) 
382.09-628.22 

503.79 (44.09) 
449.15-605.89 

487.12 (48.13) 
404.60-619.20 

473.74 (54.49) 
401.01-634.44 

462.73 (48.51) 
376.62-605.35 

2011 488.38 (58.86) 
387.97-630.09 

498.77 (44.12) 
445.98-594.11 

479.69 (49.48) 
408.16-605.48 

461.18 (55.20) 
388.52-606.14 

451.16 (53.24) 
336.37-596.95 

MALP-EM 2008 Scan A 530.51 (59.82) 
437.13-676.95 

555.69 (50.24) 
487.11-657.42 

539.48 (55.25) 
475.98-702.28 

533.19 (50.60) 
468.57-696.92 

522.94 (43.59) 
444.29-646.02 

2008 Scan B 529.34 (60.07) 
435.90-675.24 

553.63 (49.68) 
482.71-654.95 

539.16 (56.15) 
476.11-696.51 

532.20 (49.99) 
472.30-695.76 

521.89 (44.94) 
439.33-646.89 

2011 527.67 (56.78) 
443.05-660.08 

547.99 (48.50) 
484.60-646.25 

531.68 (56.27) 
471.96-685.57 

519.58 (50.34) 
444.61-678.12 

511.12 (47.08) 
403.89-641.53 

FAST 2008 Scan A 469.53 (53.49) 
374.92-598.60 

479.12 (35.49) 
434.02-561.92 

463.95 (41.39) 
411.23-577.65 

447.26 (50.14) 
390.53-613.65 

435.76 (36.32) 
374.94-553.17 

2008 Scan B 465.54 (54.05) 
368.99-600.62 

476.73 (34.58) 
428.84-555.23 

462.65 (42.40) 
406.44-579.29 

444.91 (50.00) 
391.75-615.45 

435.25 (37.43) 
378.74-555.11 

2011 466.03 (56.25) 
378.26-613.36 

460.96 (38.77) 
404.72-544.14 

454.14 (46.04) 
357.59-553.83 

427.99 (51.13) 
353.00-584.79 

408.29 (43.91) 
340.86-539.01 

FreeSurfer 2008 Scan A 443.98 (46.48) 
390.66-557.74 

456.79 (41.53) 
401.60-528.21 

438.76 (46.32) 
383.69-569.80 

425.94 (48.04) 
374.81-581.65 

409.85 (40.17) 
331.48-528.49 

2008 Scan B 440.27 (47.23) 
384.36-563.17 

453.61 (39.45) 
400.90-533.17 

435.40 (46.04) 
374.25-566.91 

423.04 (47.57) 
368.04-583.23 

412.64 (39.10) 
339.36-530.62 

 2011 441.53 (46.83) 
386.74-558.92 

448.86 (42.55) 
390.67-522.61 

428.95 (45.78) 
369.63-548.28 

410.99 (46.52) 
362.78-563.30 

394.04 (40.47) 
318.51-518.13 

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Frontal GM 

SPM8 
Unified 

2008 Scan A 180.98 (28.52) 
106.22-230.90 

189.90 (19.38) 
166.41-232.57 

184.76 (23.46) 
151.79-234.20 

174.68 (20.13) 
143.83-241.28 

170.53 (14.84) 
153.66-219.99 

2008 Scan B 180.14 (27.91) 
109.01-227.44 

190.17 (21.37) 
167.69-238.79 

185.67 (23.05) 
156.12-234.68 

174.00 (21.14) 
143.06-246.39 

170.15 (15.15) 
151.22-221.86 

2011 177.48 (28.29) 
107.34-228.77 

186.98 (18.77) 
159.57-233.12 

182.80 (24.52)  
148.94-227.21 

164.39 (17.52) 
133.36-189.41 

163.63 (15.01) 
145.85-216.00 

SPM8 New 
Segment 

2008 Scan A 189.39 (25.88) 
137.26-245.25 

199.62 (20.12) 
173.83-231.57 

193.43 (20.41) 
164.85-249.67 

193.31 (19.55) 
169.09-252.14 

191.08 (14.61) 
162.67-230.14 

2008 Scan B 189.11 (26.30) 
136.85-247.62 

199.37 (20.41) 
173.04-232.53 

194.08 (20.83) 
165.29-251.63 

193.07 (19.69) 
169.42-253.10 

191.11 (14.69) 
162.34-229.87 

2011 188.58 (26.26) 
139.07-246.89 

197.99 (20.37) 
170.54-229.86 

192.02 (20.24)  
163.16-245.60 

191.83 (18.95) 
166.05-246.06 

187.54 (16.33) 
150.15-228.48 

SPM12 2008 Scan A 187.68 (27.48) 
110.47-235.58 

196.61 (18.85) 
164.94-232.57 

187.52 (18.47) 
163.93-236.62 

178.26 (23.41) 
150.27-257.28 

172.80 (17.64) 
149.93-229.21 

2008 Scan B 187.69 (27.58) 
112.51-237.05 

195.78 (18.45) 
165.42-229.56 

187.67 (18.10) 
164.62-238.58 

177.69 (23.27) 
148.61-256.47 

171.98 (18.08) 
148.73-229.93 

2011 185.36 (26.89) 
115.06-233.49 

193.05 (17.87) 
167.97-226.18 

181.59 (19.53) 
157.27-229.42 

169.97 (23.42) 
135.86-244.01 

163.97 (17.56) 
140.67-219.26 

ANTS 2008 Scan A 175.75 (22.96) 
113.82-221.10 

182.93 (16.80) 
164.09-216.83 

175.84 (18.75) 
144.59-228.82 

171.78 (21.20) 
142.45-232.90 

169.39 (16.87) 
134.05-216.09 

2008 Scan B 174.07 (23.98) 
113.52-225.03 

180.40 (17.34) 
158.33-215.03 

175.53 (18.61) 
145.47-228.63 

170.40 (20.55) 
143.43-232.99 

167.87 (17.88) 
130.33-216.77 

2011 172.02 (25.88) 
114.78-226.42 

178.42 (16.72) 
155.15-210.80 

172.64 (18.96) 
145.31-220.67 

166.58 (20.25) 
133.86-221.28 

163.66 (18.72) 
127.13-212.46 

MALP-EM 2008 Scan A 191.50 (26.06) 
127.79-246.67 

203.47 (19.52) 
178.88-239.10 

197.69 (21.66) 
173.33-259.88 

195.12 (19.63) 
167.21-259.26 

191.73 (15.84) 
167.38-233.41 



 

112 
 

2008 Scan B 190.85 (26.08) 
128.02-245.99 

202.74 (19.66) 
178.61-238.75 

198.10 (21.77) 
174.69-257.95 

194.67 (19.57) 
167.57-259.11 

191.29 (16.37) 
164.06-234.06 

2011 189.58 (24.80) 
131.21-237.91 

199.72 (18.69) 
175.11-233.90 

194.38 (21.24) 
169.81-247.90 

190.07 (19.33) 
160.37-250.80 

186.87 (16.63) 
154.65-231.24 

FAST 2008 Scan A 163.82 (22.16) 
106.03-208.91 

167.73 (13.40) 
148.21-199.57 

163.68 (15.99) 
145.72-210.57 

157.54 (19.32) 
130.85-222.20 

155.82 (13.72) 
138.43-194.28 

2008 Scan B 162.41 (22.53) 
104.96-211.24 

166.96 (13.35) 
146.69-195.40 

163.76 (16.52) 
144.24-211.70 

156.47 (19.39) 
131.16-223.71 

155.96 (14.38) 
135.82-195.55 

2011 162.78 (24.11) 
106.91-218.66 

161.48 (13.90) 
138.58-192.57 

160.58 (17.43) 
127.55-199.38 

152.57 (17.96) 
122.21-210.93 

144.40 (18.81) 
102.41-188.63 

FreeSurfer 2008 Scan A 164.48 (21.29) 
111.40-206.85 

171.86 (16.65) 
147.76-203.70 

165.86 (19.12)  
140.52-218.79 

162.12 (17.95) 
140.99-221.62 

156.63 (15.08) 
130.10-199.35 

2008 Scan B 163.60 (21.65) 
111.06-209.39 

168.27 (17.08) 
144.17-202.28 

162.38 (18.21)  
140.12-208.54 

156.95 (16.93) 
134.95-212.67 

151.26 (14.77) 
127.40-195.32 

 Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Temporal GM 

SPM8 
Unified 

2008 Scan A 120.97 (17.93) 
71.48-146.20 

127.51 (10.36) 
112.63-146.96 

123.21 (14.15) 
99.59-153.25 

116.77 (13.11) 
97.60-158.18 

115.02 (10.21) 
104.52-148.72 

2008 Scan B 120.82 (16.18) 
80.55-146.52 

127.08 (10.86) 
112.65-147.87 

123.11 (13.13) 
105.97-153.93 

116.76 (13.41) 
96.78-160.93 

114.77 (10.48) 
104.32-149.66 

2011 118.98 (18.33) 
68.84-146.83 

125.47 (10.19) 
112.77-148.60 

121.96 (16.18) 
100.22-154.86 

110.31 (11.60) 
87.95-124.77 

110.68 (10.90) 
97.95-147.70 

SPM8 New 
Segment 

2008 Scan A 129.44 (16.30) 
90.86-161.29 

136.18 (11.80) 
116.62-153.60 

132.04 (13.21) 
114.01-167.99 

131.30 (12.11) 
112.70-165.40 

131.83 (10.63) 
111.46-155.37 

2008 Scan B 129.71 (15.72) 
97.54-163.58 

135.91 (11.63) 
117.24-153.54 

132.04 (13.02) 
114.95-167.95 

131.30 (12.12) 
112.75-164.55 

131.78 (10.77) 
111.26-155.84 

2011 128.59 (17.20) 
87.26-163.60 

135.57 (11.74) 
116.93-153.61 

131.54 (13.47) 
116.55-168.75 

130.35 (11.77) 
112.59-163.60 

129.96 (12.45) 
99.14-156.36 

SPM12 2008 Scan A 127.74 (17.34) 
78.29-157.50 

133.53 (10.37) 
119.30-154.39 

127.45 (12.42) 
108.11-158.60 

121.01 (14.21) 
103.23-168.38 

118.64 (11.60) 
102.63-155.45 

2008 Scan B 128.16 (16.16) 
86.97-157.33 

132.89 (9.85) 
120.00-153.77 

127.18 (11.81) 
107.87-158.84 

121.03 (14.10) 
103.65-167.46 

118.21 (11.86) 
102.05-155.69 

2011 125.99 (17.66) 
76.24-157.23 

131.45 (9.81) 
119.97-152.03 

124.35 (13.39) 
108.65-158.07 

115.89 (14.91) 
99.06-163.07 

112.99 (12.15) 
91.59-150.99 

ANTS 2008 Scan A 118.96 (15.20) 
75.80-148.50 

124.00 (9.77) 
107.60-143.07 

118.83 (12.36) 
99.04-150.52 

116.12 (12.85) 
98.43-154.42 

114.89 (10.87) 
93.56-145.76 

2008 Scan B 118.34 (14.41) 
81.52-148.51 

122.45 (9.25) 
107.41-142.14 

118.22 (11.91) 
99.27-149.84 

115.58 (12.34) 
98.76-153.45 

113.98 (11.74) 
90.55-146.42 

2011 116.05 (16.90) 
72.29-149.85 

121.32 (9.31) 
107.30-139.22 

116.90 (12.76) 
99.72-149.76 

112.58 (12.72) 
95.98-149.51 

111.12 (13.20) 
81.55-146.39 

MALP-EM 2008 Scan A 120.61 (15.37) 
78.39-150.22 

127.41 (10.43) 
109.65-146.95 

123.95 (13.56) 
108.43-162.17 

121.95 (12.17) 
104.51-160.46 

121.97 (11.22) 
102.86-149.50 

2008 Scan B 120.45 (14.50) 
84.61-150.00 

126.60 (10.01) 
108.76-145.78 

123.70 (13.46) 
108.43-160.55 

121.79 (11.88) 
106.99-160.14 

121.54 (11.87) 
100.46-150.04 

2011 119.15 (15.51) 
75.05-147.63 

125.74 (10.25) 
108.10-144.92 

122.45 (14.43) 
106.35-161.88 

119.08 (12.57) 
96.72-158.21 

119.39 (12.37) 
90.74-149.86 

FAST 2008 Scan A 113.51 (14.88) 
72.60-144.30 

117.72 (7.96) 
104.82-132.29 

113.73 (10.31) 
101.20-140.26 

110.45 (11.86) 
95.34-150.09 

108.67 (9.25) 
94.83-135.59 

2008 Scan B 112.68 (13.70) 
78.93-143.45 

116.75 (7.35) 
105.28-131.02 

113.20 (10.23) 
100.74-139.91 

110.33 (11.62) 
95.07-149.58 

108.44 (9.69) 
92.85-136.24 

2011 111.88 (15.48) 
70.35-147.91 

113.33 (9.02) 
98.09-130.50 

112.00 (11.32) 
94.81-137.92 

106.09 (12.87) 
81.21-144.88 

103.72 (8.91) 
92.69-134.05 

FreeSurfer 2008 Scan A 106.88 (12.25) 
73.24-129.97 

111.19 (8.50) 
96.37-124.84 

106.40 (11.35) 
92.06-135.95 

102.95 (11.84) 
89.00-142.54 

100.99 (9.07) 
83.29-127.77 

2008 Scan B 105.75 (13.22) 
67.72-129.51 

109.48 (8.05) 
97.48-123.75 

104.75 (11.77) 
91.29-135.46 

99.55 (11.57) 
86.87-139.14 

96.92 (9.22) 
77.98-125.87 

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Parietal GM 
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SPM8 
Unified 

2008 Scan A 115.01 (13.95) 
89.95-152.64 

117.89 (15.58) 
95.11-146.54 

121.34 (12.66) 
105.21-152.64 

117.97 (14.25) 
97.86-147.60 

110.74 (12.89) 
89.95-144.75 

2008 Scan B 116.94 (15.88) 
95.27-147.28 

121.60 (13.49) 
105.22-154.63 

117.88 (13.77) 
100.64-148.25 

110.43 (13.22) 
89.12-147.97 

106.98 (9.75) 
91.54-138.53 

2011 116.75 (15.11) 
95.26-148.23 

119.05 (12.57) 
102.71-153.81 

116.13 (14.61) 
96.62-144.24 

104.72 (12.72) 
83.10-129.14 

103.14 (10.00) 
88.11-134.68 

SPM8 New 
Segment 

2008 Scan A 124.02 (12.62) 
101.06-160.24 

123.51 (15.65) 
101.20-160.24 

128.21 (12.34) 
108.70-147.85 

124.11 (12.47) 
108.55-158.98 

122.90 (11.91) 
105.71-151.24 

2008 Scan B 123.41 (15.83) 
102.32-161.06 

128.13 (12.46) 
108.37-148.48 

124.28 (13.19) 
108.28-159.96 

122.76 (11.89) 
105.66-151.80 

121.25 (10.21) 
102.32-146.77 

2011 123.11 (12.67) 
90.36-162.22 

123.96 (15.75) 
103.50-162.22 

127.17 (12.40) 
107.32-148.16 

123.34 (12.11) 
108.48-157.08 

121.58 (11.56) 
103.84-148.09 

SPM12 2008 Scan A 116.99 (14.45) 
86.12-153.77 

121.34 (14.76) 
101.06-153.41 

124.82 (12.22) 
103.00-149.48 

118.79 (11.36) 
104.84-148.29 

112.15 (15.47) 
94.80-153.77 

2008 Scan B 121.14 (15.15) 
100.60-153.20 

124.63 (11.66) 
103.29-148.02 

118.42 (11.09) 
104.39-148.85 

111.85 (15.41) 
94.57-153.48 

107.35 (12.16) 
86.20-143.52 

2011 113.40 (15.10) 
84.14-153.40 

120.62 (14.26) 
99.82-153.40 

122.57 (11.57) 
105.86-147.62 

114.89 (11.71) 
101.51-143.97 

106.40 (15.68) 
89.46-145.79 

ANTS 2008 Scan A 111.28 (12.40) 
87.01-146.34 

114.25 (13.21) 
96.43-146.34 

116.18 (11.09) 
100.40-140.44 

111.81 (11.30) 
94.34-143.47 

108.56 (13.48) 
90.78-139.49 

2008 Scan B 112.90 (13.78) 
89.78-146.87 

115.21 (10.80) 
99.01-139.28 

111.23 (11.70) 
94.38-142.84 

107.66 (12.88) 
90.95-139.47 

104.58 (11.42) 
86.25-135.21 

2011 108.72 (12.86) 
75.84-148.00 

113.70 (13.25) 
94.40-148.00 

113.84 (10.84) 
99.54-137.42 

109.06 (11.38) 
95.15-138.12 

104.74 (13.43) 
86.88-132.96 

MALP-EM 2008 Scan A 128.68 (13.28) 
100.96-171.44 

128.51 (15.76) 
107.34-166.99 

133.19 (12.95) 
111.67-157.42 

129.25 (14.00) 
114.14-171.44 

127.62 (11.97) 
112.08-163.43 

2008 Scan B 128.36 (15.82) 
108.56-165.23 

132.99 (12.88) 
110.71-157.08 

129.16 (14.58) 
113.72-169.92 

127.40 (11.85) 
112.79-163.15 

124.68 (11.23) 
101.35-153.79 

2011 126.98 (13.19) 
94.89-166.33 

128.34 (15.14) 
105.49-163.52 

131.86 (12.51) 
110.97-155.82 

127.44 (13.74) 
112.28-166.33 

124.78 (11.97) 
108.64-158.58 

FAST 2008 Scan A 105.40 (11.45) 
79.20-142.62 

108.77 (13.33) 
92.09-142.62 

110.26 (9.35) 
97.87-131.35 

106.65 (9.91) 
93.53-133.99 

102.51 (11.85) 
86.09-135.15 

2008 Scan B 107.71 (13.41) 
90.41-142.31 

109.93 (9.03) 
97.17-128.13 

106.28 (10.41) 
92.49-133.95 

101.73 (11.82) 
85.67-135.66 

98.65 (9.35) 
80.43-123.57 

2011 102.59 (12.27) 
77.32-147.36 

108.67 (14.04) 
90.60-147.36 

106.62 (9.55) 
91.76-125.41 

103.91 (10.16) 
83.14-126.64 

98.60 (12.39) 
81.72-128.59 

FreeSurfer 2008 Scan A 105.34 (12.16) 
88.40-133.55 

106.83 (10.30) 
91.71-125.28 

104.04 (11.30) 
90.43-138.07 

99.33 (11.99) 
85.11-133.53 

95.51 (10.42) 
73.41-122.91 

2008 Scan B 104.84 (12.06) 
88.65-134.08 

105.29(10.37) 
88.88-124.18 

100.97 (11.16) 
85.43-130.83 

95.56 (11.65) 
82.21-129.22 

91.82 (10.41) 
72.02-119.97 

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Occipital GM 

SPM8 
Unified 

2008 Scan A 81.47 (9.82) 
62.78-101.30 

82.01 (10.19) 
69.74-107.25 

78.28 (8.65) 
64.63-94.07 

74.65 (10.20) 
58.66-100.64 

69.51 (9.31) 
56.92-97.25 

2008 Scan B 80.90 (10.05) 
63.16-102.25 

82.56 (10.57) 
70.01-108.06 

78.43 (8.51) 
64.57-93.39 

74.53 (10.38) 
59.24-102.89 

69.25 (9.30) 
56.77-97.68 

2011 80.94 (9.33) 
63.60-101.97 

80.63 (10.91) 
68.29-111.57 

77.41 (9.57) 
63.09-92.09 

69.83 (10.00) 
52.28-90.05 

66.12 (9.92) 
53.65-95.33 

SPM8 New 
Segment 

2008 Scan A 83.36 (8.97) 
71.69-103.91 

83.61 (9.48) 
69.29-104.35 

80.94 (7.14) 
67.62-100.31 

81.02 (8.10) 
70.00-101.82 

78.34 (7.83) 
65.28-97.80 

2008 Scan B 83.24 (8.91) 
70.93-105.39 

83.44 (9.48) 
69.11-103.94 

80.80 (7.30) 
66.53-101.79 

81.03 (7.96) 
70.38-102.00 

78.19 (7.79) 
65.19-97.74 

2011 83.90 (9.05) 
72.03-105.30 

82.83 (9.79) 
69.23-102.81 

80.60 (6.94) 
68.49-99.86 

79.59 (8.07) 
69.17-99.05 

76.59 (9.57) 
55.48-97.59 

SPM12 2008 Scan A 84.39 (8.73) 
71.15-106.01 

84.49 (10.05) 
71.30-108.76 

79.53 (6.62) 
68.82-94.83 

75.13 (12.29) 
57.08-108.49 

69.92 (10.88) 
55.83-102.09 

2008 Scan B 84.26 (8.82) 
71.39-106.62 

84.27 (9.65) 
70.86-106.87 

79.04 (6.40) 
68.60-95.10 

75.01 (12.18) 
57.19-107.75 

69.33 (10.96) 
55.98-101.75 

2011 83.82 (8.23) 
68.72-103.74 

82.55 (10.57) 
66.99-107.84 

76.51 (7.48) 
65.74-92.72 

69.92 (12.49) 
52.90-101.33 

65.13 (11.60) 
50.50-96.45 
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ANTS 2008 Scan A 76.52 (6.94) 
66.52-94.94 

75.39 (9.09) 
64.84-99.30 

71.99 (6.79) 
56.89-86.68 

69.77 (10.13) 
57.48-94.04 

66.02 (9.93) 
53.06-92.53 

2008 Scan B 75.83 (7.04) 
64.54-95.67 

74.56 (9.04) 
63.80-97.44 

71.18 (6.53) 
56.08-85.74 

69.36 (9.53) 
57.71-94.14 

65.34 (10.12) 
52.37-92.35 

2011 76.21 (6.87) 
65.75-94.43 

73.96 (9.38) 
62.28-94.63 

69.97 (6.90) 
56.71-84.46 

66.51 (9.72) 
53.45-88.89 

63.19 (11.42) 
42.58-91.34 

MALP-EM 2008 Scan A 80.33 (8.04) 
70.21-100.69 

80.95 (9.45) 
67.11-102.78 

78.11 (7.29) 
66.93-100.00 

77.90 (8.10) 
65.76-100.17 

74.22 (8.52) 
60.68-95.42 

2008 Scan B 80.05 (7.80) 
69.42-101.04 

80.67 (9.33) 
66.51-102.08 

77.68 (7.38) 
65.48-98.47 

77.79 (7.83) 
65.93-100.01 

74.15 (8.49) 
61.67-95.56 

2011 80.88 (7.80) 
70.39-98.78 

80.03 (9.18) 
67.27-100.26 

76.96 (7.79) 
65.25-98.43 

75.12 (8.06) 
64.76-97.58 

72.12 (9.52) 
54.74-94.83 

FAST 2008 Scan A 73.46 (7.46) 
59.83-92.11 

72.38 (8.19) 
63.11-91.62 

69.23 (6.11) 
60.51-81.93 

66.32 (9.25) 
53.29-91.62 

62.13 (8.40) 
49.91-85.26 

2008 Scan B 72.75 (7.29) 
57.90-92.49 

72.12 (7.95) 
62.27-90.17 

68.73 (6.09) 
59.24-82.21 

65.94 (9.16) 
53.22-91.90 

61.85 (8.42) 
50.62-85.35 

2011 72.92 (7.86) 
60.31-91.98 

68.72 (9.47) 
49.13-87.01 

66.89 (8.31) 
41.90-79.72 

60.66 (11.95) 
31.04-86.52 

55.42 (12.33) 
34.97-82.97 

FreeSurfer 2008 Scan A 66.30 (7.74) 
57.48-85.09 

66.07 (7.47) 
56.14-83.26 

61.89 (6.19) 
52.82-76.74 

59.68 (8.89) 
45.74-83.49 

54.85 (8.43) 
42.19-76.40 

2008 Scan B 66.26 (7.12) 
56.46-83.60 

65.00 (7.87) 
54.31-81.47 

60.02 (6.45) 
49.60-72.51 

57.10 (8.36) 
45.10-80.61 

52.23 (8.95) 
40.04-74.45 

  Controls (N=20) PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

 
Insula GM 

SPM8 
Unified 

2008 Scan A 81.47 (9.82) 
62.78-101.30 

82.01 (10.19) 
69.74-107.25 

78.28 (8.65) 
64.63-94.07 

74.65 (10.20) 
58.66-100.64 

69.51 (9.31) 
56.92-97.25 

2008 Scan B 80.90 (10.05) 
63.16-102.25 

82.56 (10.57) 
70.01-108.06 

78.43 (8.51) 
64.57-93.39 

74.53 (10.38) 
59.24-102.89 

69.25 (9.30) 
56.77-97.68 

2011 80.94 (9.33) 
63.60-101.97 

80.63 (10.91) 
68.29-111.57 

77.41 (9.57) 
63.09-92.09 

69.83 (10.00) 
52.28-90.05 

66.12 (9.92) 
53.65-95.33 

SPM8 New 
Segment 

2008 Scan A 83.36 (8.97) 
71.69-103.91 

83.61 (9.48) 
69.29-104.35 

80.94 (7.14) 
67.62-100.31 

81.02 (8.10) 
70.00-101.82 

78.34 (7.83) 
65.28-97.80 

2008 Scan B 83.24 (8.91) 
70.93-105.39 

83.44 (9.48) 
69.11-103.94 

80.80 (7.30) 
66.53-101.79 

81.03 (7.96) 
70.38-102.00 

78.19 (7.79) 
65.19-97.74 

2011 83.90 (9.05) 
72.03-105.30 

82.83 (9.79) 
69.23-102.81 

80.60 (6.94) 
68.49-99.86 

79.59 (8.07) 
69.17-99.05 

76.59 (9.57) 
55.48-97.59 

SPM12 2008 Scan A 84.39 (8.73) 
71.15-106.01 

84.49 (10.05) 
71.30-108.76 

79.53 (6.62) 
68.82-94.83 

75.13 (12.29) 
57.08-108.49 

69.92 (10.88) 
55.83-102.09 

2008 Scan B 84.26 (8.82) 
71.39-106.62 

84.27 (9.65) 
70.86-106.87 

79.04 (6.40) 
68.60-95.10 

75.01 (12.18) 
57.19-107.75 

69.33 (10.96) 
55.98-101.75 

2011 83.82 (8.23) 
68.72-103.74 

82.55 (10.57) 
66.99-107.84 

76.51 (7.48) 
65.74-92.72 

69.92 (12.49) 
52.90-101.33 

65.13 (11.60) 
50.50-96.45 

ANTS 2008 Scan A 76.52 (6.94) 
66.52-94.94 

75.39 (9.09) 
64.84-99.30 

71.99 (6.79) 
56.89-86.68 

69.77 (10.13) 
57.48-94.04 

66.02 (9.93) 
53.06-92.53 

2008 Scan B 75.83 (7.04) 
64.54-95.67 

74.56 (9.04) 
63.80-97.44 

71.18 (6.53) 
56.08-85.74 

69.36 (9.53) 
57.71-94.14 

65.34 (10.12) 
52.37-92.35 

2011 76.21 (6.87) 
65.75-94.43 

73.96 (9.38) 
62.28-94.63 

69.97 (6.90) 
56.71-84.46 

66.51 (9.72) 
53.45-88.89 

63.19 (11.42) 
42.58-91.34 

MALP-EM 2008 Scan A 80.33 (8.04) 
70.21-100.69 

80.95 (9.45) 
67.11-102.78 

78.11 (7.29) 
66.93-100.00 

77.90 (8.10) 
65.76-100.17 

74.22 (8.52) 
60.68-95.42 

2008 Scan B 80.05 (7.80) 
69.42-101.04 

80.67 (9.33) 
66.51-102.08 

77.68 (7.38) 
65.48-98.47 

77.79 (7.83) 
65.93-100.01 

74.15 (8.49) 
61.67-95.56 

2011 80.88 (7.80) 
70.39-98.78 

80.03 (9.18) 
67.27-100.26 

76.96 (7.79) 
65.25-98.43 

75.12 (8.06) 
64.76-97.58 

72.12 (9.52) 
54.74-94.83 

FAST 2008 Scan A 73.46 (7.46) 
59.83-92.11 

72.38 (8.19) 
63.11-91.62 

69.23 (6.11) 
60.51-81.93 

66.32 (9.25) 
53.29-91.62 

62.13 (8.40) 
49.91-85.26 

2008 Scan B 72.75 (7.29) 
57.90-92.49 

72.12 (7.95) 
62.27-90.17 

68.73 (6.09) 
59.24-82.21 

65.94 (9.16) 
53.22-91.90 

61.85 (8.42) 
50.62-85.35 

2011 72.92 (7.86) 
60.31-91.98 

68.72 (9.47) 
49.13-87.01 

66.89 (8.31) 
41.90-79.72 

60.66 (11.95) 
31.04-86.52 

55.42 (12.33) 
34.97-82.97 
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FreeSurfer 2008 Scan A 66.30 (7.74) 
57.48-85.09 

66.07 (7.47) 
56.14-83.26 

61.89 (6.19) 
52.82-76.74 

59.68 (8.89) 
45.74-83.49 

54.85 (8.43) 
42.19-76.40 

2008 Scan B 66.26 (7.12) 
56.46-83.60 

65.00 (7.87) 
54.31-81.47 

60.02 (6.45) 
49.60-72.51 

57.10 (8.36) 
45.10-80.61 

52.23 (8.95) 
40.04-74.45 

 

3.3.3.2.  Reliability measures 

3.3.3.2.1.  Controls 

For controls, ICC values for baseline scan pairs were above 0.90 for total, cortical and 

lobular GM volume using each segmentation tool (Table 3.7) Mean repeatability (indexing 

variability), was lowest in total GM for all techniques, ranging from 0.35% (SPM8 New 

Segment) to 1.36% (FreeSurfer), as shown in Table 3.7. CGM showed only slightly higher 

variability than total GM for all techniques. Lobular regions generally had higher repeatability 

values than total and cortical GM, indicating more variability between the lobular volumes for 

the first and second back-to-back baseline scans. 

Spearman’s Rho correlations showed that there were strong relationships between 

the volumes extracted using the seven different tools, with most values above 0.90 (Table 3.8). 

Correlations were higher for CGM than for total GM. Spearman’s Rho for lobular regions are 

not shown, but relationships > .75 were seen for all measures for controls across all regions, 

with most results > .90, indicating a high level of agreement between tools. Overall, SPM8 

Unified Segment showed the lowest relationships with other measures.  
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Table 3.7. Intraclass correlation coefficients and confidence intervals for control participants 
for back-to-back segmentations of total GM, cortical GM, frontal lobe GM, temporal lobe GM, 
parietal lobe GM, occipital lobe GM, and insula GM included in the current study. Repeatability 
values are also displayed for back-to-back segmentations of total GM, cortical GM, frontal lobe 
GM, temporal lobe GM, parietal lobe GM, occipital lobe GM, and insula GM for all control 
participants included in the current study, showing means, standard deviations and ranges. 

Intraclass Correlations 
Confidence Intervals 

 SPM8 Unified 
Segment 

SPM8 New 
Segment 

SPM12 
Segment 

ANTs Atropos MALP-EM FSL FAST FreeSurfer 

  
Total GM .994 

.985-.998 
.999 

.997-1.000 
.997 

.993-.999 
.982 

.951-.993 
.998 

.995-.999 
.986 

.960-.995 
.978 

.947-.991 
Cortical GM .994 

.985-.998 
.999 

 .998-1.000 
.997 

.993-.999 
.985 

.958-.994 
.998 

.995-.999 
.988 

.964-.996 
.967 

.918-.987 
Frontal Lobe 0.996 

0.990-0.998 
0.999 

0.997-.000 
0.997 

0.991-0.999 
0.983 

0.955-0.993 
0.997 

0.993-0.999 
0.989 

0.969-0.996 
0.960 

0.902-0.984 
Temporal 
Lobe 

0.989 
0.973-0.996 

0.994 
0.986-0.998 

0.992 
0.980-0.997 

0.990 
0.975-0.996 

0.994 
0.984-0.997 

0.985 
0.963-0.994 

.975 
0.936-0.990 

Parietal Lobe 0.995 
0.986-0.998 

0.997 
0.993-0.999 

0.996 
0.990-0.998 

0.976 
0.931-0.991 

0.996 
0.990-0.998 

0.984 
0.954-0.994 

0.956 
0.886-0.983 

Occipital 
Lobe 

0.994 
0.985-0.998 

0.993 
0.984-0.997 

0.995 
0.988-0.998 

0.971 
0.922-0.989 

0.992 
0.981-0.997 

0.978 
0.936-0.992 

0.962 
0.906-0.985 

Insula 0.977 
0.941-0.991 

0.979 
0.948-0.992 

0.979 
0.948-0.992 

0.982 
0.955-0.993 

0.985 
0.962-0.994 

0.979 
0.947-0.991 

0.975 
0.938-0.990 

Mean Repeatability  
(Standard Deviation)  

Range 

 SPM8 
Unified 

Segment 

SPM8 New 
Segment 

SPM12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST FreeSurfer 

Total GM 1.08  
(0.82) 

0.18-2.88 

0.35 
(0.34) 

0.01-1.00 

0.69 
(0.48) 

0.12-1.77 

1.14 
(1.65) 

0.00-6.44 

0.41 
(0.53) 

0.02-2.07 

0.91 
(1.33) 

0.05-4.99 

1.36 
(1.43) 

0.05-5.77 
Cortical GM 1.06 

(0.82) 
0.02-2.72 

0.36 
(0.25) 

0.00-0.98 

0.79 
(0.50) 

0.07-1.96 

1.23  
(1.71) 

0.03-6.81 

0.49 
(0.57) 

0.01-2.18 

1.14 
(1.36) 

0.03-4.81 

1.82 
(2.09)  

0.06-8.05 
Frontal Lobe 1.13 

(0.93) 
0.00-3.09 

0.50 
(0.43) 

0.05-1.48 

1.09 
(0.67) 

0.20-2.45 

1.50 
(2.28) 

0.02-9.65 

0.67 
(0.74) 

0.00-2.67 

1.43 
(1.49) 

0.01-5.72 

2.33 
(3.05) 

0.01-11.04 
Temporal 
Lobe 

1.50 
(2.63)  

0.03-11.93 

0.82 
(1.52)  

0.02-7.09 

1.06  
(2.27)  

0.04-10.50 

1.25 
(1.86)  

0.00-7.27 

0.90 
(1.71)  

0.00-7.62 

1.54 
(2.07) 

0.02-8.36 

1.80 
(2.36) 

0.22-9.56 
Parietal Lobe 1.07  

(0.88) 
0.01-3.29 

0.59  
(0.79) 

0.04-3.72 

0.88  
(0.87) 

0.14-3.78 

1.57 
 (2.35) 

0.01-7.25 

0.80  
(0.75) 

0.00-2.74 

1.29 
(1.91) 

0.11-6.03 

2.21 
(2.79) 

0.10-8.84 
Occipital 
Lobe 

1.02 
(0.96) 

0.07-3.53 

0.85 
(0.82) 

0.04-3.29 

0.88 
(0.63) 

0.15-2.51 

1.36 
(1.79) 

0.07-6.57 

0.75 
(0.86) 

0.07-3.93 

1.29 
(1.63) 

0.03-6.00 

2.23 
(1.86) 

0.00-6.56 
Insula  1.73 

(2.42)  
0.08-10.97 

1.48 
(1.66) 0.05-

7.91 

1.44 
(2.13) 0.22-

9.90 

1.51 
(1.76) 0.21-

8.32 

1.31 
(1.88)  

0.01-8.44 

1.58 
(2.21) 

0.09-10.55 

2.07 
(1.91) 

0.09-7.43 
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Table 3.8. Spearman’s rank correlation for control participants for total GM and cortical GM. 

 

 

3.3.3.2.2. HD gene-carrier participants 

Reliability for total, cortical and lobular GM as measured by ICC was above 0.90 for 

most tools across all regions and the disease subgroups (Table 3.9 and Appendix 1, Table 1). 

Repeatability values were more variable than ICC values. Repeatability was lower with 

increasing disease stage for total and cortical GM (Table 3.10). For individual lobes, it was 

more variable across disease stages, lobes, and tools, but showed a small range of mean values 

(Appendix 1, Table 2). Values ranged from 0.37% (parietal lobe volume measured by MALP-EM 

in HD1 participants) to 2.72% (insula volume measured by FreeSurfer in PreHD-B participants).  

For total and cortical GM Spearman’s correlation between measures tended to be 

lower for the HD2 group, indicating that the techniques perform differently on more atrophied 

brains (Table 3.11 and Table 3.12). SPM8 Unified Segment again had lower values than other 

techniques for Spearman’s Rho, especially with SPM8 New Segment in HD2 participants, 

whereby correlations of 0.441 and 0.411 were seen for total and cortical GM respectively. For 

lobular regions, the relationships between measures were generally lower than those in 

control participants, with more correlations between 0.7-0.9 (Appendix 1, Tables 3-8).  

  
 

 

 

 

Total GM 

 
SPM8 

Unified 
Segment 

SPM8 
New 

Segment 

SPM12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

SPM8 Unified Segment 1      

SPM8 New Segment 0.761 1     

SPM12 Segment 0.904 0.857 1    

ANTs Atropos 0.788 0.920 0.929 1   

MALP-EM 0.812 0.958 0.928 0.967 1  

FSL FAST 0.867 0.896 0.956 0.929 0.944 1 

FreeSurfer 0.874 0.904 0.884 0.874 0.905 0.920 

Cortical GM 

SPM8 Unified Segment 1      

SPM8 New Segment 0.798 1     

SPM12 Segment 0.918 0.971 1    

ANTs Atropos 0.809 0.976 0.934 1   

MALP-EM 0.861 0.932 0.953 0.974 1  

FSL FAST 0.897 0.932 0.947 0.944 0.967 1 

FreeSurfer 0.844 0.910 0.893 0.919 0.962 0.956 
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Table 3.9. (A) Intraclass correlation coefficients and confidence intervals for HD participants for 
all tools measuring total GM volume in back-to-back 2008 scans (B) Intraclass correlation 
coefficients and confidence intervals for HD participants for all tools measuring CGM volume 
for back-to-back 2008 scans. 

 PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

Total GM 
Intraclass Correlations 
Confidence intervals 

SPM8 Unified 
0.993 

0.982-0.997 
0.977 

0.943-0.991 
0.984 

0.960-0.994 
0.989 

0.973-0.996 

SPM8 New 
Segment 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

SPM12 
 

0.989 
0.972-0.995 

0.990 
0.974-0.996 

0.997 
0.994-0.999 

0.994 
0.982-0.998 

Atropos 
 

0.975 
0.912-0.991 

0.994 
0.981-0.998 

0.989 
0.970-0.996 

0.986 
0.938-0.995 

MALP-EM 
 

0.996 
0.989-0.998 

0.998 
0.996-0.999 

0.999 
0.996-0.999 

0.996 
0.990-0.998 

FAST 
 

0.989 
0.970-0.996 

0.997 
0.989-0.999 

0.995 
0.982-0.998 

0.994 
0.985-0.998 

FreeSurfer 
0.988 

0.967-0.995 
0.988 

0.968-0.995 
0.992 

0.979-0.997 
0.993 

0.983-0.997 

Cortical GM 
Intraclass Correlations 
Confidence intervals 

 SPM8 Unified 
0.993 

0.982-0.997 
0.979 

0.947-0.992 
0.987 

0.967-0.995 
0.991 

0.977-0.996 

SPM8 New 
Segment 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

0.999 
0.998-10.000 

SPM12 
 

0.988 
0.971-0.995 

0.991 
0.978-0.996 

0.998 
0.995-0.999 

0.995 
0.984-0.998 

Atropos 
 

0.970 
0.893-0.990 

0.995 
0.984-0.998 

0.991 
0.974-0.997 

0.990 
0.947-0.997 

MALP-EM 
 

0.995 
0.986-0.998 

0.998 
0.994-0.999 

0.999 
0.997-10.000 

0.996 
0.991-0.999 

FAST 
 

0.986 
0.961-0.994 

0.996 
0.989-0.998 

0.995 
0.985-0.998 

0.995 
0.987-0.998 

FreeSurfer 
0.985 

0.957-0.994 
0.983 

0.955-0.993 
0.989 

0.970-0.996 
0.992 

0.981-0.997 
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Table 3.10. (A) Repeatability values for back-to-back segmentations of total GM for all HD 
participants included in the current study, showing means, standard deviations, and ranges (B) 
Repeatability values for back-to-back segmentations of CGM for all HD participants included in 
the current study, showing means, standard deviations, and ranges. 

 
SPM8 

Unified 
SPM8 
New 

SPM12 Atropos MALP-EM FAST FreeSurfer 

A) Total GM 

PreHD-A Total GM 
0.89 (0.80) 
0.01-3.05 

0.27 (0.19)  
0.02-0.80 

0.97 (0.86)  
0.01-2.93 

1.26 (1.63)  
0.07-5.61 

0.58 (0.53)  
0.02-2.22 

0.82 (0.67)  
0.00-2.42 

0.90 (0.87)  
0.03-2.69 

PreHD-B Total GM 
1.61 (1.83) 
0.24-7.03 

0.28 (0.22)  
0.02-0.70 

0.83 (0.88)  
0.02-3.15 

0.78 (0.72)  
0.07-2.45 

0.40 (0.40)  
0.01-1.37 

0.54 (0.51)  
0.02-1.75 

1.15 (0.98)  
0.03-3.85 

HD1 Total GM 
1.13 (1.33) 
0.04-6.22 

0.29 (0.24) 
0.01-0.75 

0.64 (0.54)  
0.08-1.80 

1.00 (1.27)  
0.02-4.45 

0.39 (0.27)  
0.08-1.20 

0.82 (0.68)  
0.13-2.20 

0.91 (0.74)  
0.15-3.55 

HD2 Total GM 
0.94 (0.77) 
0.07-2.90 

0.22 (0.12)  
0.03-0.37 

0.86 (0.71)  
0.03-3.20 

1.24 (1.33)  
0.02-5.08 

0.57 (0.50)  
0.01-1.87 

0.65 (0.70)  
0.00-3.06 

0.80 (0.72)  
0.05-2.54 

B) Cortical GM 

PreHD-A Cortical 
GM 

0.91 (0.76) 
0.05-2.82 

0.33 (0.22)  
0.04-0.75 

1.03 (0.89)  
0.10-3.32 

1.31 (1.77)  
0.09-6.19 

0.67 (0.64)  
0.05-2.72 

1.01 (0.70)  
0.02-2.41 

1.08 (1.03) 
0.03-3.15 

PreHD-B Cortical 
GM 

1.61 (1.90) 
0.09-7.24 

0.31 (0.27)  
0.00-1.10 

0.86 (0.81)  
0.06-2.91 

0.77 (0.69)  
0.15-2.60 

0.47 (0.47)  
0.02-1.70 

0.65 (0.53)  
0.00-1.86 

1.49 (1.28) 
0.23-5.22 

HD1 Cortical GM 
1.14 (1.44) 
0.11-6.76 

0.35 (0.25)  
0.03-0.88 

0.67 (0.55)  
0.06-1.71 

1.02 (1.09) 
 0.00-3.69 

0.37 (0.31)  
0.03-1.43 

0.87 (0.66)  
0.11-2.35 

1.30 (1.11) 
0.27-5.16 

HD2 Cortical GM 
0.96 (0.78) 
0.04-2.74 

0.22 (0.16)  
0.02-0.61 

0.86 (0.70)  
0.02-3.10 

1.13 (1.11)  
0.04-3.47 

0.61 (0.49)  
0.09-1.85 

0.66 (0.63)  
0.11-2.77 

1.04 (0.96) 
0.04-3.17 
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Table 3.11. Spearman’s ranked correlation for segmentations of total GM for all HD 
participants included in the current study. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 SPM8 
Unified 

Segment 

SPM8 New 
Segment 

SPM12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

PreHD-A 

SPM8 Unified Segment 1      

SPM8 New Segment 0.777 1     

SPM12 Segment 0.896 0.666 1    

ANTs Atropos 0.732 0.833 0.737 1   

MALP-EM 0.808 0.950 0.749 0.844 1  

FSL FAST 0.741 0.785 0.770 0.926 0.874 1 

FreeSurfer 0.865 0.959 0.752 0.805 0.952 0.802 

PreHD-B 

SPM8 Unified Segment 1      

SPM8 New Segment 0.770 1     

SPM12 Segment 0.932 0.889 1    

ANTs Atropos 0.726 0.934 0.851 1   

MALP-EM 0.842 0.964 0.941 0.919 1  

FSL FAST 0.883 0.848 0.917 0.857 0.878 1 

FreeSurfer 0.871 0.925 0.952 0.838 0.938 0.887 

HD1 

SPM8 Unified Segment 1      

SPM8 New Segment 0.737 1     

SPM12 Segment 0.857 0.672 1    

ANTs Atropos 0.847 0.818 0.779 1   

MALP-EM 0.793 0.955 0.702 0.886 1  

FSL FAST 0.845 0.731 0.815 0.917 0.841 1 

FreeSurfer 0.884 0.857 0.875 0.829 0.895 0.826 

HD2 

SPM8 Unified Segment 1      

SPM8 New Segment 0.441 1     

SPM12 Segment 0.758 0.555 1    

ANTs Atropos 0.644 0.820 0.671 1   

MALP-EM 0.633 0.917 0.719 0.860 1  

FSL FAST 0.827 0.738 0.768 0.908 0.853 1 

FreeSurfer 0.605 0.802 0.796 0.681 0.883 0.726 
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Table 3.12. Spearman’s ranked correlation for segmentations of cortical GM for all HD 
participants included in the current study.  

 SPM8 
Unified 

Segment 

SPM8 New 
Segment 

SPM12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

PreHD-A 

SPM8 Unified Segment 1      

SPM8 New Segment 0.815 1     

SPM12 Segment 0.883 0.722 1    

ANTs Atropos 0.865 0.901 0.844 1   

MALP-EM 0.836 0.970 0.755 0.886 1  

FSL FAST 0.848 0.848 0.847 0.920 0.874 1 

FreeSurfer 0.868 0.955 0.811 0.917 0.973 0.923 

PreHD-B 

SPM8 Unified Segment 1      

SPM8 New Segment 0.747 1     

SPM12 Segment 0.926 0.863 1    

ANTs Atropos 0.762 0.943 0.896 1   

MALP-EM 0.830 0.974 0.922 0.947 1  

FSL FAST 0.818 0.934 0.925 0.916 0.955 1 

FreeSurfer 0.887 0.836 0.935 0.848 0.874 0.925 

HD1 

SPM8 Unified Segment 1      

SPM8 New Segment 0.734 1     

SPM12 Segment 0.868 0.716 1    

ANTs Atropos 0.869 0.898 0.844 1   

MALP-EM 0.735 0.973 0.711 0.914 1  

FSL FAST 0.820 0.764 0.862 0.902 0.782 1 

FreeSurfer 0.820 0.893 0.898 0.910 0.901 0.854 

HD2 

SPM8 Unified Segment 1      

SPM8 New Segment 0.411 1     

SPM12 Segment 0.826 0.576 1    

ANTs Atropos 0.692 0.814 0.741 1   

MALP-EM 0.638 0.910 0.749 0.869 1  

FSL FAST 0.803 0.699 0.835 0.919 0.860 1 

FreeSurfer 0.729 0.729 0.887 0.832 0.868 0.880 
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3.3.3.3. Longitudinal results 

3.3.3.3.1. Total GM volume 

Total GM volume change (as a percentage of baseline volume) for all tools was smaller 

in controls than that of the HD gene-carrier groups (Table 3.13 and Figure 3.15). However 

when total GM volume change within each HD group was statistically compared to controls, 

MALP-EM and FreeSurfer were the only two tools that detected significantly greater change in 

all disease groups. All other tools detected significantly greater change in HD1 and HD2 

compared to controls, with SPM12 and FAST also showing greater change in PreHD-B 

compared to controls. 

 

 

Figure 3.15. Mean values for all tools and groups showing 2011 volume as a percentage of 
baseline volume in total GM. Significant change difference relative to controls after controlling 
for age, sex and site are represented by * p<.05, **p<.01.   
 

 

 

 

 

 

 

 



 

123 
 

Table 3.13. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in total GM. Positive 
values represent volumetric decreases over time. Results of regression analyses comparing 
rate of change in controls to HD groups, with significantly greater change in HD groups 
represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were controlled 
for. 

  Controls PreHD-A PreHD-B HD1 HD2 

SPM8 
Unified 
Segment 

% Decrease 2008 to 2011 
0.67 

 (3.05) 
-5.42-7.93 

2.11 
 (3.06) 

-2.13-11.07 

2.08 
 (4.53) 

-7.22-14.38 

5.15 
 (6.97) 

-7.37-30.87 

3.58 
 (2.06) 

-0.53-6.28 

Significant difference 
- 1.12 

(-0.75-3.00) 
p = 0.239 

0.62  
(-0.55-1.79) 

p = 0.299 

1.71  
(0.65-2.76) 
p = 0.002 

0.53  
(0.06-1.00) 
 p = 0.027 

SPM8 New 
Segment 
 

% Decrease 2008 to 2011 
0.43 

 (2.41) 
-7.93-3.23 

1.51 
 (1.09) 

-0.32-3.30 

1.28 
 (0.76) 

-0.26-2.60 

1.78 
 (1.04) 

0.14-4.12 

3.00 
 (3.39) 

-0.28-16.62 

Significant difference 
- 1.05 

 (-0.05-2.16) 
 p = 0.062 

0.44 
 (-0.07-0.95) 

 p = 0.089 

0.41 
 (0.06-0.76) 
 p = 0.021 

0.59 
 (0.09-1.08) 
 p = 0.021 

SPM12 
Segment 

% Decrease 2008 to 2011 
0.80 

 (2.29) 
-4.79-3.97 

1.54 
 (3.61) 

-7.49-7.29 

2.77 
 (1.64) 

0.28-5.89 

4.42 
 (2.06) 

0.82-7.80 

4.87 
 (2.50) 

0.98-9.65 

Significant difference 
- 0.43 

 (-1.40-2.26) 
 p = 0.646 

1.00 
 (0.42-1.58) 
 p = 0.001 

1.21 
 (0.78-1.65) 
 p = 0.000 

0.78 
 (0.36-1.19) 
 p = 0.000 

ANTs 

% Decrease 2008 to 2011 
1.39 

 (2.38) 
-0.83-9.69 

1.67 
 (2.57) 

-2.79-6.97 

1.65 
 (2.18) 

-2.17-7.17 

3.00 
 (1.96) 

0.10-7.09 

3.28 
 (4.26) 

-1.40-18.87 

Significant difference 
- 0.59 

 (-0.90-2.08) 
 p = 0.435 

0.20 
 (-0.44-0.84) 

 p = 0.544 

0.58 
 (0.16-1.00) 
 p = 0.006 

0.75 
 (0.18-1.31) 
 p = 0.009 

MALP-EM 

% Decrease 2008 to 2011 
0.35 

 (1.36) 
-3.81-2.55 

1.28 
 (1.29) 

-1.28-4.68 

1.37 
 (1.20) 

-1.08-3.59 

2.45 
 (2.36) 

-3.34-9.15 

2.31 
 (2.72) 

-1.76-11.83 

Significant difference 
- 0.89 

 (0.06-1.72) 
 p = 0.036 

0.47 
 (0.10-0.85) 
 p = 0.013 

0.65 
 (0.28-1.02) 
 p = 0.001 

0.39 
 (0.02-0.75) 
 p = 0.039 

FAST 

% Decrease 2008 to 2011 
0.49 

 (3.57) 
-7.91-8.88 

1.90 
 (7.83) 

-26.04-11.48 

2.57 
 (3.02) 

-0.72-12.70 

4.38 
 (4.47) 

-4.55-12.72 

6.70 
 (5.81) 

0.32-18.59 

Significant difference 
- 0.30 

 (-2.62-3.23) 
 p = 0.839 

1.15 
 (0.44-1.86) 
 p = 0.002 

1.05 
 (0.56-1.55) 
 p = 0.000 

0.85 
 (0.37-1.33) 
 p = 0.001 

FreeSurfer % Decrease 2008 to 2011 
0.42 

 (1.90) 
-5.96-2.51 

1.75 
 (1.62) 

-2.15-4.86 

2.08 
 (1.54) 

-0.97-4.98 

3.06 
 (1.70) 

-0.16-5.95 

3.46 
 (1.80) 

0.13-6.30 

 Significant difference - 
1.13 

 (0.06-2.21) 
 p = 0.039 

0.87 
 (0.37-1.37) 
 p = 0.001 

0.85 
 (0.49-1.22) 
 p = 0.000 

0.64 
 (0.31-0.97) 
 p = 0.000 
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3.3.3.3.2. Cortical GM volume 

The same analysis was conducted in CGM showing that CGM change was inconsistent 

across tools (Table 3.14 and Figure 3.16). Except for SPM8 New Segment, all tools showed 

significantly greater change in HD1 and HD2 compared to controls, SPM8 New Segment only 

showed greater change in HD1. MALP-EM, FAST and FreeSurfer all showed greater change in 

PreHD-B than controls, and only MALP-EM and FreeSurfer showed greater change in PreHD-B 

than controls.  

 

 
Figure 3.16. Mean values for all tools and groups showing 2011 volume as a percentage of 
baseline volume in CGM. Significant difference in longitudinal change relative to controls after 
controlling for age, sex and site are represented by * p<.05, **p<.01.   
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Table 3.14. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in cortical GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 

 
 

 Controls PreHD-A PreHD-B HD1 HD2 

SPM8 
Unified 
Segment 

% Decrease 2008 to 2011 
.94 

(3.06) 
-5.17-8.55 

2.05 
(2.17) 

-2.37-5.99 

1.73 
(3.71) 

-7.96-8.46 

4.55  
(4.11) 

-7.45-10.73 

4.03 
(2.30) 

-0.71-7.24 

Significant difference 
 .89 

(-.82-2.59) 
p = 0.309 

.40 
(0.63-1.42) 
p = 0.447 

1.26 
(.56-1.97) 
p = 0.000 

.55 
(.06-1.03) 
p = 0.028 

SPM8 New 
Segment 
 

% Decrease 2008 to 2011 
0.16 

(0.93) 
-1.52-1.84 

0.74 
(0.90) 

-1.21-2.79 

0.56 
(0.62) 

-0.87-2.26 

0.95 
(0.74) 

-0.29-2.60 

1.74 
(3.22) 

-0.82-14.87 

Significant difference 
 -0.56 

(-1.07--0.06) 
 p = 0.030 

-0.20 
(-0.39-0.00) 
 p = 0.046 

-0.31 
(-0.46--0.15) 

 p = 0.000 

-0.29 
(-0.65-0.07) 
 p = 0.114 

SPM12 
Segment 

% Decrease 2008 to 2011 
0.93 

(2.35) 
-4.68-4.25 

1.73 
(3.87) 

-7.83-7.98 

3.14 
(1.71) 

0.58-6.16 

5.06 
(2.39) 

1.17-9.06 

5.24 
(2.61) 

1.30-10.43 

Significant difference 
 -0.50 

(-2.42-1.42) 
 p = 0.608 

-1.13 
(-1.72--0.53) 

 p = 0.000 

-1.38 
(-1.86--0.91) 

 p = 0.000 

-0.83 
(-1.26--0.40) 

 p = 0.000 

ANTs 

% Decrease 2008 to 2011 
1.58 

(2.75) 
-1.25-11.81 

2.13 
(2.55) 

-2.21-7.71 

2.01 
(1.90) 

-2.00-5.84 

3.34 
(1.79) 

0.26-6.61 

3.51 
(3.95) 

-0.81-17.69 

Significant difference 
 -0.81 

(-2.44-0.83) 
 p = 0.335 

-0.27 
(-0.95-0.42) 
 p = 0.446 

-0.64 
(-1.09--0.18) 

 p = 0.006 

-0.71 
(-1.28--0.13) 

 p = 0.017 

MALP-EM 

% Decrease 2008 to 2011 
0.48 

(1.24) 
-3.13-2.49 

1.36 
(1.26) 

-1.13-4.08 

1.47 
(1.24) 

-0.73-3.82 

2.54 
(2.69) 

-3.65-10.92 

2.32 
(2.10) 

-1.37-9.09 

Significant difference 
 -0.78 

(-1.55--0.01) 
 p = 0.047 

-0.45 
(-0.80--0.09) 

 p = 0.013 

-0.66 
(-1.05--0.26) 

 p = 0.001 

-0.33 
(-0.62--0.04) 

 p = 0.027 

FAST 

% Decrease 2008 to 2011 
0.74 

(3.41) 
-6.63-8.33 

3.77 
(4.51) 

-2.62-12.54 

2.77 
(3.55) 

-0.36-15.00 

4.78 
(4.88) 

-3.85-14.14 

7.00 
(6.34) 

-0.09-20.82 

Significant difference 
 -1.96 

(-3.48--0.45) 
 p = 0.011 

-1.12 
(-1.83--0.41) 

 p = 0.002 

-1.09 
(-1.59--0.59) 

 p = 0.000 

-0.85 
(-1.37--0.33) 

 p = 0.001 

FreeSurfer 

% Decrease 2008 to 2011 
0.55 

(1.49) 
-3.32-2.26 

1.75 
(1.77) 

-1.94-6.24 

2.23 
(1.86) 

-1.37-5.69 

3.49 
(2.04) 

-0.50-6.51 

3.87 
(2.04) 

-0.13-7.69 

Significant difference 
 -0.98 

(-1.98-0.03) 
 p = 0.057 

-0.85 
(-1.33--0.37) 

 p = 0.000 

-0.93 
(-1.28--0.58) 

 p = 0.000 

-0.70 
(-1.00--0.40) 

 p = 0.000 

 

3.3.3.3.3. Lobular GM volume 

Longitudinal change within the lobes was variable for all groups with the parietal and 

occipital lobes showing the most consistent patterns of group differences across most 

techniques.  
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3.3.3.3.3.1. Frontal lobe volume 

Table 3.15 shows the longitudinal change in the frontal lobe. SPM8 New Segment and 

ANTs showed no significantly different change in any group compared to controls. MALP-EM 

and SPM8 Unified Segment only detected significant change in HD1 compared to controls, and 

SPM12 detected change in PreHD-B, HD1 and HD2 compared to controls. Both FSL FAST and 

FreeSurfer found significant differences in longitudinal change in all HD groups. 

3.3.3.3.3.2. Temporal lobe volume 

For the temporal lobe, SPM8 New Segment, MALP-EM and ANTs showed no significant 

differences in volumetric change. FSL FAST and SPM8 Unified segment found significant 

differences in HD1 compared to controls, and FreeSurfer and SPM12 found differences in HD1 

and HD2 compared to controls (Table 3.16). 

3.3.3.3.3.3. Parietal lobe volume 

Change in the parietal lobe was more widely detected across groups, with all 

techniques except SPM8 Unified Segment showing significantly greater volume reduction in 

HD1, HD2 and PreHD-B compared to controls, which only showed a difference between HD1 

and controls. SPM8 New Segment, MALP-EM, FAST and FreeSurfer detected significantly 

greater change over time in all HD groups (Table 3.17).  

3.3.3.3.3.4. Occipital Lobe Volume 

Occipital lobe change was again widespread across all tools in HD groups compared to 

controls (Table 3.18). SPM8 New Segment, MALP-EM, FSL FAST and FreeSurfer found 

significantly greater change in all HD groups compared to controls. SPM12 and ANTs found 

significantly greater change in all PreHD-B, HD1 and HD2 compared to controls and SPM8 

Unified Segment found greater change in HD1 and HD2. 

3.3.3.3.3.5. Insula Volume 

Finally, within the insula SPM8 New Segment and MALP-EM found no differences in 

change between any group and controls, SPM8 Unified Segment, ANTs, FAST and FreeSurfer 

found greater change in HD1 and HD2 than controls, and SPM12 found greater change in 

PreHD-B, HD1 and HD2 (Table 3.19). 
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Table 3.15. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in frontal lobe GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 
 

 
Controls PreHD-A PreHD-B HD1 HD2 

 
SPM8 Unified 
Segment 

% Decrease 2008 to 
2011 

1.24 
(3.38) 

-5.62-8.99 

2.01 
(2.51) 

-3.26-6.17 

1.82 
(3.62) 

-8.46-8.73 

4.21 
(4.37) 

-8.55-11.33 

4.05 
(2.29) 

-1.57-7.31 

Significant difference  
0.30 

(-1.53-2.12) 
p = 0.751 

0.23 
(-0.81-1.27) 

p = 0.662 

1.10 
(0.34-1.85) 
p = 0.004 

0.38 
(-0.12-0.87) 

p = 0.137 

SPM8 New 
Segment 

% Decrease 2008 to 
2011 

0.44 
(1.50) 

-1.75-3.92 

0.83 
(1.13) 

-2.16-3.31 

0.73 
(1.03) 

-0.85-2.82 

0.75 
(0.90) 

-0.94-2.41 

1.90 
(3.11) 

-0.32-14.45 

Significant difference  
0.32 

(-0.35-0.98) 
p = 0.349 

0.12 
(-0.22-0.46) 

p = 0.488 

0.18 
(-0.04-0.40) 

p = 0.115 

0.23 
(-0.16-0.61) 

p = 0.250 

SPM12 Segment 

% Decrease 2008 to 
2011 

1.15 
(2.51) 

-5.25-4.17 

1.69 
(4.34) 

-9.59-8.19 

3.22 
(2.03) 

0.26-6.40 

4.72 
(2.59) 

-0.16-9.58 

5.12 
(2.64) 

0.87-11.27 

Significant difference - 
0.22 

(-1.84-2.27) 
p = 0.838 

1.03 
(0.37-1.69) 
p = 0.002 

1.23 
(0.73-1.73) 
p = 0.000 

0.73 
(0.29-1.17) 
p = 0.001 

ANTs Atropos 

% Decrease 2008 to 
2011 

2.23 
(5.15) 

-2.41-22.35 

2.45 
(2.41) 

-1.78-8.09 

1.83 
(2.26) 

-2.78-5.97 

3.00 
(1.95) 

-0.86-6.03 

3.46 
(3.86) 

-0.66-17.44 

Significant difference - 
0.39 

(-2.07-2.85) 
p = 0.756 

-0.15 
(-1.32-1.02) 

p = 0.799 

0.32 
(-0.46-1.10) 

p = 0.423 

0.56 
(-0.25-1.37) 

p = 0.173 

MALP-EM 

% Decrease 2008 to 
2011 

0.91 
(1.98) 

-4.01-3.70 

1.81 
(1.38) 

-0.36-4.33 

1.67 
(1.71) 

-1.03-4.92 

2.56 
(3.01) 

-3.95-12.09 

2.57 
(1.91) 

0.40-8.28 

Significant difference - 
0.76 

(-0.25-1.77) 
p = 0.141 

0.28 
(-0.24-0.79) 

p = 0.293 

0.54 
(0.08-1.01) 
p = 0.022 

0.23 
(-0.11-0.56) 

p = 0.181 

FSL FAST 

% Decrease 2008 to 
2011 

0.71 
(3.59) 

-5.53-8.23 

3.62 
(5.60) 

-6.95-18.21 

2.52 
(4.06) 

-4.16-13.94 

3.60 
(5.91) 

-7.84-12.75 

7.74 
(9.14) 

-3.01-32.70 

Significant difference - 
1.70 

(0.00-3.39) 
p = 0.050 

0.94 
(0.19-1.68) 
p = 0.014 

0.77 
(0.20-1.34) 
p = 0.008 

0.96 
(0.21-1.71) 
p = 0.012 

FreeSurfer 
% Decrease 2008 to 
2011 

0.55 
(1.68) 

-1.68-3.49 

2.11 
(1.84) 

-1.37-6.96 

2.05 
(2.28) 

-1.59-6.33 

3.14 
(2.43) 

-1.39-7.06 

3.41 
(2.00) 

0.26-6.45 
 

Significant difference  
1.35 

(0.30-2.41) 
p = 0.012 

.71 
(0.17-1.24) 

p=.010 

.86 
(.48-1.23) 
p = .000 

.61 
(.31-.91) 
p = .000 
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Table 3.16. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in temporal lobe GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 
 

 Controls PreHD-A PreHD-B HD1 HD2 

 
SPM8 Unified 
Segment 

% Decrease 2008 to 2011 
1.47 

(3.00) 
-5.72-7.56 

1.92 
(1.93) 

-1.79-4.96 

1.27 
(4.02) 

-10.16-7.24 

4.27 
(3.82) 

-6.00-11.03 

3.82 
(2.42) 

-0.65-6.72 

Significant difference - 
0.46 

(-1.12-2.03) 
p = 0.569 

-0.07 
(-1.06-0.91) 

p = 0.887 

0.90 
(0.25-1.55) 
p = 0.006 

0.36 
(-0.10-0.83) 

p = 0.122 

SPM8 New 
Segment 

% Decrease 2008 to 2011 
0.75 

(1.53) 
-1.63-3.97 

0.44 
(1.29) 

-1.67-3.40 

0.39 
(0.99) 

-2.22-1.71 

0.70 
(1.21) 

-1.97-4.11 

1.48 
(3.90) 

-3.90-16.23 

Significant difference - 
-0.16 

(-0.95-0.63) 
p = 0.692 

-0.16 
(-0.48-0.16) 

p = 0.330 

-0.06 
(-0.31-0.18) 

p = 0.617 

0.05 
(-0.40-0.49) 

p = 0.839 

SPM12 
Segment 

% Decrease 2008 to 2011 
1.41 

(2.35) 
-5.56-5.02 

1.49 
(3.21) 

-5.70-6.56 

2.49 
(2.03) 

-1.48-6.04 

4.31 
(2.58) 

0.70-10.08 

4.80 
(3.20) 

-0.51-10.75 

Significant difference - 
-0.13 

(-1.81-1.55) 
p = 0.882 

0.56 
(-0.04-1.16) 

p = 0.067 

0.88 
(0.43-1.32) 
p = 0.000 

0.60 
(0.16-1.03) 
p = 0.008 

ANTs Atropos 

% Decrease 2008 to 2011 
2.63 

(3.50) 
-0.91-15.76 

2.11 
(2.80) 

-2.32-8.83 

1.64 
(1.98) 

-1.96-5.58 

3.06 
(1.81) 

-0.02-6.48 

3.43 
(4.62) 

-2.50-19.77 

Significant difference - 
-0.11 

(-1.95-1.72) 
p = 0.904 

-0.42 
(-1.18-0.35) 

p = 0.284 

0.10 
(-0.44-0.64) 

p = 0.721 

0.47 
(-0.18-1.12) 

p = 0.160 

MALP-EM 

% Decrease 2008 to 2011 
1.26 

(1.54) 
-3.59-4.26 

1.29 
(1.75) 

-1.64-5.62 

1.28 
(1.54) 

-1.49-5.11 

2.34 
(3.95) 

-8.26-14.21 

2.19 
(3.20) 

-4.65-12.75 

Significant difference - 
-0.03 

(-1.02-0.95) 
p = 0.950 

0.00 
(-0.40-0.40) 

p = 0.998 

0.19 
(-0.38-0.77) 

p = 0.512 

0.04 
(-0.35-0.43) 

p = 0.829 

FSL FAST 

% Decrease 2008 to 2011 
1.47 

(3.32) 
-5.72-7.87 

3.72 
(4.27) 

-3.02-10.72 

2.13 
(2.79) 

-1.40-11.11 

4.38 
(4.92) 

-3.65-17.89 

5.13 
(3.90) 

-1.31-14.52 

Significant difference - 
1.33 

(-0.41-3.07) 
p = 0.135 

0.43 
(-0.30-1.15) 

p = 0.248 

0.65 
(0.05-1.25) 
p = 0.035 

0.34 
(-0.09-0.78) 

p = 0.124 

FreeSurfer % Decrease 2008 to 2011 
1.18 (2.43) -

3.25-7.54 

1.49 
(2.55) 

-4.84-6.39 

1.58 
(1.92) 

-1.87-5.11 

3.42 
(1.73) 

1.19-7.38 

4.04 
(2.45) 

-2.29-7.79 

 Significant difference  
.23 

(-1.26-1.72) 
p = 0.762 

.28 
(-.32-.87) 
p = 0.364 

.71 
(.71-1.12) 
p = 0.001 

.63 
(.24-1.02) 
p = 0.002 
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Table 3.17. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in parietal lobe GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 
 

 
Controls PreHD-A PreHD-B HD1 HD2 

SPM8 
Unified 
Segment 

% Decrease 2008 to 2011 
0.44 

(3.19) 
-4.34-8.36 

2.24 
(2.06) 

-2.31-5.63 

2.13 
(3.59) 

-6.23-9.01 

4.60 
(4.06) 

-7.72-10.10 

3.81 
(2.69) 

-1.66-7.53 

Significant difference - 
1.62 

(-0.06-3.31) 
p = 0.059 

0.85 
(-0.21-1.90) 

p = 0.115 

1.48  
(0.76-2.19) 
p = 0.000 

1.62 
(-0.06-3.31) 

p = 0.059 

SPM8 New 
Segment 

% Decrease 2008 to 2011 
-0.37 
(1.67) 

-3.77-2.14 

0.81 
(0.97) 

-1.07-2.37 

0.60 
(0.84) 

-1.24-1.86 

1.05 
(1.13) 

-1.31-2.93 

1.56 
(2.29) 

0.03-10.58 

Significant difference - 
1.05 

(0.36-1.74) 
p = 0.003 

0.45 
(0.11-0.78) 
p = 0.009 

0.55 
(0.31-0.80) 
p = 0.000 

0.36 
(0.04-0.67) 
p = 0.027 

SPM12 
Segment 

% Decrease 2008 to 2011 
0.51 

(3.00) 
-7.75-4.38 

1.70 
(3.61) 

-8.07-7.88 

3.33 
(1.48) 

0.91-6.51 

5.22 
(2.28) 

1.25-9.39 

4.95 
(2.91) 

0.59-9.92 

Significant difference - 
0.83 

(-1.15-2.81) 
p = 0.412 

1.42 
(0.75-2.10) 
p = 0.000 

1.61 
(1.06-2.15) 
p = 0.000 

0.80 
(0.30-1.30) 
p = 0.002 

ANTs 
Atropos 

% Decrease 2008 to 2011 
0.47 

(1.94) 
-2.63-5.38 

1.98 
(2.68) 

-4.78-7.28 

2.46 
(2.28) 

-1.66-8.58 

3.54 
(2.10) 

-0.37-6.95 

3.30 
(3.24) 

-2.03-12.84 

Significant difference - 
1.29 

(-0.18-2.75) 
p = 0.085 

0.96 
(0.35-1.57) 
p = 0.002 

1.11 
(0.74-1.48) 
p = 0.000 

0.68 
(0.22-1.13) 
p = 0.003 

MALP-EM 

% Decrease 2008 to 2011 
0.07 

(1.57) 
-3.95-2.40 

0.97 
(1.00) 

-1.03-3.07 

1.39 
(1.22) 

-0.65-3.56 

2.23 
(1.68) 

-0.59-7.16 

1.94 
(1.55) 

-0.60-6.01 

Significant difference - 
0.77 

(0.05-1.48) 
p = 0.036 

0.60 
(0.21-0.99) 
p = 0.003 

0.76 
(0.48-1.03) 
p = 0.000 

0.34 
(0.08-0.60) 
p = 0.011 

FSL FAST 

% Decrease 2008 to 2011 
0.09 

(3.41) 
-9.04-5.46 

3.27 
(3.93) 

-2.64-11.00 

3.15 
(2.96) 

-0.48-11.11 

4.24 
(3.65) 

-4.03-11.29 

5.30 
(4.42) 

0.72-17.44 

Significant difference - 
2.23 

(0.54-3.92) 
p = 0.010 

1.54 
(0.77-2.32) 
p = 0.000 

1.25 
(0.72-1.78) 
p = 0.000 

0.80 
(0.24-1.36) 
p = 0.005 

FreeSurfer 

% Decrease 2008 to 2011 
0.45 

(1.41) 
-2.55-2.50 

1.45 
(1.94) 

-2.51-5.97 

2.96 
(2.14) 

-1.60-7.27 

3.89 
(2.54) 

0.33-9.60 

3.86 
(2.38) 

-0.78-9.35 

Significant difference  
.60 

(-.40-1.61) 
p = 0.239 

1.21 
(.70-1.72) 
p = 0.000 

1.06 
(.67-1.44) 
p = 0.000 

.65 
(0.35-0.94) 
p = 0.000 
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Table 3.18. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in occipital lobe GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 
 

 
Controls PreHD-A PreHD-B HD1 HD2 

 
 
SPM8 
Unified 
Segment 

% Decrease 2008 to 2011 
0.35 

(4.42) 
-11.14-9.57 

2.18 
(3.12) 

-4.03-8.78 

1.88 
(4.26) 

-8.03-9.34 

6.06 
(4.87) 

-7.32-15.50 

5.01 
(3.26) 

-0.43-9.77 

Significant difference - 
1.81 

(-0.79-4.41) 
p = 0.173 

0.90 
(-0.46-2.26) 

p = 0.197 

1.95 
(1.01-2.89) 
p = 0.000 

1.31 
(0.48-2.14) 
p = 0.002 

SPM8 New 
Segment 

% Decrease 2008 to 2011 
-0.66 
(2.13) 

-7.72-1.27 

0.96 
(1.95) 

-3.02-4.27 

0.39 
(1.60) 

-1.81-3.56 

1.78 
(1.22) 

-0.16-4.12 

2.40 
(4.68) 

-2.66-20.47 

Significant difference - 
1.85 

(0.60-3.11) 
p = 0.004 

0.56 
(0.01-1.11) 
p = 0.047 

0.83 
(0.47-1.19) 
p = 0.000 

0.76 
(0.18-1.34) 
p = 0.010 

SPM12 
Segment 

% Decrease 2008 to 2011 
0.58 

(3.47) 
-9.26-4.94 

2.28 
(5.04) 

-7.40-11.37 

3.88 
(2.72) 

-0.14-9.25 

7.11 
(3.24) 

2.44-15.85 

7.12 
(3.32) 

1.68-12.39 

Significant difference - 
1.59 

(-1.11-4.30) 
p = 0.248 

1.74 
(0.83-2.66) 
p = 0.000 

2.15 
(1.47-2.83) 
p = 0.000 

1.42 
(0.82-2.03) 
p = 0.000 

ANTs 
Atropos 

% Decrease 2008 to 2011 
0.35 

(2.95) 
-8.51-6.80 

1.90 
(3.98) 

-3.01-8.94 

2.79 
(2.95) 

-2.22-8.53 

4.64 
(2.58) 

0.59-10.90 

4.65 
(5.08) 

-2.34-22.64 

Significant difference - 
1.69 

(-0.44-3.82) 
p = 0.119 

1.32 
(0.46-2.18) 
p = 0.003 

1.45 
(0.91-1.98) 
p = 0.000 

1.21 
(0.51-1.91) 
p = 0.001 

MALP-EM 

% Decrease 2008 to 2011 
-0.73 
(2.10) 

-7.74-1.90 

1.10 
(2.05) 

-3.06-4.50 

1.52 
(2.16) 

-4.24-5.23 

3.57 
(2.56) 

-0.53-9.38 

2.99 
(3.04) 

-3.59-11.72 

Significant difference - 
1.93 

(0.66-3.19) 
p = 0.003 

1.17 
(0.54-1.80) 
p = 0.000 

1.36 
(0.90-1.81) 
p = 0.000 

0.92 
(0.48-1.36) 
p = 0.000 

FSL FAST 

% Decrease 2008 to 2011 
0.63 

(6.00) 
-18.17-13.82 

5.17 
(6.56) 

-3.67-22.14 

4.22 
(6.99) 

-0.25-31.20 

9.45 
(10.13) 

0.13-44.52 

12.09 
(12.81) 

-1.89-37.55 

Significant difference - 
3.47 

(0.52-6.41) 
p = 0.021 

2.13 
(0.71-3.55) 
p = 0.003 

2.26 
(0.99-3.53) 
p = 0.000 

1.82 
(0.75-2.88) 
p = 0.001 

FreeSurfer 

% Decrease 2008 to 2011 
-0.08 
(2.84) 

-10.87-2.81 

1.68 
(2.54) 

-3.08-6.66 

3.06 
(2.99) 

-3.23-7.75 

4.71 
(2.49) 

-1.62-8.27 

4.96 
(3.43) 

0.17-11.70 
Significant difference 

 
1.74 

(0.12-3.37) 
p = 0.036 

1.71 
(0.88-2.54) 
p = 0.000 

1.57 
(1.02-2.11) 
p = 0.000 

1.28 
(0.73-1.84) 
p = 0.000 
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Table 3.19. Mean % change (difference between 2011 and baseline volume as a percentage of 
baseline volume), standard deviation and ranges for all tools and groups in insula lobe GM. 
Positive values represent volumetric decreases over time. Results of regression analyses 
comparing rate of change in controls to HD groups, with significantly greater change in HD 
groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 
 

 
Controls PreHD-A PreHD-B HD1 HD2 

SPM8 
Unified 

% Decrease 2008 to 2011 
0.28 

(3.39) 
-9.01-5.73 

1.50 
(2.35) 

–3.92-5.17 

1.68 
(2.59) 

-3.62-5.56 

3.97 
(3.19) 

-4.54-8.96 

4.11 
(3.36) 

-2.20-13.00 

Significant difference - 
0.75 

(-1.14-2.65) 
p = 0.438 

0.74 
(-0.19-1.67) 

p = 0.118 

1.22 
(0.58-1.86) 
p = 0.000 

1.07 
(0.44-1.70) 
p = 0.001 

SPM8 New 

% Decrease 2008 to 2011 
-0.77 
(2.95) 

-11.79-2.19 

0.17 
(1.20) 

-2.01-1.94 

0.54 
(1.69) 

-2.97-4.18 

0.23 
(1.24) 

-3.30-2.12 

1.35 
(5.08) 

-3.15-21.44 

Significant difference - 
0.86 

(-0.51-2.23) 
p = 0.218 

0.65 
(-0.05-1.35) 

p = 0.070 

0.32 
(-0.12-0.77) 

p = 0.154 

0.62 
(-0.09-1.33) 

p = 0.086 

SPM12 

% Decrease 2008 to 2011 
-0.13 
(3.01) 

-9.85-3.30 

1.55 
(3.02) 

-5.67-7.31 

2.64 
(1.84) 

0.00-6.52 

4.49 
(2.42) 

-0.47-8.85 

5.27 
(4.37) 

0.22-16.80 

Significant difference - 
1.39 

(-0.45-3.24) 
p = 0.138 

1.41 
(0.68-2.14) 
p = 0.000 

1.52 
(0.98-2.06) 
p = 0.000 

1.32 
(0.65-1.99) 
p = 0.000 

Atropos 

% Decrease 2008 to 2011 
-0.23 
(3.71) 

-13.19-4.79 

0.25 
(2.10) 

-4.82-3.59 

0.51 
(1.66) 

-3.63-3.92 

1.85 
(1.73) 

-0.97-4.60 

3.16 
(5.20) 

-1.54-21.45 

Significant difference - 
0.41 

(-1.33-2.14) 
p = 0.645 

0.40 
(-0.44-1.23) 

p = 0.351 

0.69 
(0.18-1.20) 
p = 0.008 

1.20 
(0.42-1.98) 
p = 0.003 

MALP-EM 

% Decrease 2008 to 2011 
-1.65 
(6.72) 

-23.50-10.04 

1.07 
(2.94) 

-1.91-10.41 

1.18 
(3.22) 

-2.53-12.26 

1.07 
(4.21) 

-8.27-8.34 

1.47 
(3.70) 

-3.90-11.62 

Significant difference - 
2.96 

(-0.16-6.08) 
p = 0.063 

1.30 
(-0.27-2.86) 

p = 0.104 

0.72 
(-0.37-1.82) 

p = 0.196 

0.77 
(-0.24-1.78) 

p = 0.136 

FAST 

% Decrease 2008 to 2011 
-0.72 
(5.10) 

-19.77-4.00 

1.99 
(2.83) 

-2.61-8.31 

1.71 
(2.12) 

-1.16-8.53 

2.90 
(1.91) 

-1.34-5.73 

3.49 
(2.41) 

0.59-9.00 

Significant difference - 
1.97 

(-0.11-4.04) 
p = 0.063 

1.19 
(0.13-2.25) 
p = 0.028 

1.13 
(0.44-1.81) 
p = 0.001 

0.93 
(0.21-1.64) 
p = 0.011 

FreeSurfer 

% Decrease 2008 to 2011 
-0.69 
(4.26) 

-16.16-3.23 

1.29 
(2.49) 

-1.88-7.00 

1.13 
(2.47) 

-4.12-5.36 

1.74 
(2.42) 

-1.79-6.90 

3.43 
(3.51) 

-3.24-14.01 

Significant difference  
1.56 

(-0.45-3.56) 
p = 0.128 

0.84 
(-0.18-1.87) 

p = 0.106 

0.72 
(0.03-1.41) 
p = 0.041 

0.95 
(0.27-1.63) 
p = 0.006 

 

3.4. Discussion 

The detailed analysis of GM segmentation techniques undertaken in this research has 

provided useful insight into the measurement of grey matter volume within HD, especially for 

measurement of the CGM. The combined qualitative and quantitative analyses conducted on 

two different datasets provided great depth of information that allows informed choices to be 

made on the best techniques for use on the TRACK-HD cohort, but also offers lessons for 

researchers working on other cohorts. The results demonstrate that most tools show good 
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reliability when assessed via quantitative measures, but that visual QC highlights variability 

between tools. Furthermore, the tools show different patterns of results when using them to 

measure longitudinal change, supporting previous work that highlights the impact of different 

methods on the conclusions drawn in neuroimaging (Katuwal et al. 2016). 

An initial finding that warrants discussion is that the user input required for each tool 

varies widely. Some tools required processing steps prior to the segmentation (e.g. ANTs), 

whereas others did not (e.g. SPM, FreeSurfer). In addition, some required the ability to 

optimise the pipeline for different datasets by creation of a template or probability priors. 

While some users may prefer greater flexibility and customisation options from a tool, others 

may want a more simple application with limited options. Based on the experience of running 

seven tools on both BrainWeb and TRACK-HD datasets, all tools except ANTs were user-

friendly and understandable. Despite having experience in some coding and an understanding 

of concepts related to the processing of MRI data, ANTs was still difficult to optimise and 

obtain satisfactory results from. While there is evidence that ANTs is reliable and accurate 

(Tustison et al. 2014; Avants, Tustison, Wu, et al. 2011; Schwarz et al. 2016), these results were 

not replicated and it is assumed that this was because of the difficulty experienced when 

trying to apply the tool to the current datasets. Whilst satisfactory results were achieved, it 

involved a lot of experimentation, and the results were inferior to what was expected given 

the previously reported performance of ANTs. Interestingly, this replicates a recent study 

which also found poorer performance on ANTs than anticipated (Righart et al. 2017) For a 

novice user with little understanding of the multitude of options required to run tools such as 

ANTs, optimisation can be a long process of trial and error rather than making informed 

choices about the best options to select for each dataset. Most other tools provided default 

options that were largely successful.  

Another difference between tools that is important to recognise is that many define 

GM regions differently; some include subcortical structures, cerebellar GM and brainstem, and 

some do not. In addition, some only provide whole-brain results and some divide the GM into 

large or small regions. The use of PVE GM versus discrete GM volumes is inconsistent between 

the tools, with most tools outputting both partial volume corrected maps and discrete tissue 

maps (FSL, ANTs, MALP-EM) but some outputting more complex volumetric maps (FreeSurfer). 

Some software also output pre-calculated volumes for the segmentations and regions in text 

files. Table 3.20 shows a summary of these factors for the software included in this analysis.  

 

 



 

133 
 

Table 3.20. A summary of some characteristics of the tools included in the current study.  

 
SPM8 

Unified 
Segment 

SPM8 New 
Segment 

SPM12 
Segment 

ANTs MALP-EM FAST FreeSurfer 

Total GM 
volume? 

Yes Yes Yes Yes Yes Yes Yes 

Regional Volume 
as default? 

No No No 

No 
(additional 

steps 
required) 

Yes No Yes 

Partial Volume 
Maps? 

Yes Yes Yes Yes Yes Yes No 

Discrete Volume 
Maps? 

No No No Yes Yes Yes No 

Volumes 
automatically 
output in text 

file? 

No No No No Yes No Yes 

 

Qualitative analysis was done prior to quantitative analysis for both datasets. For the 

BrainWeb data initial examination of the output enabled greater understanding of the 

performance of each technique in a near perfect dataset. While the quantitative analysis can 

measure the performance of a number of metrics, only visual QC can detect subtle and 

persistent factors in the regions, such as over- or underestimation of the GM. Whilst reviewing 

the segmentations, the GT for each scan was examined and it became clear that GT regions are 

slightly inaccurate. The segmentations included dura in a moderate number of scans, and this 

should be considered whilst drawing conclusions from this analysis. Due to the errors 

associated with the BrainWeb GT, a total overlap between the GT and segmentation tools 

should not be expected as some of the tools may more accurately delineate the cortical 

surface.   

SPM8 Unified Segment was the first tool to be examined. The border between WM 

and GM was gradual, with a large number of voxels classified as having some proportion of GM 

although upon visual inspection they were WM voxels. In the BrainWeb dataset the GM/CSF 

boundary was tight, although this was not an issue in the TRACK-HD cohort. While the 

software performed well in the artificial BrainWeb data, in the TRACK-HD cohort SPM8 Unified 

Segment poorly segmented the occipital GM and temporal poles, with these areas frequently 

being overestimated. There was also occasional underestimation of the frontal lobes. This 

indicates that on a real dataset with increased noise and movement the software suffers from 

increased errors in segmentation. SPM8 Unified Segment also had the highest rate of 
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segmentation failures, with 11 initial fails in the TRACK-HD data (3.67% of the dataset), 

reducing to 6 total fails (2% of the dataset) after re-aligning and re-running the data in the 

TRACK-HD cohort.  

In both the BrainWeb and TRACK-HD segmentations SPM8 New Segment introduced 

significant error through the incorrect classification of voxels in the dura, skull and outside the 

skull as GM. While the PVE for these voxels were low, this error was persistent and if these 

segmentations were used for a whole study it is likely that the results would be less sensitive 

to group differences or longitudinal change due to the incorrect classification of non-brain 

tissue. In addition, SPM8 New Segment also showed problems with overestimation of the 

occipital and temporal lobes. 

 SPM12 showed an improvement on both earlier versions of SPM. The boundaries 

between GM/WM were clearer and for the TRACK-HD cohort the delineation in occipital and 

temporal regions was improved, although there was still minor overestimation and spillage 

into the dura in these regions. Based on visual inspection, SPM12 output the most accurate 

version of SPM.  

ANTs was the most variable software, likely due to the increased user input required 

to process scans using this software. While this allows for more flexibility and greater 

applications of the software, it can also result in variable results due to minor differences in 

steps such as template creation or registration. For the BrainWeb dataset ANTs performed 

well, showing good delineation of the sulci and no persistent errors. Performance in the 

TRACK-HD dataset appeared to be highly dependent on brain size, with small brains including 

more dura. For this cohort a standard group template was created resulting in a template that 

was too large for the HD participants, but it is possible that if a template was created for each 

HD group the results could be improved. Similarly to SPM, the most common regions for errors 

were the occipital and temporal lobes – with overestimation the most persistent error, 

although the amount of overestimation varied largely. 

MALP-EM was the most visually consistent software both within and between the two 

cohorts. In the BrainWeb dataset it suffered from minor underestimation of the temporal 

regions in some cases, but performed well otherwise. In the TRACK-HD cohort the consistent 

errors associated with occipital and temporal segmentation in other techniques appeared 

much more infrequently in MALP-EM regions. There were minor examples of dura inclusion or 

exclusion in some scans around the superior boundaries.  

FAST performed very differently on the BrainWeb and TRACK-HD cohorts. The 

segmentations on the BrainWeb dataset were very good, with good delineation of the surface 
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and only minor spillage in occipital and temporal lobes. Comparatively, FSLs FAST performed 

very poorly on the TRACK-HD cohort. This was mostly due to the failure of the initial brain 

extraction, BET, to successfully detect and extract the brains in this dataset despite using an 

optimised procedure. Large chunks of the frontal and occipital lobes were often omitted from 

the segmentations, and spillage into other brain regions was also a problem for these 

segmentations. The contrast between these two scenarios highlight the importance of testing 

all tools before applying them to different datasets, since software which performs very well in 

one dataset may perform poorly in another due to the large variability associated with MRI 

scanning parameters and different cohorts.  

FreeSurfer performed very poorly on the BrainWeb data. Large regions of the GM 

were omitted from almost every segmentation, especially in occipital, frontal and temporal 

lobes. While FreeSurfer segmentations for the TRACK-HD data were an improvement, the 

regions were generally tight, suggesting overall underestimation of the GM, and there were a 

number of segmentation errors, with the most common error being overestimation of the 

occipital and superior regions of the brain.  

The qualitative results showed large variability in performance, with SPM12 Segment 

and MALP-EM appearing as the most consistent and accurate methods after visual QC. In 

addition, with further optimisation of the group template and segmentation procedure on the 

TRACK-HD cohort it is likely that the results from ANTs could be improved to reduce errors 

associated with inclusion of extra dura. Of these tools, MALP-EM performed the most 

consistently in the TRACK-HD cohort with less overestimation of occipital and temporal 

regions, and only rare cases of the GM region extending into dura or cortical volume excluded 

from the region. Throughout this process, over 2000 segmentations were reviewed and it 

quickly became apparent how vital the visual QC process is. A number of scans failed 

processing initially, either due to user error such as the incorrect parameters being specified or 

due to failure in the software. When examining the volumetric values output from failed 

segmentations it was not always obvious from these values that the segmentation was very 

poor. This supports one previous study in which outliers were used to select the scans that 

require visual QC. The authors found that this technique resulted in a large number of 

segmentation errors being missed, and concluded that all data should undergo visual QC 

(Waters et al. 2017). Our results confirm this, as often when the volumetric values of a failed 

segmentation were compared to other values for the same region, they did not appear to be 

quantitative outliers. When performing a longitudinal or regional analysis, the inclusion of 

failed data would have a large impact of the results. While only a small number of scans did 
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completely fail processing in the current study, there were a greater proportion of poor 

segmentations – especially for FAST and FreeSurfer and particularly in the occipital and 

temporal lobes. When performing analysis on a small cohort or trying to detect subtle brain 

changes within a group these poor segmentations would likely have a large impact on the 

sensitivity of tools. In these instances, more stringent inclusion criteria would be beneficial. 

The quantitative results from the BrainWeb analysis provide evidence on the accuracy 

of these tools. Initially, the BrainWeb cohort was used to compare both partial volume maps 

and discrete volume maps to the GT.  For all segmentation techniques that provided partial 

volume maps, the values were much closer to those of the GT, and mean differences were 

generally lower, suggesting a higher level of accuracy. This is consistent with previous reports 

(Tohka 2014). While the dice scores for most measures were slightly lower for partial volume 

maps, it is likely that this is due to the voxel-wise calculation of dice scores in this study. For 

discrete volumes the voxel values were either 1 or 0, corresponding to GM or not GM, 

whereas for partial volume maps the voxels could vary between 0 and 1 and thus a lower level 

of overlap in the partial volume scores is unsurprising.  

Total and cortical GM results for the BrainWeb analysis suggested that while there was 

good correspondence between BrainWeb values and the output volumes for the different 

tools, there were still large differences in the raw volumes. This was especially apparent for 

FreeSurfer, which had a much greater difference than any other method for cortical GM, 

significantly under-estimating cortical GM. While a complete overlap was not expected due to 

the errors in BrainWeb segmentations previously mentioned, the large divergence between 

BrainWeb and FreeSurfer is concerning, and supports the poor results of the qualitative 

analysis examining FreeSurfer. The other tools overall performed well on the BrainWeb data, 

with small, albeit significant, differences between the GT volumes and segmented volumes. 

The ICC values from all tools provided evidence that there is good overlap despite the 

significant differences in raw volumes.  

The lobular results provide more specific information on the performance of these 

tools, especially FreeSurfer. The values for most tools were close to the expected values based 

on the GT. Differences between the raw GT and lobular volumes for most tools were around 3-

4%, and although these differences were significant in a number of cases, as measured by 

paired t-tests, the overlap measures indicated voxel-wise correspondence of around 0.90. This 

demonstrates very high quantitative overlap with the GT. FreeSurfer showed large differences 

to the lobular GT volumes for all lobes. While it is likely that this is, in part, due to the fact that 

the automatically calculated regions were used for the FreeSurfer lobular analysis (see section 
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3.2.4), it also demonstrates the poor performance of FreeSurfer on the BrainWeb data as 

verified by the visual QC. Unfortunately, it is impossible to calculate voxel-wise overlap for 

FreeSurfer as voxel-wise maps are not output during processing. However, the visual and 

quantitative results provide enough evidence to demonstrate very poor performance of 

FreeSurfer on the BrainWeb data.  

The wide variation in the quality of segmentation performance on the TRACK-HD data 

is further demonstrated by the quantitative results, which showed large differences in 

segmentation across tools for raw total, cortical and lobular GM volumes. Longitudinal analysis 

demonstrated that while the pattern of total and cortical GM change was similar across tools, 

when GM change in HD participants was statistically compared to GM change in controls, the 

tools detected differing degrees of change. In addition, for lobular volumes the tools showed 

different patterns of change in a number of regions. Despite the variability in raw volumes and 

sensitivity to change, all tools generally showed high reliability across groups and regions, as 

measured by ICC and repeatability metrics, and extracted volumes were typically highly 

correlated between different tools.  

For controls and HD participants, GM regions derived using MALP-EM were 

consistently larger than those for other tools, likely due to the regions having higher overall 

probabilistic GM segmentation values. SPM also outputted comparatively large regions, with 

FSL FAST and FreeSurfer outputting the lowest; a discrepancy that has been previously noted 

(Katuwal et al. 2016). SPM regularly over-estimated both occipital and temporal lobe regions, 

this was particularly noticeable for larger brains and in earlier versions of SPM, indicating that 

SPM may over-estimate between-group differences when comparing healthy to atrophied 

brains. Low volumes output from FSL segmentations can be explained by regular 

underestimation of the cortical GM, partly resulting from poor brain extraction in this cohort. 

It is important to note that the poor performance of BET should not rule out the use of FSL in 

other cohorts, since it is known to perform well on other data (Smith 2002). Lower volumes 

output by FreeSurfer are possibly due to subtle underestimation of the GM occurring at the 

cortical boundary with CSF. While the partial volume included via calculation of FreeSurfer 

regions would account for some of these voxels, the regions remained tight along the outer 

boundary after accounting for this. ANTs showed average values that were in the middle of 

most tools, possibly due to the variable performance of this tool. 

Although all tools demonstrated errors using the default pipelines, in this analysis no 

manual intervention was performed to improve the quality of segmentation due to the 

increased subjectivity involved in manual intervention. However, it is important to note that all 
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tools offer some opportunity to improve the issues described above via optimisation of the 

segmentation and/or manual intervention after segmentation. For example, FreeSurfer allows 

editing of the segmented region to improve regions with over- or under- segmentation, MALP-

EM, FAST, SPM and ANTs can all be used with highly optimised masks to improve 

segmentation, or can be manually edited after segmentation.  

Despite the lack of optimisation and manual editing it is reassuring to note good 

reliability for back-to-back scans across tools using ICC and a repeatability metric. These 

findings support the results of previous studies comparing SPM, FSL and FreeSurfer (Katuwal et 

al. 2016) and provide new results validating ANTs and MALP-EM. Most tools were also highly 

correlated, again supporting previous studies (Katuwal et al. 2016). Furthermore, there was no 

indication from the quantitative results that the tools have any difference in reliability 

between control participants and HD participants. Although correlations between the 

techniques tended to decrease with increasing disease progression, indicating some 

divergence of performance between the tools on brains with more advanced atrophy, 

particularly for SPM8 Unified Segment, which resulted in smaller volumes for HD participants 

and may indicate an under-estimation of GM in HD. This result is similar to a previous study, 

which indicated possible over-estimation of group differences in SPM (Callaert et al. 2014). 

Using optimised brain masks or performing manual editing may improve performance on 

atypical brains, but generally the tools performed as well on HD participants as they did on 

control participants.  

Different techniques showed different longitudinal sensitivity to GM change in HD 

groups compared to controls, especially within the five lobes. For total and cortical GM, all 

techniques showed decreasing volume with increasing disease progression. While SPM8 

Unified Segment, SPM12 and FAST showed the largest decreases in total GM volume over 

time, MALP-EM and FreeSurfer both showed significant change across all disease stages, 

possibly indicating greater sensitivity to small changes. In cortical GM, SPM8 Unified Segment, 

SPM12 and FAST showed large decreases in raw GM volume, but again MALP-EM and 

FreeSurfer showed statistical sensitivity to small changes. MALP-EM was developed for use in 

clinical cohorts, which could partly explain the sensitivity of MALP-EM in an HD cohort (Ledig 

et al. 2015).  

The results of the longitudinal lobular analysis indicate large differences between the 

tools on each lobe, with particular divergence between tools in the frontal lobe, temporal lobe 

and insula. The results of this analysis emphasise the importance of good quality 

segmentations, with some significant results being driven by participants with very high rates 
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of change. For example, a significantly greater volumetric loss in PreHD-A compared to 

controls in the frontal lobe as measured by FSL FAST was possibly driven by a percentage loss 

in one participant of 18% between baseline and follow-up. Re-examination of the 

segmentations revealed underestimation of the frontal lobe in the follow-up time point rather 

than a true volumetric change. If manual editing had been performed this result would be 

accounted for, and a more biologically plausible rate of change measured. The impact of 

segmentation errors is reduced in large cohorts or with whole-brain analyses, but when 

examining regional change the quality of every slice of the segmentation is paramount. This 

result supports the work of (Iscan et al. 2015) who found that by including scans which have 

poorly delineated FreeSurfer regions in an analysis, the sample size required to detect a true 

effect increases. It is possible that the results shown in the parietal and occipital lobe are more 

uniform across tools as this is a region that is thought to undergo the most atrophy within 

cortical GM in pre-HD and early HD (Johnson et al. 2015; Rüb et al. 2015; Tabrizi et al. 2012; 

Wolf et al. 2014), and so statistical sensitivity to change in these regions is more robust when 

segmentation quality is sub-optimal and variability is high. In comparison, regions that may 

have slower rates of change in HD (e.g. frontal lobe) are more easily biased by poor 

segmentations and thus different techniques identify different patterns of atrophy. 

Interestingly, all techniques found a higher volume in PreHD-A than in controls. This result is 

consistent with TRACK-HD, and may indicate a compensatory mechanism in the pre-HD group 

However, the raw volumes are not corrected for TIV and so these findings should be further 

investigated. This study is underpowered to draw conclusions on the true nature of lobular 

progression of GM atrophy in HD, the results provide a useful demonstration on the 

importance of selecting a segmentation tool that performs well on a particular dataset. 

3.4.1. Suggestions for the selection of a segmentation tool  

The results of this study can inform the selection of a GM segmentation tool for use in 

the TRACK-HD cohort, but they can also be generalised to other clinical cohorts, particularly 

neurodegenerative diseases. All tools showed consistently high reliability when used with 

clinical data. However, there were a significant number of segmentation errors and while 

segmentation quality for each tool can be optimised, it is important to note variable results are 

likely depending on factors including scanner parameters, quality of data and researcher 

expertise. This analysis can help to provide a set of guidelines on how to select of the most 

appropriate segmentation tool in different types of datasets, as described here. 

3.4.1.1. Which segmentation tool best answers your question? 
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It is important to consider which software tools contain features that are most 

appropriate for addressing your question or hypothesis. For example, if regional GM volume is 

the main focus, considering software that includes the option to perform regional analysis and 

atlas optimisation can potentially reduce errors otherwise introduced when applying a mask to 

your cohort. Some tools (for example, SPM, ANTs, FSL, MALP-EM) are suitable for extracting 

volumes from customised regions or atlases applied to volumetric maps, while others, such as 

FreeSurfer, recommend using default atlases. Furthermore, the intended use of other 

structural analyses such as CT or VBM should also be considered.  

3.4.1.2. Are your knowledge, experience and resources 

sufficient to use the tool?  

 While some tools offer numerous options for customisation, this often requires an 

appropriate level of analysis and computing expertise. Without full understanding of the 

changes being applied to a pipeline, there is a risk of producing results that are not accurate, 

reliable or reproducible. Conversely, some tools provide little or no customisation, and thus 

are simple to apply yet may be limited in the range of appropriate applications. If available, 

use your chosen tool to analyse test data with the same MRI acquisition parameters as those 

in your study prior to beginning the analysis on a full cohort of participants. This will reduce 

delays due to errors or complexity of technique when applying it to a large cohort.  

As an example, ANTs has previously been validated with impressive results for both 

registration and CT using default pipelines in a healthy cohort (Avants, Tustison, Song, et al. 

2011; Tustison et al. 2014). However, due to the number of possible optimisations for a clinical 

cohort, such as creation of a study-specific template and priors, an inexperienced user may 

find using this tool challenging. When applying ANTs to the TRACK-HD cohort, the large 

variation in brain sizes within each patient group meant that when using the study-specific 

brain mask to extract the brain, dura was often erroneously classified as GM. Group-specific 

templates may have been more suitable here, but this would have required more time and 

expertise to create and optimise. 

  Another consideration is the variable nature of processing time necessary for 

each tool, which can range from 5 minutes per brain (SPM) to 24 hours (FreeSurfer). In 

addition, a number of registration or segmentation tools require high levels of processing 

power and may not run locally on desktop/laptop machines. Access to a high-powered 

computer cluster or just a single laptop with limited processing resources might determine 

which tool you choose. Financial costs also warrant consideration. While all tools examined for 
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this case study are freely available for academic purposes, SPM works on a MATLAB platform 

that is not freely available. In addition, some tools require a licence for use in industry settings 

and if developing methodology for later use within clinical trials, industry costs of these tools 

should be considered.  

3.4.1.3. Which segmentation tools are most reliable? 

A number of studies have previously demonstrated that some of the tools discussed in 

the current study have high reliability (Eggert et al. 2012; Klauschen et al. 2009). These findings 

were supported by current results in the TRACK-HD cohort. Current versions of all tools, 

including two not previously validated in this way (ANTs Atropos and MALP-EM), 

demonstrated high reliability. While repeatability was more variable, and lower in early-HD 

participants, the values were still very good for most tools. While reliability can be established 

for all tools in this and previous studies, accuracy is more difficult to determine – see 3.4.1.4.  

3.4.1.4. Which segmentation tools are most accurate? 

While phantom data can be used to examine the accuracy of volumetric measurement 

tools in healthy models, the results of phantom analyses do not always represent performance 

when applied to clinical cohorts. In HD, for example, where the pattern of neural change is not 

well understood it is challenging to define the tool that provides the greatest accuracy. Often, 

measures are examined in terms of their overlap to estimate accuracy – however since all 

tools showed consistent errors (e.g. over-segmentation in occipital and temporal regions) this 

could falsely inflate accuracy results. How do we determine which is the most accurate result? 

Visual QC was an important factor when assessing accuracy in this study. MALP-EM appeared 

to be the most visually accurate tool, with SPM12 also performing well despite some 

segmentation errors in temporal and occipital regions. By comparing the results of longitudinal 

change in this sample to other previously published values of longitudinal GM change in larger 

HD cohorts (measured by various techniques), it appears that a number of techniques over-

estimate GM change in this small cohort. SPM8 New Segment, MALP-EM, ANTs and FreeSurfer 

produced values in line with previous studies suggesting that they may be able to detect 

accurate results from a small sample (Juan et al. 2016; Tabrizi et al. 2012). Since 

inconsistencies between volumetric neuroimaging tools are thought to result in contradictions 

within clinical neuroimaging research (Ashburner et al. 2016), it is imperative that the accuracy 

of each tool is visually examined within a cohort to ensure good performance of the tools on 

each dataset.  
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3.4.1.5. Should I perform visual QC of my data? 

This is a necessary step in the processing of any data. All registrations, segmentations 

and masks in this study were visually checked. Errors in processing, complete segmentation 

failures or patterns in segmentation errors were only detected by viewing the data. While total 

failure of a tool to segment an image was rare, consistent errors in segmentation were 

common. In cases where segmentation did fail completely, the volumetric measurements for 

total GM and CGM were often not out of line with expected values and so may not be 

detected in a quantitative check of extreme values, but would not provide reliable data on 

pathology or longitudinal sensitivity to change. This replicates previous findings (Waters et al. 

2017). 

In this study, for cases where segmentation was poor but not classified as a fail the 

data were included in the final analysis but for an analysis aiming to quantify group 

differences, including this data would mean that a larger sample size would be required to 

detect true effects (Iscan et al. 2015). The process of performing visual QC and rejecting or 

editing poor quality data is likely to be easier than recruiting and scanning more patients. 

When investigating GM volume in a cohort with subtle disease effects such as pre-HD HD 

patients, the benefits of visual QC are likely to be substantial. 

In addition to visual QC, manual editing can be performed where appropriate to 

improve results. In large cohorts this may be unfeasible, however as all techniques showed 

some segmentation errors in the TRACK-HD cohort and all offer options for manual editing this 

should be considered. It is particularly important for studies in which subtle group differences 

or longitudinal change is expected or when sub-regions are being examined. Manual editing 

requires the user to have in-depth knowledge of anatomy and to use a consistent procedure 

for specifying when manual editing should be performed. 

One issue associated with visual QC is performing QC on ‘big data’ cohorts. Big data 

cohorts are increasing in availability, and consist of datasets whereby thousands of scans have 

been collected, for example the UK biobank study which aims to collect data from 100,000 

participants (Alfaro-Almagro et al. 2018). This data is then often available to download and 

use. However, when processing data from so many participants visual QC is impossible. It is 

unclear how this issue can be managed, however since large datasets are likely to be more 
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robust to the effect of segmentation errors on analysis results, the issue may also be less 

important in these cohorts. While automated tools may be developed to assist with QC, it is 

unlikely that these will ever be as successful as visual QC performed by a trained human rater.  

UK Biobank is currently developing tools to perform automated QC (Alfaro-Almagro et al. 

2018) and as these tools are validated against manual QC this issue will no doubt gain further 

attention.  

3.4.1.6. How similar are results across the different tools? 

For control participants all tools appeared to produce very similar results for both total 

GM and CGM; with between–technique correlation coefficients generally high, although 

slightly higher for CGM volume, indicating that techniques show greater variation in 

subcortical segmentation.  

However, in HD participants the correlations were more variable, indicating that some 

techniques appear to detect disease-related change to a greater extent than others. In total 

GM volume, the relationships between techniques were generally lower than in controls. For 

CGM correlation coefficients were higher and more stable than for total GM, indicating that 

measurement of the subcortical grey matter may be more variable than CGM across different 

tools. As marked subcortical atrophy in the caudate and putamen is a defining feature of HD, it 

is unsurprising that the techniques may perform differently when segmenting this region, 

especially for tools developed on healthy controls. These results suggest that care should be 

taken when applying techniques in regions of severe atrophy or change, with much more 

divergent performance apparent in the use of the tools in these circumstances. 

3.4.2. Limitations 

The results of this study are limited by a few factors. Firstly, the aim was to examine 

segmentation procedures as non-technical users would routinely apply them and thus default 

brain extraction was used for each tool. This introduces additional variability to the 

comparison, and between-technique differences would likely be reduced if the same brain 

extraction was used prior to segmentation. In addition, the longitudinal pipelines offered by 

some tools were not compared (e.g. FreeSurfer, SPM, FSL) as not all tools currently offer a 

longitudinal pipeline.  

There are a number of additional limitations in the examination of BrainWeb data. 

Firstly, the GT segmentations were not provided in the same resolution as the T1 scans that 

were downloaded; the T1 scans had a voxel size of 1x1x1mm whereas the GM volumes had a 
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voxel size of .5x.5x.5mm.  Resampling was applied to the GM volumes to change the voxel size 

of the images. A number of different resampling methods were tested, with the most 

appropriate selected after careful examination of the output, and comparison of extracted GT 

volumes to previously published volumes for the GT segmentations showing an exact match 

(Klauschen et al. 2009). Finally, this comparison is limited by the absence of FreeSurfer in the 

partial volume analysis. FreeSurfer does not provide partial volume maps and so was excluded 

from the second analysis. Finally, in this study scans were used from multiple sites that could 

impact the performance of different techniques. However, this is also a relevant point given 

the increasing number of multi-site studies.  

While as much consistency was maintained as possible during this analysis, some 

differences in performance were introduced by the differences described above, especially in 

the case of FreeSurfer. The developers of FreeSurfer recommend using the automatically 

output volumes provided in a text output for all participants. These values are calculated via 

correcting the volumetric regions for partial volume, and cannot easily be reproduced 

manually. Due to the difficulty in extracting GM volume from volumetric masks for FreeSurfer, 

total GM and CGM values were the values supplied automatically from FreeSurfer processing. 

Since the CGM volumes for FreeSurfer were output without overlaying the same mask used to 

extract values from the output of all other tools, the results cannot be directly compared to 

the other methods, and thus FreeSurfer is likely at an advantage for these results. For the 

lobular analysis, BrainWeb lobes were calculated using the automatic FreeSurfer methodology, 

but because the results were very different to the GT volumes, the TRACK-HD analysis used the 

lobular masks that were applied to the other segmentations. These were registered to 

FreeSurfer space and values were extracted using FreeSurfer commands. While this is possible, 

it required a number of posts on a FreeSurfer help list to output these values and the process 

was not always clear. All other techniques were examined using the partial volume maps in 

native space, with the same masks applied to the output of each technique.  

3.4.3. Segmentation selection for the current work 

When selecting a technique to use it is of course important that the question being 

asked is considered in relation to the type of measure provided by a tool; for the present 

research, CGM is the focus and the ideal measure would only output CGM without the need to 

use a manually registered mask to extract the cortical region. The use of a manual mask 

introduces a degree of measurement error as it is unlikely that manual masking of subcortical 

or cerebellar GM would be superior to a pre-optimised technique that extracts CGM. Another 
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issue to consider is that some measures do not provide regions that can be masked or that 

volumes can be extracted from, and indeed FreeSurfer makes this very difficult to do. It is not 

always clear how the volumes automatically output by the FreeSurfer pipeline are calculated, 

and it is often impossible to manually reproduce these volumes from the segmentations. If a 

proposed analysis does not use an already available FreeSurfer region then different software 

should be considered.   

A final point to reiterate is regarding the use of these tools is how user-friendly they 

are. While most tools were fairly straightforward to apply, ANTs took a lot of time to 

understand and apply. Despite the large investment required to apply ANTs, the results were 

substandard, although it is possible that with a greater ability to optimise this tool the results 

could be improved. This tool may not always be appropriate for a novel user. In contrast, 

MALP-EM was the easiest method to use; it comes in an easy-to-install package, and since it is 

aimed at novice users there are no optional flags to adjust other than the use of a 1.5T vs. 3T 

flag.  

Based on the qualitative and quantitative results MALP-EM demonstrated the most 

accurate and reliable performance for both the BrainWeb and TRACK-HD cohorts. MALP-EM 

will therefore be used for the CGM analysis in this thesis. It is hoped that because MALP-EM 

performed well on both datasets, is easy to use and freely available other neuroimaging users 

may be able to apply MALP-EM and undertake replication of the work completed in this thesis.  

3.4.4. Conclusions 

With a multitude of tools available to measure the volume of GM using MRI scans, the 

selection of the most appropriate tool can be a challenging first step in a research project, and 

one that may have a marked effect on the results of research. By using seven segmentation 

tools to quantify GM volume in a cohort including controls and participants with pathology, 

with both back-to-back and longitudinal data, a number of key points related to the 

measurement of GM volume could be highlighted. Table 10 provides some characteristics of 

the tools included in this study that can help to guide the initial decision making process in GM 

volumetric selection. 

All methods compared in this work showed high reliability, supporting the results of 

previous studies and adding new information for the use of ANTs and MALP-EM, which have 

not been compared in this way previously. For the current cohort, the tools that detected the 

greatest raw change over a three-year follow-up period were not always the most sensitive to 

significant change in this period, indicating that higher variability in performance of these tools 
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reduced their sensitivity to subtle disease-related change. Despite this, all tools detected 

significant longitudinal change in GM when comparing the most advanced patients in the 

cohort to controls, meaning that all tools are sensitive to more advanced neural pathology 

across the whole cortex. Subtle regional differences were not detected by all tools, however. 

One of the most significant findings from this study is the importance of visual QC of GM 

segmentations. Poorly segmented and inaccurate data can easily be included in neuroimaging 

research if visual QC is omitted. While time consuming, the results of research that uses visual 

QC will be more sensitive and accurate than if it is not performed.  

No one tool is more appropriate for analysis of every type of dataset or cohort. Several 

key considerations for the selection of the most appropriate grey matter segmentation tool 

have been identified. The scientific question, level of expertise and available resources are 

naturally paramount, while comparison of two or three different tools for ease and success of 

application is recommended and visual QC essential. For the current work, MALP-EM has been 

selected as the most appropriate GM segmentation tool. 



 

147 
 

4. EVALUATION OF CORTICAL THICKNESS MEASURES 

In addition to volume, thickness of the CGM can be measured via MRI. CT is the 

distance between the WM/GM boundary and the GM/CSF boundary, and post mortem studies 

indicate that thickness ranges from approximately 1mm to 4.5mm, with an average across the 

cortex of 2.5mm (Fischl & Dale 2000). CT varies between individuals, shows changes across the 

lifespan and is hereditable (Panizzon et al. 2009; Fjell et al. 2015; Winkler et al. 2010; Winkler 

et al. 2009; Thambisetty et al. 2010; Storsve et al. 2014).  

GM volume is a product of both the thickness and surface area of the cortex (another 

hereditable cortical characteristic genetically independent to CT), and thus it has been 

suggested that measuring cortical volume alone may not be sensitive enough to detect subtle 

disease-related brain changes, and that CT should also be examined (Panizzon et al. 2009). 

However, CT is challenging to calculate from MRI scans. Highly accurate delineations of the 

cortical surfaces are required, which is difficult to achieve in the complex sulci and gyri of 

brains. CT is calculated at every point in the cortex and errors in the delineation of the cortical 

surfaces can result in large overestimations of thickness. Even if overestimations only occur in 

a small number of regions they can result in large artificial inflations of global CT measures. 

These potential issues mean that the measurement tools used to calculate thickness are highly 

important.   

CT is typically measured via either surface-based or voxel-based techniques, with an 

example of these two measures shown in Figure 4.1 (Clarkson et al. 2011). Surface-based 

measurement involves the construction of a meshed surface, typically on the GM/WM 

boundary, which is then expanded to encompass the outer surface between GM and CSF. The 

distance between these two surfaces can then be measured at each vertex or averaged across 

the whole cortex and sub-regions (Dale et al. 1999; Fischl et al. 1999; Fischl & Dale 2000). 

Surface-based methods tend to rely heavily on prior information about the brain to guide 

segmentation, known as probabilistic segmentation (Clarkson et al. 2011). Voxel-based 

techniques use the voxel-wise grid to first classify GM, WM and CSF and then measure the 

distance between WM and GM using Laplacian, registration, morphological or other 

techniques (Clarkson et al. 2011). Surface-based techniques are more computationally 

demanding, however they can overcome issues associated with the partial volume of voxels as 

the surface is not limited to follow voxel boundaries (Winkler et al. 2010). Due to this, they are 

considered more accurate than voxel-wise measures of thickness (Clarkson et al. 2011). 

Although they are affected by intensity non-uniformity and often perform poorly in areas with 
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low resolution and/or high curvature, due to the large amount of natural variation not covered 

in the probabilistic model. Furthermore, the use of probabilistic methods, which were created 

using a healthy-brain atlas, may not be appropriate for brains with pathological or anatomical 

differences. Despite these issues, surface-based methods are more often used to measure 

thickness largely due to a number of freely available and accessible measurement tools, with 

the most commonly used being FreeSurfer (Fischl & Dale 2000). Recently, however, voxel-

based methods are becoming more popular due to the speed at which the data can be 

processed, lower segmentation failures and higher reliability than FreeSurfer (Schwarz et al. 

2016).   

 

 

Figure 4.1. An example demonstrating the difference between surface- and volume-based 
methods of measuring CT (Winkler et al. 2010). 
 

One major problem relevant to measuring CT is that of the failed segmentation of 

deep sulci (Clarkson et al. 2011). Deep, narrow sulci can be incorrectly classified as GM, 

resulting in an overestimation of thickness, as seen in Figure 4.2. If sulci are not separated via 

the segmentation process, CT is calculated spanning the two regions of CGM on either side of 

the sulci, creating in extremely large values for thickness at these points. This problem arises 

due to the inherently complicated pattern of cortical folding present in the brain, and although 

some methods aim to combat this problem via the use of limits that do not allow CT to be 

above a maximum biologically plausible threshold, it is a recognised difficulty within the field 

(Das et al. 2009; Clarkson et al. 2011).  
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Figure 4.2. Examples of a segmentation whereby (A) sulci have been incorrectly classified as 
GM, shown by the red arrows, resulting in an overestimation of cortical thickness and (B) the 
sulci have been correctly classified, shown by the green arrows, resulting in a more accurate 
measure of cortical thickness (Clarkson et al. 2011). 

 

Despite the use of MRI phantoms and models in a number of CT validation studies to 

try and assess accuracy of segmentation (Clarkson et al. 2011; Lee et al. 2006), it is difficult to 

establish a validate the performance of CT tools on real brain data. The complex nature of the 

convoluted cortex, the range of different definitions of the GM/CSF border and the WM/GM 

border, and different techniques and equations for calculating the distance between the two 

means that it is a complex metric to measure. Furthermore, post-mortem analyses of CT may 

not be accurate due to tissue shrinkage and so is not generally used as a comparison. Instead, 

thickness tools are often assessed for reliability, reproducibility and sensitivity. Some methods 

apply constraints in order to limit the maximal and minimal thickness values to values 

considered biologically plausible in order to try and aid accuracy, although using the same 

maximal and minimal values in healthy and very atrophied brains may not be appropriate (Das 

aet al. 2009).  

A number of studies comparing CT measures have been performed, with some 

examining test-retest reliability of different tools (Iscan et al. 2015; Han et al. 2006; 

Wonderlick et al. 2009; Gronenschild et al. 2012; Schwarz et al. 2016) and some comparing the 

performance of thickness measures on their ability to separate participants by disease status 

(Tustison et al. 2014). FreeSurfer generally performs well when test-retest reliability is 

examined (Han et al. 2006; Jovicich et al. 2013; Liem et al. 2015), with  previous studies 

reporting ICC values of  >0.95 (Wonderlick et al. 2009). However, reliability for FreeSurfer 

varies across the cortex, with the orbito-temporal lobes often showing much lower reliability 

than other cortical regions (Han et al. 2006; Wonderlick et al. 2009; Schnack et al. 2010). A 

more recently developed voxel-based CT pipeline that uses ANTs software has given variable 

results during validation. When compared to FreeSurfer by the developers of ANTs, both 
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approaches showed good repeatability; with high intraclass coefficient values (ICC; ANTs=.98, 

FreeSurfer=.97) and low mean repeatability error for two databases (ANTs=3.2%, 3.3%, 

FreeSurfer=2.5%, 2.8%), with no significant difference between the two techniques for 

repeatability error. As a proxy for accuracy, the authors modelled age vs. CT using a ‘training 

and test’ paradigm to determine which measure produced better predictive ability. The ANTs 

model showed lower relative mean square error rates (Tustison et al. 2014). However 

subsequent validation has demonstrated that ANTs does not perform as well as initially 

reported, with reliability proving to be variable across different datasets (Tustison et al. 2014; 

Schwarz et al. 2016).  

As with cortical volume, visual QC of CT measures is essential to detect failures in 

segmentation. Iscan et al. (2015) performed detailed QC on FreeSurfer segmentations for 40 

participants conducted at two time points (80 total). They concluded that for 15 out of 40 

participants there were errors in segmentation in either one time point or both that were 

severe enough to impact on the results. In contrast, Schwarz et al. (2016) reported that out of 

452 scans processed with FreeSurfer, only 3 failed QC – although their criteria for failure was 

not provided. The authors also reported that FreeSurfer errors were seen more often in brains 

showing Alzheimer’s pathology, suggesting a potential bias in thickness measurement. Few 

other studies have reported information on the quality of segmentations; however as with the 

measurement of GM volume it is vital that the most accurate tools are used to examine the 

thickness of the cortex in HD and other diseases. The process of performing QC on over 1000 

FreeSurfer CT regions processed for the TRACK-HD and TrackOn-HD studies was performed 

prior to undertaking this thesis, and based on this experience it was clear that FreeSurfer CT 

regions are often inaccurate and output poorly delineated cortical surfaces. While CT offers a 

promising measure of cortical change for HD, the performance of CT tools on the TRACK-HD 

cohort required further investigation.   

Despite these limitations, studies measuring CT have reported significant cortical 

thinning in pre-HD and HD participants (Rosas et al. 2002; Rosas et al. 2008; Harrington et al. 

2014). When HD participants were separated into three groups based on their disease stage 

(with lower stages representing lower disease progression), the results suggested that thinning 

began in the primary motor area, sensory area, visual area and portions of the precuneus in 

stage I (Rosas et al. 2008). This thinning extended throughout the cortex in stage II and by 

stages III/IV most of the cortex had begun thinning, excluding the frontal cortex, which was 

relatively preserved. These studies are widely cited within the HD literature, however a 

number of the studies were conducted in small groups of participants, for example one study 
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had groups of N=8, N=14 and N=9 (Rosas et al. 2008). Furthermore, a number of widely cited 

results were not corrected for multiple comparisons (Rosas et al. 2008; Rosas et al. 2002). In 

addition, a recent study compared imaging biomarkers in the PADDINGTON cohort found that 

FreeSurfer was not a sensitive marker for detecting cortical change in manifest HD participants 

(Hobbs et al. 2015), raising doubt about the validity of using CT measures in HD studies. 

4.1. Aims 

This study aims to compare the performance of three CT measures on a subset of the 

TRACK-HD data. CT is a measure that potentially offers more sensitivity than volume; however 

it is a difficult characteristic to measure accurately. Prior to applying CT tools on the TRACK-HD 

data for examination of CGM they require detailed validation in this cohort. 

4.2. Methods 

4.2.1. Participants 

The participants used in this study were the same participants used in the comparison 

of volumetric measures. 100 participants with data from 2008 and 2011 were randomly 

selected from the TRACK-HD study. Twenty control participants, 20 PreHD-A, 20 PreHD-B, 20 

HD1 and 20 HD2 participants were included, see section 3.2.2.2 for further information, and 

Table 3.5 for demographics information.  

4.2.2. Cortical thickness measurements 

Three methods of measuring CT were examined: A) CT measured via FreeSurfer, B) CT 

measured via ANTs, C) CT measured using MALP-EM volumetric segmentations input to the 

ANTs Kelly Kapowski pipeline that calculates CT from volumetric regions. These methods were 

selected due to a number of considerations. FreeSurfer is the most commonly used software 

for CT measurements, despite concerns about the accuracy of FreeSurfer segmentations, and 

was thus included in this comparison. As previously mentioned, ANTs has been more recently 

developed yet it has been used in a growing number of publications characterising CT. It has a 

pipeline that includes brain extraction, segmentation and measurement of thickness. Finally, 

the cortical segmentations from Chapter 3 delineated using MALP-EM were combined with the 

calculation of CT implemented in ANTs. 

The longitudinal analysis was conducted twice: first, the two longitudinal scans were 

analysed in native space. This resulted in large longitudinal change in CT measures for some 

tools, with biologically implausible changes in thickness found. Since most automatic 
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longitudinal pipelines either include or recommend a registration step, the data was also 

registered and re-analysed. The 2008 and 2011 scans were registered using the SPM 

longitudinal registration pipeline described in 2.3.1.2.3 (Ashburner & Ridgway 2012). Default 

parameters were used to create an average image for each participant. The warping 

parameters were applied to the native scans to align them with the template for each 

participant, and these warped scans were then segmented independently.  

FreeSurfer version 5.3.0 was used, with the default processing pipeline. MALP-EM was 

run using the default settings, with a flag to specify 3T scans. Following this, the ANTs 

KellyKapowski pipeline was run on the MALP-EM regions using default settings. ANTs was run 

using the study-specific templates created in section 3.2.3.4.2, with the CT command, 

antsCorticalThickness.sh, then applied with default settings.  

Following registration and any processing, images were visually checked for 

segmentation errors, with only gross-errors as described in section 3.2.3 excluding scans from 

analysis.  

4.3. Results 

4.3.1. Quality Control 

As in Chapter 3, visual QC was important for interpretation of the thickness results. 

Upon inspection, ANTs segmentations were inconsistent and a high number of segmentations 

had considerable errors, especially within the occipital and temporal GM. The most common 

errors were the over-inclusion of non-brain tissue in the cortical segmentation and were 

particularly pronounced for brains showing a lot of atrophy, as shown in Figure 4.3. The quality 

of MALP-EM segmentations was better than ANTs, with minor over-inclusion occasionally seen 

in occipital and temporal lobes (Figure 4.4). FreeSurfer regions were also variable, with errors 

in both the WM boundary and the external CSF boundary common (Figure 4.5). The FreeSurfer 

segmentations had less obvious errors in segmentation, yet there were often large chunks 

excluded from both internal GM (WM overestimation extended into the GM) and more 

external GM (WM classified as CSF). In addition, the temporal lobes were often poorly 

delineated as was the occipital lobe.  
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Figure 4.3. An example of an ANTs CT segmentation for a participant showing disease related 
atrophy shown in (A) coronal, (B) axial and (C) sagittal views. Spillage of the CT segmentation 
into the occipital dura is particularly pronounced in the coronal and sagittal views.  

 

 

Figure 4.4. An example of a MALP-EM CT segmentation for a participant showing disease 
related atrophy shown in A) coronal, (B) axial and (C) sagittal views. Spillage of the CT 
segmentation into the occipital dura is particularly pronounced in the coronal and sagittal 
views. 

 

 

Figure 4.5. An example of a FreeSurfer CT segmentation for a participant showing disease 
related atrophy shown in A) coronal, (B) axial and (C) sagittal views. Underestimation of the 
GM is particularly pronounced in the coronal and sagittal views. 

 

In addition to these issues, a more widely accepted problem previously recognised in 

CT measurement was seen during QC. That is, it is very difficult for most tools to accurately 

define the most tightly bound sulci. This is often more problematic in voxel-based techniques, 

and examples from the current study can be seen in Figure 4.6, compared to the processing 

performed via FreeSurfer, the only surface-based technique included in this comparison.  
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Figure 4.6. An example of (A) an ANTs cortical thickness segmentation, (B) a MALP-EM cortical 
segmentation processed with the ANTs cortical thickness calculation, and (C) a FreeSurfer 
segmentation. In both the ANTs and MALP-EM segmentations, sulci are not segmented 
accurately resulting in overestimation of thickness. This can be seen clearly in the inferior 
regions of this scan.  
 

4.3.2. Cross-sectional results 

4.3.2.1. Total thickness 

Table 4.1 shows the results of the test-retest analysis for the three processing 

pipelines, separated into HD groups and controls. For all tools, CT was lower in HD1 and HD2 

than for pre-HD and control participants, but there was inconsistency within both control and 

pre-HD groups across different tools. Overall, FreeSurfer had lower thickness values than both 

ANTs and MALP-EM for all groups.  

The ICC for ANTs was lower than for both MALP-EM and FreeSurfer, ranging from 0.70-

0.87, and repeatability was above 5.00 for all groups. However, confidence intervals (CIs) for 

the ICC ranged from around 0 to >.90, indicating poor reliability. MALP-EM showed better 

reliability, with ICC values above 0.96 (and CIs >.90) and repeatability less than 1.5 for all 

groups. Finally, FreeSurfer ICC values ranged from 0.819-0.944, but with one lower CI falling to 

.599, indicating that true reliability may be lower. Repeatability values were between 0.96-

1.67.  
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Table 4.1. Mean, standard deviations and ranges for cortical thickness in both 2008 scans for 
each group and technique. Intraclass correlations and confidence intervals between these 
scans are also presented, as well as repeatability means, standard deviations and ranges. 

  Scan A Scan B ICC Repeatability 

ANTs Controls 2.96 (0.26) 
2.44-3.47 

2.77 (0.30) 
2.23-3.33 

0.751  
(-0.067-0.936) 

7.12 (3.63) 
2.04-13.81 

PreHD-A 2.94 (0.25) 
2.40-3.35 

2.76 (0.30) 
2.09-3.20 

0.775  
(-0.062-0.946) 

6.77 (3.76) 
0.66-14.08 

PreHD-B 2.88 (0.21) 
2.50-3.30 

2.71 (0.21) 
2.32-3.14 

0.700  
(-0.068-0.923) 

6.23 (2.78) 
1.80-11.61 

HD1 2.73 (0.30) 
2.42-3.46 

2.58 (0.30) 
2.24-3.30 

0.870  
(-0.031-0.973) 

5.90 (2.35) 
2.38-11.93 

HD2 2.75 (0.28) 
2.36-3.40 

2.55 (0.30) 
2.11-3.30 

0.776  
(-0.061-0.946) 

7.44 (3.62) 
2.83-15.51 

MALP-EM 
+ ANTs 

Controls 2.89 (0.27) 
2.42-3.49 

2.90 (0.27) 
2.37-3.49 

0.992  
(0.980-0.997) 

0.93 (0.81) 
0.03-2.59 

PreHD-A 2.93 (0.19) 
2.56-3.22 

2.91 (0.20) 
2.52-3.25 

0.978  
(0.945-0.991) 

1.03 (0.98) 
0.01-3.88 

PreHD-B 2.96 (0.15) 
2.73-3.29 

2.96 (0.17) 
2.70-3.38 

0.962  
(0.906-0.985) 

1.05 (1.13) 
0.01-4.14 

HD1 2.84 (0.29) 
1.99-3.30 

2.84 (0.27) 
2.14-3.29 

0.985  
(0.962-0.994) 

1.28 (1.61) 
0.00-7.16 

HD2 2.79 (0.27) 
2.03-3.20 

2.78 (0.28) 
1.89-3.19 

0.981  
(0.952-0.993) 

1.34 (1.87) 
0.02-7.11 

FreeSurfer Controls 2.46 (0.10) 
2.31-2.66 

2.45 (0.09) 
2.29-2.65 

0.836  
(0.637-0.931) 

1.67 (1.61) 
0.07-5.91 

PreHD-A 2.42 (0.08) 
2.31-2.58 

2.41 (0.09) 
2.29-2.57 

0.934  
(0.842-0.973) 

1.01 (0.75) 
0.01-2.30 

PreHD-B 2.43 (0.08) 
2.30-2.63 

2.41 (0.08) 
2.30-2.55 

0.819  
(0.599-0.924) 

1.46 (1.39) 
0.03-4.75 

HD1 2.35 (0.10) 
2.20-2.56 

2.34 (0.09) 
2.19-2.54 

0.927  
(0.800-0.972) 

1.13 (1.01) 
0.21-4.80 

HD2 2.33 (0.09) 
2.15-2.46 

2.32 (0.09) 
2.10-2.47 

0.944  
(0.864-0.978) 

0.96 (0.94) 
0.13-3.28 

 

4.3.2.2. Regional Thickness  

Table 4.2 shows lobular values for 2008 Scan A and Scan B, and Table 4.3 shows ICC 

and repeatability for these scans. For ANTs CT, the lobular repeatability metrics were generally 

poor. Average thickness values varied, and ICC scores ranged from .456 in the insula (control 

participants) to .927 in the parietal lobe (HD1 participants). Confidence intervals for ICC values 

were very broad, again indicating that reliability was inadequate when using this technique in 

this cohort. Repeatability was low, with the highest values (representing poor repeatability) 

seen in the insula and occipital lobe.  

For MALP-EM, ICC values were again high, with all >.95, and no pattern of lower ICC in 

a particular region. In addition to the high ICC values, the confidence intervals for all regions 

were also very high. Repeatability values were lower than 2 for all regions except for the 

temporal lobe in HD2, which had a value of 2.57. For FreeSurfer, ICC values ranged from 

around .71 to .96, with no clear lobular pattern. However, CIs for the ICC measures showed a 
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wide range, indicating possible lower reliability. Repeatability values were generally <2, with 

the highest value seen in the insula for HD2 (2.93).  

4.3.3. Longitudinal results 

4.3.3.1. Non-registered 

The results from the analysis examining non-registered longitudinal data provided in 

Table 4.4 and Figure 4.7 demonstrated a number of key findings. Firstly, ANTs showed a large 

amount of longitudinal change within controls undergoing a reduction in CT of 3.42%. This was 

larger than the change seen in both PreHD-A and PreHD-B, however HD1 and HD2 both 

underwent greater reductions in CT (5.07% and 4.75% respectively). Only HD1 showed 

significantly greater longitudinal change than controls, at p=.044. The range of CT change for 

each group was large, however, with volume reduction of up to 15.62% seen in one HD1 

participant, and thickness increases of 5.66% seen in one PreHD-B participant. This result 

reflects the poor reliability seen in ANTs in the cross-sectional analyses. 

For MALP-EM, there were extremely wide ranges in the amount of change occurring 

over the 3 year period; with changes of up to 42% seen in HD1 (both increases and decreases 

in thickness). While controls showed a low mean rate of change (0.15%), the range for this 

group was also substantial (19% increases and 18% decreases could be seen). No group 

showed significantly different change when compared to controls, although all groups 

underwent a higher rate of change.  

The range of FreeSurfer rates of change were narrower, with controls showing very 

low change and HD groups undergoing progressively greater thinning of the cortex with 

increasing disease burden. PreHD-B, HD1 and HD2 all underwent significantly greater CT 

reductions than controls, with HD2 undergoing the greatest change. The ranges for FreeSurfer 

were more in line with expectations, showing generally small to moderate change in thickness 

over three years. 

4.3.3.1. Registered 

The scans were registered and re-analysed using the same pipeline. Results are shown 

in Figure 4.5 and Figure 4.7. After registering the scans and re-analysing the data using ANTs, 

controls underwent a large amount of change showing a greater reduction in thickness than 

any HD group (3.60%). There was no significant difference between controls and any HD 

group, with no pattern of greater thickness reduction as disease burden increased. 
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The results from MALP-EM indicated that registration did not improve longitudinal 

performance. Controls showed a large decrease in volume over 3 years (2.94%), with PreHD-A 

only undergoing .25% reduction. PreHD-B, HD1 and HD2 all underwent reductions >3.5%. For 

most groups, the ranges were reduced compared to non-registered scans, although still wide. 

After running FreeSurfer on the registered T1 scans, there was no longer a pattern of 

increasing atrophy with increasing disease burden. Again, controls showed greater change 

than any other group (1.54%), and similarly to other methods there was no pattern of 

increasing rate of change with increasing disease burden. 
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Table 4.2. Mean, standard deviations and ranges of cortical thickness values across different lobes for both 2008 scans for each technique. 

 

 

 

 

  Controls PreHD-A PreHD-B HD1 HD2 
  Scan A Scan B Scan A Scan B Scan A Scan B Scan A Scan B Scan A Scan B 

ANTs 

Frontal 
2.73 (0.28) 2.32-
3.21 

2.55 (0.33) 2.12-
3.13 

2.71 (0.27) 2.17-
3.16 

2.53 (0.32) 1.82-
3.10 

2.69 (0.21) 2.35-
3.11 

2.55 (0.20) 2.20-
2.87 

2.59 (0.29) 2.24-
3.27 

2.44 (0.28) 2.06-
3.10 

2.65 (0.29) 2.24-
3.16 

2.50 (0.31) 2.02-
3.07 

Occipital 
2.86 (0.28) 2.19-
3.56 

2.64 (0.32) 1.97-
3.42 

2.78 (0.36) 2.14-
3.26 

2.57 (0.35) 1.90-
3.09 

2.68 (0.35) 2.26-
3.57 

2.45 (0.33) 2.02-
3.43 

2.38 (0.41) 1.89-
3.31 

2.20 (0.42) 1.69-
3.19 

2.27 (0.39) 1.83-
3.39 

2.04 (0.39) 1.64-
3.27 

Parietal 
2.51 (0.24) 2.06-
2.91 

2.37 (0.25) 1.86-
2.80 

2.48 (0.24) 1.98-
2.88 

2.35 (0.25) 1.73-
2.76 

2.41 (0.17) 2.14-
2.72 

2.29 (0.16) 2.02-
2.61 

2.26 (0.27) 1.93-
2.91 

2.17 (0.27) 1.83-
2.83 

2.31 (0.23) 1.98-
2.76 

2.18 (0.23) 1.80-
2.70 

Temporal 
3.72 (0.29) 3.10-
4.26 

3.48 (0.34) 2.83-
4.04 

3.70 (0.30) 3.12-
4.24 

3.47 (0.35) 2.75-
4.06 

3.64 (0.30) 3.15-
4.29 

3.42 (0.29) 2.95-
4.00 

3.48 (0.34) 3.07-
4.34 

3.28 (0.37) 2.84-
4.13 

3.47 (0.35) 3.00-
4.22 

3.19 (0.38) 2.67-
4.10 

Insula 
3.53 (0.33) 2.99-
4.09 

3.10 (0.34) 2.51-
3.00 

3.74 (0.41) 3.02-
4.59 

3.35 (0.42) 2.72-
4.25 

3.60 (0.35) 2.74-
4.25 

3.22 (0.36) 2.49-
3.81 

3.46 (0.28) 2.98-
3.99 

3.15 (0.37) 2.56-
3.87 

3.62 (0.45) 3.00-
4.43 

3.21 (0.47) 2.59-
4.25 

MALP-EM + 
ANTs 

Frontal 
2.71 (0.27) 2.19-
3.25 

2.73 (0.26) 2.20-
3.23 

2.74 (0.20) 2.29-
3.07 

2.74 (0.22) 2.26-
3.14 

2.78 (0.17) 2.55-
3.19 

2.78 (0.18) 2.49-
3.14 

2.67 (0.23) 1.99-
3.05 

2.68 (0.22) 2.13-
3.04 

2.66 (0.26) 1.97-
3.13 

2.66 (0.26) 1.87-
3.11 

Occipital 
2.77 (0.29) 2.42-
3.31 

2.78 (0.30) 2.41-
3.35 

2.78 (0.28) 2.30-
3.21 

2.76 (0.28) 2.25-
3.21 

2.84 (0.35) 2.16-
3.61 

2.83 (0.36) 2.13-
3.65 

2.60 (0.38) 1.77-
3.20 

2.60 (0.37) 1.75-
3.19 

2.42 (0.32) 1.77-
3.13 

2.41 (0.32) 1.68-
3.11 

Parietal 
2.61 (0.26) 2.21-
3.31 

2.63 (0.26) 2.22-
3.32 

2.62 (0.19) 2.23-
2.88 

2.60 (0.19) 2.22-
2.88 

2.57 (0.14) 2.39-
2.84 

2.58 (0.16) 2.30-
2.95 

2.48 (0.25) 1.85-
2.92 

2.48 (0.24) 1.95-
2.91 

2.44 (0.21) 1.83-
2.74 

2.44 (0.22) 1.67-
2.71 

Temporal 
3.53 (0.32) 2.88-
4.12 

3.51 (0.32) 2.79-
4.13 

3.57 (0.25) 3.15-
4.04 

3.53 (0.26) 3.17-
4.06 

3.64 (0.22) 3.19-
4.16 

3.64 (0.24) 3.19-
4.20 

3.55 (0.45) 2.23-
4.15 

3.54 (0.40) 2.49-
4.11 

3.49 (0.38) 2.48-
4.06 

3.45 (0.41) 2.27-
4.09 

Insula 
3.38 (0.45) 2.52-
4.18 

3.38 (0.47) 2.51-
4.23 

3.69 (0.53) 2.84-
4.57 

3.68 (0.52) 2.90-
4.63 

3.74 (0.55) 3.04-
5.16 

3.76 (0.56) 3.00-
5.23 

3.50 (0.49) 2.19-
4.36 

3.50 (0.46) 2.31-
4.22 

3.52 (0.63) 2.30-
4.73 

3.50 (0.65) 2.10-
4.69 

FreeSurfer 

Frontal 
2.50 (0.11) 2.35-
2.71 

2.48 (0.10) 2.36-
2.70 

2.45 (0.09) 2.31-
2.62 

2.44 (0.10) 2.29-
2.63 

2.46 (0.09) 2.33-
2.60 

2.45 (0.08) 2.31-
2.59 

2.41 (0.09) 2.21-
2.56 

2.39 (0.09) 2.23-
2.55 

2.40 (0.10) 2.19-
2.55 

2.39 (0.12) 2.13-
2.57 

Occipital 
1.98 (0.10) 1.83-
2.20 

1.98 (0.10) 1.80-
2.20 

1.97 (0.11) 1.81-
2.19 

1.96 (0.11) 1.75-
2.19 

1.95 (0.10) 1.78-
2.23 

1.93 (0.10) 1.71-
2.17 

1.85 (0.11) 1.67-
2.07 

1.83 (0.11) 1.66-
2.04 

1.76 (0.09) 1.62-
1.91 

1.76 (0.10) 1.61-
1.92 

Parietal 
2.85 (0.13) 2.62-
3.12 

2.84 (0.12) 2.57-
3.04 

2.81 (0.11) 2.63-
3.05 

2.80 (0.11) 2.63-
2.99 

2.80 (0.10) 2.68-
3.11 

2.79 (0.11) 2.61-
3.03 

2.72 (0.14) 2.43-
3.01 

2.72 (0.13) 2.45-
3.01 

2.71 (0.10) 2.50-
2.87 

2.70 (0.11) 2.48-
2.92 

Temporal 
2.30 (0.11) 2.10-
2.53 

2.28 (0.10) 2.14-
2.54 

2.25 (0.08) 2.13-
2.37 

2.24 (0.09) 2.08-
2.42 

2.27 (0.10) 2.11-
2.45 

2.24 (0.09) 2.12-
2.45 

2.17 (0.11) 2.02-
2.40 

2.15 (0.10) 2.02-
2.37 

2.14 (0.10) 1.96-
2.31 

2.13 (0.10) 1.91-
2.31 

Insula 
2.98 (0.15) 2.78-
3.33 

2.99 (0.14) 2.73-
3.28 

3.03 (0.11) 2.86-
3.28 

3.03 (0.10) 2.92-
3.24 

3.01 (0.15) 2.77-
3.29 

2.99 (0.15) 2.71-
3.30 

3.01 (0.13) 2.69-
3.24 

3.01 (0.11) 2.79-
3.16 

2.96 (0.17) 2.65-
3.22 

2.93 (0.16) 2.65-
3.19 
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Table 4.3. Intraclass correlations and confidence intervals, and repeatability means, standard deviations and ranges for both 2008 scans when measuring 
cortical thickness across different techniques and regions. 

 

  Controls PreHD-A PreHD-B HD1 HD2 

  ICC Repeatability ICC Repeatability ICC Repeatability ICC Repeatability ICC Repeatability 

ANTs 

Frontal 
0.806 
(-0.052-0.953) 

7.15 (3.93) 
0.93-14.83 

0.825 
(-0.047-0.959) 

6.77 (4.13) 
0.35-17.49 

0.764 
(-0.052-0.945) 

5.65 (2.18) 
1.65-9.83 

0.885 
(-0.027-0.977) 

5.64 (2.21) 
1.69-9.09 

0.839 
(-0.032-0.962) 

6.27 (3.72) 
0.33-13.95 

Occipital 
0.716 
(-0.075-0.924) 

8.47 (4.90) 
0.72-19.19 

0.796 
(-0.058-0.951) 

8.48 (4.37) 
1.86-16.36 

0.777 
(-0.059-0.947) 

9.04 (3.94) 
1.14-14.66 

0.893 
(-0.024-0.979) 

8.58 (3.70) 
3.15-20.19 

0.835 
(-0.042-0.964) 

10.71 (4.18) 
3.54-18.21 

Parietal 
0.789 
(-0.029-0.944) 

6.15 (3.70) 
1.89-16.54 

0.843 
(-0.037-0.964) 

5.63 (3.35) 
0.26-13.37 

0.723 
(-0.073-0.928) 

5.16 (2.56) 
0.77-9.89 

0.927 
(0.006-0.985) 

4.53 (2.04) 
2.36-8.60 

0.821 
(-0.040-0.957) 

5.81 (3.33) 
0.69-13.38 

Temporal 
0.707 
(-0.076-0.922) 

7.24 (3.28) 
2.71-12.85 

0.740 
(-0.070-0.934) 

6.83 (3.87) 
0.69-14.07 

0.720 
(-0.074-0.927) 

6.32 (3.25) 
1.89-14.21 

0.824 
(-0.037-0.963) 

6.34 (2.35) 
3.33-12.07 

0.724 
(-0.066-0.931) 

8.63 (4.09) 
2.89-17.10 

Insula 
0.456 
(-0.080-0.811) 

13.04 (6.30) 
6.19-25.20 

0.615 
(-0.090-0.886) 

10.90 (6.32) 
0.43-20.49 

0.522 
(-0.094-0.842) 

11.45 (6.32) 
1.60-26.02 

0.631 
(-0.090-0.892) 

9.48 (5.45) 
2.34-22.47 

0.632 
(-0.086-0.895) 

12.21 (6.48) 
1.54-25.19 

MALP-EM 
+ ANTs 

Frontal 
0.984 
(0.961-0.994) 

1.32 (1.19) 
0.00-3.61 

0.968 
(0.921-0.987) 

1.26 (1.35) 
0.09-5.61 

0.946 
(0.870-0.978) 

1.49 (1.47) 
0.01-6.46 

0.968 
(0.922-0.987) 

1.79 (1.54) 
0.19-6.84 

0.983 
(0.957-0.993) 

1.44 (1.45) 
0.15-5.31 

Occipital 
0.987 
(0.969-0.995) 

1.34 (1.07) 
0.29-4.39 

0.977 (0.942-
0.991) 

1.77 (1.52) 
0.02-5.65 

0.989 
(0.972-0.996) 

1.39 (1.24) 
0.01-5.54 

0.991 
(0.978-0.997) 

1.47 (1.21) 
0.19-3.87 

0.992 
(0.979-0.997) 

1.49 (1.30) 
0.13-5.61 

Parietal 
0.988 
(0.965-0.995) 

1.13 (1.11) 
0.03-3.91 

0.972 
(0.925-0.989) 

1.21 (1.22) 
0.09-5.07 

0.939 
(0.855-0.975) 

1.43 (1.34) 
0.04-5.36 

0.987 
(0.967-0.995) 

1.23 (1.30) 
0.00-5.40 

0.969 
(0.923-0.988) 

1.61 (2.09) 
0.14-8.77 

Temporal 
0.986 
(0.962-0.995) 

1.13 (1.11) 
0.03-3.62 

0.966 
(0.897-0.988) 

1.25 (1.49) 
0.00-5.13 

0.965 
(0.915-0.986) 

1.27 (1.12) 
0.03-4.75 

0.984 
(0.961-0.994) 

1.59 (2.39) 
0.12-11.04 

0.963 
(0.906-0.986) 

2.57 (2.37) 
0.09-8.54 

Insula 
0.985 
(0.963-0.994) 

1.73 (1.39) 
0.38-4.76 

0.987 
(0.968-0.995) 

1.82 (1.47) 
0.07-5.94 

0.990 
(0.974-0.996) 

1.71 (1.22) 
0.21-5.14 

0.986 
(0.966-0.995) 

1.75 (1.64) 
0.04-5.78 

0.995 
(0.986-0.998) 

1.57 (1.99) 
0.08-8.88 

FreeSurfer 

Frontal 
0.710 
(0.406-0.874) 

2.06 (2.34) 
0.01-8.50 

0.932 
(0.836-0.972) 

1.34 (1.16) 
0.01-3.69 

0.914 
(0.799-0.965) 

1.91 (1.67) 
0.08-5.97 

0.796 
(0.558-0.914) 

1.38 (1.14) 
0.10-5.02 

0.916 
(0.803-0.966) 

1.01 (1.02) 
0.11-3.51 

Occipital 
0.893 
(0.754-0.956) 

1.61 (1.12) 
0.08-4.48 

0.966 
(0.918-0.986) 

1.23 (0.91) 
0.00-3.56 

0.911 
(0.792-0.963) 

1.65 (1.20) 
0.30-4.56 

0.924 
(0.821-0.969) 

1.27 (0.77) 
0.15-2.61 

0.784 
(0.529-0.909) 

0.90 (0.56) 
0.21-2.38 

Parietal 
0.721 
(0.424-0.879) 

1.29 (1.31) 
0.02-5.24 

0.922 
(0.785-0.970) 

1.18 (1.19) 
0.05-4.52 

0.858 
(0.679-0.941) 

1.51 (1.35) 
0.00-4.10 

0.807 
(0.565-0.920) 

0.95 (0.77) 
0.08-3.56 

0.851 
(0.667-0.938) 

1.16 (1.18) 
0.01-4.09 

Temporal 
0.893 
(0.703-0.959) 

2.13 (2.11) 
0.18-7.03 

0.969 
(0.687-0.992) 

1.08 (0.99) 
0.06-3.24 

0.969 
(0.925-0.988) 

2.05 (1.70) 
0.14-7.03 

0.878 
(0.699-0.951) 

1.55 (1.80) 
0.17-7.73 

0.827 
(0.613-0.928) 

1.18 (1.28) 
0.08-3.78 

Insula 
0.958 
(0.894-0.983) 

1.71 (1.02) 
0.47-3.90 

0.981 
(0.953-0.993) 

1.90 (1.10) 
0.20-3.92 

0.920 
(0.809-0.968) 

2.19 (1.74) 
0.12-6.09 

0.934 
(0.840-0.974) 

1.92 (1.45) 
0.36-6.29 

0.810 
(0.578-0.921) 

2.63 (2.29) 
0.06-9.05 
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Table 4.4. Mean % change (difference between 2011 and baseline thickness as a percentage of 
baseline thickness), standard deviation and ranges for all tools and groups in average cortical 
thickness. Positive values represent thickness decreases over time. Results of regression 
analyses comparing rate of change in controls to HD groups, with significantly greater change 
in HD groups represented by * p<0.05 (light grey), **p<0.01 (dark grey). Age, sex and site were 
controlled for. 
 Controls PreHD-A PreHD-B HD1 HD2 

ANTs 

% Decrease 2008 to 
2011 

3.42 (2.92) 
-0.65-9.41 

3.20 (4.08) 
-3.89-14.31 

2.52 (3.66) 
-5.66-9.70 

5.07 (3.26) 2.31-
15.62 

4.75 (3.13) 
-3.59-10.95 

Significant 
difference 

 
1.09 

(-2.11-2.18) 
p=0.974 

-0.48 
(-1.36-0.40) 

p=0.284 

0.56 
(0.01-1.11) 
p=0.044* 

0.36 
(-0.08-0.79) 

P=0.109 

MALP-EM 
+ ANTs 

% Decrease 2008 to 
2011 

0.15 (7.32) 
-19.72-18.05 

2.94 (5.91) 
-2.65-22.59 

2.67 (7.29) 
-6.03-25.94 

3.89 (16.20) 
-42.25-42.24 

2.49 (5.79) 
-6.92-22.58 

Significant 
difference 

 
2.97 

(-1.08-7.01) 
p=0.150 

0.92 
(-1.12-2.96) 

p=0.375 

0.88 
(-1.56-3.32) 

p=0.480 

0.15 
(-1.01-1.31) 

p=0.798 

FreeSurfer 

% Decrease 2008 to 
2011 

0.10 (1.12) 
-2.11-2.34 

0.65 (1.22) 
-1.48-3.17 

1.00 (1.57) 
-1.36-3.44 

2.03 (1.62) 
-1.26-4.91 

2.33 (1.81) 
-0.98-5.57 

Significant 
difference 

 
0.37 

(-0.31-1.05) 
p=0.289 

0.45 
(0.09-0.82) 
p=0.015* 

0.54 
(0.27-0.82) 
p<0.001** 

0.46 
(0.21-0.70) 
p<0.001** 

 

Table 4.5. Mean % change in registered scan pairs (difference between 2011 and baseline 
thickness as a percentage of baseline thickness), standard deviation and ranges for all tools 
and groups in average cortical thickness. Positive values represent thickness decreases over 
time. Results of regression analyses comparing rate of change in controls to HD groups, no 
significant group differences were found. Age, sex and site were controlled for. 
 Controls PreHD-A PreHD-B HD1 HD2 

ANTs 

% Decrease 2008 to 
2011 

3.60 (3.10) -
0.62-11.20 

3.28 (4.71) -
3.56-13.47 

2.28 (3.20) -
4.41-11.15 

1.48 (4.47) -
8.37-14.26 

3.13 (2.15) 0.13-
6.79 

Significant 
difference 

 
.18 

(-2.17-2.54) 
p=0.880 

-.65 
(-1.56-.26) 

p=0.163 

-.62 
(-1.37-.12) 

p=0.101 

.05 
(-.44-.55) 
P=0.829 

MALP-EM 
+ ANTs 

% Decrease 2008 to 
2011 

2.94 (8.15) -
25.24-19.08 

0.25 (9.43) -
22.13-13.96 

3.58 (4.14) -
5.97-9.86 

4.28 (7.25) -
15.15-19.42 

3.98 (4.82) -
4.19-14.37 

Significant 
difference 

 
-1.68 

(-7.08-3.72) 
p=.542 

.52 
(-1.23-2.27) 

p=.561 

.69 
(-.78-2.15) 

p=.358 

.85 
(-.30-2.00) 

p=.148 

FreeSurfer 

% Decrease 2008 to 
2011 

1.54 (2.05) -
2.21-5.39 

0.89 (1.89) -
2.15-4.57 

1.44 (1.76) -
0.49-4.86 

0.61 (1.53) -
3.64-3.36 

1.24 (2.12) -
3.55-5.02 

Significant 
difference 

 
-.29 

(-1.56-.97) 
p=.648 

.04 
(-.55-.63) 

p=.893 

-.28 
(-.66-.10) 

p=.142 

-.07 
(-.46-.32) 

p=.733 
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Figure 4.7. The longitudinal results showing change in cortical thickness from 2008 to 2011 time points 
for both A) non-registered and B) registered scan pairs. 
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4.4. Discussion 

The results of this study have highlighted that there are a number of serious concerns 

regarding the current tools used to measure CT from MRI scans. Historically, there have been 

two ways to measure CT: surface-based techniques, such as FreeSurfer, and voxel-wise 

techniques, such as ANTs. While all measures have benefits and drawbacks, these results 

demonstrate that reliability and accuracy remain key issues with both general techniques.  

FreeSurfer, the most commonly used CT measure, showed reasonable cross-sectional 

reliability and longitudinal sensitivity in non-registered scans. However, visual inspection of the 

segmentations indicated that the accuracy of tools was poor in a number of regions. The 

temporal lobes were generally poorly delineated, as has been previously reported (McCarthy 

et al. 2015). In addition, there was often incorrect classification of the cortical GM as WM or 

CSF. Despite these issues, when using the standard pipeline, FreeSurfer did detect significantly 

greater reduction in CT for gene carriers in PreHD-B, HD1 and HD2 compared to controls. This 

indicates some level of sensitivity to change, however it is impossible to tell from the current 

analysis how accurate these results are given the quality of many of the segmentations. There 

is particular concern when also considering the results of the longitudinal analysis measuring 

CT in registered scans, whereby the pattern of greater reductions in CT with increasing disease 

burden was not apparent and a number of participants showed very different rates of 

longitudinal change compared to those seen for the non-registered scans. After the statistical 

analysis was performed showing poor longitudinal results, a selection of segmentations were 

visually re-examined. There was no obvious reason for the differing performance of FreeSurfer 

after registration, that is, there were no visible errors in segmentation in registered scan pairs. 

The different longitudinal results seen in non-registered and registered scans extended across 

all lobes, indicating that these differences were not due to errors in one region. These results 

suggest that by performing registration on the scans prior to segmentation the act of warping 

the scans from native space to a subject specific space negatively affects the FreeSurfer 

segmentation, possibly by making the boundaries between tissue classes less clear. The 

longitudinal FreeSurfer pipeline recommends that segmentations should be performed on 

cross-sectional time points before registering them, however the large difference between the 

two analyses is concerning.  

Both ANTs and MALP-EM showed more significant problems with measurement 

compared to FreeSurfer. ANTs segmentations were visually poor, with frequent 

overestimation of the occipital cortex and temporal lobes. This was more pronounced in 

atrophied brains, indicating a possible disease-related bias in the measurement of CT. In 
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addition, sulci that were tightly compressed were not delineated accurately, with the two sides 

appearing to merge, resulting in ultra-thick measures of the cortex at these points. The poor 

segmentations were reflected in the ICC and repeatability values. ICC values were generally 

between 0.70 and 0.80. While this is typically viewed as representing good reliability, the 

confidence intervals for ICC values for ANTs were very wide, and thus we cannot assume good 

reliability (Koo & Li 2016). In addition, repeatability values were >5 for most ANTs 

comparisons, again indicating poor reliability. Although scans were captured in one session, 

and thus we would expect to see little differences between measurements these values 

suggest that ANTs CT pipeline is difficult to apply reliably. 

The results from the combination of MALP-EM segmented CGM and ANTs 

KellyKapowski CT pipeline, which calculates CT from previously segmented CGM regions, were 

more variable. Visual QC demonstrated that while overall the segmentations were of better 

quality than those produced by ANTs, issues were again seen with delineation in the sulci, 

similar to those seen with ANTs regions. Cross-sectional reliability indicated that MALP-EM 

plus ANTs CT pipeline was highly reliable. ICC values were >.95 for almost all regions, and 

repeatability was <2 for most regions. However, the longitudinal analysis indicated that both 

growth and reduction in CT of up to 42% for non-registered scans, and up to 25% for 

registered scans. Following analysis, post-hoc examination of some of the scans showing the 

most extreme reductions in CT were undertaken. Participants with large increases or 

decreases in thickness tended to have one CGM segmentation that was thicker by a number of 

voxels across the cortex, which could result in large differences between the two time (e.g. 

25% increase in thickness in one registered scan pair). Some of the scan pairs showing large 

discrepancies often had one scan with reduced quality or difference in GM/WM contrast 

between the two scans. For scans showing large differences in thickness, the volumetric 

change calculated in chapter 3 were also re-examined and were not found to be 

disproportionately large (i.e. 1% reduction in volume over time for a scan showing a 25% 

change in CT). These large increases and decreases are likely to be artefacts of the technique 

and the sensitivity of CT to minor changes in scan quality, which have been noted previously 

(Clarkson et al. 2011), rather than real changes in thickness. Since voxel-wise techniques 

calculate thickness based on a value for every voxel in the cortex rather than every vertex in 

the cortical surface, they can be more heavily impacted by a consistent but minor over- or 

under-estimation of the cortex. Overall, the results support previous work indicating that 

volume-based methods are more susceptible to longitudinal instability than surface-based 

methods (Clarkson et al. 2011). 



 

164 
 

One of the most challenging aspects of calculating CT from MRI is creating highly 

accurate delineations of sulci, as described previously (Cardoso et al., 2011). Voxel-wise tools 

suffer from this problem due to the partial volume effect. If a very small sulcus consists of 

mainly GM from either side of the sulcus with a small amount of CSF, voxel-wise methods will 

classify the region as GM. Thus then quantifying CT from the voxel-map the sulcus will be 

missed, leading to very thick values for CT in this region. It is possible that this artefact explains 

the increased thickness values for both ANTs and MALP-EM compared to FreeSurfer. When 

comparing CT in healthy controls to a group with atrophy, such as HD, this artefact might 

artificially inflate group differences. As atrophy progresses and the sulci widen, the sulci might 

be classified more accurately due to increased CSF in the voxels, ultimately resulting in a 

reduction of overall thickness. This is demonstrated in Figure 4.8, which shows baseline and 

follow-up scans from a manifest HD participant in TRACK-HD, and demonstrates that as the 

sulci widen, more voxels are classed as CSF and thus CT measurement undergoes large 

reductions. While the widening of sulci is a disease-related effect, it is not a direct measure of 

CT and so can be considered an artefact rather than a true measure. This is a significant issue 

that surface based methods are less affected by as the delineation of sulci is also improved 

within FreeSurfer by the inclusion of a maximum and minimum value for thickness within the 

pipeline. That is, at no point in the cortex can thickness be >5mm when measured using 

FreeSurfer. Furthermore, the use of a minimum value may mean that the cortex is over-

estimated in scans with extreme atrophy. While the maximum/minimum thickness values 

mean that that for some scans, thickness is likely to be either over- or under-estimated, it 

helps to ensure that the sulci are delineated clearly. 

 

 

Figure 4.8. An example of a key source of variability in thickness measures. Figure (A) shows an 
HD participant at baseline, with Figure (B) showing the same participant three years later. In a 
number of regions, the sulci have widened with increasing atrophy, which causes a sharp 
reduction in thickness measurements at these points.   
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The large increases and decreases seen in some thickness measures over 3 years, 

along with the differing results found when running the analysis on both non-registered and 

registered scan pairs have implications for the measurement of longitudinal change in CT. It is 

important to note that in order to compare techniques more directly, the default FreeSurfer 

longitudinal pipeline was not used in this study. It is recommended that the pre-optimised 

longitudinal pipeline is used when running longitudinal analyses. However, internal evaluation 

comparing results from the cross-sectional FreeSurfer pipeline and the longitudinal pipeline 

has been performed previously on the TRACK-HD cohort, and the results were highly 

comparable and thus the decision was made to only use the cross-sectional pipeline in this 

analysis.  

The results of this study support previous findings that have demonstrated the back-

to-back reliability of FreeSurfer (Han et al. 2006; Tustison et al. 2014), and also one study 

which found that FreeSurfer produced more plausible longitudinal measures of change than 

voxel-wise methods (Clarkson et al. 2011). While these results provide further examples 

demonstrating the reliability of FreeSurfer, as measured quantitatively, this comparison also 

suggests that researchers should proceed with caution when using FreeSurfer to perform 

clinical comparisons, since the qualitative review of all scans demonstrated a high rate of poor 

quality thickness regions.  

Only one recent study has performed an analysis validating similar voxel-wise 

measures to those included in this investigation. The previous study compared the reliability of 

volumetric measures to CT using similar tools in an Alzheimer’s (AD) cohort (Schwarz et al. 

2016). The study looked at a small number of regions related to AD pathology, measured the 

performance of FreeSurfer measures of volume and thickness, ANTs measures of thickness, 

and SPM volumetric measures and a combined SPM and ANTs thickness calculation, similar to 

the current application of MALP-EM and ANTs. Their results showed that thickness was 

generally less reliable than volume, significantly so in some regions, however thickness 

measures showed a stronger relationship to pathological measures of AD. Similar to the 

current analysis, which found high reliability for a combination of MALP-EM regions and ANTs 

thickness metrics, the authors found that the most reliable thickness measures were 

calculated using SPM segmentations and ANTs. They also found that the performance of ANTs 

thickness pipeline was variable, again, similarly to results reported here.  While volumetric 

measures were more reliable, due to issues associated with the co-variation of head size that 

is a necessary requirement for volumetric analyses but not thickness analyses, the authors 

recommended that thickness should be used over volumetric measures. However, this study 
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only included cross-sectional analysis. Similarly, the results presented here indicated that 

cross-sectional regions had high reliability for the combined MALP-EM and ANTs pipeline. 

There was also a plausible trend for decreasing thickness with increasing disease burden. 

However, the previous study did not discuss the quality of segmentations other than to 

provide failure rates (classified as a gross failure), and they performed no longitudinal analysis. 

Longitudinally, the results of this analysis showed extreme variability in rates of change – 

indicating that this method is not suitable for longitudinal use, and also adding uncertainty to 

the validity of the cross-sectional findings.  

4.5. Conclusions 

This work has supported a number of previous findings, but also extended the 

literature by adding a longitudinal comparison for one relatively new measure of CT (ANTs) 

and one more experimental measure of CT (MALP-EM+ANTs). FreeSurfer and MALPEM+ANTs 

provided plausible cross-sectional findings, with MALP-EM+ANTs showing particularly high 

back-to-back reliability. Furthermore, FreeSurfer was sensitive to longitudinal change in non-

registered scan pairs. However, a number of issues concerning the reliability and validity of 

these measures were also encountered. The accurate delineation of the cortical surface was a 

problem for all techniques, with voxel-wise measures suffering more from poor sulcal 

delineation, and the surface-based method, FreeSurfer, suffering from general segmentation 

inaccuracies.  While these issues are not as important for cortical volume measurements, the 

accurate delineation of sulci makes a great difference to the calculation of thickness measures. 

Significant longitudinal change with increasing disease progression was only found when using 

FreeSurfer and only when scans were segmented in native space, with a completely different 

pattern of change found when looking at registered scans. When attempting to measure 

subtle cortical changes in a small number of participants it is essential that only the most 

accurate methods are applied. By including thickness measures, it is possible that spurious 

findings could be introduced due to artefacts of the techniques. Based on these results, the 

decision was made to exclude CT measures from the analysis conducted in Chapter 6. It is 

essential that the measures used to quantify CGM during motor onset are the most accurate 

and reliable measures, and this analysis has provided evidence suggesting that there are still 

issues with the use of CT measures.  
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5. VALIDATION OF AUTOMATED MEASUREMENT FOR 

SUBCORTICAL REGIONS 

While cortical volume is the focus of the final analysis in chapter six, subcortical 

regions are well validated, highly sensitive markers of disease progression. The caudate and 

putamen show significant damage in post-mortem studies of HD, indicating the importance of 

these structures (Vonsattel et al. 1985). Furthermore, many studies have identified these 

regions as the earliest brain regions to undergo atrophy, as well as the regions that undergo 

the most rapid atrophy (Tabrizi et al. 2009; Tabrizi et al. 2012). The quantification of 

longitudinal change within both the caudate and putamen are two of the most robust 

biomarkers for observing change in HD gene carriers (Georgiou-Karistianis et al. 2013), as well 

as being strong predictors of disease progression (Tabrizi et al. 2013; Paulsen et al. 2010). 

Thus, it is important that they are included in investigations of disease progression for HD. 

They provide a useful measure of comparison, but also ensure that the group being studied 

are showing typical signs of HD neural changes. By including these measures, a unique 

understanding of the relationship between subcortical atrophy and cortical atrophy will be 

gained.  

A number of HD studies have used validated manual measures of both the caudate 

and putamen to quantify cross-sectional and longitudinal volume in HD (Tabrizi et al. 2012; 

Tabrizi et al. 2009; Tabrizi et al. 2011; Tabrizi et al. 2013; Hobbs et al. 2013; Hobbs et al. 2015). 

In addition, the same measures are now being applied in multiple clinical trials for HD. While 

not an absolute GT, manual measures are often considered to be a ‘gold standard’ for 

segmentation since they are performed by highly trained raters with an understanding of 

neuroanatomical structure, following strictly defined procedures. However, these methods are 

time-consuming to perform and difficult for other research groups to replicate without 

training. Instead, automated measures of subcortical volume are often used in the literature to 

quantify subcortical volume (Paulsen et al. 2006; Domínguez et al. 2013; Aylward, Nopoulos, et 

al. 2011).  

However, as with the segmentation of cortical regions, it is vital that the tools used to 

quantify volume are both reliable and accurate. The use of different tools to measure the 

volume of subcortical regions has resulted in some disparity between studies, with differences 

in atrophy rates for the caudate and putamen reported between different studies (Georgiou-

Karistianis et al. 2013). Some studies have reported faster rates of atrophy in the caudate, and 

some in the putamen. These differences have implications for the selection of biomarkers in 

clinical trials, along with the sample size requirements for these trials (Georgiou-Karistianis et 
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al. 2013). While previous validations have been performed on subcortical regions from other 

tools (Perlaki et al. 2017; Rees 2014), MALP-EM subcortical regions have not been examined. 

After validation and subsequent selection of the MALP-EM cortical regions for inclusion in 

Chapter 6, the use of subcortical volumetric measures that have also been processed via 

MALP-EM would help to reduce inter-region bias introduced by the use of different 

measurement techniques to quantify volume in different regions. However, prior to doing this 

the subcortical regions produced by MALP-EM should be validated to ensure they are of a high 

standard.   

5.1. Aims 

This analysis aims to use previously segmented regions of the caudate and putamen to 

investigate the performance of MALP-EM on subcortical regions on an HD cohort. Scans from 

the PADDINGTON study underwent manual caudate and putamen segmentation at baseline, 

performed by experienced image analysts. The same scans were processed using MALP-EM, 

with qualitative examination of all regions and quantitative comparisons used to compare the 

volumes extracted from these regions. 

5.2. Methods 

Data for this study was taken from the PADDINGTON study (section 3.1.4). Data from 

the PADDINGTON study was used because all participants had both caudate and putamen 

regions manually segmented at baseline, providing a ‘gold-standard’ measure for caudate and 

putamen regions, whereas for TRACK-HD the putamen was not manually segmented. 

5.2.1. Participants 

PADDINGTON data from Leiden, London and Paris was included in this analysis. See 

section 2.1.4 for details on recruitment and data collection. These three sites also participated 

in the TRACK-HD and TrackOn-HD studies, with the same scanners and acquisition protocols. 

All participants who had a baseline scan which passed visual QC and had manual caudate and 

putamen regions were included in the study.  

5.2.2. Segmentations 

Manual segmentations of the caudate and putamen were performed upon data 

collection at the baseline time point of the PADDINGTON study, as described in section 2.3.3. 

Automated segmentation was performed in native space using the default parameters for 

MALP-EM. All regions underwent visual QC upon completion of the segmentation pipeline. 
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Manually measured TIV (section 2.3.3) was used to account for overall head size in group 

comparisons.  

5.2.3. Statistical analysis 

Summary statistics for both manual and automated methods were measured, and t-

tests were performed to compare putamen and caudate volumes (as a % of TIV) between 

controls and HD participants. Intraclass correlations were also calculated to measure the 

consistency of manual and automated measures, with Bland-Altman plots and scatterplots 

used to visualise the relationship between manual and automated measures.  

5.3. Results 

5.3.1. Quality Control 

Overall, the quality of the automated segmentations was high. The caudate regions 

were particularly good, especially given the large amount of atrophy in some scans. Some 

examples of manual and automated segmentations are shown in Figure 5.1 and Figure 5.2. 

However, there were a number of fails. One scan failed processing with MALP-EM due to 

incorrect classification of the GM and WM. The failed scan was examined and was found to be 

poorly position within the FOV. The scan was re-oriented and segmentation was attempted 

again. This time, processing completed successfully, indicating that the issue was associated 

with the initial registration step completed in MALP-EM. However, the scan was excluded from 

analysis as the manual segmentations were completed on the non-realigned data. In addition, 

there were two caudate segmentations and five putamen segmentations that failed due to 

underestimation of the region. An example of a failed caudate segmentation and a failed 

putamen segmentation are shown in Figure 5.3. These scans were excluded from the analysis.  
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Figure 5.1. An example of automated measures of the caudate and putamen from the 
PADDINGTON study in (A) axial without a segmentation, (B) axial with a segmentation, (C) 
coronal without a segmentation, (D) with a segmentation. 

 

 
Figure 5.2. An example of manual caudate and putamen segmentations. (A) Shows a scan from 
the PADDINGTON cohort prior to segmentation, (B) shows the manually delineated putamen 
region and (C) shows the manually delineated caudate region.  

 

5.3.2. Quantitative analysis 

Participant demographics are shown in Table 5.1, and summary data for manual and 

automated regions is shown in Table 5.2. For both manual and automated techniques, HD 

participants had lower volumes of the caudate and putamen compared to controls (both raw 

volumes and as a percentage of TIV). Putamen and caudate volumes (% of TIV) were 

significantly lower for HD participants than controls for all measures at p<.0001.  
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Bland-Altman plots suggest no clear bias in measurement. Intraclass correlations were 

high, with consistency between putamen measures .943 (CI=.907-.965) and caudate measures 

.944 (CI=.909-.965).  Finally, scatterplots (Figure 5.5) demonstrate a high level of association 

between manual and automated measures for both controls and HD participants. Scatterplots 

visualising the associations between manual and automated measures split by site were 

produced (Figure 5.6), and after visual inspection showing even distribution of data from the 

three sites, no further analysis was performed to examine the impact of site. 

 

 
                    

 
Figure 5.3. An example of failed automated segmentations. (A) Shows a coronal view without a 
segmentation, (B) shows the same view with a failed caudate segmentation, (C) shows an axial 
view without a segmentation, (D) shows the same view with a failed putamen segmentation. 
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Table 5.1. Demographics for the PADDINGTON participants included in the subcortical volume 
comparison. 

 
Controls 
(N=29) HD (N=40) 

Age 53.34 (7.60) 
38.26-66.64 

50.22 (9.99) 
26.77-67.29 

Sex (m/f) 

12/17 9/31 

CAG 
- 

43.35 (2.90) 
39.00-54.00 

Disease Burden 
Score - 

373.08 (87.75) 
230.77-559.18 

Total Functional 
Capacity 

13.00 (0.00) 
13.00-13.00 

11.68 (1.27) 
7.00-13.00 

Total Motor Score 1.45 (2.03) 
0.00-7.00 

19.00 (10.38) 
6.00-58.00 

 

 

Table 5.2. Summary data and intraclass correlation for manual and automated putamen and 
caudate volumes expressed as raw volumes and as a % of TIV. t-tests showing the difference 
between groups for automated and manual measures (as a % of TIV) are also displayed.  

 Controls HD Difference 

Putamen Manual Raw 7.75 (1.18) 
5.17-10.70 

4.97 (1.13) 
3.03-7.11 

- 

Manual % TIV 0.54 (0.07) 0.41-
0.68 

0.36 (0.08) 0.22-
0.51 

t(66)=9.83, 
p<.0001 

Automated Raw 7.59 (1.47) 
4.83-11.44 

4.75 (1.38) 2.47-
7.68 

- 

Automated % TIV 0.53 (0.09) 0.38-
0.76 

0.34 (0.10) 0.18-
0.56 

t(60)=7.77, 
p<.0001 

Caudate Manual Raw 7.49 (7.67) 
6.12-9.11 

4.99 (9.50) 
3.33-7.30 

- 

Manual % TIV 0.52 (0.05) 0.43-
0.62 

0.36 (0.07) 0.23-
0.53 

t(66)=10.63, 
p<.0001 

Automated Raw 6.44 (9.23) 
5.15-8.22 

4.28 (9.38) 
2.84-6.42 

- 

Automated % TIV 0.45 (0.05) 0.36-
0.55 

0.31 (0.06) 0.18-
0.43 

t(63)= 9.84, 
p<.0001 
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Figure 5.4. Bland-Altman plots comparing (A) manual and automated putamen volumes and 
(B) manual and automated caudate volumes. 

 

 

 

Figure 5.5. Scatterplots showing the relationship between manual and automated volumes of 
the (A) putamen and (B) caudate for both control and HD participants. 
 

 

Figure 5.6. Scatterplots showing the relationship between manual and automated volumes of 
the (A) putamen and (B) caudate, for Leiden (green), London (red) and Paris (yellow) sites. 
 

5.4. Discussion 

This analysis aimed to validate an automated measure of the putamen and caudate 

quantified from T1 MRI scans. In Chapter 4, MALP-EM was validated as a sensitive and reliable 
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tool for measuring the volume of CGM in an HD cohort. Based on those results, it was selected 

as a candidate for measuring CGM in the longitudinal analysis to be completed in Chapter 6. 

However, it is important that subcortical GM structures are also included in the analysis for 

Chapter 6 as they provide a robust and sensitive measure of neural atrophy in HD. Ideally, the 

same technique would be used to measure both cortical and subcortical GM to reduce sources 

of bias when drawing conclusions about regional differences. However, subcortical volumetric 

measures extracted from MALP-EM have not been validated to-date. Here both putamen and 

caudate volumetric segmentations from MALP-EM have been successfully validated, 

demonstrating high correspondence with manual measures.  

Similar to manual measures, the automatically segmented regions are highly effective 

at detecting significant group differences between control and HD participants in the 

PADDINGTON cohort.  Automated measures of the caudate and putamen were significantly 

lower in HD than controls at p<.0001. In addition, very high levels of consistency were seen 

between manual and automated volumes, with intraclass correlations >0.94 for both regions.  

However, it is important to recognise that a number of regions failed QC after being 

processed with MALP-EM. Two caudate regions had large holes that meant measurement 

would be incorrect, and six putamen regions were of poor quality, with underestimation of the 

putamen apparent. This failure rate could be problematic in small cohorts with limited data, 

and requires further examination in different cohorts. In the current data, the failures were 

not limited to either the control or HD group, suggesting that this is not an artefact stemming 

from atrophied regions. In addition, the poor segmentations did not appear to be as a result of 

a particular site or scanner type. This highlights the need for careful visual QC of 

segmentations from this pipeline prior to inclusion in future studies. While it is possible to 

perform manual editing on automatically generated regions to improve them, there should be 

strict criteria specifying when and how this should be done. 

Based on the results of this analysis, automated volumetric measurements appear to 

perform to a standard approaching that of the ‘gold-standard’ manual measurements. While 

overall volumes were lower than manual regions, possibly due to the use of PVE on the 

automated regions but not on the manually delineated regions, there was a strong relationship 

between the two measures and automated measures showed highly significant relationships 

to disease stage. Automated measures of the putamen and caudate will be used in the 

following chapters of this thesis.  
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6. CHARACTERISING CORTICAL GREY MATTER ATROPHY 

DURING HUNTINGTON’S DISEASE MOTOR ONSET 

Although many studies have detected significant atrophy within the cortex in pre- and 

manifest HD participants, previous research has been unable to present a thorough 

characterisation of the trajectory of cortical atrophy in HD because of limitations in study 

design and analysis methods that make assumptions about the linear progression of atrophy. It 

is more plausible to assume that neural changes are both linear and non-linear, with 

accelerations and decelerations possible during HD progression. Knowledge about the 

temporal progression of cortical change in HD could provide useful information to help 

understand the relationship between neural changes and HD symptomology. This chapter 

describes work that aims to expand upon previous findings by providing a detailed 

characterisation of CGM atrophy in HD participants using multivariate non-linear analysis to 

examine the progression of volume loss across multiple longitudinal time points. To provide a 

thorough characterisation of atrophy, linear modelling is used to detect regions that undergo 

atrophy at a constant rate (linear atrophy) and, additionally, non-linear models are used to 

track possible accelerations or decelerations in atrophy (non-linear atrophy).  Previous studies 

have used cross-sectional data to make inferences about the progression of atrophy, but here, 

by modelling both linear and non-linear characteristics of atrophy in a carefully selected 

longitudinal cohort, the temporal progression of cortical atrophy can be better understood. 

This can in turn provide information about the impact of cortical atrophy on symptom onset 

and progression that could aid in the targeted development of therapeutic advances for the 

treatment of HD.   

As described in section 1.1.6, at the point of end-stage disease cortical atrophy is 

widespread with only the temporal lobes relatively preserved. However, the nature of the 

progression of this widespread cortical atrophy during the pre- and early stages of manifest HD 

is still not well understood. A number of whole-brain analyses in HD gene-carriers suggest that 

volume loss begins in occipital and posterior regions and slowly progresses into more anterior 

regions of the brain as the disease progresses (Hobbs, Henley, et al. 2010; Tabrizi et al. 2012; 

Tabrizi et al. 2011; Tabrizi et al. 2009; Rosas et al. 2008). However, several studies have also 

indicated that frontal lobe volume is affected across both pre- and manifest disease stages 

(Aylward et al. 1998; Gómez-Ansón et al. 2009; Stoffers et al. 2010). A 2013 meta-analysis 

pooled the results of 17 VBM studies and found that between controls and pre-HD the only 

significant difference in cortical volume was in the occipital lobe, whereas for manifest HD, 
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differences were found in frontal cortex, primary motor, premotor and somatosensory 

regions, as well as in the intraparietal sulcus, the midcingulate cortex and the secondary 

somatosensory cortex (Dogan et al. 2013).  

In an attempt to map the neural changes that occur in pre-HD, a small number of 

studies have used advanced analysis methods, as discussed in section 1.4.2 (Wu et al. 2017; 

Ciarochi et al. 2016; Coppen et al. 2016). To recap, two studies used cross-sectional data to 

infer the co-occurrence of regional change, thought to represent network-based atrophy. The 

results from Ciarochi et al. (2016) indicated co-occurring frontal and motor atrophy in HD 

gene-carriers far from onset, with parietal and occipital atrophy in those closer to onset. 

Coppen et al. (2016) found more widespread patterns of atrophy in pre-HD, but with similar 

occipital regions showing change in manifest HD participants. However, both studies used 

analysis techniques based on the assumption that atrophy both progresses linearly and is 

temporally-correlated between regions. It is more biologically plausible to assume that 

atrophy occurs in both linear and non-linear patterns, and that the rate and pace of atrophy 

differs across regions. Furthermore, methodological issues including the possible mis-

registration of data in one of these studies, as described in 1.4.2, suggest that the findings 

should be interpreted with caution. Finally, a third study attempted to measure cortical change 

in a pre-HD cohort using cut-points - estimated points during disease progression whereby 

specific neural features begin to undergo significant change (Wu et al. 2017). Here, analysis 

including the WM, GM and subcortical structures did not show significant change within 

cortical GM, which may be due to the high variability in disease burden within the pre-HD 

cohort in addition to the use of stringent multiple comparison corrections applied due to the 

inclusion of multiple types of data. These studies were designed to characterise CGM change, 

and while they have expanded the findings of earlier VBM studies, there is still considerable 

inconsistency in terms of the pattern of cortical atrophy shown across the time course of HD 

and the true nature of CGM change in HD remains unknown. 

In addition to the pattern of CGM atrophy during disease progression, there is also 

uncertainty about the effect of CAG on atrophy rate.  Previous evidence suggests that CAG 

length contributes to both disease progression and atrophy rates (Rosenblatt et al. 2006; 

Henley et al. 2009; Hobbs, Henley, et al. 2010; Aylward, Mills, et al. 2011; Ruocco et al. 2008). 

However the exact nature of this effect is not understood, with a small number of studies 

indicating that higher CAG length results in faster atrophy of subcortical structures, as well as 

regions of the occipital, cingulate and frontal lobes (Henley et al. 2009; Hobbs, Henley, et al. 

2010; Ruocco et al. 2008; Aylward, Mills, et al. 2011). The effects of CAG length on both linear 
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and non-linear atrophy have not been examined in detail. Further evidence describing this 

relationship may help to understand the progression of HD, particularly in high CAG individuals 

who tend to show faster clinical progression (Rosenblatt et al. 2006).  

Collectively, the results of previous studies suggest that cortical atrophy generally 

occurs in late pre-HD and early HD, with the first atrophy likely to be occurring within occipital, 

motor and possibly frontal regions. However, the variability in terms of findings from these 

studies limits the conclusions that can be made about the progression of cortical atrophy in 

HD, particularly in pre-HD participants. There are a number of common methodological 

problems that may have contributed to this variability. Most previous studies use cross-

sectional data to draw conclusions about the progression of atrophy, and often make the 

assumption that atrophy progresses linearly; as yet there are no studies that have quantified 

non-linear atrophy in a longitudinal cohort. The use of simple mass-univariate approaches 

means that limited conclusions can be drawn from these analyses (McIntosh & Misic 2013). 

The lack of work measuring non-linear atrophy is partly due to the complicated nature of the 

modelling required to perform analysis of non-linear atrophy across multiple time points. 

While complex modelling methods are widely available for functional and electrophysiological 

data, similar methods have not been commonly applied to sMRI data (Friston et al. 2003; 

Stephan et al. 2007; Friston et al. 2016). However, a recently published framework has been 

developed for analysing changes in brain structure over time using a dynamical systems 

method (Ziegler et al. 2017). Structural Dynamic Causal Modelling (sDCM) enables both linear 

and non-linear modelling of complex longitudinal data (Ziegler et al. 2017), with the option to 

apply variable input factors hypothesised to be driving neural change differentially within 

regions.  Furthermore, change can be quantified within independent regions using a data-

driven approach, but also within networks of regions to test specific network-based 

hypotheses about the causal links between atrophy in different regions. This framework was 

recently validated on pubescent brain changes, demonstrating that cortical growth during 

puberty progressed differentially between regions and that regional change was related to 

explicitly defined growth factors (Ziegler et al. 2017).  Applying this approach to longitudinal 

data with multiple time points provides a powerful method of characterising structural change 

within the cortex in neurodegeneration.  

A further limitation of previous HD studies investigating cortical atrophy is that they 

have applied a series of differing tools for the processing and analysis of MRI data. Recent 

studies have demonstrated that segmentation errors affect the conclusions drawn from 

volumetric neuroimaging studies (Johnson et al. 2017; Katuwal et al. 2016). When different 
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segmentation tools are used to process the same images, volumetric results can be 

significantly different and segmentations are often visually different between tools, with errors 

in segmentation thought to be a driving factor causing between-tool differences (Katuwal et al. 

2016). These findings were supported by the results of Chapter 3, which demonstrated that 

inconsistency between tools can result in variable findings when applied on the same dataset. 

Due to the inconsistency introduced by the differing use of tools and substandard 

segmentations, it is essential that measures are validated as both reliable and accurate prior to 

use. Furthermore, visual QC should be performed on all scans and segmentations to ensure 

that any group differences or longitudinal changes are not just artefacts of poor segmentation 

techniques. 

Another key issue associated with previous studies is the heterogeneity of HD 

symptoms and disease onset/progression across HD gene-carriers. Typically, studies examining 

neural atrophy in pre-HD use an estimated calculation of year to disease onset when grouping 

participants according to disease stage. This calculation is based on a combination of age and 

CAG repeat (Langbehn et al. 2004), and explains around 50-70% of variability in onset 

(Papoutsi et al. 2014).  Although this formula can predict disease onset with moderate 

accuracy, when looking for subtle neural changes, heterogeneity within the groups can reduce 

the ability to detect small changes in the cortex and can result in variable findings across 

studies that have grouped participants differently (Paulsen, Long, Johnson, et al. 2014; Tabrizi 

et al. 2009). Given that a number of longitudinal HD studies have acquired imaging data within 

the same individuals spanning >6 years, it is now possible to select subsets of participants 

based on longitudinal characteristics such as speed of symptom progression (fast vs. slow 

progressors) or time of motor onset. This method of cohort selection can be used to reduce 

heterogeneity within groups, and thus increase the power to detect change within different 

phases of disease progression. However, retrospective grouping has only been used in a small 

number of studies to date and has not been used to study cortical change in detail (Paulsen, 

Long, Johnson, et al. 2014; Tabrizi et al. 2013). 

Additionally, a series of widely-cited findings are based on data collected as part of the 

multi-site observational PREDICT-HD study, which includes MRI data from more than 30 sites, 

and both 1.5 and 3 Tesla scanners. Multi-site studies are important for advancing knowledge 

about HD and enable the recruitment of much larger cohorts; however, data collected from 

multiple sites may also introduce significant noise to later stages of analysis. While key 

measures that show large group differences or change in HD (e.g. caudate volume) are 

generally robust to the effects of using data from multiple sites, more subtle changes may not 
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be detected due to higher level of between-site variability. The inconsistency in previous 

findings for CGM atrophy in HD suggests that cortical change is slowly progressing and thus 

susceptible to the noise introduced by combining data collected from a large number of 

scanners with multiple field strengths, such that the subtle changes are hard to detect. Most 

previous studies have been cross-sectional, and using data from a large number of sites can be 

more problematic when performing cross-sectional analyses since between scanner 

differences in image quality can act as a significant confound for MRI analysis  (Littmann et al. 

2006; Focke et al. 2011). In contrast, longitudinal analyses involving the study of within-

participant data are less affected by the variability introduced by multiple scanner types or 

acquisitions since participants are typically scanned at the same site with the same protocol 

throughout data collection and within-participant measures are used. Longitudinal data also 

accounts for natural variations seen in brain volume that can make group-differences difficult 

to detect in cross-sectional studies, and thus longitudinal analyses are preferable when 

possible. 

6.1. Aims 

In the following study, the aim was to characterise longitudinal linear and non-linear 

structural change within the cortex in HD, addressing a number of the shortfalls described 

above and providing the most detailed characterisation of the progression of CGM atrophy in 

HD to-date. This study uses tools validated in previous chapters to measure GM volume, and 

then applies a multivariate analysis method to quantify cortical GM atrophy in a sub-group of 

participants from the TRACK-HD and TrackOn-HD studies.  

The cohort was selected according to motor symptom onset using a clinically rated 

measure of motor symptoms in HD. As described in 1.1.3, the diagnostic confidence score 

(DCS) quantifies motor symptoms, and is used to define the clinical onset of HD. This inclusion 

criterion was chosen for a number of reasons. Firstly, this period is a critical time in disease 

onset, with the increasing symptom severity an important marker of progression for both HD 

patients and clinicians. Despite the importance of this period in HD, there is little 

understanding about whether the increase in symptom severity is reflective of structural loss 

within the brain. By understanding the relationship between symptom onset and neural 

change, a greater understanding of the progression of HD pathology could be gained. In 

addition, given the heterogeneity of symptoms in HD, the use of DCS as an inclusion criterion 

for this study enables the investigation of neural atrophy during a stage of the disease that 

follows a more predictable pattern of progression and thus improves the likelihood of 

detecting homogenous group-wide cortical change.  
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sMRI data were segmented into cortical sub-regions using MALP-EM, which was 

validated in earlier chapters of this thesis; MALP-EM was also used to segment the caudate, 

putamen and global WM. The resulting cortical, striatal and WM segmentations were then 

modelled using sDCM to map the distribution and rate of cortical atrophy in HD participants in 

the decade surrounding clinical diagnosis. Four main analyses were performed. Firstly, to 

determine which regions underwent the highest overall volumetric reduction, linear models 

were applied to quantify total atrophy occurring over the 11 year period for each participant 

within each brain region. Then, the rate of linear atrophy within each region was measured 

over time to show which regions show the highest and most consistent rates of atrophy.  The 

analysis was also performed to determine whether any regions of the cortex showed a pattern 

of non-linear atrophy, i.e., whether there was acceleration/deceleration of atrophy within 

cortical regions over the 11 year time period and if so, at which point during disease 

progression this acceleration occurred. In addition, since previous evidence suggests that CAG 

length contributes to disease progression and atrophy rates (Rosenblatt et al. 2006; Henley et 

al. 2009; Hobbs, Henley, et al. 2010) the effects of CAG length on both linear and non-linear 

atrophy were measured to determine whether CAG length contributes to atrophy rate. Finally, 

to investigate the association between behavioural change and cortical atrophy, a behavioural 

analysis was performed to map the progression of change in three performance measures, two 

of motor performance (one clinical, Total Motor Score, one behavioural, Speeded Tapping) and 

one measure of cognitive performance (SDMT). By studying the timing of change within these 

measures, the consequences of atrophy can be better understood. 

6.2. Methods 

6.2.1. Participants 

Participants were from the TRACK-HD and TrackOn-HD study cohorts (see 2.1.2). For 

the current study, only participants who were initially included in the pre-HD group in both 

cohorts and subsequently transitioned to manifest HD ('converters') during the course of data 

collection were included. Participants were recruited during data collection for TRACK-HD or 

TrackOn-HD and categorised at recruitment as pre-HD based on the criteria described in 2.1.2. 

Pre-HD participants were included in the current analysis if they received a DCS of 4 at any 

subsequent time point, indicating that they had met clinical diagnostic criteria for manifest HD 

and had therefore converted to the manifest HD stage. Fifty participants met this criterion for 

conversion during TRACK-HD/TrackOn-HD. One additional participant received a DCS of 4 at 
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TRACK-HD visit 4, but then reverted to DCS <4 at a later time point and was excluded from this 

investigation.  

All converters were re-aligned to consolidate year of motor conversion across all 

participants (Figure 6.1). This was done to increase homogeneity of disease progression within 

the group. Motor diagnosis is a disease progression milestone for HD, and thus by aligning the 

participants at time of motor-onset neural atrophy during the transition phase is predicted to 

be more consistent than looking across participants who are aligned differently. The first year 

of DCS = 4 was designated as year of conversion (time point =0), and each year prior to 

conversion labelled as year -1, -2, -3, etc. Every year after conversion was labelled as year 1, 2, 

3, etc. This resulted in a spread of participants with data up to -6 years prior to motor 

diagnosis and 5 years after motor diagnosis, enabling the mapping of cortical changes 

occurring during HD conversion. See Figure 6.1 for a schematic showing the number of data 

points available for each time point after re-alignment of the data. 

6.2.2. Measurement of motor and cognitive symptoms 

In order to link neural changes to HD symptoms, three measures of disease 

progression were selected from the battery of TRACK-HD and TrackON-HD behavioural tests 

that have previously been shown to have strong associations with disease progression in HD 

(Tabrizi et al. 2013). Firstly, Total Motor Score (TMS) was used to approximate clinical motor 

progression (Huntington Study Group 1996). TMS measures the presence of motor symptoms, 

and ranges from 0-60 with a score of <5 indicating no substantial motor symptoms. Since TMS 

is a clinical measure and thus can be subject to rater bias, an additional measure of motor 

progression that is less subjective, speeded tapping variability in inter-onset interval in the 

non-dominant hand was also included.  This measure requires participants to tap in time with 

a beep, and the tapping is measured. From this measurement, motor performance speed and 

accuracy can be assessed, and this measure shows significant disease-related change over 12 

months (Tabrizi et al. 2011) and was predictive of decline on TFC after adjusting for age and 

CAG (Tabrizi et al. 2013). Additionally, the symbol digit modalities test (SDMT) was included as 

a measure of cognitive progression in HD (Smith 1991). The SDMT assesses visuomotor 

integration and has components of visual scanning. It is a pencil-and-paper task during which 

participants view a key showing symbols with the digits 1-9. The participants are then 

presented with symbols above empty box and are given 90 seconds to write the corresponding 

digits in the boxes. The SDMT has been demonstrated as a reliable measure for use in HD 
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studies, and is also related to HD progression (Tabrizi et al. 2013). It is a key cognitive measure 

used in HD studies. 

6.2.3. Longitudinal image processing 

Image processing involved a pipeline with three general steps: the structural data from 

all time points for each individual were registered together and an average scan was created 

for each participant; the average scans were then segmented into cortical and subcortical 

regions using MALP-EM; finally the regions for each participant were multiplied from the 

Jacobian map corresponding to each time point, creating a volumetric map for each 

participant at each time point and within each region.  These steps are explained in more 

detail below.  

For the first step, the longitudinal within-participant registration pipeline included 

within SPM12 (Ashburner & Ridgway 2012) was applied to each individual set of data, i.e. all 

time points for each individual. This process included between–scan registration, creation of 

an average scan (across the time points) and automated differential bias correction for 

between-scan inhomogeneity (Jenkinson et al. 2002). In using this pipeline, variability that is 

commonly seen within longitudinal measures of volume due to inconstant scan alignment or 

differences in inhomogeneity can be removed without introducing bias by selecting an image 

from one time point as a target for registration. The registration process was performed using 

default settings and all native space scans from each participant for each time point.  The 

output included an average image (created by convolving the scans from all time points) as 

well as Jacobean images and warping parameters that were then used to align the native scans 

to the average scan. This allowed for QC on both the average image and the warped native 

image to ensure that registration had completed successfully for each time point. Registration 

initially failed for two participants due to poor initial alignment within the FOV between the 

scans from different time points. For these two participants, the native space scans were 

adjusted to be in rough alignment and registration was re-run successfully.  

Following registration, MALP-EM was run on all average scans.  MALP-EM is a freely 

available segmentation tool aimed at providing a fully automated method able to separate 

tissue classes in healthy brains as well as brains that show severe neural pathologies (Ledig et 

al. 2015). It utilises a previously described registration approach (Heckemann et al. 2012), 

atlas-based segmentation, and intensity-based expectation maximisation to segment the brain 

into cortical and subcortical regions (Ledig et al. 2015). As well as the validation performed as 

part of this thesis, MALP-EM has been validated on traumatic brain injury patients and with 
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successful stratification of patients into favourable vs unfavourable outcomes possible using 

MALP-EM segmentations (Ledig et al. 2015). MALP-EM outputs total volumes for different 

tissue types as well as regional volumes for 138 regions. 

While the MALP-EM standard pipeline generally performs well on the TRACK-HD and 

TrackOn-HD data, minor regions of over-segmentation in the occipital and temporal lobe were 

occasionally seen (Chapter 3; Johnson et al. 2017). Thus to improve delineation of the cortex in 

these regions, manually segmented whole-brain regions created during initial processing for 

the TRACK-HD/TrackOn-HD studies were used as masks during segmentation to improve initial 

brain-extraction and reduce errors in these areas. The process of creating these regions is 

described previously (2.3.3.1; Freeborough, Fox, & Kitney, 1997), but, briefly, the procedure 

uses a semi-automated intensity-based threshold with manual edits to create a highly-

accurate total-brain region in native space. These regions were created at baseline visits for 

TRACK-HD and TrackOn-HD participants, and were visually examined for accuracy prior to use 

in the current study. Minor edits were performed to improve these masks if necessary. The 

masks (in native space) were converted to NiFTI format, binarised and filled to ensure that the 

regions contained no holes. The mask was then registered to the average image for each 

participant using the warps generated during creation of the average image. Once overlaid on 

the average image for each participant, each mask was checked again to ensure that it overlaid 

the brain well. These masks were specified in the MALP-EM pipeline. All other settings for 

MALP-EM were the default values.  

After processing, all segmented regions underwent visual QC to check for errors. One 

scan did not pass QC due to errors in segmentation that could not be rectified, but overall the 

standard of segmentations was high. Figure 6.2 shows a finished MALP-EM segmentation 

demonstrating the high standard of cortical delineation. For each participant, the regions 

segmented on the average scan were then multiplied by the Jacobean maps from each time 

point to create a volumetric map representing the volumes within each region at every time 

point.  

MALP-EM automatically creates 96 default regions during segmentation, however a 

number of regions were combined to reduce the number of ROIs and corresponding noise 

within small cortical regions, and to ensure that results were biologically interpretable. There 

was a focus on an a-priori selection of 54 (27 bilateral pairs) grey matter regions of interest 

(ROI) and one global white matter volume. To create the reduced number of ROIs, default 

MALP-EM regions were combined. They were combined based on anatomical knowledge and 

visual inspection of the regions, with the regions that were combined and the final regions 
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shown in Table 6.1. As discussed previously, the regions were also combined across 

hemispheres. In order to facilitate more straightforward comparisons across regions the 

decision was made to analyse and present results of regional brain volume changes relative to 

volume at time point of motor diagnosis (in percent). Due to the temporal symmetry and the 

year of diagnosis being the only time point with full data availability in all subjects, this 

reference is expected to be more accurate compared to common referencing to volume at 

baseline scan. 

 

Figure 6.1. A schematic showing all data-points available for this analysis. Data is shown re-
aligned so motor diagnosis is consistent between participants. Green represents motor 
diagnosis, yellow represents available MRI data and grey represents missing data. Missing data 
includes time points for which a participant was not yet recruited (e.g. when a participant was 
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recruited at baseline of TrackOn-HD, such as Participant 49), or had dropped out of the study 
(e.g. Participant 16 dropped out at the end of TRACK-HD and did not participate in TrackOn-
HD), and when a participant could not attend a time point (e.g. Participant 26).   
 

 

Figure 6.2. An example of a GM segmentation used in this study shown in (A) Coronal, (B) Axial 
and (C) Sagittal views. The figures show both cortical and subcortical regions. 

 

 

Table 6.1. The final regions measured in this study, and the original regions output by MALP-
EM that were combined to create the final regions.  

Final Region Name Original Combined Regions 

Angular Gyrus Right Angular Gyrus Right 

Angular Gyrus Left Angular Gyrus Left 

Calcarine Cortex Right Calcarine Cortex Right 

Calcarine Cortex Left Calcarine Cortex Left 

Cuneus Right Cuneus Right 

Cuneus Left Cuneus Left 

Entorhinal Area Right Entorhinal Area Right 

Entorhinal Area Left Entorhinal Area Left 

Frontal Pole Right Occipital Frontal Pole Right 

Frontal Pole Left Frontal Pole Left 

Lingual Gyrus Right Lingual Gyrus Right 

Lingual Gyrus Left Lingual Gyrus Left 

Occipital Pole Right Occipital Pole Right 

Occipital Pole Left Occipital Pole Left 

Precuneus Right Precuneus Right 

Precuneus Left Precuneus Left 

Parahippocampal Gyrus Right Parahippocampal Gyrus Right 

Parahippocampal Gyrus Left Parahippocampal Gyrus Left 

Planumtemporale Right Planumtemporale Right 

Planumtemporale Left Planumtemporale Left 

Supplementary Motor Cortex Right Supplementary Motor Cortex Right 
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Supplementary Motor Cortex Left Supplementary Motor Cortex Left 

Supramarginal Gyrus Right Supramarginal Gyrus Right 

Supramarginal Gyrus Left Supramarginal Gyrus Left 

Superiorparietal Lobule Right Superiorparietal Lobule Right 

Superiorparietal Lobule Left Superiorparietal Lobule Left 

Temporal Pole Right Temporal Pole Right 

Temporal Pole Left Temporal Pole Left 

Temporal Gyrus Right Right Inferior Temporal Gyrus; Right Medial Temporal Gyrus; 
Right Planum Polar; Right Superior Temporal Gyrus; Right 
Transverse Temporal Gyrus 

Temporal Gyrus Left Left Inferior Temporal Gyrus; Left Medial Temporal Gyrus; Left 
Planum Polar; Left Superior Temporal Gyrus; Left Transverse 
Temporal Gyrus 

Orbital Gyrus Right Right Anteriororbital Gyrus; Right Gyrus Rectus; Right Lateral 
Orbital Gyrus; Right Medial Frontal Cortex; Right Medial Orbital 
Gyrus; Right Posterior Orbital Gyrus; Right Subcolossal Area 

Orbital Gyrus Left Left Anteriororbital Gyrus; Left Gyrus Rectus; Left Lateral Orbital 
Gyrus; Left Medial Frontal Cortex; Left Medial Orbital Gyrus; Left 
Posterior Orbital Gyrus; Left Subcolossal Area 

Cingulate Gyrus Right Right Anterior Cingulate Gyrus; Right Middle Cingulate Gyrus; 
Right Posterior Cingulate Gyrus 

Cingulate Gyrus Left Left Anterior Cingulate Gyrus; Left Middle Cingulate Gyrus; Left 
Posterior Cingulate Gyrus 

Frontal Gyrus Right Right Superior Frontal Gyrus; Right Superior Frontal Gyrus Medial 
Segment; Middle Frontal Gyrus 

Frontal Gyrus Left Left Superior Frontal Gyrus; Left Superior Frontal Gyrus Medial 
Segment; Middle Frontal Gyrus 

Occipital Gyrus Right Right Superior Occipital Gyrus; Right Inferior Occipital Gyrus; 
Right Middle OccipitalGyrus 

Occipital Gyrus Left Left Superior Occipital Gyrus; Left Inferior Occipital Gyrus; Left 
Middle OccipitalGyrus 

Inferior Frontal Gyrus Right Right Tringular Part Of The Inferior Frontal Gyrus; Right Orbital 
Part Of The Inferior Frontal Gyrus; Right Opercular Part Of The 
Inferior Frontal Gyrus 

Inferior Frontal Gyrus Left Left Tringular Part Of The Inferior Frontal Gyrus; Left Orbital Part 
Of The Inferior Frontal Gyrus; Left Opercular Part Of The Inferior 
Frontal Gyrus 

Operculum Right Right Central Operculum; Right Frontal Operculum; Right Parietal 
Operculum 

Operculum Left Left Central Operculum; Left Frontal Operculum; Left Parietal 
Operculum 

Insula Right Right Posterior Insular; Right Anterior Insula 

Insula Left Left Posterior Insular; Left Anterior Insula 

Postcentral Gyrus Right Post Central Gyrus Right; Right Postcentral Gyrus Medial Segment 

Postcentral Gyrus Left Post Central Gyrus Left; Left Postcentral Gyrus Medial Segment 
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Precentral Gyrus Right Precentral Gyrus Right; Right Precentral Gyrus Medial Segment 

Precentral Gyrus Left Precentral Gyrus Left; Left Precentral Gyrus Medial Segment 

Fusiform Gyrus Right Right Fusiform; Right OccipitalFusiform Gyrus 

Fusiform Gyrus Left Left Fusiform; Left OccipitalFusiform Gyrus 

 

6.2.4. Hierarchical disease progression models 

The framework introduced in section 2.5 for longitudinal modelling of brain 

trajectories using dynamical systems is applied here (Ziegler et al. 2017). This modelling 

approach describes individual as well as group-level (hierarchical) change in regional brain 

volumes during the transition period from pre-HD to manifest HD. Details of the applied 

modelling and inference were previously published (Ziegler et al. 2017). Firstly, to map 

individual progression individual (first-) non-linear models are estimated. These individual 

models are then taken forward to the group (second-) level, where a model (the most 

appropriate for our data being selected using Bayesian Model Comparison; see below) is fitted 

that estimates change across the group whilst accounting for the effects of covariates (such as 

age, gender).  

Individual first-level models were estimated using the established dynamical systems 

framework: 

 

The basic model assumes that  describes the change in regional volumes over time 

for each individual, ie27 bilateral volumes (25 cortical regions, as well as the caudate and 

putamen) and one global WM volume. The progression of  (volume in each region) is 

influenced by both endogenous dynamics, , and external inputs  (Figure 6.3. A). 

Internal dynamics (  can denote regional self-connections and/or connections between 

regions. For this study, only regional self-connections are estimated representing within-region 

atrophy rates. Between-region interactions were not specified here due to a specific interest in 

examining change within all individual cortical regions prior to examining more specific, 

network-based hypotheses.  

External inputs (u) are additional drivers of volumetric change or shrinkage, and in this 

model they represent the unknown underlying factors that may influence atrophy within a 

region. No explicitly defined external input factors, C, were included in the model. 
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This analysis has anticipated bilateral equivalence between the hemispheres and thus 

the volumes were combined across hemispheres, assuming that progression within each 

volume (  describes the same evolution of volumes in both corresponding bilateral grey 

matter ROIs. This bilateral equivalence is based on previous sMRI results reporting largely 

symmetric effects of atrophy in the TRACK-HD cohort and in a meta-analysis of HD studies 

(Tabrizi et al. 2012; Minkova et al. 2017; Minkova et al. 2018).  

Using this framework, the four analyses specified above were addressed to measure 

gross atrophy, linear rate of atrophy, non-linear accelerations in atrophy and the effects of 

CAG length on both linear and non-linear atrophy. The model specifications used to investigate 

these aims are detailed here. 

6.2.4.1. First-level dynamical models of individuals 

As part of the first or individual level analysis, a series of models were explored to 

identify which trajectory of volumetric change best explained the observed data. Seven 

different patterns of change including linear atrophy, as well as non-linear patterns that would 

imply acceleration or deceleration of atrophy during HD progression, each characterised by 

different external inputs, were modelled. The models were as following: 

(a) Linear progression resulting in constant rates of atrophy trajectories;  

(b) Piecewise linear progression assuming a global acceleration phase uniform across 

regions;  

(c) Accelerations progressing in a sigmoidal (s shaped) manner. These accelerations 

can have regionally-specific sensitivity to change and rates of change, but with a global delay 

parameter common across all regions reflecting a delay in the acceleration of atrophy. The 

global delay parameter could be before or after motor diagnosis;  

(d) Accelerations progressing in a sigmoidal (s shaped) manner. These accelerations 

can have regionally-specific sensitivity to change and rates of change, but this time with a 

regional delay parameter that reflects the possibility of a differing delay in the acceleration of 

atrophy across different regions. Again, the regional delay parameters could be before or after 

motor diagnosis; 

(e) Volumetric changes follow a generalized logistic differential equation;  

(f) Volume change follows a simple quadratic polynomial progression;  

(g) Volumetric change evolves without the effects of external inputs.  
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DCM uses a probabilistic Bayesian framework and accordingly, assumptions are applied 

regarding the nature of estimated change in volume.  Priors that reflect empirical or ‘prior’ 

knowledge of the distributions of expected volume change were therefore, included within the 

models, constraining the values of parameters during estimation. Here, only weakly 

informative priors representing data features were used rather than priors with strong 

assumptions about the progression of atrophy. This was because this is the first analysis of this 

type to be performed in HD, and it was unclear what pattern of degeneration might be found. 

Individual level model inversions were performed using previously established Variational 

Laplace methods (Friston et al. 2007). This was performed using the Variational Laplace 

algorithm for Bayesian parameter estimation, inference and model selection tools included n 

SPM12 via the SPM nlsi GN in release 6685 of SPM12 (Wellcome Trust Centre for 

Neuroimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). More specifically, model 

inversion and estimation followed a symmetric system from time point of motor diagnosis 

(treated as the initial volume since data was available for all participants) both forward and 

backwards to the earliest time point prior to diagnosis and the latest time point after motor 

diagnosis. A detailed mathematical introduction to Variational Laplace and the applied 

inference using model evidence is provided in Ziegler et al. (2017). Model fitting can be 

potentially problematic, given that a good model may have a poor fit due to high levels of 

observation noise, while a complex model may have a good fit, but be biologically 

uninterpretable (known as overfitting; Stephan et al. 2010). Bayesian model selection guards 

against this problem by selecting a winning model that allows the optimal balance between 

accuracy and complexity (across the models being tested).  It should be noted that while the 

winning model determines the precision of the estimates, it does not need to be considered 

explicitly in the later stages of analysis (Stephan et al. 2010). For this study, the Bayesian 

Model Selection is performed at the second level.  

6.2.4.2. Second-level model of the group 

Since the aim of this analysis is to perform group level disease progression modelling 

whilst accounting for individual level non-linear trajectories, each participant’s first level model 

was embedded in a second (group-) level model. This enables the construction of group-wise 

models whilst controlling for individual level covariates, such as site, sex and age. A recently 

introduced empirical Bayes framework for estimation and inference of hierarchical non-linear 

models was used to estimate the group-level model (Friston et al. 2016). A number of 

participant-specific characteristics were included as covariates in the group-level to explain 
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first-level variability (Figure 6.3. C). These were: CAG length, sex, age (at motor diagnosis), TIV 

and scanning site. Notably, since CAG repeat length and age at diagnosis were highly 

correlated (r=-0.85), as is expected within HD studies, age was entered after orthogonalisation 

with respect to CAG.  

This hierarchical modelling accounts for unexpected variation of first-level parameters, 

increases power for detecting group-level effects by accounting for differences in first-level 

parameters across participants, for example by accounting for participants with a differing 

number of visits, and explicitly allows for further examination of the effects of variables (e.g. 

CAG length) on all model parameters (e.g. atrophy rates). 

Bayesian model selection was conducted comparing the obtained full hierarchical 

(two-level) models with all described first level forms and a second level including a group 

mean parameter and abovementioned individual covariates and confounds. Bayesian model 

evidence both optimises model fit while penalizing complexity and is therefore appropriate for 

model selection in highly parameterized hierarchical disease progression models (Penny 2012). 

Comparisons revealed that the evidence was highest for sigmoidal progression models with 

additional inputs to specify differential regional delays to the onset of accelerations (model (d) 

specified in section 6.2.4.1). The model evidence is shown in Figure 6.3 B. This model was 

subsequently used for the analysis. The regional inputs were specified for both the temporal 

delay of accelerations/decelerations and the sensitivity or amplitude of the accelerations. The 

winning model group results are presented in terms of the posterior distribution (expectation 

± SD) of the group mean parameters. 

6.2.4.3. Analysis of effects of CAG length on trajectories 

As well as characterising overall atrophy, additional analyses were performed to 

examine the contribution of CAG length to the progression of atrophy in this cohort. The 

applied hierarchical disease progression model accounts for inter-subject heterogeneity by 

using covariates to predict first level parameters (Friston et al. 2016). Here, second level 

parameter effects of CAG repeat length were evaluated while accounting for all other 

covariates introduced in the first level. There was a particular focus on whether CAG effects 

were associated with differences in regional rates of atrophy or the amplitude and sensitivity 

to sigmoidal inputs causing accelerations or decelerations of atrophy. Furthermore, the effect 

of CAG length on absolute volume at point of motor diagnosis was measured using first level 

models with additional initial state parameters (volume at motor diagnosis).   
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Since this disease progression model is generative in nature, it allows individual 

trajectory predictions for all regions and participants over the whole decade around diagnosis. 

To further evaluate the relationship of genetic and brain differences as a process of the 

disease unfolding over years, all individual regional volumes were predicted using CAG repeat 

length for all time points independently while accounting for covariates and confounds.  

6.2.4.4. Modelling volumetric change and behavioural results 

The multivariate dynamical disease progression model was complemented by a 

separate model used to examine the change in motor and cognitive performance over time. 

This was done using a simple linear-mixed effects approach (based on Matlab function fitlme 

with Maximum Likelihood estimation). A quadratic model of disease progression (relative to 

time point of diagnosis) was fitted to the data for each behavioural variable independently. 

The quadratic fit was compared to more simple linear progression models using (simulated) 

likelihood ratio tests. The intercepts and slopes were allowed to vary across participants (as 

potential random effects) to account for the substantial heterogeneity in HD progression. The 

participant specific covariates of age at diagnosis, sex, CAG, and site were entered into the 

model as fixed effects. The models were used to determine whether performance on these 

variables accelerates by inspecting the linear and quadratic effects of time.  

 

Figure 6.3. An example of the structural DCM model used in this chapter. (A) Shows the first 
level dynamical model, with the variables shown in the schematic on the right and (B) shows 
the log model evidence from the Bayesian Model Comparison for all models compared here, 
demonstrating that the sigmoidal model with regional delayed acceleration factors had the 
best fit.  
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6.3. Results 

6.3.1. Demographics 

Demographics for the final cohort are shown in Table 6.2. Demographics are the 

values measured at time point reflecting year of motor diagnosis.  

6.3.2. Linear change during motor conversion 

Linear modelling was used to quantify both total volume loss and rate of linear 

atrophy within all regions. Total volume loss (net atrophy) for the group is shown in Figure 

6.4.A. Figure 6.4. A details the overall percent volume loss within each ROI, across the 11 years 

surrounding diagnosis for the group. During motor onset, there was higher volume loss in 

subcortical regions compared to that in cortical regions. Total atrophy for the putamen was 

21.11%, and for the caudate was 19.68%, while within the cortex, motor and frontal regions 

displayed greatest overall atrophy, with the supplementary motor cortex undergoing the 

greatest change of 11.66% reduction in volume, followed by the frontal gyrus, precentral 

gyrus, superior parietal lobule, postcentral gyrus and inferior frontal gyrus, all showing 

between 8.52-10.46% change. Global WM underwent 8.25% change. Temporal lobes showed 

the lowest rates of atrophy, with the parahippocampal gyrus, temporal pole and entorhinal 

cortex showing particularly low levels of volumetric reduction over 10 years.  

Following analysis of total volume loss, the rate of volume loss (‘atrophy rate’) across 

the 11 year period surrounding diagnosis was then examined, as shown in Figure 6.4.B. 

Atrophy rate represents approximate rate of linear change over the total time period 

surrounding diagnosis. Again, this rate was highest in the caudate and putamen, with frontal 

and motor regions showing the greatest rates of atrophy within the cortex. Temporal and 

occipital regions showed the lowest rates of linear atrophy. 
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Table 6.2. Demographics for the converters included in this study. The table shows mean (SD) 
and ranges, or N (%). 

Age 
44.59 (9.28) 
28.65-66.00 

Female 27 (55.10%) 

CAG 
43.67 (2.77) 
39.00-50.00 

Site 

Leiden 22 (44.90%) 

London 10 (20.40%) 

Paris 10 (20.40%) 

Vancouver 7 (14.29%) 

Total Motor Score 
14.82 (5.63) 
7.00-32.00 

Speeded Tapping 
-2.71 (0.52) 
-3.72- -1.49 

Symbol Digit 
Modalities Task 

44.00 (9.52) 
22.00-65.00 

 

6.3.3. Non-linear change during motor conversion 

Next, sigmoidal progression models were used to model non-linear change, that is, the 

accelerations and decelerations of atrophy within each region. Additional inputs were included 

in the model to account for variation in the acceleration/deceleration (signal amplitude) of 

regional atrophy and the timing of these non-linear changes within the 11 year period 

surrounding disease onset.  

Firstly, amplitude of non-linear volumetric change was accordingly calculated for each 

ROI, see Figure 6.5. Greatest acceleration of atrophy, i.e. highest amplitude, was seen in a 

number of motor regions, including the postcentral gyrus, the superior parietal lobule, the 

precentral gyrus and the supplementary motor cortex. Minor accelerations of atrophy were 

also seen in a number of other regions, including frontal and occipital regions and within the 

caudate and putamen. In contrast, minor decelerations of atrophy were shown in temporal 

regions and some medial-occipital regions, including the calcarine cortex.  

For regions showing large accelerations/decelerations of change, timing of the 

accelerations/decelerations were estimated (Figure 6.5). It is important to note that the timing 
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of acceleration is limited to before, after, or around the time of diagnosis rather than a specific 

time point. As shown in Figure 6.5, the caudate, putamen and a number of occipital and 

frontal regions showed accelerated atrophy prior to disease onset. The largest acceleration of 

atrophy was seen in motor regions occurring post-diagnosis.  

Figure 6.6. shows individual-level regional change and the corresponding sigmoid 

model for group-level acceleration of atrophy within each region. The plots demonstrate the 

relationship between individual-level change and group-level model fit, with variability seen 

between the regions. These plots demonstrate that some regions, including regions typically 

difficult to register and process such as the temporal lobes and parahippocampal region, show 

a high amount of noise. In contrast, a number of other regions, particularly subcortical, show 

less noise between time points. Figure 6.7 shows the individual model-change plotted 

alongside the group-model for one region, the caudate.  

6.3.4. Effect of CAG on atrophy 

Additional analysis using CAG as a second level parameter was performed to explore 

the link between CAG and cortical atrophy. Higher CAG length was associated with accelerated 

linear volume loss within occipital and subcortical regions, see Figure 6.8. In terms of non-

linear change, those with higher CAG length displayed reduced acceleration of atrophy over 

the decade surrounding motor diagnosis, especially in sensory-motor regions; conversely, 

participants with lower CAG lengths showed greater acceleration of atrophy in these regions. 

Furthermore, participants with a higher CAG length had substantially lower caudate, putamen 

and WM volume than those with lower CAG length at time of onset, but higher volume within 

some frontal regions. Finally, higher CAG length explained increasing variability in volumetric 

change over time within subcortical and WM regions, but decreasing variability in a number of 

cortical regions. 
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Figure 6.4. Group results showing (A) Surface projection (left panel) and parameter plot ± SD 
(right panel) of the overall percent volume loss of regional brain tissue per decade around 
diagnosis. (B) Rate of atrophy indicating approximately linear tissue atrophy during HD motor 
onset. These results account for the effects of age, sex, site, CAG and TIV. 

 

6.3.5. Motor and cognitive change during motor conversion 

Figures 6.9, 6.10 and 6.11 show the progression of TMS, Speeded Tapping and SDMT 

during the clinical transition from pre-HD to manifest HD in this cohort. For each figure, A 

shows individual-level model fit, and B shows group-level fit. Across the group, TMS began to 

increase thus representing an increase in motor symptoms before diagnosis which continued 

to accelerate after diagnosis. There were also minor increases in the Speeded Tapping score 

prior to diagnosis, indicating poorer motor performance; these increases in score accelerated 

after motor diagnosis. Finally, SDMT scores also began to show minor decreases across the 

group (indicating impairment in cognitive performance) prior to diagnosis, and similarly to 

Speeded Tapping, underwent accelerated decreases in performance across the group after 

diagnosis. 
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Figure 6.5. Group results showing (A) Regional sensitivity to input causing accelerations (red) 
or decelerations (blue) of atrophy (B) Delay parameters (of regions that show accelerated loss) 
showing approximate onset of acceleration. (C-F) Summary of all brain regions explored 
showing between-region differences in the group trajectory of atrophy progression. Regions 
differ qualitatively with evidence for some ROIs (C) showing accelerations before motor 
diagnosis (D) showing accelerations after motor diagnosis, (E) showing decelerations, (F) or no 
sign of non-linear effects (changes of rate of change). The disease model predicts individual 
and group level percent volume relative to volume at motor diagnosis accounting for 
individual variations in cag repeat length, age, sex, TIV and scanning site. Vertical dotted lines 
show the estimated time point of strongest accelerations of progression for each region. 
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Figure 6.6. Examples of regional brain volumes and their progression during transition to HD. Plots show regional longitudinal raw data (percent 
volume relative to volume at year of motor diagnosis) with each black line representing one of the 49 participants. The group level dynamical disease 
progression model with highest Bayesian model evidence is shown in red. With exception of the white matter volume, regional volumes shown here 
refer to the left hemisphere with corresponding right hemispheric volume exhibiting very similar progression (not shown).



 

1
98

 

 

 



 

1
99

 

 



 

2
00

 

 

Figure 6.7. An example of the individual and group models, plotted for one region (caudate) to illustrate model fit.  
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Figure 6.8. CAG repeat length is reflected in individual disease progression. (A) Higher CAG 
repeat length increases linear rate of atrophy in a number of regions. Shown is a brain surface 
projection (left panel) and parameter plot ± SD (right panel) indicating that CAG affects first 
level atrophy rate across patients (B) Higher CAG repeat length mainly associates to reduced 
amount of accelerations, rendering progression more linear in high CAG repeat individuals (C) 
Although generally younger, higher CAG participants have substantially reduced striatal and 
global white matter volume at time point of diagnosis. (D) Effect of CAG is also reflected in an 
increasing percent of variance explained in the putamen, caudate and white matter, and (E) a 
decreasing percent of variance explained in cortical areas. 
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Figure 6.9. Graphs showing (A) individual-level and (B) group-level quadratic models representing 
change in Total Motor Score over time in all participants included in this study. 

 
Figure 6.10 Graphs showing (A) individual-level and (B) group-level quadratic models representing 
change in Speeded Tapping over time in all participants included in this study. 
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Fi
gure 6.11. Graphs showing (A) individual-level and (B) group-level quadratic models representing change 
in SDMT over time in all participants included in this study. 

 

6.4. Discussion 

This study presents the first detailed mapping of linear and non-linear structural 

change in the cortex during conversion from pre-HD to manifest HD. Using a novel multivariate 

non-linear modelling approach it was shown that a number of cortical regions, particularly 

within the frontal and motor cortices, underwent significant linear atrophy during the decade 

encompassing clinical disease onset in HD. Concurrently, there was evidence of non-linear 

acceleration of atrophy mainly in motor regions that occurred in the period directly following 

clinical diagnosis. CAG length also had varying effects on linear and non-linear atrophy, with 

higher CAG lengths resulting in greater linear atrophy in subcortical and occipital regions, but 

smaller accelerations of non-linear atrophy in motor regions. A quadratic fit was used to map 

changes in motor and cognitive scores over time, indicating that TMS (a clinical motor score) 

shows accelerated impairment prior to motor diagnosis, whereas Speeded Tapping (a 

quantitative motor score) and SDMT (a cognitive score) begin to show accelerated 

deterioration after motor diagnosis.  These findings are the first to highlight the differential 

patterns of atrophy that cortical regions undergo during motor onset, and have important 

implications for our understanding of the disease.  
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As expected, subcortical striatal regions showed greater overall volumetric reduction 

than cortical regions, with both the caudate and putamen showing total volumetric loss of 

around 20% in the decade surrounding diagnosis, but with the putamen showing slightly 

greater loss than the caudate. Subcortical striatal structures also showed the greatest linear 

atrophy rates and although there was some acceleration of atrophy that occurred around the 

time of diagnosis, overall subcortical atrophy showed a predominantly linear pattern. This 

result supports previous work suggesting that subcortical regions appear to undergo atrophy 

that follows a linear pattern beginning long before motor onset (Hobbs, Barnes, et al. 2010). 

Furthermore, the results provide evidence in support of marginally faster atrophy of the 

putamen than the caudate, similarly to previous TRACK-HD studies (Tabrizi et al. 2012). There 

have been contrasting findings in the literature when comparing rates of caudate and putamen 

atrophy (Georgiou-Karistianis et al. 2013), with differences between studies attributed to the 

varying use of segmentation methods and different cohorts (pre-HD vs manifest HD and 

different datasets). While this study does not provide a definitive answer as to whether the 

caudate or putamen undergoes faster atrophy, and it is possible that rates differ over the 

course of the disease, the results indicate that during transition to manifest HD the putamen is 

undergoing a slightly faster rate of atrophy.  

For the first time, this study has demonstrated that a number of frontal and motor 

regions undergo the greatest total cortical atrophy and the highest linear rates of atrophy 

during conversion to manifest HD (Figure 6.4.). Several regions lost between 8.25-11.66% of 

baseline volume over the 11 year period. While previous work has demonstrated that motor 

and frontal regions are significantly reduced in pre- and manifest-HD compared to control 

participants (Thieben et al. 2002; Gómez-Ansón et al. 2009; Sormani et al. 2004; Wolf et al. 

2009; Gavazzi et al. 2007; Aylward et al. 1998; Tabrizi et al. 2009), the present results provide 

detailed regional rates of progression. The supplementary motor cortex showed the greatest 

net atrophy in this cohort, with the frontal gyrus, precentral gyrus, superior parietal lobule, 

postcentral gyrus and inferior frontal gyrus indicating a distinct pattern of motor and frontal 

change. Furthermore, similar frontal and motor regions also showed a high rate of linear 

atrophy; with frontal regions generally displaying slightly higher rates of linear atrophy than 

motor. Interestingly, both the net atrophy and linear rates of change within the temporal lobes 

indicate that they are relatively spared from degeneration during this time period; a finding 

that is supported by both in-vivo and post-mortem results (Douaud et al. 2006; Tabrizi et al. 

2009). 
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Within some regions, the total amount of atrophy occurring over the 11 years 

measured in this study was much higher than annualized rates typically reported from 

measures of global GM volume in both pre-HD and manifest participants, which has been 

quantified at around 0.5% per year in manifest HD2 participants, and lower in HD1 and pre-HD 

participants (Tabrizi et al. 2012). This is unsurprising when considering the variability of 

atrophy seen within the cortex. Regions undergoing little change, such as the temporal lobe, 

may be diluting the effect of regions undergoing significant atrophy in global GM measures, 

even within manifest HD participants. Thus, previous work quantifying global GM change may 

have under-estimated cortical change and contributed to a view that cortical atrophy in HD 

has little effect on disease progression in comparison to subcortical and WM changes.  

This study also provides novel insight into more complex non-linear patterns of 

atrophy across time, seen in Figure 6.5. Motor regions underwent a striking pattern of 

acceleration of atrophy during transition from pre-HD to manifest HD, with further analysis 

demonstrating that this acceleration occurred shortly after clinical motor diagnosis. Non-linear 

analysis of CGM has not previously been performed in HD, and while this finding is perhaps 

unsurprising as clinical diagnosis occurs at the point of motor conversion, it provides novel 

evidence demonstrating the significant acceleration of atrophy within motor regions over the 

period of conversion. It is interesting that atrophy undergoes acceleration shortly after 

diagnosis, since motor diagnosis occurs at the point in disease progression whereby motor 

symptoms are sufficiently evident to lead to diagnosis and therefore higher acceleration of 

motor cortical atrophy may be expected prior to the point of conversion. However, it seems 

likely that degeneration in the white matter precedes that of cortical grey matter (Tabrizi et al. 

2009; Paulsen et al. 2008; Wu et al. 2017).  As such, the white matter pathways that connect 

cortical grey matter regions could be primarily affected prior to diagnosis; with the atrophy in 

the cortical grey regions occurring later in the disease trajectory of neurodegeneration. Thus, it 

is the changes in white matter or structural connectivity rather than cortical atrophy that drive 

symptom progression. McColgan (2017) demonstrated significant reduction in connection 

strength in WM connections  to posterior regions, including motor regions, over 24 months in 

pre-HD participants. Furthermore, the significant change-points seen in WM volumetric and 

diffusion metrics but not CGM volume across pre-HD participants in the analysis comparing 

volumetric and diffusion metrics by Wu et al. (Wu et al. 2017) provide further support for this 

theory.  Future work should aim to directly address this hypothesis. In this study, the WM 

underwent around an 8% decrease in volume over the period, and showed a predominantly 

linear pattern of atrophy with only minor acceleration in atrophy seen shortly after diagnosis. 
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Previous studies have reported lower cross-sectional WM volume in both pre-HD (Aylward, 

Nopoulos, et al. 2011; Paulsen et al. 2010; Tabrizi et al. 2009) and manifest HD compared to 

controls (Aylward et al. 1998; Halliday et al. 1998; Tabrizi et al. 2009). Longitudinal studies 

have also shown significant change in WM in pre-HD and manifest HD (Aylward, Nopoulos, et 

al. 2011; Ruocco et al. 2008; Tabrizi et al. 2011; Hobbs, Henley, et al. 2010), with rates of 

around 1% WM loss per year in pre-HD and around 2% per year in manifest HD (Tabrizi et al. 

2012), which are in line with the current rates of change. However, it is important to recognize 

that global WM atrophy may not be a true marker of WM progression in HD and that DTI or 

connectivity metrics better reflect WM properties. Because of this, detailed conclusions on the 

rate of WM atrophy cannot be made based on the current results.  

Some frontal, lateral occipital and both striatal regions showed minor acceleration of 

atrophy occurring prior to disease onset, yet these accelerations were much less pronounced 

than those seen in motor regions. The minor accelerations in frontal regions that precede 

those seen in motor regions could help to understand the onset of cognitive disturbance that 

often occurs prior to motor onset in HD, and this could be investigated in a cohort further from 

onset. Finally, temporal and some medial-occipital regions underwent slight deceleration of 

atrophy, however these regions showed lower rates of atrophy and deceleration was less 

pronounced. In addition, as shown in Figure 6.6., some of these regions were particularly noisy 

regions.  

These results reveal an interesting pattern of both linear and non-linear cortical 

change. For the first time, this analysis has highlighted the degree to which sub-regions of the 

cortex are affected differentially by HD motor onset. Both similarities and differences in 

progression can be seen between functionally distinct regions of the cortex, for example 

frontal and motor regions undergo similar rates of linear change, but motor regions show a 

much greater acceleration of atrophy on top of the consistent linear progression seen. Regions 

including the supplementary motor, pre- and post-central gyrus underwent high rates of linear 

atrophy as well as strong accelerations of non-linear atrophy, as shown in Figure 6.4 and Figure 

6.5. In contrast, while the frontal lobe also appeared to undergo significant linear decline, it 

was not as affected by accelerations in atrophy, with more minor accelerations seen prior to 

diagnosis. These results highlight the complex trajectory of CGM change in HD, and provide 

further evidence that previous methods of analysis are unsuitable for characterising this 

change. They also support the work of McColgan et al. (2015; 2017), who showed that WM 

connections between the striatum and cortical regions in the parietal and frontal regions 

appear to deteriorate earlier than other WM connections across the brain in HD. McColgan 
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theorised that early degeneration may be occurring in cortico-striatal tracts that are the most 

highly connected and experiencing the most neural traffic. These are also tracts connecting the 

basal ganglia to regions within the motor and association networks (Section 1.5). In the current 

study, the cortical regions that showed the greatest atrophy were the frontal and parietal 

regions, supporting McColgan’s work and indicating that atrophy is occurring within regions of 

the motor and association networks during HD motor conversion. It is currently unclear why 

these two networks are particularly susceptible to degeneration, and why degeneration 

appears to spread from the basal ganglia towards cortical networks via the WM tracts. Future 

work should be done to further link degeneration within the WM and GM of these networks.  

The effect of CAG length on atrophy was also modelled here. Previous work has 

demonstrated a link between CAG length and HD progression (Rosenblatt et al. 2012; Tabrizi 

et al. 2013) with higher CAG associated with faster HD progression. The results indicate that 

higher CAG lengths are associated with higher rates of linear atrophy within the caudate, 

putamen and across the occipital lobe (Figure 6.8.). This supports the findings of a number of 

previous studies relating higher CAG repeats to greater linear change within the subcortical 

and occipital lobes (Hobbs, Henley, et al. 2010; Ruocco et al. 2008; Henley et al. 2009). Finally, 

higher CAG participants showed lower volume of the caudate, putamen and WM at diagnosis 

than those with lower CAG repeats, although they also had higher volume within a number of 

frontal regions. It could be interpreted from this result that caudate, putamen and WM are 

more severely affected than cortical regions by a higher number of CAG repeats. It is also 

possible that because of the strong association between age and CAG length meaning that 

converters with high CAG repeats were generally younger, frontal regions may be showing a 

protective effect of age. Interestingly, occipital regions typically found to undergo substantial 

atrophy in both pre-HD and manifest-HD showed lower atrophy and rates of atrophy in this 

analysis, despite being named in numerous studies as one of the earliest regions to undergo 

atrophy in HD (Coppen et al. 2016; Hobbs, Henley, et al. 2010; Tabrizi et al. 2009; Tabrizi et al. 

2011). While the occipital lobe did undergo significant atrophy in this study, it was not as 

prominent as previous results suggest. However, the strong association seen between CAG 

length and atrophy in this supplemental analysis suggests that rate of occipital atrophy is 

closely linked to CAG length (which was controlled for in the main analysis). Previous analyses 

showing extensive atrophy in the occipital lobe failed to control for CAG length (Tabrizi et al. 

2009; Tabrizi et al. 2012) and  its inclusion here suggests that the occipital lobe may be more 

susceptible to the negative effects of high CAG than other regions.  
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Finally, the behavioural analysis links change measured within the brain to 

deterioration on motor and cognitive scores. TMS is a clinical measure of motor performance, 

that covers a range of motor domains representing clinical progression in HD, including chorea, 

dystonia, ocular pursuit, and gait. Here, TMS showed accelerated impairment prior to motor 

onset suggesting that performance on this measure, and thus typical HD movement symptoms 

are more closely linked to striatal atrophy than that within the cortex, and more likely the 

result of reduced connectivity as demonstrated by McColgan et al. (2017). In contrast, both 

the Speeded Tapping and SDMT measures showed an accelerated loss in performance mainly 

after clinical diagnosis. Both measures, designed to quantify more discrete aspects of motor 

and cognitive performance than TMS, therefore, begin to show greater impairment as cortical 

motor regions show accelerated volume loss, thus indicating that performance on both the 

Speeded Tapping and SDMT could be more closely linked to cortical atrophy than TMS. 

This work has taken a step towards understanding the progression of cortical atrophy 

in HD and has implications for the treatment of HD. The results suggest that cortical atrophy is 

undergoing significant change in the 5 years preceding clinical diagnosis, and thus support the 

view that administration of a potential therapy aimed at preventing degeneration should be 

timed many years prior to onset. In addition, preclinical work conducted on primates suggests 

that, if successful, the intrathecal administration of HTT lowering drugs currently being trialled 

on early HD participants will have a greater effect on reducing HTT in the cortex than the 

striatum (Wild & Tabrizi 2017). Consequently, characterising the pattern of cortical atrophy in 

HD is essential for understanding the effectiveness of these therapies at slowing or preventing 

atrophy. As research moves towards the development of a successful disease-modifying 

treatment for HD, this knowledge may prove useful for the refinement of the timing and 

administration of a treatment, especially if this type of analyses is conducted on other HD 

cohorts at different disease stages. Although the relationship between neural atrophy and the 

behavioural measures studied here should ultimately be tested more directly, these findings 

have important implications for understanding the association between neural changes and 

commonly used HD biomarkers for measuring symptom progression. Despite its sensitivity to 

early motor symptoms (Tabrizi et al. 2012), TMS is routinely used to measure change in groups 

of HD participants rather than pre-HD participants, and as such is used as an endpoint in 

clinical trials. However, as these findings demonstrate, TMS begins to show increased change 

prior to any significant acceleration in cortical atrophy, and therefore, it is possible that it may 

not be as sensitive to the effects of a drug that targets the cortex. In contrast, changes in 

Speeded Tapping and SDMT suggest a closer association with changes in cortical atrophy of 
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the motor regions, suggesting that they are more sensitive to the effects of the therapies 

currently being tested, and this should, therefore, be considered during analysis of trial 

endpoints. 

This study has improved on previous work by addressing a number of limitations 

observed in other studies. The modelling framework applied here is a previously validated, yet 

novel approach to modelling sMRI data and this study is the first application of this technique 

to neurodegeneration. The method was developed to address weaknesses in previous analysis 

methods and to approach the quantification of GM change via a dynamical systems method. 

The ability to quantify both linear and non-linear CGM change in a group of participants with 

data from variable visits over multiple time points offers a more powerful approach to CGM 

modelling than previous methods. Using this approach, the quantification of linear atrophy as 

well as acceleration of atrophy results in a detailed perspective on the progression of neural 

change than previous methodologies applied in HD. Different generative models were fitted to 

the data and compared, so that traditional models such as a quadratic model fit could be 

compared with more complex models, including the sigmoid model. The sigmoidal model was 

found to have the best data fit once incorporating varying delay and acceleration factors. By 

performing Bayesian model comparison on the different models, it is ensured that the results 

of this comparison are robust. Furthermore, the inclusion of covariates into the first-level of 

this model controls for variability in these parameters, and thus the models are less affected 

by individual differences. While it is essential that this work is replicated using similar 

approaches in other datasets and cohorts, the regional progression observed in these results is 

entirely plausible based on post-mortem data, previous imaging data and disease symptoms.  

By performing this analysis on a subset of TRACK-HD and TrackOn-HD participants who 

underwent conversion, some heterogeneity within the disease progression can be removed. 

All participants in this study were showing clinical progression over this period, thus removing 

the variability introduced by using a predictor of motor onset to categorize participants. The 

final dataset included 286 scans across 49 participants, resulting in over a decade of data 

surrounding motor diagnosis. This timespan and number of participants provides a strong 

dataset for quantifying longitudinal within-participant change. PREDICT-HD investigators 

collected data on over 1000 pre-HD participants for >10 years, and are the only other known 

cohort with such a large extent of imaging data in HD. One study conducted on the PREDICT-

HD dataset examined motor, cognitive and imaging predictors of motor diagnosis (Paulsen, 

Long, Ross, et al. 2014).  Variables quantified at baseline from all three domains were 

significant predictors of conversion from pre- to manifest HD in 225 individuals. A number of 
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brain regions were significant predictors of conversion (including the putamen, caudate, 

hippocampus), but lobular GM was one of the best predictors. However, lobular regions were 

not broken down further, and there has not yet been any analysis that can compare to the 

current longitudinal analysis of cortical sub-regions, however the PREDICT-HD dataset offers 

the potential to replicate this result in a much larger cohort of motor converters. While the 

current analysis shows some interesting results, they require further validation in different 

cohorts and across different stages of HD before generalising them.  

Finally, the application of robust segmentation and analysis methods add support to 

the current findings. By first validating MALP-EM on the TRACK-HD cohort and performing 

detailed visual QC of all scans, the quality of segmentations has been assured. Since it is clear 

that substandard segmentation methods have previously lead to mixed findings in 

neuroimaging studies (Ashburner et al. 2016), the use of accurate tools that were validated on 

the same cohort in which they were then applied is an important strength of this study.  

It is also important to address a number of weaknesses in this study. Firstly, the use of 

clinical motor diagnosis as a criterion for inclusion in this study provides a clinically meaningful 

measure of disease progression, but also introduces a level of subjectivity to the inclusion of 

participants. The Leiden site had many more converters compared to other sites, with 

participants from Leiden almost 45% of participants in this analysis. It is unclear whether this is 

due to differences in clinical diagnosis procedures between raters or countries or whether 

more participants did undergo change in Leiden. In order to control for this where possible, 

site was entered as a co-variate into the analyses. In addition, the inclusion of participants 

within 6 years to motor onset means that it is likely that the very earliest cortical atrophy has 

not been captured by the current analysis. Further analyses could attempt to use pre-HD 

participants to model cortical atrophy in those further from onset, although this re-introduces 

issues associated with using predicted onset as a group classifier. Finally, this analysis 

combined data from two hemispheres, and merged a number of smaller cortical regions into 

larger regions. These decisions were made prior to analysis to reduce the number of regions 

included in the analysis, and were based on previous evidence suggesting that CGM changes in 

HD are bilateral. Some regions that were combined may more effectively represent HD 

without being combined, especially the cingulate gyrus. Analysis should be repeated with 

different parcellations to determine how this affects the results found in the current study. 

Nevertheless, it is possible that subtle hemispheric differences or small regional differences 

were overlooked due to this decision.  
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This analysis has given new insight into the progression of cortical atrophy, yet there 

are a number of future aims that could be addressed to build on these findings and address 

weaknesses in this study.  As discussed, the analysis could be replicated within smaller sub-

regions of the cortex and bilaterally to determine how this might affect the results. In addition, 

future work can build on the current examination by quantifying change within different 

cohorts. For example, a recently developed score of HD progression that was validated on the 

TRACK-HD cohort could be used to select those who undergo fast or slow HD progression 

(Moss et al. 2017). In addition, while there appear to be distinct HD phenotypes that occur 

around the time of conversion that would be interesting to study (McCusker & Loy 2017), it 

can be very challenging to group participants based on symptom progression, especially in a 

relatively small sample size. The present analysis was limited to the analysis of sMRI data with 

a focus on the cortex. Future analyses could work to integrate other subcortical regions and 

imaging metrics or modalities such as measures of diffusion or connectivity into the model. 

This would provide a more complete understanding of the process of neurological change 

occurring in HD, rather than just cortical atrophy. Finally, the behavioural analysis performed 

in this chapter should be combined with the volumetric sDCM modelling. Directed hypotheses 

could be tested based on the preliminary results indicating that TMS may show early changes 

related to WM (i.e. structural connectivity) and striatal changes, but that Speeded Tapping and 

the SDMT may be more closely associated with volumetric loss in the cortex.     

These results provide the most detailed characterization of cortical atrophy in 

participants undergoing transition from pre- to manifest HD to date. By applying a recently 

validated model that is uniquely able to map both linear and non-linear cortical change across 

multiple time points, this analysis expands upon previous work quantifying atrophy within the 

cortex. The results suggest that both linear and non-linear changes contribute to cortical 

atrophy differentially across the brain, and provide preliminary results indicating that different 

behavioural measures are likely to show different associations with cortical atrophy. While 

future work could expand upon these results within different cohorts and by integrating 

different imaging measures, these results presenting the first brain-wide cortical mapping in 

HD provide a comprehensive insight into CGM atrophy at a critical point in HD progression. 
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7. DISCUSSION 

This thesis aimed to evaluate the most accurate tools for measuring cortical atrophy 

from MRI scans in HD and to then apply the validated tools on an HD cohort undergoing motor 

conversion in an attempt to characterise cortical grey matter (CGM) change during this period. 

First, a series of comparisons between commonly used CGM and subcortical GM measurement 

tools were performed. From this, the most appropriate methods to detect and measure GM 

change in HD were selected. These tools were then applied to data from a cohort of HD gene 

carriers who underwent motor conversion during the TRACK-HD and TrackOn-HD studies. The 

data were analysed using a newly developed structural dynamic causal modelling (DCM) 

modelling technique that provided a detailed account of what CGM changes occur during the 

period immediately surrounding HD diagnosis. The results from this thesis provide both 

methodological advances in the analysis of sMRI data and clinically relevant information about 

the progression of atrophy in HD. 

7.1. Methodological comparisons 

Three methodological comparisons were performed in chapters three, four and five. 

Chapter three compared a number of methods that can be used to quantify the volume of the 

CGM. The measurement of brain volume is the most commonly used method of quantifying 

neural atrophy in HD, particularly within subcortical regions of interest (ROIs) (Georgiou-

Karistianis et al. 2013). Previous work has demonstrated that variability in structural brain 

volume measures introduced by the application of different image analysis tools can have 

large effects on the conclusions drawn in neuroimaging studies (Katuwal et al. 2016) and thus 

the use of accurate measures are paramount in quantifying cortical volume change in HD. 

Seven segmentation tools were compared using two datasets; an artificial dataset with 

corresponding ‘ground truth’ (GT) and a subset of TRACK-HD data that included control, pre-

HD and manifest-HD participants. Thorough qualitative and quantitative comparisons were 

undertaken and the results provided specific evidence for the selection of a segmentation tool 

for use in this thesis as well as a series of more widely applicable recommendations for other 

researchers who are also trying to select the most appropriate method of segmentation for 

their data. The comparison demonstrated that while all tools performed reliably across 

multiple scans, accuracy was much more variable. During visual QC it was clear that all tools 

had examples of poor segmentation performance, with some tools generally performing very 

poorly. This is particularly concerning given that some of the most widely used tools 
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(FreeSurfer, FSL FAST, SPM 8 Unified Segment) showed consistent errors in segmentation that 

are likely to have a considerable effect on the results of any study using these techniques. This 

finding was further established by a quantitative analysis that supported previous work in 

showing that the results of statistical comparisons differed between techniques, and thus that 

the application of different tools to measure CGM could result in varying conclusions when 

studying disease progression in HD (Katuwal et al. 2016). For example, when compared to 

controls there was significant longitudinal change in the CGM for pre-HD TRACK-HD 

participants, which was detected by the segmentations from by some tools but not others. 

This result stems from the differences in volumetric regions that are generated from different 

segmentation techniques and highlights the importance of choosing the best segmentation 

tool for the data, and then performing visual QC to ensure that segmentations are accurate 

before drawing conclusions based on the regions.  

The tool that demonstrated the highest standard of segmentation, both quantitatively 

and qualitatively on both datasets was MALP-EM. It is a newly developed, easy-to-use tool that 

was validated for use on traumatic brain injury (Ledig et al. 2015). MALP-EM is a multi-atlas 

based technique that is suitable for use on clinical populations, as demonstrated by the 

previous successful application in patients suffering from severe examples of traumatic brain 

injury (Ledig et al. 2015). It had high accuracy when quantified via comparing the 

segmentations to the BrainWeb GT segmentations, high reliability as demonstrated by test-

retest TRACK-HD data, and was sensitive to volumetric change in the longitudinal TRACK-HD 

analysis. Finally, the segmentations were generally better than most other techniques based 

on visual QC. While MALP-EM did show some errors, particularly in the temporal and occipital 

regions, they were much more infrequent and minor than for other tools and can easily be 

improved via the inclusion of a brain mask in the segmentation pipeline if needed. Based on 

the results from this chapter MALP-EM was selected as the segmentation tool that would be 

used to measure CGM in this thesis. It was the most visually accurate measurement tool, but 

also highly reliable and easy to apply, which will hopefully facilitate easy replication in other 

datasets. 

In chapter four another methodological comparison was undertaken to examine the 

performance of measures of cortical thickness (CT). It has been hypothesised that CT may be a 

more sensitive measure of cortical change than GM since volumetric measures are a function 

of the relationship between the surface area of the brain and CT (Panizzon et al. 2009), yet CT 

is a difficult characteristic to accurately quantify. Due to the complex nature of the cortex, CT is 

often over-estimated. This is largely because it is challenging to accurately delineate the tightly 
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bound sulci of a brain. Both surface-based and voxel-based methods of quantifying CT are 

available, with surface-based methods considered to be more accurate but time-consuming to 

process. This chapter compared three measures of CT, one surface-based method and two 

voxel-based methods. While the surface-based tool, FreeSurfer, gave promising longitudinal 

results that indicated the occurrence of cortical thinning with increasing disease progression in 

HD, the segmentations were substandard when visually QCed. There were regular errors in the 

classification of WM and GM, particularly in the occipital lobe, and an overall trend for the 

underestimation of the GM. Of the two voxel-wise measures tested, one was highly reliable 

but showed very poor longitudinal performance (MALP-EM segmentation + ANTs CT 

measurement), and the other was generally unreliable for both cross-sectional and 

longitudinal measurement of CT (ANTs). These disappointing results highlight the need for 

further development of accurate CT measures, and suggest that when using the currently 

available techniques caution should be taken. While FreeSurfer may be able to successfully 

distinguish between different groups and measure changes in CT, as was demonstrated here 

and in previous studies (Righart et al. 2017), the issues associated with the quality of 

segmentations should be considered, especially when comparing a group with neural 

pathology to a healthy control group. The visual examination of all segmentations should be 

performed and the results of a study interpreted with these in mind. While it is possible to 

perform manual edits within FreeSurfer that may improve the segmentations, as research 

studies expand the number of participants recruited and the move to analysing large cross-

study datasets becomes more popular this is an unfeasible solution. While it was initially 

hoped that CT could be used as an additional and potentially more sensitive longitudinal 

measure for detecting cortical change in HD in this thesis, it was instead excluded from 

subsequent chapters based on the results of chapter four.  

The final methodological comparison was performed in chapter five, whereby 

manually delineated volumetric regions of the caudate and putamen were compared to the 

automated segmentations produced by MALP-EM. Manually delineated subcortical regions are 

often considered a ‘gold standard’, but are time-consuming to perform (both in terms of rater 

training and completing the measurements). Automated measures are regularly used within 

HD literature due to their accessibility and speed of use, but the MALP-EM subcortical regions 

have not been used in HD work previously and they have not been compared to manual 

measures. After running MALP-EM on a subset of the data from PADDINGTON, visual QC 

indicated that MALP-EM subcortical regions were generally of high quality. There were a small 

number of failed segmentations, however these could be improved via manual edits to the 
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regions. The quantitative analysis demonstrated good overlap between the manual and 

automatically generated regions, with a very close association between the volumes from both 

tools. The results from this chapter provided validation of the MALP-EM regions for use in this 

study. 

These three analyses were performed to ensure that the investigation undertaken in 

chapter six used highly accurate measures of CGM to characterise GM change. The accurate 

measurement of neural characteristics is of utmost importance when performing sMRI studies, 

especially when researching clinical cohorts whereby conclusions may influence the 

understanding of disease pathology. Previous work has demonstrated that the use of different 

techniques to measure brain volume could be driving variability in neuroimaging findings 

(Katuwal et al. 2016), and encouraged the cross-validation and consistency when using 

segmentation techniques to measure volume. While numerous methodological comparisons 

have been performed to validate both volumetric and CT methods (Clarkson et al. 2011; 

Schwarz et al. 2016; Fellhauer et al. 2015; Kazemi & Noorizadeh 2014; Despotović et al. 2015; 

Klauschen et al. 2009; Eggert et al. 2012), the work undertaken for this thesis also placed 

importance on the visual examination of segmentation quality. The qualitative review of 

segmentations has previously been overlooked during reporting on the performance of many 

tools, with few published studies providing descriptions of the qualitative review of 

segmentation accuracy. Here, the qualitative examination of >3000 segmentations resulted in 

a good understanding of the limits of currently available automated tools. The majority of 

tools, both for the measurement of volume and CT, had issues with delineating the occipital 

and temporal lobes with over-estimation of CGM common within these regions. Despite many 

available software options, automated techniques are not always able to delineate the 

complex structure of the human brain. Understanding the weaknesses of these tools is vital 

when using them, and other users should endeavour to perform careful visual examination of 

both volumetric and CT segmentations prior to publishing studies that use the tools.  

The work in this thesis also identified the strengths of volumetric measurements 

compared to CT measurements, with findings suggesting that while, theoretically, measures of 

volume may be less sensitive to neural change than measures of CT (Panizzon et al. 2009), 

volume is easier to quantify and more robust to errors in segmentation than current CT 

measures. CT measures, especially when quantified longitudinally, are particularly susceptible 

to the influence of errors in segmentation that inflate CT values. Errors include the poor 

delineation of tightly bound sulci as well as general over- or under-estimation of the cortex 

due to noise within scans. While similar findings have been discussed previously (Clarkson et 
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al. 2011; Righart et al. 2017), the current results suggest that the use of recently developed CT 

methods and highly validated cortical regions do not address the shortfalls previously seen in 

CT studies. Until more work is done to improve measures of CT, volumetric measures may be 

more appropriate for the detection of cortical atrophy.  

7.2. Mapping cortical change during HD progression  

The final chapter of this thesis applied the methods validated in chapters three and 

five to a subset of data from the TRACK-HD and TrackOn-HD studies. Atrophy of the cortex has 

not been extensively characterised in HD, with previous work suffering from a range of 

limitations. This study aimed to expand upon past work and present a detailed 

characterisation of cortical atrophy during the transition from pre-HD to manifest HD, a phase 

where cortical atrophy is thought to increase along with increases in HD symptoms. Scans from 

49 participants with multiple time points were segmented, and CGM change during the period 

prior to and after HD motor diagnosis was quantified. A dynamical model using a DCM 

framework was applied that quantified total CGM loss during the period, along with the rate of 

linear (constant) atrophy, the rate and timing of non-linear atrophy (accelerations of atrophy) 

and the relationship between atrophy and CAG across the cortex. This combination of results 

provides the first in-depth understanding of the complexity of regional atrophy in the cortex 

and how this changes over time, particularly around the critical time of symptom onset in HD.  

The results show that volume loss in various regions of the cortex is higher than 

previously thought. A number of frontal and motor regions underwent atrophy totalling 

around 10% during the decade around motor diagnosis. This level of loss is double that at 

which cortical atrophy has previously been estimated (Tabrizi et al. 2012), indicating that 

heterogeneity of atrophy within the cortex influences global rates of cortical atrophy. When 

regional rates of linear atrophy were quantified, regions of the frontal lobe were shown to 

undergo the highest rates of linear atrophy in the cortex. Neuronal loss in the frontal lobe has 

been associated with many of the earliest symptoms of HD (Nana et al. 2014), and reduced 

volume of the frontal  lobe is associated with poorer performance on a number of cognitive 

and motor tasks in HD (Scahill et al. 2013). However, the finding that frontal regions are 

undergoing the highest rate of linear atrophy in this vital period of HD progression has not 

been demonstrated before. In addition, motor regions appear to undergo the greatest 

acceleration of atrophy during transition from pre-HD to manifest HD. The clinical 

categorisation of HD is based upon increasing motor symptoms and it is thus perhaps 

unsurprising that these regions undergo accelerations during this period, yet the extent of 

acceleration in these regions compared to other regions is very striking. In contrast, subcortical 
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regions were undergoing consistently high rates of atrophy during the whole period, with very 

little acceleration present, supporting previous evidence that has suggested low rates of 

acceleration of atrophy in the caudate (Hobbs, Barnes, et al. 2010). The timing of the 

accelerated atrophy in motor regions appears to occur slightly after motor onset, indicating 

that the cause of symptom onset is not CGM atrophy but possibly the breakdown in WM 

connections, as suggested by previous work (Wu et al. 2017; McColgan et al. 2017). Together, 

these two results give an interesting insight into the neural changes underpinning HD 

progression.  

The association between cortical progression and CAG length was also modelled. The 

impact of CAG on neural atrophy has not been extensively characterised, despite evidence that 

CAG length influences both HD onset and progression (Ross et al. 2014). Previous work has 

used VBM and linear models to suggest that there is a relationship between atrophy and CAG 

length, especially in subcortical regions, with some evidence for associations between CAG 

length and atrophy in the occipital lobe. The results confirm that higher CAG length is 

associated with faster progression in the occipital lobe in this cohort. Furthermore, this 

analysis also showed that those with higher CAG lengths underwent less acceleration of 

atrophy. That is, they underwent a more constant rate of atrophy compared to those who had 

lower CAG lengths and showed an acceleration of atrophy. This result is new evidence that 

indicates that there may be a different pattern of atrophy in those with high vs low CAG repeat 

lengths.  

Finally, a behavioural analysis offers preliminary results linking cortical atrophy to 

three commonly used measures of HD progression, the Total Motor Score (TMS), Speeded 

Tapping, and SDMT. While the results require further analysis using a more directed model, 

they provide an indication that Speeded Tapping and SDMT, discrete measures of HD 

progression, are more closely linked to cortical atrophy especially within the motor regions 

than TMS, which undergoes earlier change in this cohort, indicative of a possible link to WM 

connectivity changes described previously.  

The results from this chapter give new insight into the complex nature of regional 

CGM atrophy occurring over disease progression. By using a highly optimised segmentation 

technique with a complex modelling method to expand upon previous work that was 

conducted using linear modelling and more heterogeneous groups this analysis delivers a 

novel approach. The results demonstrate the importance of both frontal and motor regions in 

the progression of HD. Although it is possible that the atrophy within these regions is not 

causing the onset of symptoms, it may hasten their progression. The behavioural analysis 
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warrants further investigation, but suggests that discrete measures of HD progression may be 

more closely linked to cortical change than measures quantifying change across multiple 

domains. That there are significant accelerations of atrophy in sub-regions of the cortex during 

this phase of disease progression indicates that that CGM atrophy is not linear, as previously 

assumed and shown in Figure 1.6 from Chapter One, and that this is an oversimplification. The 

therapeutic trials that are currently underway are likely to target the cortex, and thus by 

having a better understanding of the nature of cortical atrophy and which regions are showing 

the greatest progression, as well as associated change on behavioural biomarkers, a more 

targeted approach to quantifying the effects of the drug could be used.  

7.3. Weaknesses and future work 

It is important to recognise a number of weaknesses in this work, these are covered in 

detail in the preceding chapters, but a few key points are reiterated here. The methodological 

comparisons did not compare longitudinal pipelines, since these were not available for all 

methods. By using longitudinal pipelines the results from some techniques could be improved 

and this should be considered when selecting methods for analysis. Furthermore, the 

methodological validations performed in chapters three and four did not include the 

comparison of automated methods to a gold standard for CGM regions. While a manual 

segmentation technique was tested, it was not found to be a reproducible or reliable measure. 

Future work should continue to develop improved techniques and compare sMRI 

methodology. The work conducted in this thesis has demonstrated that the techniques used to 

measure neural characteristics require improvement, particularly as MRI acquisitions develop. 

The increasing access to 7T data is just one example of a rapidly changing field, and it is 

essential that the tools used to analyse this data are constantly evaluated and improved.  

The TRACK-HD, TrackOn-HD and PADDINGTON studies were multi-site studies. While 

site was controlled for in analyses, there are a number of factors (scanner drift, software 

upgrades) that will not be accounted for by using a dummy variable to control for site. The 

acquisitions were developed for multi-site use and regular quality assurance was performed on 

each scanner to maintain consistency within and between sites, however it is likely that some 

issues are introduced by site differences. 

Replication of the sDCM work conducted in chapter six is important. Ideally, this work 

would be replicated in a different cohort, such as the PREDICT-HD cohort. The addition of 

other imaging data such as connectivity metrics could further enhance the understanding of 

disease progression in this cohort, as would further modelling to directly link behavioural 

change to neural change. By using one model to map the relationship between different 
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measures of neural change and how they change over time a cohesive picture of the 

progression of brain changes in HD can be developed. In addition, the use of different cohorts 

could provide further insight on the findings shown here. The comparison of a high CAG vs low 

CAG group could offer further evidence of the relationship between CAG and atrophy. In 

addition, the relationship between CGM atrophy and change in clinical and cognitive variables 

should be more thoroughly examined.  

 

 

7.4. Conclusions 

This thesis has provided methodological advances on the quantification of neural 

characteristics from sMRI data in HD, with the resulting methods then applied on a clinical 

cohort to conduct a thorough characterisation of the trajectory of CGM atrophy during HD 

motor symptom onset. The results provide important validation of a recently developed and 

easy to use segmentation method, and present important recommendations for the 

application of a number of commonly used sMRI measurement techniques. Most importantly, 

this thesis has advanced the current understanding of CGM atrophy in HD, revealing that rates 

of cortical atrophy are higher than previously thought. The pattern of atrophy seen across the 

cortex reveals the complex nature of cortical change occurring during motor conversion in HD. 

The results have implications for the overall understanding of disease progression, but also 

offer potential value in the monitoring of cortical change during clinical trials aimed at 

developing a treatment for HD.
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9. APPENDICES 

 

Appendix 1 

 

 
Figure 1: Box plots showing frontal GM Volumes for all groups and all tools for 2008 and 2011 
time points. Boxes show the first quartile, median and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
 
 
 

 

 
Figure 2: Box plots showing temporal GM Volumes for all groups and all tools for 2008 

and 2011 time points. Boxes show the first quartile, median and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
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Figure 3: Box plots showing parietal GM Volumes for all groups and all tools for 2008 and 2011 
time points. Boxes show the first quartile, median and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
 

 

 
Figure 4: Box plots showing occipital GM Volumes for all groups and all tools for 2008 and 2011 
time points. Boxes show the first quartile, median and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
 

 

 
Figure 5: Box plots showing insula GM Volumes for all groups and all tools for 2008 and 2011 
time points. Boxes show the first quartile, median and third quartile, with whiskers 
representing the smallest and largest value not classified as an outlier. Dots represent outliers. 
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Table 1: Intraclass correlations and confidence intervals for all HD groups in frontal, temporal, 
parietal, occipital lobes and the insula in different tools.  

 PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

Frontal GM 
Intraclass Correlations 
Confidence intervals 

SPM 8 Unified 0.991 
0.977-0.997 

0.979 
0.945-0.992 

0.986 
0.967-0.995 

0.990 
0.976-0.996 

SPM 8 New 
Segment 

0.997 
0.994-0.999 

0.999 
0.994-1.000 

0.999 
0.997-1.000 

0.998 
0.994-0.999 

SPM 12 
 

0.987 
0.969-0.995 

0.992 
0.981-0.997 

0.998 
0.994-0.999 

0.994 
0.983-0.998 

Atropos 
 

0.957 
0.868-0.984 

0.995 
0.987-0.998 

0.990 
0.970-0.996 

0.989 
0.952-0.997 

MALP-EM 
 

0.992 
0.981-0.997 

0.998 
0.995-0.999 

0.998 
0.996-0.999 

0.996 
0.990-0.998 

FAST 
 

0.983 
0.959-0.993 

0.993 
0.984-0.997 

0.995 
0.981-0.998 

0.991 
0.977-0.996 

FreeSurfer 0.973 
0.927-0.990 

0.977 
0.942-0.991 

0.984 
0.949-0.994 

0.988 
0.971-0.995 

Temporal GM 
Intraclass Correlations 
Confidence intervals 

SPM 8 Unified  0.992 
 0.979-0.997 

 0.979 
 0.947-0.992 

 0.990 
 0.976-0.996 

 0.993 
 0.982-0.997 

SPM 8 New 
Segment 

 0.999 
 0.996-0.999 

 0.999 
 0.998-1.000 

 0.998 
 0.996-0.999 

 0.998 
 0.996-0.999 

SPM 12 
 

 0.987 
 0.965-0.995 

 0.992 
 0.979-0.997 

 0.997 
 0.992-0.999 

 0.995 
 0.988-0.998 

Atropos 
 

 0.959 
 0.847-0.986 

 0.994 
 0.983-0.998 

 0.995 
 0.985-0.998 

 0.991 
 0.959-0.997 

MALP-EM 
 

 0.991 
 0.962-0.997 

 0.998 
 0.995-0.999 

 0.997 
 0.993-0.999 

 0.994 
 0.984-0.997 

FAST 
 

 0.970 
 0.903-0.989 

 0.993 
 0.981-0.997 

 0.996 
 0.991-0.999 

 0.994 
 0.986-0.998 

FreeSurfer 0.959 
0.894-0.984 

0.979 
0.945-0.992 

0.995 
0.987-0.998 

0.987 
0.968-0.995 

Parietal GM 
Intraclass Correlations 
Confidence intervals 

SPM 8 
Unified 

0.994 
0.984-0.998 

0.984 
0.959-0.994 

0.988 
0.970-0.995 

0.990 
0.976-0.996 

SPM 8 New 
Segment 

0.999 
0.997-1.000 

0.994 
0.986-0.998 

0.998 
0.995-0.999 

0.998 
0.995-0.999 

SPM 12 
 

0.988 
0.970-0.995 

0.992 
0.981-0.997 

0.998 
0.994-0.999 

0.994 
0.985-0.998 

Atropos 
 

0.987 
0.952-0.996 

0.992 
0.978-0.997 

0.989 
0.968-0.996 

0.986 
0.948-0.995 

MALP-EM 
 

0.997 
0.993-0.999 

0.994 
0.984-0.998 

0.999 
0.997-1.000 

0.996 
0.989-0.998 

FAST 
 

0.989 
0.973-0.996 

0.992 
0.980-0.997 

0.990 
0.971-0.996 

0.992 
0.981-0.997 

FreeSurfer 0.991 
0.977-0.996 

0.978 
0.936-0.992 

0.981 
0.945-0.993 

0.987 
0.967-0.995 

Occipital GM 
Intraclass Correlations 
Confidence intervals 
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SPM 8 
Unified 

0.993 
0.982-0.997 

0.968 
0.920-0.988 

0.983 
0.958-0.993 

0.991 
0.978-0.996 

SPM 8 New 
Segment 

0.999 
0.997-1.000 

0.993 
0.983-0.997 

0.998 
0.994-0.999 

0.996 
0.991-0.999 

SPM 12 
 

0.990 
0.976-0.996 

0.973 
0.934-0.989 

0.998 
0.994-0.999 

0.993 
0.979-0.997 

Atropos 
 

0.984 
0.947-0.994 

0.978 
0.913-0.993 

0.991 
0.977-0.996 

0.995 
0.967-0.998 

MALP-EM 
 

0.994 
0.985-0.998 

0.991 
0.974-0.996 

0.994 
0.985-0.998 

0.996 
0.991-0.999 

FAST 
 

0.988 
0.971-0.995 

0.990 
0.958-0.997 

0.995 
0.986-0.998 

0.997 
0.992-0.999 

FreeSurfer 0.987 
0.967-0.995 

0.968 
0.908-0.988 

0.989 
0.973-0.996 

0.995 
0.988-0.981 

Insula 
Intraclass Correlation 
Confidence Intervals 

SPM 8 Unified 0.990 
0.974-0.996 

0.984 
0.960-0.994 

0.994 
0.984-0.997 

0.994 
0.984-0.998 

SPM 8 New 
Segment 

0.995 
0.988-0.998 

0.996 
0.991-0.999 

0.998 
0.996-0.999 

0.998 
0.995-0.999 

SPM 12 
 

0.988 
0.969-0.995 

0.987 
0.968-0.995 

0.997 
0.993-0.999 

0.996 
0.989-0.998 

Atropos 
 

0.988 
0.956-0.996 

0.993 
0.984-0.997 

0.995 
0.987-0.998 

0.993 
0.981-0.997 

MALP-EM 
 

0.996 
0.990-0.999 

0.998 
0.994-0.999 

0.997 
0.992-0.999 

0.996 
0.990-0.998 

FAST 
 

0.992 
0.973-0.997 

0.995 
0.988-0.998 

0.997 
0.993-0.999 

0.997 
0.992-0.999 

FreeSurfer 0.984 
0.960-0.994 

0.970 
0.925-0.988 

0.964 
0.906-0.986 

0.963 
0.910-0.985) 
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Table 2: Repeatability values for back-to-back segmentations of frontal, temporal, parietal, 
occipital and insula GM for all HD participants included in the current study, showing means, 
standard deviations, and ranges. 

 PreHD-A 
(N=20) 

PreHD-B 
(N=20) 

HD1 
(N=20) 

HD2 
(N=20) 

Frontal 
Mean repeatability (Standard Deviation) 

Range 

SPM 8 Unified 
Segment 

1.06 (0.88)  
0.14-3.59 

1.68 (2.09)  
0.05-8.02 

1.11 (1.60)  
0.11-7.42 

0.99 (0.78)  
0.03-2.76 

SPM 8 New 
Segment 

0.55 (0.45)  
0.01-1.44 

0.45 (0.32)  
0.00-1.09 

0.40 (0.25)  
0.05-0.94 

0.44 (0.33)  
0.04-1.30 

SPM 12 
 

1.12 (1.07)  
0.08-4.27 

0.89 (0.78)  
0.04-2.35 

0.71 (0.60)  
0.00-1.93 

0.91 (0.69)  
0.20-3.05 

Atropos 
 

1.72 (2.37)  
0.05-9.03 

0.84 (0.64)  
0.08-2.48 

1.27 (1.18)  
0.04-4.02 

1.22 (1.13)  
0.02-4.16 

MALP-EM 
 

0.76 (0.93)  
0.00-3.92 

0.56 (0.39)  
0.02-1.33 

0.43 (0.37)  
0.01-1.58 

0.57 (0.60)  
0.01-2.01 

FAST 
 

1.22 (0.80)  
0.16-2.95 

0.93 (0.67)  
0.06-2.43 

0.97 (0.77)  
0.19-2.78 

0.93 (0.87)  
0.03-2.69 

FreeSurfer 1.43 (1.71) 
0.00-5.29 

3.21 (5.54) 
0.20-26.01 

1.59 (1.35) 
0.02-5.51 

1.28 (1.02) 
0.10-3.43 

Temporal 
Mean repeatability (Standard Deviation) 

Range 

 

SPM 8 Unified 
Segment 

0.80 (0.76) 
0.02-2.66 

1.49 (1.92) 
0.17-7.06 

1.11 (1.05) 
0.19-4.97 

0.85 (0.72) 
0.03-2.57 

SPM 8 New 
Segment 

0.37 (0.26) 
0.03-0.96 

0.34 (0.29) 
0.03-0.86 

0.38 (0.34) 
0.04-1.33 

0.36 (0.33) 
0.03-1.08 

SPM 12 
 

0.98 (0.74) 
0.10-2.81 

0.81 (0.84) 
0.06-3.22 

0.74 (0.58) 
0.06-2.38 

0.81 (0.55) 
0.10-2.01 

Atropos 
 

1.43 (1.68) 
0.17-5.97 

0.73 (0.79) 
0.03-2.85 

0.75 (0.78) 
0.03-3.33 

1.07 (1.03) 
0.15-3.61 

MALP-EM 
 

0.77 (0.77) 
0.01-2.97 

0.48 (0.40) 
0.00-1.67 

0.52 (0.60) 
0.00-2.64 

0.87 (0.78) 
0.07-2.36 

FAST 
 

1.02 (1.20) 
0.03-5.12 

0.75 (0.78) 
0.03-2.95 

0.69 (0.58) 
0.02-2.13 

0.69 (0.77) 
0.02-3.26 

FreeSurfer 3.15 (2.30) 
0.18-7.87 

3.04 (3.51) 
0.18-15.82 

3.43 (2.33) 
0.26-8.30 

4.51 (2.81) 
0.09-8.49 

Parietal 
Mean repeatability (Standard Deviation) 

Range 

 

SPM 8 Unified 
Segment 

0.89 (0.83) 
0.22-3.39 

1.57 (1.64) 
0.02-6.21 

1.15 (1.37) 
0.01-6.38 

1.04 (0.81) 
0.04-2.66 

SPM 8 New 
Segment 

0.38 (0.33) 
0.02-1.49 

0.54 (0.82) 
0.00-3.79 

0.46 (0.37) 
0.00-1.44 

0.39 (0.39) 
0.00-1.33 

SPM 12 
 

1.10 (1.02) 
0.01-3.89 

0.84 (0.78) 
0.04-2.83 

0.71 (0.65) 
0.05-2.42 

0.90 (0.73) 
0.07-3.40 

Atropos 
 

1.08 (1.12) 
0.10-4.16 

0.98 (0.91) 
0.04-3.15 

1.22 (1.26) 
0.07-4.43 

1.35 (1.45) 
0.09-5.60 

MALP-EM 
 

0.50 (0.53) 
0.05-2.32 

0.72 (0.89) 
0.03-3.79 

0.37 (0.30) 
0.02-1.29 

0.72 (0.43) 
0.14-1.73 

FAST 
 

0.95 (0.75) 
0.09-2.50 

0.94 (0.71) 
0.03-2.43 

1.31 (1.04) 
0.12-3.14 

0.82 (0.90) 
0.05-3.66 

FreeSurfer 0.90 (0.83) 
0.00-2.63 

1.99 (1.72) 
0.40-7.01 

1.66 (1.70) 
0.02-6.43 

1.32 (1.43) 
0.01-4.14 

Occipital 
Mean repeatability (Standard Deviation) 
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Range 

SPM 8 Unified 
Segment 

1.00 (1.24) 
0.25-5.84 

2.03 (2.01) 
0.04-7.31 

1.55 (1.84) 
0.05-8.44 

1.38 (1.20) 
0.10-3.91 

SPM 8 New 
Segment 

0.52 (0.31) 
0.02-1.07 

0.82 (0.61) 
0.01-2.36 

0.58 (0.44) 
0.01-1.45 

0.67 (0.60) 
0.02-2.10 

SPM 12 
 

1.27 (1.02) 
0.03-4.33 

1.34 (1.32) 
0.00-4.65 

0.90 (0.71) 
0.02-2.18 

1.49 (1.20) 
0.32-4.53 

Atropos 
 

1.56 (1.68) 
0.15-6.95 

1.44 (1.40) 
0.02-6.44 

1.19 (1.27) 
0.00-4.47 

1.25 (1.15) 
0.07-4.49 

MALP-EM 
 

1.05 (0.67) 
0.05-2.82 

0.98 (0.91) 
0.02-3.99 

0.84 (0.73) 
0.03-2.91 

0.80 (0.72) 
0.06-2.42 

FAST 
 

1.39 (1.00) 
0.14-4.15 

0.94 (0.80) 
0.10-2.57 

1.17 (0.73) 
0.13-2.63 

0.86 (0.79) 
0.11-3.72 

Fre
eSurfer 

1.47 
(1.24) 

0.17-
4.96 

2.25 
(2.02) 

0.13-
7.06 

1.59 
(1.35) 

0.09-
5.90 

1.14 
(1.13) 

0.09-
4.54 

Insula 
Mean repeatability (Standard Deviation) 

Range 

 

SPM 8 Unified 
Segment 

0.82 (1.00) 
0.01-3.21 

1.43 (1.36) 
0.06-4.45 

1.02 (0.99) 
0.01-4.53 

1.03 (0.93) 
0.08-3.39 

SPM 8 New 
Segment 

0.81 (0.63) 
0.02-2.08 

0.80 (0.44) 
0.09-1.56 

0.60 (0.38) 
0.02-1.33 

0.53 (0.43) 
0.08-1.37 

SPM 12 
 

0.86 (0.95) 
0.11-3.88 

1.08 (1.04) 
0.09-4.00 

0.75 (0.67) 
0.04-2.65 

0.97 (0.84) 
0.02-3.36 

Atropos 
 

1.26 (0.73) 
0.08-2.37 

0.77 (0.90) 
0.02-3.73 

1.02 (0.72) 
0.02-2.82 

1.08 (0.92) 
0.09-3.13 

MALP-EM 
 

0.89 (0.65) 
0.00-2.09 

0.59 (0.44) 
0.01-1.39 

0.74 (0.48) 
0.02-1.92 

0.92 (0.60) 
0.01-1.79 

FAST 
 

0.95 (0.63) 
0.07-2.10 

0.69 (0.48) 
0.07-1.90 

0.72 (0.56) 
0.05-1.87 

0.71 (0.64) 
0.10-1.93 

FreeSurfer 1.64 (1.05) 
0.26-4.08 

2.72 (2.88) 
0.34-13.31 

1.95 (2.26) 
0.03-7.95 

2.62 (2.27) 
0.15-7.77 
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Table 3: Spearman’s ranked correlation for segmentations of total GM for all HD participants 
included in the current study. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

PreHD-A 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.777 1     

SPM 12 Segment 0.896 0.666 1    

ANTs Atropos 0.732 0.833 0.737 1   

MALP-EM 0.808 0.950 0.749 0.844 1  

FSL FAST 0.741 0.785 0.770 0.926 0.874 1 

FreeSurfer 0.865 0.959 0.752 0.805 0.952 0.802 

PreHD-B 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.770 1     

SPM 12 Segment 0.932 0.889 1    

ANTs Atropos 0.726 0.934 0.851 1   

MALP-EM 0.842 0.964 0.941 0.919 1  

FSL FAST 0.883 0.848 0.917 0.857 0.878 1 

FreeSurfer 0.871 0.925 0.952 0.838 0.938 0.887 

HD1 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.737 1     

SPM 12 Segment 0.857 0.672 1    

ANTs Atropos 0.847 0.818 0.779 1   

MALP-EM 0.793 0.955 0.702 0.886 1  

FSL FAST 0.845 0.731 0.815 0.917 0.841 1 

FreeSurfer 0.884 0.857 0.875 0.829 0.895 0.826 

HD2 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.441 1     

SPM 12 Segment 0.758 0.555 1    

ANTs Atropos 0.644 0.820 0.671 1   

MALP-EM 0.633 0.917 0.719 0.860 1  

FSL FAST 0.827 0.738 0.768 0.908 0.853 1 

FreeSurfer 0.605 0.802 0.796 0.681 0.883 0.726 
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Table 4: Spearman’s ranked correlation for segmentations of cortical GM for all HD 
participants included in the current study.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

PreHD-A 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.815 1     

SPM 12 Segment 0.883 0.722 1    

ANTs Atropos 0.865 0.901 0.844 1   

MALP-EM 0.836 0.970 0.755 0.886 1  

FSL FAST 0.848 0.848 0.847 0.920 0.874 1 

FreeSurfer 0.868 0.955 0.811 0.917 0.973 0.923 

PreHD-B 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.747 1     

SPM 12 Segment 0.926 0.863 1    

ANTs Atropos 0.762 0.943 0.896 1   

MALP-EM 0.830 0.974 0.922 0.947 1  

FSL FAST 0.818 0.934 0.925 0.916 0.955 1 

FreeSurfer 0.887 0.836 0.935 0.848 0.874 0.925 

HD1 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.734 1     

SPM 12 Segment 0.868 0.716 1    

ANTs Atropos 0.869 0.898 0.844 1   

MALP-EM 0.735 0.973 0.711 0.914 1  

FSL FAST 0.820 0.764 0.862 0.902 0.782 1 

FreeSurfer 0.820 0.893 0.898 0.910 0.901 0.854 

HD2 

SPM 8 Unified Segment 1      

SPM 8 New Segment 0.411 1     

SPM 12 Segment 0.826 0.576 1    

ANTs Atropos 0.692 0.814 0.741 1   

MALP-EM 0.638 0.910 0.749 0.869 1  

FSL FAST 0.803 0.699 0.835 0.919 0.860 1 

FreeSurfer 0.729 0.729 0.887 0.832 0.868 0.880 
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Table 5: Spearman’s ranked correlation for segmentations of frontal GM for all HD groups 
included in the current study. 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

Controls 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.807 1.000     

SPM 12 Segment 0.918 0.935 1.000    

ANTs Atropos 0.800 0.972 0.951 1.000   

MALP-EM 0.860 0.975 0.953 0.954 1.000  

FSL FAST 0.891 0.879 0.940 0.907 0.925 1.000 

FreeSurfer 0.863 0.940 0.914 0.900 0.965 0.902 

PreHD-A 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.811 1.000     

SPM 12 Segment 0.919 0.749 1.000    

ANTs Atropos 0.839 0.865 0.859 1.000   

MALP-EM 0.832 0.962 0.737 0.841 1.000  

FSL FAST 0.820 0.638 0.802 0.776 0.692 1.000 

FreeSurfer 0.835 0.925 0.758 0.878 0.943 0.788 

PreHD-B 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.761 1.000     

SPM 12 Segment 0.902 0.926 1.000    

ANTs Atropos 0.770 0.971 0.935 1.000   

MALP-EM 0.821 0.968 0.949 0.943 1.000  

FSL FAST 0.856 0.830 0.892 0.824 0.847 1.000 

FreeSurfer 0.826 0.950 0.949 0.932 0.958 0.917 

HD1 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.806 1.000     

SPM 12 Segment 0.818 0.689 1.000    

ANTs Atropos 0.851 0.914 0.803 1.000   

MALP-EM 0.761 0.976 0.630 0.908 1.000  

FSL FAST 0.678 0.713 0.677 0.803 0.713 1.000 

FreeSurfer 0.875 0.896 0.868 0.925 0.875 0.762 

HD2 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.582 1.000     

SPM 12 Segment 0.869 0.704 1.000    

ANTs Atropos 0.738 0.805 0.791 1.000   

MALP-EM 0.662 0.970 0.777 0.881 1.000  

FSL FAST 0.839 0.681 0.788 0.877 0.784 1.000 

FreeSurfer 0.738 0.889 0.893 0.818 0.916 0.777 
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Table 6: Spearman’s ranked correlation for segmentations of temporal GM for all HD 
participants included in the current study. 

 
 
 
 
 
 
 
 
 
 
 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

Controls 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.863 1.000     

SPM 12 Segment 0.972 0.932 1.000    

ANTs Atropos 0.861 0.972 0.930 1.000   

MALP-EM 0.874 0.967 0.949 0.981 1.000  

FSL FAST 0.928 0.947 0.954 0.944 0.937 1.000 

FreeSurfer 0.918 0.956 0.951 0.956 0.939 0.975 

PreHD-A 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.853 1.000     

SPM 12 Segment 0.865 0.826 1.000    

ANTs Atropos 0.908 0.944 0.856 1.000   

MALP-EM 0.844 0.937 0.818 0.964 1.000  

FSL FAST 0.914 0.908 0.890 0.970 0.943 1.000 

FreeSurfer 0.904 0.949 0.878 0.952 0.944 0.946 

PreHD-B 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.767 1.000     

SPM 12 Segment 0.941 0.901 1.000    

ANTs Atropos 0.800 0.990 0.926 1.000   

MALP-EM 0.824 0.971 0.934 0.970 1.000  

FSL FAST 0.908 0.895 0.962 0.899 0.925 1.000 

FreeSurfer 0.896 0.896 0.956 0.890 0.916 0.974 

HD1 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.768 1.000     

SPM 12 Segment 0.892 0.689 1.000    

ANTs Atropos 0.842 0.868 0.874 1.000   

MALP-EM 0.830 0.943 0.737 0.895 1.000  

FSL FAST 0.820 0.773 0.785 0.821 0.863 1.000 

FreeSurfer 0.821 0.723 0.889 0.833 0.809 0.874 

HD2 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.641 1.000     

SPM 12 Segment 0.886 0.749 1.000    

ANTs Atropos 0.779 0.829 0.839 1.000   

MALP-EM 0.770 0.925 0.865 0.935 1.000  

FSL FAST 0.794 0.827 0.922 0.844 0.863 1.000 

FreeSurfer 0.746 0.893 0.907 0.866 0.926 0.926 
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Table 7: Spearman’s ranked correlation for segmentations of parietal GM for all HD 
participants included in the current study. 

 
 

 
 
 
 
 
 
 
 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

Controls 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.791 1.000     

SPM 12 Segment 0.925 0.879 1.000    

ANTs Atropos 0.854 0.947 0.942 1.000   

MALP-EM 0.833 0.981 0.877 0.951 1.000  

FSL FAST 0.846 0.937 0.905 0.912 0.932 1.000 

FreeSurfer 0.898 0.937 0.900 0.928 0.967 0.935 

PreHD-A 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.845 1.000     

SPM 12 Segment 0.908 0.764 1.000    

ANTs Atropos 0.854 0.884 0.847 1.000   

MALP-EM 0.812 0.959 0.741 0.871 1.000  

FSL FAST 0.869 0.892 0.845 0.964 0.862 1.000 

FreeSurfer 0.878 0.944 0.830 0.944 0.928 0.971 

PreHD-B 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.731 1.000     

SPM 12 Segment 0.920 0.863 1.000    

ANTs Atropos 0.785 0.941 0.931 1.000   

MALP-EM 0.856 0.956 0.940 0.943 1.000  

FSL FAST 0.866 0.863 0.952 0.899 0.914 1.000 

FreeSurfer 0.800 0.926 0.922 0.931 0.947 0.961 

HD1 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.762 1.000     

SPM 12 Segment 0.899 0.705 1.000    

ANTs Atropos 0.901 0.916 0.863 1.000   

MALP-EM 0.787 0.968 0.761 0.944 1.000  

FSL FAST 0.908 0.853 0.881 0.937 0.881 1.000 

FreeSurfer 0.904 0.884 0.902 0.949 0.925 0.970 

HD2 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.587 1.000     

SPM 12 Segment 0.836 0.768 1.000    

ANTs Atropos 0.681 0.928 0.815 1.000   

MALP-EM 0.632 0.959 0.777 0.934 1.000  

FSL FAST 0.744 0.947 0.899 0.925 0.938 1.000 

FreeSurfer 0.692 0.869 0.883 0.896 0.869 0.938 
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Table 8: Spearman’s ranked correlation for segmentations of occipital GM for all HD 
participants included in the current study. 

 

 
 
 
 
 
 
 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

Controls 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.712 1.000     

SPM 12 Segment 0.907 0.854 1.000    

ANTs Atropos 0.761 0.930 0.914 1.000   

MALP-EM 0.826 0.956 0.898 0.928 1.000  

FSL FAST 0.877 0.879 0.921 0.911 0.942 1.000 

FreeSurfer 0.863 0.895 0.875 0.883 0.939 0.914 

PreHD-A 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.871 1.000     

SPM 12 Segment 0.886 0.770 1.000    

ANTs Atropos 0.893 0.859 0.793 1.000   

MALP-EM 0.859 0.940 0.794 0.887 1.000  

FSL FAST 0.908 0.856 0.793 0.958 0.902 1.000 

FreeSurfer 0.871 0.908 0.794 0.883 0.946 0.910 

PreHD-B 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.553 1.000     

SPM 12 Segment 0.848 0.814 1.000    

ANTs Atropos 0.639 0.899 0.850 1.000   

MALP-EM 0.753 0.902 0.911 0.857 1.000  

FSL FAST 0.815 0.737 0.902 0.812 0.848 1.000 

FreeSurfer 0.657 0.774 0.868 0.762 0.862 0.764 

HD1 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.746 1.000     

SPM 12 Segment 0.958 0.741 1.000    

ANTs Atropos 0.899 0.851 0.917 1.000   

MALP-EM 0.844 0.956 0.844 0.905 1.000  

FSL FAST 0.976 0.788 0.967 0.935 0.881 1.000 

FreeSurfer 0.922 0.787 0.958 0.922 0.878 0.949 

HD2 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.665 1.000     

SPM 12 Segment 0.931 0.794 1.000    

ANTs Atropos 0.755 0.892 0.841 1.000   

MALP-EM 0.785 0.959 0.877 0.850 1.000  

FSL FAST 0.896 0.865 0.932 0.919 0.899 1.000 

FreeSurfer 0.809 0.832 0.890 0.800 0.898 0.896 
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Table 9: Spearman’s ranked correlation for segmentations of insula GM for all HD participants 
included in the current study. 

 

 

 SPM 8 
Unified 

Segment 

SPM 8 New 
Segment 

SPM 12 
Segment 

ANTs 
Atropos 

MALP-EM FSL FAST 

Controls 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.830 1.000     

SPM 12 Segment 0.925 0.930 1.000    

ANTs Atropos 0.818 0.961 0.874 1.000   

MALP-EM 0.704 0.791 0.709 0.811 1.000  

FSL FAST 0.839 0.939 0.868 0.953 0.837 1.000 

FreeSurfer 0.832 0.883 0.819 0.890 0.884 0.925 

PreHD-A 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.922 1.000     

SPM 12 Segment 0.928 0.853 1.000    

ANTs Atropos 0.950 0.965 0.902 1.000   

MALP-EM 0.866 0.944 0.731 0.920 1.000  

FSL FAST 0.937 0.914 0.893 0.971 0.863 1.000 

FreeSurfer 0.919 0.947 0.848 0.965 0.907 0.968 

PreHD-B 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.922 1.000     

SPM 12 Segment 0.928 0.853 1.000    

ANTs Atropos 0.950 0.965 0.902 1.000   

MALP-EM 0.866 0.944 0.731 0.920 1.000  

FSL FAST 0.937 0.914 0.893 0.971 0.863 1.000 

FreeSurfer 0.919 0.947 0.848 0.965 0.907 0.968 

HD1 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.878 1.000     

SPM 12 Segment 0.916 0.937 1.000    

ANTs Atropos 0.908 0.965 0.973 1.000   

MALP-EM 0.874 0.881 0.776 0.815 1.000  

FSL FAST 0.938 0.958 0.979 0.982 0.851 1.000 

FreeSurfer 0.887 0.929 0.928 0.928 0.866 0.959 

HD2 

SPM 8 Unified Segment 1.000      

SPM 8 New Segment 0.746 1.000     

SPM 12 Segment 0.829 0.790 1.000    

ANTs Atropos 0.826 0.850 0.917 1.000   

MALP-EM 0.753 0.872 0.777 0.808 1.000  

FSL FAST 0.928 0.857 0.878 0.904 0.851 1.000 

FreeSurfer 0.811 0.979 0.818 0.869 0.869 0.908 
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