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A novel class of ultra-thin fibres, which affect microbial growth, were explored.

The microbial properties of poly(methyl methacrylate) fibres containing 2, 4

and 8 wt% of graphene nanoplatelets (GNPs) were studied. GNPs were dis-

persed in a polymeric solution and processed using pressurized gyration.

Electron microscopy was used to characterize GNP and fibre morphology.

Scanning electron microscopy revealed the formation of beaded porous

fibres. GNP concentration was found to dictate fibre morphology. As the

GNP concentration increased, the average fibre diameter increased from 0.75

to 2.71 mm, while fibre porosity decreased. Gram-negative bacteria Escherichia
coli and Pseudomonas aeruginosa were used to investigate the properties of 2, 4

and 8 wt% GNP-loaded fibres. GNP-loaded fibres (0 wt%) were used as the

negative control. The fibres were incubated for 24 h with the bacteria; bacterial

colony-forming units were enumerated by adopting the colony-counting

method. The presence of 2 and 4 wt% GNP-loaded fibres promoted microbial

growth, while 8 wt% GNP-loaded fibres showed antimicrobial activity. These

results indicate that the minimum inhibitory concentration of GNPs required

within a fibre is 8 wt%.

provided by UCL 
1. Introduction
Carbon-based nanomaterials, such as zero-dimensional fullerenes, one-dimen-

sional carbon nanotubes (CNTs), two-dimensional graphene sheets, three-

dimensional graphite, single-walled carbon nanohorns, carbon quantum dots,

nanodiamonds, graphene oxide (GO) and its derivatives possess unique advan-

tageous properties that have gained considerable attention in a multitude of

research fields. Since their inceptive discovery, these materials have been used in

materials science and engineering [1], electronics [2], environmental engineering

[3] and biomedical engineering [4–7].

Among the bounteous properties carbon-based nanomaterials possess, their

effect on microbial growth remains undetermined. It has been well documented

that viability for microbial growth, particularly in aquatic systems, is dependent

on the carbon content available in the immediate environment [8,9]. Several

studies have shown a positive correlation between carbon source metabolism

and microbial proliferation, with the carbon source often determining the

maximum obtainable cell density [10–12].

The antimicrobial properties of carbon-based materials have also been inves-

tigated [13–16]. In 2010, Hu et al. [13] first reported the destructive interactions

between GO and Escherichia coli. Akhavan & Ghaderi [14] further demonstrated

the antibacterial activity of GO and reduced GO against both Gram-

positive and Gram-negative bacteria. Three distinctive mechanisms have been

proposed for the antimicrobial activity of carbon-based materials: direct
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damage to the microbial membrane, production of oxidative

stress and microbial encapsulation/agglomeration.

Graphene nanoplatelets (GNPs) are the most recently

discovered carbon-based nanomaterial. GNPs are the two-

dimensional counterpart of CNTs and are composed of a

single layer of sp2 hybridized carbon atoms arranged in a

regular hexagonal lattice [17,18]. This cyclic configuration [19]

increases the exposed surface area (� 2630 m2 g21) by a factor

of two when compared with single-walled CNTs [20]. Each

atom is attached to three neighbouring carbon atoms in the

x–y plane by sigma bonds [21]. The atoms also have a weakly

delocalized p-electron cloud that is orientated in the z-axis

[21]. These electron clouds are responsible for the materials’

superior electrical conductivity, adjustable band gap, room

temperature quantum Hall effect [22,23] and thep-plasmon res-

onance [24]. Owing to the novel nature of this material, very

little research on its effect on microbial growth exists. Successful

utilization of carbon-based nanomaterials ultimately depends

on understanding how they interact with microbes. Identifying

the minimum inhibitory concentration would allow for safe

exploitation of the material in pertinent applications.

Polymeric fibres featuring biologically active agents show

great promise in a broad range of applications, including bio-

reactors and air and water filtration systems for commercial,

industrial and defence applications. Fibrous-bed bioreactors

and filtration systems have progressively seen increased util-

ization over the past two decades due to their favourable

technical properties.

Implementation of ultrafine fibres in bioreactors has proved

to be an effective method to enhance bacterial fermentation

productivity [25–28]. The fibrous matrix provides a renewable

surface for bacterial survival and growth while also preventing

bacterial cell agglomeration [29], both of which can decrease

fermentation efficiency. Fibrous-bed bioreactors offer long-

term stability for continuous operation without an observable

loss in productivity and thus are highly sought after.

In filtration systems micro- and nanofibres are well known

to provide superior filter efficiency by capturing particles and

microorganisms efficiently through inertial impaction, inter-

ception and convective Brownian diffusion [30]. However,

previous literature has demonstrated that a multitude of

microorganisms are capable of colonizing modern filtration

systems [31–34]. In addition, the organic/inorganic particu-

lates deposited on the fibres post-filtration can facilitate

microbial proliferation. This consequently reduces filter

efficiency and promotes filter deterioration (bioporation) [35].

Incorporation of biologically active agents into fibres offers a

suitable solution to overcome such complications. This can be

achieved through several fibre-forming techniques such as

melt extrusion, electrospinning and nozzle-free centrifugal spin-

ning [36–41]. However, several limitations of these methods

exist, including: the inability to produce large quantities of

high-quality fibres, poor cost–yield efficiency, failure to be up-

scaled to meet commercial needs and the requirement of high

temperatures and large voltages. Pressurized gyration bestows

itself as a suitable alternative to existing techniques [42,43].

During this process, a polymer solution is subjected to centrifu-

gal forces in addition to high pressure in a perforated aluminium

cylindrical vessel. This encourages the polymer solution to flow

through the orifices, thus creating a multitude of jets. The jets

undergo elongation due to the forces acting upon them.

The aim of this study is to manufacture GNP-loaded poly-

meric fibres via pressurized gyration processing; to understand
the effect of GNPs on microbial growth; and to determine the

minimum inhibitory concentration required in a fibre to

obtain an antibacterial effect. Escherichia coli and Pseudomonas
aeruginosa are two of the most common Gram-negative patho-

gens that cause both nosocomial and community-acquired

infections. Escherichia coli and P. aeruginosa are motile faculta-

tive anaerobes. These non-sporulating microorganisms are

typically rod-shaped with diameters ranging between 0.5

and 1.0 mm and lengths ranging between 1 and 5 mm. Gram-

negative bacteria, in particular, are able to upregulate or

obtain genetic elements that code for antibiotic resistance,

and are therefore problematic when eradicating them

from the environment [44,45]. For these reasons E. coli and

P. aeruginosa were used as model bacteria to evaluate the

microbial activity of 0, 2, 4 and 8 wt% GNP fibres.
2. Materials and methods
2.1. Materials
Poly(methyl methacrylate) (PMMA; Mw ¼ 120 000 g mol21), chloro-

form, phosphate-buffered saline (PBS) and Luria Bertani (LB) broth

were purchased from Sigma-Aldrich (Gillingham, UK). LB agar

was purchased from Invitrogen (Paisley, UK). Grade C-750 GNPs

(size ranges from 100 nm to 1–2 mm with an average thickness of

2 nm) were obtained from XG Sciences (Michigan, USA). Circular

stainless steel discs (15.5 mm radius, 0.5 mm thick with a 2 mm2

grid) were purchased from The Mesh Company Ltd (Warrington,

UK). All materials and reagents were used as received.

2.2. Graphene nanoplatelet suspension preparation
Chloroform was selected as the carrier solvent for this study. The

solutions were prepared in a two-step process. (i) Appropriate

quantities of GNPs were added to 10 ml of chloroform to achieve

a GNP concentration of 0, 2, 4 and 8 wt% in the final fibres. The

GNP suspension was subsequently sonicated (S800, Branson

Ultrasonics) for 2 h to achieve a homogeneous dispersion.

(ii) Four grams of PMMA was dissolved in 10 ml of chloroform.

The solution was stirred on a magnetic stirrer until completely dis-

solved. Prior to spinning, the GNP suspension was amalgamated

with the polymer solution and allowed to stir for 15 min on a mag-

netic stirrer before being subjected to pressurized gyration. The

final polymer concentration was 20% (w/v).

2.3. Pressurized gyration
The solutions were processed for approximately 1 min using press-

urized gyration at a rotational speed of 36 000 r.p.m. and an

applied pressure of 0.2 MPa. The system consisted of a rotating

perforated aluminium cylindrical vessel (30 mm radius and

35 mm tall) fixed to a high-speed rotary motor on one end, and

a nitrogen gas supply on the other (figure 1). The vessel had a

total of 24 circular perforations, each measuring approximately

0.5 mm in diameter, along the horizontal axis of the vessel. The

fibres were collected on sterilized stainless steel mesh discs

(31 mm diameter and 0.5 mm thick containing a mesh grid of

2 mm2). Pressurized gyration was performed under ambient con-

ditions (19–218C and 41–46% room humidity). The stainless

steel discs coated with 0, 2, 4 and 8 wt% GNP fibres were sterilized

under 15 W ultraviolet light for 60 min.

2.4. Electron microscopy
2.4.1. Graphene nanoplatelet characterization
GNP characterization was achieved using transmission electron

microscopy (TEM). TEM measurements were done using a JEOL
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Figure 1. Schematic diagram of the pressurized gyration apparatus used for fibre production. (Online version in colour.)
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JSM-2010 microscope. Samples for TEM were prepared after

diluting the GNP suspension and drop casting onto carbon grids.

2.4.2. Fibre morphology
PMMA–GNP composite fibres were analysed using an FEI

Inspect-F scanning electron microscope (SEM) after gold sputter-

ing (Emitech sputter coater SC7620) for 90 s. Using high

magnification SEM images, average fibre diameter was estimated

by measuring the width of approximately 100 fibres. The diameter

frequency distribution was also modelled using OriginPro

software.

2.5. Cell preparation
Escherichia coli K12 and Pseudomonas aeruginosa NTCC 12903 were

used in this study. Escherichia coli and P. aeruginosa were grown sep-

arately in LB broth at 378C and 150 r.p.m., without the presence of

carbon dioxide (Orbital Shaker S150, Stuart) for 3 h and 18 h,

respectively. The cells were harvested in their mid-exponential

growth phase at an optical density (at 600 nm) of 0.035. The cultures

were centrifuged at 4600 r.p.m. for 15 min (accuSpin 3R, Fisher

Scientific) to pellet cells. The supernatant was discarded and the

remaining cells were washed once with PBS to remove residual

macromolecules and other growth constituents. The cells were

then resuspended in PBS. The number of cells present in each

suspension was established using the colony-counting method.

2.6. Microbial studies
The E. coli and P. aeruginosa cell suspensions made in §2.5 were

incubated with sterilized 0, 2, 4 and 8 wt% GNP fibres for 24 h at

378C and 150 r.p.m., without the presence of carbon dioxide. The

number of colony-forming units present in the suspension post-

incubation was calculated using the colony-counting method.

Bacterial suspensions with and without GNP fibres were incu-

bated for 24 h at 378C and 150 r.p.m. After incubation, serial

10-fold dilutions were performed on the suspension and then

spread onto LB agar plates, which were incubated for 24 h at

318C. After this time, colony-forming units were counted. Bacterial

reduction was calculated as a percentage and compared to the con-

trol; 0 wt% GNP-loaded fibres (pure PMMA fibres) were used as

the control. All treatments were prepared in triplicate and repeated

on at least three separate occasions. A two-tailed p-test was per-

formed to assess the statistical significance of the results. The

results were considered significant when p , 0.05.
3. Results and discussion
3.1. Electron microscopy
3.1.1. Graphene nanoplatelet morphology
TEM images of the GNPs were used to gather information on

the size, shape and morphological parameters of the individual

platelets (figure 2). Analysis revealed the GNPs were relatively

flat and two-dimensional. The average width of the individual

GNPs was 110 nm (+0.11 nm) and the average length was

170 nm (+0.08 nm). Prior to TEM, the GNPs were sonicated

to disperse any aggregates; it is possible that this sonication

led to a decrease in GNP dimensions when compared with

the specification provided by XG Sciences. The thermogravi-

metric analysis data supplied by XG Sciences confirm there

are traces of amorphous carbon present in the supplied

GNPs. This can be seen as grey dots in figure 2c,d.

3.1.2. Fibre morphology
A PMMA–chloroform polymer–solvent system was opted

for during these experiments, based on previous studies

having deemed this system suitable for both pressurized

gyration and filtration applications [46,47]. The optimal spin-

ning conditions outlined in these papers [46,47] were used for

this research. In fact, we can further upstage fibre forming by

using pressure coupled infusion gyration [48].

The average fibre diameters and their standard deviations

of fibres with varying GNP concentrations are shown in table 1.

As seen in figure 3a,b, the 0 wt% GNP-loaded PMMA fibres

were continuous, tubular, beaded and highly porous. The

successful formation of fibres indicates the intermolecular

entanglement and chain overlap in the solution were sufficient

to stabilize the polymer jet ejecting from the perforations

during pressurized gyration. The average fibre diameter

was 0.75 mm, with a minimum and maximum diameter of

0.16 mm and 1.94 mm, respectively. Figure 4a shows the fibre

diameter distribution, demonstrating a narrow spread, thus

allowing for predictable fibre production. The fibres had

evenly distributed circular pores on their surface, the formation

of which can be explained by the breath figures phenomenon

[49]. Being a highly volatile liquid, rapid evaporative cooling

of chloroform led to moisture nucleation and water droplet
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Figure 2. TEM micrographs of the GNPs used in this research.

Table 1. The effect of GNP loading on fibre diameter and distribution.

GNP loading
(wt%)

fibre diameter

average fibre
diameter (mm)

standard
deviation (mm)

0 0.75 0.35

2 0.95 0.40

4 0.99 0.56

8 2.71 1.74
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deposition on the surface of the polymer jet. These droplets

formed a stable interface between PMMA and water via the

adsorption of PMMA, which prevented coalescence [50].

Expansion and submersion of the droplets into the PMMA

jet occurred as a result of Marangoni convection and also ther-

mocapillary effects [51,52]. The droplets self-arranged into an

ordered array on the solution surface, and evaporation of the

solvent and water droplets left pores on the formed fibres.

Fibres loaded with 2 wt% GNPs appeared to share similar

morphologies to pure PMMA fibres as they were able to retain

their tubular, porous structure (figure 3c,d). This suggests that,

at low concentrations, the GNP does not alter fibre production,

as a result of desirable uniform GNP dispersion within the

polymer solution. The fibre matrix was beaded and the average

fibre diameter obtained was 0.95 mm, with a minimum and

maximum diameter of 0.9 mm and 1.96 mm, respectively. The

fibre diameter distribution shown in figure 4b suggests the

diameter distribution is slightly wider when compared with

that of pure PMMA fibres.

Increasing the GNP concentration to 4 wt% resulted in

an increase in beaded fibres and a decrease in porosity

(figure 3e,f ). The rise in bead frequency within the fibre

matrix is assumed to be caused by GNP agglomeration.

This indicates that at higher GNP loadings, there is a non-

homogeneous dispersion of GNPs within the solution, and

the solution can therefore be described as being GNP aggre-

gates dispersed within a polymer matrix. The average fibre
diameter was found to be 0.99 mm, having diameters ranging

from 0.42 mm to 4.79 mm. This average value is similar to that

obtained from fibres with low GNP loading, but with a

broader fibre diameter distribution (figure 4c). The broad

range can be explained through two distinct principles. One

way in which a wider fibre diameter distribution was

obtained is through the difference in the solutions’ rheologi-

cal properties. The increase in the GNP concentration

elicited saturation of the PMMA solution, which stemmed

the development of GNP agglomerates. GNP agglomerates

consequently caused interference with polymer chain entan-

glement and altered fibre production. This theory has been

corroborated by Weir et al. [53], who have demonstrated

that GO causes a decrease of interchain entanglements

within polymer–GO nanocomposites. Conversely, increased

GNP concentration raises the GNP-to-polymer ratio (particle

volume fraction), and a larger force is required to overcome

the increased surface tension [54]. Nonetheless, functional

fibre formation implies that the solution had an adequate sur-

face tension and resistance to withstand the applied

centrifugal force and pressure difference to form cone jets at

the orifices. The solution successfully overcame shear stresses

and was able to elongate into fibres. Low viscosity [55] and

high surface tension [54] are presumed as they explain the

broad distribution of fibre diameters that were observed.

The presence of thick fibres suggests that the surface tension

was resistant against the forces acting upon it. The increased

surface tension is the result of the increased van der Waals

forces between the GNP and PMMA solution [56]. However,

at lower viscosities, there is an encouragement for the major

polymer jets to form fine fibres, thus leading to the variation

in fibre diameter distribution.

The fibre surface appeared to contain indentations instead

of pores. Decrease in porosity can be described by several the-

ories such as Henry’s law [56]. Chloroform within the

solution retains a lower vapour pressure at higher GNP con-

centrations (and consequently higher surface tensions) [54].

This lower vapour pressure slows evaporation of the solvent,

as more heat is required to overcome the van der Waals forces

[56], resulting in reduced differences in temperature between

the surface and the surrounding atmosphere. This then leads
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Figure 3. SEM images of the fibres formed using pressurized gyration at 0.2 MPa and 36 000 r.p.m. (a) Low magnification SEM image demonstrating fibre mor-
phology of pure PMMA fibres (scale bar ¼ 50 mm); (b) high-magnification SEM image illustrating pore morphology of pure PMMA fibres (scale bar ¼ 5 mm); (c)
low-magnification SEM image of 2 wt% GNP-loaded PMMA fibres (scale bar ¼ 200 mm); (d ) high-magnification SEM image of 2 wt% GNP-loaded PMMA fibres
(scale bar ¼ 3 mm); (e) low-magnification SEM image of 4 wt% GNP-loaded PMMA fibres (scale bar ¼ 100 mm); ( f ) high-magnification SEM image illustrating
surface topography of 4 wt% GNP-loaded PMMA fibres (scale bar ¼ 3 mm); (g) low-magnification SEM image of 8 wt% GNP-loaded PMMA fibres (scale bar ¼
200 mm); (h) high-magnification SEM image of 8 wt% GNP-loaded PMMA fibres (scale bar ¼ 50 mm).
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to slower droplet formation, nucleation and rapid PMMA

precipitation at the droplet–water interface. The combination

of these factors results in the lower porosity.
Increasing the GNP concentration further to 8 wt% resulted

in an increase in irregular particles amidst the fibrous structure

(figure 3g). This phenomenon was due to the failure in
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achieving the desired GNP dispersion within the PMMA sol-

ution. The fibres yielded were thicker and rougher in

comparison to fibres obtained with low GNP concentrations.

As the processing conditions of each solution remained

the same, the change in fibre morphology was regarded as a

reflection of the GNP concentration.

The 8 wt% GNP fibres had an average fibre diameter of

2.71 mm and a broad diameter distribution as shown in

figure 4d. The pores appeared to be isolated and moderately

distributed along the fibre, thus indicating low porosity

(figure 3h).

3.2. Microbial studies
Escherichia coli and P. aeruginosa were incubated in PBS with

the fibres for 24 h at 378C and 150 r.p.m. The microbial

activity of the fibres was determined by the colony-counting

method as described in §2.6.

As shown in figure 5, 0 wt% GNP (pure PMMA) fibres

showed moderate cytotoxicity with an average bacterial

reduction of 45+ 10% and 25+25% compared to the start-

ing culture for E. coli and P. aeruginosa, respectively. This

minor antibacterial effect is likely to be because of the bac-

terial cell wall damage caused by the hydrophobic

interaction between the hydrophobic surface of the PMMA

fibres and the hydrophobic domains present on the bacterial

cell wall [57,58]. The lack of nutrients present in the PBS and

PMMA fibres also played a role in the reduction of bacterial

numbers.
GNP fibres (2 wt%) showed promicrobial properties with

an average bacterial growth of 79+35% and 184+59% for

E. coli and P. aeruginosa, respectively. Similarly, 4 wt% GNP

fibres also demonstrated promicrobial properties, as a 248+
75% and 140+21% bacterial increase can be observed in

figure 5. It has been well documented in the previous literature

that bacterial growth in aquatic systems is dependent on the

carbon content available in the environment [8,9]. This

suggests that with fibres containing a low concentration of

GNPs, the bacterial cells metabolize the GNPs to support
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microbial growth and cell division. However, additional

studies are required to confirm this hypothesis.

When increasing the GNP concentration from 2 wt% to

4 wt%, an increase in E. coli and a decrease in P. aeruginosa
density can be observed. This indicates that the P. aeruginosa
cells were more sensitive to the increase in GNP concen-

tration compared with the E. coli cells. Previous research

[59] has demonstrated that P. aeruginosa is more susceptible

to antimicrobial agents than E. coli.
GNP fibres (8 wt%) showed strong antibacterial activity

compared with 0, 2 and 4 wt% GNP fibres, having a cell inac-

tivation percentage at 85+5% and 95+ 2% for E. coli and

P. aeruginosa, respectively. The observed loss of cell viability

is considered statistically significant when compared with

the control fibres (0 wt% GNPs) as a two-tailed p-value of

0.0153 and 0.0474, respectively, for E. coli and P. aeruginosa
was obtained. These results indicate that the minimum

inhibitory concentration of GNPs within a fibre is 8 wt%, as

at this concentration microbial death occurs.

A multitude of mechanisms can be credited with the antimi-

crobial activity of these fibres. As the majority of GNPs present

are entrapped within the fibres, it is thought that

the predominant mechanism of action involves the production

of oxidative stress. Graphene-induced oxidative stress is a

commonly accepted antimicrobial mechanism, during which

the material triggers either the reactive oxygen species-depen-

dent or reactive oxygen species-independent pathway.

Activation of either pathway interferes with bacterial metab-

olism, disrupts essential cellular functions, induces intracellular

protein inactivation and causes lipid peroxidation, eventually

leading to cellular inactivation, necrosis or apoptosis [60–62].

However, it is also plausible that, at higher GNP concen-

trations, the mechanical properties of the fibres are weaker

and therefore minute quantities of GNP are released into the

PBS. The free GNPs suspended in PBS could have caused bac-

terial cell death by direct damage to the microbial membrane

and/or microbial entrapment. Akhavan & Ghaderi [14] were

the first to suggest that GNP-initiated antimicrobial activity

was caused by the direct interaction between the sharp edges

of GNPs and the microbial membrane. In this mechanism,

the sharp edges of the GNPs mechanically disrupt the integrity

of the microbial membrane and consequently result in the loss

of intracellular substances. This phenomenon was later con-

firmed by several other researchers [14,15,63–65]. This

mechanism is the most likely cause of the antimicrobial effect

observed in this study. It can clearly be seen that 8 wt% GNP

fibres have a very rough surface morphology caused by the

GNPs protruding out of the fibres, thus creating sharp edges

at the nanoscale. This change in fibre morphology at higher

concentrations is most probably the cause of the antimicrobial

effects witnessed. The third proposed antimicrobial mechan-

ism, microbial encapsulation/agglomeration, involves the
free GNPs wrapping around microbial cells, therefore isolating

them from their surrounding environment [63,66,67]. This

starves the cells of necessary nutrients required for survival.

All these proposed mechanisms of action are likely to

have contributed towards the significant antibacterial activity

of the 8 wt% GNP fibres. However, exact mechanisms need

further investigation. Promicrobial activity is observed at

lower concentrations (2 and 4 wt% GNPs) as the GNPs are

trapped within the fibre and the sharp GNP edges do not

protrude out and destroy the bacterial cell wall.
4. Conclusions
GNP-loaded PMMA fibres were produced using pressurized

gyration. The results obtained in this investigation indicated

that fibre morphology was dependent on GNP concentration.

It was observed that as GNP concentration increased, average

fibre diameter increased, average porosity decreased and

fibre morphology became increasingly irregular. Average

fibre diameter ranged between 0.75 mm and 2.71 mm, for 0,

2, 4 and 8 wt% GNP-loaded fibres.

Understanding the microbial properties of GNP-loaded

PMMA fibres is critical for the future application of these emer-

ging carbon-based nanomaterials. The effects of GNPs in

PMMA fibres on the growth of E. coli and P. aeruginosa were

compared. Microbial studies revealed that 2 and 4 wt% GNP-

loaded fibres showed promicrobial activity, while 8 wt%

GNP fibres had antimicrobial activity. These findings suggest

that the effects of the fibres on microbial cell growth and

division were concentration-dependent. The bacterial growth

observed with lower GNP-concentration fibres may be attribu-

ted to GNPs serving as a nutrient source for microbial growth.

The bacterial cytotoxicity of fibres with a higher GNP concen-

tration may be the result of GNP-induced oxidative stress, as

well as membrane destruction and microbial encapsulation.

However, further studies will need to be conducted in order

to identify an exact mechanism.
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