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Abstract 

 

Individuals with Down syndrome (DS) show a high degree of inter-subject variability in 

cognitive ability. Elucidating factors associated with variability in cognitive function can 

inform us about intellectual disability severity and potentially provide biomarkers of 

ability for clinical trials targeting cognition in individuals with DS (including trials aimed 

at preventing cognitive decline).  

 

Resting-state electroencephalography (EEG) can be used to obtain information about 

neural factors that may be underlying variability in cognitive function. This thesis uses 

eyes-open (EO; n=48) and eyes-closed (EC; n=36) resting-state EEG paradigms in 

adults with DS free from detectable signs of cognitive decline or dementia to identify 

EEG measures associated with general cognitive ability, and to investigate age-related 

changes in EEG activity in this population. Oscillations of interest were then modelled 

using dynamic causal modelling (DCM) to identify potential neurophysiological 

mechanisms underlying individual differences in general cognitive ability. 

 

Initial analysis suggested that individuals with DS have an overall slower EC EEG 

spectrum (and particularly strong differences in alpha activity) compared to typically-

developing age-matched control subjects (open source control dataset used). Within 

individuals with DS, increasing age was associated with EEG changes in both 

paradigms. When controlling for age, higher general cognitive ability was associated 

with higher delta power (EO only), higher theta power (EC only), and higher alpha peak 

amplitude (EC only). Modelling the theta-alpha network identified “intrinsic self-

inhibition” as the most important neurophysiological parameter underlying the 

relationship between theta-alpha activity and general cognitive ability in this sample. 

Further analysis revealed a strong inverse relationship between occipital intrinsic self-

inhibition and general cognitive ability.  

 

Findings of this thesis enhance our understanding of neural factors associated with 

individual differences in general cognitive ability in adults with DS, provide a potential 

biomarker of ability for clinical trials, and indicate potential targets for cognitive 

enhancement in this population. The finding that increased inhibition may be 

associated with cognitive impairment in this population is in keeping with animal model 

literature and warrants further investigation.  
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Thesis overview 

 

Chapter 1 provides an overview of Down syndrome (DS), including information about 

cognition and approaches to cognitive testing in this population. A review of resting-

state EEG studies in adults with DS is provided by Chapter 2. Previous studies 

investigating the association between resting-state EEG measures and cognitive ability 

in adults with DS are limited, and are often confounded by the inclusion or potential 

inclusion of individuals with cognitive decline and dementia. All general methodology 

for the thesis is detailed in Chapter 3. 

 

Chapter 4 investigates the feasibility of obtaining EO and EC resting-state EEG data in 

this population and also explores the extent to which findings from the participating 

sample are generalisable. The findings of Chapter 4 suggest that, when compared to a 

larger DS sample, the sample of participants in this thesis is slightly biased towards 

individuals with higher general cognitive ability, and this is further exacerbated for 

individuals able to complete both recording paradigms. Suggestions are provided to 

reduce potential sources of bias in future EEG studies involving adults with DS.  

 

Chapter 5 compares EC resting-state EEG measures between individuals with DS and 

a group of chronologically age-matched and sex-matched typically developing (TD) 

controls (using an open source TD dataset). Findings suggest that individuals with DS 

have an overall slower EEG spectrum compared to matched TD control subjects (delta 

and theta power values are significantly higher, whereas alpha and beta power values 

are significantly lower), and higher variability for all EEG measures. Alpha activity 

shows particularly strong group differences.  

 

Individual differences in EO and EC EEG measures (in both occipital and frontal 

regions), and their relationships with individual differences in general cognitive ability 

and age, were explored in Chapter 6. Overall, in the EO paradigm, increasing age was 

associated with increased alpha activity (power and alpha peak amplitude), and 

increased beta power. In the EC paradigm increasing age was associated with 

increased alpha peak amplitude and reduced delta power. When controlling for effects 

of age, higher general cognitive ability was associated with higher frontal delta power in 

EO recordings, and higher frontal theta power and frontal and occipital alpha peak 

amplitude in EC recordings.  

 

The cortical network generating theta-alpha oscillations (i.e. extended alpha; 4-13 Hz) 

was modelled in Chapter 7 using dynamic causal modelling (DCM). The 
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neurophysiological parameter of intrinsic self-inhibition was identified as the most 

important parameter in this network underlying the relationship between theta-alpha 

activity and general cognitive ability. Further analysis revealed a strong negative 

relationship between intrinsic self-inhibition and general cognitive ability in the occipital 

region. Results suggest that a shift in excitation/inhibition (E/I) balance towards 

increased inhibition may be associated with greater cognitive impairment in DS. This 

finding is in accordance with recent mouse model work indicating the possible 

presence of over-inhibition in DS; however results presented here also suggest this 

general hypothesis may be over-simplified. 

 

An overall discussion of the thesis is provided in Chapter 8. Together results indicate 

that exploring and potentially targeting mechanisms underlying EEG measures 

associated with individual differences in general cognitive ability in DS, instead of 

focusing on differences between individuals with DS and TD controls, may be a 

worthwhile strategy for cognitive enhancement in DS. In this thesis intrinsic self-

inhibition was identified as a potential neurophysiological factor underlying individual 

differences in general cognitive ability. Further investigation of intrinsic self-inhibition is 

therefore warranted, in particular the role of intrinsic self-inhibition in networks 

underlying EEG activity associated with alternative paradigms (e.g. event-related 

potentials), and in individuals with DS with cognitive decline or dementia. Further 

development of the DCM model detailed here may assist with drug discovery. General 

ethical considerations relating to cognitive enhancement in DS are also outlined. 
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Chapter 1 Down syndrome introduction 

 

1.1 Down syndrome 

 

1.1.1 Etymology 

 

Down syndrome (DS) was first described in 1862 by the English physician John 

Langdon Down. He used the term “Mongolian idiocy” to describe a subset of his 

patients at the Royal Earlswood Asylum for Idiots. DS was known by this name, with 

individuals referred to as “Mongoloids”, until 1961 when the Lancet ran a letter to the 

Editor from 19 noted geneticists calling for the condition to be renamed due to racial 

connotations (Allen et al., 1961). A number of names were suggested (including 

trisomy 21 as a consequence of the 1959 discovery that DS was caused by the 

presence of an extra copy of chromosome 21). From the options presented the Editors 

selected “Down’s syndrome” and in 1965 the World Health Organisation adopted this 

renaming. More recently the preferred term has become “Down syndrome”. The 

condition may also be referred to as “trisomy 21”. Clinically and in general language the 

term “Down syndrome” is used more often, whereas “trisomy 21” is more commonly 

utilised when discussing underlying biological mechanisms. 

 

1.1.2 Epidemiology 

 

In countries where elective terminations are permitted, a large proportion of 

pregnancies with a diagnosis of DS end in termination. Results from a systematic 

review report this is as high as 92-100% in the UK, and between 87-98% in the US 

(Mansfield et al., 1999). However, a more recent population modelling study in the US 

has estimated elective termination rates to be 30% (de Graaf et al., 2015). Similar 

population modelling estimates have not been carried out in the UK. 

 

Despite high elective termination figures, DS is the leading genetic cause of intellectual 

disability (ID) worldwide, estimated to affect 1 in every 800 births (de Graaf et al., 

2015). At present this number is increasing due to a rise in maternal and paternal age 

at conception, which are both important risk factors for DS (Coppedè, 2016). In addition 

to this, people with DS are living longer due to advances in medical treatment and care; 

the average life expectancy in the developed world for an individual born with DS has 

increased from below age 10 in the 1970s to age 50 in 2010, with around 1 in 10 

individuals now reaching age 70 (Presson et al., 2013). 
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According to a meta-analysis by Wu & Morris (2013), in 2011 in England and Wales the 

population prevalence of DS was estimated at 0.66 per 1000 people (in total an 

estimated 37,090 were living with DS). The average life expectancy of babies born with 

DS in 2011 was estimated to be 51 years. It was reported by the authors that there is a 

particularly large proportion of individuals with DS in their 40s, owing to sudden 

increases in the survival of babies with DS in England and Wales in the 1950s.  

 

There are a number of different genetic causes of DS. The above values refer to all 

forms of DS; population prevalence figures are not available for individual forms. It is, 

however, estimated that of all individuals with DS, 95% of individuals have full trisomy 

21 (a complete extra copy of chromosome 21). The remaining 5% includes individuals 

with a translocation (where part of chromosome 21 is attached to another 

chromosome), partial trisomy 21 (only a portion of chromosome 21 is duplicated), or 

mosaicism (only some cells have an extra copy of chromosome 21) (Hernandez & 

Fisher, 1996). 

 

1.1.3 Phenotypic features 

 

The presence of an extra copy of chromosome 21 in individuals with DS leads to an 

“extra dose” of the genes located on this chromosome. It is this extra dose that is 

believed to cause the phenotypic features of DS. These features include physical 

characteristics and increased incidence of specific clinical conditions, in addition to 

physical and intellectual disabilities. The expression of DS phenotypic traits is highly 

variable, particularly in rarer forms of DS. For example some individuals with mosaic 

DS may have a near-typical phenotype depending on percentage of cells and tissue 

type affected (Papavassil et al., 2014).  

 

The most common phenotypic traits in DS are classic facial appearance (i.e. small 

nose, flat nasal bridge, eyes that slant upwards and outward), hypotonia and ID (IQ < 

70). The cognitive phenotype of DS is discussed in detail below (section 1.3). It is 

typified by ID (mean IQ approximately 50), delays in reaching developmental 

milestones, and specific deficits in language and memory domains. There is a great 

degree of variability, however, between individuals with DS in terms of cognitive profile. 

Additionally, variability in IQ exists within individuals across the lifespan (generally 

appearing to decline across adulthood).  
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Other phenotypic traits include congenital heart defects (present in around 60% of 

individuals with DS) and a 10-30-fold increased risk of leukemia (Hernandez & Fisher, 

1996). Individuals with DS are also at an ultra-high risk of developing Alzheimer’s 

disease (AD), with lifetime prevalence estimated to be as high as 90% (McCarron et 

al., 2014). This is thought to be due to the over-expression of the amyloid precursor 

gene (APP) on chromosome 21. Consistent with this, amyloid deposits are present in 

the brains of almost all adults with DS over the age of 35 (Mann, 1988; Wisniewski et 

al., 1985). 

 

Individuals with DS are also at increased risk of developing autoimmune conditions, 

including hypothyroidism, alopecia, celiac disease and type 1 diabetes (Whooten et al., 

2018). Due to increased incidence of autoimmune conditions, in addition to reports of 

poor immune function, intrinsic alteration of the immune system in individuals with DS 

has been proposed (Guaraldi et al., 2017).  

 

Sensory impairments are common in individuals with DS. It is estimated that 80% of 

children with DS show problems with vision, including refractive errors, nystagmus 

and/or strabismus (Roizen & Patterson, 2003). Cataracts are also common (72% of 

adults; Fong et al., 2013). Additionally, an estimated 40-80% of individuals with DS 

experience hearing loss (Roizen and Patterson, 2003).  

 

 

1.2 Neurobiological features of Down syndrome 

 

1.2.1 Neuroanatomical, cellular and neuropathological features 

 

Neurodevelopment in DS is relatively typical up to the first few months of life but then 

slows (Wisniewski & Schmidt-Sidor, 1989), leading to reduced white and grey matter 

volume within various regions of the adult brain. DS is characterised by a marked 

reduction in brain size compared to individuals from the typically-developing (TD) 

population. In particular the volume of the cerebellum, prefrontal cortex, and 

hippocampal regions are particularly reduced (Baxter et al., 2000; Pinter et al., 2001; 

Teipel et al., 2003; Guidi et al., 2011; Carducci et al., 2013). 

 

At a cellular level, reduced cerebellar volume is thought to be due to reduced granule 

and purkinje cell numbers. In the cerebral cortex, reduced cell numbers (particularly 

granule cells) in cortical layers 2 and 4 are commonly reported, in addition to 

malformed and atrophic dendritic trees (Wisniewski et al., 1990; Becker et al., 1993). 
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Cellular atypicalities that are likely to reduce neuronal transmission have also been 

described in DS, including fewer synapses, delayed myelination, and altered 

electrophysiological properties of neuronal cell membranes (Wisniewski et al., 1990; 

Becker et al., 1993). 

 

The reduced number of neurons in DS has been liked to abnormalities in neuronal 

differentiation – DS neural progenitor cells show reduced acquisition of a neuronal 

phenotype. Instead, acquisition of an astrocytic phenotype is increased (Stagni et al., 

2018). For this reason individuals with DS have greater cortical astrocyte density 

compared to individuals from the TD population. Additionally, abnormalities in DS 

astrocyte function have been reported, including higher levels of reactive oxygen 

species and lower levels of synaptogenic molecules (Chen et al., 2014).  

 

As previously mentioned, AD-related neuropathology in the form of amyloid deposits 

are almost ubiquitous in adults with DS over the age of 35 (linked to over-expression of 

the APP gene on chromosome 21). Neurofibrillary tangles composed of 

phosphorylated tau are also found in adults with DS (linked to an over-expression of 

Dyrk1A and RCAN1 genes, also found on chromosome 21) (Kasai et al., 2017). 

Accordingly, age-related changes that take place in DS across adulthood are almost 

identical to AD-related neuropathological changes within the TD population (Kasai et 

al., 2017).  

 

1.2.2 Excitation/inhibition balance  

 

At present there is a strong focus within mouse model studies of DS on imbalance of 

excitatory/inhibitory (E/I) processes, and GABAergic over-inhibition has recently been 

proposed as a hypothesis for cognitive deficit in DS (Zorrilla de San Martin et al., 

2018). The importance of E/I imbalance has also recently been highlighted in regard to 

other neurodevelopmental disorders, including autism and schizophrenia (Foss-Feig et 

al., 2017; Dickinson et al., 2016). Evidence for E/I imbalance in DS comes from mouse 

model studies (Ts65Dn mice) which have reported increased numbers of GABAergic 

interneurons and enhanced interneuron excitability, enhanced GABAergic 

differentiation of neuronal progenitor cells, and alterations in cortical glutamatergic 

transmission (Chakrabarti et al., 2007; Chakrabarti et al., 2010; Pérez-Cremades et al., 

2010; Hernández et al., 2012; Mazur-Kolecka et al., 2012; Tyler & Haydar, 2013; Guidi 

et al., 2014; Hernández-González et al., 2015; Contestabile et al., 2017). 
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Overall results are suggestive of a shift in the balance of E/I within Ts65Dn mice to a 

state of over-inhibition. However, studies involving humans and human tissue from 

individuals with DS contradict these findings and instead are suggestive of reduced 

inhibition in DS (e.g. Bhattacharyya et al., 2009; Smigielska-Kuzia et al., 2010). The 

hypothesis of E/I imbalance in DS will be discussed further in Chapter 7. 

 

1.2.3 Connectivity  

 

At present published research into brain connectivity in DS is limited, however 

atypicalities in structural connectivity, functional connectivity and network organisation 

have been demonstrated in individuals with DS (pre-dementia) compared to age-

matched TD control subjects. In particular it has been reported that individuals with DS 

exhibit reduced white matter connectivity in all major white matter pathways, with the 

strongest differences found in frontal-subcortical circuits (as measured by diffusion 

tensor imaging (DTI); Fenoll et al., 2017). Studies of functional connectivity using fMRI 

have demonstrated higher connectivity within the ventral network and lower 

connectivity in the dorsal network in individuals with DS (Pujol et al., 2015). fMRI 

studies have also indicated individuals with DS show widespread increased synchrony 

between brain regions, with a small subset of distant connections exhibiting under-

connectivity (Anderson et al., 2013). EEG has also been used in one study to examine 

functional connectivity in children with DS, with disruptions of functional connectivity 

within alpha and theta bands reported (Ahmadlou et al., 2013). Additionally, Anderson 

et al. (2013) and Ahmadlou et al. (2013) examined network organisation using fMRI 

and EEG respectively. Together these studies reported that individuals with DS exhibit 

simplified and random network structures, that deviate from an optimal “small-world” 

network structure found in the TD population.  

 

 

 

1.3 Cognitive profile in Down syndrome 

 

1.3.1 General cognitive profile 

 

1.3.1.1 Global intelligence 

 

Intelligence quotient (IQ) refers to the total score derived from standardised tests of 

intelligence. There are many such tests available; some of which combine verbal and 
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non-verbal abilities to form a composite IQ score, whereas other focus on either verbal 

or non-verbal IQ subscales. Measurement of IQ in DS is discussed in detail under 

“1.3.3 Cognitive testing in DS” below. 

 

In general, standard IQ tests are scaled so the mean value is 100; one standard 

deviation is 15 points and two standard deviations are 30 points. An IQ of 70 (two 

standard deviations from the mean) is typically used to define a global deficit in 

intellectual functioning for the purpose of ID diagnosis. As previously mentioned, DS is 

the most common genetic cause of ID. According to the most recent Diagnostic and 

Statistical Manual of Mental Disorders (DSM-V; 2013), in order for an individual to meet 

the criteria for ID they must exhibit deficits in both intellectual functioning (IQ < 70) and 

adaptive functioning (such as personal independence or communication skills), evident 

during childhood or adolescence. 

 

Global intellectual impairment is considered a characteristic feature of DS and almost 

all individuals have an ID (Vicari et al., 2005; Constestabile et al., 2010). Mean IQ 

reported in studies utilising full-scale standardised IQ scores varies within the literature 

from 39 (Leiter-R scale; d’Ardhuy et al., 2015) to 60 (Stanford-Binet scale; Carmeli et 

al., 2002). Studies using the Wechsler Adult Intelligence Scale (WAIS) have reported a 

mean IQ score of 45 (Edgin et al., 2010) and 50 (Breia et al., 2014). Despite this a 

small number of individuals with DS have an IQ that is beyond 70 (e.g. Edgin et al., 

2010). Additionally individuals with rarer forms of DS, such as mosaicism, may not 

exhibit significant intellectual impairment (e.g. Fishler & Koch R, 1991).   

 

1.3.1.2 Specific domains 

 

In addition to such global impairments, deficits in specific domains contribute to the 

general cognitive profile of DS at the group-level. These include deficits in memory, 

language and executive functions. Importantly, deficits in each of these domains can in 

turn adversely impact other aspects of cognition. For example, it is hypothesised that 

deficits in verbal processing in DS are a result of phonological loop deficits – an aspect 

of working memory (Grieco et al., 2015).  

 

Memory impairments in DS include both short-term and working memory deficits, in 

addition to long-term memory difficulties (Vicari et al., 2000; Nadel, 2003; Kogan et al., 

2009). One particular aspect of the cognitive profile in DS is that non-verbal abilities are 

generally relatively stronger than verbal abilities. Consistent with this, visual learning 
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and memory has been demonstrated as stronger than verbal learning and memory at a 

group level (Grieco et al., 2015). 

 

Both language comprehension and speech production are impaired in individuals with 

DS. Specific language impairments include deficits in articulation, phonological 

processing and morphosyntax (Grieco et al., 2015). Although deficits in semantic, 

pragmatic, and communicative intent are said to be relatively preserved in adults with 

DS, impairments are still present in these abilities compared to TD individuals (Bello et 

al., 2014).  

 

Numerous aspects of executive functioning (EF) are impaired in individuals with DS 

relative to age-matched TD individuals, including attention, inhibition, speed of 

processing, working memory, planning, set-shifting and self-monitoring. This is 

consistent with a pattern of global executive dysfunction (Grieco et al., 2015). 

 

Specifically, deficits have been demonstrated in response inhibition (Edgin et al., 2010; 

Lanfranchi et al., 2010); in particular with verbal relative to visual tasks (Borella et al., 

2013; Costanzo et al., 2013). Deficits have also been demonstrated in inhibition of 

irrelevant information (Cornish et al., 2007; Borella et al., 2013). Both auditory and 

visuospatial working memory is impaired in DS; although impairments in auditory 

working memory are more severe (Frenkel & Bourdin, 2009; Lott & Dierssen, 2010; 

Levy & Eilam, 2013). It is said that visuospatial working memory is relatively preserved 

in DS (e.g. Grieco et al., 2015). Interesting, although individuals with DS generally take 

longer to execute actions in planning tasks, accuracy of performance on planning tasks 

has been demonstrated as similar to mentally-age matched control subjects (Vicari et 

al., 2000; Pennington et al., 2003; Rowe et al., 2006). Finally set-shifting – especially 

on verbal tasks – is particularly challenging for individuals with DS (Rowe et al., 2006; 

Costanzo et al., 2013).  

 

This specific pattern of cognitive impairment in DS is not only demonstrated in respect 

to TD control subjects but also relative to individuals with other forms of ID, even when 

matched for level of cognitive functioning (e.g. fragile X; Grieco et al., 2015). This 

suggests the DS cognitive phenotype is distinct. Despite the fairly well characterised 

cognitive profile in DS described here, a large degree of variability exists between 

individuals, with relative strengths and weaknesses occurring within this profile on an 

individual basis (Grieco et al., 2015). 
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1.3.1.3 Mechanisms 

 

Specific neurobiological mechanisms underlying the general cognitive profile in DS are 

unclear, however a number of potential contributing factors have been proposed. At the 

neuroanatomical level, memory and EF impairments have been associated with 

reduced volume of the hippocampus and prefrontal cortex respectively (Carducci et al., 

2013; Pinter et al., 2001; Teipel et al., 2003). Recently proposed neurobiological 

mechanisms underlying cognitive impairment in DS include the influence of specific 

single gene candidates, in addition to global E/I imbalances. 

 

Evidence for neurobiological mechanisms is provided by mouse model studies. For 

example, several mouse models of DS exhibit hippocampal long-term potentiation 

(LTP) deficits and enhanced long-term depression (LTD) relative to control mice 

(Zorrilla de San Martin et al., 2018). Further investigation has shown these features 

may be a downstream consequence of excessive GABAergic activity (Kleschevnikov et 

al., 2004). As the integration of synaptic inputs and changes in synaptic strength – 

mediated by LTP/LTD processes – are proposed as the cellular basis of learning and 

memory (Pastalkova et al., 2006), impairments in these processes are likely to 

substantially impact on cognition. Additionally, this fits with the hypothesis that long-

term memory impairments in DS may occur at the level of encoding (Carlesimo et al., 

1997). E/I imbalance may therefore be an important mechanism underlying cognitive 

deficit in DS. 

 

Single gene candidates have also been the focus of recent research. For example, the 

gene DYRK1A (dual-specificity tyrosine phosphorylation-regulated kinase 1A) is 

involved in neurobiological processes that are altered in DS (e.g. neurogenesis and 

neuronal differentiation; Hämmerle et al., 2003), and in the early onset of AD (Wegiel et 

al., 2011). DYRK1A is overexpressed in individuals with DS and in mouse models of 

DS (Guimera et al., 1999; Dowjat et al., 2007). Recent studies normalising the number 

of copies of this gene in mouse models of DS have demonstrated improvements in 

hippocampal-dependent learning (Garcia-Cerro et al., 2017; Jiang et al., 2015). 

Authors have proposed the recovery of synaptic plasticity as one potential mechanism 

mediating this cognitive improvement. Initially this gene was selected based on the 

investigation of candidate genes from individuals with a rare form of DS (partial 

duplication of chromosome 21). Investigation of such individuals has led to the 

identification of a small region on chromosome 21 (containing only 33 genes) that is 

thought to play a major role in the DS phenotype (Duchon & Herault, 2016). It seems 
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likely that the investigation of individuals with such rare forms of DS will further 

enhance our understanding of the impact of individual genes on cognition in DS. 

 

1.3.2 Age-related changes in cognition 

 

In addition to variability in cognitive profile between individuals with DS, variability may 

also occur across the lifespan on an individual basis. In general, cognitive growth 

occurs in individuals with DS throughout childhood, adolescence and early adulthood, 

and is then followed by decline in standardised test scores and a gradual loss of 

abilities (e.g. Hauser-Cram et al., 1999; Couzens et al., 2011). 

 

Decline in older adults with DS is typically associated with AD-neuropathology. 

However, decline may also occur due to mental health factors such as depression, or 

physical health conditions such as hypothyroidism or problems with hearing and vision. 

Although rare, young adults with DS may experience a sudden episode of decline 

known as “regression”. This was recently characterised by Worley et al. (2015) and 

termed Down Syndrome Disintegrative Disorder.  

 

Older adults with DS are at an ultra-high risk of developing AD-like dementia. Early 

neuropathological studies tended to suggest that all individuals with DS develop AD 

(e.g. Mann 1988; Dalton & Wisniewski 1990), however population prevalence studies 

argue against this (see Table 1). Recent lifetime estimates are as high as 90% 

(McCarron et al., 2014). 

 

The average age of dementia diagnosis in individuals with DS is around 55 years 

(McCarron et al., 2014), however great variation exists in age of onset. For example, 

some individuals receive a diagnosis in their 30s whereas others may not develop 

dementia until their 60s, and some individuals may still not have developed dementia in 

their 70s (see Table 1.1).  

 

Study Location Assessment method Prevalence by group  

Visser et al., 1997 Netherlands Early Signs of Dementia 
Checklist and the Social 
Skills Inventory for the 
Mentally Retarded  

11% age 40-49 (n=10); 
80% age 50-69 (n=33); 
91% age 60-69 (n=20); 
100% age 70+ (n=2) 

Holland et al., 1998 Cambridge, 
UK 

Clinical criteria (DSM-IV 
and ICD-10) and modified 
version of Cambridge 
Examination for Mental 
Disorders of the Elderly 
(CAMDEX) 

3.4% age 30-39 
(n=29); 
10.3% age 40-49 
(n=29); 
40.0% age 50-59 
(n=15) 
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Sekijima et al. (1998) Nagano 
Prefecture, 
Japan 
 

Observations in daily 
activities for at least 1 
year 
 

0.0% age 30-39 
(n=39); 
16.3% age 40-49 
(n=43); 
40.9% age 50-59 
(n=22) 
0.0% age 60+ (n=2) 

Van Buggenhout et al. 
(1999) 

Netherlands Dementia Questionnaire 
for Mentally Retarded 
Persons, Observation List 
for Aging Residents, 
Sociale 
Redzaamheidsschaal 
(Daily Living Skills) 

0.0% age 30-39 
(n=16); 
11.1% age 40-49 
(n=35); 
42.2% age 50-59 
(n=29) 
0.0% age 60+ (n=1) 

Tyrrell et al., 2001 Ireland Modified DSM-IV criteria; 
Daily Living Skills 
Questionnaire (DLSQ); 
Test for severe impairment 
(TSI); Down syndrome 
Mental Status Examination 
(DSMSE) 

1.4% age 35-39 
(n=70); 
5.7% age 40-49 
(n=122); 
30.4% age 50-59 
(n=79); 
41.7% age 60-69 
(n=12); 
50.0% age 70+ (n=2) 

Coppus et al., 2006 Netherlands ICD-10 criteria and Ageing 
Special Interest Group of 
the International 
Association for the 
Scientific Study of 
Intellectual Disabilities 
(IASSID) guidelines 

8.9% age 45-49 (n=9); 
17.7% age 50-54 
(n=17); 
32.1% age 55-59 
(n=33); 
25.6% age 60+ (n=29) 

Table 1.1 Reported prevalence rates of dementia in individuals with DS 

 

Percentage of individuals with a diagnosis of dementia is shown for each age group reported, 

out of the total number of individuals per group (n). Assessment method refers to primary 

method of dementia diagnosis used by each study.  

 

Variation in reported age of onset may be in part due to differences in assessment 

method and difficulties identifying cognitive decline in individuals with DS (discussed in 

more detail below). Evidence also suggests initial signs of decline in some individuals 

with DS may be atypical. For example, impairments in EF may be the first observable 

sign of dementia in many individuals with DS (e.g. apathy, impaired planning or 

problems with attention; Rowe et al., 2006; Ball et al., 2008). It has been proposed that 

attentional impairments in individuals with DS may be detected 2 years before 

dementia diagnosis (Krinsky-McHale et al., 2008). 

 

Prevalence rates may also be influenced by mortality. Dementia is a terminal illness 

(median survival in DS approximately 7 years after diagnosis; McCarron et al., 2014). 

The rates reported in Table 1 do not take account of differences in mortality between 

individuals with and without dementia. Coppus et al. (2006) hypothesised that it was for 
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this reason that dementia prevalence decreased in their sample after 60 years of age, 

despite incidence continuing to increase in this age group.  

 

Neuropathologically, post-mortem studies show that all individuals with DS have 

amyloid plaques and tau tangles that are characteristic of AD by age 35 (Mann, 1988). 

The predominant hypothesis pertaining to this ultra-high risk of AD is that the amyloid 

precursor protein (APP) gene, which produces amyloid protein, is found on 

chromosome 21. Consequently over-expression of this gene (as found in individuals 

with three copies) leads to amyloid over-production and subsequent deposition 

(Wiseman et al., 2015). This is similar to studies of early-onset AD in the TD 

population, where it has been shown that genetic mutations resulting in the over-

expression of the APP gene (e.g. APP copy number variations) leads to the formation 

of amyloid-plaques and subsequent dementia (Goate et al., 1991; Murrell et al., 1991). 

Factors influencing the variability in time between presence of amyloid pathology in all 

individuals with DS by age 35, and the later emergence of significant cognitive decline 

(average age of diagnosis 55), are still unknown. 

 

1.3.3 Cognitive testing in DS 

 

Numerous assessment tools have been employed for measuring cognitive abilities 

and/or cognitive decline in individuals with DS, with several cognitive test batteries in 

existence (e.g. Edgin et al. 2010; Startin et al., 2016). The direct assessment of 

cognition in DS can be problematic, however, due confounding factors influencing task 

performance. This includes sensory impairment (e.g. problems with hearing and vision) 

and difficulties with communication. It is also likely that any task requiring a verbal 

response (e.g. verbal fluency) may be confounded for individuals with relatively poor 

verbal abilities. Similarly tasks requiring a motor response may be confounded for 

individuals with motor impairments. Furthermore, test scores are subject to levels of 

participant motivation and interest, and therefore do not always reflect true level of 

ability. It is also important to consider the strong cohort influence within the DS 

population. Significant changes have taken place in terms of health, education, welfare 

and support over the past 50 years (including the phasing out of institutions in the UK) 

and this may influence performance. As such some caution must be taken when using 

cross-sectional data to compare the performance of younger and older adults with DS. 

 

1.3.3.1 Measuring general cognitive ability 
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A variety of standardised IQ tests have been utilised within the DS population (see 

Table 1.2). The Kaufman Brief Intelligence Test 2nd edition (KBIT-2; Kaufman & 

Kaufman, 2004) has been employed by more recent studies (Edgin et al., 2010; de 

Sola et al., 2015; Sinai et al., 2016; Startin et al., 2016). This is a brief tool providing a 

measure of both verbal and non-verbal abilities. Raw scores from verbal and non-

verbal subscales can be used alone, or in combination to provide a measure of global 

cognitive ability, or standardised according to chronological age in order to provide a 

measure of IQ.  

 

Table 1.2 Tests of general cognitive ability utilised by studies within the DS population. 

 

A key issue when obtaining an accurate measure of cognitive ability in individuals with 

DS is the presence of floor effects (i.e. participants obtaining the lowest score possible 

Test Description Utilised by 

Kaufman Brief Intelligence Test 
2nd edition (KBIT-2; Kaufman & 
Kaufman, 2004) 

Provides verbal and 
non-verbal measures of 
intelligence and overall 
IQ 

de Sola et al., 2015; 
Edgin et al., 2010; 
Sinai et al., 2016; 
Startin et al., 2016 

Leiter International Performance 
Scale-Revised (Leiter-R; Roid & 
Miller, 1997) 

Provides a non-verbal 
measure of intelligence 

d’Ardhuy et al., 2015 
 

Peabody Picture Vocabulary 
Test (Revised edition or 3rd 
edition; PPVT-R or PPVT-III 
respectively; Dunn & Dunn, 
1981; Dunn & Dunn, 1997) 

Provides a measure of 
receptive language 
ability  

Schapiro et al., 
1990; Das et al., 
1995; Chapman, 
2006; Iacono et al., 
2010 

Wechsler Adult Intelligence 
Scale (WAIS; Wechsler, 1997)  

Provides verbal and 
non-verbal measures of 
intelligence and overall 
IQ 

Silverman et al., 
2010; Breia et al., 
2014 

Wechsler Intelligence Scale for 
Children-Revised (WISC-R; 
Wechsler, 1974) 

Provides verbal and 
non-verbal measures of 
intelligence and overall 
IQ 

Devenney et al., 
2000; Kittler et al., 
2004 

Stanford-Binet 3rd edition 
(Merrill, 1973) 
 

Provides verbal and 
non-verbal measures of 
intelligence and overall 
IQ 

Carmeli et al., 2002; 
Silverman et al., 
2010 

Prudhoe Cognitive Function 
Test (PCFT; Kay et al., 2003) 

Developed exclusively 
for participants with ID 
to measure cognitive 
ability 

Kay et al., 2003 

Woodcock-Johnson Tests of 
Cognitive Ability-Revised (WJ-
R; Woodcock & Johnson, 1989) 

A set of tests that 
provide a measure of 
cognitive ability and 
achievement 

Patel et al., 2001 

Raven’s Coloured Progressive 
Matrices (RCPM; Raven, 2003) 

Measures abstract 
reasoning to provide a 
measure of non-verbal 
intelligence 

Iacono et al., 2010 
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on a test). This is particularly an issue when raw scores are standardised. Floor effects 

for standardised scores have been reported as high as 61% for the Leiter-R (d’Ardhuy 

et al., 2015). For the KBIT-2, de Sola et al. (2015) reported a 41.9% floor level for full 

IQ and Startin et al. (2016) reported floor levels of 66.7% for verbal IQ and 39.4% for 

non-verbal IQ.  

 

For studies concerned with individual differences in cognitive ability, raw scores may be 

more useful than standardised scores due to greater range of scores and lower floor 

effects. Three studies identified reported floor effect levels for raw scores of the KBIT-2 

(see Figure 1.1); no floor effects were reported for the verbal subscale (apart from for 

5% of individuals with dementia), and moderate floor effects were reported for the non-

verbal subscale, which increased substantially in participants with dementia (Edgin et 

al., 2010; Startin et al., 2016; Sinai et al., 2016). 

 

 

Figure 1.1 Percentage of participants at floor for KBIT-2 subscales 

Bar chart showing percentage of participants at floor for KBIT-2 subscales by participant group 

(younger adults (YA; 16-35 years), older adults (OA without dementia and older adults with 

dementia; >35 years for Startin et al., 2016; >45 years for Sinai et al., 2016) for individual 

studies reporting these values (Startin et al., 2016 (blue); Edgin et al., 2010 (green); Sinai et al., 

2016 (purple)).  

 

When examining the range of KBIT-2 scores between participant groups using cross-

sectional data (see Figure 1.2), verbal and non-verbal subscale means and ranges 
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reported by Startin et al. (2016) appear relatively stable between younger adults and 

older adults without dementia, but then decrease in older adults with dementia. Sinai at 

al. (2016) also reported similar reductions in verbal and non-verbal mean scores and 

ranges between older adults with dementia compared to older adults without dementia 

(younger adults were not included in this study). Overall, these studies demonstrate 

that raw KBIT-2 scores can be obtained from a range of individuals with DS, including 

many individuals with dementia. It should be noted, however, data displayed in Figure 

1.2 is not longitudinal and therefore ability to use this data to draw conclusions about 

decline in cognitive ability over time is limited. 

 

 

Figure 1.2 Previous reports of KBIT-2 raw score in individuals with DS 

Bar chart showing cross-sectional KBIT-2 raw score range and mean by participant group 

(younger adults, older adults without dementia and older adults with dementia) for individual 

studies (Startin et al., 2016 (blue); Sinai et al., 2016 (purple)). 

 

1.3.3.2 Measuring cognitive decline 

 

Floor levels are not only an issue when comparing between individuals with DS but 

also when comparing within individuals over a period of time, for the purpose of 

assessing cognitive decline. This is because it is not possible to identify decline on a 

task for which an individual is already at floor. Alternative measures, for example 

informant questionnaires or measures of adaptive abilities, may be more sensitive to 

decline in such individuals. 
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Informant questionnaires are employed within many cognitive test batteries in DS (e.g. 

Edgin et al., 2010; Sinai et al., 2016; Startin et al., 2016) and are also a key aspect of 

clinical assessment for the purpose of dementia diagnosis. It is recommended that the 

assessment of dementia in people with ID should incorporate both direct assessment 

of the individual and an informant interview (Janicki et al. 1996). In the UK the most 

commonly used questionnaires in the assessment of cognitive decline in individuals 

with DS are the Cambridge Examination for Mental Disorders of Older People with 

Down's Syndrome and Others with Intellectual Disabilities (CAMDEX-DS; Ball et al., 

2004) and the Dementia Questionnaire for People with Learning Disabilities (DLD; 

Evenhuis, 1992). The CAMDEX-DS first assesses best level of functioning and then 

asks about decline in functioning. Later parts of the CAMDEX-DS assess mental and 

physical health issues. Questions in both tools pertain to similar domains, including 

memory, orientation, language, everyday skills, mood, behaviour and motivation. The 

DLD, however, is a screening tool rather than a diagnostic instrument and has poor 

interrater reliability; only 15% of raters achieved good agreement in a recent study (26 

DS individuals; Walker et al., 2014). In contrast, Ball et al. (2004) found good 

agreement between all raters using the CAMDEX-DS (20 DS individuals; Ball et al., 

2004).   

 

Clinical diagnosis of dementia in the TD population requires evidence of a progressive 

deterioration in memory, in addition to decline in a number of other cognitive domains 

(e.g. language impairment), and decline in daily living skills (Ball et al., 2004). Full 

definitions and criteria that are generally accepted are outlined in the Diagnostic and 

Statistical Manual of Mental Disorders (DSM-IV; American Psychiatric Association 

1994) and the International Classification of Diseases (ICD-10; World Health 

Organization 1992). Criteria for the diagnosis of dementia in individuals with DS is the 

same as criteria for the TD population, however decline in functioning must be relative 

to an individual’s baseline level rather than relative to population norms (Ball et al., 

2004). This emphasises the importance of baseline and longitudinal assessment in 

individuals with DS, as a single assessment cannot differentiate between cognitive 

impairment due to ID or dementia. Also emphasised is the importance of informant 

interview with individuals who have known the person for a long period of time.  

 

In addition to the above-mentioned issues (the presence of floor effects on formal tests 

and problems differentiating between impairment due to ID or dementia), difficulties 

diagnosing dementia in individuals with DS are also encountered due to variability in 

early symptoms of decline. As mentioned previously, it has been documented that for 
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some individuals EF impairments may be the first sign of dementia (Rowe et al., 2006; 

Ball et al., 2008; Krinsky-McHale et al., 2008). This contrasts with the most common 

early symptoms of dementia in the TD population (impairments in episodic memory and 

orientation), and upon which DSM-IV and ICD-10 definitions are based. Currently used 

clinical criteria may therefore not always be the most appropriate method for the 

identification of dementia in individuals with DS (Ball et al., 2004).  

 

Early diagnosis of dementia in people with DS has important implications for treatment 

and care. Early diagnosis is also important for clinical trials. Individuals with DS are a 

particularly important population for clinical trials aimed at preventing dementia due to 

their ultra-high risk of the disease. Establishing biomarkers for cognitive decline is of 

substantial value to clinical trials due to the problematic nature of cognitive testing in 

this population and the possibility that biomarker changes may be observable prior to 

cognitive changes. It should not be forgotten that biomarkers are also an important tool 

for clinical trials into treatments aimed at improving cognition in younger adults with DS.  

 

Within the TD population electroencephalography (EEG) features have been linked to 

cognition (including IQ and memory ability), ageing and dementia (Hughes & Cayaffa, 

1977; Coben et al., 1983; Lehtovirta et al., 1996; Klimesch, 1999; Claus et al., 1998; 

Clark et al., 2004; Moretti et al., 2004). This includes the detection of subtle cognitive 

changes (discrimination between different types of dementia and conversion from mild 

cognitive impairment (MCI) to AD; Neto et al., 2015; Poil et al., 2013). It is therefore 

possible that the EEG signal from individuals with DS may contain features that can be 

linked to cognitive ability, ageing and cognitive decline in this population. Passive 

paradigms may prove particularly useful in individuals with DS due to the lack of 

participant response required, reducing the confounding influences of ID and presence 

of language and/or motor impairments. This will be considered in more detail in the 

next section. 
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Chapter 2 Electroencephalography (EEG) introduction 

 

2.1 EEG background information 

 

The human EEG was first recorded in 1924 by a German psychiatrist named Hans 

Berger. Berger had worked on the project since the late 1880s, after a near death 

experience during which he felt that he had communicated with his sister telepathically 

(Millett, 2001). During his career Berger used EEG to describe different brain rhythms 

and features of sleep (Berger, 1929). The invention went on to revolutionise the field of 

clinical neurology. Today EEG has numerous clinical applications, including the 

diagnosis of seizure and sleep disorders, and monitoring response to anaesthesia 

(Jameson & Sloan, 2006). It is also an important research tool for studying the brain 

and cognition.  

 

EEG is a direct measure of ongoing electrical brain activity. The electrical signal 

recorded at the scalp is thought to mainly reflect the summation of synchronous 

excitatory and inhibitory postsynaptic potentials of many thousands of cortical neurons 

(Cohen, 2014). It is estimated that between 10,000 and 50,000 neurons dominate the 

EEG signal at each electrode (Murakami & Okada 2006; Wang et al. 2005).  Superficial 

pyramidal cells are thought to be the main generators. This is because superficial 

pyramidal cells are large with an elongated shape, which creates a current dipole 

between the cell body and dendrites (see Figure 2.1). They are also aligned in parallel 

to each other. Together these features create an electrical field detectable at the scalp. 
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Figure 2.1 Diagram of current dipoles in the cortex 

Dipoles are illustrated in different directions with respect to the skull. Radial dipoles (a and d) 

are the strongest contributors to the detectable signal. Tangential dipoles (c) are likely to cancel 

each other out, and so are unlikely to be measured. The deeper radial dipole “d” is likely to 

contribute to the signal, but to a lesser extent than “a” because it is further away from the 

electrode. Image taken from Cohen, 2014.  

 

 

A particular strength of EEG is its high temporal resolution. The makes EEG 

particularly suited to the rapid changes in neural activity that underlie cognitive 

processes. EEG is also relatively low-cost and has a high degree of tolerability; the 

latter of which is particularly important in the study of individuals with DS.  

 

EEG has a reputation as a tool with relatively low spatial resolution – electrical activity 

at each electrode is a summation of not only spatially close sources but many distant 

sources as well (Makeig et al., 1996). This is because electrical fields in the brain 

spread and become distorted, particularly through the skull. The ability to determine 

where in the brain measured signals at the scalp originate is therefore limited. Spatial 

resolution of scalp EEG is estimated to be 5 – 9 cm (Nunez et al., 1994; Babiloni et al., 

2001). With the advent of high-density recording methods and novel analysis methods, 

however, this problem has been substantially reduced and high-quality source 

localisation is now deemed possible (e.g. Song et al., 2015). 
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2.2 Resting-state EEG 

 

The theory that the brain is always active was first proposed by Berger (1929), who 

reported that electrical oscillations in his subjects did not cease during periods of rest 

(Gloor, 1969). It was not until this century, however, that the “normal” activity of the 

brain at rest (that being activity in the absence of any task or controlled stimulation) 

generated a significant amount of research interest and discussion. It has been 

reported that before this, “the idea that one would include a resting-state in studies of 

the human brain was considered unacceptable by cognitive neuroscientists because it 

completely lacked the features of an adequately designed ‘control state’” (Snyder & 

Raichle, 2012). The turning point came in 1995, when it was discovered that 

spontaneous fluctuations in the fMRI signal were not simply noise (e.g. head motion or 

cardiac pulsations as previously thought), but instead arise from neural activity (Biswal 

et al., 1995). Following this discovery, baseline levels of activity began to be utilised in 

studies of evoked cortical responses and also studied in their own right (Cabral et al., 

2014). Although resting-state EEG activity had been studied prior to this, this had for 

the most part been within a clinical context (e.g. the investigation of organic brain 

disorders). Figure 2.2 illustrates the exponential rise in publications of “resting-state” or 

“task-free” EEG studies.  

 

Figure 2.2 EEG resting-state publications over time 
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Line graph showing number of publications listed on PubMed Central (data downloaded 

10/01/18) for each year from 1960 to 2017, using search terms “resting state” or “task free” and 

“EEG”.  

EEG studies examining baseline brain activity employ continuous recording paradigms 

in either eyes-open (EO) or eyes-closed (EC) conditions. Differences in brain activity 

occur between EO and EC conditions (particularly around 10Hz; suppression of activity 

with eye opening), and therefore such experimental differences should be given full 

consideration during design and interpretation. Resting-state paradigms typically 

discard temporal information and focus instead on spectral information — that being 

the frequencies that are present in the signal, in which signals are represented as a 

linear combination of oscillatory functions (Gross, 2014). 

 

 

Figure 2.3 Diagram of EEG frequency bands 

Diagram illustrating typical EEG activity (over a 1 second period) within each commonly used 

frequency band: delta (0-4 Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (13-30Hz) and gamma 

(>30Hz) used here.  

Existing terms referring to brain rhythms refer to the frequency band the rhythm 

occupies; typically delta (0-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), beta (13-30Hz) and 

gamma (>30Hz) (see Figure 2.3). It is of note, however, that brain rhythms do not 

always operate within such set frequency bands. For instance alpha rhythms are 

known to operate across a wider frequency range than 8-13 Hz and there is substantial 

variability between individuals regarding this (Haegens et al., 2014). Some frequency 
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bands are also commonly subdivided (e.g. upper and lower) to reflect purported 

differential underlying mechanisms of generation and potential differences between 

roles in cognition (discussed in more detail under “2.3 Resting-state EEG and cognition 

in the TD population” below). 

 

Recordings obtained from subjects at rest show activity across the EEG spectrum, 

amounting to what has been described as “a constellation of brain rhythms” (Buzsaki et 

al., 2013). It has been proposed that the organisation of these brain rhythms represent 

the means by which neuronal networks communicate and interact (Buzsaki et al., 

2013). For example, the activity of networks of inhibitory interneurons generate 

rhythmic inhibitory post-synaptic potentials (IPSPs). These rhythmic IPSPs provide 

windows of alternating reduced and enhanced excitability which offers a temporal 

framework for the “chunking” of neuronal activity. This “chunking” enables the effective 

communication of local information to distributed regions. It is posited that these 

mechanisms enable the brain to integrate a large number of distributed local processes 

into global states (Buzsaki et al., 2013).  

 

Characterising the constellation of brain rhythms present in an EEG signal is valuable 

for understanding a wide range of cognitive functions and pathogenic processes. It has 

been suggested that ‘dysrhythmias’ — reflecting impairments in the temporal 

organisation of the brain — may underlie many neurological and psychological 

disorders, including movement disorders, schizophrenia and dementia (e.g. Hutchinson 

et al., 2004; Spencer et al., 2004; Van Der Stelt et al., 2004; Jeong, 2004). For 

example in individuals with Schizophrenia, problems in the synchronisation of high-

frequency oscillations (as measured by EEG) have been correlated with visual 

hallucinations and thought disorder (Spencer et al., 2004). EEG rhythms are also 

known to be differentially affected by a large spectrum of psychotropic drugs (Agid et 

al., 2007; Alhaj et al., 2011). For example, it has been consistently demonstrated that 

5-HT1A receptor agonists (e.g. the commonly used anxiolytic buspirone) produce an 

increase in theta and decrease in alpha activity (i.e. a negative shift of the EEG 

spectrum) (Alhaj et al., 2011). 

 

In particular resting-state EEG studies have been important for furthering our 

understanding of AD (Vecchio et al., 2013); see section “2.3 Resting-state EEG and 

cognition in the TD population” below. It has been noted that EEG is particularly suited 

to the study of AD — a cortical dementia — as the cortical field potentials measured by 

EEG can be directly correlated to pathological changes in the structure and function of 

cortical layers (Jeong., 2004). In contrast to this, subcortical dementias (such as those 
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associated with Parkinson’s disease and Huntington’s disease) exhibit relatively normal 

EEG patterns (Verma et al., 1987). Accordingly, EEG markers are considered a tool for 

supporting standard clinical and neurophysiological assessment in AD. 

 

2.3 Resting-state EEG and cognition in the TD population 

 

The relationship between EEG activity and cognition is typically investigated through 

participants undergoing a battery of cognitive tests separately to an EEG recording, 

during which event-related and/or resting-state paradigms are employed. Some 

studies, however, examine task performance during EEG recordings and compare 

activity between trials (e.g. working memory; Hwang et al., 2005).  

 

2.3.1 Delta and theta activity 

 

Within the TD population few studies have investigated the role of delta activity 

(typically 0-4 Hz) in cognition. Despite this, delta oscillations measured at the scalp 

have been implicated in many cognitive processes (Basar et al., 2001; Harmony, 

2013). These include attention, motivation, and behavioural inhibition (Knyazev, 2007; 

Putman, 2011; Harmony, 2013). Delta oscillations are also thought to be involved in the 

integration of information between distant brain regions, and in the synchronisation of 

brain activity with autonomic functions (Knyazev et al., 2009; Moran & Hong, 2011).  

 

Research within the TD population suggests that theta activity (typically 4-7 Hz) is 

associated with memory processes (Osipova et al., 2006; Klimesch, 2012). It has been 

hypothesised theta oscillations measured at the scalp – in particular over the 

parietotemporal regions – may indirectly reflect the dynamic interactions that take place 

between the hippocampal system and cortex (Bastiaansen & Hagoort, 2003).  

 

Multiple studies examining the link between EEG activity and dementia within the TD 

population report “slowing” of the EEG spectrum – i.e. an increase in slower 

frequencies (delta, theta) and decrease in faster frequencies (Brenner et al., 1988; 

Coben et al., 1990; Soininen et al., 1991; Hooijer et al., 1990; Schreiter Gasser et al., 

1993). It is generally thought that the earliest EEG change observed in AD is an 

increase in theta activity, whereas delta activity increases occur later (Jeong, 2004). 

 

Mechanistically it has been suggested that cholinergic deficit may be responsible for 

slowing of the EEG in AD (Jeong, 2004). This is supported by evidence suggesting that 
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slowing may be induced by anticholinergic drugs (e.g. scopolamine and orphenadrine) 

and reversed by cholinergic drugs, i.e. acetylcholinesterase inhibitors (e.g. 

physostigmine, edrophonium chloride and donepezil) (Agnoli et al., 1983; Babiloni et 

al., 2013). 

 

2.3.3 Alpha activity  

 

Some of the most commonly reported relationships between EEG measures from 

resting-state data and cognition are those between alpha rhythms (typically 8-13 Hz) 

and cognitive ability. Alpha rhythms can be found across the scalp of healthy adults but 

are most visible over the occipital cortex (Niedermeyer, 1997; Hughes & Crunelli, 

2005). Alpha was historically thought of as “background” or “idling” activity (an idea first 

introduced by Adrian & Matthews, 1934), but is now known to underlie and reflect a 

range of cognitive processes. The main process ascribed to alpha activity is that of an 

inhibitory attentional filter, with the frequency of oscillations pacing this filter (Klimesch, 

2011; Zauner, 2012). It is through this function that alpha is posited to regulate the 

engagement and disengagement of sensory areas (Haegens et al., 2014). 

 

Alpha activity is sometimes subdivided into two or three frequency bands (i.e. lower-

alpha and upper-alpha, or lower (alpha 1), middle (alpha 2), and upper (alpha 3)). 

Lower alpha (typically below 10 Hz) can be observed in widely distributed networks and 

is thought to reflect general brain arousal and global attention readiness, whereas 

upper alpha (typically above 10 Hz) is thought to reflect the oscillations of more 

selective neural systems and has been associated with memory performance (Steriade 

& Llinas, 1988; Klass & Brenner, 1995; Klimesch, 1996, 1997,1998, 1999; Vogt et al., 

1998; Rossini et al., 2007). Interestingly differences in the way these sub-bands 

respond to the neurodegenerative processes of AD and vascular dementia have also 

been reported (Moretti et al., 2004). In this study individuals with vascular dementia 

showed reduced alpha 2 power compared to healthy elderly subjects, whereas 

individuals with AD instead showed reduced alpha 3 power compared to healthy elderly 

subjects. This indicates the distinction between alpha sub-bands may be relevant 

clinically. 

 

Studies have reported positive correlations between alpha peak frequency and both IQ 

(Anokhin & Vogel, 1996) and memory performance (including semantic and verbal) 

(Klimesch, 1999; Clark et al., 2004). There are sometimes subtle variations in the 

definition of alpha peak frequency between studies, but typically this term refers to the 
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frequency associated with the strongest EEG power within the extended alpha range 

(Klimesch, 1999). It should be noted, however, that although early studies reported a 

positive correlation between IQ and alpha peak frequency, later studies using larger 

samples reported no significant relationships (Posthuma et al., 2001). Additionally, 

some studies have reported negative correlations between IQ and frequency measures 

(Jaušovec & Jaušovec, 2000).  

 

It is likely significant differences in recording and analysis methods between studies 

play an important role in inconsistent findings. For example, studies examining more 

than one region (e.g. Jaušovec & Jaušovec, 2000) may reveal correlations which are 

not apparent in other (albeit larger) studies that only examine a single region (e.g. 

Posthuma et al., 2001). Such methodological differences are common among studies 

investigating EEG characteristics and cognition, making comparison difficult. 

 

Although findings relating to alpha frequency and IQ are inconsistent, a decrease in 

alpha frequency (alpha slowing) is consistently associated with ageing and also the 

development of AD (Coben et al., 1983; Lehtovirta et al., 1996). Such slowing has been 

shown to correlate with AD progression (as measured by mortality) from the earliest 

stages (Claus et al., 1998).  

 

2.3.4 Beta and gamma activity 

 

Within the TD population few studies have investigated the role of beta activity 

(typically 13-30 Hz) in cognition. Until recently beta activity was thought to mostly relate 

to somatosensory and motor functions (Pfurtscheller et al., 1996), however recently it 

has attracted attention for its potential role in response inhibition (Huster et al., 2013). A 

decrease in beta activity is also thought to be one of the earliest changes associated 

with slowing of the EEG spectrum that occurs with AD (Jeong, 2004).  

 

It has been said by Başar et al. (2016) that gamma activity (typically > 30 Hz) does not 

reflect a specific function of the nervous system but instead is fundamental to all brain 

functions. Proposed mechanisms through which gamma may be involved in all brain 

functions include information transmission and the global binding of distributed 

information (for example, the binding of distributed sensory components into conscious 

experience) (Buzsaki and Wang, 2012). It is also thought that gamma activity plays 

important roles in synaptic plasticity (Jensen et al., 2007). In line with the theory that 

gamma is fundamental to all brain functions, gamma oscillations have been linked to 
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numerous cognitive processes including perception, attention, working memory, long-

term memory, object recognition and emotional paradigms (Jensen et al., 2007; Başar 

et al., 2016).  

 

2.4 Literature review: Resting-state EEG in individuals with DS 

 

2.4.1 Background information and systematic literature review  

 

2.4.1.1 Resting-state EEG rationale 

 

Understanding the relationship between EEG activity and general cognitive ability in 

individuals with DS is important for elucidating potential neurophysiological processes 

underlying cognitive impairment. In turn this may help inform biomarker and drug target 

search.  

 

Passive paradigms are inherently free from the need to understand and retain 

instructions relating to response (e.g. to press a button in response to a target). 

Consequently utilising such tasks reduces the confounding influence of ID level and 

differences in motor skills on task performance. In addition to resting-state paradigms, 

a number of passive event-related paradigms (ERP) exist. However, ERP studies are 

often related to specific cognitive processes. For instance oddball paradigms (where 

target stimuli are presented amongst more frequent background stimuli and EEG 

activity associated with each target-type are compared) have been associated with the 

processes of attention, orientation and memory (Lee et al., 2011). Furthermore these 

processes are commonly linked to the modality task stimuli are presented within (e.g. 

visual or auditory). In contrast, resting-state paradigms are considered a more general 

measure of brain activity, as discussed previously.  

 

Exploring resting-state activity in adults with DS and characterising individual 

differences in this may also be considered a pre-requisite to fully understanding ERP 

responses that are potentially downstream of this activity. This is because there is 

evidence to suggest that resting-state brain activity (particularly alpha activity) may 

modulate task-based responses (e.g. auditory oddball; Romani et al. 1991; Lee et al., 

2011).  

 

2.4.1.2 Historical context 
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The earliest EEG researchers were interested in the use of EEG to explore 

electrophysiological characteristics in DS (e.g. Kreezer, 1939; Gunnarson, 1945). Since 

the end of the Second World War, aside from a small number of studies, very little 

research was published in this area until the 1990s. It can only be speculated that 

perhaps the landscape of research into intellectual disability substantially changed after 

the Nuremberg Code (emphasising individual voluntary consent) was established in 

1947. More recently in the UK, the Mental Capacity Act (2005) has supported the 

inclusion of people with IDs in research by setting a framework for researchers to 

assess capacity and include those who lack capacity in their research; increasing 

opportunities for people with DS to be involved in studies. An increase in the number of 

resting-state EEG studies involving participants with DS is also likely to be influenced 

by the general increased interest in resting-state EEG outlined in the previous chapter.  

 

2.4.1.3 Identification and screening of studies 

 

Systematic searches of three electronic databases (PubMed, Scopus and Web of 

Science) were carried out using the following terms: (“Down syndrome”, EEG) or 

(“Trisomy 21”, EEG). Studies were excluded if all participants were under the age of 16 

and were not written in English (translations accepted). Using this criteria a total of 30 

studies were identified. Following further inspection, studies were excluded if it was not 

stated or not clear whether resting-state recordings were obtained under eyes-open or 

eyes-closed conditions, or if it was not clear which of these conditions results were 

referring to (n=7; Kreezer, 1939; Gunnarson, 1945; Ellingson & Menolascino, 1967; 

Uohashi et al., 1970; Ellingson & Lathrop, 1973; Visser et al., 1996; Salem et al., 

2015). In the case of the recent study by Salem et al. (2015) the corresponding author 

was contacted to try obtain this data, however no response was received.  

 

Studies were also excluded if EEG analysis methods were not stated or if methods 

were restricted to clinical EEG interpretation (e.g. classification of the EEG into 

normal/abnormal or “conventional impressionistic”) (n=4; Paulson et al., 1969; 

Ellingson et al., 1973; Crapper et al., 1975; Devinsky et al., 1990). Studies were also 

excluded when resting-state recordings were obtained during periods of brief 

awakenings during the investigation of sleep (Clausen et al., 1977). Studies involving 

both adults and children with DS were excluded where analysis was grouped together, 

or if it was not clear which age group analyses were referring to (n=3; McAlaster, 1992; 

Schmid et al., 1992; Johannsen et al., 1996). Two identified studies could not be 

obtained (Sannita et al., 1993; Kim et al., 2009). 
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2.4.1.4 Quality and considerations of remaining studies 

 

Following the screening process a total of 13 studies remained (see Table 2.1 for 

summarised details of participants, methods and results provided by each study). 

Publication dates ranged from 1970 to 2011. Some of these remaining studies, 

however, should be reviewed with a level of caution. For instance Ono et al. (1992) 

excluded 8 participants with DS who had an “undetectable alpha rhythm”. This 

approach is questionable as overall results from the study (n=36) are not necessarily 

representative of the wider DS adult population. Furthermore the study by Salamy et al. 

(1990) is small (n=6) and two studies had eyelids of participants held down during 

recordings (Babiloni et al., 2009, 2010). The number of participants affected by this is 

not stated by these studies. Undoubtedly this protocol could cause anxiety and an 

increased state of vigilance in participants, which have been related to EEG measures 

(e.g. peak frequency; Jann et al., 2010; Angelakis et al., 2014).  

 

It should be noted that studies by Ono et al. (1992) and Ono (1993) are likely to be the 

same sample, with the addition of 4 individuals in the second study (n = 36 and 40, 

respectively). Data collection methods in these papers are identical. The second study, 

however, incorporates a cognitive test (Activities of Daily Life) and a CT scan (n=21), 

and standard theta and beta EEG bands are split into upper and lower for the purpose 

of analysis. Studies by Locatelli et al. (1996) and Medaglini et al. (1997) may also be 

from the same sample as they are from the same research group, and report identical 

participant demographics and EEG methodology. 

 

Issues may also arise when comparing findings between the studies identified here. 

Due to research in this field spanning many decades there is considerable 

methodological variation between studies. For instance methods of measuring peak 

frequency differ substantially — early researchers relied on the visual identification of 

alpha waves from simple montages and calculated frequency by measuring trains of 

these in length (mm), whereas later studies use a variety of different recording 

montages, recording sites, frequency measures and frequency bands (e.g. Politoff et 

al. (1996) measured peak frequency across a 2-20 Hz range). Such differences are a 

potential source of conflicting results and make comparison problematic. 

 

When reviewing these studies it is also important to consider a number of additional 

factors. Overall individuals with DS who take part in EEG studies may not be typically 



 39 

representative of the DS population (e.g. they may be of higher ability and have greater 

overall health). Research examining the extent that such samples differ is, however, 

lacking. Additionally, some studies that include older adults with DS do not attempt to 

control for the possible presence of cognitive decline or dementia (either through 

clinical criteria or cognitive assessment). Furthermore, in studies that do attempt to 

control for decline, this in itself may be confounded by level of ID, as discussed 

previously. Attempting to control for the presence of cognitive decline or dementia is 

particularly important with studies correlating EEG characteristics with age and/or 

ability in order to prevent results being confounded by this. Considering younger and 

older adults separately when investigating the relationship between EEG 

characteristics and cognitive ability in this population may also help reduce the 

potentially confounding influence of sub-clinical cognitive decline that may otherwise go 

undetected.  
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Title Authors Year Participant description EEG recording description EEG analysis description Additional tests Summary of reported findings 

Neurometric 

evaluation in down 

syndrome individuals: 

possible implications 

for dual diagnosis 

Salamy, Alvarez, 

Peeke 

1990 6 DS subjects (24-

78yrs, mean age 

42.3yrs) 

Eyes-closed, 21 electrode cap, 

10/20 system, plus midline 

and prefrontal (Fpz) leads and 

electrooculogram leads, 10-15 

min recording time (at least 2 

mins artifact-free data) 

acquired and split into 24 to 

48 2.5s epochs 

Classical frequency bands 

from both monopolar 

and bipolar (pairwise 

central, temporal, 

parietal-occipital, frontal 

temporal) recordings 

were obtained. Absolute 

power, relative power, 

symmetry and phase 

coherence measured. 

Variables were 

statistically compared to 

age appropriate 

normative values 

Further EEG analyses 

(e.g. multivariate 

analyses of 

composite features 

across frequency 

bands and electrode 

locations) 

Single exemplary participant had 

“abundance of theta and delta and 

marked deficit of alpha and beta” (in 

terms of absolute and relative power) 

over much of scalp. This pattern 

predominated in most of the subjects. 

NB: Age of exemplary patient unclear. 

Age-related changes 

in occipital alpha 

rhythm of adults with 

Down syndrome 

Ono, Yoshida, 

Momotani, 

Yoshimasu, Higashi 

1992 36 DS (aged 15-54, 23 

male, mean age 30.7± 

11.5 yrs), 47 healthy 

controls (62% male, 

mean age 30.9± 10.8 

yrs), 42 non-DS MR 

(57% male, mean age 

30.9± 10.8 yrs). 8 

additional DS 

individuals were 

excluded due to 

undetectable alpha 

rhythm 

Eyes-closed resting state, 12 

channels, 10/20 system 

Five artifact-free 5.12 sec 

duration epochs 

recorded from left 

occipital lead (O1-A1) 

underwent FFT. 

Calculated peak 

frequency and relative 

powers in standard EEG 

bands (although alpha 

split into 8-10.5 and 10.5-

13 Hz) 

 Alpha peak frequency was significantly 

negatively correlated with age in a 

linear relationship (this was not true of 

both control groups). There were 

significant differences Vs controls in 

alpha frequency for every age group 

(including age 15-24 yrs). Compared to 

healthy controls, DS had no diffs in beta, 

sig decrease in relative power in alpha2 

(25-54yrs). OAs (35-54yrs) also had sig 

increase in theta2 and alpha1. Increases 

in theta1 were seen in 15-24 and 35-44 

age groups. Compared to MR controls 
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there were similar alpha1 and alpha2 

differences in OA 

EEG changes with 

ageing in adults with 

Down syndrome 

Ono 1993 40 DS (age 15-54, mean 

30.3± 11.4 yrs, 65% 

male), 42 "non-DS 

mentally retarded" 

(non-DS MR) (mean 

age 30.9 ± 10.8 years, 

57% male), 47 healthy 

controls (mean age 

30.2 ± 11.5 years, 62% 

male) 

Eyes-closed resting state, 12 

channels, 10/20 system 

Examined relative power 

using EEGs from 4 

derivations in the left 

hemisphere (F3-A1, C3-

A1, P3-A1, O1-A1). Five 

artifact-free 5.12 sec 

duration epochs 

recorded from O1 

underwent FFT - used to 

analyse peak frequency 

of the occipital alpha 

rhythms (defined as the 

frequency with the most 

prominent peak in the 8-

13 Hz band). Relative 

power in six bands were 

calculated in 4-30 Hz 

range (theta1 theta2, 

alpha1, alpha2, beta1, 

beta2) 

Activities of daily life 

(ADL) assessed using 

a motor function 

subscale of the GBS 

scale (a rating scale 

for dementia 

syndromes).  21/40 

DS individuals had 

non-contrast brain 

CT scans  

Alpha peak frequency was significantly 

negatively correlated with age in DS 

group (linear decline, not true of both 

control groups) and was significantly 

lower in DS group compared to healthy 

controls and "non-DS MR" controls in 

age groups 35-44 and 45-54. Peak freq 

did not significantly correlate with GBS 

score and no associations of alpha 

frequency and basal ganglia calcification 

(n=5; measured by CT). Significant 

negative correlation found between 

alpha peak frequency and Sylvian fissure 

index (a measure of cortical atrophy in 

the temporal region). Relative power in 

YA DS compared to controls (15-24yrs): 

significant increases in theta1 and beta1 

in all derivations and increase in beta2 

frontally only; decrease in alpha2 in 

occipital, parietal and central. DS (25-

34yrs) compared to controls:  increase 

in alpha1 (parietal only), decrease in 

alpha2 all derivations, increase in beta1 

(frontal and central only), increase in 

beta2 (all). Relative power in OA (DS 

compared to controls): increase in 

theta2 (all), increase in theta1 (parietal 

only), increase in alpha1 (occipital only), 
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decrease in alpha2 (all). 45-54yrs 

increase in theta and alpha1 (occipital 

only), decrease in alpha2 (all but frontal) 

Age-related cognitive 

decline and 

electroencephalogram 

slowing in Down's 

syndrome as a model 

of Alzheimer's disease 

Soininen, Partanen, 

Jousmaki, Helkala, 

Vanhanen, Majuri, 

Kaski, Hartikainen, 

Riekkinen 

1993 DS (n=31, 17 male, 

mean age 35 ± 10 yrs); 

AD patients (n=69, 36 

male, mean age 80.1 ± 

9.5 yrs); Young controls 

(n=26, 14 male, mean 

age 26 ± 8 yrs); Elderly 

controls (n=16, 2 male, 

mean age 81.6 ± 7.1 

yrs) 

Eyes-closed resting state, 10 

electrodes, 10/20 system, 

data from T6-O2 reported 

(temporo-occipital 

derivation). Four artefact-free 

epochs of 8.192 s recorded. 

FFT computed on a series of 

12 half overlapping sections 

corresponding to 32.772 s of 

EEG signal 

Computed absolute 

amplitude and power of 

fairly standard EEG bands 

(alpha 7.57 - 13.92 Hz) as 

well as peak frequency 

and mean frequency (for 

both whole spectrum 

and also combined alpha 

and theta = 4.15 - 13.92 

Hz). A clinical 

neurophysiologist graded 

the EEG tracings blindly 

for various abnormalities 

(including slowing of the 

dominant occipital 

rhythm) 

Examined cortical 

functions (using 

Luria’s 

neuropsychological 

examination), 

automatic speech 

functions, speech 

understanding, word 

fluency, praxic 

functions, visual 

functions, memory 

In DS there was a significant age-related 

decrease of peak frequency from 20 to 

60 years (in both 4.15-13.92 and 1.46-

20.02 Hz windows). Decrease in peak 

frequency significantly correlated with 

MMSE, visual, praxic, speech functions 

and list learning (this was similar to AD 

patients but not young or elderly 

controls).  Alpha peak frequency in DS 

was 8.5 ± 2.3 Hz (compared to 5.9 ± 1.7 

in AD, 9.6 ± 0.8 in YC, 9.3 ± 1.1 in EC). 

Power: There were no significant 

differences in absolute amplitude and 

power values between YA-DS (under 40, 

n=17) and OA-DS (40 and over, n=10) 

Quantitative EEG 

study on premature 

aging in adult Down's 

syndrome 

Murata T, Koshino Y, 

Omori M, Murata I, 

Nishio M, Horie T, 

Isaki K. 

1994 32 DS (aged 20-46 yrs), 

15 healthy young 

controls, 15 healthy OA 

controls (in their 60s) 

16 electrodes, 10/20 system, 

eight 5-sec artefact-free 

epochs selected (providing 40 

sec to be analysed) 

Number of waves 

contained in 10 

frequency bands (delta, 

theta1-3, alpha1-4, 

beta1-2) calculated using 

the "wave-form 

recognition method". 

Mean frequency of 

occipital region (O1) was 

also calculated in the 

theta-alpha band range 

IQ: Koh’s Block-

design test, 

Goodenough’s draw 

a man test 

Mean frequency decreased with 

increasing age in DS (9.37 in 20s (n=15), 

9.17 in 30s (n=9), 8.76 in 40s (n=8)). 20s 

and 40s groups were significantly 

different. In control group the mean 

frequency only decreased slightly with 

age (9.74 in 20s Vs 9.53 in 60s group) 

and this wasn’t statistically significant. 

Also, DS group in 20s was significantly 

slower than controls in 20s. No 

correlations with frequency and IQ. 
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(4-13Hz) Compared to YA DS, OA DS have 

increased power in theta1 (occipital), 

theta3 (frontal and parietal), decreased 

power in alpha4 (diffuse areas) and 

decreased power in beta1 (diffuse 

areas). Compared to controls, OA 

controls have more theta2 power, more 

beta1&2 power, and less alpha2&3 

power 

EEG reactivity 

correlates with 

neuropsychological 

test scores in Down 

syndrome 

Partanen, Soininen, 

Kononen, Kilpelainen, 

Helkala, Riekkinen. 

1996 32 DS (age 21-60 yrs, 

mean age 35 yrs (SD 

10yrs), 18 male); 31 

age and gender 

matched controls (age 

21-60, mean age 39yrs 

(SD 11yrs), 18 male) 

10 channels, 10/20 system. 

Four artefact-free epochs of 

8.192 s with eyes-open and 

again with eye-closed 

recorded. FFT computed on a 

series of 12 half overlapping 

4.096 sections corresponding 

to a total length of 32.768 s of 

discontinuous EEG signal 

Computed absolute 

amplitude and power of 

standard EEG bands as 

well as peak frequency 

and mean frequency. 

Reactivity: calculated 

EC/EO ratios for 

amplitude, power, % 

diminution of amplitude 

and power for all bands. 

A clinical 

neuropsychologist also 

graded the EEG tracings 

blindly for various 

abnormalities (including 

slowing of the dominant 

occipital rhythm) 

Examined cortical 

functions (using 

Luria’s 

neuropsychological 

examination), 

automatic speech 

functions, speech 

understanding, word 

fluency, praxic 

functions, visual 

functions, memory. 

Individuals with DS showed mild slowing 

(n=12), moderate slowing (n=3), marked 

slowing (n=1). Amplitude of EC delta, 

theta and alpha and beta activity was 

increased in DS compared to controls. 

Both DS and controls had a significant 

reduction in EC alpha, beta and theta 

activity and decrease of EEG frequency 

with eye opening. EC/EO ratio in alpha 

band was significantly decreased in DS 

compared to controls, and all 

neuropsychological tests were 

significantly correlated with this (better 

ratio, better performance). Also found 

an inverse correlation in DS with EC/EO 

alpha ratio and age 

Cognition-related EEG 

abnormalities in 

nondemented down 

syndrome subjects 

Politoff, Stadter, 

Monson, Hass 

1996 13 “non-demented" DS 

(mean age 33.8 yrs (SD 

9.5yrs), 7 males); 13 

normal age matched 

21 channels, 10/20 system, 

eyes-closed resting state and 

flash stimulated EEG 

recordings. 28 artifact-free 

O2-A2 electrodes used 

for analysis, alpha 

defined as 8-12.9 Hz. 

Dominant occipital freq 

MMSE, picture 

absurdities test (PAT) 

Amplitude of resting state activity was 

larger in DS than age-matched controls 

across whole spectrum but did not 

correlate with cognitive scores. 
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control subjects (mean 

age 32.1 yrs (SD 8.4 

yrs), 9 males) 

epochs of 2.5 s covering 35.5 s 

with 51% overlapping was 

obtained for rest and for each 

flash intensity. Dirichlet 

window and FFT used for 

spectral analysis 

(DOF) defined as 

frequency as the largest 

power peak in 2-20 Hz 

range in the T6-O2 

channels. Measured 

absolute and relative 

power 

Absolute power of delta, theta and beta 

was significantly larger in DS than 

controls. Relative power of all bands 

was not significantly different between 

DS and controls. However, DS had 

significantly larger absolute and relative 

power at the 4.5 and 8.8 Hz bins (bins 

are 0.39 Hz each). Power at 4.5 and 8.8 

Hz bins also correlated significantly and 

negatively with both cognitive tests. 

DOF shift to the left in DS but not 

significantly different between groups 

and was not correlated to any tests. No 

significant correlations with age 

Quantified 

electroencephalogram 

in adult patients with 

Down syndrome 

Locatelli, Fornara, 

Medaglini, Akberoni, 

Franceschi, Rinaldi, 

Comola, Keocani, 

Canal, Comi 

1996 33 YA DS (20-35 yrs), 

12 OA DS (36-55 yrs), 

20 YA healthy controls 

(age 20-35 yrs) and 20 

OA healthy controls 

(age 36-55 yrs)  

10 mins eyes-closed resting 

EEG, 21 electrodes, 10/20 

system. FFT performed on at 

least 40 artefact-free epochs 

of 2.5 ms each 

Examined relative and 

absolute power of delta, 

theta, alpha (8-11.9 Hz) 

and beta bands, and 

topographical 

distribution of each. 

Results were considered 

abnormal when they fell 

outside the mean normal 

values ± 2.5 SD 

Neuropsychological 

test battery: abstract 

reasoning (Raven 

Colour Matrices; 

scores also 

transformed to give 

IQ score), language 

comprehension 

(Tolken Test), 

language production 

(verbal fluency), 

attention 

(Cancellation task) 

and memory 

(Rivermean 

Behavioural Memory 

73% DS-YAs and 92% DS-OAs had 

abnormal EEGs. YAs and OAs showed 

increased power in delta (relative & 

absolute; centro-anterior regions), theta 

(absolute & relative; centro-posterior 

regions) and beta (absolute & relative; 

mostly parieto-temporal regions) and 

decrease in alpha. Decrease in alpha 

was statistically significant only in 

posterior regions in OA. When OA DS 

and YA DS compared, OAs only had a 

significant increase of theta power. DS 

participants overall had significantly 

slower alpha peak rhythm compared to 

controls (9.2 ± 1 Hz vs 9.7 ± 0.3 Hz). 

Alpha peak frequency did not correlate 
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Test). Dementia 

assessed using 

criteria of Shapiro et 

al., 1993 

with age in DS or in control groups. In 

DS, alpha peak frequency significantly 

correlated positively with with Raven 

Colour Matrices, Rivermean Behavioural 

Memory Test and Tolken Test scores. 

Severity of cognitive impairment 

affected prevalence of abnormalities - 

increasing severity was associated with 

decreased alpha power, increase of 

theta in posterior regions, and decrease 

of delta across scalp. Pattern was more 

pronounced in participants with 

dementia 

P300 and EEG 

mapping in Down’s 

syndrome 

Medaglini, Locatelli, 

Fornara, Alberoni, 

Comola, Franceschi, 

Canal, Comi 

1997 45 adults DS (16 M, 

mean age 30.6 yrs) 

subdivided into 33 YA 

(age 20-45) and 12 OA 

(36-56 yrs). Resting-

state EEG healthy 

control subjects (20 YA 

(20-35) and 20 OA (36-

55)) p300 healthy 

control subjects (30 YA 

(20-40) and 27 OA (21-

60)) 

qEEG and auditory p300 

mapping.19 electrodes, 10/20 

system, 10-mins eyes-closed 

rest recordings. FTT on at 

least 40 2.5s epochs. Auditory 

oddball ERP paradigm also 

recorded (details not provided 

here) 

Resting-state analysis: 

Calculated relative and 

absolute power of delta, 

theta, alpha (8-11.9 Hz), 

beta examined. 

Topographic distribution 

of each band analysed 

through bidimensional 

maps with rectangular 

linear interpolation. 

Considered abnormal if 

fell outside control mean 

values ± 2.5 SD 

Neuropsychological 

test battery 

exploring abstract 

reasoning (RCM), 

language 

comprehension (TT), 

production (VF), 

attention (CT), 

memory (RBMT). 

RCM scores were 

also transformed to 

give IQ. Dementia 

diagnosed based on 

clinical grounds 

(Shapiro et al. (1987) 

criteria) and 

cognitive test results 

EEG "normal" in 10 and "abnormal" in 

35 patients (73% of YA, 92% of OA). YA 

group: significant increase in delta 

power (75%), theta power (37%), beta 

power (37%), and 58% had significant 

decrease in alpha power. OA group: 

significant increase in delta power 

(54%), theta power (91%), beta power 

(36%), and 45% had sig decrease in 

alpha power. Topographically, 

significant increase of delta power in 

centro-anterior regions and parieto-

temporal regions for beta power. In OA 

group, decrease in alpha power was 

statistically significant over posterior 

regions and there was a significant 

increase of absolute and relative theta 
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power over centro-posterior regions. 

Cognitive impairment was accompanied 

by an alpha power decrease, theta 

increase (in posterior regions), delta 

increase (across scalp). This pattern was 

more pronounced in DS participants 

with dementia. DS without EEG 

abnormalities performed significantly 

better on most measures than those 

with abnormalities 

On chronological 

changes in the basic 

EEG rhythm in 

persons with Down 

syndrome - with 

special reference to 

slowing of alpha 

waves 

Katada, Hasegawa, 

Ohira, Kumagai, 

Harashima, Ozaki, 

Suzuki 

2000 Cross-sectional: DS 

children and adults 

(n=265; range 8-55 

years), non-DS “mental 

retardation” children 

and adults (n=242; 7-58 

years), Healthy children 

and adults (n=239; 2-59 

years). Longitudinal 

(period between 8-9 

years): DS (n=28), non-

DS “mental 

retardation” (n=14) 

Recorded eyes-closed for 5-10 

mins (to obtain at least 3 mins 

artifact-free), from six 

midline-sagitally arranged 

locations equally spaced along 

the scalp 

3 second segments 

(n=20) were transformed 

to power spectra and 

averaged. Dominant 

frequency was decided 

from the peak of the 

mean spectrum. Analysis 

focused on frontal, 

central and occipital 

regions 

 Cross-sectional: In DS, alpha rhythm 

frequency lowered into 8 or 9 Hz in their 

30s. Most maintained 8Hz frequency 

level after age 35. Longitudinal: 

Lowering took place in various of years 

of age individually, but an early distinct 

decrease was commonly noticed 

Inter-hemispheric 

functional coupling of 

eyes-closed resting 

EEG rhythms in 

adolescents with 

Down syndrome 

Babiloni, Albertini, 

Onorati,Vecchio,Buffo, 

Sarà, Condoluci, Pistoi, 

Carducci, Rossini 

2009 38 DS adolescents 

(18.7yrs ± .67 SE, 20 

males), 17 age-

matched normal 

controls (19.1yrs ± .39 

SE). Additional analyses 

included data from 12 

Eyes-closed resting EEG, 9 

electrodes, 10/20 system, 

parents kept eyelids down if 

the participant could not, 5 

minute recording, 256 Hz 

sampling rate, 2-sec artifact 

free epochs underwent 

Power evaluated using 

FFT (Welch technique), 

interhemispheric 

directional EEG 

functional coupling 

evaluated using directed 

transfer function (DFT). 

IQ using Weschler 

Intelligence scale for 

children Revised. For 

DS-MCI used various 

criteria (i.e. ICD-10) 

to diagnose this 

Compared to controls DS had lower 

alpha1&2, beta1&2 and gamma power 

over larger regions but higher delta 

power in the frontal regions. Occipital 

EEG functional coupling: directionality in 

controls prevailed from right to left 

hemisphere. In DS directionality was 
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DS with mild-cognitive 

impairment (MCI) 

(mean age 41yrs, 8 

males) and 15 healthy 

controls (mean age 

41.8yrs, 9 males) 

spectral analysis  Standard bands including 

alpha1 (8-10.5 Hz) and 

alpha2 (10.5-13 Hz), 

beta1 and beta2 

opposite (left to right). There were no 

correlations of directionality with IQ in 

DS. Further analysis revealed DS had 

greater inter-hemispheric functional 

coupling in central and temporal 

regions, whereas controls had greatest 

in frontal and occipital regions. Control 

analyses: MCI-DS had higher right-to-

left inter-hemispheric directional 

functional coupling than old-controls 

Cortical sources of 

EEG rhythms are 

abnormal in down 

syndrome 

Babiloni C, Albertini G, 

Onorati P, Muratori C, 

Buffo P, Condoluci C, 

Sarà M, Pistoia F, 

Vecchio F, Rossini PM. 

2010 45 DS subjects (mean 

age 22.8 yrs, 25 male), 

45 age-matched 

cognitively normal 

subjects (mean age 

22.4 yrs, 25 male)  

5 mins eyes-closed resting 

EEG (parents kept eyelids 

down if the participant 

couldn’t), 19 electrodes, 

10/20 system, 256 Hz 

sampling rate, 2-sec artifact-

free epochs (30 or more) 

underwent spectral analysis 

(epochs with blink artifacts 

were “corrected”) 

Alpha 1 (8-10.5 Hz) and 

alpha 2 (10.5-13 Hz) 

bands both analysed. 

Cortical EEG sources 

estimated using LORETA 

(compared relative 

power current source 

densities at cortical 

voxels) to overcome 

head volume conductor 

abnormalities. Alpha 

frequency calculated in 

extended range (as in 

Klimesch, 1999). 

IQ: Weschler 

Intelligence scale for 

children Revised 

DS alpha frequency was 10.1 Hz ± .2 

SEM, control was 9.6 Hz ± .1 SEM. This 

difference was not statistically 

significant. EEG cortical sources of alpha 

and beta were lower in amp in DS than 

controls (central, parietal, occipital, 

temporal areas), higher amplitude for 

delta sources (occipital only) 

Cognitive impairment 

and EEG background 

activity in adults with 

Down syndrome: A 

topographic study 

Velikova, Magnani, 

Arcari, Falautano, 

Franceschi, Comi, 

Leocani 

2011 25 adults with DS 

(mean age 38 yrs, 

range 30 - 69 yrs, 6 

male), 25 age and 

gender matched 

controls (mean age 36 

5 mins eyes-closed resting 

EEG, 29 channel electrode 

cap, 10/20 system 

Artifact-free 2-sec 

epochs (at least 70 per 

subject) underwent FFT. 

Average absolute power 

for each channel was 

computed in 1-30 Hz 

Neuropsychological 

test battery (MMSE, 

Wechsler Adult 

Intelligence Scale, 

Attentive Matrices 

Test, Digit Span test, 

Alpha frequency was significantly lower 

in DS compared to controls. WAIS-total 

and MMSE correlated positively with 

alpha frequency in DS. WAIS and RBM 

were negatively correlated with 

occipital alpha power. Absolute power 
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yrs, range 28 - 65 yrs)  with 1Hz steps. Percent 

power was calculated as 

% value of a 1Hz 

segment. Alpha 

frequency was the freq 

with maximum power 

within the alpha band 

over occipital electrodes 

(O1 and O2). Absolute 

and relative power for 

traditional bands 

(alpha1&2 and beta1-3 

used) and absolute 

power of individually 

adjusted bands for theta 

and alpha 1-3. Also did 

source localisation using 

e/sLORETA 

Rivermead 

Behavioural 

Memory, Short story 

recall, Raven's 

Coloured 

Progrressive 

Matrices, Tolken 

test, Semantic verbal 

fluency, Geometric 

shape copy 

in fixed bands: Compared to controls DS 

had significantly higher absolute power 

and significantly increased CSD in theta, 

alpha1 and beta1. WAIS correlated 

negatively with CDSs in right frontal 

lobe and right PCC. RBM correlated 

negatively with CSD in right BA9. 

Negative correlation was found 

between absolute occipital power and 

cognitive test performance (using 1Hz 

bands). Absolute power in IAF-adjusted 

bands: maximum alpha power was in 

upper alpha band for control group and 

max in DS was in the lower alpha2 band. 

Significantly increased CDS in all 

individually adjusted bands was seen in 

DS compared to controls. WAIS 

correlated negatively with CSD in right 

BA9 (in theta band). Compared to 

controls DS had sig higher absolute 

power in theta and alpha bands. 

Relative power: Max value of alpha was 

found in alpha1 in DS and alpha2 in 

controls. Significant difference found 

between groups in alpha2 - decreased 

CSD in cingulate cortex in DS (no 

correlations though found between 

regions of decreased CSD in alpha2 and 

cognitive scores). Average value for 

relative alpha2 and its occipital values 
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correlated with cognitive scores 

(negative correlation with power at 7-

8Hz and positive correlation at 11-12Hz) 

Table 2.1 Summary of studies in literature review 

A summary of details provided by each identified paper within the literature review of this thesis that met criteria for inclusion (n=13; ordered by chronological year of 

publication). Many publications did not provide detailed descriptions of EEG protocols, analyses or results; this reflected in a lack of detail within this table for such 

studies. Where information was provided by authors it has been included.  
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2.4.2 Resting-state EEG characteristics associated with DS 

 

This section will discuss differences in EEG reported between adults with DS 

compared to TD control subjects (chronologically age-matched unless stated 

otherwise) and group differences within the population with DS (i.e. younger vs older 

adults). Power measures will first be discussed, followed by frequency measures, and 

finally any other EEG characteristics reported by the identified studies. All findings 

related to cognition and cognitive decline will be discussed in the following section 

(“2.4.3 Resting-state EEG characteristics associated with cognition in DS”). 

 

2.4.2.1 Power measures associated with DS 

 

Alpha power  

 

Individuals with DS compared to controls 

 

Differences in alpha power are commonly reported in individuals with DS compared to 

chronologically age-matched control subjects of the TD population. However studies 

report conflicting results, including decreased alpha power (Babiloni et al. 2009, 

Locatelli et al. 1996, Medaglini et al. 1997), increased alpha power (Partanen et al. 

1996), and no significant differences in alpha power (Politoff et al. 1996).  

 

It is possible that differences in alpha power between individuals with DS and 

individuals from the TD population may only become apparent with age. In line with 

this, two studies have reported a significant decrease in alpha power relative to TD 

controls in older adults with DS (aged 36 and over) that was not significant in younger 

adults (aged 20-35) (Locatelli et al. 1996; Medaglini et al. 1997). Age may therefore be 

a potential contributor to conflicting results between studies, however it has been 

previously noted these two studies are likely to be from the same sample, and 

therefore Medaglini et al. (1997) should not be considered a replication of this finding. 

 

Interestingly, some studies have split the alpha band into lower-alpha and upper-alpha 

(typically 8-10 Hz and 10-13 Hz respectively). These studies report an increase in 

lower-alpha power with a concurrent decreased upper-alpha power in adults with DS 

compared to TD controls (Ono 1993, Velikova et al. 2011). Therefore within the alpha 

band itself, power differences in opposing directions may exist between individuals with 

DS relative to TD controls. As such, differences relative to controls may cancel each 
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other out when overall power within the alpha band is examined. This may also 

therefore be a source of conflicting results between studies. 

 

Furthermore, Ono (1993) found topographical differences in alpha power for the 

different participant age groups investigated; the increase in lower-alpha power 

occurred over the parietal cortex for young adults with DS (aged 25-34) but over the 

occipital cortex for older adults with DS (aged 35-54). In contrast, decreases in upper-

alpha power were more widespread for both age groups. Topographical differences in 

alpha power may therefore exist across age groups for individuals with DS relative to 

TD controls, and may be an additional source of conflicting results between studies. 

 

Taken together, these studies suggest alpha atypicalities in DS may be common, but 

more research is needed to fully elucidate these differences. It is possible that 

individuals with DS have more lower-alpha activity and less upper-alpha activity 

compared to TD controls (i.e. slower alpha). Differences may become accentuated (or 

only appear) with increasing age, and may also differ in location across the scalp. 

Longitudinal studies are necessary to fully examine age-related changes in alpha 

power as other factors (e.g. cohort effect) may have influenced the cross-sectional 

results detailed here.  

 

Within DS subgroup analysis of alpha power 

 

Three of the identified studies have examined differences in alpha power between 

younger and older individuals with DS. Soininen et al. (1993) reported no significant 

differences in alpha power (defined as 7.6-13.9 Hz) over the temporo-occipital 

derivation between individuals with DS below age 40 (n=17) and those age 40 and 

over (n=10). Locatelli et al. (1996) also reported no significant differences in alpha 

power (defined as 8-11.9 Hz) across various regions of the scalp between younger 

(age 20-35 yrs; n=33) and older (age 36-55 yrs; n=12) individuals with DS. 

 

In contrast, Murata et al. (1994) reported an age-related power decrease in upper-

alpha (defined as 11-13 Hz) across diffuse areas when comparing individuals with DS 

in their 20s (n=15) to individuals in their 40s (n=8). It may be that age-related 

differences in alpha power were apparent to Murata et al. due to the use of several 

smaller alpha frequency bands (four in total), whereas the two studies reporting no 

significant findings each used one large alpha band. Additionally, Locatelli et al. only 

examined alpha activity up to 11.9 Hz, and therefore may not have used a high enough 

cut-off to observe significant upper-alpha differences. Overall findings of Murata et al. 
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(1994) are in accordance with findings comparing individuals with DS to TD controls in 

the previous section, where it was suggested that reduced upper-alpha activity 

compared to TD controls may become accentuated with increasing age. However, as 

this within-DS finding is from single cross-sectional study, additional research is 

necessary to investigate this further.  

 

Power measures in other bands 

 

Individuals with DS compared to controls 

 

Increases in power-related measures in all other power bands (delta, theta, beta and 

gamma) are commonly reported for adults with DS compared to chronologically age-

matched TD control subjects (Babiloni et al. 2009, Babiloni et al. 2010, Locatelli et al. 

1996, Medaglini et al. 1997, Murata et al. 1994, Ono 1993, Partanen et al. 1996, 

Politoff et al. 1996, Velikova et al. 2011). However, for beta and gamma power, 

Babiloni et al. (2009, 2010) reported reduced power relative to TD controls. Reasons 

for this inconsistency are unclear but it is worth reiterating that Babiloni et al. (2009, 

2010) held down the eyelids of participants who were unable to close their eyes 

themselves during recording. In this case increased sensory stimulation could influence 

beta power (beta activity has been linked to somatosensory processes, as mentioned 

previously), and gamma activity has been linked to worry (Oathes et al., 2008), which 

could have been higher in participants undergoing this protocol.  

 

Overall for slow wave frequencies (i.e. delta and theta), findings from topographical 

analyses report individuals with DS may show increases in delta power, particularly in 

frontal and centro-anterior regions (Babiloni et al. 2009, Locatelli et al. 1996, Medaglini 

et al. 1997), and increases in theta power, particularly in centro-posterior regions 

(Locatelli et al. 1996, Medaglini et al. 1997) relative to TD controls. Interestingly, 

increases in lower-theta (4-6 Hz) power may be widespread in young adulthood (age 

15-24) but become localized, in particular over parietal regions, by mid-adulthood (age 

35-44) (Ono 1993). This further emphasises the need to consider age-related and 

topographical differences in EEG power between individuals with DS relative to TD 

controls. 

 

Overall for faster frequencies (i.e. beta and gamma), findings from topographical 

analyses report beta power may be particularly increased in parieto-temporal regions in 

individuals with DS relative to TD controls (Locatelli et al. 1996, Medaglini et al. 1997). 

When beta is subdivided into lower and upper beta (13-20 Hz and 20-30 Hz 
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respectively) and examined across age-groups, in young adulthood (age 15-24) 

increases in lower-beta power may be widespread across the scalp while increases in 

upper-beta power are confined to frontal regions. Once the brain is fully developed in 

adults aged 25-34, the increases in lower-beta power may become confined to frontal 

and central regions while increases in upper-beta power become more widespread 

(Ono 1993). Although it has been suggested that such age-related changes may 

correspond to brain maturation, these findings are based upon a single cross-sectional 

study (Ono et al., 1993), and so definitive conclusions cannot be made; longitudinal 

designs are required to enable age-related changes to be accurately investigated in 

this population. 

 

Overall these studies suggest that individuals with DS may have more power in both 

slow (delta and theta) and fast (beta and gamma) frequency bands compared to TD 

control subjects, with the extent and location of such differences likely to vary with age 

(i.e. upper-beta oscillations may become more widespread while lower-theta activity 

may become more localised). 

 

Within DS subgroup analysis  

 

The above findings pertain to individuals with DS compared to chronologically age-

matched TD control subjects. As previously mentioned, three of the studies identified in 

this literature review have examined power differences between individuals with DS. 

Soininen et al. (1993) reported no significant differences in EEG power in any 

frequency bands between individuals with DS below age 40 and those age 40 and 

over. In contrast, Murata et al. (1994) reported an age-related increase in theta power 

with a concurrent power decrease in upper-alpha and lower-beta activity. Locatelli et al. 

(1996) also reported an significant age-related increase in theta power. 

 

A possible reason for inconsistencies between these three studies is Soininen et al. 

(1993) only examined temporo-occipital electrodes whereas the other two studies 

examined activity across the scalp. This is particularly important as Murata et al. (1994) 

reported upper-theta power was increased only in frontal and parietal regions; such 

differences would therefore not have been apparent for Soininen et al. (1993). 

 

Taken together these findings suggest that in DS an age-related increase in slow-wave 

(theta) and decrease in medium-fast waves (upper-alpha to lower-beta range) may 

occur, which is indicative of an age-related slowing of the EEG spectrum.  
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2.4.2.2 Frequency measures associated with DS 

 

Individuals with DS compared to controls 

 

Studies examining differences in alpha peak frequency between individuals with DS 

compared to TD controls are inconsistent. Some studies have reported a slower 

frequency in DS (Ono et al. 1992; Soininen et al. 1993; Murata et al. 1994; Locatelli et 

al. 1996; Katada et al., 2000; Velikova et al. 2011) whereas others report no significant 

difference (Politoff et al. 1996; Babiloni et al. 2010). It should be noted, however, that 

Politoff et al. (1996) measured peak frequency across a 2-20 Hz range and Babiloni et 

al. (2010) had eyelids of participants held down; such differences make comparison to 

studies adopting more conventional methodology problematic. 

 

Studies reporting a significant difference in alpha peak frequency typically report this 

value as lying below 9 Hz in individuals with DS. In contrast to this, mean alpha peak 

frequency is considered to be around 10 Hz in the TD population (Klimesch, 2012). 

Furthermore data from these studies indicate that some individuals with DS have an 

alpha peak that falls within what is typically considered to be the theta range (i.e. 4-8 

Hz) (e.g. Soininen et al., 1993; mean alpha peak frequency 8.5 ± 2.3 Hz). Extended 

alpha approaches may therefore be appropriate for the analysis of peak characteristics 

in individuals with DS.   

 

At present it is unclear if the overall reported slower alpha peak in individuals with DS 

compared to TD controls discussed here is found throughout the lifespan or whether 

instead it is an age-related change. Perhaps the most detailed analysis of this issue is 

provided by the large cross-sectional (and longitudinal) study by Katada et al. (2000), 

in which 265 individuals with DS ranging from 8 to 55 yrs old were compared to 239 

chronologically age-matched TD controls. The longitudinal arm of the study is 

discussed in the section below. From the cross-sectional arm of the study, Katada et al. 

reported there was no difference in alpha peak frequency in individuals with DS before 

age 20 compared to TD controls, however a slower alpha peak in individuals with DS 

became apparent after this age. Overall Katada et al. reported slowing of the alpha 

peak occurred earlier in individuals with DS compared to TD controls, and slowing in 

DS was also more prominent (i.e. substantial slowing in the thirties was noted in 

individuals with DS but did not occur until the fifties in TD controls). These findings 

suggest slower alpha peak frequency in individuals with DS is not present throughout 

the lifespan but may instead be a result of age-related changes.  
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Within DS subgroup analyses of EEG frequency  

 

In accordance with findings comparing individuals with DS to TD controls, studies 

analysing the relationship between alpha peak frequency and ageing within adults with 

in DS consistently report that slowing increases with age (Katada et al. 2000; Murata et 

al. 1994; Ono et al. 1992, 1993; Soininen et al. 1993). However, one study failed to find 

a significant relationship between alpha peak frequency and age (Locatelli et al., 1996). 

This was a cross-sectional study and the authors noted the lack of significant findings 

was possibly due to high inter-individual variability in this measure. In contrast, Katada 

et al. (2000) employed a longitudinal design, with change in frequency within 

individuals monitored over time (around 8 years) and shown to decrease substantially.  

 

The age at which slowing is reported to take place varies substantially between 

studies, indicating the individual age at which this takes place may be highly variable. It 

is also possible methodological differences between studies – in terms of age brackets 

used in cross-sectional studies – contribute to differences in the estimated age of 

slowing. For instance the longitudinal study by Katada et al. (2000) reported this 

occurred substantially in individuals in their thirties (n=28). In contrast, cross-sectional 

studies give broader estimates, including between 20-60 years (n=31; Soininen et al. 

1993) and between 20-40 years (n=32; Murata et al. 1994). 

 

Due to large variability in these estimates it is difficult to determine whether slowing is 

related to brain maturation (as indicated by early changes), ageing (as indicated by 

later changes), or whether slowing occurs throughout adulthood in DS. Large 

longitudinal studies are necessary to elucidate this further. Topographical differences 

are also important to consider, as Katada et al. (2000) examined slowing in several 

different bran regions (frontal, central and occipital), and observed slowing slightly 

earlier in frontal and central areas than in occipital regions.  

 

2.4.2.3 Other resting-state EEG characteristics associated with DS 

 

In the studies identified by this review, two further EEG characteristics have been 

investigated in individuals with DS: eyes-open/eyes-closed ratio (Partanen et al., 1996) 

and inter-hemispheric connectivity (Babiloni et al., 2009). 

 

As previously mentioned in section “2.2. Resting-state EEG”, alpha activity is 

suppressed when the eyes are open compared to when the eyes are closed. Partanen 

et al. (1996) examined this process in individuals with DS by comparing EO and EC 
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EEG recordings.  Partanen et al. (1996) reported the ratio of alpha activity between the 

two conditions was significantly lower in individuals with DS (n=32) compared to 

chronologically age-matched TD controls (n=31). This indicates there is less of a 

change in alpha activity in response to eye-opening in individuals with DS compared to 

TD controls. Partanen et al. also examined this ratio within individuals with DS and 

reported it was inversely correlated with age (M = 35 yrs; SD = 10 yrs; range 21-60 

yrs). As the ratio of alpha activity between these two conditions is thought to reflect 

level of resting-state arousal (Barry & De Blasio, 2017), reductions in this measure in 

individuals with DS is suggestive of an altered state of alertness, that additionally may 

decrease further with age (although longitudinal studies are necessary to confirm this).  

 

Finally, Babiloni et al. (2009) examined inter-hemispheric connectivity (using a method 

for examining the direction of information flux between hemispheres) and found while 

this was greatest in frontal and occipital regions in chronologically age-matched TD 

control subjects (n=17), in individuals with DS (n=38) it was greatest in central and 

temporal regions. Furthermore, when the direction of functional coupling was 

examined, this prevailed from right-to-left hemisphere in controls and from and left-to-

right in individuals with DS. At present the implications of this are unclear. Overall these 

findings are indicative of atypical connectivity patterns in individuals with DS, however 

as this is a single study more research is needed to replicate these findings.  

 

2.4.2.4 Summary of resting-state EEG characteristics associated with DS 

 

Research suggests there are resting-state characteristics across the EEG spectrum 

that are associated with DS. Overall it appears that DS is associated with increased 

power in both slow and fast frequencies, however upper-alpha activity (around 10-13 

Hz) may be decreased. In line with this, analyses of alpha frequency indicate alpha 

rhythms are slower in individuals with DS. Atypical connectivity patterns and altered 

EO/EC ratio may also be associated with DS, but further research is necessary to 

investigate this. 

 

Regarding age related changes, studies comparing individuals with DS to TD controls 

and studies comparing EEG activity between younger and older adults with DS in 

general indicate the same findings. Multiple measures (including both power and 

frequency) are indicative of age-related slowing of the EEG spectrum (particularly in 

the alpha band) in individuals with DS. Such age-related slowing is associated with a 

high degree of inter-individual variability in terms of age of onset, but is likely to occur 

substantially in individuals’ thirties. Interestingly this is around the time increasing AD 
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neuropathology is known to occur in DS (see section “1.2 Neurobiological features of 

Down syndrome”).  

 

These findings are in accordance with the hypothesis that a “slow wave brain” is a 

major characteristic of DS (Babiloni et al., 2009), and suggest this particular 

characteristic may become accentuated with age and/or increasing neuropathology.  

 

2.4.3 Resting-state EEG characteristics associated with cognition in DS 

 

This section discusses studies investigating correlations between resting-state EEG 

characteristics and cognition in individuals with DS. EEG characteristics associated 

with cognitive ability will first be discussed, followed by characteristics that have been 

associated with cognitive decline.  

 

2.4.3.1 Resting-state EEG characteristics associated with cognitive ability 

 

Alpha peak frequency 

 

Five of the studies identified investigated the relationship between alpha peak 

frequency and cognition in individuals with DS. Three of these studies report a 

significant positive correlation between alpha peak frequency and ability (Soininen et 

al.,1993; Locatelli et al.,1996; Velikova et al., 2011), and two report non-significant 

findings (Ono et al., 1993; Politoff et al., 1996). 

 

Findings from studies controlling for decline 

 

Only two of these five studies identified (Locatelli et al., 1996; Politoff et al., 1996) 

ensured that participants did not have evidence of significant cognitive decline or 

dementia (as determined by clinical assessment). It can therefore be concluded that 

only the findings of these two studies are not confounded by significant detectable 

decline. Of these two studies, Locatelli et al. (1996) reported a significant positive 

correlation of alpha peak frequency (8-12 Hz) across a range of cognitive domains, 

including abstract reasoning abilities (measured by Raven Colour Matrices), memory 

(Rivermean Behavioural Memory test) and language comprehension (Tolken test 

scores). This was a relatively large study (n=45; age range 20-56; mean age 30.6 yrs). 

In contrast, the relatively small study by Politoff et al. (n=13) did not find a significant 

relationship between peak frequency and cognitive ability.  
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In this study (Politoff et al., 1996), the Picture Absurdities Test (PAT) and the Mini-

Mental State Examination (MMSE) score were used to assess cognitive ability. The 

PAT is a non-verbal measure of intelligence. The MMSE is a questionnaire designed to 

test for the presence of cognitive impairment within in the TD population, which is 

questionable as a tool for measuring cognitive ability in individuals with DS. 

Furthermore Politoff et al. (1996) focused their recruitment on “highly functional 

subjects”. Consequently this study is likely to have a smaller range of cognitive ability 

than Locatelli et al. (1996). This may have reduced the ability of the study to link 

cognitive ability with EEG measures. Finally it is worth noting that Politoff et al. (1996) 

measured peak frequency across the 2-20 Hz window (as opposed to within the alpha 

frequency band) which is an additional potential source of inconsistency. As discussed 

in the previous section, alpha peak frequency did not correlate with age in either of 

these two studies. 

 

Findings from studies not controlling for decline 

 

Of the three studies not controlling for the possible presence of significant cognitive 

decline or dementia, two of these studies reported a significant positive correlation of 

alpha peak frequency and cognitive ability (Soininen et al., 1993; Velikova et al., 2011), 

and one reported no significant correlation (Ono et al., 1993). However, Ono et al. 

(1993) can be criticised on the grounds that the only measure of cognitive ability used 

was a motor function subscale of a rating tool for dementia within the TD population 

(Gottfries- Bråne-Steen (GBS) Scale; Gottfries et al., 1982). This was used by the 

authors to provide an estimate of Activities of Daily Life. The choice of this tool to 

measure cognitive ability in individuals with DS is questionable. Although this is a 

relatively large study (n=40; mean age 30.3 yrs; range 16-54 yrs), results are not 

comparable with studies using more appropriate tests of cognitive ability. As discussed 

in the previous section, Soininen et al. (1993) and Ono et al. (1993) reported a 

significant negative correlation between alpha peak frequency and age. Velikova et al. 

(2011) did not analyse the relationship between alpha peak frequency and age within 

adults with DS.  

 

The two studies reporting a significant positive correlation between alpha peak 

frequency and cognitive ability (that did not control for decline) reported this EEG 

measure was significantly positively correlated with a range of cognitive measures. 

This included general cognitive ability (measured by WAIS-total; see previous section 
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“1.3.3 Cognitive testing in DS”; Velikova et al., 2011), visual and speech functions, 

praxic functions and list learning (Soininen et al., 1993). 

 

Alpha peak frequency summary 

 

Together these studies are indicative of a positive relationship between alpha peak 

frequency and cognitive ability in individuals with DS, however due to potential issues 

controlling for cognitive decline further research is warranted. At present only one out 

of two studies controlling for cognitive decline has reported a significant association 

with alpha peak frequency and cognitive ability. Age is also a potential confounder in 

the relationship between alpha peak frequency and cognitive ability. Two of the five 

studies identified here reported a significant negative correlation between age and 

alpha peak frequency but did not attempt to control for this relationship in the analysis 

between alpha peak frequency and cognitive tests scores. 

 

Power measures  

 

Three of the identified studies in this review have examined the relationship between 

power and cognitive ability. Two attempted to control for cognitive decline and one did 

not. None of the three studies attempted to control for any potentially confounding 

influence of age on the relationship between power and cognitive ability.  

 

Findings from studies controlling for decline 

 

Two of these studies controlled for the presence of significant cognitive decline by 

either excluding individuals with evidence of decline from the study (Politoff et al., 

1996) or by analysing these individuals separately to individuals without detectable 

decline (Medaglini et al., 1997) using clinical assessment criteria.  Politoff et al. (n=13) 

reported a significant negative correlation between power at 4.5 (theta) and 8.8 Hz 

(lower-alpha) frequency bins and cognitive test ability (using the PAT). This study, 

however, is resticted to higher functioning participants and may therefore be not 

generalisable across those with DS.  

 

Medaglini et al. (1997) reported that increased slow wave power (delta and theta) and 

reduced alpha power (8-12 Hz) was accompanied by attention and memory deficits 

(Cancellation Task and Rivermead Behavioural Memory Task respectively). This 

relationship was found in participants with and without dementia, but was reported as 
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being more apparent in those with dementia (n= 4) than without (n=41) (discussed in 

more detail in the section on cognitive decline below). The findings of this study 

indicate a negative correlation between slow wave power and cognitive test scores, 

similar to the findings of Politoff et al. (1996). It appears that findings relating to alpha 

activity, however, are inconsistent between these two studies. Differences in cognitive 

ability between studies and also methodological differences may be potential sources 

of this. For example, Medaglini et al. (1997) measured alpha power across 8-12 Hz 

whereas Politoff et al. (1996) used frequency bins of 0.4 Hz. 

 

Findings from studies not controlling for decline 

 

Although Velikova et al. (2011; n=25) did not attempt to control for the presence of 

cognitive decline or dementia, this study also reported a negative correlation between 

cognitive scores (measured using WAIS and RBM) and theta power (7-8 Hz frequency 

bin).  

 

Power measures summary 

 

Together the findings of studies analysing the relationship between power and 

cognitive ability in DS are in accordance with alpha frequency analyses in the above 

section, which associated slower activity with worse cognitive performance. It is of 

particular interest that slowing of the EEG – indicated as a characteristic feature of DS 

by studies discussed in section “2.4.2.1 Power measures associated with DS” – is 

associated with lower cognitive ability. 

 

However, only two of the studies identified here attempted to control for the potential 

presence of cognitive decline, and none attempted to control for any potentially 

confounding influence of age. Furthermore, methodological differences between 

studies make comparison problematic. More research is required to fully elucidate the 

relationship between EEG power measures and cognitive ability in individuals with DS.  

 

Eyes open/ eyes closed (EO/EC) alpha ratio 

 

A further investigated EEG characteristic in relation to cognitive ability in individuals 

with DS is the EO/EC alpha ratio, examined by one study identified in this review. 

Partanen et al. (1996) reported this ratio was significantly positively associated with all 

neuropsychological measures investigated (including automatic speech, understanding 
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of speech, word fluency, visual functions, praxis functions, and list learning). It was 

discussed in section “2.4.2.3 Other resting-state EEG characteristics associated with 

DS” that this ratio is reduced in individuals with DS (n=32) relative to chronologically 

age-matched TD controls (Partanen et al., 1996). It therefore appears that individuals 

with DS with an EO/EC ratio closer to TD-levels show better performance on a range of 

cognitive tasks. This adds further evidence to the association between atypical alpha 

activity and impaired cognitive ability in DS. However, this study did not control for any 

potentially confounding influence of cognitive decline or age. This is particularly 

important because the EO/EC alpha ratio was shown to further reduce with age in 

individuals with DS in this study.  

 

2.4.3.2 Resting-state EEG characteristics associated with cognitive decline in DS 

 

Two of the identified studies in this review have examined the relationship between 

resting-state EEG characteristics and cognitive decline (or diagnosis of dementia) in 

individuals with DS. It has been previously noted, however, these studies are by the 

same group published one year apart, and appear to report the same participant 

demographics and EEG methodology – indicating that participants may be of the same 

sample (Locatelli et al., 1996; Medaglini et al., 1997). 

 

These studies both report a significant decrease in alpha power (8-12 Hz) with a 

concurrent increase in the power of theta (4-8 Hz) and delta (0.4-4 Hz) in individuals 

with DS with dementia (n=4; defined according to clinical assessment criteria) 

compared to those without dementia (n=41). This a pattern suggestive of EEG slowing, 

however the sample size of individuals with dementia is particularly small.  

 

Finally, Devinsky et al. (1990) was excluded from this overall literature review of EEG 

in DS on the grounds that EEG analysis was restricted to clinical interpretation, 

however results of Positron Emission Tomography (PET) and Computerised 

Tomography (CT) scans utilised by this study are relevant to this particular section and 

therefore are worth mentioning. The results of these scans suggested that, compared 

to chronologically age-matched TD controls, younger adults with DS (aged 19-37) with 

atypical alpha activity (upon clinical EEG interpretation) had specific areas of increased 

cerebral glucose metabolism, whereas older adults with DS (aged 42-66) with atypical 

alpha activity had notably reduced overall cerebral glucose utilisation and parietal 

hypometabolism. The results of cognitive tests revealed that younger adults with 

atypical alpha activity did not have reduced cognitive ability when compared to younger 
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adults with DS with typical alpha activity, but in older adults atypical alpha activity 

corresponded to a clinical diagnosis of dementia (n=4). 

 

This study is important in demonstrating that neurobiological mechanisms underlying 

atypical alpha activity may vary with age – in younger adults atypical alpha activity did 

not correspond to reduced cognitive ability but cerebral metabolic activity was 

increased in specific areas, whereas in older adults alpha atypicalities corresponded to 

decline in both cognitive and metabolic function. Devinsky et al. (1990) suggest that the 

mechanisms underlying atypical alpha activity in DS may be AD-related 

neuropathological changes in older adults and in younger adults may be related to 

cerebral immaturity. However, considering the small sample (n=28) further studies are 

needed to assess this hypothesis further. 

 

2.4.4 Summary and implications 

 

Research investigating resting-state activity in DS spans many decades and so 

methodological approaches vary considerably, making direct comparisons between 

studies often problematic. Lack of detailed methodological reporting (e.g. whether 

paradigms were EO or EC) is also an important issue.  

 

It appears that differences between individuals with DS and TD controls exist across 

the EEG spectrum but are particularly apparent in the alpha band, where both power 

and frequency measures suggest there is an overall slowing of these oscillations in DS 

and that this becomes further accentuated with age. The age at which substantial 

slowing takes place appears highly variable but is likely to occur alongside, if not 

immediately preceding, neuropathological changes associated with AD. 

 

Interestingly, evidence suggests alpha slowing in individuals with DS may be a 

characteristic that is particularly associated with cognitive ability (with markers 

indicative of slowing associated with worse performance), and may also be a potential 

marker of decline in this population. At present it is unclear whether associations 

between slowing and ability are a consequence of issues controlling for age and 

decline within studies, or whether such markers of slowing are in fact biomarkers of 

ability that are additionally sensitive to AD-related changes. 

 

Methodological implications of this review that are relevant to this thesis include not to 

consider classical EEG frequency bands as set parameters, with analysis appearing to 

benefit from split-band (e.g. lower-alpha and upper-alpha) and combined-band (e.g. 
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theta-alpha) approaches in this population. Examining the topographical distribution of 

signals also appears to yield subtle differences that may not otherwise be apparent. 

Furthermore obtaining both EO and EC data from participants allows the investigation 

of differences between these conditions which may prove useful. It also is vital that 

studies examining the relationship between EEG characteristics and ability attempt to 

control for the potentially confounding influences of age and presence of dementia 

and/or cognitive decline.  

 

2.5 Thesis aims and hypotheses 

 

2.5.1 Aims 

 

The overarching aim of this thesis is to identify resting-state EEG measures (obtained 

from EO and EC paradigms) that are predictive of general cognitive ability in adults 

with DS. The influence of age on resting-state EEG measures will also be identified, 

and it will be determined whether age is additionally influencing any relationships 

between EEG measures and general cognitive ability. EEG measures to be explored 

include power, frequency and EO/EC ratio (i.e. reactivity). In addition to this, cortical 

circuitry underlying EEG oscillations of interest (i.e. those predictive of general 

cognitive ability) will be inferred using dynamic causal modelling (DCM), with the aim of 

offering potential mechanistic insights underlying these relationships. 

 

Elucidating factors underlying individual differences in general cognitive ability in adults 

with DS is important for furthering our understanding of cognition in DS. This is not only 

important in its own right (e.g. to identify potential targets for cognitive enhancement in 

individuals with DS and/or biomarkers for clinical trials), but is also a first necessary 

step in order to identify and understand later changes associated with cognitive decline 

in this population.  

 

In particular, enhancing cognitive ability in individuals with DS may be achievable 

through understanding factors underlying individual differences in cognition, and from 

this identifying potential targets for cognitive enhancement. Underlying this premise is 

that abilities vary greatly between individuals with DS, despite all individuals having an 

extra copy of chromosome 21. For example, some individuals with DS have IQ above 

what is considered an ID (IQ > 70). It is therefore possible that a level of cognitive 

functioning close to TD levels can occur in the presence of an additional chromosome 

21, while others are much more severely affected.  



 64 

 

There are four primary aims of the thesis, which correspond to four experimental 

chapters. Additional secondary aims are detailed within each chapter. The four primary 

aims of this thesis are: 

 

i) To investigate the feasibility and generalisability of EO and EC resting-state EEG 

recordings in adults with DS (chapter 4); 

ii) To identify differences in EC resting-state EEG activity between adults with DS 

(with no evidence of cognitive decline or diagnosis of dementia) and TD age- and 

sex- matched control subjects (chapter 5); 

iii) To investigate how EEG spectral measures obtained during EO and EC resting-

state recordings are related to age and general cognitive ability in adults with DS 

(with no evidence of cognitive decline or diagnosis of dementia) (chapter 6); 

iv) To investigate potential cortical circuitry underlying EEG oscillations of interest 

(identified in chapter 5) using DCM (chapter 7) 

 

2.5.2 Hypotheses 

 

The following hypotheses will be tested, corresponding to the primary aims detailed 

above: 

 

i) Individuals with DS will have less power in the alpha band but more power in other 

EEG bands compared to TD age- and sex- matched control subjects; 

ii) Measures indicative of EEG slowing and reduced reactivity will be associated with 

increasing age and lower general cognitive ability. Significant associations with 

general cognitive ability are expected for EC measures only; 

iii) Cortical circuitry underlying EEG oscillations of interest in adults with DS, when 

modelled using DCM, will show an inverse relationship between inhibition and 

general cognitive ability. 
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Chapter 3 General Methods 

 

3.1 Overall study design 

 

The study is nested within a larger project investigating cognitive abilities and cognitive 

decline in a large cohort of adults with DS. This larger project is one stream of a 

multidisciplinary consortium project called the London Down Syndrome Consortium 

(LonDownS) focused on variability in the AD phenotype in adults with DS. Some 

methodological decisions were undertaken in the wider context of this multidisciplinary 

group. For example, in order to align these adult experiments with infant protocols it 

was necessary to include an EO resting-state recording paradigm during which 

participants were shown a cartoon.  

 

The study reported in this thesis has a cross-sectional design which involved 

participants taking part in two separate experimental sessions. The first session 

consisted of a cognitive assessment (LonDownS cognitive test battery; Startin et al., 

2016; see appendix) which took place either in the participant’s own home or at a 

suitable location of their choosing (e.g. local day centre). The second session 

consisted of the EEG recording session at the Institute of Child Health (ICH) in London. 

Efforts were made to keep the number of days between sessions to a minimum, 

however a large degree of flexibility was necessary in order to achieve maximum 

participation. The length of time between sessions was kept to a minimum for older 

adults (aged 36 years and over) where possible (n = 36, mean = 91.17 days (61.44 

SD), median = 70.00, range 0 - 265 days), as cognitive decline between sessions was 

more likely. A greater period between sessions was allowed for younger adults (aged 

16-35 years) to maximise recruitment (n = 52, mean = 138.63 days (126.29 SD), 

median = 99.50, range 0 - 716 days), as cognitive decline between studies was not 

expected. 

 

3.2 Ethical considerations 

 

Ethical approval was obtained for the study from the North Wales West Research 

Ethics Committee (13/WA/0194). Where individuals had capacity to consent for 

themselves written informed consent was obtained. Where individuals did not have 

capacity to consent for themselves a consultee was appointed and asked to sign a 

form to indicate their decision regarding the individuals’ inclusion based on their 
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knowledge of the individual and his/her wishes, in accordance with the UK Mental 

Capacity Act 2005. All participant information related to the study (including information 

sheets and consent forms) was written in easy-read format (see appendix). This was in 

order to support individuals to make their own decision in accordance with the UK 

Mental Capacity Act 2005. 

 

3.3 Participant recruitment 

 

3.3.1 Cognitive assessment 

 

Participants were recruited for session 1 (LonDownS cognitive assessment) across 

England and Wales (focusing on the Greater London area and South East England) via 

local care homes, DS support groups and existing participant databases. We also 

established a network of National Health Service (NHS) Trust sites to identify and 

approach potential participants. Participants were given a gift voucher as 

compensation for their time and all travel expenses were reimbursed. 

 

To be included in the study participants were required to be aged 16 and over and 

have a clinical diagnosis of DS (n=315). This was confirmed genetically using saliva or 

blood samples. Participants were excluded where genetic testing revealed no 

additional chromosome 21, mosaicism or translocation (n=2). Participants with a 

clinical diagnosis of dementia were included (n=51). Participants with an acute physical 

or mental health condition were, however, excluded (although when such participants 

recovered they regained eligibility for the study). Participants had the right to withdraw 

and one individual did so after beginning the assessment.  

 

The following is an explicit list of inclusion criteria for the cognitive assessment stage of 

the study: 

 

 Participant has a clinical diagnosis of DS 

 Participant is aged 16 and over 

 Participant does not have an acute physical or mental health condition 

 

 

3.3.2 EEG assessment 
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Participants for session 2 (EEG assessment) were recruited from the LonDownS 

participant pool of adults (detailed above). Individuals from the LonDownS database 

who were within a day’s return travelling distance of London were invited to take part. 

Individuals were only invited if it was felt they would be suitable for EEG in terms of 

being able to tolerate wearing an EEG cap for up to an hour. This was based on 

discussions with participants, parents and/or carers. Participants with a clinical 

diagnosis of dementia were included at this stage but were later excluded for specific 

EEG analyses (Chapters 5, 6 and 7). Further exclusion criteria was also applied for 

specific analyses (detailed within each chapter). 

 

The following is an explicit list of inclusion criteria for the EEG assessment stage of the 

study: 

 

 Participant has taken part in session 1 (cognitive testing session) 

 Participant does not have an acute physical or mental health condition 

 Participant lives within a day’s return travelling distance of London 

 Participant may to tolerate wearing an EEG cap (based on discussions with 

participants, parents and/or carers) 

 participants had adequate hearing and vision (assessed during the initial 

cognitive session) 

 

3.4 Cognitive assessment 

 

Cognitive testing consisted of the LonDownS cognitive test battery (Startin et al., 2016; 

see appendix). This included both cognitive tests and informant questionnaires to 

assess general abilities, memory, executive function, and motor coordination abilities in 

adults with DS. This thesis is concerned only with general cognitive ability; tests of 

specific cognitive abilities are not analysed. 

 

All cognitive tests followed an initial assessment of vision (Kay vision test; Kay, 1983) 

and hearing (Whisper hearing test; Prescott et al., 1999). The Kay vision test requires 

participants to match a series of images (presented one at a time in decreasing order 

of size at a distance of 3m) to the correct image out of eight possible options from a 

card in front of them. The Whisper test requires participants to point to the correct 

image out of eight possible images from a card in front of them when the name of an 

image is said at varying volumes from a distance of 50cm behind their ears. 
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Demographic information (e.g. years in education, accommodation type) and a detailed 

medical history (including whether the individual had a clinical diagnosis of dementia) 

was also obtained during this session. In addition to this, the Cambridge Examination 

for Mental Disorders of Older People with Down's Syndrome and Others with 

Intellectual Disabilities (CAMDEX-DS; discussed in section 1.3.3 Cognitive testing in 

DS) was obtained, which was used to determine whether an individual was showing 

any signs of cognitive decline. This was defined as decline on any one of the nine 

domains measured within the CAMDEX-DS (everyday skills, memory and orientation, 

general cognitive functioning, language, perception, praxis, executive functions, 

personality and behaviour, and self-care). 

 

The Kaufmann’s Brief Intelligence Test (KBIT-2) raw test score is the measure chosen 

from this battery for the purpose of this study. This was used to provide an estimate of 

general cognitive ability. Detailed discussion of the KBIT-2 (Kaufman & Kaufman, 

2004) and its use as a tool in people with DS is discussed in section 1.3.3 Cognitive 

testing in DS. The KBIT-2 consists of three subtests that assess general cognitive 

abilities through questions relating to verbal knowledge, pattern completion and riddle 

completion. Raw scores were used due to a high number of participants at floor-level 

when scores are converted to age-adjusted IQ scores (i.e. an IQ of 40).  

 

Participants were excluded from the study if they started but did not complete the KBIT-

2, however where only the final KBIT-2 subtest (riddles) was missing due to non-

completion, this data was generated based on the relationship between riddles and 

verbal knowledge subtests. This relationship was calculated using data from 

participants who completed both subtests. This technique is a form of multiple 

imputation, which is generally thought to provide the most accurate estimates of ability 

for continuous data (Finch, 2008). The equation for this relationship was: riddles score 

= 0.2 + (0.65 x verbal knowledge score). Participants who did not complete the KBIT-2 

because they failed to understand the test instructions were given a score of zero. 

 

 

3.5 Resting-state EEG paradigms 

 

Two independent resting-state paradigms (EO and EC) were administered in a 

counterbalanced order between participants. The counterbalanced order was 

determined by participant number (previously assigned within the cognitive 

assessment), with even numbered participants completing the EO paradigm first and 

odd numbered participants completing the EC paradigm first. These resting-state 
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paradigms were carried out within a larger battery of EEG tests which also included an 

auditory-oddball ERP paradigm, an old-new object memory ERP paradigm, and a 

language-oddball ERP paradigm. This thesis is concerned only with resting-state 

activity; ERP paradigms are not analysed.  Paradigms were programmed using E-

Prime software.  

 

The EO resting-state EEG paradigm consisted of continuous recording for 5.5 minutes 

while participants were seated 1m from an 28cm by 17.5cm LCD monitor displaying a 

muted cartoon clip (21cm x 16cm) of Disney’s Fantasia, taken from the Nutcracker 

Suite section (viewing angle 16 degrees). A cartoon clip was chosen as opposed to a 

fixation-cross in order to improve participant compliance and also to improve alignment 

with infant resting-state protocols which included the viewing of a cartoon. The chosen 

clip showed a variety of dances with fairies, flowers, mushrooms and fish. The 

particular clip was chosen as it was visually interesting, did not have a strong plot or 

identifiable characters, and would be suitable for adults of a range of ages. Participants 

were instructed to remain quiet, sit still and watch the cartoon. During recording 

participants were continuously observed. Verbal prompts were used when necessary to 

maintain fixation and prevent movement and/or speech.  

 

The EC resting-state paradigm consisted of continuous recording for 5.5 minutes. 

Participants were instructed to remain quiet, sit still and keep their eyes closed. Verbal 

prompts were used when necessary to prevent movement and/or speech or when it 

seemed apparent participants were falling asleep. Due to poor compliance with this 

protocol (e.g. forgetting to keep eyes closed, falling asleep) an amendment was made 

after 18 participants had been seen. The amendment consisted of splitting the 

recording into 11 blocks (30 seconds each) with a break in-between each. The break 

was used to remind participants of the instructions and also minimise the likelihood of 

sleep.  

 

3.6 EEG data acquisition 

 

Continuous EEG was recorded using appropriately sized EGI hydrocel high density 

sensor nets (containing 128 channel silver-silver chloride electrodes; see Figure 3.1). 

Electrodes were evenly distributed across the scalp, from nasion to inion and from left 

to right mastoids (although due to individual scalp differences electrode positions 

varied slightly between participants). Electrodes above and below each eye and beside 

the outer canthus of each eye recorded vertical (VEOG) and horizontal (HEOG) 

electro-oculogram respectively. Electrode impedances were maintained below 50 kΩ 
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during recording. At the start of each recording gain and zero calibration were 

performed. The EEG signal was referenced to the vertex during recording, and signals 

were recorded using a bandpass filter of 0.1-100 Hz, amplified using a gain of 10,000 

and sampled at a rate of 250 Hz. Recordings were made using NetStation (Electrical 

Geodesics, Inc., Eugene, OR).  

 

3.7 EEG processing  

 

3.7.1 Pre-processing 

 

All EEG pre-processing was performed offline using MATLAB software (version 

R2014b) installed with an EEGLAB toolbox (version 13.4.4) and an additional ERPLAB 

plug-in (version 4.0.3.1) (Delorme & Makeig, 2004; Lopez- Calderon & Luck, 2014). 

The continuous EEG signal was digitally filtered using a lowpass filter of 30Hz. All data 

obtained from six ear electrodes were removed due to issues relating to morphological 

variation of ear location in the DS population. Namely, electrodes intended to surround 

the ear (numbers 44, 48, 49, and 113, 114, 119) were often on the ear itself and so 

these electrodes were discounted from all participants. Segments containing 

movement and/or eye movements (e.g. blink artifacts) were removed manually through 

visual inspection of the data from all remaining channels. The use of Independent 

Component Analysis (ICA) to remove blink artifacts was not utilised as data obtained 

during blinks in EO recording and data obtained during instances of eye-opening in EC 

recordings was unwanted. 

 

Figure 3.1 EEG electrode map 
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Electrode map illustrating individual cap electrodes intended to surround the ear that were 

excluded for all participants (numbers 44, 48, 49, and 113, 114, 119). 

 

Bad channels were replaced using spherical spline interpolation and remaining 

channels were re-referenced to the average electrode (with the exception of the eye 

electrode channels which were removed from analysis following the manual removal of 

blink artifacts; numbers 125, 126, 127 and 128). Datasets were then segmented into 2-

sec epochs. Recordings with less than 12 segments remaining were excluded from 

further analysis.  

 

3.7.2 EEG measures 

 

Early EEG analysis methods relied on the visual inspection of oscillatory activity 

recorded with an oscillograph. With the advent of digital technology and increased 

computing power there are now a wide range of methods available which can 

decompose an EEG signal into its spectral and temporal components for the purpose 

of more complex analysis.  

 

It was outlined in section 2.2 that resting-state paradigms typically discard temporal 

information and focus instead on spectral information — that being the frequencies that 

are present in the signal, in which signals are represented as a linear combination of 

oscillatory functions (Gross, 2014). Various spectral analysis methods can be used to 

decompose the EEG signal in this way, with such methods involving Fourier analysis. 

Traditional Fourier analysis decomposes EEG signals into fixed-length sinusoidal 

functions, with varying amplitude and phase across frequency (van Vugt et al., 2007). 

Due to limitations of traditional Fourier analysis, such as relatively poor time–frequency 

resolution (Bruns, 2004), alternative methods such as wavelet and multitaper analysis 

have been developed to overcome these limitations by using a number of different 

window lengths which are then averaged. Power estimates obtained using these 

methods are thought to be more reliable than traditional Fourier methods (Thomson, 

1982; Percival & Walden, 1993; van Vugt et al., 2007). EEG measures in this thesis 

were obtained using wavelet methods (Chapter 5 and 6), however for the purpose of 

DCM analysis, multitaper methods were used in Chapter 7.  

 

Furthermore, both absolute and relative power values were calculated and analysed 

within chapter 5. Relative power provides a “normalised” measure of activity in each 

frequency band. It can be achieved on an individual basis by dividing absolute (raw) 

values for each individual by their total activity across the EEG spectrum. This method 
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helps to account for differences in broadband power across participants and therefore 

may be considered particularly important in individuals with DS, due to a higher degree 

of anatomical variation (Lee et al., 2016), for example.  

 

Importantly, some participants included in this thesis did not have a measurable alpha 

peak within the selected frequency range (instead having a downward slope with peak 

frequency assigned to the lower boundary of this using standard methods; i.e. 8 Hz 

using a standard alpha band). Alpha peak features were therefore obtained for all 

individuals by removing the individual linear trend from the EEG spectrum to achieve 

“spectral normalisation” (Demanuele et al., 2007). This method allowed an accurate 

representation of these values to be obtained for all individuals, including those whose 

peak characteristics were lost within the natural EEG background noise (1/f noise; 

brain signals show a decrease in power with increasing frequency). Due to slowing of 

the EEG spectrum for some individuals, an extended alpha band (theta-alpha; 4-13 Hz) 

was employed for peak analyses within Chapter 6.  

 

3.8 Data analysis 

 

The following chapters contain analyses relating to the feasibility and generalisability of 

obtained recordings (Chapter 4), differences in EC spectral measures between 

individuals with DS and age-matched TD control subjects (Chapter 5), the relationship 

between EO and EC EEG spectral measures and age and general cognitive ability 

within adults with DS (Chapter 6), and the modelling of cortical circuitry underlying EEG 

oscillations of interest (Chapter 7). Full methodological descriptions for these analyses 

can be found within the relevant chapters.  
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Chapter 4 Analysis of participant sample and paradigm 

feasibility 

 

4.1 Introduction 

 

This EEG study is uniquely nested within a larger project involving 315 adults with DS 

(LonDownS; see Chapter 3 General Methods). Participants taking part in the EEG are 

a subpopulation (n=88) of this larger sample. To date there has been no published 

analysis of the extent of bias within samples with DS taking part in neuroimaging 

research, or research related to the extent of bias in paradigm completion within such 

studies. This is an important issue to explore in order to assess the potential 

generalisability of research findings to a larger population of adults with DS. 

 

In addition to exploring bias, a further issue that warrants investigation is the overall 

feasibility of obtaining baseline EEG recordings in individuals with DS. In particular, 

inability to achieve sustained voluntary eye-closure and issues of sleep occurring 

during recordings may influence paradigm completion. Previous studies identified 

within the literature review of this thesis (section 2.4) fail to report such issues 

(although there is a suggestion of issues with eye-closure occurring in literature by 

Babiloni et al. (2009; 2010), who noted participants unable to close their eyes had their 

eyelids held down). Investigating the feasibility of obtaining different baseline recording 

paradigms in individuals with DS is therefore an important issue for informing study 

design within this population.  

 

There are a number of broad stages involved in the acquisition of EEG data from 

individual participants (see Figure 4.1). Within this study, each individual must have 

first taken part in the wider LonDownS study in order to have been eligible to be invited 

to participate in the EEG (in addition to meeting specific inclusion criteria outlined in the 

methods section below). Having been invited to participate in the EEG, the next stage 

was whether individuals participated or did not participate in the recording session. 

Factors influencing this may have included the participant’s own wishes but also those 

relating to practical issues, including whether family members and/or carers were able 

to accompany the individual to the session. Finally, once individuals have consented to 

participate in the study, EEG resting-state data collected during the recording session 

ranged between a single paradigm completed (EO or EC) to both paradigms 

completed. There were also two different EC protocols used in this study (discussed in 
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Chapter 3 General Methods), of which each participant was given the opportunity to 

complete only one. 

 

 

Figure 4.1 EEG participant flow diagram 

Flow chart illustrating the EEG participant pathway. Outcomes of participants participating in the 

EEG include EO data only, EC data only, or both EO and EC data. All EC data was obtained 

from either a full block or split block recording paradigm. An additional outcome (not shown 

here) is that of no data, occurring due to technological issues (discussed in 4.3.5 Overall 

paradigm feasibility section) or participant exclusion. See Figure 4.2 for numbers at each stage.  

 

4.1.2 Aims  

 

 

The primary aim of this chapter was to explore the nature and extent of potential bias 

within the sample of individuals with DS participating in this study. In order to determine 

the source of any bias it is necessary to explore differences between participants who 

have been invited and not invited to take part in the EEG session, in addition to 

differences between invited participants who have participated and not participated. 

Factors that will be explored include participant age, general cognitive ability, presence 

of dementia, and accommodation type. Accommodation type is included as a factor 

because it is thought this may influence who accompanies the participant to the 

session (e.g. paid carer or family member). This in turn may influence participation, as 
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services may not be able to provide the several hours of one-to-one care necessary to 

accompany the participant. 

 

A secondary aim of this chapter was to explore potential factors influencing data 

collection from differing resting-state paradigms in participants with DS (including EO 

and variations of EC paradigms).  

 

The overall aim of this chapter was to describe the population of individuals with DS 

participating in this EEG study relative to a larger sample of individuals with DS. As 

such, no formal hypotheses were tested. 

 

 

4.2 Methods 

 

4.2.1 Participants 

 

Participants were recruited from the LonDownS participant pool of adults (detailed in 

Chapter 3 General Methods). As detailed in the General Methods section, all 

individuals from the LonDownS participant pool who met the following criteria were 

invited to take part: 

 

i) lived within a reasonable day’s return travelling distance to the EEG 

laboratory in central London 

ii) individual would be able to tolerate wearing an EEG cap for up to an hour 

(based on interactions and discussions with participants, parents and/or 

carers during the initial cognitive assessment, and through later telephone 

and email correspondence) 

iii) participants had adequate hearing and vision (assessed during the initial 

cognitive session using Kay vision test (Kay, 1983) and Whisper hearing 

test (Prescott et al., 1999) respectively) 

iv) Participant did not have an acute physical or mental health condition 

 

 

As discussed in the General Methods chapter of this thesis, the Kay vision test requires 

participants to match a series of images presented in decreasing order of size. A 

threshold of 3/19 was used to identify participants with significant visual difficulties. 

Participants not meeting this threshold were excluded from the LonDownS cognitive 
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sample. For the Whisper test, participants unable to respond correctly to at least a loud 

voice were excluded from the LonDownS cognitive sample. Participants excluded at 

this stage are not included within the analysis of this chapter (i.e. they are not counted 

as “not invited” but are excluded entirely). 

 

4.2.2 Cognitive, clinical and demographic variables 

 

All cognitive, clinical and demographic variables investigated were collected at the 

initial cognitive assessment session (however it was checked at the EEG session 

whether dementia status had changed in the time between sessions). Details of length 

of time between sessions are outlined in Chapter 3 General Methods. 

 

Raw KBIT-2 score was used to provide a measure of estimated general cognitive 

ability (discussed within Introduction and General Methods chapters). Accommodation 

type was assigned as one of two groups: living in care/with a paid carer or living with 

family/independently. These categories were chosen in order to reflect whether 

participants were most likely to be accompanied to the session by either a paid carer or 

a family member. Dementia status (dementia or no dementia) was defined based on 

clinical diagnosis (ascertained by questioning of family and/or carers about whether the 

participant had received a clinical diagnosis of dementia). Age of each participant at 

their cognitive assessment was used for study participation analysis (invited/not invited 

and participated/did not participate), whereas age at EEG was used for paradigm 

analysis. 

 

Results of genetic testing (obtained through the collection of saliva or blood samples at 

the initial cognitive assessment) were not available at the time of EEG recruitment and 

data collection. Participants with a form of DS other than Trisomy 21 (e.g. mosaic or 

translocation) have therefore not been excluded in this chapter. 

 

4.2.3 EEG recording paradigms 

 

All participants taking part in the EEG session had the opportunity to complete both an 

EO and EC resting-state paradigm (each of 5.5 min recording duration). In the EO 

paradigm participants were instructed to sit still and watch a cartoon (described in the 

General Methods chapter). In the EC paradigm participants were instructed to sit still 

with their eyes closed.  
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As discussed in the General Methods chapter, after 18 participants had completed the 

EEG session, the EC paradigm was amended to a ‘split’ structure to incorporate a 

scheduled break every 30-seconds. Recording only continued after each 30-second 

recording block if the participant was happy to do so and if the researcher was satisfied 

they were fully awake and were able to adhere to the instruction of keeping their eyes 

closed. 

 

Full details on data acquisition and pre-processing are provided in the General 

Methods chapter. For the purpose of this chapter, data quality was defined as the 

number of 2-second artifact free epochs obtained from each recording.  

 

4.2.4 Statistical analysis 

 

Differences in dementia status and accommodation type between groups were 

explored using chi squared tests. Differences in age and raw KBIT-2 score between 

groups were explored using independent samples t-tests (a histogram was used to 

verify normal distribution and Levene’s test was used to verify homogeneity of 

variances). Independent samples t-tests were also used to investigate if there was a 

difference in age or KBIT-2 scores for individuals completing the full-block or split-block 

EC paradigms, and to investigate data quality (number of 2-second artifact free 

epochs) between EC recording paradigms. A paired samples t-test was used to 

investigate data quality between EO and EC conditions. One-way ANOVAs were used 

to explore differences in age and KBIT-2 score between participants completing the EO 

only, EC only or both recording paradigms. 

 

4.3 Results 

 

4.3.1 Participant sample  

 

A total of 31 participants were excluded from the LonDownS cognitive sample (n=315) 

due to either failing screening tests for hearing or vision (n=21) or non-completion of 

the KBIT-2 test (n=10), leaving a sample of 284 participants for analysis. Twenty-eight 

of these 284 participants had not completed the riddles KBIT-2 subscale and so this 

was imputed (two of these 28 participants took part in the EEG session). KBIT-2 

imputation methods are described in section 3.4. 
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Table 4.1 describes the demographics, KBIT-2 raw scores and diagnostic dementia 

status of the LonDownS participant pool (n=284), the subgroup of individuals invited to 

attend the EEG session (n=164), and the subgroup of these individuals taking part in 

the EEG session (n=88). Six participants attended the EEG session but chose not to 

take part on arrival, and so were categorised as not participating. See Figure 4.2 for a 

flow chart of participant numbers at each stage of the EEG pathway. Variables of age 

and KBIT-2 were considered normally distributed in all samples according to histogram 

shape (including the two samples not shown in Table 4.1 of participants not invited and 

invited participants not taking part). 

 

 Total Age in 
years (SD) 

Gender Raw KBIT-2 
(SD) 

Dementia 
diagnosis 

LonDownS 
sample 

284 39.14 
(13.76) 

144 (50.70%) M; 
140 (49.30%) F  

39.75 (25.74) 47 
(16.55%) 

Sample invited 
to EEG 

164 38.19 
(13.46) 

83 (50.61%) M; 
81 (49.39%) F 

44.34 (23.82) 18 
(10.98%) 

Sample 
participating 

88 
(53.33%)* 

34.01 
(12.09) 

46 (52.27 %) M; 
42 (47.73%) F 

46.89 (22.76) 7 (7.95%) 

Table 4.1 Participant demographic information  

Mean (SD) of demographic information, raw KBIT-2 score and diagnostic dementia status 

(percentage of sample shown) of all participants taking part in the LonDownS sample, the 

subgroup of individuals invited to EEG, and the subgroup of those individuals taking part in the 

EEG session. *refers to percentage of individuals who participated in the session out of the 

sample invited 

 

Figure 4.2 Number of participants at each pathway stage 
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Flow chart showing the number of participants at each level (n) of the EEG pathway in this 

study. Outcomes of participants participating in the EEG include EO data only, EC data only, or 

both EO and EC data. Outcome of no data (n=18) is not shown; details provided in section 

4.3.5. 

 

4.3.2 Dementia prevalence in the EEG sample 

 

To investigate the prevalence of dementia in the EEG sample, chi squared tests were 

used to compare the number of participants with a clinical diagnosis of dementia 

between individuals invited to take part in the EEG study (n=164) and those not invited 

(n=120), and between invited individuals taking part (n=88) and those not taking part 

(n=76).  

 

There was a statistically significant difference in dementia diagnosis between those 

who were invited (n=18 individuals with dementia out of 164 participants; 10.98%) and 

those who were not invited (n=29 individuals with dementia out of 120 participants; 

24.17%), χ2 (1) = 8.73, p = .003. There was no statistically significant difference in 

dementia diagnosis between those who took part (n=7 individuals with dementia out of 

88 participants; 7.95%) compared to those who did not take part (n=11 individuals with 

dementia out of 76 participants; 14.47%), χ2 (1) = 1.77, p = .183. This indicates there 

were significantly fewer individuals with a diagnosis of dementia invited to the EEG 

assessment, however of those invited, there was no significant difference in 

participation between individuals with and without dementia.  

4.3.3 Age and ability in the sample 

 

Independent samples t-tests were used to investigate age and KBIT-2 score of 

individuals invited to take part in the EEG study compared to those not invited, and to 

investigate age and KBIT-2 score of invited individuals who took part compared to 

those who did not take part. Results are summarised in table 4.2. 

 

 Age (years) KBIT-2 

Invited / not invited t (282) = 1.37, p = .172 (equal 
variances assumed), 95% CI [-
.99, 5.51] 

t (282) = -3.58, p < .001 
(equal variances assumed), 
95% CI [-16.82, -4.90] 

Mean age (SD) Not invited M = 40.45 (14.10); 
invited M = 38.19 (13.46) 

Not invited M = 33.48 
(27.02); invited M = 44.34 
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(23.82) 

Took part / did not take 
part 

t (162) = 4.53, p < .001 (equal 
variances assumed), 95% CI 
[5.01, 12.95] 

t (162) = -1.48, p = .141 
(equal variances assumed), 
95% CI [-12.83, 1.85] 

Mean age (SD) Took part M = 34.01 (12.09); 
Did not take part M = 43.03 
(13.42) 

Took part M = 46.89 
(22.78); Did not take part M 
= 41.39 (24.80) 

Table 4.2 Age and KBIT-2 score group comparison  

Mean (SD) and results of independent samples t-tests for age and KBIT-2 score of all 

individuals invited to take part in the EEG study compared to those not invited, and all 

individuals who took part compared to those who did not take part. 

 

These results show that although there was no significant difference in age between 

individuals invited and not invited to take part in the EEG, invited individuals had 

significantly higher general cognitive ability (M = 44.34 (23.82 SD)) than those not 

invited (M = 33.48 (27.02 SD)). Of those invited, individuals taking part did not 

significantly differ in terms of general cognitive ability but were significantly younger (M 

= 34.01 (12.09 SD)) compared to those not taking part (M = 43.02 (12.42 SD)). 

 

4.3.4 Effect of accommodation type in the sample 

 

In order to explore whether accommodation type was significantly associated with 

invitation to EEG or participation in the EEG this was explored in both groups using 

Pearson chi squared tests. Accommodation type was categorised as either living in 

care/with a paid carer or living with family/alone. 

 

There was no significant difference in accommodation type between individuals invited 

(n=87 in care/with a paid carer (53.05%); n=77 with family/alone (46.95%)) and not 

invited (n=73 in care/with a paid carer (60.83%); n=47 with family/alone (39.17%)) to 

the EEG, χ2 (1) = 1.71, p = .191. There was also no significant difference in 

accommodation type between invited individuals taking part (n=43 in care/with a paid 

carer (48.86%); n=45 with family/alone (51.14%)) and not taking part (n=44 in care/with 

a paid carer (57.89%); n=32 with family/alone (42.11%)) in the EEG, χ2 (1) = 1.34, p = 

.248. This suggests accommodation type was not significantly associated with either 

invitation to take part in the EEG or participation of those invited. 
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4.3.5 Overall paradigm feasibility  

 

Eighteen of the 88 individuals who took part in the EEG session were not included for 

this stage of analysis due no useable resting-state data obtained. For 16 of the 18 

individuals this was due to technological issues (>10% bad electrodes, 

computer/software crash during recording, and corruption of saved files). The 

remaining two individuals out of these 18 completed only the EO paradigm, but were 

excluded from this due to falling asleep (n=1) or due to <12 segments of artifact-free 

data (n=1; 10 segments obtained) within this recording. 

 

No further datasets were excluded due to sleep or insufficient number of segments. It 

should be noted, however, all other instances of participants falling asleep during a 

recording were categorised as non-completion, as in these instances the recording was 

stopped before it had finished (unless the participant had fallen asleep within a 

recording block of the EC paradigm, in which case that block was discarded and the 

remaining data utilised).  

 

In total, usable EEG data from at least one paradigm was obtained from 70 participants 

(see Table 4.3). Where participants completed only one paradigm (EO or EC), this was 

due to either not consenting to the other paradigm, consenting but being unable to 

follow the task instructions (i.e. watch the cartoon/close your eyes), asking to stop the 

paradigm before the recording had finished, or the recording being terminated due to 

falling asleep (outlined above). 

 Total Age in years 
(SD) 

Gender Raw KBIT-2 
(SD) 

Dementia 
(n) 

EO only 27 34.41 (12.30) 13 M (48.15%); 
14 F 

39.74 (22.36) 2 (7.41%) 

EC only 6 40.17 (15.12) 4 M (66.67%); 
2 F 

39.17 (28.21) 2 (33.33%) 

Both EO 
and EC 

37 30.86 (10.90) 18 M (48.65%); 
19 F 

54.84 (19.80) 1 (2.70%) 

Table 4.3 Demographic information relating to obtained data 

Mean (SD) of demographic information, raw KBIT-2 score and dementia diagnosis (number of 

individuals) of all participants taking part in the EEG session for whom useable data was 

obtained for at least one recording paradigm (n=70). 

 

One-way ANOVAs were used to investigate how the three completion groups (EO only, 

EC only, both EO and EC) differed in terms of age and KBIT-2 score. According to 

histogram shape variables of age and KBIT-2 were considered normally distributed and 
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Levene’s statistics were not significant indicating the assumption of homogeneity of 

variances was met for both variables.  

 

There were no statistically significant differences between group means for age 

determined by one-way ANOVA, (F(2,67) = 2.23, p = .116). There was a statistically 

significant relationship between group means for KBIT-2 (F(2,67) = 4.35, p = .017). A 

Tukey post hoc test revealed a significantly higher KBIT-2 score (p=.020) in the ‘both’ 

completion group (M = 54.84, SD = 19.80) compared to the ‘EO only’ group (M = 

39.74, SD = 22.36). The difference in KBIT-2 score between the ‘both’ completion 

group and the ‘EC only’ completion group (M = 39.17, SD = 28.21) was not statistically 

significant (p=.231), neither was the difference between the ‘EO only’ and ‘EC only’ 

completion groups (p = .998). These results suggest that although age is not 

significantly associated with paradigm completion, individuals able to complete both 

EO and EC recording paradigms had significantly higher general cognitive ability than 

those only able to complete the EO recording paradigm. 

 

In order to investigate paradigm feasibility, the number of 2-second artifact-free epochs 

obtained from EO and EC paradigms (normal distribution according to histogram shape 

for both) were compared using a paired sample t-test to determine whether data quality 

significantly differed between conditions. Participants in this sub-population only 

included those for whom both EO and EC data was obtained (n = 37) in order to 

ensure comparisons between conditions were valid (see Table 4.4). There was no 

statistically significant difference in the number of 2-second epochs obtained from the 

EC (M = 45.70, SD = 24.57) compared to the EO (M = 36.51, SD = 25.55) condition, t 

(36) = 1.80, p = .080, CI [-1.17, 19.55]. This indicates no significant difference in data 

quality between recording conditions. 

 

 Mean (SD) 2-sec 
segments 

EO paradigm 36.51 (25.55)  

EC paradigm 45.70 (24.57) 

Table 4.4 Segments obtained 

Mean (SD) of number of 2-second artifact-free segments obtained from each recording 

paradigm, including only participants where both paradigms were completed (n=37).  
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4.3.6 Assessment of EC paradigm feasibility: full block vs. split block 

 

 Total Age in 
years (SD) 

Gender Raw KBIT-2 
(SD) 

Dementia 
(n) 

Full-block EC 
paradigm 

18  31.56 (9.84) 8 M (44.44%); 10 
F 

51.72 (21.60) 1 (5.56%) 

Split-block EC 
paradigm 

25 32.60 
(13.25) 

14 M (56.00%); 
11 F 

53.32 (21.79) 2 (8.00%) 

Table 4.5 Demographic information for each EC paradigm 

Mean (SD) of demographic information, raw KBIT-2 score and dementia diagnosis (number of 

individuals) of all participants completing an EC recording paradigm for whom useable data was 

obtained (n=43), according to EC paradigm undertaken (either full-block or split-block protocol). 

 

In total usable EC EEG data was obtained from 43 participants (see Table 4.5). 

Independent samples t-tests were used to investigate age and KBIT-2 score of 

individuals completing the full-block EC paradigm compared to those completing the 

split-block EC paradigm.  

 

According to histogram shape, variables of age and KBIT-2 were considered normally 

distributed in this participant sub-sample. Levene’s statistic was not significant for 

KBIT-2 however this was significant for age (F = 4.43, p = .041) and so equal variances 

were not assumed for this variable. There were no statistically significant differences of 

KBIT-2 (full-block M = 51.72 (21.60 SD); split block M = 53.32 (21.79 SD); t = -.24 (41), 

p = .813) or age (full-block M = 31.56 (9.84 SD); split block M = 32.60 (13.24 SD); t = -

.30 (40.94), p = .768) between either EC paradigm completion group. This suggests 

there were no significant differences in age or general cognitive ability between 

participants completing each EC recording paradigm.  

 

An independent samples t-test indicated there was no statistically significant difference 

in data quality (number of epochs obtained; normal distribution according to histogram 

shape and equal variances assumed) between the full block (n = 18; M = 44.17 (26.66 

SD)) and split block (n = 25; M = 44.04 (21.04 SD)) EC recording paradigms (t (41) = 

.02, p = .986, CI [-14.56, 14.82]). This indicates there is no significant difference in the 

amount of useable data obtained from the two EC resting-state paradigms. 

 

4.4 Discussion 
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4.4.1 Summary of findings 

 

In the present study, there were significantly fewer individuals with a diagnosis of 

dementia invited to the EEG assessment than those not invited. Invited individuals also 

had significantly higher general cognitive ability than those not invited. There was no 

significant difference in age or accommodation type between invited individuals and 

those not invited.  

 

Participating individuals were significantly younger compared to those who were invited 

but did not participate. There was no significant difference in cognitive ability or 

dementia prevalence between invited individuals participating and not participating. 

There was also no significant difference in accommodation type between invited 

individuals participating and not participating.  

 

In terms of paradigm completion, this was not significantly associated with age, 

however individuals able to complete both EO and EC recording paradigms had 

significantly higher general cognitive abilities than those only able to complete the EO 

paradigm. Interestingly there was no significant difference in the number of 2-second 

artifact free segments obtained between the two conditions and between the two EC 

recording paradigms.  

 

4.4.2 Research in context, strengths, limitations and future research 

 

To date there has been no published analysis exploring the representativeness of 

participants with DS attending neuroimaging studies. The current study helps to 

describe the ways in which these samples and data from resting-state paradigms may 

be biased, informing study design and generalisability of findings.   

 

These findings suggest that within this EEG study a bias was introduced into the 

sample at the stage of participant invitation, with individuals of higher ability invited and 

fewer people with dementia being asked to participate. For pragmatic reasons a 

degree of selection bias is inevitable due to the requirement to tolerate wearing the 

EEG cap. Future studies could take steps to minimise this, however. For example 

providing resources for participants, parents and/or carers would allow individuals to 

make an informed assessment of ability to tolerate the EEG cap. Such resources could 

include video examples of the EEG cap being worn by other participants. A basic 

checklist including relevant questions (e.g. “Would the participant be comfortable 
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having their head touched?) may also be useful for the purposes of assessing and 

recording formally how participants meet the criteria of being able to tolerate the cap. 

Further possibilities include enabling participants to try the EEG cap prior to the 

recording session, for example in the case of this study taking a cap to the initial 

cognitive assessment may have been useful. Such steps may help reduce potential 

bias, however it remains that the ability to tolerate equipment is necessary for all 

neuroimaging studies into ID populations and dementia populations, and consequently 

all samples are likely to contain similar biases. Advances in technology improving the 

comfort of equipment may reduce this in the future.  

 

The finding that participating individuals were significantly younger than invited 

individuals who did not participate could be due to it being potentially harder for older 

individuals to travel into central London (for instance due to increased likelihood of 

health and mobility problems). Accommodation type or presence of dementia are not 

likely to be factors as these were explored in the current study and were found to be 

not significantly different between those taking part and not taking part. It may still be 

the case, however, that the person accompanying the participant (i.e. family member or 

paid carer) is a factor but accommodation type may be a poor measure of this. The 

assumption that individuals living in care/with a paid carer would be accompanied by a 

paid carer for the EEG session is a limitation of this study. Future studies exploring the 

source of potential bias in ID samples could benefit from enquiring who would 

potentially be accompanying the participant at the stage of invitation, and recording this 

information on attendance. 

 

It is possible that portable EEG equipment may assist future studies in reducing the 

potential impact of poor health or mobility and accommodation factors on the 

participant sample. Using portable equipment would also increase overall sample size 

as the exclusion criteria of being within a day’s return travelling distance to London 

would no longer be necessary.  

 

A strength of this study is that it attempted to be as inclusive as possible, with 

individuals of all ages and ability who met the basic inclusion criteria (including those 

with a diagnosis of dementia) invited to take part. As a consequence of this there was a 

large proportion of individuals unable to complete both resting-state paradigms during 

the session. It was found that more participants completed the EO paradigm compared 

to the EC and participants able to complete both recording paradigms had greater 

general cognitive ability than those only able to complete the EO recording paradigm. 

These findings are likely due to the EC task being more difficult (and potentially less 
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enjoyable and familiar), requiring participants to understand and execute the instruction 

of closing their eyes and maintain this instruction in working memory. In contrast to this, 

the EO recording paradigm of watching a video is a passive activity that participants 

are familiar with. It is possible that completion of EC paradigms could be improved by 

asking participants to practice closing their eyes for short durations of time before 

attending the session. Participants would then be more familiar with the task and have 

had the opportunity to practice this if necessary.  

 

The absence of a significant difference in number of 2-second artifact free segments 

obtained from the different conditions among individuals able to complete both 

recordings and different EC paradigms suggests a similar level of movement artifacts 

between these. Eye-closure does therefore not appear to improve data quality in terms 

of movement artifacts, nor does incorporating regular breaks into the EC paradigm 

improve data quality within this. However, this analysis only included participants able 

to complete both recording paradigms. Findings may therefore be less applicable to 

individuals of lower cognitive ability. 

 

An additional aim of splitting the EC recording block was to reduce the likelihood of 

participants entering light sleep during recording without the researcher being aware of 

this occurring. It is likely this was achieved, however this would not be apparent from 

the data quality measure used here. Using the EEG spectrum to investigate entry into 

stage 1 sleep may be possible, however this could problematic in individuals with DS 

as is has been suggested that the awake power spectrum can be similar to that of early 

sleep stages (e.g. Clausen et al., 1977). 

 

A further limitation of this study is that comparing a sub-population of participants to the 

larger research sample from which they were recruited is problematic, as the larger 

sample is likely to be biased towards individuals who are more likely to engage with 

research. Attempts were made, however, for the larger LonDownS sample to be as 

representative as possible by utilising a variety of recruitment pathways across 

England and Wales, including a network of NHS trust sites to identify and approach 

potential participants. Despite this it is possible that the true skew of the EEG sample 

when compared to the wider DS population may be greater than that detailed in this 

study.  

 

4.4.4 Conclusions 
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The findings of this chapter suggest that the EEG sample within this thesis is biased in 

terms of a younger age and greater general cognitive ability compared to a larger DS 

sample. The issue of skew towards individuals with greater cognitive ability is 

exacerbated further when considering individuals able to complete both recording 

paradigms. It is likely such bias is a common limitation of all EEG studies in DS and is 

not unique to this particular study. Future studies may benefit from improving the way it 

is determined whether participants would be able to tolerate wearing EEG equipment in 

order to reduce this potential source of skew. Studies may also benefit from using 

portable equipment and asking participants to practice closing their eyes for short 

intervals before attending the session. Although splitting the EC recording did not 

reduce movement artifacts in the data this may still be beneficial in terms of reducing 

sleep incidence, however further research is needed to investigate this. 
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Chapter 5 Eyes-closed resting-state EEG: comparison 

between adults with Down syndrome and typically-

developing controls 

 

5.1 Introduction 

 

The focus of this thesis is on individual differences in adults with DS, however 

understanding primary differences in resting-state activity between those with DS and 

TD control subjects will help elucidate the importance of findings within subsequent 

chapters and inform the overall conclusions of the thesis. For this reason, a group of 

chronologically age- and sex- matched TD control subjects was selected from an open 

source dataset of eyes-closed resting-state EEG activity for comparison with the data 

collected from participants with DS. This chapter details this analysis and findings.  

 

The use of open source datasets is becoming increasingly common in neuroimaging 

research. Although not without their limitations — including inherent differences 

between datasets in terms of equipment, experimental protocols and experimenter 

effects — open source datasets offer numerous benefits including increased efficiency, 

transparency, and reproducibility of research (Gilmore et al., 2017). One such EEG-

based dataset is provided by the Child Mind Institute (an American non-profit 

organisation focusing on childhood mental health and learning disability, and dedicated 

to the support of open science projects (see childmind.org)). The resource, named the 

Multimodal Resource for Studying Information Processing in the Developing Brain 

(MIPDB), aims to advance the study of clinical cognitive neuroscience (Langer et al., 

2017). It contains high-density task-based and task-free raw EEG data (including eyes-

closed resting-state) collected from 126 TD individuals aged 6-44 years. 

 

Differences in resting-state EEG power and frequency measures between individuals 

with DS and TD controls reported by previous studies are detailed within the literature 

review in Chapter 2. Alpha activity (typically defined as 8-13 Hz) has been of interest 

to researchers from the earliest studies. Differences in alpha activity are commonly 

reported, though results are contradictory. For alpha frequency, a number of studies 

have reported a significantly slower peak frequency in DS (Ono et al., 1992; Soininen 

et al., 1993; Murata et al., 1994; Locatelli et al., 1996; Velikova et al., 2011). Some 

studies, however, report no significant differences in alpha frequency (Politof et al., 

1996; Babiloni et al., 2010). Results pertaining to alpha power differences are also 
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conflicting, with some studies reporting increases (Partanen et al. 1996), others 

reporting decreases (Babiloni et al., 2009; Medaglini et al.1996; Locatelli et al., 1996), 

and some finding no difference (Politoff et al., 1996) in individuals with DS compared to 

TD controls. 

 

In contrast, power in slow (delta and theta) and fast (beta and gamma) EEG bands has 

been reported as greater in participants with DS compared to TD controls on a fairly 

consistent basis (Ono, 1993; Murata et al., 1994; Medaglini et al.1997; Partanen, et al., 

1996; Politoff et al., 1996; Locatelli et al.,1996; Babiloni et al., 2009; Babiloni et al., 

2010; Velikova et al., 2011), although Babiloni et al. (2009, 2010) reported reduced 

power in fast frequencies in individuals with DS compared to controls, and Politoff et al. 

(1996) reported no significant difference in absolute gamma power. Results regarding 

faster frequencies may therefore be slightly inconsistent. Sources of inconsistencies 

between studies may be due to methodological differences, including differences in 

frequency band classification and locations examined, or differences in participants’ 

age between studies.  

 

When considering differences in findings based on absolute and relative power values, 

a small number of studies have examined both. Locatelli et al. (1996) and Medaglini et 

al. (1996) reported the same findings for absolute and relative values, with absolute 

and relative power in delta, theta and beta bands being significantly higher and 

absolute and relative alpha power being significantly reduced in DS compared to 

controls. It should be noted, however, these two studies are likely to be of the same 

sample (discussed in section 2.4.1.4).  In contrast to these findings, Politoff et al. 

(1996) reported there were no significant differences between individuals with DS and 

controls using relative power values, despite finding significantly higher absolute power 

for delta, theta and beta bands in those with DS. It is therefore possible that absolute 

and relative values may yield either the same or different results when comparing EEG 

variables between individuals with DS and controls.  

 

As previously discussed within the literature review in Chapter 2, differences in resting-

state EEG power and frequency measures between individuals with DS and TD 

controls may differ topologically. In summary, although results are inconsistent, there is 

an indication that differences in alpha activity between these two groups may be most 

apparent in posterior regions (Medaglini et al.1997; Locatelli et al.,1996) and may also 

differ between occipital and parietal electrode derivations (Ono et al., 1993). In 

contrast, the higher power in delta activity in individuals with DS compared to TD 

controls may most be apparent in frontal and centro-anterior regions (Babiloni et al 
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2009; Medaglini et al.1997; Locatelli et al.,1996), and the higher theta power in those 

with DS most apparent in centro-posterior regions (Medaglini et al.1997; Locatelli et 

al.,1996). For beta activity, the higher power in individuals with DS may be most 

apparent in parieto-temporal regions (Medaglini et al.1997; Locatelli et al.,1996). 

Consequently it appears important to analyse spectral differences between individuals 

with DS and TD controls across the scalp as topographical differences may exist. 

 

5.1.2 Aims and hypotheses 

 

This chapter aimed to use common analysis methods to determine differences in EEG 

activity (band power, peak amplitude and peak frequency) between adults with DS and 

TD age- and sex- matched control subjects. Based on previous findings, it was 

hypothesised that individuals with DS would have less power in the alpha band (8-13 

Hz) and more power in other EEG bands (delta (0.5-4 Hz) theta (4-8 Hz) and beta (13-

30 Hz)). Gamma band activity was not examined in this study due to the high likelihood 

of muscle artifacts (which share a similar frequency to the gamma band) within this 

region of the EEG spectrum. 

 

The use of common analysis methods reduces methodological variation, through the 

use of classical frequency bands and a standard occipital electrode montage. Due to 

the indication of topographical EEG differences in DS compared to TD controls, 

however, a second frontal electrode site was chosen for additional analysis. 

Furthermore, both absolute and relative power values were calculated and analysed 

(detailed in Chapter 3: General Methods).  

 

Secondary aims were to determine whether between-group comparisons differed for 

power results obtained from absolute and relative values, and whether between-group 

comparisons differed for results obtained from occipital and frontal derivations. It was 

hypothesised that absolute and relative values would not yield different between-group 

comparison results. It was also hypothesised that between-group comparison results 

from occipital and frontal derivations would not differ. 

 

 

 

5.2 Methods 
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5.2.1 Participants 

 

TD control participants aged 16 or over from the MIPDB (from a possible 39 

individuals) were age- and sex- matched to participants with DS for whom sufficient EC 

resting-state data (≥ 12 2-second segments) had been obtained. Only participants with 

DS who did not show evidence of cognitive decline or have a diagnosis of dementia, 

and who had genetically confirmed trisomy 21, were included for this analysis (a 

possible 36 individuals). In total 26 individuals were age-matched to within 1 year. Sex-

matching was achieved on a subgroup-level (16-25 years, 26-35 years, 36 years and 

over) and was identical for groups 16-25 years and 26-35 years. However, due to the 

small number of control participants aged 36 and over (n=4), for this group sex-

matching was 3M:1F for controls to 1M:3F for those with DS. One control participant 

was excluded due to their EEG data classed as an outlier. As there was no suitable 

alternative control participant for matching, their matched participant with DS was also 

removed from analyses. 

 

The following is an list of inclusion criteria for individuals with DS in this chapter: 

 

 Sufficient EC resting-state data (≥ 12 2-second segments) was obtained from 

the participant during the EEG testing session 

 Participant has genetically confirmed trisomy 21 

 Participant did not show evidence of cognitive decline or have a diagnosis of 

dementia at the time of cognitive assessment 

 

5.2.2 EEG acquisition  

 

Data from both groups was acquired using 128-channel EEG Geodesic Hydrocel nets 

(EGI, Eugene, OR, USA) with an appropriate size selected by measuring head 

circumference. In both datasets electrode impedances were maintained below 50 kΩ 

during recording and the EEG signal was referenced to the vertex. A bandpass filter of 

0.1 to 100 Hz and an amplifier gain of 10,000 was used by both datasets. Control data 

was sampled at a rate of 500 Hz and data for those with DS was sampled at a rate of 

250 Hz.  

 

In terms of differences in EC paradigm between groups, the TD group were instructed 

to close their eyes and open them again after a period of time, with this procedure then 

repeated multiple times. An identical procedure was used for 14 adults with DS; 
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however 11 individuals with DS instead had a continuous 5.5 minute block of EC 

recording (see Chapter 3 General Methods for more information).  

 

Further identifiable differences in protocol methods were that the research assistant 

voice in the control dataset was recorded whereas in this study the voice was not 

recorded. Additionally, for the control dataset each EC recording lasted 40-seconds 

and was repeated 5 times, whereas in this study each EC recording lasted 30-seconds 

and was repeated 11 times. The shorter duration used for adults with DS minimised the 

likelihood participants falling asleep and allowed the researcher to remind the 

participant of the task instructions, and the greater number of overall blocks ensured a 

sufficient amount of useable data was collected from each participant.  

 

5.2.3 EEG processing and analysis 

 

All EEG pre-processing and analysis steps were identical for both groups (see Chapter 

3 General Methods for more information). Pre-processing was conducted with MATLAB 

software installed with an EEGLAB toolbox and additional ERPLAB plug-in (Delorme & 

Makeig, 2004; Lopez- Calderon & Luck, 2014). Analysis was carried out with MATLAB 

software using customised scripts to obtain absolute and relative power measures for 

each frequency band of interest (delta 0.5 – 4 Hz; theta 4 – 8 Hz; alpha 8 – 13 Hz; beta 

13 – 30 Hz) for each region (frontal and occipital) for each individual. Additionally, 

alpha peak features were calculated (peak amplitude within the 8-13 Hz range and the 

frequency of this peak).  

 

Specifically, absolute power-frequency measures were obtained through 

decomposition of the time-frequency signal using wavelet analysis. This was performed 

on non-overlapping 2-second epochs (≥ 12) for every channel. These were then 

averaged across all epochs, yielding a power-frequency spectrum for every electrode 

within each individual. Relative power measures were obtained for every electrode 

within each individual by dividing absolute power-frequency values by their total 

absolute power across the EEG spectrum (0.1- 30 Hz). Electrode montage averages 

were then used to obtain a measure of occipital (E70, E71, E74, E75, E76, E82, E83) 

and frontal (E4, E5, E10, E11, E12, E16, E18, E19) activity for each individual (See 

Figure 5.1). 
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Figure 5.1 Electrode map illustrating occipital and frontal montages 

Electrode map illustrating individual cap electrodes for occipital (bottom cluster; 70, 71, 74, 75, 

76, 82, 83) and frontal (top cluster; 4, 5, 10, 11, 12, 16, 18, 19) montage averages used within 

this analysis.  

  

5.2.4 Statistics and visualisation 

 

Customised MATLAB scripts were used to produce power-frequency spectrum plots. 

All statistical analysis was performed with SPSS. Once each EEG variable had been 

calculated for every participant, data was screened for significant outliers (defined as > 

3 SD from the group mean). Histograms were used to assess the normality of 

distribution for each variable and Levene’s statistic was used to assess equality of 

variances.  

 

In order to determine whether the variation in EC paradigm within individuals with DS 

influenced results, independent sample t-tests were used to compare absolute and 

relative power values between participants completing a full-block (n=11) and those 

completing a split-block (n=14) paradigm. As one t-test was significant, EC paradigm 

was added as a covariate for all comparisons when activity was compared between 

groups. All control participants were assigned to the split-block protocol. ANOCOVAs 

were used to statistically compare differences between groups. This was performed for 

each EEG variable at each region (occipital and frontal), using both absolute and 

relative power values. Alpha peak frequency values, however, were only analysed for 

absolute spectra as absolute and relative values were the same. Where the covariate 

(EC paradigm) was significant this was left in the model, and where not significant the 
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covariate was removed from the model. Partial eta squared values for each variable 

were used to provide an indication of effect size.  

 

5.3 Results  

 

5.3.1 Preliminary analysis 

 

As detailed in the methods section of this chapter, EEG variables were screened for 

significant outliers (defined as > 3 SD from the mean) and participants with an outlier in 

any EEG variable were excluded. One control participant had an alpha peak frequency 

more than 3 SD from the mean and so they were removed from further analysis. Their 

matched participant with DS was also excluded at this stage. Final analysis contained 

25 individuals in each group. Table 5.1 shows the demographics of all participants 

included in the final analysis. All variables appeared normally distributed according to 

histogram shape.  

 

Group n Mean age (SD) Age range Sex 

DS 25 27.76 (8.45) 17 – 44 12 M; 13 F 
 

Control 25 27.68 (8.34) 16 – 44 14 M; 11 F 
 

Table 5.1 Participant demographics for each group 

Participant demographics of each group. Participants were match individually for age (within 1 

year) and on a group-level for sex (groups were age 16-25 years, 26-35 years, 36 years and 

over). Ages are given in years. 

 

Comparing those with full-block and split-block (n=14) paradigms, one t-test was 

statistically significant: there was significantly higher relative theta power in the frontal 

region of individuals with DS completing the full-block paradigm (M = .26 (0.2 SD)) 

compared to those completing the split-block paradigm (M = .25 (0.1 SD)), (t(14.96) = 

2.35, p = .033 (.001; .023 95% CI)).   

 

5.3.2 EEG variables within DS and control groups 

 

Table 5.2 details absolute and relative values for each EEG variable in each region, 

within each group. Standard deviations in the DS group appear to be higher than those 

in the control group, particularly for peak frequency, indicative of more variability. 

Figure 5.2 (DS group spectra) and Figure 5.3 (control group spectra) further illustrate 

increased variability within the DS group, apparent from individual plotted spectra.  
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EEG measure (n= 25 per 
group) 

Control mean (SD) DS mean (SD) 

 Occipital Frontal Occipital Frontal 

Absolute delta power 
(0.5-4 Hz range; log μV

2
) 

5.41 (.36) 5.75 (.39) 5.71 (.52) 6.23 (.59) 

Relative delta power 
(0.5-4 Hz range; log μV

2
) 

.37 (.02) .37 (.02) .39 (.02) .39 (.02) 

Absolute theta power 
(4-8 Hz range; log μV

2
) 

4.89 (.44) 5.15 (.34) 5.29 (.71) 5.69 (.65) 

Relative theta power 
(4-8 Hz range; log μV

2
) 

.24 (.01) .24 (.01) .25 (.01) .26 (.01) 

Absolute alpha power 
(8-13 Hz range; log μV

2
) 

5.76 (.88) 5.82 (.85) 5.19 (.91) 5.43 (.96) 

Relative alpha power 
(8-13 Hz range; log μV

2
) 

.19 (.02) .16 (.01) .15 (.02) .15 (.02) 

Absolute beta power 
(13-30 Hz range; log μV

2
) 

3.56 (.45) 3.64 (.46) 3.27 (.52) 3.46 (.54) 

Relative beta power 
(13-30 Hz range; log μV

2
) 

.20 (.01) .20 (.01) .19 (.02) .19 (.02) 

Absolute peak amplitude 
(8-13 Hz range; log μV

2
) 

.24 (.08) .23 (.09) .11 (.06) .12 (.06) 

Relative peak amplitude 
(8-13 Hz range; log μV

2
) 

.03 (.00) .03 (.00) .03 (.00) .03 (.00) 

Absolute peak frequency 
(8-13 Hz range; Hz) 

10.27 (.14) 10.30 (.21) 10.32 (1.07) 10.44 (1.11) 

Table 5.2 EEG values for each group 

Mean (SD) values for all EEG variables investigated, shown for each group and each region 

(occipital and frontal).  

 

 

 



 96 

Figure 5.2 DS power-frequency spectra 

DS group power-frequency spectra for occipital (top) and frontal (bottom) regions. Absolute and 

relative values are shown for each individual, in addition to absolute (red) and relative (blue) 

grand averages. Grand average y axis scale corresponds to absolute values (relative value 

grand average y axis scale not shown).  
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Figure 5.3 Control power-frequency spectra 

Control group power-frequency spectra for occipital (top) and frontal (bottom) regions. Absolute 

and relative values are shown for each individual, in addition to absolute (red) and relative 

(blue) grand averages. Grand average y axis scale corresponds to absolute values (relative 

value grand average y axis scale not shown). 

 

5.3.3 Statistical comparison of EEG variables between DS and control groups 

 

The overall group differences in the power-frequency spectrum between DS and 

control participants are illustrated by Figure 5.4.  
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Figure 5.4 Group comparison of power-frequency spectra 

Comparison between DS group (red) and control group (blue) grand average power-frequency 

spectra for occipital (top) and frontal (bottom) regions. Absolute (left) and relative (right) spectra 

both shown.  

 

5.3.3.1 Occipital region analysis 

 

Statistical analysis of EEG variables from the occipital region revealed significantly 

higher absolute and relative power in delta and theta bands (relative theta only; 

absolute theta not significant), and significantly lower absolute and relative power in 

alpha and beta bands, for those with DS compared to controls (see Figure 5.4 and 

Table 5.3). Those with DS also showed a significantly lower alpha peak amplitude. The 

effect sizes were greatest for relative alpha power, with group accounting for 56.5% of 

variance.  
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Additionally, in the occipital region EC paradigm had a significant effect on theta power, 

with both absolute and relative theta values higher for the full-block compared to the 

split-block paradigm (absolute values 5.57 log μV2 (.63 SD) full-block and 5.08 log μV2 

(.71 SD) split-block; relative values .26 log μV2 (.02 SD) full-block and .25 log μV2 (.01 

SD) split block). The only other EEG measure in this region for which EC paradigm had 

a significant effect was alpha peak frequency. Alpha peak frequency did not 

significantly differ between groups (p=.224) but there was a significant relationship 

between this measure and the EC paradigm covariate (p=.009): participants with DS 

completing the full-block paradigm had a significantly higher occipital alpha peak 

frequency (10.76 Hz (1.27 SD)) compared to participants with DS completing the split-

block paradigm (9.98 Hz (.76 SD)). It is noteworthy that participants completing the full-

block also had higher standard deviation of peak frequency (1.27 vs .76), indicating 

more variability in this particular measure. 

 

 Occipital 

EEG measure (n= 25 per 
group) 

Equation Partial eta squared 

Absolute delta power 

(0.5-4 Hz range; log μV
2
) 

F(1, 47) = 1.91, p = .037* .039 group 

Relative delta power 

(0.5-4 Hz range; log μV
2
) 

F(1, 47) = 8.18, p = .006** .148 group 

Absolute theta power 

(4-8 Hz range; log μV
2
) 

2
Group: F(1, 47) = .94, 

p = .338; 
Paradigm: F(1, 47) = 4.73, 
p = .035* 

.020 group; 

.091 paradigm 

Relative theta power 

(4-8 Hz range; log μV
2
) 

1
Group: F(1, 47) = 13.98, 

p = .001***; 
Paradigm: F(1, 47) = 6.77, 
p = .012* 

.229 group; 

.126 paradigm 

Absolute alpha power 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 5.20, p = .027* .100 group 

Relative alpha power 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 61.04, p ≤ .000*** .565 group 

Absolute beta power 

(13-30 Hz range; log μV
2
) 

F(1, 47) = 4.03, p = .050* .079 group 

Relative beta power 

(13-30 Hz range; log μV
2
) 

F(1, 47) = 8.32, p = .006** .150 group 

Absolute peak amplitude 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 27.88, p ≤ .000*** .372 group 

Relative peak amplitude 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 9.72, p = .003** .171 group 

Absolute peak frequency 
(8-13 Hz range; Hz) 

2
Group: F(1, 47) = 1.52, 

p = .224; 
Paradigm: F(1, 47) = 7.38, 
p = .009** 

.031 group; 

.136 paradigm 

 

Table 5.3 Occipital region group comparison 
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Results of ANCOVAs between groups for each EEG variable for occipital region. 
1
Where the 

covariate (EC paradigm) is significant both models are reported. 
2
Where only the covariate is 

significant (group not significant) both models are reported. Asterisk used to denote significance 

level (≤.05*, ≤.01**, ≤.001***). Effect sizes of significant model variables illustrated with partial 

eta squared value.  

 

5.3.3.2 Frontal region analysis 

 

Results for the frontal region followed the same pattern (see Table 4). Statistical 

analysis of EEG variables from the frontal region revealed that all group differences 

(including both absolute and relative values) were statistically significant, apart from 

alpha peak frequency (p= .664) in addition to absolute alpha and beta power (p=.179; 

p=.569 respectively). Overall absolute and relative delta and theta power values were 

significantly higher in individuals with DS, whereas relative alpha and beta power 

values were significantly lower (including absolute and relative alpha peak amplitude). 

 

The effect sizes were greatest for absolute alpha peak amplitude and relative alpha 

power, with group accounting for 28.8% and 20.9% of variance in these variables 

respectively. Additionally, EC paradigm had a significant effect on relative theta power 

in this region (p=.007; explaining an additional 14.3% in variance), with higher values 

for the full-block compared to the split-block paradigm (.26 log μV (.02 SD) full-block; 

.24 log μV2 (.01 SD) split block). 

 

 Frontal 

EEG measure (n= 25 per 
group) 

Equation Partial eta squared 

Absolute delta power 

(0.5-4 Hz range; log μV
2
) 

F(1, 47) = 11.14, p = .002** .192 group 

Relative delta power 

(0.5-4 Hz range; log μV
2
) 

F(1, 47) = 8.34, p = .006** .151 group 

Absolute theta power 

(4-8 Hz range; log μV
2
) 

F(1, 47) = 6.78, p = .012* .126 group 

Relative theta power 

(4-8 Hz range; log μV
2
) 

1
Group: F(1, 47) = 9.25, 

p = .004**; 
Paradigm: F(1, 47) = 7.83, 
p = .007** 

.164 group; 

.143 paradigm 

Absolute alpha power 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 1.87, p = .179 .038 group 

Relative alpha power 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 12.45, p ≤ .001*** .209 group 

Absolute beta power 

(13-30 Hz range; log μV
2
) 

F(1, 47) = .329, p = .569 .007 group 

Relative beta power 

(13-30 Hz range; log μV
2
) 

F(1, 47) = 4.45, p = .040* .087 group 

Absolute peak amplitude 

(8-13 Hz range; log μV
2
) 

F(1, 47) = 19.05, p ≤ .000*** .288 group 

Relative peak amplitude F(1, 47) = 8.98, p = .004** .160 group 



 101 

(8-13 Hz range; log μV
2
) 

Absolute peak frequency 
(8-13 Hz range; Hz) 

F(1, 47) = .191, p = .664 .004 group 

 

Table 5.4 Frontal region group comparison 

Results of ANCOVAs between groups for each EEG variable for frontal region. 
1
Where the 

covariate (EC paradigm) is significant both models are reported. Asterisk used to denote 

significance level (≤.05*, ≤.01**, ≤.001***). Effect sizes of significant model variables illustrated 

with partial eta squared value.  

 

5.3.3.3 Adjusted p-value analysis 

 

The above analysis details the results of 22 statistical tests. Due to the exploratory 

nature of this investigation, p-values have not been adjusted to correct for multiple 

comparisons. Using a Bonferroni correction (p-values are divided by the number of 

comparisons; adjusted p-value ≤ .002), the following EEG measures would remain 

significantly different between groups:  

 

 Occipital Relative theta power  

 Occipital relative alpha power  

 Occipital absolute alpha peak amplitude 

 Frontal absolute delta power  

 Frontal relative alpha power  

 Frontal absolute alpha peak amplitude  

 

5.4 Discussion 

 

5.4.1 Summary of findings 

 

This chapter aimed to determine EEG differences between adults with DS and TD age- 

and sex- matched controls. The analysis here has shown that for this sample of adults 

with DS, delta and theta power values are significantly higher whereas alpha and beta 

power values are significantly lower compared to age- and sex- matched control 

subjects. Results provide evidence for specific hypotheses related to delta, theta and 

alpha power. Beta activity, however, was hypothesised to have more power in 

individuals with DS, but less power was found. Overall these results are indicative of a 

slower EEG spectrum in individuals with DS compared to matched TD controls, with 
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significantly more power in slower frequencies and significantly less power in mid-to-

faster frequencies.  

 

The pattern of findings observed is true for both occipital and frontal regions. This is in 

line with original hypotheses. In frontal regions, however, differences in absolute values 

of alpha and beta power (although still lower in DS) were not significant. A secondary 

aim of this chapter was to determine if between-group comparisons differed for power 

results obtained from absolute and relative values. It was hypothesised regions 

investigated and measures used would not yield different results. Although group 

differences for absolute and relative values did not differ substantially, effect sizes were 

generally larger for relative values. This is likely due to normalisation of the values 

(ensuring each value is relative to each individuals’ total EEG activity) having the effect 

of reducing variability in the sample, and consequently increasing statistical power.  

Due to the high degree of variability in individuals with DS, with larger SD values 

compared to the control group, utilising relative values may therefore be particularly 

beneficial in this population. 

 

According to effect sizes, the most strongly associated EEG characteristics with group 

in both regions were those relating to alpha activity (relative alpha power in occipital 

and relative alpha power in addition to absolute alpha peak amplitude in frontal). 

Interestingly alpha peak frequency was not significantly associated with group in either 

region but was significantly associated with EC paradigm in the frontal region, with 

participants with DS who had undergone a full-block paradigm having a faster peak by 

approximately 0.8 Hz compared to participants with DS who had the split-block 

protocol. EC paradigm was also associated with significantly more occipital (absolute 

and relative) and frontal (relative only) theta power in the full-block compared to split-

block protocol. 

 

In terms of regional differences, although the pattern of activity did not differ between 

the two regions investigated, some absolute measures that reached significance in 

occipital regions failed to reach significance for frontal regions (the effect of group on 

absolute alpha power and absolute beta power, and the effect of paradigm on absolute 

theta power). Participants with DS had larger SD values in frontal regions compared to 

occipital regions for all these absolute variables, and so this may have affected 

statistical power here. Alternatively, the effect of group may be smaller for these 

variables in frontal regions. This is evidenced by stronger effect sizes in occipital 

regions compared to frontal regions when relative alpha power and relative beta power 
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are examined (56.5% occipital vs 20.9% frontal effect size for relative alpha power; 

15.0% occipital vs 8.7% frontal effect size for relative beta power). 

 

5.4.2 Research in context 

 

As discussed previously, differences in alpha band activity between individuals with DS 

and TD controls have tended to be the most commonly reported finding in the 

literature. This is in keeping with the findings of this study, in that the effect of group 

was strongest for alpha band characteristics (power and peak amplitude). Also in 

keeping with the findings of this study, a number of other studies have reported no 

effect of group on alpha peak frequency (Politof et al., 1996; Babiloni et al., 2010). 

However, the difference in peak frequency variability (SD) in individuals with DS 

compared to controls is large (.14 Hz SD in controls compared to 1.07 Hz SD in DS), 

which may have impacted statistical power. It is unclear whether these differences in 

variability also exist within-individuals (i.e. whether individuals with DS have an 

unstable peak frequency). Furthermore, paradigm effects significantly influenced 

occipital alpha peak frequency in this sample, and so the sensitivity of alpha peak 

frequency to small differences in EC protocol may go some way to explaining the 

inconsistencies within the literature regarding this measure (with some studies 

reporting a slower frequency in individuals with DS; Ono et al., 1992; Soininen et al., 

1993; Murata et al., 1994; Locatelli et al., 1996; Velikova et al., 2011).  

 

Overall when examining previous literature the findings of this study are consistent with 

many previous studies: higher delta activity (Locatelli et al.,1996; Partanen, et al., 

1996; Politoff et al., 1996; Medaglini et al.1997; Babiloni et al., 2009; Babiloni et al., 

2010; Velikova et al., 2011), higher theta activity (Ono, 1993; Murata et al., 1994; 

Locatelli et al.,1996; Partanen, et al., 1996; Politoff et al., 1996; Medaglini et al.1997; 

Babiloni et al., 2009; Babiloni et al., 2010; Velikova et al., 2011), lower alpha activity 

(Babiloni et al., 2009; Medaglini et al.1996; Locatelli et al., 1996), and lower beta 

activity (Babiloni et al. (2009, 2010)) in DS have previously been reported. The same 

pattern of activity in terms of similar results for absolute and relative values has also 

previously been reported by studies utilising both measures (Locatelli et al., 1996; 

Medaglini et al., 1996).  

 

Previous studies into regional differences in EEG activity between individuals with DS 

compared to controls have also tended to report that differences in alpha and beta 

activity between groups may be most apparent in posterior regions (Medaglini et 

al.1997; Locatelli et al.,1996). Furthermore, stronger effect sizes for delta activity in 
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frontal compared to occipital regions were found in this study, which is also in keeping 

with previous literature (Babiloni et al 2009; Medaglini et al.1997; Locatelli et al.,1996). 

Strongest effects in the literature for theta power tend to be in central regions 

(Medaglini et al.1997; Locatelli et al.,1996), which have not been examined in this 

study. 

 

It is likely that splitting the EC recording block reduced drowsiness of participants, as 

intended. This is evidenced by theta power – a measure that is increased with light 

drowsiness (Britton et al., 2016) – being significantly increased in participants with DS 

who underwent the full-block paradigm. Mechanisms underlying the relationship 

between EC paradigm and occipital alpha peak frequency also found here are less 

clear (higher alpha peak frequency associated with full-block protocol). Although it is 

reported that drowsiness can also influence alpha band oscillations (Gennaro et al., 

2001; Putilov & Arcady et al., 2012), and so again this relationship may be due to 

differing levels of drowsiness between paradigms. 

 

There is evidence to suggest that the key findings of this chapter – that individuals with 

DS may have more power in slower frequencies and less power in mid-to-faster 

frequencies compared to TD individuals – may be related to cognitive impairment. In 

particular previous research has shown that in the TD population, increased delta and 

reduced alpha activity have been associated with poorer memory performance 

(Babiloni et al., 2007). It has also been demonstrated in the TD population that 

individuals with mild cognitive impairment (MCI) have increased delta and theta activity 

and decreased alpha activity compared to healthy controls (Guner et al., 2017; Gouw 

et al. 2017). Furthermore research suggests these spectral differences, in addition to 

reductions in beta power, become more pronounced with progression from MCI to AD 

(Hsiao et al, 2013; Scrascia et al. 2014). It is therefore possible the differences 

between individuals with DS and TD controls detailed in this chapter may be related to 

the presence of ID or AD-neuropathology in individuals with DS, or a combination of 

these two factors. 

 

At present the contribution of these factors and their underlying mechanisms are 

unclear. It is likely, however, that atypical or delayed maturation plays an important 

role. In particular, studies examining EEG changes that take place during brain 

maturation in the TD population have reported age-related reductions in delta and theta 

power and age-related increases in alpha and beta power between ages 10 and 13 

years (Cragg et al, 2011). As the mean age of participants in this study is 27 years – 

which is prior to when significant amyloid-burden is expected in adults with DS (Mann, 
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1988) – maturational atypicalities may be the most likely explanation. Studies 

examining different age groups are necessary to elucidate this further.  

 

5.4.3 Limitations, strengths and future research 

 

A particular strength of this study is that EEG measurements utilised were not limited to 

the occipital region. Examining both occipital and frontal areas indicates that group 

differences are likely to be widespread. Nevertheless conclusions cannot be drawn 

about other regions (central, parietal or temporal), and it is possible group differences 

in other regions do not follow the same pattern in occipital and frontal areas. Alternative 

analysis methods are available that may be more appropriate for scalp-wide analysis of 

EEG group differences (for example statistical parametric mapping; Kiebel et al., 2005). 

Future studies may benefit from using such approaches in order to fully explore 

regional differences across the whole scalp. 

 

An additional strength of this study is that EEG differences between groups were 

examined with both absolute and relative values. As mentioned previously, 

“normalising” EEG power in each band relative to an individual’s total EEG power helps 

to account for individual differences in broadband power. This has the beneficial effect 

of reducing the influence of potential morphological and anatomical differences 

between subjects; for instance an individual with a larger brain may have more power 

in all bands. Expressing power as a relative value therefore improves the ability to 

compare group data from participants that have a high degree of inter-individual 

variability in brain anatomy, as in the population with DS. Furthermore, peak frequency 

measures were obtained from all participants by removing the individual linear trend 

from the EEG spectrum to achieve “spectral normalisation”. This method has not been 

utilised in DS studies previously but is particularly useful in this population due to many 

individuals having a small peak that is not measurable beyond the natural 1/f 

background EEG noise. It could therefore be argued that the peak frequency measures 

reported here are more valid than those reported within previous literature for this 

population. Nevertheless, due to the significant impact of EC protocol on this measure, 

conclusions regarding alpha peak frequency in this study should still be taken with 

caution. 

 

Although variation in EC protocol between individuals with DS is a limitation of this 

study, its effects have been controlled for by including this as a covariate during 

analysis. It has also provided useful information pertaining to the most appropriate 

design for these studies in this population, which was a secondary aim of this thesis. 
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Results suggest that splitting the recording block into smaller segments may have 

reduced drowsiness, and so it is recommended that future studies use this approach.  

 

This study benefitted from only including individuals with genetically confirmed trisomy 

21 and the exclusion of individuals with noticeable cognitive decline or a diagnosis of 

dementia. This ensured results were not influenced by any individuals with a rarer form 

of DS (for example mosaicism where it is likely not all neuronal cells have three copies 

of chromosome 21), and results are valid for individuals with DS prior to dementia 

onset. These variables are not commonly controlled for within DS studies, despite them 

substantially improving the validity and generalisability of findings. 

 

As with any study comparing two datasets collected in different EEG laboratories, 

differences in data acquisition may have influenced findings. For example, a recorded 

voice as opposed to a live researcher giving instructions may cause differences in 

participant motivation between groups. It is unclear in what way such factors may have 

influenced the group differences reported in this study. Qualitatively the data was the 

same in both groups (EC resting-state) and so it is unlikely small differences in protocol 

would have influenced overall conclusions. Additionally, the findings reported here are 

fairly robust (many p values <.01), were confirmed in two distant brain regions, and 

most were significant for both absolute and relative power values. 

 

Utilising open-source datasets is beneficial for allowing small exploratory studies of 

clinical populations access to a large control cohort in order to obtain closely matched 

control subjects, and reduce costs, and burden on research participants. The current 

study here achieved age-matching on an individual basis and sex-matching on a group 

basis. Close age-matching is particularly important in this population due to the 

delayed maturational and accelerated ageing aspects of DS, and so this is a particular 

strength of the study. 

 

A further consideration of this study is that only EC resting-state activity was examined. 

It is therefore problematic to generalise findings beyond this specific task and to make 

conclusions about overall differences in brain activity between individuals with DS and 

TD controls. This study would have benefitted from using comparable EO resting-state 

data to make additional group comparisons for more in-depth investigation. Future 

studies should incorporate this.  

 

It should be noted that the sample size for this study is relatively small (n = 25 per 

group). It is possible that this has impacted on the ability to detect significant 
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differences between groups. For example, the group difference in alpha peak 

frequency (see Figure 5.4) did not reach statistical significance in this study, but may 

have done so in a larger sample.  

 

An additional consideration is that although there was an age range of 16 to 44 years 

in this study, the mean age of the sample was relatively young (28 years). The ability to 

generalise conclusions beyond young adults with DS is therefore limited. As mentioned 

previously, it is necessary to examine different age groups to determine potential 

underlying mechanisms of the group differences in EEG activity reported here. 

Longitudinal studies targeted at children, young adults and older adults (aged over 35 

years) would also further enable maturational and ageing influences to be fully 

examined. 

 

Future studies may benefit from the examination of gamma band activity. Gamma 

activity is commonly filtered out in human EEG studies due to muscle artifacts and 

mains power interference sharing gamma frequencies. As significant differences 

between groups have been reported in all bands investigated it is possible gamma 

activity would also differ between the groups. Further studies, ideally with data 

acquired from electrically shielded laboratories to eliminate noise from mains power 

lines, are necessary to investigate this.  

 

 

 

5.4.4 Conclusions 

 

The analysis within this chapter suggests that during EC resting state EEG recordings, 

individuals with DS have an overall slower EEG spectrum compared to matched TD 

control subjects. Alpha band in particular shows strong group differences, with power 

reduced in DS. Also illustrated is the utility of analysing topographical differences, of 

using absolute as well as relative power values, and the importance of carefully 

considering EC protocols (with split-block paradigms potentially reducing drowsiness). 

It remains to be determined, however, whether observed differences occur in brain 

regions not investigated here, and whether differences are stable across the lifespan or 

are instead associated with the dynamic processes of either cerebral maturation or 

ageing in DS. Exploring individual differences in EEG variables within the DS 

population will help elucidate any relationships between these variables and age and/or 

cognitive ability. This will be the focus of the following two experimental chapters. 
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Chapter 6 Within Down syndrome EEG correlates of 

general cognitive ability 

  

6.1 Introduction 

 

This chapter will focus on individual differences in EEG activity between adults with DS, 

using both EO and EC resting-state EEG data. Measures of interest will be correlated 

with a measure of general cognitive ability (raw KBIT-2 score) to ascertain how 

individual EEG differences may relate to general cognitive ability in this population.  

 

Methods within this chapter have been informed by findings of the previous chapter, 

which pertained to differences in EC resting-state activity between individuals with DS 

and TD controls. Specifically, analysing both occipital and frontal regions, and activity 

within all bands investigated (delta, theta, alpha and beta), was found to be informative. 

These methods will therefore be implemented within the current chapter. Previous 

studies examining the relationship between resting-state EEG characteristics and 

general cognitive ability within adults with DS have reported associations across the 

EEG spectrum. Differences in resting-state EEG power and frequency measures within 

individuals with DS and their relationships with cognitive abilities reported by previous 

studies are detailed within the literature review in section 2.4. 

 

6.1.1 Frequency 

 

Overall, results regarding alpha frequency are mixed, with some studies reporting 

positive associations with cognitive ability (Soininen et al.,1993; Locatelli et al.,1996; 

Velikova et al., 2011) and others reporting no significant associations (Ono et al., 1993; 

Politoff et al., 1996). There is, however, some evidence to suggest slowing of the alpha 

peak frequency may occur with the onset of AD in people with DS (Visser et al., 1996). 

This may therefore confound results regarding correlations with ability in studies where 

participants with dementia were not excluded (e.g. Velikova et al., 2011). The present 

study aims to overcome this issue by excluding individuals with evidence of cognitive 

decline or a diagnosis of dementia. 

 

 

6.1.2 Power  
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In terms of power differences associated with cognitive ability within individuals with 

DS, it is difficult to ascertain which reported relationships are independent of cognitive 

decline and which may be confounded by this. Overall there is a suggestion that 

measures indicative of a slower EEG spectrum (i.e. more power in lower frequencies 

and less power in higher frequencies) are associated with lower cognitive ability. This is 

provided by the two studies investigating this that attempted to control for the presence 

of significant cognitive decline by either excluding individuals with evidence of decline 

(Politoff et al., 1996), or by analysing these individuals separately to individuals without 

detectable decline (Medaglini et al., 1997). There is also an indication in the TD 

literature that lower-alpha (typically 8-10 Hz) and upper-alpha (typically 10-13 Hz) 

bands have different roles in cognition (discussed in Chapter 2), with lower-alpha 

activity potentially indicative of attentional readiness and upper-alpha activity potentially 

reflecting the activity of memory systems. Studies analysing alpha as a single band 

may therefore lack the ability to detect significant relationships with cognitive ability. 

The present study aims to overcome this potential limitation by analysing lower-alpha 

and upper-alpha each as individual frequency bands. 

 

Although utilising both absolute and relative EEG measures was found to be an 

informative approach in the previous chapter, statistical analysis within the current 

chapter will only use absolute values (both absolute and relative values will still be 

shown within EEG spectra figures, however, for illustrative purposes). This is due to the 

larger number of statistical tests within this chapter. Consequently, utilising relative 

values in addition to absolute would greatly increase the chance of a type 1 statistical 

error. As discussed in the previous chapter, three studies have explored resting-state 

activity in individuals with DS using both absolute and relative EEG values (Locatelli et 

al., 1996; Medaglini et al., 1996; Politoff et al., 1996). None of these studies reported 

any differences in associations using these different values. 

 

6.1.3 Reactivity 

 

The collection of both EO and EC resting-state data will enable the investigation of 

alpha reactivity to eye-opening (i.e. the EO/EC alpha power ratio; given as a 

percentage). Only one previous study has investigated this in individuals with DS and 

reported the EO/EC ratio was significantly associated with all neuropsychological 

measures investigated, with a higher ratio (i.e. larger percentage change between EC 

and EO activity) associated with better cognitive performance (Partanen et al., 1996). 

This measure will therefore be utilised within the current study. 
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6.1.4 Age-related change 

 

It is of further relevance that in adults with DS age-related changes have been reported 

for power (Soininen et al., 1993; Murata et al., 1994; Locatelli et al., 1996), frequency 

(Ono et al., 1992; Soininen et al., 1993; Murata et al., 1994; Katada et al., 2000), and 

reactivity (Partanen et al., 1996) measures. Overall studies are indicative of slowing of 

the EEG spectrum and reduced reactivity with increasing age. Controlling for 

participant age within analysis is therefore necessary and will be implemented within 

this study. Age will also be considered in more depth in the analyses within this 

chapter.  

 

Furthermore, as slowing of alpha rhythms are commonly reported in adults with DS, an 

extended-band approach (4-13 Hz) will be implemented for the investigation of alpha 

peak characteristics and alpha reactivity measures. The aim of this is to improve 

measurement accuracy by ensuring alpha activity and peaks that fall below 8 Hz are 

included for the purpose of these analyses. As discussed in section “2.2 Resting-state 

EEG”, alpha rhythms are known to operate across a wider frequency range than 8-13 

Hz and there is substantial inter-individual variability regarding these limits (Haegens et 

al., 2014). Within previous DS literature, similar extended-band approaches have been 

utilised, including 7-14 Hz (Kreezer, 1939), 6-14 Hz (Ellingson & Lathrop, 1973), 4-14 

Hz (Soininen et al., 1993), and 4-13 (Salem et al., 2015).  

  

6.1.5 Aims and hypotheses 

 

The primary aims of this chapter are to examine whether EEG activity is predicted by 

participant age and experimental variables (counterbalanced order and for EC 

paradigms whether the protocol was split-block of full-block), and whether KBIT-2 score 

is predicted by EEG activity. Significant predictors of EEG activity will be controlled for 

when exploring associations between EEG measures and KBIT-2 score. EEG 

measures to be investigated include EO and EC band power (delta, theta, lower-alpha, 

upper-alpha, and beta), in addition to peak amplitude, peak frequency, and reactivity in 

the extended-alpha range. 

 

Investigating whether age or experimental variables are significant predictors of any 

EEG measures not only allows the effect of age on EEG measures to be examined but 

also enables the influence of any significant variables to be accounted for when 

associations between EEG measures and general cognitive ability are investigated. It 

will also be investigated whether any relationships with age are still present when older 
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adults (aged over 35) are excluded from analyses, in order to determine whether aging 

effects are likely to be associated with the development of neuropathology associated 

with AD in DS.  

 

Based on previous DS literature indicating slowing of the EEG spectrum and reduced 

reactivity with age, it is hypothesised that: 

 

a) paradigm variables (order and EC paradigm) will not significantly influence 

any EEG measures; 

b) measures indicative of slowing (slower alpha peak frequency, more power 

in lower-frequencies (delta, theta and lower-alpha), less power in upper-

frequencies (upper-alpha and beta) and reduced reactivity, will be 

associated with increasing age in EC measures (no significant relationships 

are expected for EO measures and age); 

c) for EEG measures which are significantly predicted by age, these will 

remain significant when adults over age 35 are removed from analyses. 

 

In relation to cognitive ability, based on previous findings, it is hypothesised that: 

 

d) Lower KBIT-2 score will be associated with measures indicative of EEG 

slowing (slower alpha peak frequency and more power in lower-frequencies 

(delta, theta and lower-alpha)), reduced alpha reactivity, and reduced alpha 

peak amplitude; 

e) Due to a lack of previous literature investigating the relationship between 

EO resting-state activity and cognitive ability in individuals with DS, it is 

hypothesised there will be no relationships between any EO measures and 

KBIT-2 – all significant relationships are expected for the EC paradigm only 

(detailed above). 

 

A secondary aim is to investigate whether findings differ between occipital and frontal 

regions. It is hypothesised that: 

 

f) significant relationships with slow waves (delta and theta activity) would be 

found in frontal regions only, whereas relationships with alpha activity would 

be in occipital regions only. No differences between regions were expected 

for any relationships with beta activity.  
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6.2 Methods  

 

6.2.1 Participants 

 

Participants with a clinical diagnosis of dementia (n=5) or evidence of possible 

cognitive decline (according to CAMDEX-DS assessment; n=9) were excluded from 

this stage of analysis. Further details on these criteria are provided in section “3.4 

Cognitive Assessment”. Participants were also excluded if they had a form of DS other 

than trisomy 21 (partial trisomy (n=1) and translocation (n=1)), or if no genetic 

information had been obtained (n=1). All remaining participants able to complete one or 

both recording paradigms were included for analysis (n=48). KBIT-2 raw score was 

used to provide a measure of general cognitive ability (see section “3.4 Cognitive 

Assessment”). No participants included in this chapter had a partially completed KBIT-

2, and so no scores were imputed.  

 

The following is an explicit list of inclusion criteria for participants in this chapter: 

 

 Sufficient data (≥ 12 2-second segments) was obtained from the participant 

during one or both recording paradigms 

 Participant has genetically confirmed trisomy 21 

 Participant did not show evidence of cognitive decline or have a diagnosis of 

dementia at the time of cognitive assessment 

 

6.2.2 EEG analysis 

 

See section “3.7.2 EEG measures” and section “5.2.3 EEG processing and analysis” 

for full details on EEG pre-processing and analysis methods. EEG analysis methods in 

this chapter are identical to those described in the previous chapter under “5.2.3 EEG 

processing and analysis”. However, within this chapter alpha activity was split into 

lower and upper bands (rationale discussed above in “6.1 Introduction”). Therefore, the 

following frequency bands of interest were analysed: delta 0.5 – 4 Hz; theta 4 – 8 Hz; 

low-alpha 8 – 10 Hz; upper-alpha 10 – 13 Hz; beta 13 – 30 Hz. Additionally within this 

chapter alpha peak features (amplitude and frequency) were calculated within the 4-13 

Hz range (rationale discussed above in “6.1 Introduction”).  

 

Furthermore, occipital alpha reactivity values were obtained for participants completing 

both recording paradigms (n=36). These were calculated on an individual basis 
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according to methods described by Partanen et al. (1996), by subtracting individual EC 

power (4-13 Hz range) from individual EO power in this range, divided by each 

individual’s total EC power in this range and multiplied by 100 (% change): 

 

Equation: 100((EC-EO)/EC)  

 

Where individuals had a negative value (i.e. alpha activity was supressed with eye-

closure and increased with eye-opening; the opposite of what is considered typical 

alpha activity), participants were given a score of zero. In order to determine whether 

this approach was influencing results, analyses were also carried out with these 

individuals excluded (n=3). The same results were given by both approaches. Results 

from the original approach (assigning a reactivity score of zero to these participants) 

are described here (see Table 6.4).  

 

6.2.3 Statistics and visualisation 

 

Customised MATLAB scripts were used to produce power-frequency spectrum plots. 

All statistical analysis was performed with SPSS. Once each EEG measure had been 

calculated for every participant, data was screened for significant outliers (defined as > 

3 SD from the group mean). Participants who had one EEG measure or more for which 

their data was considered an outlier were excluded from the analysis of those particular 

measures.  

 

A two-step approach was taken to statistical analysis. First, multiple regression was 

used to examine predictors of each EEG measure. Predictors of EEG measures that 

were examined included age and experimental variables (counterbalanced order of 

paradigm and additionally for EC data whether the paradigm was split or full-block). 

Secondly, multiple regression was used to examine whether each EEG measure was a 

significant predictor of KBIT-2. Significant predictors of EEG activity in stage 1 were 

used as additional predictors in this second stage of analysis in order to account for 

predictors contributing to variability within each EEG measure. All analyses were 

carried out for both regions (except for alpha reactivity which was only analysed in the 

occipital region). R squared values are for the total variance explained by predictors, 

and are used to provide an indication of effect size. 

 

6.3 Results  
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6.3.1 Participants 

 

Table 6.1 shows the demographics of participants included in this chapter. All 

participants retained after exclusion criteria were applied completed the EO paradigm 

and, of these participants, 36 also completed the EC paradigm (no retained 

participants completed EC alone). 

 

Paradigm n Mean age (SD) Age 
range 

Sex KBIT-2 (raw) KBIT-2 
range 

EC 36 30.92 (11.03 
SD) 

16 – 56 17M;  
19F 

54.83 (19.64 
SD) 

10 – 102 

EO 48 30.02 (10.86 
SD) 

16 – 56 22M; 
26F 

54.67 (18.91 
SD) 

10 – 108 

Table 6.1 Participant demographics  

Participant demographics for each resting-state paradigm. All EC participants included in this 

stage of analysis also completed the EO paradigm. Age given in years. 

 

Two different participants each had one EEG measure for which their data was 

considered an outlier; these were EC frontal delta and EO frontal alpha peak 

amplitude. Histograms were used to assess the normality of the distribution for each 

variable.  

 

For the EO paradigm there were 13 individuals aged over 35 years, and for the EC 

paradigm there were 10. Sample sizes for analyses with these individuals excluded 

were therefore 35 and 26 (EO and EC respectively).  

 

 

 

 

6.3.2 Eyes-open paradigm 

 

6.3.2.1 EO power-frequency spectra 
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Figure  6.1 EO power-frequency spectra 

EO power-frequency spectra for occipital (top) and frontal (bottom) regions. Absolute and 

relative values are shown for each individual, in addition to absolute (red; visibility mostly 

obscured by blue line in the frontal region) and relative (blue) grand averages. Grand average y 

axis scale corresponds to absolute values (relative value grand average y axis scale not 

shown). 

 

6.3.2.2 EO paradigm: Occipital region results 

 

Using EO data, multiple linear regressions were used to predict EEG measures (stage 

1 analysis) for the occipital region (Table 6.2), based on variables of age and paradigm 

order. Multiple linear regressions were then used to predict raw KBIT-2 score based on 

each EEG measure, in addition to any significant predictors of the relevant measure in 

stage 1 (stage 2 analysis). In Table 6.2 both stages are shown in individual rows under 

each EEG measure (blue rows). Grey rows show results of multiple regressions with 

participants aged over 35 removed. 

 

EO Occipital: Stage 1 analysis results  
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For the occipital region (Table 6.2 and Figure 6.2), age was a significant predictor of 

EEG activity in the alpha band, including both lower-alpha and upper-alpha power, in 

addition to alpha peak amplitude (positive relationship for all). No other EEG measures 

were significantly predicted by age in this region.  

 

When participants over the age of 35 were excluded from analyses, only the 

relationship between age and alpha peak amplitude remained significant. Interestingly 

this relationship became stronger with the exclusion of these participants (R2 of .097 

increased to .157). 

 

EO Occipital: Stage 2 analysis results 

 

No variables investigated significantly predicted KBIT-2 in this region. 

 

Eyes-open; Occipital (n=48) M (SD) Equation Individual 
predictors 

Unstandardised B 
(SE), Standardised B 

Total 
R

2
 

Absolute delta power (0.5-4 Hz 
range) (log μV

2
) 

5.286 
(.487) 

    

Outcome: Absolute delta power  F(2, 45) = .422, 
p= .658 

Order: p= .823 
Age: p= .432 

.017 (.079), .033; 
-.005 (.007), -.122 

.018 

Outcome: KBIT-2  F(1, 46) = .265, 
p= .609 

Delta: p= .609 2.942 (5.712), .076 .006 

Absolute theta power (4-8 Hz 
range) (log μV

2
) 

4.642 
(.585) 

    

Outcome: Absolute theta power  F(2, 45) = .218, 
p= .805 

Order: p= .692 
Age: p= .539 

.028 (.095), .062; 

.005 (.008), .096 
.010 

Outcome: KBIT-2  F(1, 46) = .341, 
p= .562 

Theta: p= .562 2.771 (4.749), .086 .007 

Absolute lower-alpha power (8-
10 Hz range) (log μV

2
) 

4.365 
(.800) 

    

Outcome: Absolute lower-alpha 
power 

 F(2, 45) = 
2.478, 
p= .095 

Order: p= .330 
Age: p= .033* 

.122 (.124), .146; 

.024 (.011), .325 
.099 

Outcome: KBIT-2  F(2, 45) = .204, 
P= .817 

Lower-alpha: 
p= .816 
Age: p= .528 

-.858 (3.658), -.036; 
.171 (.269), .098 

.009 

Outcome: Absolute lower-alpha 
power 

4.310 
(.850) 

F(2, 32) = 
2.042, 
p= .146 

Order: p= .302 
Age: p= .060 

.169 (.161), .182; 

.045 (.023), .339 
.113 

Outcome: KBIT-2  F(1, 33) = .012, 
p=. 913 

Lower-alpha: 
p= .913 

51.911 (17.420), .019 .000 

Absolute upper-alpha power (10-
13 Hz range) (log μV

2
) 

3.924 
(.644) 

    

Outcome: Absolute upper-alpha 
power 

 F(2, 45) = 
2.067, 
p= .138 

Order: p= .688 
Age: p= .049* 

.041 (.101), .060; 

.018 (.009), .302 
.084 

Outcome: KBIT-2  F(2, 35) = .393, 
p= .677 

Upper-alpha: 
p= .515 
Age: p= .453 

-2.969 (4.522), -.101; 
 
.203 (.268), .117 

.017 

Outcome: Absolute upper-alpha 
power 

3.867 
(.676) 

F(2, 32) = .960, 
p= .394 

Order: p= .684 
Age: p= .175 

.054 (.132), .073; 

.026 (.019), .248 
.057 

Outcome: KBIT-2  F(1, 33) = .719 Upper-alpha: 
p= .719 

-1.808 (4.983), -.063 .004 

Absolute beta power (13-30 Hz 
range) (log μV

2
) 

2.803 
(.550) 

    

Outcome: Absolute beta power  F(2, 45) = 2.258 
p= .116 

Order: p= .720 
Age: p= .064 

-.031 (.086), -.054; 
.014 (.008), .282 

.091 

Outcome: KBIT-2  F(1, 46) = .269 
p= .606 

Beta: p= .606 -2.621 (5.050), -.076 .006 

Absolute peak amplitude (4-13 .237     
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Hz range; log μV
2
) (.168) 

Outcome: Absolute peak 
amplitude 

 F(2, 45) = 
2.417, 
p= .101 

Order: p= .262 
Age: p= .039* 

.030 (.026), .168; 

.005 (.002), .316  
.097 

Outcome: KBIT-2  F(2, 45) = .184, 
p= .833 

Peak amp: p= 
.902 
Age: p = .593 

2.143 (17.307), .019; 
.144 (.268), .083 

.008 

Outcome: Absolute peak 
amplitude 

.233 
(.178) 

F(2, 32) = 
3.029, 
p= .062 

Order: p= .220 
Age: p= .023* 

.041 (.033), .211; 

.011 (.005), .403 
.159 

Outcome: KBIT-2  F(2, 32) = .703, 
p= .502 

Peak amp: p= 
.834 
Age: p = .314 

4.249 (20.105), .039; 
.575 (.562), .189 

.042 

Absolute peak frequency (4-13 
Hz range; log μV

2
) 

8.525 
(2.395) 

    

Outcome: Absolute peak 
frequency 

 F(2, 45) = .124, 
p= .884 

Order: p= .800 
Age: p= .632 

.100 (.391), .040; 

.017 (.034), .075 
.005 

Outcome: KBIT-2  F(1, 46) = .109 
p= .743 

Peak freq: 
p= .743 

.383 (1.163), .049 .002 

Table 6.2 EO occipital multiple regression power and alpha peak results 

Multiple regression results for EEG power and alpha peak (4-13 Hz range) measures from EO 

recording condition (n=48) for occipital region.
 
Grey rows show results of multiple regressions 

with participants aged over 35 removed (n=35 remaining).
 
Asterisk used to denote significance 

level (≤ .05*, ≤ .01**, ≤ .001***). Effect sizes of each model are illustrated with R
2
 value.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 118 

        A                                                                  B 

 

 

Figure 6.2 Panel of graphs showing significant relationships found for EO Occipital EEG data. 

Scatter graphs show the significant positive relationship between age and lower-alpha power 

(A), upper-alpha power (B), absolute alpha peak amplitude (C). Data shown is for all 

participants (n=48). Regression lines shown.  

 

 

6.3.2.3 EO paradigm: Frontal region results  

 

Using EO data, multiple linear regressions were used to predict EEG measures (stage 

1 analysis) for the frontal region (Table 6.3), based on variables of age and paradigm 

order. Multiple linear regressions were then used to predict raw KBIT-2 score based on 

each EEG measure, in addition to any significant predictors of the relevant measure in 

stage 1 (stage 2 analysis). In Table 6.3 both stages are shown in individual rows under 

each EEG measure (blue rows). Grey rows show results of multiple regressions with 

participants aged over 35 removed. 

 

C 
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EO Frontal: Stage 1 analysis results 

 

For the frontal region (Table 6.3 and Figure 6.3), age was a significant predictor of beta 

power (positive relationship). When participants over the age of 35 were excluded from 

analyses, this relationship no longer remained significant. 

 

EO Frontal: Stage 2 analysis results 

 

Delta power significantly predicted KBIT-2 in this region (see Figure 6.3B and Figure 

6.4). Age was not a significant predictor of KBIT-2 in any regressions. 

 

Eyes-open; Frontal (n=48) M (SD) Equation Individual 
predictors 

Unstandardised B 
(SE), Standardised B 

Total 
R

2
 

Absolute delta power (0.5-4 Hz 
range) (log μV

2
) 

5.802 
(.522) 

    

Outcome: Absolute delta power  F(2, 45) = 3.148, 
p= .053 

Order: p= .259 
Age: p= .079 

.092 (.080), .167; 
-.013 (.007), -.263 

.123 

Outcome: KBIT-2  F(1, 46) = 4.625 
p= .037* 

Delta: p= .037* 10.943 (5.088), .302 .091 

Absolute theta power (4-8 Hz 
range) (log μV

2
) 

5.129 
(.582) 

    

Outcome: Absolute theta 
power 

 F(2, 45) = .192, 
p= .826 

Order: p= .685 
Age: p= .745 

.039 (.095), .063; 
-.003 (.008), -.051 

.008 

Outcome: KBIT-2  F(1, 46) = 2.548, 
p= .117 

Theta: p= .117 7.442 (4.663), .229 .052 

Absolute lower-alpha power (8-
10 Hz range) (log μV

2
) 

4.593 
(.804) 

    

Outcome: Absolute lower-alpha 
power 

 F(2, 45) = .906 
p= .411 

Order: p= .353 
Age: p= .238 

.121 (.129), .143; 

.014 (.011), .183 
.039 

Outcome: KBIT-2  F(1, 46) = 1.211, 
p= .277 

Lower-alpha: 
p= .277 

3.765 (3.421), .160 .026 

Absolute upper-alpha power 
(10-13 Hz range) (log μV

2
) 

4.075 
(.607) 

    

Outcome: Absolute upper-
alpha power 

 F(2, 45) =1.316, 
p= .278 

Order: p= .557 
Age: p= .113 

.057 (.096), .090; 

.014 (.008), .245 
.055 

Outcome: KBIT-2  F(1, 46) = 1.004, 
p= .321 

Upper-alpha: 
p= .321 

4.556 (4.546), .146 .021 

Absolute beta power (13-30 Hz 
range) (log μV

2
) 

3.130 
(.572) 

    

Outcome: Absolute beta power  F(2, 45) = 3.081 
p= .056 

Order: p= .728 
Age: p= .018* 

.031 (.088), .051; 

.019 (.008), .258 
.120 

Outcome: KBIT-2  F(2, 45) = .382 
p= .685 

Beta: p= .526 
Age: p= .736 

3.329 (5.204), .101; 
.093 (.274), .053 

.017 

Outcome: Absolute beta power 3.049 
(.543) 

F(2, 32) = 1.584, 
p= ,221 

Order: p= .967 
Age: p= .099 

-.004 (.104), -.007; 
.025 (.015), .298 

.090 

Outcome: KBIT-2  F(1, 33) = .134, 
p= .717 

Beta: p= .717 2.266 (6.199), .064 .004 

1
Absolute peak amplitude (4-13 

Hz range; log μV
2
) 

.222 
(.152) 

    

Outcome: Absolute peak 
amplitude

 
 F(2, 44) = .077, 

p= .926 
Order: p= .995 
Age: p= .709 

.000 (.025), .001; 

.001 (.002), .059 
.003 

Outcome: KBIT-2  F(1, 45) = .696, 
p= .409 

Peak amp: 
p= .409 

15.547 (18.641), .123 .015 

Absolute peak frequency (4-13 
Hz range; log μV

2
) 

8.370 
(2.242) 

    

Outcome: Absolute peak 
frequency 

 F(2, 45) = .345, 
p= .710 

Order: p= .760 
Age: p= .412 

-.112 (.364), -.048; 
-.026 (.032), -.128 

.015 

Outcome: KBIT-2  F(1, 46) = .001 
p= .980 

Peak freq: p= 
.980 

.031 (1.243), .004 .000 

 

Table 6.3 EO Frontal multiple regression power and alpha peak results 
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Multiple regression results for EEG power and alpha peak (4-13 Hz range) measures from EO 

recording condition (n=48) for frontal region.
 
Grey rows show results of multiple regressions with 

participants aged over 35 removed (n=35 remaining).
 1 

Denotes an outlier was removed from 

this EEG measure. Asterisk used to denote significance level (≤ .05*, ≤ .01**, ≤ .001***). Effect 

sizes of each model are illustrated with R
2
 value. 

 

 

Figure 6.3 Panel of graphs showing significant relationships found for EO Frontal EEG data. 

Scatter graphs show the significant positive relationship between age and absolute beta power 

(A) in the frontal region. Graph F shows the significant positive relationship between raw KBIT-2 

score and absolute delta power in this region. Data shown is for all participants (n=48). 

Regression lines shown.

 

 

Figure 6.4 EO power-frequency spectrum for median split KBIT-2  
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Occipital (left) and frontal (right) EO spectra split by raw KBIT-2 score (median split; n=23 per 

group). High KBIT-2 score shown blue and low KBIT-2 score shown red (2 participants not 

represented within this chart as their KBIT-2 raw score matched the median value). 

6.3.2.4 Adjusted p-value analysis 
 

The above analysis details the results of 36 statistical tests. Due to the exploratory 

nature of this investigation, p-values have not been adjusted to correct for multiple 

comparisons. Using a Bonferroni correction (p-values are divided by the number of 

comparisons; adjusted p-value ≤ .001), no EO EEG measures would remain 

significantly associated with age or general cognitive ability.  
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6.3.3 Eyes-closed paradigm 

 

6.3.3.1 EC power-frequency and reactivity spectra 

 

 

Figure 6.5 EC power-frequency spectra 

EC power-frequency spectra for occipital (top) and frontal (bottom) regions. Absolute and 

relative values are shown for each individual, in addition to absolute (red) and relative (blue) 

grand averages. Grand average y axis scale corresponds to absolute values (relative value 

grand average y axis scale not shown). 
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Figure 6.6 Comparison between EO and EC power-frequency spectra 

Occipital (left) and frontal (right) EC (red) and EO (blue) EEG spectra. Difference between the 

two conditions is particularly apparent across the frequency range investigated (4-13 Hz), with 

peak-suppression in response to eye-opening clearly illustrated by the lack of a peak for the EO 

condition. 

 

6.3.3.2 EC paradigm: Occipital region results 

 

Using EC data, multiple linear regressions were used to predict EEG measures (stage 

1 analysis) for the occipital region (Table 6.4) based on variables of age, paradigm 

order, and EC paradigm. Multiple linear regressions were then used to predict raw 

KBIT-2 score based on each EEG measure, in addition to any significant predictors of 

the relevant measure in stage 1 (stage 2 analysis). In Table 6.4 both stages are shown 

in individual rows under each EEG measure (green rows). Grey rows show results of 

multiple regressions with participants aged over 35 removed (n=26 remaining). 

 

EC Occipital: Stage 1 analysis results  

 

For the occipital region (see Table 6.4 and Figure 6.7), age was a significant predictor 

of EC alpha peak amplitude (increased with increasing age). This relationship did not 

remain significant when participants over the age of 35 were excluded from analyses. 

 

EC Occipital: Stage 2 analysis results  
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EC alpha peak amplitude significantly predicted KBIT-2 in this region (raw KBIT-2 

score increased with increasing amplitude). The difference in alpha peak amplitude 

between high and low KBIT-2 scoring participants is illustrated by Figure 6.8. Absolute 

alpha reactivity ratio was also trending towards significance as a predictor of KBIT-2 in 

this region (raw KBIT-2 score increased with increasing alpha reactivity). Age was not a 

significant predictor of KBIT-2 in any regressions for this region. 

 

Eyes-closed; Occipital 
(n=36) 

M (SD) Equation Individual 
predictors 

Unstandardised B 
(SE), Standardised B 

Total 
R

2
 

Absolute delta power (0.5-4 
Hz range) (log μV

2
) 

5.582 
(.565) 

    

Outcome: Absolute delta 
power 

 F(3, 32) = .070, 
p= .975 

Order: p= .712 
Paradigm: p= .887 
Age: p= .972 

.040 (.107), .071; 

.015 (.102), .026; 

.000 (.009), .006 

.007 

Outcome: KBIT-2  F(1, 34) = .689, 
p= .412 

Delta: p= .412 4.903 (5.905), .141 .020 

Absolute theta power (4-8 Hz 
range) (log μV

2
) 

5.21 
(.698) 

    

Outcome: Absolute theta 
power 

 F(3, 32) = 1.043, 
p= .387 

Order: p= .206 
Paradigm: p= .555 
Age: p= .144 

.164 (.127), .237; 
-.072 (.121), -.105; 
.017 (.011), .264 

.089 

Outcome: KBIT-2  F(1, 34) = 2.183, 
p= .149 

Theta: p= .149 6.908 (4.675), .246 .060 

Absolute lower-alpha power 
(8-10 Hz range) (log μV

2
) 

5.480 
(1.097) 

    

Outcome: Absolute lower-
alpha power 

 F(3, 32) = 1.673, 
p= .192 

Order: p= .197 
Paradigm: p= .595 
Age: p= .066 

.256 (.194), .235; 

.099 (.185), .092; 

.032 (.017), .327 

.136 

Outcome: KBIT-2  F(1, 34) = 1.954, 
p= .171 

Lower-alpha: 
p= .171 

4.175 (2.987), .233 .054 

Absolute upper-alpha power 
(10-13 Hz range) (log μV

2
) 

4.884 
(.785) 

    

Outcome: Absolute upper-
alpha power 

 F(3, 32) = 1.026, 
p= .394 

Order: p= .365 
Paradigm: p= .413 
Age: p= .221 

.131 (.143), .169; 

.113 (.136), .146; 

.016 (.013), .220 

.088 

Outcome: KBIT-2  F(1, 34) = .680, 
p= .415 

Upper-alpha: 
p= .415 

3.505 (4.250), .140 .020 

Absolute beta power (13-30 
Hz range) (log μV

2
) 

3.52 
(.545) 

    

Outcome: Absolute beta 
power 

 F(3, 32) = .394 
p= .758 

Order: p= .444 
Paradigm: p= .892 
Age: p= .347 

.070 (.091), .146; 
-.012 (.086), -.025; 
.008 (.008), .173 

.036 

Outcome: KBIT-2  F(1, 34) = .239 
p= .628 

Beta: p= .628 -.3.390 (6.930), -.084 .007 

Absolute peak amplitude (4-
13 Hz range; log μV

2
) 

.504 
(.272) 

    

Outcome: Absolute peak 
amplitude 

 F(3, 32) = 3.288, 
p= .033* 

Order: p= .290 
Paradigm: p= .218 
Age: p= .010** 

.049 (.045), .181; 

.055 (.043), .202; 

.011 (.004), .442 

.236 

Outcome: KBIT-2  F(2, 33) = 2.169, 
p= .130 

Peak amp: p= 
.050* 
Age: p = .711 

25.947 (12.741), .361; 
-.118 (.315), -.066 

.116 

Outcome: Absolute peak 
amplitude 

.457 
(.268) 

F( 3, 22) = .829, 
p= .492 

Order: p= .374 
Paradigm: p= .690 
Age: p= .172 

.053 (.059), .197); 

.023 (.058), .089; 

.013 (.009), .307 

.102 

Outcome: KBIT-2  F(1, 24) = 4.299, 
p= .049* 

Peak amp: p= 
.049* 

28.924 (13.951), .390 .152 

Absolute peak frequency (4-
13 Hz range; log μV

2
) 

8.075 
(2.062) 

    

Outcome: Absolute peak 
frequency 

 F(3, 32) = .776, 
p= .516 

Order: p= .966 
Paradigm: p= .292 
Age: p= .330 

.016 (.379), .008; 
-.385 (.362), -.189; 
.033 (.033), .177 

.068 

Outcome: KBIT-2  F(1, 34) = 1.193 
p= .282 

Peak freq: p= .282 -1.753 (1.605), -.184 .034 

Absolute reactivity ratio (4-13 
Hz range; %; minus given 0) 

14.111 
(7.754) 

    

Outcome: Absolute reactivity  F(3, 32) = 1.541, 
p= .223 

Order: p= .317 
Paradigm: p= .136 
Age: p= .566 

1.403 (1.381), .182; 
2.015 (1.317), .263; 
.070 (.122), .100 

.126 
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Outcome: KBIT-2  F(1, 34) = 4.060, 
p= .052 

Reactivity: p= .052 .827 (.411), .327 .107 

 

Table 6.4 EC occipital multiple regression power, alpha peak and alpha reactivity (4-13 Hz) 

results 

Multiple regression results for EEG power, alpha peak and reactivity measures from EC 

recording condition (n=36) for occipital region.
 
Grey rows show results of multiple regressions 

with participants aged over 35 removed (n=26 remaining).
 
Asterisk used to denote significance 

level (≤ .05*, ≤ .01**, ≤ .001***). Effect sizes of each model are illustrated with R
2
 value. 

Absolute reactivity ratio values shown are for participants with a negative ratio given zero (if 

these participants are excluded, all predictors of absolute reactivity ratios remain non-

significant. For KBIT-2 outcome, p= .178 and total R
2
 is .057 for absolute reactivity ratio).

 

 

Figure 6.7 Panel of graphs showing significant relationships found for EC Occipital EEG data. 

Scatter graphs show the significant positive relationship between age and absolute peak 

amplitude (A). Scatter graphs also show the significant positive relationship between raw KBIT-

2 score and absolute peak amplitude (B). Data is shown for all participants (n=36). Regression 

lines shown. 

 

A B 
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Figure 6.8 EC power-frequency spectrum for median split KBIT-2 

 

Occipital (left) and frontal (right) EC spectra split by raw KBIT-2 score (median split; n=17 per 

group). High KBIT-2 score (blue) and low KBIT-2 score (red) shown (2 participants not 

represented within this chart as their KBIT-2 raw score matched the median value).  

 

6.3.3.3 EC paradigm: Frontal region results 

 

Using EC data, multiple linear regressions were used to predict EEG measures (stage 

1 analysis) for the frontal region (Table 6.5) based on variables of age, paradigm order, 

and EC paradigm. Multiple linear regressions were then used to predict raw KBIT-2 

score based on each EEG measure, in addition to any significant predictors of the 

relevant measure in stage 1 (stage 2 analysis). In Table 6.5 both stages are shown in 

individual rows under each EEG measure (green rows). Grey rows show results of 

multiple regressions with participants aged over 35 removed (n=26 remaining). 

 

EC Frontal: Stage 1 analysis results  

 

For the frontal region (see Table 6.5 and Figure 6.9), EC delta power decreased with 

increasing age. This relationship remained significant, and in fact became stronger, 

when participants over 35 were excluded. Absolute peak amplitude increased with 

increasing age, however this was no longer significant when participants over age 35 

were excluded. 

 

EC Frontal: Stage 2 analysis results  
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Theta power and alpha peak amplitude both significantly predicted KBIT-2 score in this 

region. KBIT-2 significantly increased with higher values on both these EEG measures. 

The difference in alpha peak amplitude and theta power between high and low KBIT-2 

scoring participants is illustrated by Figure 6.8. Lower-alpha power was also trending 

towards significance as a predictor of KBIT-2 in this region (raw KBIT-2 score 

increased with increasing lower-alpha power). Age was not a significant predictor of 

KBIT-2 in any regressions for this region. 

 

 

Eyes-closed; Frontal (n=36) M (SD) Equation Individual 
predictors 

Unstandardised B 
(SE), Standardised B 

Total 
R

2
 

1
Absolute delta power (0.5-4 Hz 

range) (log μV
2
) 

6.060 
(.496) 

    

Outcome: Absolute delta power  F(3, 31) = 2.253, 
p= .102 

Order: p= .173 
Paradigm: p= .174 
Age: p= .036* 

-.121 (.087), -.247; 
.115 (.082), .234; 
-.017 (.008), -.375 

.179 

Outcome: KBIT-2  F(2, 32) = 1.443, 
P= .251 

Delta: p= .105 
Age: p= .414 

11.791 (7.071), .297; 
.261 (.315), .147 

.083 

Outcome: Absolute delta power 6.122 
(.441) 

F(3, 22) = 3.049, 
p= .050* 

Order: p= .091 
Paradigm: p= .189 
Age: p= .044* 

-.151 (.085), -.339; 
.115 (.085), ,265; 
-.029 (.014), -.411 

.294 

Outcome: KBIT-2  F(2, 23) = .744, 
p= .486 

Delta: p= .313 
Age: p= .321 

10.300 (9.995), .228; 
.714 (.704), .224 

.061 

Absolute theta power (4-8 Hz 
range) (log μV

2
) 

5.611 
(.624) 

    

Outcome: Absolute theta power  F(3, 32) = .176, 
p= .912 

Order: p= .531 
Paradigm: p= .959 
Age: p= .656 

.075 (.118), .121; 

.006 (.112), .009; 

.005 (.010), .082 

.016 

Outcome: KBIT-2  F(1, 34) = 5.177, 
p= .029* 

Theta: p= .029* 11.448 (5.032), .364 .132 

Absolute lower-alpha power (8-
10 Hz range) (log μV

2
) 

5.665 
(1.057) 

    

Outcome: Absolute lower-alpha 
power 

 F(3, 32) = 1.046, 
p= .386 

Order: p= .291 
Paradigm: p= .476 
Age: p= .224 

.207 (.192), .197; 

.132 (.183), .127; 

.021 (.017), .219 

.089 

Outcome: KBIT-2  F(1, 34) = 4.011, 
p= .053 

Lower-alpha: 
p= .053 

6.034 (3.013), .325 .106 

Absolute upper-alpha power 
(10-13 Hz range) (log μV

2
) 

4.933 
(.734) 

    

Outcome: Absolute upper-alpha 
power 

 F(3, 32) = .805, 
p= .500 

Order: p= .515 
Paradigm: p= .272 
Age: p= .541 

.089 (.135), .122; 

.144 (.129), .198; 

.007 (.012), .110 

.070 

Outcome: KBIT-2  F(1, 34) = 2.657, 
p= .112 

Upper-alpha: 
p= .112 

7.200 (4.418), .269 .072 

Absolute beta power (13-30 Hz 
range) (log μV

2
) 

3.520 
(.545) 

    

Outcome: Absolute beta power  F(3, 32) = .758 
p= .526 

Order: p= .742 
Paradigm: p= .391 
Age: p= .253 

.033 (.100), .062; 

.083 (.096), .155; 

.010 (.009), .208 

.066 

Outcome: KBIT-2  F(1, 34) = .025 
p= .874 

Beta: p= .874 .985 (6.175), .027 .001 

Absolute peak amplitude (4-13 
Hz range; log μV

2
) 

.503 
(.292) 

    

Outcome: Absolute peak 
amplitude 

 F(3, 32) = 2.811 
p= .055 

Order: p= .216 
Paradigm: p= .450 
Age: p= .012* 

.062 (.050), .216; 

.036 (.047), .125; 

.012 (.004), .436 

.209 

Outcome: KBIT-2  F(2, 33) = 2.555, 
p= .093 

Peak amp: p= 
.034* 
Age: p = .686 

25.984 (11.720), .386; 
-.127 (.310), -.071 

.134 

Outcome: Absolute peak 
amplitude 

.462 
(.299) 

F( 3, 22) = 
1.682, p= .200 

Order: p= .201 
Paradigm: p= .747 
Age: p= .055 

.082 (.062), .272; 

.020 (.062), .069; 

.020 (.010), .420 

.187 

Outcome: KBIT-2  F(1, 24) = 4.466, 
p= .045* 

Peak amp: p= 
.045* 
 

26.340 (12.464), .396 .157 

Absolute peak frequency (4-13 8.105     
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Hz range; log μV
2
) (2.060) 

Outcome: Absolute peak 
frequency 

 F(3, 32) = .667, 
p= .578 

Order: p= .924 
Paradigm: p= .333 
Age: p= .350 

.037 (.381), .018; 
-.357 (.363), -.176; 
.032 (.034), .170 

.059 

Outcome: KBIT-2  F(1, 34) = 1.119 
p= .298 

Peak freq: p= .298 -1.702 (1.609), -.179 .032 

 

Table 6.5 EC frontal multiple regression power and alpha peak results 

Multiple regression results for EEG power and alpha peak measures (4-13 Hz range) from EC 

recording condition (n=36) for frontal region.
 
Grey rows show results of multiple regressions with 

participants aged over 35 removed (n=26 remaining).
 1 

Denotes an outlier was removed from 

this EEG measure. Asterisk used to denote significance level (≤ .05*, ≤ .01**, ≤ .001***). Effect 

sizes of each model are illustrated with R
2
 value. 

 

 

Figure 6.9: Panel of graphs showing significant relationships found for EC Frontal EEG data. 

Scatter graphs show the significant negative relationship between age and absolute delta power 

(A; n=35 due to one outlier removed), and the significant positive relationship between age and 

absolute alpha peak amplitude (B). Scatter graphs also show the significant positive relationship 

between raw KBIT-2 score and absolute theta power (C) and absolute alpha peak amplitude 

(D). Graphs include all participants (n=36) unless otherwise stated.  

C 

A B 

D 
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6.3.3.4 Adjusted p-value analysis 
 

The above analysis details the results of 36 statistical tests. Due to the exploratory 

nature of this investigation, p-values have not been adjusted to correct for multiple 

comparisons. Using a Bonferroni correction (p-values are divided by the number of 

comparisons; adjusted p-value ≤ .001), no EC EEG measures would remain 

significantly associated with age or general cognitive ability.  

 

6.3.4 Overall results summary 

 

  EO paradigm EC paradigm 

     Occipital Frontal Occipital Frontal 

   Delta power         

 

  Age (positive association) 

Theta power         

 

  Age (negative association) 

Lower-alpha power         

 

  KBIT-2 (all associations positive) 

Upper-alpha power         

 

  KBIT-2 & age (all associations positive) 

Beta power         

 

  Age not significant when >35 yrs excluded 

Peak amplitude          

 

    

Peak frequency         

   EO/EC reactivity  n/a n/a   n/a 

    

Table 6.6  Summary of results 

Summary table illustrating results of this chapter. Significant relationships (p ≤ .05) between 

EEG measures and age are shown (positive association dark grey; negative association light 

grey). Where relationships with age are no longer significant when participants over age 35 are 

excluded, table segments contain a diagonal black line. Significant relationships between EEG 

measures and KBIT-2 are shown in blue (all associations positive). EEG measures which have 

a significant association with both age and KBIT-2 are shown in purple (all associations 

positive).  

 

 

 

 

 

6.4 Discussion 

 

6.4.1 Summary of findings 

 

An overall summary of results is provided in section 6.3.4 (above). 
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6.4.1.1 EO paradigm summary 

 

For the EO paradigm, increasing age was associated with increased alpha power (both 

lower-alpha and upper-alpha), and increased alpha peak amplitude. These 

associations were found in the occipital region only. In the frontal region, increasing 

age was associated with increased beta power. The only EEG measure which 

remained significantly associated with age when participants over 35 were excluded 

from analyses was occipital alpha peak amplitude. The relationship between this 

measure and age became stronger with the exclusion of older participants, and 

resulted in the strongest effect size found within the EO paradigm (R2=.159). 

 

One EEG measure in the EO paradigm significantly predicted KBIT-2: higher frontal 

absolute delta power was associated with higher KBIT-2 score. 

 

6.4.1.2 EC paradigm summary 

 

For the EC paradigm, increasing age was associated with decreased delta power in 

the frontal region, and increased alpha peak amplitude in both regions. Only the 

association between age and frontal delta power remained significant when 

participants over age 35 were excluded from analysis. The relationship between this 

measure and age became stronger with the exclusion of older participants, and 

resulted in the strongest effect size found within the EC paradigm (R2=.294). 

 

Higher alpha peak amplitude in both regions was associated with higher KBIT-2 score. 

Higher frontal theta power was also associated with higher KBIT-2 score. In addition to 

this, higher occipital alpha reactivity and higher frontal lower-alpha power were both 

trending towards an association with higher KBIT-2 score (trending relationships not 

shown in Table 6.6). 

 

6.4.1.3 Paradigm comparison 

 

For both paradigms, increasing age was associated with increased alpha peak 

amplitude. Using values from the occipital region, effect sizes of this relationship were 

largest for the EC paradigm when all participants were included in analyses (R2=.236 

vs R2=.097), and for the EO paradigm when participants over 35 were excluded from 

analyses (R2=.159 vs R2=.102). Further associations with increasing age and increased 
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alpha activity (lower-alpha and upper-alpha power) were seen in the EO paradigm 

alone. 

 

KBIT-2 score was significantly associated with different EEG measures in each 

paradigm. Age was not significantly associated with general cognitive ability in any 

analyses for which this variable was accounted for. In EC paradigms, greater frontal 

theta power and greater alpha peak amplitude in both regions was associated with 

greater general cognitive ability. In contrast to this, in the EO paradigm greater frontal 

delta activity was associated with greater general cognitive ability. Effect sizes were 

largest for the relationship between KBIT-2 and EC measures (occipital peak 

amplitude, R2=.116; frontal peak amplitude, R2=.134; frontal theta power, R2=.132) 

compared to EO (frontal absolute delta power, R2=.091).  

 

6.4.2 General cognitive ability 

 

6.4.2.1 Findings in the context of original aims and hypotheses 

 

The primary aim of this chapter was to examine how individual differences in EEG 

activity are correlated with general cognitive ability in adults with DS (full details of 

original aims and hypotheses are provided in section 6.1.2). It was hypothesised that 

lower general cognitive ability would be associated with EC measures indicative of 

EEG slowing (i.e. slower alpha peak frequency and more power in delta, theta and 

lower-alpha bands), reduced alpha reactivity, and reduced alpha peak amplitude. No 

relationships between EEG measures and general cognitive ability were expected for 

EO data. 

 

As predicted, greater alpha peak amplitude was associated with greater general 

cognitive ability (greater alpha reactivity was only trending towards this, however). In 

contrast to original hypotheses, measures indicative of EEG slowing were not 

associated with lower general cognitive ability. Instead, greater activity in low 

frequencies (delta and theta; lower-alpha only trending) were associated with greater 

general cognitive ability. Additionally, there were no significant relationships between 

alpha peak frequency and cognitive ability. Overall all significant associations between 

EEG measures and general cognitive ability were found in EC data, apart from one 

significant relationship was found in EO data only (delta power). 

 

6.4.2.2 Findings in the context of previous research 
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Peak amplitude itself has not been previously utilised as an EEG measure within DS 

literature. Alpha band power is commonly used instead. Peak amplitude is, however, a 

measure that is qualitatively different to band power. It is thought that EEG bands can 

be explained by an architecture that is centred around peak activity in the alpha (or 

extended-alpha) range (Babiloni et al., 2010; Klimesch et al., 2004). In this way, the 

peak of activity in this range is thought of as an anchor-point of the EEG spectrum. It is 

also noteworthy that the alpha peak is a consequence of neuronal synchronisation (the 

synchronised activity of similarly oriented neurons firing at a particular frequency, and 

their activity summating in a measurable peak at the level of the scalp). 

Desynchronised activity in this band would result in a lower peak or loss of peak, such 

as that which occurs with eye-opening. Consequently, a higher peak amplitude is 

indicative of greater neuronal synchronisation in the alpha generating network. 

 

One purported role of alpha activity in cognition is that of an inhibitory attentional filter, 

with the frequency of the alpha peak acting as a pacemaker for this (Klimesch, 2007; 

Klimesch, 2011). A further important role associated with the alpha peak is that it is 

coupled with beta and gamma activity (Carlqvist et al., 2005; Osipovaet al., 2008; 

Bonnefond & Jensen, 2015). Coupling between frequency bands is known to be 

important in coordinating neural processing (Bonnefond & Jensen, 2015), and coupling 

deficits have been reported in early stages of AD in the TD population (Poza et al., 

2017). Consequently, a lower amplitude of peak activity may negatively impact on 

these processes and a higher amplitude may be beneficial. In line with this it was 

demonstrated in the previous chapter that individuals with DS had a lower peak 

amplitude compared to matched TD controls. The results presented in this chapter 

therefore appear to show that individuals with a peak amplitude closer to TD-levels (i.e. 

of higher amplitude) are also closer to TD-levels in regard to general cognitive ability 

(i.e. higher KBIT-2 score).  

 

Occipital reactivity (or EO/EC ratio) has only been investigated in adults with DS by one 

previous study. Partanen et al. (1996) found greater reactivity (i.e. larger difference 

between EC and EO activity) was associated with greater cognitive ability. The same 

finding was only trending towards significance here. Reactivity is often utilised as a 

measure of arousal/cerebral activation (e.g. Barry & De Blasio, 2017). It therefore 

appears that arousal/cerebral activation, as measured by EEG reactivity, may 

associated with general cognitive ability in adults with DS; however more research is 

needed to confirm this. Interestingly studies in the TD population have also shown 

reactivity to be linked with cognition, by demonstrating reduced reactivity in dementia 
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and showing this can be used to predict poorer cognitive function at follow-up in those 

with dementia (van der Hiele et al., 2008).  

 

The findings in this study of increased delta and theta power with greater general 

cognitive ability is in contrast to most previous studies in DS. For example, Medaglini et 

al. (1997) reported higher delta and theta power was correlated with lower cognitive 

ability in adults with DS on a range of tests. However, the present study found 

associations between delta and cognitive ability only in EO recordings, whereas the 

delta findings of Medaglini et al. (1997) were from an EC paradigm.  

 

A negative association between theta power and cognitive ability has also been 

reported by Politoff et al. (1996). This study used 0.4 Hz frequency bins for EEG 

analysis and reported that power at 4.5 Hz was negatively correlated with cognitive 

ability. However, the tests of ability used by Politoff et al. (1996) were tests of dementia 

(MMSE and picture absurdities test). The KBIT-2 used here is instead indicative of IQ 

score (i.e. general cognitive ability). Consequently direct comparison between these 

two studies is problematic.  

 

In regard to alpha power, Velikova et al. (2011) reported higher cognitive ability (as 

measured by a variety of cognitive tests) was associated with higher power at the 

upper-alpha range and lower power at the lower-alpha range. These findings for lower-

alpha are the opposite to those reported here (although the relationship in this study 

between greater lower-alpha power and greater general cognitive ability was only 

trending), and no relationships were found here between upper-alpha power and 

general cognitive ability. However, Velikova et al. (2011) did not exclude individuals 

with dementia from analyses, which makes comparing these findings to the current 

study problematic because dementia has been associated with changes in EEG 

activity (i.e. slowing) in both the DS and TD population. 

 

There are no previous reports of EO resting-state data from adults with DS, aside from 

a small number of studies which were excluded from the literature review of this thesis 

due to either testing conditions (EO or EC) being unclear, or if it was unclear whether 

results referred to EO or EC recordings (outlined in section 2.4.1.3). It is therefore 

especially problematic to compare the EO findings concerning delta power here with 

previous DS literature. Interestingly within the TD population delta power, particularly 

over frontal areas, has been shown to increase with concentration (see Harmony 

(2015) for a review). As the EO condition here involved participants watching a video –  
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and was therefore not a classical resting-state task – this could potentially explain why 

correlations were seen in this paradigm and not in EC data. 

 

As frontal delta is indicative of attention, it would seem logical that participants with 

greater evidence of attention during EO recordings (i.e. greater frontal delta power) are 

those with higher general cognitive ability, as found here. A general principle of the 

functional role of EEG oscillations is that activity in slow frequencies (i.e. delta) are able 

to travel further distances that faster oscillations, and are therefore posited to be 

involved in the integration of information between distant brain regions (Moran & Hong, 

2011). It is of interest that long-range connections are thought to be particularly 

impaired in DS (Anderson et al., 2013). Greater frontal delta power may therefore be 

indicative of less impaired long-range integration, with a measurable impact on general 

cognitive ability. Connectivity analyses are necessary to explore this further.  

 

6.4.3 Predictors of EEG activity 

 

6.4.3.1 Findings in the context of original aims and hypotheses 

 

Age and paradigm variables 

 

An additional primary aim was to determine whether age or EEG paradigm variables 

were predictors of any EEG measures (stage 1 analysis). This enabled the influence of 

these variables to be accounted for when associations between EEG measures and 

general cognitive ability were investigated (stage 2 analysis). It was hypothesised that 

measures indicative of slowing (outlined above), in addition to reduced alpha reactivity, 

would be associated with increasing age in EC measures only (no significant 

relationships were expected for EO measures and age). Paradigm variables (order and 

EC paradigm) were not expected to significantly influence any EEG measures. 

 

The influence of age on EEG variables was not in line with these original hypotheses. 

Instead, increasing age was associated with an increase in power in EO occipital alpha 

activity (lower-alpha power, upper-alpha power, and alpha peak amplitude), and frontal 

beta power. In the EC paradigm, increasing age was associated with decreased frontal 

delta and increased alpha peak amplitude in both regions. As hypothesised, paradigm 

variables did not significantly influence any EEG measures.  

 

Further exploration of ageing 

 



 135 

A secondary aim of this chapter was to investigate whether any relationships with age 

were still present when older adults (aged over 35) were excluded. This was done in 

order to exclude individuals who may already have AD neuropathology (but no 

detectable signs of cognitive decline as measured by the CAMDEX-DS). From this it 

can be inferred whether significant associations between EEG measures and age are 

likely to be a consequence of older age (and therefore potentially related to AD 

neuropathology accumulation), or whether such associations are also significantly 

present earlier, and therefore may take place across adulthood in individuals with DS.  

 

It was hypothesised that EEG measures predicted by age would remain significant 

when these individuals were removed from analyses (indicating any ageing effects are 

more likely to be related to general ageing as opposed to AD neuropathology). Only 

two measures remained significantly predicted by age when older adults were 

excluded. These included EO occipital peak amplitude and EC frontal delta power. This 

finding suggests that these relationships are likely to linked to maturational or lifespan 

factors, as opposed to the development of AD neuropathology. Interestingly, effect 

sizes indicate that both these relationships were strengthened by the exclusion of older 

participants.  

 

 The majority of relationships were no longer significant following the exclusion of older 

participants (see Table 6.6). Such measures are likely to be mostly influenced by 

factors affecting older adults with DS (e.g. amyloid accumulation), as opposed to 

maturational or lifespan changes.  

 

It is of note that relationships between general cognitive ability and EEG measures for 

which age was a significant predictor in stage 1 analysis (occipital and frontal peak 

amplitude) remained significant when older adults were excluded from these analyses. 

 

6.4.3.2 Findings in the context of previous research 

 

The lack of age-related slowing of the EEG spectrum (apparent from either power or 

frequency measures) contrasts with previous research overall. However, it is important 

to consider that most age-related changes in this study occurred with EO paradigm. 

Only one previous study in DS that was not excluded from the literature review in this 

thesis collected EO resting-state data, however this data was only used to obtain EEG 

reactivity ratios and was not analysed in relation to participant variables. The 

relationships between EO EEG measures and ageing reported in this study therefore 

do not contrast with previous findings and instead add to this gap in the literature.  
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For EC resting-state data, an age-related increase in alpha peak amplitude has not 

been previously reported, but this EEG measure has also not been utilised by any 

identified studies. The relationship between alpha peak amplitude and age reported in 

this study therefore does not contrast with previous findings and instead adds to this 

gap in the literature. In the TD population, alpha peak amplitude has been shown to 

increase with increasing age, up to around 20 years of age, before gradually declining 

during adulthood (Dustman et al., 1999; Marshall et al., 2002; Chiang et al., 2011). 

Results presented here contrast to what is reported in the TD population and are 

therefore an interesting finding; particularly as greater peak amplitude was strongly 

associated with greater general cognitive ability in this population of adults with DS. It 

may be that protracted maturation of peak amplitude is occurring. Alternatively, the 

amplitude increase may be compensatory in nature, in response to age-related 

changes in neurophysiology and/or cognition.  

 

Interestingly, when older adults were excluded from analyses the association between 

EO occipital absolute alpha peak amplitude and age not only remained significant but 

also became stronger. In contrast, EC absolute alpha peak amplitude (both frontal and 

occipital) were no longer significant. This suggests that age-related changes in EC 

alpha peak amplitude may be more associated with old age (defined as over age 35 for 

the purpose of this study), as opposed to lifespan changes. This would therefore fit 

more with the hypothesis that changes in this measure are a compensatory response 

to ageing and/or development of AD pathology, as opposed to a change linked to 

delayed maturation. In contrast, EO alpha peak amplitude may be a measure that is 

more associated with delayed maturation than ageing.  

 

In this study EC frontal delta power decreased with increasing age. Specific 

associations between age and delta power in adults with DS have not been previously 

reported – instead overall “slowing” of the EEG spectrum is attributed to an increase in 

theta power and a decrease in power of faster bands. It is unclear why the current 

study found an association between delta and age that has not been identified by 

previous studies. In the TD population there is also lack of consensus regarding the 

effect of age on delta power (Babiloni et al., 2006; Vlahou et al, 2014; Rossini et al., 

2007). In the present study when older adults were excluded from analyses, the 

relationship between frontal delta power and age remained significant. This suggests 

EC and frontal delta power may decrease across adulthood. 

 



 137 

In contrast to findings here, one study has reported an age-related decrease in upper-

alpha and beta power in DS (Murata et al., 1994), whereas in the present study these 

measures increased with age. Reasons for the contrasting findings between the 

current study and Murata et al. (1994) are unclear, however individuals with cognitive 

decline or dementia were not excluded by Murata et al. (1994), which could therefore 

have confounded these results. It is of note that in the TD population, beta power is 

thought to increase with age (Babiloni et al., 2006; Rossini et al., 2007; Vlahou et al, 

2014), as found in the current study. Associations between age and upper-alpha and 

beta power did not remain significant when older participants were excluded, indicating 

age-related changes in these measures are likely to be associated with older age in 

this population. 

 

No associations between age and alpha peak frequency were identified in this study, 

which is in contrast to previous research (see section 2.4.2.2). It is possible that the 

lack of findings in the present study regarding this measure are a consequence of 

excluding individuals with cognitive decline or a diagnosis of dementia. When 

considering only previous studies which have attempted to control for the potentially 

confounding presence of cognitive decline on this measure, Locatelli et al. (1996) did 

not find a significant relationship between alpha peak frequency and age, however 

Murata et al. (1994) and Katada et al. (2000) both reported a decrease in alpha peak 

frequency with increasing age.  

 

6.4.4 Regional differences 

 

6.4.4.1 Findings in the context of original aims and hypotheses 

 

A further secondary aim of this chapter was to investigate whether findings differed 

between occipital and frontal regions. It was hypothesised that significant relationships 

with delta and theta activity would be found in frontal regions only, whereas 

relationships with alpha activity would be in occipital regions only. No differences 

between regions were expected for any relationships with beta activity.  

 

In line with these hypotheses, associations of general cognitive ability with both delta 

and theta power were found in the frontal region only. However, associations between 

general cognitive ability and alpha peak amplitude were found in both regions. 

 

In line with hypotheses, delta power was only significantly associated with age in the 

frontal region, and alpha power associations with age were found only in the occipital 
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region (however alpha peak amplitude was significantly associated with age in both 

regions). The association between beta power and age was found only in the frontal 

region, which was not hypothesised.  

 

6.4.4.2 Findings in the context of previous research 

 

It seems reasonable to assume that relationships between EEG activity and general 

cognitive ability are more likely to identified where activity within each band is 

strongest. It is therefore likely the regional pattern of findings reported here are due to 

delta and theta activity being stronger in frontal regions compared to occipital, and 

alpha activity being strongest over the occipital region compared to frontal (apparent 

from mean power values over each region). This distribution of power is as would be 

expected based on knowledge of EEG activity in the TD population. In line with this, 

within the DS literature associations between cognitive ability and alpha power are 

reported for occipital regions (Soininen et al.,1993; Locatelli et al.,1996; Politoff et al., 

1996; Medaglini et al., 1997; Velikova et al., 2011). However, associations between 

cognitive ability and delta and theta power have been reported across the scalp 

(Politoff et al., 1996; Medaglini et al., 1997; Velikova et al., 2011). Potential issues 

comparing these three studies to the present study are discussed in section 6.4.2.2.  

 

6.4.6 Strengths, limitations and future research 

 

This chapter details the analysis of resting-state EEG data collected from 48 adults with 

DS, which is a relatively large study of this type. The study is also in-depth, with both 

EO and EC data analysed (in addition to differences between these spectrums 

explored), and activity from two distinct regions (occipital and frontal) examined. The 

study also benefits from genetic testing to ensure all participants have trisomy 21, and 

the use of cognitive and medical screening to ensure only participants without cognitive 

decline and without a diagnosis of dementia are included in analyses. This has allowed 

a comprehensive and valid assessment of the relationship between EEG 

characteristics and general cognitive ability (pre-decline) in adults with DS.  

 

The study is limited by lack of gamma band investigation, as in the previous chapter 

(discussed in section 5.4.3). Gamma band frequencies may be particularly useful to 

look at in the future as this would enable alpha-gamma coupling to be examined. As 

previously discussed, alpha-gamma coupling is thought to be important in cognition. 

Differences in coupling between adults with DS may therefore contribute to differences 

in general cognitive ability. Furthermore, examining alpha-gamma coupling would help 
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to interpret whether these processes are related to peak amplitude, and whether this is 

the mechanism through which peak amplitude is associated with general cognitive 

ability in adults with DS. Future studies would therefore benefit from including gamma 

band frequencies in analysis. As discussed previously, gamma was not examined in 

the current study due to the high prevalence of muscle artifacts and electrical noise 

within this region of the EEG spectrum. 

 

Similarly to the previous chapter, although the oldest participant in this sample was 56, 

the mean age of this sample is relatively young (30.9 and 30.0 for EC and EO 

paradigms respectively), and so results cannot easily be generalised to older adults 

with DS. As ageing effects have been identified, further studies of individuals with 

dementia or cognitive decline, and longitudinal studies and/or studies targeted at 

particular age groups would be beneficial to further elucidate these relationships.  

 

A limitation specific to this chapter is the use of KBIT-2 score as a single measure of 

general cognitive ability. Assessment of general cognitive ability in those with DS is 

problematic due to many existing neuropsychological tests producing floor-effects, 

especially when standardised scores are used (d’Ardhuy et al., 2015; Sinai et al., 2016; 

Glenn & Cunningham, 2005). As discussed in section 1.3.3, a variety of IQ tests have 

been used in studies assessing general cognitive ability in adults with DS, however raw 

KBIT-2 score has been used by more recent studies as raw KBIT-2 scores benefit from 

minimal floor-effects (de Sola et al., 2015; Edgin et al., 2010; Sinai et al., 2016; Startin 

et al., 2016). The use of raw KBIT-2 scores is therefore a strength of this study 

(enabling individuals with even severe ID to be assessed and included), however the 

study may have benefitted from the inclusion of an additional measure of general ability 

(e.g. an adaptive behaviour measure). However, I have chosen not to include other 

measures to reduce the chance of a type 1 statistical error (similarly to why additional 

brain regions and relative power values were not analysed).  

 

Due to the in-depth exploration of EEG data in this chapter, many statistical tests have 

been used and p-values have not been adjusted to compensate for this. There is 

therefore the possibility of a type 1 statistical error. Using more stringent criteria (i.e. p 

≤.01) may improve the validity of findings, however due to the exploratory nature of this 

study this was not implemented and therefore remains a potential limitation of this 

analysis. 

 

A further potential limitation of analysis is that the approach taken of excluding adults 

over 35 to explore any ageing effects further. It was assumed that significant 
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relationships between EEG measures and age that did not withstand the exclusion of 

older adults indicated effects had been driven by these older adults, and therefore age 

effects were related to older age (and by implication the development of AD pathology 

in DS) and not a consequence of general ageing across adulthood. However, 

excluding these individuals also reduced sample size (13 and 10 participants excluded 

for EO and EC paradigms respectively), which in turn reduced statistical power. The 

loss of significant age-related changes in EEG measures with the exclusion of older 

adults may therefore potentially be confounded by this. 

 

It appears that the sample sizes of these paradigms were adequate to detect 

significant associations between EEG variables and cognitive and participant variables. 

However, lack of statistical sensitivity could be contributing to the failure in some cases 

to replicate previous findings (e.g. associations with alpha peak frequency). This may 

be particularly true in the EC paradigm, which had a smaller sample size compared to 

EO. It is therefore likely that larger studies would be beneficial. 

 

An additional potential limitation of this study to consider is that cognitive assessment 

was carried out in a separate session to EEG data acquisition. The median time delay 

between assessments was around 2.3 months for adults aged 36 years and above and 

3 months for adults aged 16-35 years (see section 3.1). There was also a large range 

in time between sessions that should be considered (max 265 days for older adults; 

max 761 days for younger adults). It is unlikely KBIT-2 performance would have 

changed within this period of time for younger adults, as cognitive decline is not 

expected, however for older adults this is possible. Consequently, some older 

individuals included in this study may have been experiencing early signs of decline 

that had not been identified. It is worthwhile noting that this is always a limitation to 

consider in any study attempting to exclude individuals with cognitive decline, as it is 

difficult to accurately measure.  

 

Extending sessions to include cognitive testing at the same time as recording EEGs 

would have had its own limitations in terms of participant attention and compliance. 

This is because both cognitive assessment and EEG acquisition can be time 

consuming in this population due to additional protocols for consent and extra time 

necessary to explain instructions, for example. Despite this, future research would 

benefit from ensuring cognitive testing is as close to the EEG session as possible.  

 

Finally, EO resting-state data was collected while participants viewed a silent cartoon. 

Such an approach is common in paediatric populations and also common in studies 
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involving adults with an ID (e.g. Wang et al., 2017). In contrast, classical EO resting-

state paradigms collected from TD adults involve participants viewing a fixation cross 

on a screen. It is therefore likely the paradigm implemented here resulted in additional 

visual cortex stimulation (e.g. motion detection and processing) compared to such 

classical paradigms. A level of caution should therefore be taken in comparing the EO 

results in this thesis to EO resting-state studies where a fixation cross has been used. 

This is also true of reactivity measures, which may have been impacted by visual 

stimulation in EO recordings. 

 

6.4.7 Conclusions 

 

In this study, differing relationships between EEG measures and variables of interest 

were found for each paradigm. It appears that EO resting-state EEG measures may be 

more useful for examining age-related change in DS, whereas EC resting-state EEG 

measures may be more sensitive to individual differences in general cognitive ability. 

 

Overall, age-related slowing of the EEG spectrum did not occur and age was not 

associated with general cognitive ability in any analyses. Instead increasing age was 

associated with an increase in alpha and beta activity in the EO paradigm. Increasing 

age was associated with an increase in alpha peak amplitude in the EC paradigm, in 

addition to a decrease in delta activity in this paradigm.  

 

In EO data, greater frontal delta power is related to greater general cognitive ability; 

potentially through mechanisms related to improved attentional engagement. In EC 

data, it appears that theta-alpha oscillations are associated with general cognitive 

ability, with greater general cognitive ability related to higher peak amplitude in both 

regions and higher theta power in frontal regions (also trending but not significant were 

associations between greater general cognitive ability with greater occipital alpha 

reactivity, and greater general cognitive ability with greater frontal lower-alpha power). 

Due to these findings and also previous studies highlighting these oscillations as 

important, further investigation of the theta-alpha network in DS is warranted. 

 

The following chapter will explore this network using dynamic causal modelling. This 

technique allows potential neurophysiological mechanisms underlying individual 

differences in theta-alpha activity and associations between this and general cognitive 

ability to be elucidated.  
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Chapter 7 Dynamic causal modelling of EEG activity  

 

7.1 Introduction 

 

The previous chapter demonstrated the relationship between theta-alpha oscillations 

and KBIT-2 performance in adults with DS. This chapter aims to model this relationship 

using dynamic causal modelling (DCM). DCM allows connectivity parameters between 

specified brain regions to be estimated, and from this the role of potential underlying 

neurophysiological connections within and between cell populations to be elucidated 

(for example, the balance between excitatory and inhibitory connections).  

 

Understanding the relationship between these neurophysiological connections and 

general cognitive ability in adults with DS is important for informing biomarker and drug 

target search. This is also a particularly pertinent area of research as work from animal 

models suggests that imbalances in excitatory/inhibitory (E/I) mechanisms contribute to 

cognitive impairment in DS (see section 7.1.2). Investigating how E/I mechanisms may 

mediate the relationship between general cognitive ability and theta-alpha activity is 

therefore important. Further, to date no previous studies have reported modelling of 

brain activity in people with DS or other forms of ID, indicating the importance of 

conducting such analysis.  

 

7.1.1 Dynamic Causal Modelling 

 

Modelling brain activity follows similar steps to any form of scientific modelling. By 

definition “modelling” is simply a method for representing or approximating data. At a 

basic level, for instance, the mathematical mean is a model that is commonly used to 

represent (or “model”) an entire dataset. Dynamic models can be used to provide 

information over time and are therefore particularly suited to brain imaging data. As a 

consequence of providing information over time, dynamic models are also able to 

provide information on the direction of relationships (i.e. causal relationships). For this 

reason, DCM is often used to provide measures of directed connectivity (also known as 

“effective connectivity”) with brain imaging data. Originally developed for fMRI by 

Friston et al. (2003), DCM for EEG has become increasingly popular and there is now 

a large literature on these methods, including DCM for resting-state activity (known as 

DCM for steady-state responses) (e.g. Moran et al., 2007, 2008, 2009, 2011).  
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In essence DCM involves the creation of a “synthetic brain” (the model), which is able 

to simulate the generation of EEG data over pre-defined regions and frequencies of 

interest. In this instance, regions of interest are nodes across the alpha network and 

frequencies of interest are 4-13 Hz (informed by previous literature and findings within 

this thesis). The simulated EEG data generated by this synthetic brain is then 

compared to real data collected from participants. Neurophysiological properties of the 

synthetic brain (encoded by a multitude of differential equations representing the 

activity of different neuronal populations) are adjusted to obtain an optimal fit between 

synthetic and participant EEG data. Different hypotheses can then be tested as to 

which aspects of the model are the most important parameters influencing relationships 

of interest (in this case, which model parameters are correlated with raw KBIT-2 score 

and age). Examples of model parameters which may be important include E/I forward 

or backward connections between network nodes, or E/I intrinsic connections within 

network nodes. Within network nodes, E/I parameters can be an overall E/I measure of 

that node or refer to individual E/I contributors (e.g. E/I connections between two 

specific cell populations). Competing hypotheses are evaluated based on their model 

evidence; a process known as Bayesian model selection.  

 

Although still a relatively new technique, DCM studies within clinical populations have 

produced evidence regarding aberrant effective connectivity patterns in depression (Li 

et al., 2017), schizophrenia (Zheng et al., 2017), psychosis (Díez et al., 2017), Tourette 

syndrome (Zapparoli et al., 2017) and addiction (Zare Sadeghi et al., 2017). A 

particular strength of DCM is that it extends beyond traditional methods of connectivity 

analyses, which simply describe differences in data, to offer mechanistic insights into 

the underlying causes of such differences (e.g. functional connectivity measures 

describe non-directional statistical dependencies between brain regions but lack a 

causal description). DCM methods also allow inferences about neuronal states that are 

not directly measurable themselves to be made (Vanvinckenroye et al., 2016), for 

instance the E/I micro-circuitry mediating neuronal activity. It is for this reason DCM 

has been referred to as a “mathematical microscope” (Moran et al., 2011). 

 

7.1.2 Excitation/Inhibition balance in DS 

 

A range of different mouse models have been developed that contain extra copies of 

genes that are similar to the extra chromosome 21 genes found in humans with DS. 

These mouse models of DS also display phenotypic features comparable to those 

found in humans with DS, including deficits in learning and memory. Cognition in 

mouse models of DS is measured through a range of behavioural tests. For example 
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the Morris water maze, which involves mice learning to locate a submerged platform 

using environmental cues. E/I in mouse models can be measured through a variety of 

techniques, including electrophysiological recordings (both in vivo and in vitro) and 

analysis of neural tissue post-mortem. Crucially, mouse model studies (using the 

Ts65Dn mouse model; see section 7.4.2 below for further details) have indicated that 

cognitive impairment in DS may be largely due to a shift in E/I balance to a state of 

over-inhibition (Fernandez et al., 2007; Braudeau et al., 2011; Contestabile et al., 

2017).  

 

In contrast, results from a range of human methodologies (including the analysis of 

neural tissue post-mortem and in vivo measurement of neurotransmitter levels using 

magnetic resonance spectroscopy (MRS)) have indicated that GABAergic inhibition 

may in fact be reduced in individuals with DS relative to TD controls (Whittle et al., 

2007; Reynolds & Warner, 1988; Smigielska-Kuzia et al., 2010; Bhattacharyya et al., 

2009; Ross et al., 1984). Moreover a recent human drug trial aimed at improving 

cognitive function in DS by targeting the hypothesis of increased cortical inhibition was 

unsuccessful using a GABA inverse agonist, with the trial finding no significant 

difference in cognitive ability after 26 weeks (Roche, 2016). The contradictory findings 

between human and animal work in this field, and important ramifications in terms of 

unsuccessful clinical trials, highlight the need to elucidate the role of E/I balance in DS. 

 

7.1.3 Aim and hypotheses 

 

The primary aim of this chapter was to use DCM for steady-state responses to examine 

potential neurophysiological mechanisms underlying the relationship between EC 

resting-state 4-13 Hz activity and raw KBIT-2 score in adults with DS, by modelling the 

alpha-generating network. 

 

Based on animal model studies it was hypothesised that inhibition would be the most 

important network parameter associated with KBIT-2 performance. Specifically, there 

would be an inverse relationship between inhibition and KBIT-2 score, with lower 

inhibition associated with higher KBIT-2 score. 

 

A secondary aim of this analysis was to explore effects of age on parameters of this 

model. Based on findings in the previous chapter, it was hypothesised age would exert 

effects on these parameters in the same direction as KBIT-2, with lower inhibition 

associated with increasing age. Individuals over 35 were not excluded from these 

analyses as a wide age range is suited to the exploratory aims of this chapter.  
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7.2 Methods 

 

7.2.1 Participants  

 

As correlations between theta-alpha activity and KBIT-2 score were found within the 

EC paradigm in Chapter 6, this group of participants was used for DCM analysis 

presented here. This included 36 adults with DS (17M:19F) of mean age 30.92 years 

(11.03 SD), ranging from 16 to 56 years. Raw KBIT-2 score (M = 54.83 (19.64 SD)) 

ranged from 10 to 102, as in the previous chapter. All participants had genetically 

confirmed trisomy 21 and no participants had a clinical diagnosis of dementia or 

evidence of cognitive decline according to the CAMDEX-DS.  

 

The following is an explicit list of inclusion criteria for participants in this chapter: 

 

 Sufficient data EC resting-state data (≥ 12 2-second segments) was obtained 

from the participant during the EEG testing session 

 Participant has genetically confirmed trisomy 21 

 Participant did not show evidence of cognitive decline or have a diagnosis of 

dementia at the time of cognitive assessment 

 

7.2.2 EEG procedures 

 

EEG acquisition and pre-processing was identical to those used previously (see 

methods sections 3.7.1 & 3.7.2, and Chapter 5 section 5.2.3 for full details). Analysis of 

the EEG signal deviated, however, in that power-frequency spectral estimates were 

obtained using multitaper analysis (performed on non-overlapping 2-second epochs (≥ 

12) for every channel), as opposed to wavelet analysis. Additionally, only the absolute 

EEG signal was used within this chapter. Multitaper analysis (Thompson, 1982) is an 

alternative Fourier analysis method for signal decomposition, and has similar benefits 

to wavelet methods in terms of overcoming limitations of traditional Fourier methods 

(discussed in section “3.7.2 EEG measures”). The reason for this differing 

decomposition method is that multitaper analysis is the method implemented within the 

Statistical Parametric Mapping (SPM) toolbox (Eickhoff et al., 2005), and is commonly 

used in DCM for steady-state responses (e.g. Pinotsis et al., 2012). Power-frequency 

spectral estimates from these two methods should not differ, but the multitaper method 

implemented here is thought to benefit from greater frequency specificity (van Vugt et 
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al., 2007). Within this chapter all analysis was performed with MATLAB software 

(version R2014b) installed with the latest version of the open source SPM toolbox 

(version 12), in addition to customised MATLAB scripts. 

  

7.2.3 DCM procedures 

 

Results from the Chapter 6 act as an intermediate step for this analysis by providing 

prior information about potential regions and frequencies of interest for DCM analysis. 

DCM is a hypothesis driven method that requires such prior information. Associations 

between cognitive ability and both occipital and frontal activity in the theta-alpha range 

(power and peak amplitude measures), were demonstrated in Chapter 6. This provides 

prior evidence for involvement of the network generating these frequencies across the 

scalp (opposed to within a discrete region). It is important to note here that alpha 

oscillations are known to operate across a wider frequency range than 8-13 Hz 

(Haegens et al., 2014). For many individuals, significant portions of alpha activity fall 

outside this fixed frequency window. This is likely to be particularly true in adults with 

DS, where in Chapter 6 individual peak frequency values were demonstrated as falling 

across the 4-13 Hz range, and because of evidence suggesting that alpha oscillations 

are centred around peak values (Klimesch et al., 2004). Consequently it may be more 

accurate to consider modelling the 4-13 Hz frequencies of interest here as modelling 

the extended alpha range. For this reason, network nodes of interest were chosen 

based on alpha network literature. 

 

In DCM, nodes of interest are always chosen a priori based on previous literature. 

Based on studies analysing EEG activity in combination with fMRI or TMS (Laufs et al., 

2003; Omata et al., 2013; Bonnard et al., 2016; Li et al., 2017; Dai et al., 2017), 

bilateral nodes of interest in the alpha network were chosen in occipital, parietal, and 

frontal regions. These were specified to be located in the primary visual cortex (V1), 

superior parietal lobule (SPL), and middle frontal gyrus (MFG) respectively. Selection 

of these nodes enabled investigation of a distributed bilateral network across the cortex 

(see Figure 7.1). 
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Figure 7.1 Network nodes 

Illustration of the predefined distributed bilateral network investigated with DCM. Nodes of 

interest include primary visual cortex (blue), superior parietal lobule (teal) and middle frontal 

gyrus (green). Lateral connections between bilateral nodes are shown (black). Also shown for 

each node are forward and backward connections, and intrinsic self-inhibitory connections for 

each node. 

 

Within each node, a canonical microcircuit (CMC) neural mass model (Bastos et al., 

2012) was implemented (see Figure 7.2). The CMC simulates the electrophysiological 

activity of each node within the chosen network using mathematic equations to 

represent biologically plausible cellular activity. For example, differential equations are 

used to describe the postsynaptic activity of a cell population based on its presynaptic 

input. The CMC represents the activity of specific cell populations and their 

connections. Cell populations represented within the CMC implemented here include 

superficial pyramidal cells, deep pyramidal cells, spiny stellate cells, and inhibitory 

interneurons (Bastos et al., 2012). Connections represented include E/I extrinsic, 

intrinsic, and self-connections for each cell population. Connections follow standard 

anatomical rules (e.g. forward connections target spiny stellate cells; backward 

connections target pyramidal cells). The CMC is combined with a second model (the 

observation model) which accounts for the propagation of signals through head tissues 

(Vanvinckenroye et al., 2016). These models together were used to generate synthetic 

EEG data at the predefined nodes of interest (Figure 7.1).  



 148 

 

 

 

Figure 7.2 Microcircuit model within each node 

Illustration of the CMC neural mass model within each node of interest. Two nodes are shown 

(source 1 and source 2). Superficial pyramidal cells (triangle), deep pyramidal cells (triangle), 

spiny stellate cells (spiky circle), and inhibitory interneurons (circle) are represented. Also 

represented are within-population self-connections, between-population connections, and 

between-node connections.  

 

This standard CMC was optimised to generate alpha oscillations through a process 

known as tuning of priors. Here priors refer to physiological assumptions about 

synaptic parameters (e.g. time constants representing the kinetics of different 

synapses). Standard priors within the CMC are optimised for modelling event-related 

potentials, as these were the first form of EEG data analysed with DCM techniques and 

are still commonly analysed today. It is therefore necessary for researchers 

investigating resting-state activity to tune these standard priors towards their effects of 

interest (in this case 4-13 Hz activity).  

 

The priors were tuned by a two-step approach. Firstly, several time constants 

(parameters T1, 2, 3) were increased and population variance (parameter S) was 

decreased. These adjustments were made based on spectral predictions of individual 

parameters on the spectral output of the CMC (spectral predictions themselves were 

based on tools within the SPM environment that show the effect of altering individual 

parameters on spectral output). The effects of this tuning on spectral output was then 

assessed for all subjects through the process of “model inversion”, during which data is 

generated by the model and optimised to fit each individual’s recorded scalp data 

through an iterative loop. The resulting fit between generated and recorded data was 



 149 

then compared for each subject. It was determined that good model fits were only 

achieved for a small number of subjects. As a second step, the parameters from one 

inversion that achieved a good model fit were selected and used as priors to further 

tune the model priors for a second round of model inversions. This second round of 

model inversions achieved good fits for all participants (see Figure 7.5). It is the results 

of these inversions that are reported in this chapter.  

 

Model inversion – the process by which synthetic data is generated by the model and 

optimised to fit recorded scalp data – is here achieved by a method known as DCM for 

cross-spectral densities (CSD). In this method, data is represented in the frequency 

domain (as opposed to the time domain used in DCM for ERPs), and so this method is 

used for EEG resting-state data (Kiebel et al., 2009; Moran et al., 2009). The CSD is a 

simple but comprehensive summary of neuronal activity from multiple sources across 

the frequency spectrum. 

 

CSDs can be visualised by summarising the data they contain in terms of their principal 

eigenmodes (representing the main components of the data). Here, CSDs (both model-

generated and whole-scalp) were decomposed into eight principal eigenmodes, and 

the highest three were visualised for each participant (see Figure 7.4). It is CSD 

eigenmodes that are used to fit model-generated data to whole-scalp data during the 

process of model inversion. The fit of CSD eigenmodes is achieved by changing the 

weight of model parameters (i.e. synaptic parameters of intrinsic and extrinsic 

connections in the network). It is these changes in the weight of model parameters that 

allow inferences about underlying network differences between participants to be 

made.  

 

Inferences about underlying network differences between participants, based on 

changes made in model parameters during model inversion, are determined with 

Bayesian inference. The process of identifying which changes in model parameters 

best explain the data (in this case the observed differences in 4-13 Hz activity in 

relation to KBIT-2 score and age) is achieved through Bayesian Model Reduction and 

Bayesian Model Selection (Penny et al., 2004; Friston et al., 2015). This method uses 

Bayesian statistics to test the association between raw KBIT-2 score and age with 

connectivity parameters of pre-defined network-level candidate models (Figure 7.3). 

For each model, Bayes’ rule is used to determine the probability of the model 

parameters, given the observed data and the model. This probability provides a 

measure of model evidence, which is used as the basis to compare competing 

candidate models. Seven candidate models were tested here, differing in terms of 
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forward, backward, and intrinsic self-inhibitory connections (Figure 7.4). Both raw KBIT-

2 score and age, and their interaction effect, were used as factors in the model. In 

addition, two noise regressors were also included (counterbalanced order and whether 

the EC paradigm was split or whole block). Any effects of these experimental variables 

were therefore accounted for within the model.  

 

The model with the greatest log-evidence (a free energy approximation) was selected 

as the “winning model” (i.e. the best model) of all seven candidate models tested. Log-

evidence is a measure of “model goodness”, which is a trade-off between model 

accuracy and model complexity (Mackay, 2003). In DCM, a good model explains the 

data as accurately as possible with minimal complexity. The winning network-level 

model was then examined to identify parameter changes associated with KBIT-2 score 

and age at each individual node of the network. 

 

 

 

Figure 7.3 Candidate models 

Seven candidate network-level models tested during Bayesian Model Selection to identify which 

changes in network-level model parameters (i.e. directed connectivity) best explain the 

observed differences in 4-13 Hz power in relation to KBIT-2 score and age between individuals 

with DS. Models differed in terms of allowing variables (KBIT-2 score and age) to exert effects 

on only forward connections (F), only backward connections (B), forward and backward 

connections (FB), only intrinsic self-inhibition (0i), intrinsic self-inhibition and forward 

connections (Fi), intrinsic self-inhibition and backward connections (Bi), and intrinsic self-

inhibition in addition to both forward and backward connections (FBi).  
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7.3 Results 

 

A bilateral alpha network containing nodes within V1, SPL and MFG was first created 

(Figure 7.1). Each node contained a CMC neural mass model (Figure 7.2), which was 

tuned to generate alpha oscillations. Data generated by this model was compared to 

data recorded from 36 individual participants with genetically confirmed trisomy 21 

(17M:19F; mean age 30.92 years (11.03 SD); 16-56 year range) and no evidence of 

noticeable cognitive decline. Specifically, for each participant, model-generated data 

and whole-scalp data were decomposed into CSDs represented by eight principal 

eigenmodes, and fit was optimised through the process of model inversion. The power 

of the top three eigenmodes across the 1-30 Hz frequency spectrum were plotted in 

order to visually compare model-generated data and whole-scalp data (Figure 7.4). 

These were used to assess how successfully the model was capturing activity of 

interest (4-13 Hz range) at the level of each individual. It was concluded the model was 

successfully capturing this activity. 

 

 

 

Figure 7.4 Individual subject model fits 
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Diagram illustrating individual subject model fits (n=36). The top three eigenmodes (red, blue 

and green respectively) obtained from CSDs of model-generated (thin bright line) and whole-

scalp (thick pale line) are shown for each participant. 

 

Seven pre-defined network-level candidate models (Figure 7.3) were then compared. 

This was achieved by allowing variables of interest (i.e. KBIT-2 and age) to only affect 

a subset of possible model parameters (combinations of extrinsic, and intrinsic 

connectivity parameters; shown in Figure 7.3), to identify which model best explained 

the observed differences in 4-13 Hz power in relation to these variables. Of the seven 

candidate models, the model allowing for alterations in intrinsic self-inhibition alone 

was identified as having the greatest model evidence (Figure 7.5A). This model had a 

free energy difference to the next highest model of 9.1 and a posterior probability of 1 

(Figure 7.5B & C), which is considered positive evidence for the model compared to its 

alternatives (Kass & Raftery, 1995). 

 

 

Figure 7.5 Selected model 

A. Diagram illustrating the winning network-level model (intrinsic self-inhibition alone). B. 

Bayesian model comparison showing model evidence (free energy) for each of the seven 

candidate models: model 0i (model 4; intrinsic self-inhibition alone) shows the highest amount of 

free energy, with a free energy difference to the next highest model of 9.1. C. Posterior 

probability of Model 0i shown as 1. 

 

Using the model allowing for changes in intrinsic self-inhibition alone, relationships 

between raw KBIT-2 score and age with intrinsic self-inhibition were analysed across 

this network. There was no relationship between age and intrinsic self-inhibition across 

the network and no significant interaction effect between KBIT-2 score and age (these 

relationships were zero and therefore are not shown). For raw KBIT-2 score, the 

biggest effect of KBIT-2 score on intrinsic self-inhibition was seen in right V1. This 

effect was also estimated with the most certainty (Figure 7.6A; Bayesian confidence 

A B A C 
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intervals do not cross zero). Relationships between raw KBIT-2 score and intrinsic self-

inhibition within this model were also demonstrated within other nodes across the 

network (left V1, left SPL, left MFG, right MFG), however there is a high degree of 

uncertainty about parameter values (demonstrated by Bayesian confidence intervals 

crossing zero) at these locations, and so caution should be taken when considering 

these true relationships.  

 

Note that whilst Bayesian confidence intervals allow quantification of the certainty with 

which each parameter is estimated, statistical testing itself is done previously, at the 

level of different models entered into Bayesian Model Selection, through which the 

winning network-level model was identified. 

 

The negative relationship between V1 intrinsic self-inhibition and raw KBIT-2 score is 

further illustrated in Figure 7.6B, showing mean V1 intrinsic inhibition vs raw KBIT-2 

score plotted for each subject. This suggests that as raw KBIT-2 score increased, 

intrinsic self-inhibition in this region decreased. Mean V1 activity is plotted in this figure 

because the relationship is observed at both occipital poles.  

 

 

 

Figure 7.6 Intrinsic self-inhibition 

A. Bar chart showing the linear effect of raw KBIT-2 score on intrinsic self-inhibition for each 

node in the network of the winning model (allowing for changes in intrinsic self-inhibition alone). 

Bayesian confidence intervals shown here indicate that the effects estimated with most certainty 

A B 
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are located at right V1. B. Scatter graph showing inverse correlation between raw KBIT-2 score 

and mean V1 (left V1 and right V1 average) intrinsic inhibition of the winning model.  

 

7.4 Discussion 

 

7.4.1 Summary of findings 

 

The primary aim of the chapter was to identify potential neurophysiological 

mechanisms underlying the association between 4-13 Hz activity and raw KBIT-2 score 

in adults with DS during EC resting-state recordings. To achieve this, a bilateral model 

of the alpha network was created. DCM techniques identified intrinsic self-inhibition as 

the most important model parameter of this network that was associated with KBIT-2 

performance. A complex relationship between intrinsic self-inhibition and KBIT-2 score 

was demonstrated across the network, with negative correlations in occipital and 

positive correlations in frontal nodes. Due to a large amount of variability in the sample, 

however, right V1 was the only network node at which the relationship with KBIT-2 had 

a high level of certainty. Across V1 nodes, there was a strong negative correlation 

between raw KBIT-2 score and intrinsic self-inhibition. These findings are in line with 

original hypotheses that inhibition would be the most important parameter associated 

with KBIT-2 performance, and that there would be a negative relationship between 

these two variables. No probable relationship between age and intrinsic self-inhibition 

was demonstrated, despite original hypotheses that age would also be associated with 

any winning parameters. 

 

Based on these results it appears that, of the network parameters tested, intrinsic self-

inhibition within the alpha network is the most important neurophysiological contributor 

to individual differences in 4-13 Hz activity associated with general cognitive ability in 

adults with DS. Higher ability is associated with lower intrinsic self-inhibition in right V1.  

As no probable relationship between intrinsic self-inhibition and age was demonstrated, 

it is unlikely that age substantially influences intrinsic self-inhibition, or mediates the 

relationship between KBIT-2 and intrinsic self-inhibition, within the alpha network of this 

group of individuals.  

 

7.4.2 Research in context 

 

In order to consider the results of this chapter in the context of previous studies it is first 

necessary to conceptualise the parameter of intrinsic inhibition identified here. 
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Mechanistically the parameter of intrinsic inhibition describes recurrent self-connections 

that dampen the excitability of the large projection neurons in the circuitry of the CMC 

(Figure 7.2). This is a population level summary of intra-laminar local inhibitory 

populations that connect pyramidal cells within the supragranular or infragranular 

cortical layers. Less intrinsic inhibition, as seen in V1 with higher KBIT-2, therefore 

releases the self-suppression of ongoing activity, and results in more excitable cortical 

sources. It could be hypothesised that reduced inhibition at a cellular level would lead 

to increased electrophysiological activity in this region, manifesting as release of 

synchronous alpha activity as measured by EEG (a desirable outcome during eye-

closure and indicative of efficient network-level activity control). 

 

This is in accordance with findings in Chapter 6, demonstrating a positive relationship 

between general cognitive ability and occipital alpha peak amplitude in EC resting-state 

data. As the presence of an alpha peak is a desirable outcome during eye-closure, 

potential mechanisms underlying these measures (i.e. intrinsic self-inhibition as 

identified here) may be indicative of alpha network efficiency, with higher ability 

individuals able to supress their visual cortex during eye-closure and individuals of 

lower ability experiencing impairments in this process.  

 

Considering previous literature, there has been much recent interest in the role of 

inhibition in DS. The association of higher general cognitive ability with lower intrinsic 

self-inhibition demonstrated here appears to be in keeping with animal model literature. 

Specifically in the Ts65Dn mouse model, markers of over-inhibition have been 

demonstrated, and treatment with pharmacological agents that reduce inhibition 

(GABA-A receptor antagonists and inverse agonists) have been shown to improve 

memory deficits in these animals (Braudeau et al., 2011). Markers of over-inhibition 

that have been demonstrated in Ts65Dn mice include increased number of GABAergic 

interneurons, enhancement of interneuron excitability, and reduced glutamatergic 

transmission (Chakrabarti et al., 2007, 2010; Pérez-Cremades et al., 2010; Hernández 

et al., 2012; Tyler and Haydar, 2013; Guidi et al., 2014; Hernández-González et al., 

2015; Contestabile et al., 2017). It is therefore possible that numerous neurobiological 

factors contribute to a shift in the state of E/I in DS to one of over-inhibition, and 

conceptually all these factors could influence the parameter of intrinsic self-

inhibition identified in this study. 

 

Despite these findings from the Ts65Dn model, the accuracy of this particular animal 

model is somewhat limited in that it does not contain all the genes implicated in human 

trisomy 21, and also contains various non-chromosome 21 triplicated genes (Gupta et 
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al., 2016). It is also noteworthy that although there are numerous mouse models of DS, 

over-inhibition has not been reported with alternative models (e.g. Dp16; Goodliffe et 

al., 2016). Moreover findings regarding E/I balance from previous DS research 

involving humans or human tissue are discordant with Ts65Dn mouse work (detailed 

below). 

 

Results from a range of human methodologies have indicated that GABAergic 

inhibition may in fact be reduced in individuals with DS relative to TD controls. Studies 

using foetal brain tissue or post-mortem tissue, and MRS studies of children, have all 

reported findings indicative of reduced GABAergic activity in DS. This has included 

reports of reduced GABA levels, fewer cortical GABAergic neurons, and reduced 

GABAergic interneuron neurogenesis (Ross et al., 1984; Reynolds & Warner, 1988; 

Whittle et al., 2007; Bhattacharyya et al., 2009; Smigielska-Kuzia et al., 2010). It is also 

worth noting the recent drug trial of a GABA inverse agonist in people with DS was 

unsuccessful in improving cognitive function (Roche, 2016). Although no identified 

human studies have linked E/I imbalance to cognitive deficits in DS, together these 

findings may be indicative of reduced inhibition in individuals with DS compared to 

controls. 

 

As the current study was concerned with differences between individuals with DS and 

not differences in relation to a control group, it is problematic to compare these findings 

from previous human studies to the DCM results reported here. What is apparent from 

the current study, however, is that a non-linear spatial relationship between inhibition 

and general cognitive ability across the alpha network is present (negative associations 

occipitally; positive associations frontally). It follows that regional differences in cortical 

E/I balance may be underlying differences in this relationship. Such regional 

differences in E/I balance may contribute to discordant findings between studies and 

suggest the over-inhibition narrative in current DS research may be an over-simplified 

hypothesis. 

 

7.4.3 Strengths, limitations and future work 

 

This is the first study to examine potential neurobiological mechanisms underlying the 

relationship between cognitive ability and EEG activity in individuals with DS. The study 

benefits from only including individuals with genetically confirmed trisomy 21 and the 

exclusion of individuals with evidence of cognitive decline or dementia. This allowed 

any pre-decline relationships to be determined. 
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At present it is unclear if the restriction of probable findings to V1 are indicative of the 

relationship between cognitive ability and intrinsic self-inhibition only being present in 

this region, or if instead this is a consequence of inadequate sample size. As discussed 

in the previous chapter, the EC data analysed here is not from a particularly large 

sample of individuals. Due to the high degree of variability in the sample, in terms of 

EEG activity and network parameters investigated, it seems larger studies are 

warranted to fully elucidate the relationship of ability and intrinsic self-inhibition across 

the alpha network. It is also is unclear why age was not identified as an important 

factor associated with intrinsic self-inhibition (or mediating the relationship between 

KBIT-2 and intrinsic self-inhibition), yet significant associations were identified with 

alpha peak amplitude and age in the previous chapter. DCM studies of older 

individuals with DS, or larger studies involving participants with a wide range of ages, 

may be beneficial to fully elucidate the effects of ageing on the network identified here. 

The use of portable EEG equipment may increase the feasibility of participation for 

older adults (e.g. by enabling those with mobility issues to participate). 

 

The results reported here indicate that non-invasively measured intrinsic self-inhibition 

within V1 could be utilised as a potential biomarker of general cognitive ability, which 

future drug trials in individuals with DS may find useful. In terms of further practical 

implications, the results presented here demonstrate regionally specific modulation of 

intrinsic self-inhibition in V1 could be explored as a potential therapeutic target for 

cognitive enhancement in DS. The seemingly localised nature of these findings, 

although problematic for pharmacological manipulation, may lend itself to such 

targeted approaches. For instance, recent research in the TD population has 

demonstrated the utility of transcranial direct current stimulation (tDCS) in modulating 

local E/I balance. Specifically, Barron et al. (2016) recently demonstrated that 

application of tDCS delivered to a discrete cortical region was able to reduce local 

GABA concentration. Furthermore Barron et al. (2016) demonstrated this method was 

able to enhance memory by re-expressing otherwise dormant associative memories. In 

light of the DCM findings demonstrated here, it is therefore possible that such an 

approach applied to V1 in adults with DS may have beneficial effects on cognitive 

function, by modulating local E/I balance. However, further research replicating these 

findings in other DS cohorts, and addressing limitations of the current study, are first 

necessary before this is explored. 

 

Further to this, although the results here suggest that reducing inhibition in V1 may 

have potential therapeutic benefits for individuals with DS, it is vitally important to 

consider that differences in inhibition between individuals with DS may in fact be 
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compensatory responses to a backdrop of DS neurobiology that is altered relative to 

TD controls and/or due to AD neuropathology. In this situation, it may be the case that 

excess intrinsic self-inhibition provides an advantage of some form (for example, 

reducing seizure-like activity) that counteracts aspects of the DS neurobiological 

phenotype. A level of caution should therefore be taken when considering intrinsic self-

inhibition as a potential therapeutic target in this population. Further studies, focusing 

on individuals with a history of seizures, may be useful to inform this further.  

 

It is also important to consider that these results are specific to the EC resting-state 

paradigm through which EEG data was acquired. It is therefore possible that findings 

are specific to this paradigm and are not indicative of the relationship between general 

cognitive ability and intrinsic self-inhibition in general. A necessary next step is to 

model EEG activity from other paradigms (e.g. ERP paradigms) to ascertain whether 

intrinsic self-inhibition is also linked to cognitive performance in individuals with DS 

across other forms of neuronal activity.  

 

Additionally, although individuals with cognitive decline were excluded from this study, 

it is possible that due to the gap between cognitive and EEG testing sessions, some 

individuals may have begun to experience early cognitive decline (as discussed in the 

previous chapter). This is also true to some extent for all individuals included in the 

study, regardless of how close the two sessions were, as decline itself can be difficult 

to identify. A level of caution should therefore be taken when considering the results 

presented here as pre-decline. Longitudinal studies, following individuals over several 

years, are necessary in order to allow a stronger degree of certainty regarding pre-

decline classification. 

  

A number of key limitations of this study pertain to those that are specific to DCM 

methods. For instance, DCM is a method that uses prior information to test competing 

hypotheses (i.e. which of the parameters tested best explain individual differences in 4-

13 Hz activity in relation to KBIT-2 score, given the model). It is therefore possible the 

prior information is flawed or incomplete, leading to suboptimal nodes or frequencies of 

interest selected. The prior information utilised here, however, is taken from a range of 

studies. Additionally prior findings from this thesis – specific to this group of individuals 

– have been used to inform regions and frequencies of interest. This strengthens the 

validity of prior information used here for DCM.  

 

A further limitation to consider is that DCM is based on a synthetic representation of the 

brain, and consequently is limited in its ability to fully replicate the brain in vivo. For 
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example, the CMC does not contain all cell populations present in the cortex (e.g. glia). 

Although the activity of such populations is included in the dynamics of forward and 

backward connections between cell populations encoded within the CMC, hypotheses 

about these cells (and other variables absent from the CMC) cannot be tested 

specifically. DCM results should therefore only ever be considered as an approximation 

to real-world neurobiological activity. In this instance, it remains necessary to obtain 

further details using alternative methodologies (e.g. MRS).  

 

For any study using DCM to investigate individuals with DS, accuracy of results could 

be improved by using an observation model (the method that models the effect of head 

tissues on model-generated electrophysiological signals) that is tailored to individuals 

with DS. This is because the use of a TD observation model, as in this study, may not 

accurately reflect the head tissues of individuals with DS where, for example, there are 

anatomical atypicalities and skull thickness is thinner (Lestrel & Roche, 1979). The DS 

research community would benefit from the creation of such a model for future 

research in this area. 

 

It is of interest that the relationship between EEG activity and cognitive ability within 

individuals with other forms of ID do not appear to have been studied. However, 

atypical connectivity in theta and alpha bands have been demonstrated in adults with 

fragile X compared to TD controls (van der Molen et al., 2014). It therefore remains to 

be determined whether findings reported here are unique to individuals with DS or are 

instead related to ID in general. Future research using DCM in non-DS ID populations 

are necessary to clarify this.  

 

7.4.4 Conclusions 

 

DCM of alpha network activity in EC resting-state EEG data indicates that intrinsic self-

inhibition is the most important neurophysiological parameter (of those tested) 

mediating the relationship between 4-13 Hz EEG activity and individual differences in 

general cognitive ability in adults with DS. On further examination, there appears to be 

a strong negative relationship between this parameter and general cognitive ability in 

occipital regions. Potential mechanisms underlying differences in intrinsic self-inhibition 

are as yet unclear but may relate to changes in GABAergic interneurons, as indicated 

by mouse model work. Differences in intrinsic self-inhibition may in turn impact on 

alpha network efficiency. 
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Larger studies utilising a range of EEG paradigms are necessary to fully elucidate the 

relationship between intrinsic self-inhibition and general cognitive ability across the 

alpha network and within different networks (e.g. those underlying ERP activity) in this 

population. Future studies may also benefit from recruiting an older cohort of 

individuals with DS to further examine ageing effects. 

 

Results of this study indicate that the parameter of V1 intrinsic self-inhibition (as 

obtained by DCM) has potential as an electrophysiological biomarker of general 

cognitive ability in adults with DS. Furthermore, it is possible that targeted interventions 

aimed at reducing local V1 GABA levels (e.g. tDCS) could have beneficial effects on 

cognition in this population.  
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Chapter 8 Overall discussion  

 

8.1 Overall summary of key findings 

 

Findings in relation to specific aims and hypotheses are discussed within each chapter. 

Provided here is a summary of key findings relating to each primary aim of this thesis, 

of which there were four:  

 

i) To investigate the feasibility and generalisability of resting-state EEG recordings in 

adults with DS; 

ii) To identify differences in EC resting-state EEG activity between adults with DS 

(with no evidence of cognitive decline or diagnosis of dementia) and TD age- and 

sex- matched control subjects; 

iii) To investigate how EEG spectral measures obtained during EO and EC resting-

state recordings are related to age and general cognitive ability in adults with DS 

(with no evidence of cognitive decline or diagnosis of dementia); 

iv) To investigate potential cortical circuitry underlying EEG oscillations of interest 

using DCM. 

 

8.1.1 Aim 1: Feasibility and generalisability of resting-state EEG recordings 

 

In regard to feasibility and generalisability of resting-state EEG studies in individuals 

with DS, findings suggest the overall sample of participants taking part in this EEG 

study had greater general cognitive ability when compared to a larger DS sample. 

Analysis revealed that this bias was introduced at the level of invitation to participate in 

the study. Additionally, the age of participants was younger than the larger DS sample 

from which they were recruited. Analysis revealed this was due to older individuals 

being less likely to agree to participate once they had been invited to take part in the 

EEG study. Further research is necessary to identify potential barriers to older adults 

with DS participating in EEG research.  

 

Furthermore, findings from this particular chapter (Chapter 4) were concerned with the 

total sample that consented to take part in the overall EEG study, in order to inform 

broadly about EEG research in this population. This overall sample included individuals 

with cognitive decline and dementia. Due to additional exclusion criteria applied for 

subsequent chapters, this initial bias in terms of age and ability is therefore likely to be 

further exacerbated for each participant sub-population used within individual chapters 
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(e.g. due to the exclusion of individuals with cognitive decline or a diagnosis of 

dementia). Together these results suggest caution should be taken when generalising 

the results of this thesis to individuals with DS with more severe ID or older individuals 

with DS. 

 

It was also found that splitting the EC recording did not reduce movement artifacts in 

the data, however this approach may still be beneficial in terms of reducing drowsiness. 

Evidence that this approach may have reduced participant drowsiness was provided by 

analysis within Chapter 5 (see section 5.4.2) detailing DS vs. control analyses. In this 

analysis theta power was significantly increased in participants with DS who underwent 

the full-block compared to split-block EC paradigm. According to previous research, 

this may indicate increased drowsiness associated with the full-block recording 

paradigm. 

 

8.1.2 Aim 2: differences in EEG activity between adults with DS and matched 

TD controls 

 

Chapter 5 aimed to characterise differences in EEG activity between adults with DS 

and matched TD control subjects. Significant differences between groups were 

identified across all bands investigated. Overall results indicate that individuals with DS 

have an EEG spectrum that could be described as “slower” than that belonging to 

matched TD control subjects: delta and theta power values were significantly higher 

whereas alpha and beta power values were significantly lower in adults with DS (only 

EC data examined). This pattern of findings was true for both occipital and frontal 

regions. Alpha band oscillations in particular exhibited strong group differences. 

 

Also illustrated by the results of this chapter is the potential utility of analysing 

topographical differences in EEG activity: although the overall pattern of findings was 

similar for occipital and frontal regions, differences were identified (notably alpha and 

beta power were significantly lower in individuals with DS compared to TD controls in 

the occipital region, however in the frontal region these group differences failed to 

reach significance). The potential utility of analysing both absolute and relative power 

values in EEG studies in this population was also demonstrated. 

 

The key findings of this chapter summarised above are in line with original hypotheses 

(see section 2.5.2). However, beta power was hypothesised to be higher in individuals 

with DS and instead was found to be lower. Although this finding was unexpected, it is 
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in accordance with the theory that individuals with DS have an “slower” EEG spectrum 

compared to TD controls. 

 

8.1.3 Aim 3: EEG measures related to age and general cognitive ability 

 

Chapter 6 aimed to investigate how individual differences in EEG measures were 

related to individual differences in general cognitive ability and age between adults with 

DS. Significant relationships between these variables in both EO and EC resting-state 

paradigms were demonstrated. 

 

In EO recordings increasing age was associated with increased occipital alpha activity 

(power in addition to peak amplitude) and increased frontal beta power. Additionally, in 

EO recordings higher frontal delta power was associated with higher KBIT-2 score. In 

EC recordings, increasing age was associated with decreased frontal delta power and 

increased alpha peak amplitude in both regions investigated. Additionally, in EC 

recordings higher alpha peak amplitude was associated with higher KBIT-2 score in 

both regions, and higher theta power was associated with higher KBIT-2 score in the 

frontal region. It was concluded that EC theta-alpha (i.e. 4-13 Hz) activity may be 

particularly associated with general cognitive ability in adults with DS, and as such 

further investigation of the network underlying this activity may be valuable.  

  

Overall the key findings of this chapter summarised above are not in line with original 

hypotheses (see section 2.5.2). No correlations between EEG variables and general 

cognitive ability were expected in EO data. Consequently, associations between frontal 

delta power and KBIT-2 score were unexpected. Both lower general cognitive ability 

and increasing age were expected to be associated with power measures indicative of 

EEG slowing, and lower alpha peak amplitude. In line with this, alpha peak amplitude 

was found to be positively associated with general cognitive ability, however this 

measure was also found to increase with increasing age. Power measures indicative of 

EEG slowing were not associated with lower general cognitive ability or age. Instead, 

greater activity in low frequencies (delta and theta) were associated with greater 

general cognitive ability, and increasing age was associated with lower delta power 

and increased alpha and beta power.  

 

8.1.4 Aim 4: Potential cortical circuitry underlying 4-13 Hz activity associated 

with general cognitive ability and age 
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The final data chapter investigated potential neurophysiological mechanisms 

underlying 4-13 Hz EC EEG activity in relation to raw KBIT-2 score and age in adults 

with DS (i.e. potential mechanisms underlying relationships demonstrated in Chapter 

6). DCM of the alpha generating network demonstrated intrinsic self-inhibition was the 

key network parameter underlying observed differences in 4-13 Hz power in relation to 

KBIT-2 score across participants. In particular occipital intrinsic self-inhibition was 

negatively correlated with general cognitive ability. No probable effects of age were 

seen across the network. It was suggested that the parameter of intrinsic self-inhibition 

at V1 has potential as an electrophysiological biomarker of general cognitive ability in 

adults with DS, and that interventions aimed at reducing V1 inhibition may have a 

positive impact on cognitive ability in this population. 

 

The key findings of this chapter summarised above are in line with original hypotheses 

(see section 2.5.2). 

 

8.2 Overall interpretation of findings 

 

As outlined in the rationale for this study (see section 2.5), enhancing cognitive ability 

in individuals with DS may be achievable through the understanding of factors 

underlying individual differences in cognition within this population, and from this 

identifying potential targets for cognitive enhancement. Underlying this premise is that 

abilities vary greatly between individuals with DS, despite all having an extra copy of 

chromosome 21. EEG allows the exploration of brain activity associated with these 

individual differences in cognition and, when combined with modelling techniques such 

as DCM, potential neurophysiological factors underling these associations to be 

elucidated.   

 

The current thesis has identified a range of EEG measures associated with general 

cognitive ability and age in this sample of individuals with DS. From these findings, 

intrinsic inhibition has been identified as a potential neurophysiological factor 

underlying individual differences in general cognitive ability.  

 

Due to the inclusion of a chapter comparing EEG spectra from individuals with DS to 

that from TD controls, it is possible to conclude that although some EEG characteristics 

of higher ability individuals with DS appear to be closer to that of TD controls, other 

EEG characteristics associated with higher ability are of the opposite direction. For 

example, EC peak amplitude was significantly lower in individuals with DS compared to 

TD controls, and when analysed within individuals with DS, higher peak amplitude was 
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associated with higher KBIT-2 score. Therefore, it appears of benefit to individuals with 

DS for this variable to be closer to TD levels. In contrast, EC theta power was 

significantly higher in individuals with DS compared to TD controls, yet in the following 

chapter greater EC theta power correlated with greater KBIT-2 score in individuals with 

DS. Consequently it appears of benefit in individuals with DS for this EEG variable to 

be further away from TD levels. 

 

Taken together these results indicate it is not necessarily that higher ability individuals 

with DS have EEG spectra closer to TD spectra. The implications of this are that a 

treatment approach aimed at “normalising” the overall EEG spectra in individuals with 

DS (i.e. 0.5 - 30 Hz) may have negative consequences. Based on the findings of this 

thesis it appears targeting EEG variables that are associated with individual differences 

in cognitive ability in DS, instead of focusing on EEG variables that differ between 

individuals with DS and TD controls, may be a worthwhile approach to future studies 

investigating cognitive enhancement. Furthermore, the results presented in this thesis 

suggest that a shift in E/I balance towards increased inhibition may be associated with 

cognitive impairment in individuals with DS. The results also suggest, however, a 

simple narrative of “over-inhibition” in DS may be inadequate. Instead it is possible 

relationships between E/I balance and cognitive ability differ between regions, as 

indicated by the potential positive associations between frontal intrinsic inhibition and 

general cognitive ability demonstrated in Chapter 7. More research is needed to 

explore this hypothesis further.  

 

In terms of secondary aims that were explored in this thesis (detailed within individual 

experimental chapters), results have provided key methodological information in 

relation to EEG study design in this population. Recommendations include EC 

paradigms that are not a single recording block, and obtaining both EC and EO data 

where possible. Utilising both absolute and relative EEG measures for analysis is also 

recommended when comparing individuals with DS to TD controls. Furthermore, 

targeted and supported recruitment, and/or the use of portable EEG equipment may be 

beneficial for DS studies where severe ID, ageing, or dementia are key participant 

variables to be investigated. 

 

8.3 Overall research in context 

 

The field of research reporting the use of EEG in individuals with DS is relatively small. 

Results span many decades, utilising different methods, and convergent evidence is 

weak. Despite this, differences in alpha activity between individuals with DS and TD 
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controls, and the relationship between this activity and cognitive ability within 

individuals with DS, is indicated within the literature on a fairly consistent basis. 

Evidence supporting the hypothesis that individuals with DS have a “slower” EEG 

spectrum compared to TD controls is also relatively consistent. 

 

The current study adds further evidence to the existence of a slower EEG spectrum in 

individuals with DS compared to TD controls, and for the importance of alpha activity 

(including extended-alpha; 4-13 Hz) in this population. This study adds to this 

knowledge by investigating the relationship between a range of EEG measures in 

relation to general cognitive ability and age in a population of adults with DS free from 

evidence of cognitive decline, and by modelling potential neurophysiological 

mechanisms contributing to these findings. The current study also suggests the 

previously unidentified EEG variable of EO frontal delta activity may be an important 

factor relating to cognitive ability in DS. 

 

The use of DCM methods and the identification of intrinsic self-inhibition as a key 

parameter associated with general cognitive ability informs both human and animal 

research in DS. Research linking these fields is vital for the progression of our 

understanding of DS and for finding treatments targeting ID in this population. This 

particular key finding is especially important due to the conflicting findings between 

human and animal studies regarding E/I balance at present, and therefore informs this 

further by corroborating findings from the Ts65Dn mouse, which have indicated that 

over-inhibition may be linked to cognitive impairment in DS.  

 

Results presented here also indicate that EEG methods are particularly suited for 

establishing and exploring links between individuals with DS and DS mouse models. 

As oscillatory brain activity is well conserved across mammals (Buzsáki, et al., 2013), 

electrophysiological studies of DS mouse models may be valuable. However, the 

ultimate role of such experiments is to screen drugs for their potential safety and 

efficacy in humans. It is therefore important to note that there are numerous 

pharmacological compounds that have been shown to influence theta-alpha activity in 

humans, and that already have well established safety profiles. These include the 

stimulants nicotine (Foulds et al., 1994) and caffeine (Siepmann & Kirch, 2002), in 

addition to a range of licensed psychotropic medications (Aiyer et al., 2016). The 

current study indicates that not only the exploration of the effects of these drugs on 

cognition in individuals with DS is warranted, but also that care should potentially be 

taken with their prescription in this population (for example, the common 
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antidepressant paroxetine and anticonvulsant valproate have both been shown to 

reduce alpha activity).  

 

Additionally, age effects on EEG measures were extensively explored and in particular 

indicated the utility of EO resting-state paradigms for investigating age-related 

changes. Findings suggest power changes may occur in some bands across adulthood 

(e.g. delta), whereas power increases in other bands may only be associated with older 

age (e.g. alpha and beta). The concept of alterations across the EEG spectrum with 

increasing age in DS (e.g. slowing) is therefore likely to be complex, with different 

bands experiencing changes in different timeframes. Also indicated is that age-related 

changes in EEG activity may differ for EO and EC measures, and/or between frontal 

and occipital regions (e.g. EO alpha peak amplitude may increase across adulthood, 

whereas EC alpha peak amplitude may only show increases with older age). These 

specific age-related changes have not previously been explored in DS and together 

indicate such an approach may be useful for identifying the influence of delayed 

maturation and ageing processes on brain activity in this population.  

 

8.4 Remaining questions and future directions 

 

8.4.1 Concept of general cognitive ability  

 

The focus of this thesis is on general cognitive ability as indicated by raw KBIT-2 score. 

Although widely utilised as a measure of general cognitive ability within DS research 

(see section 1.3.3.1), the concept of general cognitive ability as a definable and 

measurable feature of an individual is not without its criticisms. Namely other forms of 

intelligence – for example those relating to creativity, emotion and practical skills – are 

not encompassed by this measure, and are therefore excluded from the overall 

concept of general cognitive ability used in this study. Future studies may benefit from 

using an alternative general measure of ability that relates more to everyday skills (e.g. 

an adaptive behaviour scale), or devising a composite score from a range of ability 

tests. An alternative approach would be to utilise measures pertaining to specific 

cognitive domains (e.g. verbal ability, memory, attention), which are clearer concepts to 

define and measure. However, a strong association between such tests has been 

demonstrated in this population (Startin et al., 2016). It is therefore unlikely findings 

related to specific domains would have substantially differed to those reported here.  
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8.4.2 Influence of other variables 

 

Key questions remaining from this research pertain to the effects of age and decline, in 

addition to more specific hypotheses regarding the genetic effects, e.g. of APOE on 

EEG variables and relationships with cognitive ability. Larger studies and/or targeted 

recruitment will provide information in answer to these questions. 

 

The influence of potential covariates of general cognitive ability – such as years in 

education or socioeconomic status – have also not been investigated in this study. The 

analysis presented here is therefore missing potentially important information about 

whether and how such variables play a role in the mechanisms discussed. For 

example, there is evidence from the TD population that socioeconomic status may 

affect resting-state networks (Sripada et al., 2014). Future studies may therefore 

benefit from further investigation of these factors.  

 

Additionally, EEG variables obtained through alternative EEG paradigms (e.g. ERP 

studies) and their associated networks require investigation to determine whether 

results reported here are specific to resting-state activity. It is therefore necessary for 

future studies to incorporate additional EEG paradigms into the recording session.  

 

8.4.3 Exploration of delta activity 

 

Due to the indication of delta being related to cognition it would be worthwhile for future 

studies to explore this further, possibly through similar DCM techniques as used here 

for 4-13 Hz oscillations. However, cortical delta networks are less well defined within 

previous literature compared to alpha networks, and so the accuracy and validity of any 

findings would be poorer. Combined EEG and fMRI studies may help to identify 

specific nodes underlying delta activity in individuals with DS, which could then allow 

the delta generating network to be explored using these techniques. Combing EEG 

and MRI studies in this way may also improve the accuracy of alpha network nodes 

selected in the current study. 

 

8.4.4 Lifespan analysis 

 

Linking the findings of this thesis to findings in infants and children with DS is also 

warranted. Although EC resting-state paradigms cannot be used in babies and young 

children, as EO findings have also been identified here it may be possible to 

investigate the relationship between delta power and cognitive ability in this younger 
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population through this resting-state paradigm. Linking adult and infant work in this way 

will help elucidate developmental effects on EEG variables and the effects of 

development on any relationship between these variables and cognition. The EO 

paradigm used in this study was designed to allow results between adult and infant 

streams within the larger LonDownS project (described in section 3.1) to be linked, and 

so this is therefore achievable in the short-term. 

 

8.4.5 Cognitive impairment in the TD population 

 

Furthermore, a wider research question that remains to be answered is how the 

findings of this thesis relate to EEG variables that have been linked to impaired 

cognition occurring within the TD population. Specifically, the finding of a slower EEG 

spectrum in individuals with DS (Chapter 5) is linked with both AD and MCI within the 

TD population (see section 2.3). It is therefore possible that cognitive impairment has 

the same EEG signatures regardless of whether this is due to ID or neurodegenerative 

disease. 

 

Alternatively, it is possible that early amyloid deposition within individuals with DS has 

influenced the EEG measures obtained in this study. Due to the high likelihood of 

amyloid being present in the brains of some participants with DS in this study, it is 

difficult to determine to what extent the results of this thesis may be influenced by this. 

Attempts were made to minimise the potential confounding presence of significant AD 

neuropathology by excluding individuals with presence of cognitive decline, however 

this approach is limited in that amyloid deposition has been shown to occur from 

childhood in DS (Lemere et al., 1996). It is therefore possible that EEG measures 

associated with age in this study are confounded by the presence of amyloid 

pathology.  

 

Studies combining EEG with imaging methods that are able to assess amyloid 

deposition (e.g. PET) are necessary to explore this further. Additionally, the inclusion of 

a group of individuals with DS with cognitive decline and/or a dementia diagnosis 

would allow it to be determined whether age-related EEG changes established here in 

individuals without decline are amplified in individuals with decline/dementia, or 

whether instead alternative EEG changes are demonstrated in this group. 

 

Similar studies to this, involving other populations of individuals with ID (e.g. fragile X), 

would also be beneficial. This would enable it to be determined whether the findings 
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presented here are unique to individuals with DS or are instead associated with low 

cognitive ability in general.  

 

8.4.6 Drug exploration 

 

As a further future direction, it is important to note that DCM techniques can be used to 

model the effects of specific pharmacological compounds on the network and 

parameters identified here. For instance, the effect of specific GABA receptor 

antagonism on intrinsic self-inhibition and EEG spectral features within this population 

could be investigated. It is possible that such an approach may improve drug 

discovery. 

 

This thesis has provided an in-silico model (i.e. described a synthetic neural network 

with specific variables of this network associated with general cognitive ability in DS) in 

which the potential influence of such compounds in DS can be explored. An example of 

a specific hypothesis that could now be tested is whether the unsuccessful GABA-A 

receptor antagonist developed by Roche exerts any effects on intrinsic self-inhibition in 

this model, and if so where these effects are strongest. In addition, alternative GABA-A 

targeting drugs could be tested.  

 

The addition of computational models capable of replicating human DS brain activity to 

our range of DS research methodology may enhance this field in the same way as the 

addition of animal models in the previous century. Future work should therefore focus 

on the further development of such models over the lifespan of individuals with DS. 

 

8.4.7 Ethical implications 

 

It would be inaccurate to label the brain of an individual with DS (prior to significant AD 

neuropathology) as “unhealthy”, simply because of the presence of an extra copy of 

chromosome 21. Level of functioning, however, is impaired in individuals of DS 

compared to individuals of the TD population, and risk for dementia in older adults is 

greatly increased. As a consequence of this, enhancing level of functioning is an 

underlying theme in this study, and in DS research in general. 

 

However, an important ethical consideration is for whom cognitive enhancing 

“treatment” (prior to cognitive decline) in DS would be of benefit to. Recently research 

investigating other neurodevelopmental disorders has come under scrutiny for their 

attempts to cure symptoms that, for many individuals with these disorders, are not felt 
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to be problematic (e.g. impairments in social communication in individuals with autism; 

Jaarsma & Welin, 2012). There is currently a movement – termed the neurodiversity 

movement – which seeks to prevent such natural variation from being pathologised 

and instead seeks acceptance for individuals who are not “neurotypical”.  

 

From the outside it seems logical that enhancing cognitive ability would improve the 

lives of individuals with DS, however this assumption may be misplaced. Qualitative 

studies involving individuals with DS and their families may help to investigate this 

further. Moreover, the wider societal implications or further reducing such 

neurodiversity may lead to enhanced stigma for individuals who are unable to or who 

choose not to have treatment for ID. I do not believe these are reasons to not 

undertake such research, however the DS research community would benefit from 

involving individuals with DS and their families in research strategy to identify what they 

themselves would like to be the main aims of our work. 

 

8.5 Conclusions 

 

Overall this thesis has demonstrated the utility of simple resting-state EEG paradigms 

for investigating individual differences in adults with DS. Findings enhance our 

understanding of neural factors associated with individual differences in general 

cognitive ability. Potential approaches aimed at targeting these factors for the purpose 

of cognitive enhancement in this population have been proposed. Future research 

recommended in this thesis will not only improve our knowledge of DS but will likely 

also enhance our understanding of neural processes underlying cognitive ability and 

cognitive impairment across all individuals. 
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Abstract 

 
Background: Down syndrome (DS), the most common genetic cause of intellectual disability, is associated 
with an ultra-high risk of developing Alzheimer’s disease. However, there is individual variability in the 
onset of clinical dementia and in baseline cognitive abilities prior to decline, particularly in memory, 
executive functioning, and motor coordination. The LonDownS Consortium aims to determine risk and 
protective factors for the development of dementia and factors relating to cognitive abilities in people with 
DS. Here we describe our cognitive test battery and related informant measures along with reporting data 
from our baseline cognitive and informant assessments. 
Methods: We developed a cognitive test battery to assess general abilities, memory, executive function, 
and motor coordination abilities in adults with DS, with informant ratings of similar domains also collected, 
designed to allow for data on a broad range of participants. Participants (n=305) had a range of ages and 
abilities, and included adults with and without a clinical diagnosis of dementia. 
 
Results: Results suggest the battery is suitable for the majority of adults with DS, although approximately 
half the adults with dementia were unable to undertake any cognitive task. Many test outcomes showed a 
range of scores with low floor and ceiling effects. Non-verbal age-adjusted IQ scores had lower floor 
effects than verbal IQ scores. Before the onset of any cognitive decline, females aged 16-35 showed 
better verbal abilities compared to males. We also identified clusters of cognitive test scores within our 
battery related to visuospatial memory, motor coordination, language abilities, and processing speed / 
sustained attention. 
 
Conclusions: Our further studies will use baseline and longitudinal assessments to explore factors 
influencing cognitive abilities and cognitive decline related to ageing and onset of dementia in adults with 
DS. 
 
Key words 

 
Down syndrome, intellectual disability, Alzheimer’s disease, dementia, cognition, memory, executive 
function, motor coordination 
 
Introduction 
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Down syndrome (DS) is the most common genetic cause of intellectual disability (ID) and is caused by the 
presence of an additional chromosome 21. DS has a UK incidence of approximately 1 in 1000 live births 
(Wu and Morris 2013). The life expectancy for individuals with DS has risen dramatically over the previous 
50 years; a recent study estimated current life expectancy to be almost 60 (Englund et al. 2013). With this 

increase in life expectancy it has become apparent DS is associated with an ultra-high risk of developing 
Alzheimer’s disease (AD) compared to typically developing individuals (Wiseman et al. 2015). A recent 
study estimated lifetime risk for dementia based on cumulative incidence may be as high as 95.7% by age 
68, with an age-related increase from 26.1% at age 50 (McCarron et al. 2014). 

 
This increased risk of dementia is thought to be largely due to the overexpression of genes on 
chromosome 21. Of particular interest is the amyloid precursor protein (APP) gene, mutations in which 
have been associated with early onset AD in the typically developing population. Deposits of amyloid, a 
characteristic feature of AD and encoded by the APP gene, are reported to be present in the brains of 
almost all adults with DS with full trisomy 21 over the age of 30 (Mann 1988, Wisniewski et al. 1985). 
Despite this, there is considerable variability in the clinical presentation and age of onset of dementia in 
DS; some adults receive a dementia diagnosis before age 40 while others do not show signs of dementia 
until they reach their 60s, with a mean age of diagnosis of 55 (Coppus et al. 2006, Holland et al. 1998, 
Margallo-Lana et al. 2007, McCarron et al. 2014, Tyrrell et al. 2001). This wide variability suggests there 
are a number of risk factors for the development of clinical dementia in addition to APP overexpression, as 
well as protective factors against its development. 
 
Dementia in DS develops on a background of an altered cognitive profile. Later developing brain networks, 
including the prefrontal cortex (PFC), hippocampus, and cerebellum, have been suggested to be most 
affected in DS (Edgin 2013). Structural MRI studies have reported smaller brain volumes in these regions 
in DS before the onset of AD (Aylward et al. 1999, Beacher et al. 2010, Carducci et al. 2013, Pinter et al. 
2001a, Pinter et al. 2001b, Teipel et al. 2003), and delayed hippocampal myelination has been 
demonstrated (Abraham et al. 2012). In addition, altered frontal functional connectivity (Anderson et al. 
2013, Pujol et al. 2015) and white matter integrity (Powell et al. 2014) have been reported in DS. Those 
with dementia show further reduction in hippocampal volumes (Aylward et al. 1999, Beacher et al. 2009) 
and decreased frontal white matter integrity (Powell et al. 2014) compared to those without dementia. 
 
Altered development of the PFC, hippocampus and cerebellum in DS is supported by studies reporting 
related cognitive impairments, specifically in executive function, memory and motor coordination 
respectively. Individuals with DS show impaired executive functioning abilities compared to both mental 
age (MA) matched typically developing controls and individuals with non-DS ID (Lanfranchi et al. 2010, 
Rowe et al. 2006), although one aspect of executive functioning, working memory, has been reported not 
to be affected in DS compared to MA controls (Pennington et al. 2003). Both verbal and visuospatial 
memory have been reported to be impaired in DS compared to MA controls (Pennington et al. 2003), in 
particular as memory load increases (Visu-Petra et al. 2007). It has further been suggested individuals with 
DS show relatively poorer verbal compared to visuospatial memory (Baddeley and Jarrold 2007, Jarrold et 
al. 2002, Lanfranchi et al. 2012), and visual object memory is more impaired than visual spatial memory 
(Vicari et al. 2005). Finally, individuals with DS have been reported to show slower motor responses 
compared to MA controls (Edgin et al. 2010, Frith and Frith 1974). Although these general profiles of 
cognitive abilities are found for individuals with DS at the group level, there is a large variability both across 
and within individuals in cognitive profiles. 
 
This cognitive profile in DS has been proposed to affect the presentation of dementia symptoms. Decline 
in frontal function (Holland et al. 1998, Holland et al. 2000), characterised by executive function 
impairments (Adams and Oliver 2010, Ball et al. 2008) and behavioural and personality changes (Ball et 
al. 2006, Dekker et al. 2015), has been implicated as an early dementia-related change in DS. Memory 
impairments, usually associated with AD in the general population, are also found in adults with DS and 
dementia (Ball et al. 2006, Kittler et al. 2006), with changes in praxis occurring later (Dalton et al. 1999). 
 
Concept and aims 
 
The London Down Syndrome Consortium (LonDownS) aims to identify risk and protective factors for the 
development of the clinical signs of dementia in DS. This will inform understanding of the development of 
AD and identify potential mechanisms as well as predictive phenotypes. We also aim to establish the pre-
dementia cognitive profile of adults with DS, allowing us to identify factors relating to cognitive abilities. 
This will help to inform interventions to influence developmental trajectories across the lifespan. 
Our study therefore requires detailed cognitive assessments that allow for data on the broadest range of 
participants possible in terms of age and abilities, with minimal floor and ceiling effects. We also took into 
account the typical cognitive difficulties in this population, such as expressive language impairment, as 
well as co-morbidities such as hearing and vision problems. We therefore compiled a cognitive 
assessment battery requiring minimal verbal responses and using informant ratings of similar domains. 
 
Here, we describe the LonDownS cognitive test battery for adults with DS, and provide data on baseline 
cognitive and related informant assessments. 
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Methods 

 
Participants 
 
Cohort 1: adults aged 36 years and over 
We have recruited and completed baseline assessments for 181 adults aged 36 years and over, with 
(n=51) and without (n=130) a clinical diagnosis of dementia, with longitudinal assessments planned to 
assess cognitive decline. Longitudinal assessments are essential to assess cognitive decline in individuals 
with DS due to the presence of an ID potentially confounding test results. Two additional adults were 
assessed then excluded from analyses after genetic testing revealed no additional chromosome 21, 
mosaicism or translocation. One further adult withdrew after starting the initial assessment. 
 
Cohort 2: adults aged 16-35 years 
We have recruited and assessed 124 adults aged 16-35 years. These adults have initially been assessed 
once, to explore cross-sectional cognitive profiles of individuals with DS before the onset of dementia. 
 
Recruitment 
 
Participants were recruited across England and Wales (focusing on the Greater London area and South 
East England) via local care homes, DS support groups and existing participant databases. We also 
established a network of National Health Service (NHS) Trust sites to identify and approach potential 
participants. Participants were given a gift voucher as compensation for their time, and we reimbursed all 
travel expenses. 
 
Inclusion and exclusion criteria 
 
All participants were required to have a clinical diagnosis of DS. This was confirmed genetically using 
saliva or blood samples. We excluded participants with an acute physical or mental health condition, 
although when such participants recovered they were eligible for the study. 
 
Ethical approval and consent 
 
Ethical approval was obtained for the LonDownS study from the North West Wales Research Ethics 
Committee (13/WA/0194). Participants with and without the capacity to consent were able to participate. 
Where individuals had capacity to consent we obtained written informed consent. Where individuals did 
not have capacity to consent a consultee was appointed and asked to sign a form to indicate their decision 
regarding the individual’s inclusion based on their knowledge of the individual and his/her wishes, in 
accordance with the UK Mental Capacity Act 2005. 
 
Assessment battery 
 
Our battery was based on several established and novel assessments relevant to the cognitive profile and 
development of dementia in DS, including the Arizona Cognitive Test Battery (ACTB) (Edgin et al. 2010) 
which includes several computer tasks from the Cambridge Neuropsychological Test Automated Battery 
(CANTAB) (CANTAB® 2016). The ACTB was developed to assess a range of skills relevant to those brain 
areas most affected in DS, to have variable scores with low floor effects that are suitable for a range of 
ages and contexts, to be suitable for a non-verbal population, and to show good test-retest reliability. This 
battery was validated using individuals with DS aged 7-38. However, our previous pilot work showed some 
components of the ACTB had significant floor effects in older adults aged 45+ with DS, and some tests 
forming part of the battery were not able to distinguish between those with and without dementia (Sinai et 
al. 2016). 
We therefore made several modifications to the ACTB. We excluded some tests for older adults (Cohort 1) 
based on our pilot results, specifically the virtual generated arena, cats and frogs, and finger sequencing. 
We added comparable table-top tests as our previous studies have supported their use in people with DS 
and found lower floor effects compared to computer tasks (Sinai et al. 2016). We also added informant-
rated tools to cover similar cognitive domains as the neuropsychological test battery, allowing us to collect 
data on those unable to engage in cognitive testing. 
 
A summary table of assessments can be found in the Supplementary material S1. 
 
Test administration 
 
To avoid excessive burden to participants who were unable to engage in formal assessment and follow simple 
instructions (e.g. those with more severe dementia) the battery was only administered to those who were able to 
understand, meet thresholds for, and respond to the Kay vision test (Kay 1983), the Whisper hearing test 
(Prescott et al. 1999) and the first question of the KBIT-2 (Kaufman and Kaufman 2004). Adults who did not meet 
these thresholds did not complete any further tests in the battery, though their carers completed all informant 
questionnaires. In addition, we used the motor screening task (MOT) from the CANTAB (CANTAB® 2016) to 
familiarise participants with using the touchscreen. For this participants were required to press a cross on the 
screen at different locations for 10 trials. 
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Task order was counter-balanced across participants (see Supplementary material S2). We used a fixed order, 
but took a pragmatic approach that allowed flexibility where necessary. The assessment was completed in one 
session where possible, approximately 3 hours in duration, with a 10 minute break in the middle and additional 
breaks as necessary. Assessments took place where convenient for participants, usually in their homes, and 
occasionally using our testing rooms. Notes about the participant’s attention, co-operation, affect, and anxiety 
were made where appropriate throughout the assessment, including reasons for non-completion of tasks. 

 

Vision and hearing assessment 
 
Kay vision test 
Participants’ visual acuity, wearing correction if appropriate, was tested using the Kay vision test (Kay 
1983). Participants were asked to identify increasingly small pictures from 3m away, verbally or by pointing 
to the screening card, and the smallest size the participant could see was recorded. A threshold of 3/19 
was used to identify those with significant vision problems that would invalidate cognitive test results. Only 
participants who met this threshold were administered further cognitive tasks. 
 
Whisper hearing test 
Participants’ hearing abilities, using correction if appropriate, were tested using the Whisper test (Prescott 
et al. 1999), adapted for individuals with ID. The researcher stood behind the participant, 50cm from the 
midpoint between the ears on the top of the head, and whispered the name of one of eight objects 
(toothbrush, popcorn, ice cream, snowman, reindeer, hotdog, football, seesaw) displayed on the 
participant’s test card. Words were simple spondee words, i.e. contained two syllables with equal stress on 
each. The participant was asked to repeat the word or point to the correct picture. If the participant was 
unable to hear a whispered word a conversational, then loud voice, was used. The quietest level heard 
was recorded. Only participants who were able to hear and respond correctly to at least a loud voice were 
administered further cognitive tasks. 
 
Test of general abilities 
 
KBIT-2 
We assessed general cognitive abilities using the Kaufman Brief Intelligence Test 2 (KBIT-2) (Kaufman 
and Kaufman 2004). The KBIT-2 consists of three subtests, two of which assess verbal IQ (verbal 
knowledge and riddles) and one assessing non-verbal IQ (matrices). Each subtest was started at item 1, 
and stopped after 4 consecutive incorrect answers. The KBIT-2 provides raw scores or age-dependent IQ 
scores. As we expected significant floor effects for IQ scores (i.e. an IQ of 40), we used raw scores as the 
main measure of general ability. 
 
Tests of memory 
 
CANTAB – PAL 
The paired associates learning (PAL) task is a measure of visuospatial short-term memory from the 
CANTAB (CANTAB® 2016). Participants were required to remember locations of an increasing number of 
patterns in progressive stages, hidden behind boxes on the screen. If a particular stage was not completed 
in a maximum of 10 attempts the test terminated. The main outcome from this test was the first trial 
memory score: the number of pattern locations correctly remembered on the first trial for each stage 
attempted. The secondary outcome was the number of stages completed. 
 
CAMCOG – delayed incidental memory, verbal fluency and orientation 
The Cambridge Cognitive Examination (CAMCOG) is a series of neuropsychological tests from the 
Cambridge Mental Disorders of the Elderly Examination (CAMDEX), used to assess cognitive impairments 
associated with dementia (Roth et al. 1986), and adapted to assess cognitive abilities in people with DS 
(Hon et al. 1999). The three tests used in our battery assess short-term memory (delayed incidental 
memory), frontal function (semantic verbal fluency) and participants’ knowledge of when it is (i.e. the day, 
month and year) and where they are (orientation). 
Firstly, participants were administered the picture naming task, in which they were shown 6 pictures of 
objects and asked to name them. There were then two distractor tasks before incidental memory was 
tested: the verbal fluency task (see under tests of executive function) and the orientation task, in which 
participants were asked their full name, the day of the week, the month, the year, where they are, and the 
nearest city / town. For the orientation task the outcome is calculated from the number of questions 
answered correctly, with fewer points given if a clue was required. Finally, the delayed incidental memory 
task required participants to freely recall the pictures they saw earlier, then recognise them from 3 options. 
The outcomes for the incidental memory task were the number of objects correctly recalled and 
recognised. 
 
Delayed object memory 
This test is a measure of short-term memory, based on the Fuld object memory test (Fuld 1980). We 
adapted this task to use 7 objects (toothbrush, comb, spoon, pencil, watch, coin and key) rather than 10 to 
reduce the memory load for participants. We also added a delayed memory trial (5 minute delay) in 
addition to two immediate memory trials to assess delayed as well as immediate memory. At the start of 
each trial participants named all seven objects and were instructed to remember them; any objects not 
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correctly identified were named by the examiner. Participants’ memory was tested during two immediate 
recall trials followed by one 5-minute delayed recall trial. Immediately following each recall trial any objects 
not remembered were shown to the participant. During the delay wherever possible we collected physical 
measurements (height, weight, abdominal / head / neck circumference, gait, blood pressure, and pulse) 
from the participant. The outcome measures were the total number of objects correctly remembered in the 
two immediate memory trials combined and in the delayed memory trial. 
 
NAID - memory for sentences 
This test of verbal memory is taken from the Neuropsychological Assessment of Dementia in Adults with 
Intellectual Disabilities (NAID) (Oliver et al. 1998). At baseline this test was administered to Cohort 2 only. 
Participants were asked to repeat 6 sentences after the researcher. The outcome measure was the 
number of words correctly remembered. 
 
ACTB – virtual generated arena 
The virtual generated arena is a measure of visuospatial short-term memory, taken from the ACTB (Edgin 
et al. 2010). This task was adapted from the C-G arena (Thomas et al. 2001) and is based on the Morris 
water maze from the animal literature (Morris 1984). The arena task was only administered to Cohort 2. 
This task required participants to learn and remember where a hidden carpet was in a virtual room, using 
visual cues around the room. The main outcome was the percentage of time searching in the correct 
quadrant in the final test trial when no carpet is present. 
 
Tests of executive function 
 
CANTAB – IED 
The intra/extra dimensional set shift (IED) task is a measure of rule learning and set shifting from the 
CANTAB (CANTAB® 2016). Participants were required to learn rules about which was the ‘correct’ of two 
presented patterns. When a rule was established (6 consecutive correct answers) there was a rule change 
and participants were required to learn a new rule in the next stage. If a particular stage was not complete 
(i.e. that rule was not ‘learnt’) in a maximum of 50 trials the task terminated. The two main outcome 
measures were the number of stages completed (measure of set shifting) and the number of stage 1 
errors (measure of rule learning). Completing stages 2-7 required an intra-dimensional shift, completing 
stages 8-9 required an extra-dimensional shift (stage 1 required rule learning only with no shift). 
 
CANTAB – SRT 
The simple reaction time (SRT) task from the CANTAB was originally proposed as a measure of attention 
(CANTAB® 2016), and was included in the ACTB as a measure of motor abilities (Edgin et al. 2010). 
Participants were required to press a button as soon as a white square appeared on the computer screen. 
There was an initial practice block of 24 trials, followed by two test blocks of 50 trials each. Outcome 
measures of interest were the standard deviation of the response time, which allows an estimate of 
consistency in response time and thus reflects attention levels during the task, the total number of correct 
responses, and mean response time. 
 
Semantic verbal fluency 
Verbal fluency is a measure of frontal function (Elfgren and Risberg 1998). Participants were asked to 
name as many animals as they could in 1 minute. The main outcome was the number of unique animals 
named (including age and sex variations). The number of animals repeated and the total number of 
repetitions are outcomes of future interest. 
 
Tower of London 
The Tower of London is intended to assess working memory and planning (Shallice 1982). Participants 
were required to move beads on a board to match presented configurations. We used a modified version 
of this task (Strydom et al. 2007), consisting of problems 1 to 5 from Krikorian et al. (1994) which can be 
completed in a minimum of 2-4 moves. Before commencing, the participant’s ability to name the colour of 
each bead was tested to ensure they could distinguish between them (e.g. they were not red-green colour 
blind). The outcome measure was calculated from the number of trials completed, with 2 points for trials 
completed in the minimum number of moves and 1 point for trials completed with more moves. 
 
ACTB – cats and frogs 
The cats and frogs test measures rule learning and switching, inhibitory control, and working memory 
(Edgin et al. 2010) and is based on the Dots test (Davidson et al. 2006). We only administered this test to 
Cohort 2. Participants were required to learn two different rules in Stages 1 and 2 (the ‘cat’ and ‘frog’ rules 
respectively), and then combine them in Stage 3. For the ‘cat’ rule participants were required to press a 
button on the same side of the screen as the cat, for the ‘frog’ rule participants were required to press a 
button on the opposite side of the screen as the frog. Stage 1 contained 6 practice and 12 test trials, Stage 
2 contained 4 practice and 12 test trials, and Stage 3 contained 33 test trials. We used the percentage of 
trials correctly completed for each stage as the outcome; Stages 1 and 2 rely on rule learning while Stage 
3 relies on rule switching and inhibitory control. As piloting revealed some individuals showed response 
times that were too slow for the original version we amended the task to allow unlimited response times 
(Startin et al. unpublished observations). We also changed the cat colour to orange from white to contrast 
the green frog. 
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Tests of motor coordination 
 
Finger-nose pointing 
The finger-nose pointing test is a clinical measure of motor coordination (Desrosiers et al. 1995). Using the 

index finger on their dominant hand, participants alternatively pointed to the tip of their nose and a red 
circle with a 2cm diameter, 45cm away, as quickly as possible for 20 seconds. The outcome measure was 
the total number of times the participant pointed to the red circle. 
 
NEPSY-II – visuomotor precision 
This task measures hand-eye coordination, and is taken from the Developmental NEuroPSYchological 
Assessment-II (NEPSY-II) (Korkman et al. 2007). Participants were timed as they traced train, car, and 
motorbike tracks (divided into squares), with a time limit of 180s for each track. The number of errors was 
calculated for each track (defined as those squares where the line went outside the track, there was a 
broken line due to a pen lift, or squares not completed in the time limit). Error scores and times were used 
to determine an overall score firstly for the train and car tracks combined and secondly the car and 
motorbike tracks combined using provided tables. 
 
ACTB – finger sequencing 
The finger sequencing task is a measure of motor coordination. This task was adapted for the ACTB 
(Edgin et al. 2010) and administered to Cohort 2 only. Participants were required to tap a button as fast as 

possible using a variety of specified sequences, with a 10 second practice and 30 second test trial for each 
sequence. The total number of sequences completed was the main outcome used. 
 
Informant questionnaires 
Informants completed a series of questionnaires about the participant while the participant was 
administered the cognitive battery. Informants were usually relatives or paid carers. Missing items from the 
DLD, OMQ and BRIEF-A were imputed for up to 15% of items within each domain by checking and 
imputing the nearest integer to the mean value of completed scores within that domain by hand. All 
reported measures for these questionnaires use the total scores including imputed values where relevant. 
 
Short ABS 
The Short Adaptive Behavior Scale (short ABS) (Hatton et al. 2001), adapted from the Adaptive Behavior 
Scale – Residential and Community (Part I) (Nihira et al. 1993), recorded participants’ everyday adaptive 
abilities. 
 
DLD 
The Dementia for Learning Disabilities (DLD) questionnaire is a measure of behaviours associated with 
cognitive decline in people with ID over the last two months (Evenhuis 1996). 
 
OMQ 
The Observer Memory Questionnaire (OMQ) is an informant reported questionnaire relating to individuals’ 
memory abilities over the last two months (O'Shea 1996). 
 
BRIEF-A 
The Behavior Rating Inventory of Executive Function – Adult version (BRIEF-A) (Roth et al. 2005) provides 

scores for informant reported problems with behaviours relating to executive functioning over the last 
month. 
 
Statistical analysis 
The results presented here are limited to cross-sectional analyses of cognitive task data and related 
informant questionnaires. All statistical analyses were performed using SPSS version 22. We determined 
the number of individuals who completed each task, and for each outcome measure of interest calculated 
the mean, standard deviation and range of scores. As many variables deviated from normality as 
assessed using the Shapiro-Wilk test, with alpha set to p<0.01 to account for multiple comparisons, we 
also calculated medians and interquartile ranges. We determined the percentage of individuals at floor and 
ceiling level for each outcome of those who were able to complete the task (i.e. the number of individuals 
scoring the lowest and highest possible scores respectively). We compared responses between males and 
females in Cohort 2 using Student’s t-tests or Mann-Whitney U tests as appropriate. Correlation analyses 
were performed for Cohort 2 using Pearson’s correlation or Spearman’s rho as appropriate to assess 
concurrent validity and to determine the relationships between selected test scores; for these alpha was 
set to p<0.01 due to multiple comparisons. Absolute values of correlation coefficients of 0.70 and above 
were considered strong, between 0.50 and 0.69 were considered moderate, and between 0.30 and 0.49 
were considered weak. 
 
Results 

 
Task completion and score distributions 
 
Cohort 1: adults aged 36 years and over without dementia 
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Demographic information of 130 adults aged 36+ years without a clinical diagnosis of dementia is shown in 
Table 1. Nine (6.9%) participants were unable to undertake any tasks (one of whom did not understand 
English) and a further 12 (9.2%) participants did not pass the vision and hearing tests. All data relating to 
cognitive task completion and performance for this group are presented for 109 adults in Table 2, and data 
from informant questionnaires are shown in Table 3. 
 
Completion rates for each cognitive task in our battery were acceptable, approximately 90% for all non-
computer tasks and 80% for computer tests. For those who completed the tasks many outcomes showed 
fewer than 10% of participants at floor and fewer than 20% of participants at ceiling. As anticipated, when 
converting KBIT-2 raw scores to IQ we found a high number of adults at floor, with 70 (66.7%) adults at 
floor for verbal IQ and 41 (39.4%) adults at floor for non-verbal IQ. The majority of outcomes from the 
informant questionnaires showed low floor and ceiling effects. 
 
Cohort 1: adults aged 36 years and over with dementia 
Information about the demographics of 51 individuals with clinically diagnosed dementia is shown in Table 
1. Of these, 22 had a diagnosis of AD, 1 a diagnosis of vascular dementia, 1 a diagnosis of dementia with 
Lewy bodies, and 27 had dementia of unspecified type. The mean age of dementia diagnosis was 51.70 
years (SD 6.80, range 35-65 years), with a mean time since diagnosis of 2.46 years (SD 2.42, range 0-11 
years). Of the adults in this group, 15 (29.4%) were unable to undertake any cognitive task with a further 9 
(17.6%) failing the vision or hearing task. All data relating to cognitive task completion and performance for 
this group are presented for 27 individuals in Table 4, with data from informant questionnaires in Table 5. 
 
Completion rates for adults with dementia were lower than for those without dementia. Almost all tasks 
showed completion rates above 65%. For those able to complete the task the majority of outcomes 
showed fewer than 25% of individuals at floor and fewer than 15% of participants at ceiling. Again, we 
found high floor effects when converting KBIT-2 raw scores to IQ, with 21 (84.0%) adults at floor for verbal 
IQ and 15 (62.5%) adults at floor for non-verbal IQ. From the informant questionnaires, domains showed 
minimal floor and ceiling effects. 
 
Cohort 2: adults aged 16-35 years 
Analyses were conducted for 124 adults aged 16-35 years. Demographic information is shown in Table 1. 
Of these, three (2.4%) did not pass the vision test, and so results relating to cognitive task performance for 
this group are presented for 121 individuals in Table 6 with data from informant questionnaires in Table 7. 
We found high completion rates across the tasks in the battery, with the majority above 85% and many of 
the lower completion rates for some of the computer tasks being due to technical problems. For those who 
completed the tasks there were low floor effects, with many outcomes having fewer than 5% of participants 
at floor. Some outcomes however showed relatively high ceiling effects, though many were below 35%. 
When converting raw KBIT-2 scores to IQ we again found high floor effects, with 61 (50.8%) adults at floor 
for verbal IQ and 41 (33.9%) adults at floor for non-verbal IQ. The majority of domains from the informant 
questionnaires showed low floor and ceiling effects, although ceiling effects were found in over 20% of 
individuals for domains in the short ABS and DLD. 
 
Comparing scores for males and females in Cohort 2 
There was no significant difference in age between males and females (t(122)=-0.854, p=0.395, male M 
24.80 SD 5.79, females M 25.65 SD 5.29, 95% CI (-2.82, 1.12)). Females showed significantly better 
performance on the verbal subtests of the KBIT-2 (t(109.5)=-2.15, p=0.034, 95% CI (-12.40, -0.50)). For 
the informant questionnaires females showed better cognitive abilities as assessed by the DLD cognitive 
domain (p=0.041). There were no other significant differences in performance between males and females 
(all p>0.05; see Table 8 and Table 9). Within Cohort 2 there were no significant correlations with age for 
any cognitive test outcomes or informant questionnaire scores (all p>0.05; see Table 10 and Table 11). 
 
Correlations between outcome scores for Cohort 2 
The majority of cognitive test outcomes showed significant correlations with all other outcomes in the 
battery (p<0.01), with the exception of the computer generated arena which showed no significant 
correlations at the p<0.01 level (Table 10). All outcomes from the informant questionnaires showed 
significant correlations with each other (see Table 11). Due to a high number of adults aged 16-35 scoring 
at or close to ceiling in the DLD domains these scores were not included in correlational analyses.  
 
To better investigate the relationships between test outcomes we considered the absolute values of 
correlation coefficients. 
 
Moderate and strong correlations revealed four clusters of test outcomes within our cognitive data. One 
cluster contained PAL first trial memory score and object memory immediate score (r=0.522), suggesting 
this is a visuospatial memory cluster. Another contained SRT mean latency and latency standard 
deviation, finger-nose pointing and finger sequencing (0.539<r<0.628), suggesting this is a motor 
coordination cluster. The next contained memory for sentences and verbal fluency (r=0.593). These two 
tasks also correlated highly with KBIT-2 verbal and non-verbal scores (0.503<r<0.827), in particular the 
former, suggesting this represents a language cluster. The final cluster contained outcomes that were not 
all necessarily related to each other but were related to at least two other outcomes in the cluster; this 
consisted of PAL first trial memory score, SRT mean latency and latency standard deviation, Tower of 
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London, finger-nose pointing and NEPSY-II visuomotor precision car and motorbike (0.271<r<0.614). 
Again, most of this cluster correlated with KBIT-2 verbal and non-verbal scores (0.380<r<0.636). This 
cluster may be related to processing speed and sustained attention. Finally, the cats and frogs Stage 3 
score also correlated highly with KBIT-2 verbal and non-verbal scores (r=0.568 and r=0.541 respectively), 
suggesting performance on this task is highly related to general abilities. 
 
Within the informant questionnaire outcomes the best correlations were between subscales related to 
complex adaptive functioning such as personal-social responsibility and higher cognitive functions (Short 
ABS Personal-social responsibility and OMQ r=-0.631, Short ABS Personal-social responsibility and 
BRIEF-A Metacognition index r=-0.731). 
 
Discussion 
 

Here we describe a cognitive test battery to provide detailed assessment of cognitive abilities in individuals 
with DS, along with data for test completion and outcomes. We deliberately assessed individuals with a 
wide range of ages and ID severities and those with and without a clinical diagnosis of dementia, in order 
to provide cognitive test data that is representative of the adult population with DS. Results from 
individuals without dementia suggest high completion rates across the tasks. Computer-based tasks had 
lower completion rates, in some cases (up to 27.3%) due to technical issues. Completion rates for those 
with dementia were lower, with approximately half of individuals unable to undertake any task. Our 
outcome measures for each task and informant measure showed a range of scores, with many showing 
low floor and ceiling effects. Non-verbal age-adjusted IQ scores had lower floor effects than verbal IQ 
scores for all groups. 
 
Females aged 16-35 years performed better than males on general verbal abilities, and also showed 
better cognitive abilities as assessed by the DLD cognitive domain. We identified clusters of cognitive test 
scores within our battery relating to visuospatial memory, motor coordination, language abilities, and 
processing speed / sustained attention. 
Our results show a wide range of individuals’ cognitive abilities, and suggest our battery is suitable for a 
wide range of adults with DS. Our future studies will use our baseline results presented here to investigate 
cognitive abilities and changes in cognitive abilities associated with ageing and dementia. Individual 
differences in the dementia phenotype and cognitive profiles of people with DS emphasises the 
importance of studying factors contributing towards these variations (Karmiloff-Smith et al. 2016). We will 

also investigate factors including genetic, medical and socioeconomic variations that may be associated 
with these abilities. We hope our results will help identify risk and protective factors for the development of 
dementia in people with DS, and factors relating to baseline cognitive abilities. This will aid identifying 
relevant potential mechanisms and predictive phenotypes, and may help to inform interventions that can 
influence developmental trajectories. 
 
Final test and outcome selection 
 
Many of the tests within our battery show a range of scores with low floor and ceiling effects and high 
validity, as determined by exploring relationships between outcomes in Cohort 2. However, several tests 
within our battery may have limited use based on our study aims. Firstly, the CAMCOG incidental memory 
test may not be useful, with high floor effects for the recall score for all groups. Future longitudinal studies 
will determine if this is a useful test to assess cognitive decline within individuals. Secondly, a previous 
pilot study suggested the virtual generated arena is not useful in older adults (Sinai and Strydom 
unpublished observations), and our current analyses showed that for younger adults the test scores 
showed limited correlations with other task measures. Further, both the mean and median times spent in 
the correct quadrant were approximately 25%, and as individuals should spend 25% of their time in the 
correct quadrant by chance alone this suggests this measure is not useful. 
 
As expected, when converting raw scores on the KBIT-2 to age-dependent IQ scores we found high floor 
effects across all participant groups. IQ score floor effects were lower for non-verbal IQ than verbal IQ in 
all our groups. Age-dependent non-verbal IQ scores may therefore be more useful than verbal IQ scores 
for future studies, and also offer an advantage if comparing individuals or studies across language groups. 
 
The ideal test and outcome measure to use in neuropsychological research depends upon the cognitive 
ability of interest, the specific research question and population assessed, in addition to floor / ceiling 
effects and the spread of results observed. Within different age cohorts and for our different research 
questions different tests and outcome measures will therefore be useful, in particular as score ranges and 
floor and ceiling effects varied across groups (e.g. to assess cognitive decline then outcomes with low floor 
effects prior to the onset of decline are essential). For several cognitive tasks within our battery, in 
particular the CANTAB tasks, there are multiple outcome measures, and we have identified those 
outcomes that will be most useful in our future studies (see Box 1). 
 
A high proportion of individuals with dementia were unable to complete any cognitive tests. For those able 
to undertake cognitive tasks completion rates were generally higher for table-top tasks compared to 
computer tasks. This suggests the use of some longer computer tasks may not be suitable for an older 
population at risk for dementia, and instead may need to be replaced with traditional table-top tasks and 
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informant questionnaires. We also noted that in many adults with dementia and in some adults aged 36+ 
years without dementia attention levels appeared to negatively affect task performance. A similar 
observation was made by Sinai et al. (2016), and future test batteries should account for this. 
 
Finally, during data collection we found some questions within two of the informant questionnaires used, 
the BRIEF-A and OMQ, were often unsuitable for older adults and those with more severe IDs. As a result, 
we developed a new informant questionnaire, the Cognitive Scale for Down Syndrome (CS-DS), to assess 
cognitive abilities in people with DS, focusing on executive function, memory and language abilities. This 
questionnaire showed high reliability and validity (Startin et al. 2016). 
 

Validity of the test battery 
 
The majority of cognitive test scores correlated well with all other cognitive test scores in adults aged 16-
35. It has previously been proposed that cognitive measures are more highly correlated in those with lower 
compared to higher IQs (Detterman and Daniel 1989). The high correlations between test scores and 
KBIT-2 raw scores indicate that higher general abilities are related to better individual task performance, 
and it has similarly been suggested the high variability in neurocognitive task performance in people with 
DS is due to variability in IQ (de Sola et al. 2015). Further, de Sola et al. (2015) and Liogier d'Ardhuy et al. 
(2015) found better task performance in individuals with higher IQs. 
 
To determine clusters of related cognitive outcomes in adults aged 16-35 before the onset of cognitive 
decline we examined correlational coefficients of 0.50 and above. We identified the presence of clusters 
relating to visuospatial memory, motor coordination, language abilities, and sustained attention / 
processing speed. These results suggest the presence of related cognitive abilities in this population that 
could inform further development of outcome measures. 
 
Effect of sex on task performance 
 
We found females scored higher for KBIT-2 verbal scores and for informant report for the DLD cognitive 
domain than males in adults aged 16-35 years. Previous studies have also reported higher linguistic 
abilities in females compared to males (de Sola et al. 2015, Liogier d'Ardhuy et al. 2015), in addition to 

better performance on tasks of memory, executive function and attention (including the PAL and SRT) (de 
Sola et al. 2015) and higher functional abilities (Lund 1988, Maatta et al. 2006). The effect of gender on 
cognitive and functional abilities in DS requires further study. 
 
Possible effect of cognitive decline and ageing on task performance 
We found no significant correlations with age and cognitive test outcomes or informant questionnaire 
scores in adults aged 16-35. Performance was however generally poorer in adults aged 36+ compared to 
those aged 16-35. Our future analyses will focus on the impact of cognitive decline and ageing on abilities 
in individuals with DS. 
Previous studies have confirmed poorer performance on many of the cognitive tasks within our battery for 
adults with cognitive decline or dementia compared to those with no decline (Adams and Oliver 2010, Ball 
et al. 2008, Oliver et al. 2005, Sinai et al. 2016). Previous studies have also found poorer performance 
associated with ageing in DS for the PAL (Crayton et al. 1998, Oliver et al. 2005) and Tower of London 
(Ghezzo et al. 2014). These results suggest our battery should be sensitive to the presence of dementia 
and many of our tasks may be useful for predicting and tracking cognitive decline. Cognitive abilities and 
changes in these individuals over the course of our longitudinal study will be of particular interest when 
determining the effects of age-related and dementia-related changes in cognition. 
 

Strengths and limitations 
 
A major strength of our study and analyses is the large sample size, including a wide variety of ages and 
ID severities, and both those with and without a clinical diagnosis of dementia. We recruited individuals 
from a variety of settings, including volunteers and local ID clinical teams, suggesting our sample should 
be representative of individuals with DS in the UK. 
 
Our results suggest the majority of our tasks have high completion rates for adults who do not have a 
diagnosis of dementia, with test scores showing a wide range and select outcomes showing low floor and 
ceiling effects. The battery will therefore be largely suitable for further analyses to assess cognitive 
decline, dementia, ageing, and baseline cognitive abilities in adults with DS. 
 
For adults with a diagnosis of dementia completion rates were much lower however, although this 
population will always be difficult to assess with psychometric tests. For adults unable to complete any of 
the tasks in the battery informant ratings of abilities are invaluable, although further work is needed to 
determine the relationships between cognitive test scores and informant measure outcomes. A further 
limitation lies with the use of KBIT-2 IQ scores, which showed a high number of individuals at floor level, 
similar to other IQ tests in this population. For this reason we chose to use raw scores as the main 
outcome for the KBIT-2. 
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Conclusion 
 
We report a cognitive battery and related informant measures to assess general abilities, memory, 
executive function, and motor coordination abilities in individuals with DS. We assessed participants with a 
range of ages and abilities, and our results suggest the battery is suitable for the majority of adults with 
DS. Many test outcomes showed a range of scores with low floor and ceiling effects. This battery will be 
used in our future studies to assess factors influencing individual differences in cognitive decline, 
dementia, ageing, and baseline cognitive abilities in adults with DS. 
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S1. Summary table of assessments for general abilities, memory, executive function, and motor coordination, 
with outcomes of interest. All assessments are listed, in addition to a brief description of the test and ability 
assessed, and outcome measures and the possible range of scores. 
S2. Assessment schedule for cognitive test battery. The counter-balanced order of tests used is given for 
participants in the two cohorts. 
 

Tables 

 

Adults aged 36+ 
without dementia 

Adults aged 36+ with 
dementia 

Adults aged 16-35 

Number 130 51 124 

Age (mean±SD 
(range)) 

47.77±7.01 (36-71) 54.20±6.95 (38-67) 25.24±5.53 (16-35) 

Sex 74 males, 56 females 22 males, 29 females 59 males, 65 females 

ID severity 
(carer report) 

55 mild, 53 moderate, 22 
severe 

16 mild, 22 moderate, 8 severe, 
5 unknown (NB pre-dementia) 

48 mild, 63 moderate, 13 
severe 

Ethnicity 
112 white, 4 Asian, 10 
African, 3 mixed, 1 other 

48 white, 2 Asian, 1 African 
101 white, 6 Asian, 7 
African, 7 mixed, 3 other 

Table 1. Participant demographics across the groups. 

Test 
Number 

completed 

Reasons 
for non-

completion 

Outcome 
measure 

Mean 
± SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at 

ceiling 

KBIT-2 

105 
(96.3%) 
verbal, 104 
(95.4%) 
non-verbal 

5 unable to 
complete 

Verbal raw 
score 

30.55 
± 
17.47 

28.00 
(24.00) 

2 - 80 0 (0.0%) 0 (0.0%) 

   
Performance 
raw score

 a
 

12.55 
± 6.57 

14.00 
(7.00) 

0 - 32 7 (6.7%) 0 (0.0%) 

CANTAB – 
PAL 

91 (83.5%) 
10 refused 
8 unable to 
complete 

First trial 
memory 
score

 a
 

7.00 ± 
5.86 

6.00 
(11.00) 

0 - 21 
15 
(16.5%) 

0 (0.0%) 

   
Levels 
completed

 a
 

4.98 ± 
2.65 

5.00 
(6.00) 

0 - 8 5 (5.5%) 
23 
(25.3%) 

CAMCOG – 
delayed 
incidental 
memory 

100 
(91.7%) 

7 refused 
2 unable to 
complete 

Object 
naming

 a
 

5.65 ± 
0.70 

6.00 
(1.00) 

3 - 6 0 (0.0%) 
75 
(75.0%) 

   
Object recall

 

a
 

0.52 ± 
1.05 

0.00 
(1.00) 

0 - 6 
72 
(72.0%) 

1 (1.0%) 

   
Object 
recognition

 a
 

3.47 ± 
1.85 

4.00 
(3.00) 

0 - 6 6 (6.0%) 
18 
(18.0%) 

CAMCOG –
orientation 

100 
(91.7%) 

6 refused 
3 unable to 
complete 

Total score
 a
 

8.87 ± 
3.56 

10.50 
(6.00) 

0 - 12 1 (1.0%) 
40 
(40.0%) 

Delayed 
object 
memory 

97 (89.0%) 

6 refused 
4 unable to 
complete 
2 technical 
problems 

Immediate 
memory

 a
 

9.09 ± 
3.17 

10.00 
(5.00) 

0 - 14 2 (2.1%) 4 (4.1%) 

   
Delayed 
memory

 a
 

5.07 ± 
1.80 

5.00 
(2.00) 

0 - 7 3 (3.1%) 
22 
(22.7%) 

CANTAB – 
IED 

89 (81.7%) 

14 refused 
5 unable to 
complete 
1 technical 
problems 

Errors in 
stage 1

 a b
 

6.29 ± 
9.17 

2.00 
(5.50) 

0 - 33 0 (0.0%) 
11 
(12.4%) 
c
 

   
Levels 
completed

 a
 

5.83 ± 
3.07 

7.00 
(3.00) 

0 - 9 
13 
(14.6%) 

17 
(19.1%) 

CANTAB – 
SRT 

84 (77.1%) 

13 refused 
7 unable to 
complete 
5 technical 
problems 

Total correct
 

a
 

87.07 
± 
17.29 

94.00 
(17.25) 

25 - 100 0 (0.0%) 
13 
(15.5%) 

   

Mean 
latency (ms)

 

a b
 

950.37 
± 
480.55 

853.78 
(631.36) 

311.33 - 
2241.61 

N/A N/A 

   
Latency 445.17 426.63 45.32 - N/A N/A 
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standard 
deviation 
(ms) 

b
 

± 
216.29 

(349.09) 980.98 

CAMCOG –
verbal 
fluency 

101 
(92.7%) 

6 refused 
2 unable to 
complete 

Total 
animals 
named

 a
 

8.40 ± 
5.86 

8.00 
(8.00) 

0 - 27 6 (5.9%) N/A 

Tower of 
London 

97 (89.0%) 

5 refused 
6 unable to 
complete 
1 technical 
problems 

Total score
 a
 

6.37 ± 
3.23 

8.00 
(5.00) 

0 - 10 8 (8.2%) 
17 
(17.5%) 

Finger-
nose 
pointing 

98 (89.9%) 
9 refused 
2 unable to 
complete 

Total 
completed

 a
 

8.49 ± 
4.83 

8.00 
(6.00) 

0 - 23 2 (2.0%) N/A 

NEPSY-II – 
visuomotor 
precision 

97 (89.0%) 
train and 
car, 96 
(88.1%) car 
and 
motorbike 

10 refused 
2 unable to 
complete 
1 technical 
problems 

Train and 
car

 a
 

13.52 
± 5.88 

15.00 
(8.00) 

1 - 23 0 (0.0%) 0 (0.0%) 

   
Car and 
motorbike

 a
 

11.45 
± 8.72 

9.00 
(15.00) 

0 - 32 3 (3.1%) 0 (0.0%) 

Table 2. Task completion rates and summary of results for main outcome measures for adults aged 36+ 
without dementia. 

a
 Significantly deviated from normality using Shapiro-Wilk test (P<0.010), 

b
 lower values 

indicate better performance, 
c 
0 errors is at ceiling. 

Questionnaire 
Outcome 
measure 

Number 
completed 

Mean ± 
SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at ceiling 

Short ABS Total score 112 (86.2%) 
71.89 ± 
23.39 

75.00 
(38.50) 

14 - 
111 

0 (0.0%) 0 (0.0%) 

 
Personal self-
sufficiency 

a
 

117 (90.0%) 
26.74 ± 
6.07 

29.00 
(6.00) 

0 - 33 1 (0.9%) 
14 
(12.0%) 

 
Community self-
sufficiency 

115 (88.5%) 
24.57 ± 
12.06 

24.00 
(17.00) 

0 - 47 1 (0.9%) 0 (0.0%) 

 
Personal-social 
responsibility 

a
 

116 (89.2%) 
20.78 ± 
6.97 

21.00 
(10.75) 

3 - 32 0 (0.0%) 1 (0.9%) 

DLD 
b
 

Sum of cognitive 
score 

a
 

110 (84.6%) 
12.23 ± 
10.74 

9.00 
(16.50) 

0 - 38 0 (0.0%) 
12 
(10.9%) 

 
Sum of social 
scores 

a
 

113 (86.9%) 
11.58 ± 
7.75 

11.00 
(10.00) 

0 - 36 0 (0.0%) 6 (5.3%) 

OMQ
 b

 Total score 111 (85.4%) 
82.50 ± 
18.85 

83.00 
(26.00) 

35 - 
125 

0 (0.0%) 0 (0.0%) 

BRIEF-A 
b
 Total score 100 (76.9%) 

122.11 ± 
24.11 

122.00 
(37.50) 

74 - 
175 

0 (0.0%) 0 (0.0%) 

 
Behavioural 
regulation index 

117 (90.0%) 
52.02 ± 
11.21 

51.00 
(16.00) 

30 - 80 0 (0.0%) 2 (1.7%) 

 
Metacognition 
index 

101 (77.7%) 
70.91 ± 
14.71 

72.00 
(22.50) 

43 - 
100 

0 (0.0%) 0 (0.0%) 

Table 3. Summary of results from informant questionnaires for adults aged 36+ without dementia.
 a

 
Significantly deviated from normality using Shapiro-Wilk test (P<0.010),

 b 
higher scores indicate poorer 

abilities. 

Test 
Number 

completed 

Reasons 
for non-

completion 

Outcome 
measure 

Mean ± 
SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at 

ceiling 

KBIT-2 

25 (92.6%) 
verbal, 24 
(88.9%) 
non-verbal 

3 unable to 
complete 

Verbal raw 
score 

18.68 ± 
13.77 

17.00 
(24.00) 

1 - 51 0 (0.0%) 0 (0.0%) 

   
Performance 
raw score 

8.29 ± 
6.45 

8.00 
(12.00) 

0 - 19 
4 
(16.7%) 

0 (0.0%) 

CANTAB – 
PAL 

20 (74.1%) 
2 refused 
5 unable to 
complete 

First trial 
memory 
score

 a
 

1.70 ± 
2.58 

0.50 
(2.75) 

0 - 9 
10 
(50.0%) 

0 (0.0%) 

   
Levels 
completed 

2.40 ± 
2.09 

2.00 
(4.50) 

0 - 6 
5 
(25.0%) 

0 (0.0%) 

CAMCOG – 
delayed 
incidental 
memory 

25 (92.6%) 
2 unable to 
complete 

Object 
naming

 a
 

5.40 ± 
0.87 

6.00 
(2.00) 

4 - 6 0 (0.0%) 
16 
(64.0%) 
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Object recall

 

a
 

0.16 ± 
0.47 

0.00 
(0.00) 

0 - 2 
22 
(88.0%) 

0 (0.0%) 

   
Object 
recognition 

2.84 ± 
1.70 

2.00 
(2.00) 

0 - 6 1 (4.0%) 
3 
(12.0%) 

CAMCOG –
orientation 

23 (85.2%) 

3 unable to 
complete 
1 technical 
problems 

Total score 
5.65 ± 
3.92 

5.00 
(7.00) 

0 - 12 2 (8.7%) 2 (8.7%) 

Delayed 
object 
memory 

21 (77.8%) 

3 unable to 
complete 
3 technical 
problems 

Immediate 
memory

 a
 

4.62 ± 
4.12 

3.00 
(8.00) 

0 - 11 
5 
(23.8%) 

0 (0.0%) 

   
Delayed 
memory 

2.67 ± 
2.22 

2.00 
(5.00) 

0 - 7 
5 
(23.8%) 

1 (4.8%) 

CANTAB – 
IED 

20 (74.1%) 
1 refused 
6 unable to 
complete 

Errors in 
stage 1

 a b
 

13.70 ± 
12.91 

7.00 
(23.75) 

0 - 39 0 (0.0%) 
3 
(15.0%) 
c
 

   
Levels 
completed

 a
 

3.30 ± 
3.39 

1.50 
(7.00) 

0 - 8 
8 
(40.0%) 

0 (0.0%) 

CANTAB – 
SRT 

17 (63.0%) 
3 refused 
7 unable to 
complete 

Total correct 
73.88 ± 
18.83 

72.00 
(36.00) 

41 - 99 0 (0.0%) 0 (0.0%) 

   

Mean 
latency (ms)

 

b
 

1293.65 
± 
488.29 

1160.93 
(893.95) 

588.00 
- 
2153.17 

N/A N/A 

   

Latency 
standard 
deviation 
(ms)

 b
 

574.87 
± 
166.43 

609.07 
(252.62) 

219.57 
- 
815.67 

N/A N/A 

CAMCOG –
verbal 
fluency 

25 (92.6%) 
2 unable to 
complete 

Total 
animals 
named

 a
 

5.00 ± 
4.51 

5.00 
(7.00) 

0 - 19 
4 
(16.0%) 

N/A 

Tower of 
London 

16 (59.3%) 
11 unable 
to complete 

Total score 
4.88 ± 
3.79 

5.50 
(8.00) 

0 - 10 
3 
(18.8%) 

3 
(18.8%) 

Finger-
nose 
pointing 

23 (85.2%) 
2 refused 
2 unable to 
complete 

Total 
completed

 a
 

5.61 ± 
5.09 

3.00 
(9.00) 

0 - 15 2 (8.7%) N/A 

NEPSY-II – 
visuomotor 
precision 

19 (70.4%) 
train and 
car, 18 
(66.7%) 
car and 
motorbike 

1 refused 
8 unable to 
complete 

Train and 
car 

11.00 ± 
7.57 

11.00 
(15.00) 

0 - 21 1 (5.3%) 0 (0.0%) 

   
Car and 
motorbike 

7.67 ± 
7.90 

5.00 
(13.00) 

0 - 24 
4 
(22.2%) 

0 (0.0%) 

Table 4. Task completion rates and summary of results for main outcome measures for adults aged 36+ 
with dementia 

a
 Significantly deviated from normality using Shapiro-Wilk test (P<0.010), 

b
 lower values 

indicate better performance, 
c 
0 errors is at ceiling. 

Questionnaire 
Outcome 
measure 

Number 
completed 

Mean ± 
SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at ceiling 

Short ABS Total score 43 (84.3%) 
42.23 ± 
24.51 

38.00 
(42.00) 

3 - 92 0 (0.0%) 0 (0.0%) 

 
Personal self-
sufficiency 

43 (84.3%) 
17.02 ± 
9.70 

17.00 
(18.00) 

0 - 33 1 (2.3%) 1 (2.3%) 

 
Community self-
sufficiency 

a
 

43 (84.3%) 
11.98 ± 
9.11 

10.00 
(15.00) 

0 - 31 1 (2.3%) 0 (0.0%) 

 
Personal-social 
responsibility 

43 (84.3%) 
13.23 ± 
7.32 

13.00 
(11.00) 

1 - 28 0 (0.0%) 0 (0.0%) 

DLD 
b
 

Sum of cognitive 
score 

42 (82.4%) 
27.69 ± 
10.53 

29.00 
(13.25) 

3 - 44 1 (2.4%) 0 (0.0%) 

 
Sum of social 
scores 

42 (82.4%) 
23.93 ± 
12.01 

25.00 
(22.00) 

1 - 50 0 (0.0%) 0 (0.0%) 

OMQ
 b

 Total score 37 (72.5%) 
117.16 ± 
13.82 

119.00 
(13.50) 

78 - 
142 

0 (0.0%) 0 (0.0%) 

BRIEF-A 
b
 Total score 33 (64.7%) 

145.36 ± 
31.54 

149.00 
(40.50) 

77 - 
199 

0 (0.0%) 0 (0.0%) 

 
Behavioural 
regulation index 

37 (72.5%) 
57.22 ± 
14.71 

54.00 
(21.00) 

32 - 84 0 (0.0%) 0 (0.0%) 
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Metacognition 
index 

33 (64.7%) 
88.24 ± 
19.53 

94.00 
(30.00) 

43 - 
118 

0 (0.0%) 0 (0.0%) 

Table 5. Summary of results from informant questionnaires for adults aged 36+ with dementia.
 a
 

Significantly deviated from normality using Shapiro-Wilk test (P<0.010),
 b 

higher scores indicate poorer 
abilities. 

Test 
Number 

completed 

Reasons 
for non-

completion 

Outcome 
measure 

Mean 
± SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at 

ceiling 

KBIT-2 

120 
(99.2%) 
verbal, 121 
(100.0%) 
non-verbal 

1 unable to 
complete 

Verbal raw 
score 

35.03 
± 
16.77 

35.00 
(23.00) 

2 - 82 0 (0.0%) 0 (0.0%) 

   
Performance 
raw score

 a
 

14.98 
± 6.90 

16.00 
(7.00) 

0 - 32 5 (4.1%) 0 (0.0%) 

CANTAB – 
PAL 

108 
(89.3%) 

5 refused 
7 unable to 
complete 
1 technical 
problems 

First trial 
memory 
score

 a
 

10.22 
± 5.66 

11.00 
(7.75) 

0 - 20 
10 
(9.3%) 

0 (0.0%) 

   
Levels 
completed

 a
 

6.29 ± 
2.50 

8.00 
(2.00) 

0 - 8 4 (3.7%) 
56 
(51.9%) 

CAMCOG – 
delayed 
incidental 
memory 

117 
(96.7%) 

1 refused 
2 unable to 
complete 
1 technical 
problems 

Object 
naming

 a
 

5.74 ± 
0.68 

6.00 
(0.00) 

2 - 6 0 (0.0%) 
98 
(83.8%) 

   
Object recall

 

a
 

1.19 ± 
1.42 

1.00 
(2.00) 

0 - 6 
53 
(45.3%) 

1 (0.9%) 

   
Object 
recognition

 a
 

4.30 ± 
1.59 

5.00 
(3.00) 

0 - 6 2 (1.7%) 
34 
(29.1%) 

CAMCOG –
orientation 

113 
(93.4%) 

1 refused 
4 unable to 
complete 
3 technical 
problems 

Total score
 a
 

9.65 ± 
3.45 

12.00 
(4.00) 

1 - 12 0 (0.0%) 
65 
(57.5%) 

Delayed 
object 
memory 

109 
(90.1%) 

2 refused 
3 unable to 
complete 
7 technical 
problems 

Immediate 
memory

 a
 

10.35 
± 2.83 

11.00 
(3.00) 

0 - 14 2 (1.8%) 3 (2.8%) 

   
Delayed 
memory

 a
 

5.84 ± 
1.42 

6.00 
(2.00) 

0 - 7 1 (0.9%) 
43 
(39.4%) 

Memory for 
sentences 

106 
(87.6%) 

2 refused 
10 unable 
to complete 
3 technical 
problems 

Total words 
remembered

 

a
 

30.53 
± 
13.68 

33.50 
(23.00) 

3 - 49 0 (0.0%) 3 (2.8%) 

ACTB – 
virtual 
generated 
arena 

73 (60.3%) 

4 refused 
11 unable 
to complete 
33 technical 
problems 

Percentage 
of time spent 
in correct 
quadrant

 a
 

26.52 
± 
19.88 

22.36 
(21.04) 

0.00 - 
86.79 

8 
(11.0%) 

0 (0.0%) 

CANTAB – 
IED 

109 
(90.1%) 

2 refused 
6 unable to 
complete 
4 technical 
problems 

Errors in 
stage 1

 a b
 

4.19 ± 
7.16 

2.00 
(3.00) 

0 - 33 0 (0.0%) 
19 
(17.4%)

 

c
 

   
Levels 
completed

 a
 

6.57 ± 
2.54 

7.00 
(1.00) 

0 - 9 9 (8.3%) 
22 
(20.2%) 

CANTAB – 
SRT 

105 
(86.8%) 

3 refused 
6 unable to 
complete 
7 technical 
problems 

Total correct
 

a
 

92.82 
± 
13.30 

98.00 
(8.00) 

13 - 
100 

0 (0.0%) 
35 
(33.3%) 

   

Mean 
latency (ms)

 

a b
 

692.48 
± 
442.59 

553.77 
(462.81) 

273.37 
- 
2500.61 

N/A N/A 
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Latency 
standard 
deviation 
(ms)

 a b
 

315.93 
± 
208.43 

274.23 
(295.32) 

32.94 - 
950.49 

N/A N/A 

CAMCOG –
verbal 
fluency 

114 
(94.2%) 

1 refused 
5 unable to 
complete 
1 technical 
problems 

Total 
animals 
named 

10.93 
± 5.84 

10.50 
(10.00) 

0 - 24 3 (2.6%) N/A 

Tower of 
London 

112 
(92.6%) 

3 unable to 
complete 
6 technical 
problems 

Total score
 a
 

7.45 ± 
2.90 

8.00 
(2.00) 

0 - 10 6 (5.4%) 
26 
(23.2%) 

ACTB – 
cats and 
frogs 

86 (71.1%) 

4 refused 
3 unable to 
complete 
28 technical 
problems 

Stage 1 (cat 
rule alone) 
percentage 
correct

 a
 

90.31 
± 
18.57 

100.00 
(9.32) 

33.33 - 
100.00 

0 (0.0%) 
59 
(68.6%) 

   

Stage 2 (frog 
rule alone) 
percentage 
correct

 a
 

79.83 
± 
27.12 

95.83 
(33.33) 

0.00 – 
100.00 

2 (2.3%) 
43 
(50.0%) 

   

Stage 3 
(combined 
rules) 
percentage 
correct

 a
 

66.96 
± 
21.64 

56.16 
(44.02) 

33.33 - 
100.00 

0 (0.0%) 
13 
(15.1%) 

Finger-nose 
pointing 

116 
(95.9%) 

3 refused 
2 technical 
problems 

Total 
completed 

11.01 
± 5.19 

10.50 
(8.00) 

0 - 24 1 (0.9%) N/A 

NEPSY-II – 
visuomotor 
precision 

118 
(97.5%) 

3 technical 
problems 

Train and car
 

a
 

15.90 
± 5.26 

18.00 
(5.00) 

2 - 23 0 (0.0%) 0 (0.0%) 

   
Car and 
motorbike

 a
 

17.00 
± 9.61 

18.00 
(16.00) 

0 - 40 1 (0.8%) 0 (0.0%) 

ACTB – 
finger 
sequencing 

83 (68.6%) 

3 refused 
10 unable 
to complete 
25 technical 
problems 

Total 
complete 
sequences 

231.42 
± 
62.36 

241.00 
(75.00) 

30 - 
369 

0 (0.0%) N/A 

Table 6. Task completion rates and summary of results for main outcome measures for adults aged 16-35. 
a
 Significantly deviated from normality using Shapiro-Wilk test (P<0.010), 

b
 lower values indicate better 

performance, 
c 
0 errors is at ceiling. 

Questionnaire 
Outcome 
measure 

Number 
completed 

Mean ± 
SD 

Median 
(IQR) 

Range 
Number 
at floor 

Number 
at ceiling 

Short ABS Total score 
a
 118 (95.2%) 

79.03 ± 
19.73 

84.00 
(28.50) 

28 - 
112 

0 (0.0%) 0 (0.0%) 

 
Personal self-
sufficiency 

a
 

119 (96.0%) 
28.91 ± 
4.55 

30.00 
(6.00) 

14 - 33 0 (0.0%) 
31 
(26.1%) 

 
Community self-
sufficiency 

119 (96.0%) 
27.74 ± 
10.36 

29.00 
(15.00) 

4 - 47 0 (0.0%) 0 (0.0%) 

 
Personal-social 
responsibility 

a
 

119 (96.0%) 
22.53 ± 
6.49 

23.00 
(10.00) 

7 - 32 0 (0.0%) 5 (4.2%) 

DLD 
b
 

Sum of cognitive 
score 

a
 

114 (91.9%) 
7.57 ± 
8.40 

4.00 
(11.00) 

0 - 39 0 (0.0%) 
23 
(20.2%) 

 
Sum of social 
scores 

a
 

118 (95.2%) 
9.32 ± 
6.85 

8.50 
(8.00) 

0 - 31 0 (0.0%) 9 (7.6%) 

OMQ
 b

 Total score 119 (96.0%) 
74.82 ± 
18.43 

75.00 
(23.00) 

33 - 
120 

0 (0.0%) 0 (0.0%) 

BRIEF-A 
b
 Total score 113 (91.1%) 

121.03 ± 
26.27 

121.00 
(31.00) 

71 - 
191 

0 (0.0%) 0 (0.0%) 

 
Behavioural 
regulation index 

a
 

117 (94.4%) 
50.75 ± 
12.32 

49.00 
(17.00) 

31 - 82 0 (0.0%) 0 (0.0%) 

 
Metacognition 
index 

113 (91.1%) 
70.55 ± 
16.71 

70.00 
(18.00) 

40 - 
116 

0 (0.0%) 2 (1.8%) 

Table 7. Summary of results from informant questionnaires for adults aged 16-35.
 a
 Significantly deviated 

from normality using Shapiro-Wilk test (P<0.010),
 b 

higher scores indicate poorer abilities. 
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Mean ± SD 

Median 
(IQR)  

 
Males Females Males Females p 

KBIT-2 verbal score
 a
 

31.75 ± 
13.68 

38.20 ± 
18.87 

32.00 
(16.00) 

38.00 
(28.00) 

0.034 

KBIT-2 non-verbal score 14.97 ± 6.90 15.00 ± 6.95 16.00 (7.00) 16.00 (7.00) 0.845 

PAL first trial memory score 10.04 ± 5.17 10.39 ± 6.12 10.00 (7.00) 
12.50 

(11.00) 
0.444 

PAL levels completed 6.35 ± 2.37 6.23 ± 2.63 7.50 (2.00) 8.00 (3.50) 0.806 

CAMCOG object naming 5.75 ± 0.61 5.74 ± 0.75 6.00 (0.00) 6.00 (0.00) 0.702 

CAMCOG object recall 1.11 ± 1.34 1.26 ± 1.49 1.00 (2.00) 1.00 (2.00) 0.657 

CAMCOG object recognition 4.07 ± 1.72 4.51 ± 1.45 4.50 (4.00) 5.00 (2.00) 0.207 

CAMCOG orientation 9.18 ± 3.59 10.10 ± 3.29 11.00 (6.00) 12.00 (3.00) 0.086 

Object memory immediate 10.30 ± 2.48 10.39 ± 3.15 11.00 (3.00) 11.00 (2.00) 0.367 

Object memory delayed 5.91 ± 1.15 5.79 ± 1.65 6.00 (2.00) 6.00 (2.00) 0.664 

Memory for sentences 
29.16 ± 
13.33 

31.80 ± 
14.00 

33.00 
(22.00) 

34.00 
(24.00) 

0.267 

IED errors stage 1 3.62 ± 6.12 4.72 ± 8.01 1.50 (3.00) 2.00 (3.00) 0.874 

IED levels complete 6.88 ± 2.28 6.28 ± 2.74 7.00 (1.00) 7.00 (0.50) 0.212 

SRT total correct 
92.53 ± 
15.24 

93.12 ± 
11.13 

98.00 (8.50) 98.00 (7.50) 0.478 

SRT mean latency (ms) 
708.70 ± 
517.62 

675.95 ± 
354.58 

491.76 
(485.52) 

590.04 
(442.00) 

0.497 

SRT latency standard deviation 
(ms) 

293.94 ± 
199.77 

338.34 ± 
216.53 

244.95 
(300.57) 

319.94 
(300.64) 

0.290 

CAMCOG verbal fluency 
a
 10.52 ± 6.02 11.33 ± 5.68 

10.00 
(10.00) 

12.00 (8.00) 0.462 

Tower of London 7.64 ± 2.70 7.27 ± 3.08 8.00 (2.00) 9.00 (3.00) 0.879 

Cats and frogs Stage 1 
87.60 ± 
21.42 

92.89 ± 
15.18 

100.00 
(18.18) 

100.00 
(8.33) 

0.284 

Cats and frogs Stage 2 
80.36 ± 
27.45 

79.33 ± 
27.11 

91.67 
(33.33) 

100.00 
(41.25) 

0.952 

Cats and frogs Stage 3 
65.49 ± 
20.03 

68.37 ± 
23.22 

54.86 
(35.79) 

59.43 
(48.00) 

0.497 

Finger nose pointing 
a
 10.88 ± 5.48 11.14 ± 4.94 11.00 (8.00) 10.00 (8.00) 0.790 

NEPSY-II visuomotor precision train 
and car 

15.83 ± 4.97 15.97 ± 5.57 18.00 (5.00) 18.00 (5.00) 0.528 

NEPSY-II visuomotor precision car 
and motorbike 

a
 

17.38 ± 9.83 16.63 ± 9.46 
18.00 

(17.00) 
18.00 

(15.00) 
0.675 

Finger sequencing 
a
 

238.08 ± 
65.57 

225.23 ± 
59.31 

250.50 
(80.25) 

241.00 
(68.00) 

0.352 

Table 8. Comparing cognitive test scores between males and females for adults aged 16-35. All group 
comparisons used Mann Whitney U tests aside from 

a
 when Student’s t-tests were used as data did not 

deviate from normality. 

 
Mean ± SD 

Median 
(IQR)  

 
Males Females Males Females p 

Short ABS Total score 
77.69 ± 
20.34 

80.17 ± 
19.29 

79.50 
(35.25) 

84.50 (22.00) 0.563 

Short ABS Personal self-
sufficiency 

28.95 ± 4.66 28.88 ± 4.48 31.00 (7.00) 30.00 (4.00) 0.704 

Short ABS Community self-
sufficiency 

a
 

27.24 ± 
10.24 

28.17 ± 
10.53 

27.00 
(17.00) 

30.00 (14.50) 0.625 

Short ABS Personal-social 
responsibility 

21.84 ± 7.01 23.13 ± 5.99 
22.00 

(12.00) 
25.00 (7.00) 0.384 

DLD Sum of cognitive score 9.00 ± 8.74 6.28 ± 7.95 5.00 (14.00) 3.00 (8.75) 0.041 

DLD Sum of social scores 9.16 ± 6.50 9.47 ± 7.20 8.50 (8.00) 8.50 (6.50) 0.985 

OMQ Total score 
a
 

77.93 ± 
19.24 

72.16 ± 
17.42 

79.00 
(26.00) 

71.50 (20.25) 0.089 

BRIEF-A Total score 
a
 

121.29 ± 
28.01 

120.81 ± 
24.98 

118.00 
(41.00) 

121.50 
(24.25) 

0.922 

BRIEF-A Behavioural regulation 
index 

a
 

50.83 ± 
12.59 

50.68 ± 
12.19 

49.00 
(18.25) 

49.00 (16.00) 0.948 

BRIEF-A Metacognition index 
a
 

71.33 ± 
18.14 

69.90 ± 
15.56 

71.00 
(25.00) 

70.00 (15.50) 0.653 
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Table 9. Comparing informant scores between males and females for adults aged 16-35. All group 
comparisons used Mann Whitney U tests aside from 

a
 when Student’s t-tests were used as data did not 

deviate from normality. 

 

KBIT
-2 
verb
al 
scor
e 

KBIT-2 
non-
verbal 
score 

PAL 
first 
trial 
memor
y 
score 

Object 
memory 
immedia
te 

Object 
memor
y 
delaye
d 

Memory 
for 
sentenc
es 

Aren
a 

IED 
levels 
comple
te 

SRT 
mean 
latenc
y 

SRT 
latency 
standar
d 
deviatio
n 

KBIT-2 
verbal 
score 

- 

0.651*
** 
(<0.00
1) 

0.581**
* 
(<0.00
1) 

0.488*** 
(<0.001) 

0.394**
* 
(<0.00
1) 

0.827*** 
(<0.001) 

0.133 
(0.26
2) 

0.409*** 
(<0.001) 

-
0.506*
** 
(<0.00
1) 

-
0.583*** 
(<0.001) 

KBIT-2 
non-
verbal 
score 

- - 

0.636**
* 
(<0.00
1) 

0.448*** 
(<0.001) 

0.460**
* 
(<0.00
1) 

0.510*** 
(<0.001) 

0.243
* 
(0.03
9) 

0.387*** 
(<0.001) 

-
0.530*
** 
(<0.00
1) 

-
0.533*** 
(<0.001) 

PAL first 
trial 
memory 
score 

- - - 
0.522*** 
(<0.001) 

0.450**
* 
(<0.00
1) 

0.467*** 
(<0.001) 

0.171 
(0.15
7) 

0.392*** 
(<0.001) 

-
0.489*
** 
(<0.00
1) 

-
0.614*** 
(<0.001) 

Object 
memory 
immedia
te 

- - - - 

0.536**
* 
(<0.00
1) 

0.342*** 
(<0.001) 

0.043 
(0.72
8) 

0.220* 
(0.027) 

-
0.358*
** 
(<0.00
1) 

-
0.405*** 
(<0.001) 

Object 
memory 
delayed 

- - - - - 
0.264** 
(0.008) 

0.115 
(0.35
3) 

0.174 
(0.083) 

-0.238* 
(0.020) 

-0.250* 
(0.014) 

Memory 
for 
sentenc
es 

- - - - - - 
0.172 
(0.15
5) 

0.256* 
(0.011) 

-
0.387*
** 
(<0.00
1) 

-
0.391*** 
(<0.001) 

Arena - - - - - - - 
0.108 
(0.371) 

-0.265* 
(0.028) 

-0.223 
(0.065) 

IED 
levels 
complet
e 

- - - - - - - - 

-
0.288*
* 
(0.004) 

-
0.366*** 
(<0.001) 

SRT 
mean 
latency 

- - - - - - - - - 
0.888*** 
(<0.001) 

SRT 
latency 
standard 
deviatio
n 

- - - - - - - - - - 

 
 
 

 

Verbal 
fluency 

Tower 
of 
London 

Cats 
and 
frogs 
Stage 3 

Finger 
nose 
pointing 

NEPSY-II 
visuomotor 
precision 
train and 
car 

NEPSY-II 
visuomotor 
precision 
car and 
motorbike 

Finger 
sequencing 

Age 

KBIT-2 
verbal 
score 

0.694*** 
(<0.001)

 

a
 

0.429*** 
(<0.001) 

0.568*** 
(<0.001) 

0.592*** 
(<0.001)

 

a
 

0.407*** 
(<0.001) 

0.515*** 
(<0.001) 

0.375*** 
(<0.001)

 a
 

0.040 
(0.662) 

KBIT-2 
non-verbal 
score 

0.503*** 
(<0.001) 

0.380*** 
(<0.001) 

0.541*** 
(<0.001) 

0.563*** 
(<0.001) 

0.323*** 
(<0.001) 

0.502*** 
(<0.001) 

0.490*** 
(<0.001) 

-0.107 
(0.240) 

PAL first 
trial 
memory 
score 

0.442*** 
(<0.001) 

0.522*** 
(<0.001) 

0.495*** 
(<0.001) 

0.584*** 
(<0.001) 

0.468*** 
(<0.001) 

0.539*** 
(<0.001) 

0.334** 
(0.003) 

-0.181 
(0.060) 
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Object 
memory 
immediate 

0.430*** 
(<0.001) 

0.261** 
(0.008) 

0.277* 
(0.012) 

0.385*** 
(<0.001) 

0.207* 
(0.032) 

0.380*** 
(<0.001) 

0.250* 
(0.027) 

0.038 
(0.692) 

Object 
memory 
delayed 

0.281** 
(0.003) 

0.298** 
(0.002) 

0.302** 
(0.006) 

0.291** 
(0.002) 

0.341*** 
(<0.001) 

0.428*** 
(<0.001) 

0.121 
(0.293) 

0.002 
(0.980) 

Memory for 
sentences 

0.593*** 
(<0.001) 

0.229* 
(0.022) 

0.482*** 
(<0.001) 

0.373*** 
(<0.001) 

0.226* 
(0.020) 

0.334*** 
(<0.001) 

0.334** 
(0.002) 

-0.089 
(0.360) 

Arena 
0.149 
(0.214) 

-0.047 
(0.699) 

0.066 
(0.598) 

0.126 
(0.288) 

-0.010 
(0.934) 

0.075 
(0.526) 

0.284* 
(0.017) 

-0.005 
(0.968) 

IED levels 
complete 

0.372*** 
(<0.001) 

0.302** 
(0.002) 

0.305** 
(0.006) 

0.406*** 
(<0.001) 

0.241* 
(0.012) 

0.286** 
(0.003) 

0.194 
(0.085) 

-0.048 
(0.621) 

SRT mean 
latency 

-
0.426*** 
(<0.001) 

-0.271** 
(0.006) 

-
0.406*** 
(<0.001) 

-
0.539*** 
(<0.001) 

-0.296** 
(0.002) 

-0.402*** 
(<0.001) 

-0.628*** 
(<0.001) 

0.115 
(0.239) 

SRT 
latency 
standard 
deviation 

-
0.472*** 
(<0.001) 

-
0.433*** 
(<0.001) 

-
0.485*** 
(<0.001) 

-
0.572*** 
(<0.001) 

-0.320** 
(0.001) 

-0.438*** 
(<0.001) 

-0.608*** 
(<0.001) 

0.036 
(0.714) 

Verbal 
fluency 

- 
0.331*** 
(<0.001) 

0.391*** 
(<0.001) 

0.600*** 
(<0.001)

 

a
 

0.461*** 
(<0.001) 

0.476*** 
(<0.001) 

0.428*** 
(<0.001)

 a
 

-0.059 
(0.529) 

Tower of 
London 

- - 
0.235* 
(0.034) 

0.389*** 
(<0.001) 

0.410*** 
(<0.001) 

0.505*** 
(<0.001) 

0.343** 
(0.002) 

-0.024 
(0.797) 

Cats and 
frogs Stage 
3 

- - - 
0.379*** 
(<0.001) 

0.311** 
(0.004) 

0.360** 
(0.001) 

0.252* 
(0.030) 

0.029 
(0.792) 

Finger 
nose 
pointing 

- - - - 
0.530*** 
(<0.001) 

0.524*** 
(<0.001) 

0.586*** 
(<0.001)

 a
 

-0.083 
(0.373) 

NEPSY-II 
visuomotor 
precision 
train and 
car 

- - - - - 
0.701*** 
(<0.001) 

0.383*** 
(<0.001) 

-0.043 
(0.637) 

NEPSY-II 
visuomotor 
precision 
car and 
motorbike 

- - - - - - 
0.376*** 
(<0.001) 

-0.014 
(0.877) 

Finger 
sequencing 

- - - - - - - 
-0.061 
(0.583) 

Table 10. Correlations between cognitive test outcome scores and age across adults aged 16-35. Values 
given are correlation coefficients (p values); *p<0.05, **p<0.01, ***p<0.001. All correlations used were 
Spearman’s rho apart from 

a
 when Pearson’s correlation was used as data do not deviate from normality. 

Values in italics represent correlation coefficients greater than 0.50. 
 

 

Short 
ABS 
Personal 
self-
sufficienc
y 

Short ABS 
Communit
y self-
sufficiency 

Short ABS 
Personal-
social 
responsibilit
y 

OMQ 
Total 
score 

BRIEF-A 
Behavioura
l regulation 
index 

BRIEF-A 
Metacognitio
n index 

Age 

Short ABS 
Personal 
self-
sufficiency 

- 
0.719*** 
(<0.001) 

0.687*** 
(<0.001) 

-
0.426**
* 
(<0.001
) 

-0.380*** 
(<0.001) 

-0.549*** 
(<0.001) 

0.111 
(0.230
) 

Short ABS 
Community 
self-
sufficiency 

- - 
0.762*** 
(<0.001) 

-
0.535**
* 
(<0.001
) 

a
 

-0.457*** 
(<0.001) 

-0.669*** 
(<0.001) 

a
 

0.162 
(0.077
) 

Short ABS 
Personal-
social 
responsibilit
y 

- - - 

-
0.631**
* 
(<0.001
) 

-0.572*** 
(<0.001) 

-0.731*** 
(<0.001) 

0.087 
(0.346
) 
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OMQ Total 
score 

- - - - 
0.488*** 
(<0.001) 

0.741*** 
(<0.001) 

a
 

-0.122 
(0.187
) 

BRIEF-A 
Behavioural 
regulation 
index 

- - - - - 
0.643*** 
(<0.001) 

0.070 
(0.452
) 

BRIEF-A 
Metacognitio
n index 

- - - - - - 
-0.125 
(0.187
) 

Table 11. Correlations between questionnaire subdomain scores and age across adults aged 16-35. 
Values given are correlation coefficients (p values); ***p<0.001. All correlations used were Spearman’s rho 
apart from 

a
 when Pearson’s correlation was used as data do not deviate from normality. Values in italics 

represent correlation coefficients greater than 0.50. 
 
 

Test 
Outcome 
measure 

Comments 

PAL 
First trial memory 
score 

Ideal for younger adults as wide range with no ceiling effect 

 
Number of stages 
complete 

Ideal for older adults as small floor effect 

IED 
Number of stages 
completed 

Ideal for younger adults as can identify subgroups who can 
complete extra-dimensional shift and who cannot pass any levels 

SRT 
Latency standard 
deviation 

Ideal for older and younger adults to measure attention as no 
floor or ceiling effect and accounts for individual variations in 
motor coordination 

Object memory 
Immediate 
memory score 

Ideal for younger adults as small ceiling effect and wide range of 
scores 

NEPSY-II 
visuomotor 
precision 

Car and 
motorbike score 

Ideal for older and younger adults as wide range 

Cats and frogs Stage 3 
Ideal for younger adults as small ceiling effect and can identify 
subgroup able to follow both rules 

Box 1. Ideal outcome measures to use in future studies 
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Cognitive assessment consultee information sheet 
 

  

      
 
 

Our names are Carla Startin, Sarah Hamburg and Ros Hithersay. We are 
researchers working at University College London. We are carrying out 
research to investigate differences in cognitive functions (brain functions) in 
people with Down syndrome. We will also investigate possible genetic and 
biological reasons for these differences. The study is funded by the Wellcome 
Trust, and is sponsored by University College London. The study has been 
reviewed by the North Wales West Research Ethics Committee. 

 

What is the importance of the study? 

People with Down syndrome often differ between one another in their cognitive 
abilities. These abilities include attention, task planning, memory, language, and 
co-ordination of movements. Alzheimer’s disease occurs more often in 
individuals with Down syndrome compared to other individuals. Genetic and 
biological differences may help to explain these cognitive differences in 
individuals with Down syndrome. This may also explain why some people with 
Down syndrome develop Alzheimer’s disease while others do not. 

We are collecting data from a large number of individuals with Down syndrome 
to investigate some of the reasons that help to explain these differences 
between individuals with Down syndrome, and why some people with Down 
syndrome develop Alzheimer’s disease and others do not. The results of these 
studies will hopefully improve the care and treatment of individuals with Down 
syndrome, and may also help to develop new treatments for Alzheimer’s 
disease. 

Participants in this study will be given a variety of brain tasks to investigate their 
abilities. We will ask participants for a blood sample. We will also ask 
participants to give a saliva sample. Finally, we will ask participants for a hair 
sample from their head so that we can investigate how their cells develop. 
These studies will help us to understand the genetic and biological factors 
which affect cognitive abilities, and the development of Alzheimer’s disease in 
individuals with Down syndrome. 

 

Who is eligible? 

We are looking for people with Down syndrome, aged 16 and older. Participants 
will need to be able to understand simple instructions and do simple puzzles 
and games. We will include people who have stable and treated mental or 
physical health problems. We will not be able to include people who are 
currently affected by an acute illness, but they will be welcome to take part 
when they are better. 

A study about how parts of the brain work in 
people with Down syndrome 
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We will include people who cannot consent themselves. If someone lacks 
capacity, we have to seek an opinion from a family member or carer 
(personal or nominated consultee). 

 

What will the study involve? 

Participants will take part in an assessment which will last 2 - 3 hours. They will 
be asked to complete various tests (like games) – some of these will be on a 
touchscreen computer tablet. Relatives or carers will be asked to be present 
and will be asked to complete questionnaires during this time. Participants will 
be given a break half way through the assessment, or more as needed. 

We will collect some basic information and medical history about the 
participants from them and their carers. If agreed, we may also discuss 
participants with their community learning disability teams and look at their 
patient records. 

We would like to take a photo of the participant. We will check participants’ 
blood pressure and general physical health. We will also take a blood sample 
for genetic and biomarker analysis, as well as for cellular analysis (e.g. to see 
how Down syndrome affects cell development). We will take a saliva sample for 
genetic (DNA) analysis. Finally, we will take a hair sample for cellular analysis. 
Hair samples will be taken by plucking 6-10 hairs from the scalp. Participants 
can still take part in the study if they do not want to give blood or hair  samples. 

 

Where will assessments be done? 

The assessment will be arranged at a time and place that is convenient for the 
participants. This may include their home or their local day centre or other 
suitable location. We will reimburse any travel expenses for participants or 
carers. 

 

What happens after the assessment? 

We will give participants a small gift to say thank you for their help. We will tell 
the participant’s GP they have taken part in the study, and we may ask to 
access their medical records. We will also pass on details of the assessments 
given to the participants’ GP, if requested. 

 

What will happen if we notice anything unusual? 

If we notice anything which may be of clinical significance (e.g. if a participant 
who has not been diagnosed with dementia by the care team has a score 
suggestive of dementia on the assessment) we will let the care team or GP 
know. They can then take the appropriate action. 

 

What will happen to the information collected during the study? 

All personal information and any information we obtain from our studies will be 
completely confidential and known only to the research team. All of the results 
from the study, including the genetic results, will be stored on a database. 
These will be anonymised (i.e. personal information about participants will not 
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be stored with any data collected about them). The results may be sent to other 
researchers or shared with other researchers (these will be anonymised). All 
personal data will be handled in accordance with the Data Protection Act 1998. 
Personal data will be password protected and securely held on the UCL IT 
system or locked in a filing cabinet. Access will be restricted to members of the 
research team. Personal data will be stored separately from all other data. 
Personal data will not be disclosed without the consent of the participant (or 
advice from the consultee if the participant cannot consent). However, if there is 
a serious risk of harm to the participant, yourself or others, or concerns for the 
neglect or abuse of the participant, then we will have to share this information 
with appropriate agencies. This may be without your or the participant’s 
permission. If this happens we would discuss it with you and the participant first. 
If there are health concerns, the participant’s care team or GP may also need to 
be informed. If this happens we would also discuss it with you and the 
participant first.  

Anonymised paper records will be stored securely within the Faculty of Brain 
Sciences at University College London. The anonymised information will be 
entered into an electronic database held within the Faculty of Brain Sciences at 
University College London. Anonymised cellular data will be entered into an 
electronic database held within Queen Mary, University of London. Research 
data will be stored for 20 years following the end of the study, following UCL 
regulations. 

Analysis of the results of the cognitive tasks will be performed within University 
College London. Blood samples will be stored anonymously and analysed in 
laboratories within University College London or Queen Mary, University of 
London, or in some cases in laboratories outside University College London. 
Saliva samples will be stored anonymously and analysed in laboratories within 
University College London, or in some cases in laboratories outside University 
College London. Occasionally the analysis may have to be performed outside 
the UK. Hair samples will be stored anonymously and analysed in laboratories 
at Queen Mary, University of London. All biological samples will be anonymised 
when they are collected. The anonymisation codes will be accessible only to 
members of the research team, and these will be held securely. Anonymised 
samples may be shared with other research groups who are researching 
learning disabilities. Samples may be stored for use in future research. 
Anonymised genetic data may be shared with other research groups or entered 
onto publically accessible databases. This is standard practice in genetic 
studies, and the best way to quickly share information about new genetic 
findings with other researchers and with clinicians across the world. 

We will publish the results from these studies in academic journals, and present 
them at scientific conferences and meetings. We will keep participants informed 
about how the study is progressing via a regular newsletter. No participants will 
be identifiable from any publications arising from the study. 

We would like to keep a record of participants’ contact details so that we can 
contact them if we need more information or if we are thinking about doing more 
research. We will keep this information for ten years following the end of the 
study. 

 

What are the risks and benefits of the study? 
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There are few risks to potential participants. 

Participants may feel frustrated and anxious when completing the tasks. To 
reduce this we will have a break in the middle of the session, and we will give 
further breaks where appropriate. 

Giving a blood sample may cause mild pain, some bleeding and bruising. To 
reduce pain we can use a cream before taking the sample. If a blood test for 
any medical reason is planned for the future, we can ask the participant’s doctor 
to collect it for us on our behalf at the same time. Collecting a saliva sample 
may be uncomfortable but should not hurt. Giving a hair sample may also cause 
discomfort, although this should not last. 

This study will benefit individuals with Down syndrome as it will increase 
knowledge about reasons for differences in those with Down syndrome. This 
study may also help us to understand how Alzheimer’s disease develops. This 
may lead to better care and treatment of individuals with Down syndrome or 
Alzheimer’s disease in the future. 

In addition, the tasks that the participant will complete during this study could be 
used as a baseline to measure future changes against. If requested we will be 
happy to share these results with the participant’s GP or care team. 

 

Withdrawing from the study 

If you decide at any time the participant should withdraw from the study, you 
have the right to withdraw them and not give a reason. Withdrawing from the 
study or a decision not to take part will not affect any aspects of care for the 
participant. 

 

 

Advice and complaints 

If you wish to complain, or have any concerns about any aspect of the way the 

participant has been approached or treated by members of staff due to their 

participation in the research, National Health Service (if they were recruited via 

the NHS) or UCL complaints mechanisms are available to you. Please ask 

Carla Startin (carla.startin.09@ucl.ac.uk, 020 7679 9314) if you would like more 

information on this. In the unlikely event that the participant is harmed by taking 

part in this study, compensation may be available to them. If you suspect that 

the harm is the result of the Sponsor’s (University College London) or the 

hospital's negligence then you may be able to claim compensation. After 

discussing with Carla Startin, please make the claim in writing to Andre Strydom 

(a.strydom@ucl.ac.uk, 020 7679 9308), who is the Chief Investigator for the 

research and is based at UCL. The Chief Investigator will then pass the claim to 

the Sponsor’s Insurers, via the Sponsor’s office. The participant may have to 

bear the costs of the legal action initially, and you should consult a lawyer about 

this. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 

harm, and NHS bodies are unable to agree in advance to pay compensation for 

non-negligent harm. 
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Thank you for taking the time to read this information sheet 

 

 

Please contact us if you have any questions 

 

 

Details of contact person 

Name:   Carla Startin 

Address:  UCL Division of Psychiatry 
Division of Psychiatry (Formerly Mental Health Sciences) 
6th Floor, Maple House,  
149 Tottenham Court Road,  
London W1T 7NF 

E-mail address: downsyndrome@ucl.ac.uk 

Telephone:   020 7679 9314 
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Cognitive assessment role of consultee information sheet 
 

 

 

 

As someone who knows __________________________ (person’s name) 
well/in an independent capacity, you are being invited to consider whether 
_____________ (person’s name) would want to participate in the research 
study based on your knowledge of him/her. 

Please could you read this information sheet which outlines the provisions for 
people who lack capacity to consent to participate in research and the role of 
the consultee. 

 

The role of a consultee 

The role of the consultee is to advise the research team as to the individual’s 
likely wishes/feelings with regard to taking part in the study. The consultee is 
not being asked to consent on the individual’s behalf, but rather to give advice 
about their wishes. However, the consultee's opinion will be respected in 
making a decision as to whether the individual should enter the study or not. 

If you are prepared to act as the consultee you will be provided with a copy of 
the participant information sheet and be given an opportunity to discuss the 
project with one of the researchers so that you can form an opinion as to the 
individual’s likely wishes/feelings in respect to the project. If, at the end of this 
process, you feel that the individual would like to take part in the project you will 
be asked to sign a form to that effect. 

 

Capacity to give consent 

Usually an adult must give their informed consent before they can be entered 
into a research study. However, many adults with a learning disability lack the 
mental capacity to make such a decision.  This does not mean that adults who 
lack capacity must be excluded from taking part in research, but does mean that 
certain processes - designed to protect both the person lacking capacity and 
the person making the decision for them - must be followed. 

Firstly, it cannot be assumed that an adult with a learning disability lacks 
capacity to make such a decision. If there is a suspicion that the person lacks 
capacity, the two stage test of capacity must be applied as set out in the Mental 
Capacity Act 2005. If, after assessment, the person is deemed not to have the 
capacity to consent to being entered into the study, then the researcher must 
appoint a consultee. 

 

Consultees: definition 

A consultee can either be personal or nominated. A personal consultee is 
someone unconnected with the research who knows the potential research 

A study about how parts of the brain work in 
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participant in a personal capacity and is able to advise on the person’s wishes 
or feelings.  This could be a friend, family member or court appointee. 

A nominated consultee is someone unconnected with the research appointed 
by the research team to advise the researcher about the person’s wishes or 
feelings in relation to the project. This could be another professional but they 
must not have any connection with the study. 

The research team has taken reasonable steps to identify a personal consultee 
in the first instance. 

 

 

Please contact me if you have any questions. 

 

 

Thank you for taking the time to read this letter 

 

 

Details of contact person 

Name:   Carla Startin 

Address:  UCL Division of Psychiatry 
Division of Psychiatry (Formerly Mental Health Sciences) 
6th Floor, Maple House,  
149 Tottenham Court Road,  
London W1T 7NF 

E-mail address: downsyndrome@ucl.ac.uk 

Telephone:   020 7679 9314 
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Cognitive assessment participant information sheet 

  

 

 

 

 

 
 

 
 
 
Our names are Carla, Ros and 
Sarah. 

 We are doing some research 

 

Research is when we ask people 
questions and do tests to find out things 

  
 

We are writing to ask if you would like to 
help us 

 

To help you understand this letter you 
can 

 

 ask someone to read it for you 
 
 
 

 talk to your carer about it 
 
 

 
 
 
 

A study about how parts of the brain work in 
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What is our work about? 

  
 
 
We are finding out about people 
with Down syndrome 
 
 
  
 
 
 

 We want to find out how 
different parts of the brain work 
in people with Down syndrome 

 
 
 
 

 

 We want to find out about 
differences between people with 
Down syndrome 
 

 
 

 
 
 

 We want to find out if there are 
genetic or other reasons for this. 
Genes are like a recipe. They 
make us who we are. 
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Why do we want to see you? 

  
 

We want to talk to you 
 

 because you have Down 
syndrome 

 

 because you are 16 years old or 
older 

 
 
 
 

 This research can make things 
better for people with Down 
syndrome 

 
What will happen if you take part? 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
If you agree to take part 
 

 We will ask you and your carer 
some questions 

 
 

 We will ask your care team 
some questions 

 
 

 your carer will fill in some forms 
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 you will do some tests – these 
are like games 
 
 
 
 

 

 some of the tests will be on a 
computer 

 
 
 
 
 
 

 We will check your health. We 
will take your blood pressure 
and weight. 

 
 
 
 
 

 We will ask you to have a blood 

test 

 the blood test may hurt a little 
 
 
 

 it is OK if you do not want the 
blood test 
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 We will ask for some of your 
spit (saliva) 

 

 You can spit into a cup, or we 
will give you a cup with a 
small sponge on a stick 

 You put the sponge in your 
mouth 

 This is to soak up some of 
your spit (saliva) 

 Then we put the sponge in 
the cup 

 

 

 We will pull a few of your hairs 

out 

 pulling a few hairs out may 
hurt a little 

  

 
 
We will take a photo of you 
 
 
 
 

 
 
The meeting will last for about 3 
hours 

 
 

   3 hours 
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We can meet at a place you know 
like your home or at my work 
 
  
 
 
Your carer or worker will also come to 
the meeting 
 
 
 
 
 

 
Do you have to take part? 

  
 
 
You can tell us Yes if you want to 
take part 
 
 
 
 

 
 

 
 
 
You can tell us No if you do not want 
to take part 
 
 
 
 
 
 
 



 236 

If you say no it will not change the 
care you get 
 
 
 
 
 
 
 
If you decide to take part, we will ask 
you to sign a consent form 
 
 
 
 
 
 
 
You can stop taking part at any time 
 
 
 
 
 

 
What happens after you have seen us? 

  
 
 
If you tell us it’s OK we will 
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 ask your doctor or care team 
about you 

 
 

 
 

 
 

 tell your doctor about the tests 
we did 

 

 tell your care team about the 
tests we did 

 
 

 

We will test your blood, spit, or hair in a 
laboratory 

 

 we may keep them in the 
laboratory for more tests 

 

 we may need to send them to 
another place so that they can look 
at them 

 

 

 the samples will not be stored with 
your name 

 

 

 

 

name 
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We will also put the test results on a 
computer 

 

 other people can then look at the 
information 

 

 

 

 

 

But they will not know it is about you – 
we will take out your name and where 
you live (personal information) before it 
goes on the computer 

 
 
 
 
 
We will give you a small gift to say 
thank you 
 
We will also give you any travel 
expenses from taking part 
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If you take part in our study 
 
 
 

 the information you give will be 
confidential  

 
 
 
 
 
 
 

 we will not talk to anyone else 
about you without asking you 
first 

 
 
 

 we will not use any information 
with your name and address 

 
 
 
We might have to tell someone if 
we are worried about your health 
or care at all though 

 
 
But we would like to keep your name 
and address on a list 
 
This is so we can contact you if we 

name 

Your Name 
27 Your Street 
London 
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need 
 

 more information 
 
 

 to do more research 
 
 

If you want to talk to us 

  
you can phone us 
 
 
or 
 
 
you can email us 
 
 
 
 

 if you would like to take part in the 
study 

 
 
 
 
 
 

 if you have any questions about 
the study 
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 if you are unhappy about 
something 

 
 

 
 
 
 
 
our phone number is 
 
020 7679 9314 

 
 
 
      our email address is 

 
downsyndrome@ucl.ac.uk 

 
 
 
If you are unhappy about something, 
you can also talk to your local PALS 
team 
 
 
 

 
Thank you for looking at this 
 

This research project has been reviewed by the North Wales 
West Research Ethics Committee. They are there to make 
sure you are treated well. 
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Cognitive assessment consultee consent form 
 

 

 
 
 
Participant Identification Number: 
 
As someone who knows __________________________ (person’s name) 
well/in an independent capacity, you are being invited to consider whether 
_____________ (person’s name) would want to participate in the research 
study based on your knowledge of him/her. 
We ask you to be a consultee because ______________ (person’s name) is 
unable to understand the information provided in the information sheet or 
is unable to make independent decisions and communicate them. 
It is up to you to decide whether or not they would want to take part based 

on your knowledge of the person and the information you have been 

given. Be reassured that even if you decide that they can take part, he/she 

is still free to withdraw at any time and without giving a reason. A decision 

to withdraw at any time, or a decision not to take part, will not affect any 

aspects of their care. 

 

This project has been approved by the North Wales West Research Ethics 

Committee, and is funded by the Wellcome Trust. 

 

If you have any questions about the study you can contact Carla Startin at 
downsyndrome@ucl.ac.uk or 020 7679 9314. 
 

 

 Please initial if you 
agree 

I have read the information sheet about the research. I 
have had a chance to ask questions and talk about this 
study. I have got enough information about this study 
and I understand what the study will involve. 

 

I confirm that I have agreed to act as a consultee for the 
above named person. I understand that my role as 
consultee is to advise the research team as to the above 
named persons' likely wishes and feelings in relation to 
entering the study. 

 

I understand that the participant can stop taking part in 
this study at any time and does not have to give a 
reason. I understand that participation in the study will 
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not change the care that the participant receives. 

I understand that some of the participant’s personal 
information will be processed during this study, and such 
information will be stored securely, treated as strictly 
confidential and handled in accordance with the 
provisions of the Data Protection Act 1998. 

 

I understand that the data collected during this study will 
be a part of scientific publications. Confidentiality and 
anonymity will be maintained for such publications, and it 
will not be possible to identify the participant from any 
publications. 

 

I understand that the research team may contact the 
participant in the future to participate in follow up studies. 
Any information collected in the present study may be 
used in follow up studies. 

 

 

Are you aware of any advance directives that may be 
relevant to participation in this research? 

If yes, please detail further: 

 

 

Yes/No 

 Please initial if you 
agree 

It is appropriate for ______________ to participate in this 
study 

 

It is appropriate to take a photo of  ______________  

It is appropriate for ______________ to have their blood 
pressure and general health checked 

 

It is appropriate for ______________ to have a blood 
test for genetic, biomarker and cellular analysis 

 

It is appropriate for ______________ to give a sample of 
saliva for genetic analysis 

 

It is appropriate for ______________ to give a hair 
sample for cellular analysis 

 

I agree that their blood, saliva, DNA, or hair can be sent 
to other researchers (this will be anonymised) 

 

I agree that their samples can be stored for use in future 
research 
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I agree that their test results can be stored on a 
database 

 

I agree that their test results can be shared with other 
researchers, including publically accessible databases 
(these will be anonymised) 

 

It is appropriate for the researcher to discuss 
__________ with their care team and for their medical 
records to be accessed 

 

It is appropriate for the researcher to inform their GP 
about their inclusion in the study and to potentially send 
their GP a summary of the findings 

 

It is appropriate for the researcher to get in touch with 
them again if they need to 

 

 

 

Any further comments or preferences from the consultee: 

 

 

 
 
 
Signed:      Name in block capitals: 
 
 
Date:      Relationship to participant: 
 
 
Researcher’s signature:    Name in block capitals: 
 
 
Date: 
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Cognitive assessment participant consent form 

  

 

 

 

 
Participant Identification Number: 
 

 
Please cross no       or tick yes       for each 
part 

  

  
 
I have read the information 
sheet about the research 
 
 

  

  
 
I can understand the 
information sheet 
 
 

  

  
 
I could ask questions if I 
wanted to 
 
 

  

 

A study about how parts of the brain work in 

people with Down syndrome 



 246 

 

 
Please cross no       or tick yes       for each 
part 

  

  
 
I understand that it is my 
choice to take part in this 
study 
 
 

  

  
 
 
I understand that I can say 
no at any time if I want to 
stop 
 
 
 

  

  

 

I understand that taking part 

will not change the care I 

get 

 

 

  

  

You can ask my doctor or 
care team about me 
 
You can look at my doctor’s 
notes 
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Please cross no       or tick yes       for each 
part 

  

  
 
 
 
 
 
 
I agree to take part in this 
study 
 
 
 
 
 
 
 

  

  
 
You can check my blood 
pressure and general 
health 
 
 

  

  
 
I agree to have a blood test 
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Please cross no       or tick yes       for each 
part 

  

  
 
 
I agree to spit in the cup 
or you can put the sponge 
in my mouth 
 
 
 
 

  

 
 

 

 
 
I agree you can pull a few of 
my hairs out 

  

  
You can send my blood, 
spit or hair to other 
researchers – they will not 
know my name 
 

  

 

 
 
 
You can take a photo of me 
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Please cross no       or tick yes       for each 
part 

  

  
 
You can store my test results 
on a computer 
 

  

  
You can share my test 
results with other 
researchers – they will not 
know my name 

 
 

 

  
You can share my test 
results with my doctor and 
tell them I took part in the 
study 

  

  

 
You can share my test 
results with my care team 
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Please cross no       or tick yes       for each 
part 

  

  

You can keep my blood, spit 

or hair in the laboratory for 

more tests 

 

  

  

You can get in touch with 

me again for more tests 
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my name my signature 

 
 
 
 
 

 

 date 

 
 
 
 
 

 researcher’s 
name 

their signature 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

date 

 

name 



 252 

EEG assessment consultee information sheet 
 

  

      
 
 

My name is Carla Startin. I am a researcher working at University College 
London. I am carrying out research to investigate differences in cognitive 
functions (brain functions) in people with Down syndrome. I will also investigate 
possible genetic and biological reasons for these differences. The study is 
funded by the Wellcome Trust and the Baily Thomas Charitable Fund, and is 
sponsored by University College London. The study has been reviewed by the 
North Wales West Research Ethics Committee. 

 

What is the importance of the study? 

People with Down syndrome often differ between one another in their cognitive 
abilities. These abilities include attention, task planning, memory, language, and 
co-ordination of movements. Alzheimer’s disease occurs more often in 
individuals with Down syndrome compared to other individuals. Differences in 
brain activity may help to explain these differences in individuals with Down 
syndrome. This may also explain why some people with Down syndrome 
develop Alzheimer’s disease while others do not. 

We are collecting data from a large number of individuals with Down syndrome 
to investigate brain activity to help to explain these differences between people 
with Down syndrome. This may also explain why some people with Down 
syndrome develop Alzheimer’s disease and others do not. The results of these 
studies will hopefully improve the care and treatment of individuals with Down 
syndrome, and may also help to develop new treatments for Alzheimer’s 
disease. 

Participants in this study will be asked if we can place a special cap on their 
head for us to look at their brain activity. This cap contains electrodes, and we 
will ask participants to sit as still as possible while we record their brain activity. 
These studies will help us to understand whether differences in brain activity 
can explain the differences in abilities and the development of Alzheimer’s 
disease in individuals with Down syndrome. 

We would also like to monitor participants’ sleep patterns, through the use of a 
sleep diary and by them wearing a special bracelet during the night which 
records when they are asleep. 

 

 

Who is eligible? 

We are looking for people with Down syndrome, aged 16 and older. Participants 
will need to be able to understand simple instructions. We will include people 
who have stable and treated mental or physical health problems. We will not be 
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able to include people who are currently affected by an acute illness, but they 
will be welcome to take part when they are better. 

We will include people who cannot consent themselves. If someone lacks 
capacity, we have to seek an opinion from a family member or carer 
(personal or nominated consultee). 

 

What will the study involve? 

Participants will take part in an assessment which will last around 2 hours. We 
will measure their brain activity for about twenty minutes. 

Relatives or carers are welcome to be present during the assessment. 

Participants will also be given a bracelet, which they will be asked to wear for a 
week. We would also like participants or their carers to keep a sleep diary for 
this period.  

 

Where will assessments be done? 

The assessment will take place at University College London. We will reimburse 
any travel expenses for participants or carers. We will arrange the assessment 
at a time that is convenient for the participants. 

 

What happens after the assessment? 

We will give participants a small gift to say thank you for their help. We will tell 
the participant’s GP they have taken part in the study. We will also pass on 
details of the assessments given and results to the participants’ GP, if 
requested. 

 

What will happen if we notice anything unusual? 

If we notice anything which may be of clinical significance, we will let the care 
team or GP know. They can then take the appropriate action. 

 

What will happen to the information collected during the study? 

All personal information and any information we obtain from our studies will be 
completely confidential and known only to the research team. All of the results 
from the study will be stored on a database. These will be anonymised (i.e. 
personal information about participants will not be stored with any data 
collected about them). The results may be sent to other researchers or shared 
with other researchers (these will be anonymised). All personal data will be 
handled in accordance with the Data Protection Act 1998. Personal data will be 
password protected and securely held on the UCL IT system or locked in a filing 
cabinet. Access will be restricted to members of the research team. Personal 
data will be stored separately from all other data. Personal data will not be 
disclosed without the consent of the participant (or advice from the consultee if 
the participant cannot consent). However, if there is a serious risk of harm to the 
participant, yourself or others, or concerns for the neglect or abuse of the 
participant, then we will have to share this information with appropriate 
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agencies. This may be without your or the participant’s permission. If this 
happens we would discuss it with you and the participant first. If there are 
health concerns, the participant’s care team or GP may also need to be 
informed. If this happens we would also discuss it with you and the participant 
first. 

Anonymised paper records will be stored securely within the Faculty of Brain 
Sciences at University College London. The anonymised brain activity data and 
recordings will be entered into an electronic database held within the Faculty of 
Brain Sciences at University College London. Research data will be stored for 
20 years following the end of the study, following UCL regulations. 

Analysis of the results of the assessment will be performed within University 
College London. All results will be anonymised, and the anonymisation codes 
will be accessible only to members of the research team. These will be held 
securely. Anonymised data may be shared with other research groups who are 
conducting research in the field of learning disabilities. 

We will publish the results from these studies in academic journals, and present 
them at scientific conferences and meetings. In addition, we will keep the 
participants informed about how the study is progressing via a regular 
newsletter. No participants will be identifiable from any publications arising from 
the study. 

We would like to keep a record of participants’ contact details so that we can 
contact them if we need more information or if we are thinking about doing more 
research. We will keep this information for ten years following the end of the 
study. 

 

What are the risks and benefits of the study? 

There are few risks to potential participants. 

Participants are required to sit as still as possible during the recording of brain 
activity. This may be uncomfortable. To minimise any discomfort felt this 
recording will only last for around twenty minutes, and there will be breaks 
during the recording. 

This study will benefit individuals with Down syndrome as it will increase 
knowledge about reasons for differences in those with Down syndrome. This 
study may also help us to understand how Alzheimer’s disease develops. This 
may lead to better care and treatment of individuals with Down syndrome or 
Alzheimer’s disease in the future. 

In addition we will be able to use the brain activity recordings as a baseline to 
measure future changes against. If requested we will be happy to share these 
results with the participant’s GP or care team. 

 

Withdrawing from the study 

If you decide at any time the participant should withdraw from the study, you 
have the right to withdraw them and not give a reason. Withdrawing from the 
study or a decision not to take part will not affect any aspects of care for the 
participant. 
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Advice and complaints 

If you wish to complain, or have any concerns about any aspect of the way the 

participant has been approached or treated by members of staff due to their 

participation in the research, National Health Service (if they were recruited via 

the NHS) or UCL complaints mechanisms are available to you. Please ask 

Carla Startin (carla.startin.09@ucl.ac.uk, 020 7679 9314) if you would like more 

information on this. In the unlikely event that the participant is harmed by taking 

part in this study, compensation may be available to them. If you suspect that 

the harm is the result of the Sponsor’s (University College London) or the 

hospital's negligence then you may be able to claim compensation. After 

discussing with Carla Startin, please make the claim in writing to Andre Strydom 

(a.strydom@ucl.ac.uk, 020 7679 9308), who is the Chief Investigator for the 

research and is based at UCL. The Chief Investigator will then pass the claim to 

the Sponsor’s Insurers, via the Sponsor’s office. The participant may have to 

bear the costs of the legal action initially, and you should consult a lawyer about 

this. NHS Indemnity does not offer no-fault compensation i.e. for non-negligent 

harm, and NHS bodies are unable to agree in advance to pay compensation for 

non-negligent harm. 

 

Thank you for taking the time to read this information sheet 

 

Please contact me if you have any questions 

 

 

 

 

Details of contact person 

Name:   Carla Startin 

Address:  UCL Division of Psychiatry 
Division of Psychiatry (Formerly Mental Health Sciences) 
6th Floor, Maple House,  
149 Tottenham Court Road,  
London W1T 7NF 

E-mail address: downsyndrome@ucl.ac.uk 

Telephone:   020 7679 9314 
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EEG assessment participant information sheet 

 
  

 

 

 
 

 

 
 
Our names are Carla and Sarah 

  

We are doing some research 

 

Research is when we ask people questions 
and do tests to find out things 

  
 

We are writing to ask if you would like to 
help us 

 
 

 

To help you understand this letter you can 

 

 ask someone to read it for you 
 
 
 
 
 

 talk to your carer about it 
 
 
 

A study about how parts of the brain work in 
people with Down syndrome 
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What is our work about? 

  
 
 
We are finding out about people with 
Down syndrome 
 
 
  
 
 
 
 

 We want to find out how different 
parts of the brain work in people 
with Down syndrome 

 
 
 

 
 

 We want to find out about 
differences between people with 
Down syndrome 
 

 
 

 
 
 

 We want to find out possible 
reasons for this 
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Why do we want to see you? 

  
 

We want to talk to you 
 

 because you have Down 
syndrome 

 

 because you are 16 years old or 
older 

 
 
 
 

 This research can make things 
better for people with Down 
syndrome 

 
What will happen if you take part? 

 
 

 
 
 

 
If you agree to take part 
 
 

 We will put a special cap on your 
head to make brain traces 

 These let us see what’s happening 
in your brain 

 

 
 

 
 
 
 
We will ask you to wear a special 
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bracelet while you’re asleep 
 
 
 
 
 
 

 
The meeting will last for about 2 hours 

 
 

 
 
 
 
We will meet at our work 
 
 
 
 
 
 
 
Your carer or worker will also come to 
the meeting 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

   1 hour 
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Do you have to take part? 

  
 
 
 
You can tell us Yes if you want to take 
part 

 
 

 
 
 
You can tell us No if you do not want to 
take part 
 
 
 
 
 
If you say no it will not change the care 
you get 
 
 
 
 
 
If you decide to take part, we will ask 
you to sign a consent form 
 
 
 
 
 
You can stop taking part at any time 
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What happens after you have seen me? 

  
 
 
If you tell us it’s OK we will 
  

  

 
 

 tell your doctor about the tests we 
did 

 
 
 
 
 
 

 tell your care team about the tests 
we did 

 
 
 
 

 

We will also put the test results on a 
computer 

 

 other people can then look at the 
information 
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But they will not know it is about you – we 
will take out your name and where you live 
(personal information) before it goes on 
the computer 

 
 
 
 
 
We will give you a small gift to say 
thank you 
 
We will also give you any travel 
expenses from taking part 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

  
 
If you take part in our study 
 
 
 
 

 the information you give will be 
confidential  

 

 we will not talk to anyone else 
about you without asking you first 

 

 we will not use any information 
with your name and address 

 
 
 

name 
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We might have to tell someone if we are 
worried about your health or care at all 
though 
 
 
 
But we would like to keep your name 
and address on a list 
 
 
This is so we can contact you if we 
need 
 

 more information 
 
 

 to do more research 
 
 

If you want to talk to us 

  
you can phone us 
 
 
or 
 
 
you can email us 
 
 
 
 

 if you would like to take part in the 
study 

 
 
 

Your Name 
27 Your Street 
London 



 264 

 

 if you have any questions about the 
study 

 
 
 
 

 
 

 if you are unhappy about something 
 

 
 

 
our phone number is 
 
020 7679 9314 

 
 
 
      our email address is 

 
downsyndrome@ucl.ac.uk 

 
 
 
If you are unhappy about something, 
you can also talk to your local PALS 
team 
 
 
 

 
Thank you for looking at this 
 

This research project has been reviewed by the North Wales 
West Research Ethics Committee. They are there to make 
sure you are treated well. 
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EEG assessment consultee consent form  
 

 

 
 
 
Participant Identification Number: 
 
As someone who knows __________________________ (person’s name) 
well/in an independent capacity, you are being invited to consider whether 
_____________ (person’s name) would want to participate in the research 
study based on your knowledge of him/her. 
We ask you to be a consultee because ______________ (person’s name) is 
unable to understand the information provided in the information sheet or 
is unable to make independent decisions and communicate them. 
It is up to you to decide whether or not they would want to take part based 

on your knowledge of the person and the information you have been 

given. Be reassured that even if you decide that they can take part, he/she 

is still free to withdraw at any time and without giving a reason. A decision 

to withdraw at any time, or a decision not to take part, will not affect any 

aspects of their care. 

 

This project has been approved by the North Wales West Research Ethics 

Committee, and is funded by the Wellcome Trust and the Baily Thomas 

Charitable Fund. 

 

If you have any questions about the study you can contact Carla Startin at 
downsyndrome@ucl.ac.uk or 020 7679 9314. 

 
 

 

 

 

 

 

 

 

 

 

 

A study about how parts of the brain work in 
people with Down syndrome 
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 Please initial if you 
agree 

I have read the information sheet about the research. I 
have had a chance to ask questions and talk about this 
study. I have got enough information about this study 
and I understand what the study will involve. 

 

I confirm that I have agreed to act as a consultee for the 
above named person. I understand that my role as 
consultee is to advise the research team as to the above 
named persons' likely wishes and feelings in relation to 
entering the study. 

 

I understand that the participant can stop taking part in 
this study at any time and does not have to give a 
reason. I understand that participation in the study will 
not change the care that the participant receives. 

 

I understand that some of the participant’s personal 
information will be processed during this study, and such 
information will be stored securely, treated as strictly 
confidential and handled in accordance with the 
provisions of the Data Protection Act 1998. 

 

I understand that the data collected during this study will 
be a part of scientific publications. Confidentiality and 
anonymity will be maintained for such publications, and it 
will not be possible to identify the participant from any 
publications. 

 

I understand that the research team may contact them in 
the future to participate in follow up studies. Any 
information collected in the present study may be used in 
follow up studies. 

 

 

Are you aware of any advance directives that may be 
relevant to participation in this research? 

If yes, please detail further: 

 

 

Yes/No 

 Please initial if you 
agree 

It is appropriate for ______________ to participate in this 
study 

 

It is appropriate to measure their brain activity using a 
special cap with electrodes in 
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It is appropriate for their sleep patterns to be monitored  

I agree that their test results can be stored on a 
database 

 

I agree that their test results can be shared with other 
researchers, including publically accessible databases 
(these will be anonymised) 

 

It is appropriate for the researcher to discuss 
__________ with their care team 

 

It is appropriate for the researcher to inform their GP 
about their inclusion in the study and to potentially send 
their GP a summary of the findings 

 

It is appropriate for the researcher to get in touch with 
them again if they need to 

 

 

Any further comments or preferences from the consultee: 

 
 
 
 
 
 
 
 
Signed:      Name in block capitals: 
 
 
Date:      Relationship to participant: 
 
 
Researcher’s signature:    Name in block capitals: 
 
 
Date: 
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EEG assessment participant consent form 
 

 

 

 

 
Participant Identification Number: 
 

 
Please cross no       or tick yes       for each 
part 

  

  
 
I have read the information 
sheet about the research 
 
 

  

  
 
I can understand the 
information sheet 
 
 

  

  
 
I could ask questions if I 
wanted to 
 
 

  

 
 
 

A study about how parts of the brain work in 

people with Down syndrome 
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Please cross no       or tick yes       for each 
part 

  

  
 
I understand that it is my 
choice to take part in this 
study 
 
 

  

  
 
 
I understand that I can say 
no at any time if I want to 
stop 
 
 
 

  

  

 

I understand that taking part 

will not change the care I 

get 

 

 

  

 

 
 
I agree you can put a special 
cap on my head to make 
brain traces 
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Please cross no       or tick yes       for each 
part 

  

 

 
 
I agree to wear the bracelet 
when I go to sleep 

  

  
 
You can store my test results 
on a computer 
 

  

  
You can share my test 
results with other 
researchers – they will not 
know my name 

  

 
You can share my test 

results with my doctor and 

tell them I took part in the 

study 
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Please cross no       or tick yes       for each 
part 

  

  

 
You can share my test 
results with my care team 

  

  

You can get in touch with 

me again for more tests 
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my name my signature 

 
 
 
 
 

 

 date 

 
 
 
 
 

 researcher’s 
name 

their signature 

 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 

date 

 

name 


