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We consider the asymptotic structure of a steady developed viscous thin film passing the
sharp trailing edge of a horizontally aligned flat plate under the weak action of gravity
acting vertically and surface tension. The surprisingly rich details of the flow in the
immediate vicinity of the trailing edge are elucidated both analytically and numerically.
As a central innovation, we demonstrate how streamline curvature serves to regularise
the edge singularity apparent on larger scales via generic viscous-inviscid interaction.
This is shown to be provoked by weak disturbances of accordingly strong exponential
downstream growth, which we trace from the virtual origin of the flow towards the
trailing edge. They represent a prototype of the precursor to free interaction in the most
general sense, which, interestingly, has not attracted due attention previously. Moreover,
we delineate how an increased effect of gravity involves marginally choked flow at the
edge.

Key words: boundary layers, thin films, waves/free-surface flows

1. Motivation

This paper is concerned with first steps in establishing a fully self-consistent description
of a developed liquid layer passing the trailing edge of a horizontal plate, with gravity
acting in vertical direction and with surface tension at play. Although this is a fundamen-
tal problem of far-reaching importance, such an analysis has not yet been presented. The
problem is often associated with the existence of a hydraulic jump over the plate with
the flow controlled by conditions at the trailing edge. The Froude numbers considered
in the bulk of this paper preclude the formation of the jump, and we concentrate on the
flow conditions at the trailing edge and demonstrate how these still impact the entire
flow field. A noteworthy leap forward was Higuera’s seminal work (1994) on hydraulic
jumps smoothed by viscosity within the shallow-water limit. Specifically, a distinguished
horizontal reference length scales with the Reynolds number, and the Froude number is
finite so that variations in hydrostatic pressure are active in driving the horizontal fluid
motion. Higuera (1994) demonstrated that the necessary scale shortening near the plate
edge, which he enforces by simply imposing there an expansive singularity, inherent in
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2 B. Scheichl, R. I. Bowles and G. Pasias

the reduced equations, had an upstream influence that fixed the position and strength of
the jump. Taken in conjunction with the work of Bowles & Smith (1992), which describes
the onset of the jump through an initial exponential upstream tail by virtue of a viscous-
inviscid interaction mechanism, Higuera’s work (1994) laid the foundation for a rigorous
description of the jump phenomenon. His results show that at small values of the global
Froude number the jump is shifted upstream where the local Froude number is large and
the structure described by Bowles & Smith (1992) clearly emerges.
The trailing-edge singularity poses a downstream condition that closes the shallow-

water problem, elliptic for finite Froude numbers, in a correct and unique manner.
As a consequence, the flow is found to be critical at the edge (Higuera 1994). Re-
markably, the same singularity controls Fanno flow of a regular gas choking at the
orifice (Higuera & Liñán 1993). As this flow might undergo a shock further upstream,
we may identify a gas-dynamical analogy to the free-surface flow past a trailing edge,
inevitably exhibiting a hydraulic jump. Given Higuera’s singularity, the film height at
the edge is part of the solution of the shallow-water problem. Interestingly, other authors
propose a regular terminal state directly obtained from a lubrication limit applied to the
downstream portion of the jump such that the terminal film height represents a missing
ingredient to a nearly constant value of the local Froude number found experimentally
(Duchesne, Lebon & Limat 2014; Rojas & Tirapegui 2015; see references therein). Here
the following deserves notation. At first, Higuera (1994) demonstrated that in a singular
limit associated with a vanishingly small Froude number the lubrication approximation
indeed governs the internal structure of the quiescent recirculating flow downstream of the
correspondingly strong jump. However, this is modified so abruptly that the singularity
indicating the plate edge is still met. Secondly, as he pointed out, this is intrinsic to the
shallow-water problem as the lubrication limit cannot be extended to an arbitrarily large
horizontal distance and the flow hence not attain a fully developed state.
Also, Higuera (1994) briefly considered a two-layer viscous-inviscid interaction process

to reveal how the influence of streamline curvature due to momentum transport across the
film, i.e. the finiteness of the film depth or the associated Reynolds number, and of surface
tension locally modifies the flow near the plate edge. However, this does not address the
details of the abrupt removal of the no-slip condition there. Additionally, his analysis
ceases to be uniformly valid for sufficiently large Froude numbers as perfectly supercritical
shallow-water flow exhibits no singularity at all – or perhaps one of a different form when
instead perturbed by the effect of streamline curvature, including the capillary influence.
It is unclear therefore how the flow becomes critical at the trailing edge as the Froude
number is decreased. Consequently, the currently available analysis of a viscous film
passing a trailing edge must be viewed as unsatisfactory and, without doubt, requires
completion.
In the present paper, we tackle this challenge by a rigorous asymptotic approach. To

this end, we take the effects of gravity and surface tension as suitably small compared to
those of inertia and viscosity. Particular emphasis is placed on a thorough understanding
of the flow very close to the edge. Focussing on asymptotically large Froude numbers,
we identify a local viscous-inviscid interaction at the edge which acts to reduce the weak
hydrostatically-generated component of the pressure above and close to the plate to zero
so as to effect the adjustment to zero excess pressure downstream of the edge. Although
the flow with these parameters does not exhibit a hydraulic jump, we are able to show
in detail how the upstream influence of how the flow negotiates the trailing edge is felt,
through irregular, exponentially small perturbations, throughout the flow field. These
are analogous to the eigensolutions that may develop nonlinearly into an identifiable
hydraulic jump at lower Froude numbers in Higuera’s analysis (1994). Our work serves
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as a basis for subsequently completing his theory: we consider the effects of reducing the
Froude number in a forthcoming study.

This paper is organised as follows. The statement of the full problem (§ 2) is succeeded
by a comprehensive analysis of the flow sufficiently far away from the edge (§ 3). As an
intriguing novelty, we consider both regular and the aforementioned irregular perturba-
tions to the underlying balance of inertia and viscosity, due to relatively weak influences
of gravity and streamline curvature. The irregular ones are found to originate in a
viscous-inviscid interaction, and vitally here we are able to identify how their exponential
growth within the entire attached flow is able to initiate strong nonlinear viscous-inviscid
interaction straddling the edge (§ 3.2.2). In the Appendix, we focus on the generalisation
of this linear precursor to full interaction, then applying to Froude numbers smaller than
those considered in the remainder of our present work. As a central part of this, next a
first analytical/numerical investigation of the strong interaction process is put forward
(§ 4). Throughout, the impact of surface tension is identified. Finally, we sketch the
pathway to the emergence of Higuera’s singularity and the resolution of the associated
discrepancy when the Froude number is decreased to O(1) (§ 5).

2. Problem formulation

As a start, we embed the problem in a realistic, typical scenario of engineering relevance
and state it in full. We put forward the analysis of planar flow throughout, but the
axisymmetric case can be analysed in an analogous fashion. Tildes are used to indicate
dimensional quantities. A planar, stationary jet of a Newtonian liquid having a density
ρ̃, kinematic viscosity ν̃, and surface tension τ̃ , all uniform, carries a volumetric flow rate
Q̃ per unit width in an otherwise quiescent (gaseous) environment. It impacts vertically,
in direction of constant gravitational acceleration g̃, onto a horizontal, rigid, impervious
plate. The resulting spreading liquid film is taken as thin and already developed over
the horizontal distance L̃ of the plate edge from the jet centre. Hence, H̃ ∶= L̃ν̃/Q̃ and
Ũ = Q̃/H̃ = Q̃2/(ν̃L̃) give the reference film height and flow speed. Then the (sufficiently
small) slenderness parameter and reciprocal Froude and Weber numbers typical of the
film flow are defined by

ǫ ∶= H̃/L̃≪ 1, g ∶= g̃H̃/Ũ2 ≪ 1, τ ∶= τ̃/(ρ̃Ũ2H̃). (2.1)

Most important, the associated large Reynolds number Q̃/ν̃ = 1/ǫ is assumed to be small
enough to preclude laminar–turbulent transition at all points in the flow considered. Let
coordinates x, y, made non-dimensional with L̃, H̃ respectively, point from the edge of the
plate horizontally along and vertically from its wetted surface. Then the streamfunction
ψ, made non-dimensional with Q̃ and giving streamwise and vertical flow components
ψy, −ǫψx, the local pressure p, made non-dimensional with ρ̃Ũ2 and vanishing at the

free surface of the film, and its local height h, made non-dimensional with H̃, satisfy the
Navier–Stokes (NS) equations

ψyψyx −ψxψyy = −px + (∂yy + ǫ2∂xx)ψy, (2.2a)

−ǫ2(ψyψxx −ψxψyx) = −py − (∂yy + ǫ2∂xx)(ǫ2ψx) − g. (2.2b)
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Figure 1: Sketched flow configuration and essential asymptotic regions (not to scale, for
legend see body text); non-interactive/interactive limits (dashed/solid boundaries), tiny
NS region (square encompassing plate edge), wavy surface elevation (dotted, see § 4).

These are subject to the conventional kinematic and dynamic boundary conditions (BCs)

y = h−(x)∶ ψ = ψy θ(−x) = 0, y = h+(x)∶ ψ = 1, (2.2c)

y = h−(x) if x > 0, y = h+(x)∶
ψyy − ǫ2(ψxx + 2h′±ψyx) = O(ǫ3h′±ψyx),

p + ǫ2(2ψyx ± τh′′±) = O(ǫ3h′3± ψyx, τǫ
4h′2± h

′′
±).

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(2.2d)

From here on, θ denotes the Heaviside step function, h−(x) = 0 (x ⩽ 0), and y = h−(x)
(x > 0) indicates the lower and y = h+(x) the upper free surface such that h ∶= h+ − h−
is the film thickness. The kinematic BCs (2.2c) include the conventional requirement
of no slip at the plate. The dynamic ones (2.2d) express zero tangential stress at the
free surfaces (free slip) and the capillary jump of the stresses normal to those; the
approximative forms indicate the local validity of the assumption of slender flow ǫ∣h′±∣ ≪ 1.
This mitigates the impact of capillarity; the assumed largeness of the Froude number in
(2.1) that of gravity.
The functions ψ, p, h± represent the solution of (2.2) for x > −1 in the asymptotic

limits implied by (2.1): ǫ→ 0, g → 0 where taking τ = O(1) copes with capillarity in the
least-degenerate manner. Appropriate forms of correct up- and downstream conditions
that close problem (2.2) are considered whenever required in the course of the analysis.
By introducing different flow regions, we will tacitly refer to the sketch in figure 1.

3. Non-interactive flow under very weak gravity

We first consider the entire grossly horizontal layer passing the edge by taking x

to be of O(1), where we conveniently set z ∶= y (x < 0) and z ∶= y − h−(x) (a Prandtl
transformation for x > 0). Then the flow exhibits only weak effects due to cross-flow
momentum transfer, expressed by the streamline curvature forming the left-hand side
of (2.2b), and the hydrostatic pressure variation, resulting from its right-hand side and
(2.2d). Subscripts indicate unambiguously the respective class of perturbation quantities
in the corresponding expansion

{[ψ,p], [h,h±]} ∼ {[ψ̄, ǫ2p̄](x, z), [h̄, h̄±](x)} + ǫ2{[ψǫ, ǫ
2pǫ](x, z), [hǫ, hǫ,±](x)}

+ g{[ψg(x, z), h̄ − z], [hg, hg,±](x)} +O(ǫ3, gǫ2, g2). (3.1)

The first of the remainder terms herein is induced by (2.2c,d). To leading order, (2.2)
reduces to a parabolic shallow-water problem that governs the quantities ψ̄, h̄ and
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describes perfectly supercritical flow:

ψ̄2

z(ψ̄x/ψ̄z)z ≡ ψ̄zψ̄zx − ψ̄xψ̄zz = ψ̄zzz , (3.2a)

z = 0∶ ψ̄ = ψ̄z θ(−x) = ψ̄zz θ(x) = 0, z = h̄(x)∶ ψ̄ − 1 = ψ̄zz = 0. (3.2b)

Henceforth, the subscripts + and − indicate evaluation for y = h̄±(x) (or, equivalently,
z = h̄(x) and z = 0). In turn, (2.2b) gives in combination with splitting off the hydrostatic
pressure introduced by (3.1), (2.2d), and (3.2) after some manipulations

∫ h̄

z
ψ̄2

z(x, t) ∂
∂x
[h̄′− − ψ̄x(x, t)

ψ̄z(x, t) ]dt = ψ̄zx + ψ̄zx,+ + τh̄′′+ + p̄. (3.3)

In the following, reducing the Froude number from infinity by virtue of the proposition

ḡ ∶= g/ǫ2 = O(1) (3.4)

implies a first least-degenerate inclusion of hydrostatic effects. Evaluating (3.3) subject to
(3.2b) and (2.2d) for z = 0 then yields p̄(x,0) + ḡh̄ = p̄p θ(−x) + (τh̄′′− − 2ψ̄zx,−) θ(x). This
determines the leading-order plate pressure denoted by p̄p(x) (x ⩽ 0) and represents an
equation governing h̄−(x) (x > 0).

3.1. Two useful conservation laws

We revisit the variation of streamwise momentum derived from (3.2). Continuity
of the flow quantities provides [ψ̄0, h̄0] ∶= [ψ̄(0−, z), h̄(0−)] = [ψ̄(0+, z), h̄(0+)] (here and
hereafter, 0+ and 0− indicate one-sided limits in the usual manner) and

x ⩽ 0∶ d

dx
∫ h̄

0

ψ̄2

z dz = −ψ̄zz,−, x > 0∶ J0 ∶= ∫ h̄

0

ψ̄2

z dz ≡ ∫ h̄0

0

ψ̄′2
0
dz. (3.5)

Next, we note the two relationships

d

dx
∫ h̄

0

ψ̄2

z z dz = ψ̄z,− − ψ̄z,+ −∫ h̄

0

ψ̄zψ̄x dz,
d

dx
∫ h̄

0

ψ̄zψ̄x dz = ∫ h̄

0

ψ̄2

z

∂

∂x

ψ̄x

ψ̄z

dz (3.6)

obtained by using (3.2b); the first in addition from multiplying (3.2a) with z and
integration from z = 0 to z = h̄. We substitute these into the aforementioned differential
equation describing h̄−(x) derived from (3.3). Using (3.5) and h̄−ψ̄zz,− ≡ 0 then casts
this into the more convenient form expressing the streamwise variation of the angular
momentum of the flow around the edge,

d

dx
[J0 h̄′− +K ′(x) − τh̄′+]= τh̄′′− θ(x) + p̄p θ(−x) − ḡh̄, K(x) ∶= ∫ h̄

0

ψ̄2

z z dz. (3.7)

3.2. Perturbed Watson’s self-similar flow

We cast (3.2) in the advantageous form

h̄(fηfηx − fxfηη) − h̄′f2

η = fηηη, f(x, η) ∶= ψ̄(x, z), η ∶= z/h̄(x), (3.8a)

η = 0∶ f = fη θ(−x) = fηη θ(x) = 0, η = 1∶ f − 1 = fηη = 0. (3.8b)

Given appropriate initial conditions (ICs) at x = −1, the unique solution to (3.8) for
x < 0 is in general found by numerical downstream marching. Subsequently, (3.3) with
h̄+ = h̄ determines p̄; (3.7) then gives p̄p = ḡh̄ +K ′′ − τh̄′′. Specifically, the rapid spread
of viscous shear across the layer close to its virtual origin x = −1, h̄(−1) = 0 indicating
jet impingement gives rise to Watson’s self-preserving, i.e. fully developed, flow for
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6 B. Scheichl, R. I. Bowles and G. Pasias

x ⩽ 0 (Watson 1964; Bowles & Smith 1992; Higuera 1994; Scheichl & Kluwick 2017):[f, h̄] = [fW (η), hW (x)], hW (x) ∶= aW (x + 1), aW ∶= π/√3 ≃ 1.8138. By (3.8),

−aW f ′2W = f ′′′W , fW (0) = f ′W (0) = f ′′W (1) = 0, fW (1) = 1, (3.9)

yields fW , aW in closed form (cf. Scheichl & Kluwick 2017). Other key results are f ′W (1) =[Γ(1/3)/Γ(5/6)]2/(2√3) ≃ 1.6260, λW ∶= f ′′W (0) =√2aW /3f ′3/2W (1) ≃ 2.2799, and
J0 = λ ∶= λW

a2W
≃ 0.6930, K ≡KW ∶= f ′W (1)

aW
≃ 0.8964, p̄ = pW ∶= 2aW f ′W (η)

h2W (x) . (3.10)

Most important, λ represents the shear rate exerted at the plate edge. We hence obtain
p̄p = ḡhW with no capillary influence due to the linear increase in hW (x). If not stated
otherwise, we refer to the above values and definitions tacitly below.

3.2.1. Regular perturbations

Hereafter, we confidently ignore any disturbances of the fully developed flow resorting
to jet impact as these do not affect the subsequent analysis crucially. As a consequence,
potential eigensolutions of the linearised operator in (3.8) can be safely ignored. This jus-
tifies the form of the expansion (3.1) for regular perturbations, varying in the streamwise
direction only with x, i.e. on the global scale, in the limits considered.
As seen from (2.2a), those deviations of the shallow-water limit then arise by the

pressure and normal-stress gradients in terms of the inhomogeneities −ǫ2h̄3(p̄x − ψ̄zxx)
and −ǫ2ḡh̄3h̄′ added to the right-hand side of the expanded form of (3.8a). In turn, hǫ,g
are found by virtue of the linearised kinematic BCs (2.2c) and free-slip condition in (2.2d)

[ψǫ,g, ∂zψǫ,g](x,0) = [0,0], ψǫ,g(x, h̄) = −hǫ,gψ̄z(x, h̄), (3.11a)

z = h̄∶ [ψǫ, ψg]zz = −hǫ,gψ̄zzz[1,1] + [ψ̄xx + 2h̄′ψ̄zx, 0]. (3.11b)

It proves illuminating to demonstrate how the regular disturbances relaxWatson’s strictly
self-similar leading-order form of fully developed flow and to scrutinise them in more
depth.
We first consider those essentially accounting for momentum transfer and normal

stresses in the vertical direction. The representations of ψ̄ in (3.9) and p̄ in (3.10) and
(3.8) suggest we write [ψǫ, hǫ/hW ] = [fǫ(η),Hǫ] with the latter quantities determined by
the boundary-value problem

2aW f ′W f ′ǫ + f ′′′ǫ = −(η3f ′W )′′/η, fǫ(0) = f ′ǫ(0) = 0, (f ′′ǫ /fǫ)(1) = (f ′′′W /f ′W )(1) (3.12)

and Hǫ = −(fǫ/f ′W )(1). Here the expressions of the inhomogeneities ensue after some
lengthy rearrangements; the second contribution to f ′′ǫ (1) as given by (3.11) is found
to vanish. Standard methods allow for an analytical albeit (due to the inhomogeneous
BCs) implicit representation of the unique solution to (3.12). We therefore solved (3.12)
numerically in a straightforward fashion. With fǫ ⩾ 0 (figure 2a), those perturbations are
of an expansive (accelerating) nature: they increase the wall shear stress (f ′′ǫ (0) ≃ 15.0837)
and decrease the film height accordingly (Hǫ ≃ −3.0338).
The subsequently more relevant hydrostatically induced regular disturbances (§ 4.1)

add the term −gaWh3W to the right-hand side of the correspondingly linearised version
of (3.8a). We in turn arrive at [ψg, hg/hW ] = (1 + x)3[fg(η),Hg] and conveniently set
fg = f ′WGg. With the aid of (3.9) and (3.11), Gg and Hg then satisfy

4aW f ′4WG′g = (f ′3WG′′g )′ − a4W f ′2W , Gg(0) = G′′g (1) = 0, Hg = −Gg(1). (3.13)

The regularity condition G′′g (0) = a4W /(3λW ) completes (3.13) to form a boundary-
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Figure 2: (a) Shape functions f ′ǫ(η)/4 (dashed), f ′g(η) (solid) referring to cross-stream
and hydrostatic perturbations of Watson’s flow profile f ′W (η) (dashed); (b) detached
flow, normalised by h̄0: flow profiles fη h̄0/h̄ (solid) vs. η for x = 0 (Watson’s profile),
x/h̄0 = 0.005 i (i = 1,2, . . .20), x/h̄0 = 0.999, note fηx(x,0) > 0, and h̄/h̄0 vs. x/h̄0
(dashed), asymptotes of h̄/h̄0 for x→ 0, x→∞ considered in § 3.3.3, § 3.3.2 (dotted).

value problem. A numerical investigation shows that the associated self-adjoint
homogeneous problem has no solution (and thus the absence of the aforementioned
eigensolutions or free perturbations for the specific streamwise variation considered).
Hence, (3.13) uniquely determines G′g and Gg, Hg by subsequent integration.
Here the straightforward numerical solution of (3.13) predicts fg ⩽ 0 (figure 2a),
f ′′g (0) = 2λW [G′g(0) +Hg] ≃ −2.6272, and Hg ≃ 0.9907. Contrasting sharply with the
irregular short-scale perturbations studied below and in § 4.1, the adverse hydrostatic
pressure gradient first yields a weakly compressive (retarded) flow.

3.2.2. Irregular perturbations

Bowles & Smith (1992) showed how weak perturbations of rapid downstream growth
can exist in very supercritical developed shallow-water flow so as to provoke an accord-
ingly strong hydraulic jump via local free viscous-inviscid interaction of double-layer type.
For finite values of x + 1, that interaction process would occur along a horizontal length
of O(g3) in the current specification of the flow. The similar scenario for disturbances due
to cross-stream effects yields an interaction length of ǫ6/7 as derived originally by Smith
(1977) and Smith & Duck (1977). Raising the magnitude of g to O(ǫ2/7) establishes the
distinguished limit Bowles & Smith (1992) considered. Complying with Higuera’s analysis
(1994), however, here the presumed existence of the trailing edge, so introducing the basic
streamwise scale, avoids that jump in the limit g → 0 to keep the flow correspondingly
close to supercritical conditions. Hence, the present embedding keeps the magnitude of
those rapidly growing perturbations from attaining a magnitude that triggers that strong
interaction sufficiently far upstream from the plate edge. On the other hand, Brotherthon-
Ratcliffe & Smith (1989) identified a type of Korteweg-de-Vries waves interacting with a
Stokes layer that perturb a developed layer described by the hydrostatic extension of the
shallow-water approximation, with the basic phase speed given by the unperturbed flow,
on a relatively large longitudinal scale measured by ǫ−1/5, and slowly modulated on an
associated time scale measured by ǫ−3/5. Following their analysis (also Balmforth 1999),
the so-manifested upstream influence and possible destabilisation of the hydrostatic
extension of the shallow-water approximation vanish only for g = 0: this then precisely
coins the notion of supercritical developed flow.
Both contexts suggest the existence of longitudinal short-scale disturbances in the
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8 B. Scheichl, R. I. Bowles and G. Pasias

present situation. We study these in the necessary breadth and depth as their strength
and variation through the flow is found to both complete the parametrisation of the
strongly interactive near-edge flow in § 4.1 and to identify the full extent of the upstream
influence.
The effects of gravity and of streamline curvature including the capillary influence

generate a family of perturbations characterised by locally rapid variation but of expo-
nentially small amplitude. These promote further contributions to (3.1) for ǫ→ 0 and
g → 0 where the distinguished limit (3.4) can be relaxed. Due to the according scale
reduction, they represent homogeneous disturbances about the shallow-water limit above
their generating viscous near-plate region where N ∶= η/∆ = O(1), say; the asymptotically
small gauge function ∆(ǫ;x) is positive downstream of the virtual origin (for x > −1).
Since a nonlinear distortion of the unperturbed shear flow in this viscous sublayer (SL),
represented by f ′W ∼ λW η, would typically require 1 + x = O(∆1/3) along the plate, it
is ruled out. This renders a linearisation of (2.2) across the entire layer sufficient. The
viscous displacement of the streamlines in the SL provokes likewise rapid disturbances
in the core layer, hence satisfying the inviscid-flow equations to leading order. For larger
values of ḡ, the purely hydrostatically caused disturbances were first shown by Bowles
(1990) to originate from the singular point x = −1, associated with their exponentially fast
streamwise growth; cf. Scheichl & Bowles (2017) and Scheichl & Kluwick (2017). Here
we revise and extend this analysis of the associated singularly perturbed eigenproblems.
It is useful at this stage to first demonstrate why the thereby introduced shortest

streamwise scales are, however, sufficiently long to avoid the formation of a Rayleigh stage
and thus a corresponding finite streamwise slip at its base. Its inevitable breakdown close
to the latter would either be of inviscid and nonlinear character or directly controlled
by viscous shear. Together with the no-slip condition holding at the plate, the first type
would yield a further viscous slip flow adjacent to it, driven by an imposed pressure
gradient. However, this impedes a strong interaction mechanism (of the above kind)
required to control the flow around the edge as outlined further below. The second
would imply an (interactive) two-tiered structure, crucially tied in with the displacement
effect mentioned before. But in conflict with the assumption of a Rayleigh limit, then
the pressure disturbances in the core tier are typically controlled by their cross-stream
variation (meaning a hierarchical slender-layer approximation).
We bear these arguments in mind when it comes to the rationale underlying the

interactive-flow structure. In the present context of linearising (2.2a,b) for η = O(1), they
justify us to take the irregular pressure perturbations balancing streamline curvature (and
the gradients of the normal stresses), see (2.2b), as insignificantly small in the expanded
form of (2.2a). By the smallness of g, this also holds for their hydrostatically induced
counterparts. We then linearise (2.2) by ignoring the BCs for y = 0 and noting pW (x, η)
as given by (3.10). This yields ψ ∼ fW perturbed by the local eigenfunction at negligibly
small pressure disturbances ensuing from (2.2b) and the last of the BCs (2.2d) with the
aid of (3.1) (subject to ∂η pW (x,1) = 0):
[ψ,h/hW (x)] ∼ [fW (η),1] +⋯ + γ(ǫ;x)[f ′W (η),−1] + c.c. + o(γ), (3.14a)

p/ǫ2 ∼ pW (x, η) +⋯+ γxxPǫ(x, η) − γḡhW (x) + c.c. + o(γxx, γḡ), (3.14b)

Pǫ(x, η) ∶= τhW (x) −∫ 1

η
f ′2W (t)dt = τhW − f

′′
W

aW
. (3.14c)

Here and in the following, some gauge function γ of fast variation in x is supposed to
vanish as ǫ→ 0, and the dots indicate the higher-order regular terms already absorbed
by (3.1). Specifically, we have not only anticipated γ = o(γx), implying γx = o(γxx) and
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γxx = o(γxxx), but also
ǫ2γxxx = o(γxx). (3.15)

This prompts us to disregard the viscous stresses when expanding (2.2b,d) and express
Pǫ in (3.14c) through streamline curvature solely, with the help of (3.9).
From (3.14a)–(3.15), we deduce the following estimates holding in the SL: with

pW (x,0) ≡ 0 by (3.10), irregular disturbances of O(γxx) contribute to the accordingly
reduced pressure p/ǫ2 + (γ − 1)ḡhW (x); therefore, the magnitudes of its x- and y-
gradients (of O(γxxx) and O(γxx/∆) respectively) are much larger than those of the
respective perturbations of the normal-stress gradients in (2.2a) and (2.2b) (of O(γxx)
and O(ǫ2∆γxxx) respectively). Hence, for N = O(1) we expand

ψ − λW η2/2 ∼ ⋯+∆γλWF (N) + c.c. + o(∆γ), (3.16a)

p/ǫ2 + (γ − 1)ḡhW (x) ∼ ⋯+ γxxPp(x) + c.c. + o(∆2γxx, γḡ), (3.16b)

Pp(x) ∶= Pǫ(x,0) = aWλ [T (x + 1) − 1], T ∶= τ/J0, (3.16c)

in analogy to (3.14). The quantity T parametrising the pressure disturbances at the plate,
Pp, measures the capillary force relative to the horizontal momentum; here specified by
the first relationship in (3.10). We aim to determine ∆, γ, and the shape function F .
Upon substitution into (2.2a), this yields with the aid of (3.8a) the least-degenerate
balance

λ2WhW∆3γx(NF ′ −F ) ∼ h3W (ǫ∆)2[γxḡhW − γxxxPp(x)] + λW γF ′′′. (3.17)

One finds γ varying much more rapidly with x than ∆. Differentiation of (3.17) with
respect to N suggests to write σNF ′′ = F (4) subject to F (0) = F ′(0) = 0 and F ′(∞) = 1
and with the (over x piecewise) constant σ ∶= λWhW limǫ→0(∆3γx/γ) by consistency with
(3.17). In turn,

F (N) = 3σ1/3∫ N

0

(N− t)Ai(σ1/3t)dt, γ

γ0(ǫ) ∼ exp∫
x

0

σ + o(hW∆3)
λWhW (s)∆3(ǫ; s) ds (3.18)

for −1 < x < 0 and −π < argσ < π. As ∆/σ1/3 proves invariant against a variation in the
definition of ∆, this is seen to absorb any potential x-dependence of σ and thus of F .
We then preferably choose ∣σ∣ = 1, thus

σ = 1 (3.19)

as long as the streamwise variation of γ stays real, and are aware that a potential sudden
emergence of a non-zero argσ is tied in with a corresponding shortening of the streamwise
scale, then requiring a proper smoothing. The, at first arbitrary, (complex) quantity γ0
in (3.18) parametrises the strength of the irregular disturbances once they have evolved
towards a terminal state asymptotically close to the edge. The herewith introduced
upstream influence not only accounts for the singularity of the integrand in (3.18) at
the virtual origin but will become fixed in § 4.1. In combination with (3.18), the premise
γ = o(∆) made implicitly in (3.14a) yields (∆3)x = o(h−1W ), which will turn out to hold
even for x→ −1.
Consistency with (3.17) also requires, after some algebra and with the help of (3.16c),

I7 −Gǫ(1 + x)3I6 = 1 − T (1 + x), (3.20a)

I ∶= 32/21λ3/7aW

Γ(1/3)1/7
∆

σ1/3ǫ2/7
, Gǫ ∶= Γ(1/3)6/7

34/7λ11/7
g

ǫ2/7
. (3.20b)

Equation (3.20a) relies upon γxxx/γ ∼ (γx/γ)3 as represented via (3.18), and (3.20b)
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10 B. Scheichl, R. I. Bowles and G. Pasias

from (3.10). Solving (3.20a) for I finally determines ∆/σ1/3 and its dependence on the
parameters Gǫ and T . It elucidates the necessity of treating both associated effects
in a combined fashion; a positive value of Gǫ introduces a new distinguished limit
g = O(ǫ2/7). The results for the limiting case of dominant gravitational effects, Gǫ ≫ 1
giving I ∼ (1 + x)3Gǫ and (3.19), agree with the previously mentioned studies by (Bowles
1990; Scheichl & Bowles 2017) where g = O(1). Consistency with § 4, below, which takes
g = O(ǫ4/7), requires us to concentrate here on the case Gǫ = 0, so neglecting the gravita-
tional influence in (3.20a). We include it, however, for completeness and for consideration
in our subsequent work examining smaller values of the Froude number, as outlined in
§ 5. Some of the impact of finite but small values of Gǫ is taken up in the Appendix.
For the Froude numbers considered here, we deduce ∆ = O(ǫ2/7) for −1 ⩽ x < 0 so that

(3.15) is satisfied and our current analysis stays intact even for x→ −1. Since Re(σ1/3) > 0,
only roots having Re I > 0 are admitted. Furthermore, perturbations growing in the down-
stream direction require Reσ > 0 according to (3.18), which implies I → 1 as x→ −1. For
the current negligibly small values of Gǫ and T , then I ∼ 1 throughout and (3.18) signifies
a strong algebraic downstream growth, which close to the plate edge is transformed into
an exponential one:

γ/γ0 ∼
x=O(1)

(1 + x)E ∼
x→ 0−

exp(Ex), E ∶= (Bǫ)−6/7 →∞, (3.21a)

B ∶= Γ(1/3)3/7
(3λ)2/7 = (

4π3
Γ(5/6)6

3 Γ(1/3)3 )
1/7

≃ 1.2376, (3.21b)

again with the use of (3.10) and the prior relationships. If Gǫ and T are not both
vanishingly small, the perturbations grow exponentially for increasing values of x, ac-
cording to (3.18). Such an exponential growth is also expected for the precursors of these
disturbances in the regions closer to jet impact where the flow is not fully developed, i.e.
h not increasing linearly with x in the shallow-water limit. Correspondingly, the first of
the relationships (3.21) describes a required matching law in the limit x + 1→ 0+, from
which we infer that the perturbations can indeed only exist along the entire plate if
Reσ > 0, and the second relation in (3.21a) represents a special case of the behaviour

γ/γ0 ∼ exp [Ex/I30 + o(x)], x/ǫ6/7 → 0 − . (3.22)

Herein, I0 denotes a permitted root of (3.20a) for x = 0. The exponentially growing
amplitude of the perturbations has attained its final order of magnitude for x = O(ǫ6/7)
upstream of the plate edge.
As a result, we first trace a single branch of positive roots of (3.20a) in the downstream

direction, starting with I = 1, along with the setting (3.19). For T < 1, all involved
perturbation quantities stay real up to the plate edge. If T > 1, however, we encounter
a sudden modification of the shape function F in (3.18) (on the original streamwise
O(1)-scale) as

σ = exp(−3iπ/7), xT ∶= 1/T − 1 < x < 0. (3.23)

Here x = xT indicates a “capillary threshold” where Pp(x) in (3.16c) changes sign as its
capillary portion overcompensates that by vertical momentum transfer for x > xT . With
the aid of (3.20a) and (3.22), we finally track the logarithmic attenuation γ/γ0 of the
capillarity-controlled disturbances from the edge in upstream direction in the form

Bǫ6/7 ln( γ
γ0
) ∼ Ω(x;T ) ∶=∫ x

0

ds

(1 + s)[1 − T (1 + s)]3/7 , I0 = 1

(1 − T )1/7 , (3.24)

where we note (3.21) arising in the limit T → 0. Figure 3 illustrates the numerical
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evaluation of the scaled exponent Ω in (3.18): one clearly identifies the logarithmic
singularity of Ω and the associated algebraic one of γ/γ0 at x = −1, included in (3.21);
its integrable counterpart of Ω at x = xT , accompanying the abrupt switch from (3.19)
to (3.23) in the case T > 1; the exponential steepening of γ/γ0 upstream of the plate
edge, the more extreme the smaller ǫ is. Most important, for T > 1 we find arg I = π/7
(0) for x > xT (x < xT ) such that ImΩ increases from zero for x = 0 in the upstream
direction towards its final value assumed for x ⩽ xT , where argγ = argγ0 + argΩ. This
expresses a subtle cumulative upstream influence. As a physically intriguing phenomenon,
stationary capillarity-driven undulations of the flow originate from the capillary threshold
to grow exponentially towards the plate edge. Both their frequency and the slope of
their envelope increase for decreasing values of ǫ. For figures 3 (c–d), we have used
γ/∣γ0∣ ∼ exp[Ω/(Bǫ6/7) + i arg γ0]. Hence, considering just the real part by varying argγ
from 0 to π surveys the potential variety of the streamwise oscillations.
The importance of distinguishing between T > 1 and T < 1 as in (3.14c), here due to

the zero in (3.16c), will be met again in the course of the analysis (§ 3.3.3, § 4). The
following notes complement the analysis of the irregular perturbations.

(i) We first consider the weak singularity Ω exhibits for T > 1 at the capillary thresh-
old, see (3.24). There the sublayer thickness ∆ vanishes like ∣x − xT ∣1/7 and σ has
a discontinuity as Pp is zero, see (3.16c). The latter neutralises the associated in-
crease of the pressure disturbance in (3.14b) in the sublayer, described by (3.16b). For
x − xT = O(ǫ2/13), we find (x − xT )γ = O(ǫ2γxx) such that the irregular correction of the
velocity profile produced by the inviscid-flow balance in (2.2a) affects the streamline
curvature in a way that the zero of Pp is shifted downstream accordingly. Since Pǫ = O(y3)
at x = xT , see (3.14c), the associated relative pressure correction of O(x − xT ), acting
on the sublayer, induces a passive buffer layer where y = O(ǫ2/39). Simultaneously, the
thickness of the sublayer ∆ has decreased to O(ǫ4/13). However, this new structure
just delays the singularity. Its regularisation is finally accomplished by a Rayleigh
stage, namely when the magnitude of the pressure perturbation has reached that of the
streamwise velocity. According to (3.14c), then ǫ2γxx = O(γ), giving x − xT = O(ǫ1/3).
Gravity plays no active role in this process. However, examining its details is left to
smoothing of the stronger form of this singularity for larger values ofGǫ, cf. the Appendix.
(ii) Determining the gauge functions ∆ and γ, for some given γ0, requires the simul-

taneous investigation of the core region and the SL. This reveals an already interactive
character of the yet very small disturbances along the entire adjustment of the flow
towards the plate edge, tied in with their upstream influence.

3.3. Wake flow

For x ⩾ 0 and supplemented with the IC [ψ̄0, h̄0] = [fW (z/aW ), aW ], (3.8) describes
the evolution of the detached layer or wake, investigated next.

3.3.1. Full wake

We obtained the corresponding numerical solution of (3.8) by adopting a backward-
differentiation Keller–Box scheme (method of lines) with automated adaptive remeshing
of the η-grid (≈ 2000 points) and a rather high absolute accuracy in x-direction of about
10−8 (using the routine d03prc of the NAG C Library 2017). If not stated otherwise, in
the remainder of this paper, the output of this solver is considered at specific locations of
the downstream and the vertical coordinate where an associated interpolation routine is
adopted for the latter; visualisation is then accomplished by cubic-spline interpolation.
The solution plotted in figure 2 (b) discloses a quite rapid approach of a uniform parallel
flow far downstream through the action of viscous diffusion.
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Figure 3: Ω and γ/γ0 vs. x given by (3.24) (cubic-spline interpolation of computed data
points); (a) Ω for T = 0 (dotted), 0.2 (dot-dot-dashed), 0.5 (dot-dashed), 0.7 (dashed),
0.9 (solid); (b) ReΩ (solid, right ordinate), ImΩ (dashed, left ordinate) for T = 4/3
(xT = −0.25, ImΩ ≲ 0.8185), 2 (−0.5, ≲ 1.3099), 4 (−0.75, ≲ 1.8404); (c) γ/γ0 parametrised
as in (a) for ǫ = 0.3 (upper family of curves), 0.03 (lower family); (d) Reγ/∣γ0∣
parametrised as in (b) for argγ0 = 0 and ǫ = 0.3 (dashed), 0.03 (solid); (e) as in (d)
but for argγ0 = π/4; (f ) as in (d) but for argγ0 = π/2.
With h̄+ = h̄ + h̄−, the auxiliary condition (3.7) decouples from (3.2) as a consequence

of the Prandtl shift. Integrating the first twice subject to h̄−(0) = 0 yields for x ⩾ 0:
(1 − 2T )h̄−(x) = T (h̄ − hW )(x) + KW −K(x)

J0
− ḡ

J0
∫ x

0

(x − s)h̄(s)ds. (3.25)

Hence, conservation of the angular momentum determines the vertical shift h−(x) of
the wake parametrised by τ and ḡ. Here K(x), h̄(x) result from the solution of (3.8).
In turn, p̄(x, z) for x > 0 ensues from (3.3). The constant of the first integration gives
a contribution to (1 − 2T )h̄− varying linearly in x. We choose this as −TaWx, which
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produces the first term on the right-hand side of (3.25). Thereby, h̄′−(x) is continuous
if Watson’s attached-flow solution (h̄− ≡ 0, h̄ ≡ hW , K ≡KW ) is continued over the edge.
The following subtle rationale for that specific choice anticipates findings relevant for
the behaviour of the regular contribution to h̄+ for ∣x∣ being much smaller, elucidated
later (§ 4.1). It proves useful at this stage to not necessarily resort to a fully developed
(Watson’s) flow and the associated value of λ. Then the forms of ψ̄, h̄ for x→ 0+ consist
of the Maclaurin expansion

[ψ̄ − ψ̄0, h̄ − h̄0] ∼ x[ψ̄1(z), h̄1], [ψ̄1(z), h̄1] ∶= [ψ̄′0(z)∫ y

0

ψ̄′′′
0
(t)

ψ̄′2
0
(t) dt, −

ψ̄1(h̄0)
ψ̄′
0
(h̄0)], (3.26)

for x→ 0− readily derived from (3.2) to this leading approximation, but they are also
singularly perturbed by an additive irregular contribution arising by the loss of the no-
slip condition, cf. (3.2b). The latter is smoothed on shorter scales where the hierarchical
slender-layer approximation ceases to be valid (§ 4.1). However, the flow has to pass the
edge in an entirely regular fashion at smaller x-scales according to (2.2a,b). This finally
rules out an initial arbitrariness in the non-trivial regular continuation of h̄−.
The accurate numerical evaluation of (3.25) for several values of T and ḡ is displayed

in figure 4. We note that the first term on the right-hand side of (3.25) is negative
and the second positive throughout. Remarkably, h̄− changes abruptly sign as T → 1/2,
accompanied by an unbounded deflection of the layer. Therefore, this special limit
deserves a separate attention (beyond the scope of the current investigation).
In the context of (3.26), the solution of (3.2) has the following notable properties: the

regular expansion

ψ̄0 ∼ λz2/2 + βz5 +O(z8), z → 0, (3.27)

with some constant β (equal to −λ2/60 for Watson’s flow); the BCs imposed at z = h̄ in
(3.2b) imply also ψ̄zzzz(x, h̄) = 0.
3.3.2. Far wake, downfall, and “capillary ascent”

For x→∞, the normalised streamwise flow component fηh̄0/h̄ tends towards h̄0/h∞ as
h ∼ h̄ attains some terminal value h∞. In the (x, z)-plane, it becomes horizontally aligned.
Preservation of its streamwise momentum expressed by (3.5) confirms a contraction of the
detached layer towards that uniform free jet: h∞/h̄0 ∼ 1/(J0h̄0) < 1. This constraint fol-
lows from the Cauchy–Schwarz or Jensen’s inequality and the conserved volumetric flow
rate. Specifically, Watson’s flow passing the edge predicts h̄0/h∞ = h̄0J0 = aWλ ≃ 1.2570,
h∞/h̄0 ≃ 0.7956. Linearising (3.2) about that ultimate flow state shows exponentially
decaying and vertically oscillatory eigenmodes during the final stage of viscous diffusion:

[ψ̄ − z

h∞
−∑∞n=1 ane−(nπ)2x/h∞ sin(nπz

h∞
), h̄ − h∞] = O(e−2π2x/h∞) (3.28)

with the constants an determined by the full solution to (3.8). The remainder term
in (3.28) indicates that the higher-order eigenfunctions are dominated by the omitted
contribution provoked by the nonlinear self-interaction of the dominant one.
For g = 0, (3.25) predicts h̄− ∼ aWTx/(2T − 1)+O(1) (x→∞), where the spe-

cific form of this linear growth is due to the continuity of h̄− for T = 0 at the
plate edge. For any howsoever small value of g, this behaviour is superseded by
h̄− ∼ −ḡx2/[2J0(1 − 2T )]+O(ḡx, Tx) for ḡx2 becoming large. This reveals the classical
downfall parabola which the essentially inviscid free layer assumes under sufficiently
small capillary action. Increasing T reinforces the vertical pressure gradient and thus
the downward bending of the flow, cf. (3.3). Finally, as the value of T exceeds 1/2, this
feed-forward is replaced by an intriguing counteracting one: the flow curves more and
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Figure 4: Distributions of h̄− vs. x/h̄0 by (3.25); (a) ḡ = 0 (solid, left ordinate), ḡ = 0.25
(dashed, left ordinate), ḡ = 1 (dot-dashed, right ordinate), each set for T = 0.2,0,1.2
(bottom to top for x/h̄0 = 1); (b) zoomed-in detail of (a), abscissae have same origin.

more upwards in order to sustain a corresponding negative vertical pressure gradient
increasingly dominated by surface tension. We thus consider the present results based
upon (3.8) and (3.25) as the “viscous extension” of the early ones by Keller & Weitz
(1957). Accordingly, boundedness of h̄− for x→∞ occurs for g = T = 0 solely: with
h∞ = 1/J0 and K(∞) = 1/2, (3.25) yields in this limit when body and surface forces are
ignored

h̄2+ − h̄2−
2h∞

∼ h̄±
h∞
∓ 1

2
∼KW + 2

π
∑∞n=1 ane−(nπ)2x/h∞ 1 − (−1)n

n
+O(e−2π2x/h∞). (3.29)

The left-most term in (3.29) obviously expresses the angular momentum around the
plate edge exerted by the flow infinitely far downstream. We find h̄−(∞) ≃ 0.3157 and
h̄+(∞) ≃ 1.1121 describing the terminal upwards shift of the detached layer.

Our careful numerical evaluations perfectly confirm the above findings: see figures 2 (b)
and 4.
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3.3.3. Goldstein’s near wake and consequences

The analysis in this section substantially resorts to (3.27), but again without the need
to specify ψ̄0 to represent Watson’s flow.
The sudden loss of the no-slip BC at the edge for x→ 0+ typically provokes a Goldstein-

type near wake, with its vertical extent controlled by the local viscous length scale x1/3:

ψ̄/(λx2)1/3 ∼ fG(ζ) + xαfα(ζ) +O(x2α), ζ ∶= z(λ/x)1/3 = O(1), x→ 0+, (3.30)

α is some positive constant. The function fG is governed by the arising well-known
leading-order problem f ′2G − 2fGf ′′G = 3f ′′′G , fG(0) = f ′′G(0) = 0 and fixed uniquely by set-
ting f ′′G(∞) equal to 1 by matching. This yields f ′G ∼ ζ̄ + transcendentally small terms
(TST) for ζ̄ ∶= ζ + aG →∞; our numerical computation of fG(ζ) gives aG ≃ 0.8920. Hence,

(2 + 3α)(f ′Gf ′α − f ′′Gfα) − 2fGf ′′α = f ′′′α , fα(0) = f ′′α(0) = 0, f ′α(0) ≠ 0, (3.31)

and fα = f ′G satisfies only the first of these relationships. Thus, fα ∼ β1ζ̄3α+2 + β2ζ̄ +TST
with some constants β1,2 holds for ζ̄ →∞. Rewriting (3.30) in terms of x, z yields α = 1,
β1 = β/λ2 by (3.27) (β1 = −1/60 for Watson’s flow) via matching with ψ̄ ∼ ψ̄0 (z ≫ x1/3),
and with (2.2d) finally the sought irregular extension of the expansion (3.26) holding for
x→ 0+ as z = O(1) is found:

[ψ̄ − ψ̄0, h̄ − h̄0] ∼ ax1/3[ψ̄′0,−1] + a2x2/3[ψ̄′′0/2,0] + x[a3ψ̄′′′0 /6 + ψ̄1(z), h̄1]
+O(x4/3), a ∶= aG/λ1/3 ≃ 1.0079, (3.32)

with that numerical value valid for Watson’s flow. The detaching flow stays intact
immediately downstream of the edge apart from being slightly perturbed by a local
eigensolution x1/3ψ̄′ of (3.2a) as in (3.14a); this inviscid-flow disturbance is triggered by
the displacement of Goldstein’s wake forming underneath.
From (3.30) and (3.32), the dominant contribution to z = h̄−(x) in (3.25) as x→ 0+

originates in the core layer z = O(1). The layer responds to the capillary jumps of the
pressure and its cross-flow variation by streamline curvature in terms of a cuspidal
bending, confirmed by the numerical results shown in figure 4 (b) and visualised in
figure 5 (a):

[h̄−, h̄+] ∼ [1 − T,T ]ax1/3/(1 − 2T )+O(x2/3), (3.33)

with T defined in (3.16c). In addition to the case T = 1/2, we also discard the further
physically exceptional, degenerate one T = 1, which marks the onset of capillary undula-
tions above the plate (§ 3.2.2). The layer contracts, i.e. accelerates, almost independently
of T in agreement with (3.32) and the numerical results (figure 2b) as free slip supersedes
no slip at its base. For T > 0, the inverse Prandtl shift produces additional irregular terms
in the core region for x→ 0+, defining a cuspidal distortion of h+ originating from the
near wake. The hydrostatically caused O(x2)-contribution to h̄− in (3.3) arises from both
fG for z = O(x1/3) and the regular part of (3.32) for z = O(1).
Exploiting (3.3) and (3.33) gives for x→ 0+
p̄ − p̄(0, z) ∼ T

2T − 1(
J(z)
J(0) − T )

2a

9
x−5/3 +O(x−4/3), J(z) ∶= ∫ h̄0

z
ψ̄′20 (y)dt, (3.34)

so henceforth, J(0) = J0. In order to estimate p̄ in the near wake, the integral in (3.3) has
to be split asymptotically. With the aid of (3.7) and with (∗) abbreviating the integrand
in (3.3) of O(x−1), one obtains p̄ − τh̄′′− ∼ ∫ z

0
(∗)dt − ψ̄zx − ψ̄zx,− + ψ̄zzh̄

′′
− = O(x−2/3) for

z = O(x1/3). As Watson’s flow having dp̄p/dx ≡ 0 provides the regular extension of (3.26),
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Figure 5: Goldstein’s wake; (a) Local distributions of h̄′−/(ax1/3) (solid), h̄+/(ax1/3)
(dashed) vs. T with zeros and asymptotes (dotted) as given by (3.33); (b) F ′G(ζ) (solid),
f ′G(ζ) (dashed), median as asymptote F ′G ∼ ζ (dotted).

regular pressure terms contribute to (3.30) and in turn induce contributions to (3.32) at
higher orders only.
It is seen that gravity has no essential impact on the behaviour of the just detaching film

given the magnitude of the Froude numbers considered. However, we find the following
two sources of non-uniformity of the above expansions.

(I) In the case τ = 0, we conclude that in the parabolic slender-flow limit Watson’s
classical flow is abruptly superseded by Goldstein’s one at the trailing edge. The irregular
shape of the detaching streamline reflects the absence of any upstream influence. However,
in the region x = O(ǫ3/2), y = O(ǫ1/2) encompassing the edge and where [ψ,p, h−] = O(ǫ)
the slender-layer approximation anticipated in (2.2c,d) ceases to be valid, and all terms
in (2.2), apart from −g in (2.2b), are retained to leading order. Most important, the
solution to this full NS problem is expected to facilitate a smooth transition from no- to
free-slip. This then completes the current flow description (§4.1).
(II) For any howsoever small values of τ , even the upper streamline exhibits an

unacceptable cusp for x→ 0+, which cannot be smoothed out by the aforementioned
NS region. We observe that p̄ = O(τx−5/3) in the near wake for x≪ τ and the magnitude
of p̄p immediately upstream of the edge can only be increased accordingly by the action
of viscous forces. Consequently, the required smoothing of the flow quantities in the
vicinities of both the edge as well the upper free streamline is typically accomplished
by viscous-inviscid interaction due to streamline curvature, as identified in § 3.2.2: on
a reduced streamwise length scale of O(ǫ6/7) between the flow in the lower deck (LD),
continued as the near wake further downstream, where z = O(ǫ2/7) and the predominantly
inviscid one in the main deck (MD) comprising the core region. As shown next, this loss
of parabolicity, with the slender-layer approximation staying intact first, completes the
flow picture for p – and thus gh̄ – becoming of O(ǫ4/7). So g is increased above O(ǫ2)
and the distinguished limit (3.4) relaxed accordingly.

4. Interactive stage

We now modify the flow structure on the shorter scale introduced in (II) above such
that the vertical momentum transport compensates for an correspondingly increased
pressure variation accommodating the capillary pressure jump. Simultaneously, the hy-
drostatic contribution to the thereby modified plate pressure is enhanced accordingly.
Let us describe this regime of strong local interaction, which facilitates the necessary
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upstream influence, canonically by rescaled quantities of O(1) denoted by uppercase
letters.

4.1. Interaction problem: discussion and preliminary findings

To enhance the clarity of the scalings involved, we relax Watson’s representation J0 = λ
of the incident flow and define (with the case T = 1 excluded)

G ∶= ǫ−4/7gh̄0/(M2λ6)1/7, M ∶= ∣T − 1∣J0, S ∶= sgn(T − 1). (4.1)

The first definition parametrises the distinguished limit indicated above by taking G

to be of O(1) to require upstream adjustment. In the LD, (2.2a) reduces to slender-
layer form, where a streamwise pressure gradient dictates the massive modification of
the unperturbed oncoming flow towards Goldstein’s wake flow. The LD is characterised
by

[X,Z] ∶= [(λ5/M3)1/7x/ǫ6/7, (λ4/M)1/7z/ǫ2/7 ], (4.2)

[ψ,p]/ǫ4/7 ∼ [(M2/λ)1/7 Ψ(X,Z), (M2λ6)1/7P (X)]+O(ǫ6/7). (4.3)

Here the asymptotic remainder can be determined by the same matching arguments
specifying α = 1 in (3.30). In the LD, we then have in accordance with (3.2) typically

ΨZΨZX − ΨXΨZZ = −P ′ + ΨZZZ , (4.4a)

Z = 0∶ Ψ = ΨZ θ(−X) = ΨZZ θ(X) = 0, (4.4b)

X → −∞∶ ΨZ → Z, Z →∞∶ ΨZ −Z → A(X). (4.4c)

The conditions (4.4c) express matching the LD flow with the unperturbed incident one
and that in the MD as −A(X) describes the vertical displacement exerted there.
To the approximation required, (2.2a,b) reduce to the Euler equations in the MD, then

conveniently written as

ψ2

z(ψx/ψz)z = h′−pz − px, (ǫψz)2[(∂x − h′−∂z)(ψx/ψz) − h̄′′−] = pz + g (4.5)

with the Prandtl shift invoked. These together with the rationale underlying (3.32) imply

[ψ,h,h−, h+, p] ∼ [ψ̄0, h̄0,0, h̄0,0] + (ǫ2M/λ4)1/7[Aψ̄′0, −A, H−, H+, 0]
+(ǫ2M/λ4)2/7[ψ2(X,z), H2, H2,−, H2,−+H2, λ

2P̄ (X,z)] +O(ǫ6/7). (4.6)

Here A(X),H−(X), and the (insignificant) termH2,−(X) are initially unknown,A decays
far upstream, and the remaining perturbation quantities read

ψ2 ∶=A2

2
ψ̄′′
0
+ λ2G

h̄0
ψg(0, z) +H ′′+ ψ̄′0[λ2∫ z

0

( T − J(t)/J0∣T − 1∣ ψ̄′2
0
(t) −

S

(λt)2 )dt −
S

z
],

H+ ∶=H−−A, H2 ∶= −ψ2

ψ̄′
0

∣
z=h̄0

, P̄ ∶= H ′′+ (X)∣T − 1∣ (
J(z)
J0
− T ) −G( z

h̄0
− 1). (4.7)

Matching (4.6) with (4.3) is provided by the eigensolutions contributing to ψ1,2 and with
(3.1) by integration over X (and employing the upstream perturbation ψg of Watson’s
flow). The pressure function P̄ results from integrating P̄ z balancing the streamline
curvature subject to P̄ (X, h̄0) = −TH ′′+ /∣T − 1∣, see (2.2,b,d). The kinematic BCs (2.2c)
fix the expansion of h in (4.6). Since viscous shear enters (4.6) not earlier than at O(ǫ6/7),
the incident portion ψ̄′′0 + g ∂zzψg of the vorticity ψyy + ǫ2ψxx is preserved along the
streamlines of the inviscid flow described by the explicit part of (4.6). On the interactive
scale, ǫ2ψxx(x, h̄) ∼ −(ǫ4λ6/M5)1/7H ′′+ ψ̄′0(h̄0) +O(ǫ6/7). Hence, the first of the dynamic
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18 B. Scheichl, R. I. Bowles and G. Pasias

BCs (2.2d) is satisfied identically, cf. (3.11), only up to contributions of O(ǫ2/7); the
expressions in (4.7) imply a contradiction. However, the required thin surface shear layer
only plays a subordinate role subsequently and is therefore ignored. We just estimate its
lateral extent: inspection of (2.2a) shows that in this layer h+ − y is typically measured
by the square root of the streamwise length scale given by ǫ6/7. It is thus much thicker
than the LD but adjusts to variations of h+ according to (4.6). There also the regular
part of the expansion (3.32) is recovered and the smooth continuation of h+ across the
edge guaranteed on smaller streamwise scales.
Matching (4.3) and (4.6) yields specifically Ψ ∼ (Z+A)2/2 + P −G +TST (Z →∞) and

P (X) = P̄(X,0). This together with (2.2d) furnishes the interaction law

P −G = S(A −H−)′′, P θ(X) = TH ′′− /∣T − 1∣. (4.8)

The relationships (4.8) close (4.4) to establish a free-interaction problem determining Ψ ,
P , H− and in turn P̄ , parametrised by G and T , once the requirements of a sufficiently
smooth behaviour at X = 0 are established. The present problem represents a modifica-
tion of its precursors devised by Smith (1977) and Bowles & Smith (1992) in their study
on the onset of very strong hydraulic jumps, i.e. in very supercritical flow, where the
hydrostatic pressure varies only weakly. In sharp contrast, it here is altered massively
by streamline curvature by virtue of a process reinforced in the downstream direction
as described by (4.8). Below, we highlight the behaviour of the interactive flow in close
vicinity to the trailing edge in appropriate detail. This cornerstone of our analysis also
points to the construction of full numerical solutions of the problem, with their portion
for x < 0 presented in § 4.2 below.
It is first recognised that (4.4a) yields for X → −∞ typically

[Ψ−Z2

2
, P −G] ∼ Γ eµX[3µ1/3∫ Z

0

(Z− t)Ai(µ1/3t)dt, −32/3
µ1/3 Γ( 1

3
)] + c.c. +O(e2µX) (4.9)

with some eigenvalue µ having Reµ > 0 and some constant Γ . The asymptotic forms
A ∼ Γ eµX + c.c. (Γ ≠ 0) and P ∼ SA′′ are both satisfied if

µ = 32/7/[−S Γ(1/3)]3/7 ≃ 0.8972/(−S)3/7. (4.10)

We arrive at a unique positive value of µ for T < 1 and µ = ∣µ∣ exp(−3iπ/7), meaning a
wavy upstream tail of the flow quantities, in the capillarity-dominated case T > 1. Any
non-zero value of Γ controls the interactive flow uniquely as long as it stays attached.
Most important, by (3.24) and (3.22), the expansions (4.3) and (3.16) are found to match
so that the SL in § 3.2.2 is superseded by the LD provided

γ0 = Γ∆(ǫ; 0). (4.11)

Hence, Γ is real (complex) for T < 1 (T > 1). In other words, once the value of Γ = O(1)
has been determined as is shown below, it fixes γ0 = O(ǫ2/7) in (3.18). Simultaneously,
(3.16) ceases to be valid for x = O(ǫ6/7). That value of γ0 in turn selects a specific member
in the class of eigensolutions studied in § 3.2.2. This demonstrates a strong, nonlinear
continuation of the interaction mechanism addressed in § 3.2.2, (ii), subject to (3.19)
(T < 1), (3.23) (T > 1), and (3.24), where Watson’s solution represents the background
flow (the essential constraints are the linear streamwise variation of Pǫ in (3.16c) and
J0 = λ).
The history of the linearised eigensolutions given by (4.9) can be traced back to the

virtual origin x = −1 through (3.18) and (3.20). Alternatively, the for x > −1 exponential
growth of the eigensolutions in § 3.2.2 renders the fully nonlinear interaction mechanism
around the edge admissible – an instructive interpretation of its upstream influence.
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Developed liquid film past a trailing edge 19

The possible interactive flows adjacent to the plate are identified on the basis of (4.8).
When we ignore the restriction X < 0 imposed on the marching problem formed by (4.4),
(4.8), and (4.9), it is invariant against an origin shift whereby X is replaced by

Xs ∶=X + ln ∣Γ ∣/Reµ. (4.12)

Accordingly, in (4.9) we substitute

Γ exp(µX) = exp(µXs + iφ), φ ∶= argΓ + { 0 (T < 1),
tan(3π/7) ln ∣Γ ∣ mod 2π (T > 1). (4.13)

For T < 1, one takes Γ as real where Γ > 0 (Γ < 0) triggers an expansive (com-
pressive, cf. Smith & Duck 1977) flow giving P ′ < 0 (P ′ > 0). Here (4.13) yields two
canonical solutions, only differing by sgnΓ . Solely for Γ > 0, this terminates in well-
established singular fashion at some finite value of Xs we designate as Xt

s (Smith 1977;
Bowles & Smith 1992). Essentially, the LD splits with a predominantly inviscid core
flow of constant shear that induces a viscous slip layer adjacent to the plate. Casting
the original analysis of this singularity by Smith (1977) in the present scaling, we find
the following behaviour of the key quantities A, P , and the shear rate at the plate
Σ ∶= ΨZZ(X,0) for ∆X ∶=Xs −Xt

s → 0−:
A ∼ 12/(∆X)2, G − P ∼ 72/(∆X)4, Σ ∼ 24√6χ/(−∆X)7/2, χ ≃ 1.1736. (4.14)

Herein, χ is determined by the numerical solution of the Falkner–Skan problem governing
the slip layer. These findings were confirmed qualitatively by the numerical study of
Bowles & Smith (1992) (see figure 7a therein).
On the other hand, for T > 1, both ReΓ and ImΓ , see (4.9) and (4.13), parametrise the

interactive flow regime upstream of the edge. The origin shift condenses these two degrees
of freedom into the phase shift φ (0 ⩽ φ < 2π) of the harmonic modulation in (4.13).
Investigated extensively by Bowles & Smith (1992) for G = 0 (in terms of a capillarity-
dominated limit, see figure 6 therein), in this case the curvature of the surface, expressed
through −A′′(X), induces a pressure response of opposite sign such that the flow becomes
increasingly oscillatory in the downstream direction. Those authors found that eventually
separation occurs, which has the numerical marching scheme intrinsically terminate as the
wall friction becomes sufficiently negative. Unfortunately, the quite marked dependence
of their results on the spatial discretisation hampers their more conclusive discussion.
As being of relevance to what follows, however, see § 4.2.3, they concluded that P must
attain a finite negative plateau for Xs becoming large.
Initiated by (4.9), downstream marching is deemed to generate a regular behaviour of

Ψ and P as X → 0−. The absence of a further regularising interactive mechanism at play
on some reduced X-scale requires continuity of Ψ , P , H− at the edge; and in turn of A,
P̄ , H+ =H− −A and H ′′+ . The rationale predicting continuity of the regular expansion of
h̄′+ in § 3.3.3, accomplished by terms of O(ǫ6/7) in (4.6), predicts continuity of H ′+ too.
With Ψ0 ∶= Ψ(0, Z), (4.4) yields for X → 0−, as a counterpart to (3.26),

Ψ − Ψ0 ∼XΨ ′0R(Z) +O(X2), R(Z)∶=∫ Z

0

Ψ ′′′
0
(t) −P ′(0−)
Ψ ′2
0
(t) dt, A′(0−) = R(∞). (4.15)

However, the inevitable discontinuous drop of the edge shear rate from Λ(Γ )∶= ΨZZ(0−,0)
to zero and (4.4a,b) reinstate a Goldstein-type wake at the base of the LD, by analogy
with (3.30). This is smoothed though on the smaller scales reinvoking the NS region
envisaged in § 3.3.3, (I), where X = O(ǫ9/14). Matching p then requires P (0) = 0, even
for finite values of T , but not necessarily continuity of P ′ at X = 0. Since the full
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20 B. Scheichl, R. I. Bowles and G. Pasias

NS solution also accounts for the capillary pressure jump, we have τh− ≲ O(ǫ2) in that
regime (irrespective of the static contact angle). For

ǫ9/14 ≪X ≪min(T 3/8,1) (4.16)

one infers TH− ≲X8/3 by matching, as already absorbed by (4.8), and thus P ≲X2/3.
We thereby arrive at the sought supplementary, and sufficient, edge conditions

Ψ(0−, Z) = Ψ(0+, Z), H ′+(0−) =H ′+(0+), TH ′−(0) =H−(0) = P (0) = 0. (4.17)

With the use of (4.7) and H1 ∶= −A′(0−) =H ′+(0), thus integration of (4.8) finally yields

A(X) = A(0) −H1X + (2T − 1)/(T − 1)H−(X) − SGX2/2 (X ⩾ 0). (4.18)

4.2. Interaction problem: solutions for upstream flow

The very last of the requirements (4.17), P (0) = 0, specifies the role of the upstream
influence. It fixes the required value of Γ , Γ0 say, and, according to (4.11), γ0 so as to
achieve a pressure drop G from X = −∞. Its impact differs strongly in the two pivotal
cases depending on S as summarised above and resumed as follows, accompanied by a
thorough numerical investigation of (4.4) subject to (4.8) and (4.9) (of higher precision
than the related results put forward by Bowles & Smith 1992). This is also stimulated
by the demand for predicting most accurately the behaviour of the flow immediately
upstream of the edge as this feeds into the interactive portion of the free layer (X > 0). We
concentrate here on the plate region X < 0, leaving the solution for X > 0 for a separate
study. It is noteworthy that the solutions of free-interaction problems involving different
linear local interaction laws bear interesting resemblances to the peculiarities of the
present solutions discussed below: cf. Rothmayer (1989) in connection with the expansive
case and Rothmayer & Levine (1991) with the compressive one; cf. also Gajjar & Smith
(1983).

4.2.1. Solution strategy

Downstream integration was performed with the same method, routine and precision
as in § 3.3. To this end, (4.4a) together with (4.8) are formulated as a system of first-
order equations with respect to Xs. We prescribed the second of the conditions (4.4c)
at a sufficiently large maximum value of Z. A sufficiently small (and for T < 1 negative)
initial value P i, say, of the difference pressure P −G triggers the exponential departure,
where Xs takes on some correspondingly large negative value X i

s , say. Noting that (4.10)
implies −32/3/[µ1/3

Γ(1/3)] = Sµ2 and taking the explicit expression for P in (4.9) as real
gives in combination with (4.1) and (4.13) exp(µX i

s + iφ) = P i/(2Sµ2). Then the initial
kick for Ψ is readily calculated upon substitution of the exponential and integration.
Moreover, this representation of P i yields

X i
s = ln∣P i/(2µ2)∣/Reµ, φ = arg(P i/S) − 2 argµ −X i

s Imµ mod 2π (4.19)

to determine φ as a function of P i in the oscillatory case T > 1. Here implementing the
classical FLARE technique helped to stabilise downstream integration when it comes to
flow reversal.
The remaining details of the adopted discretisation differ in the two distinct cases and

are therefore specified below. The thereby obtained results are not significantly altered by
any substantial refinement, as became evident through rather elaborate numerical tests.
Consequently, those were accepted as essentially resolution-independent and sufficiently
accurate. The solution is considered on consecutive Xs-steps of 0.05.
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Figure 6: Case T < 1; (a) Σ (solid), G−P (dashed), A (dot-dashed) vs. Xs; (b) −∆X
calculated from (4.14) vs. ∆X by extrapolation: data points for Σ (◻), G−P (◯), A (△)
connected by straight lines (dotted), equality of the two forms for ∆X (solid).

4.2.2. Canonical expansive case: T < 1
As outlined before, in this gravity-dominated case only the expansive branching (4.9)

enables the local acceleration of the flow towards the edge required by P = 0 there.
According to (4.13), this together with Γ0 is found by a single numerical downstream
sweep over Xs > −∞. It yields P −G < 0 as a strictly monotonically decreasing function
of Xs solely. In turn, the terminal value of Xs indicating the plate edge (X = 0) and, by
(4.12), Γ0 are strictly monotonically increasing functions of G. We then write Γ0(G) with
Γ0(0) = 0, tied in with the trivial solution Ψ −Z ≡ P ≡H+ ≡ 0, and expect some maxi-
mum value Γ0(∞) = exp(µXt

s ) where the position of the intrinsic expansive breakdown
described by (4.14) has approached X = 0 from above. Only values of Γ0 less than this
prove meaningful within the framework of the current theory.
It proved sufficient to choose max(Z) = 10 and an initial uniform step size in the Z-

direction of 0.05. With the satisfactorily small value 10−4 of −P i, substituting (3.24) into
(4.19) yields X i

s = ln[−P i/(2µ2)]/µ ≃ −10.7960. The key results are displayed in figure 6.
By (4.12), only the portions of the plots left of Xs < lnΓ0/µ, where P = 0, are relevant and
thus fix Γ0 for a given value of G. The near-collapse of the data in figure 6 (b) supports
the numerical attainment of (4.14) with highly satisfactory accuracy. Linear interpolation
(by a least-squares fit) of a few last reliable data points allows for their extrapolation.
This yields estimates for the difference between the very last reliable value of Xs ≃ 2.1765
and Xt

s : 0.5973 (Σ) 0.6085 (G−P ) 0.6057 (A). Adopting their arithmetic mean ≃ 0.6038
gives Xt

s ≃ 2.008 as our most confident estimate and Γ0(∞) ≃ 6.06 with some reservation,
in view of the obvious numerical uncertainties.

4.2.3. An example case of stationary capillary waves: T > 1
In this capillarity-controlled case, the aforementioned initial pressure kick is associated

with a potentially non-zero argΓ0 = argγ0 according to (4.11). The determination of the
appropriate value of this phase poses a still-open question as so far neither answered by
the analysis of the small-amplitude precursor waves over their longitudinal adjustment
length of O(1) (cf. § 3.2.2) nor, on the other hand, fixed by the upstream influence on
the nonlinear regime, provided by the edge condition P (0) = 0. For both the pressure
kick P i and the phase shift φ prescribed, here (4.9), (4.10), and (4.13) yield the actual
value ofX i

s as the most negative root of exp(X i
sReµ) cos(X i

s Imµ + π/7 + φ) = −P i/(2∣µ∣2).
Accordingly, for a given argΓ0, ∣Γ0∣ is, in principle and in contrast to the strictly
monotonic case T < 1, expected to be fixed by an iterative procedure. Its three basic
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22 B. Scheichl, R. I. Bowles and G. Pasias

steps are as follows. For some educated guess of ∣Γ0∣ and hence of φ, compute an estimate
for X i

s ; solve the marching problem; apply the edge condition to the so-obtained values
of P −G to find an updated estimate for ∣Γ0∣ via (4.12).

Given our, for the time being, incomplete understanding of which effect determines
argΓ0, we used (4.19) to showcase satisfactorily accurate results, which exemplify the
essential qualitative traits of the solutions: figure 7. The onset of the oscillations far
upstream requires a much smaller value of −P i than for T < 1 to achieve their satisfactory
mesh-independence. Hence, we chose P i = −10−5 so that (4.19) yields X i

s ≃ −60.0498 and,
with arg(P i/S) = −π, φ ≃ −2.4444. Further, preliminary, numerical evidence demonstrates
a strong quantitative but comparatively weak qualitative dependence of the solution on
φ insofar as this is reproduced well in the nonlinear interactive regime. This illustrates
the oscillation of the flow quantities increasing in streamwise direction, finally leading to
a closed separation bubble and massive re-separation. However, the flow does not recover
from the latter but forms the already mentioned negative plateau of the excess pressure
P −G. The computations then inevitably terminate (here at Xs ≃ 11.50), however, as
A ∼ (P −G)X2

s/2 with Xs becoming arbitrarily large in this regime. Expectations are high
that a, numerically costly, mapping of Z (and X) onto finite computational domains
promote further advancement with required accuracy into the grossly separated flow
in a future study. To deal with separation here, an initially non-uniform grid, with a
densification proportional to Z2 as Z becomes sufficiently small, was adopted. The regular
behaviour Ψ ∼ ΣZ2/2 +P ′Z3/6 +O(Σ2Z5) (Z ≪ 1) stays intact where Σ changes sign.

In order to cope with the unbounded decrease of A and the attainment of the terminal
reverse-flow region in the LD, the choice max(Z) = 80 proved sufficient to generate an
essentially discretisation-independent solution. The associated far-field structure of the
LD has not been considered in detail so far as the second separation is merely considered
for the sake of completeness in the present study: potential values of Xs determining the
plate edge via (4.12) not only require P = 0 but simultaneously unseparated flow there
(we have tacitly stipulated Λ > 0 above). By these requirements, multi-valued results
ensue, potentially existing only for a restricted range of values of G (cf. figure 7a). As a
most exciting feature, however, this implies the possibility of pre-separation upstream of
the edge.

The possibility of describing reattachment by a free-interaction problem deserves some
additional discussion; all the more, as here the final word has not been spoken yet. As
long as the weak ellipticity is introduced by a local and linear interaction law, a feed-
forward process decreases the wall shear further. In addition, marching downstream is
typically terminated (by an intrinsic ill-posedness and instantaneous branching) once
the wall shear rate exceeds some sufficiently negative value. The associated sudden
generation of a family of eigensolutions of the locally linearised marching operator is
usually interpreted as an insurmountable upstream influence, commonly suppressed by
a proper truncation of the inertia terms in numerical upwind schemes, as we have
adopted here. Noteworthy exceptions reported are local interactions laws nonlinear in
P that allow for a non-trivial saturation far downstream. Here the asymptotically weak
hydraulic jump in an underdeveloped single-layer flow, hence described by transcritical
tripe-deck interaction (Kluwick et al. 2010), represents the pioneering and, in the present
context, most prominent such example. Avoiding spurious reattachment is definitely of
importance as the oscillations in P subject to P (0) = 0 entail a complex non-uniqueness
in the determination of Γ0.

Page 22 of 28



Developed liquid film past a trailing edge 23

 5  10  12
−5

 5

 4

 3

 2

 1

 0

−0.35
−25 −20 −15 −10 −5  0

 1.5

 1

 0

−1

−2

−3

−4

 5.5(a)

Xs

0.1

10

5

1

20

30

40

50

0

0

0

20

70

60

50

40

30

−1.25

−1

−0.1

−0.01

−0.05

0−0.01

−0.25

−0.5

−0.75

−0.05

0

−0.065

−0.065

 10  11.5 8 6 4 2 0−4 −2−6
 0

 2

 4

 6

 8

 10(b)

Xs

Z

 4

 3.5

 2.5

 2

 1.5

 1

 0.5

 0−0.1
 0

 0.2  0.4  1.4 0.6  1 0.8

(c)

ΨZ

Z

 45

 40

 30

 20

 15

 25

 10

 5

 0.5  1
 0

 1.5  2 0−0.23  3

(d)

ΨZ

Z

Figure 7: Case T > 1 “kicked” by (4.19); (a) Σ (solid), P −G (dashed), A (dot-
dashed) vs. Xs; (b) streamlines with Ψ -values (B-spline approximation of computed data
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4.3. Effect of capillarity downstream of the edge

A digression on the impact of surface tension, resorting to (4.16), finalises the present
study of the interactive flow.

4.3.1. Weak surface tension

By (4.18), H+ = −A(0) +H1X −GX2/2 characterises the singular case T = 0 of
a non-interactive downstream part of the problem (P = 0). Here the replacements[x, z, λ, ψ̄, h̄]↦ [X,Z,Λ,Ψ,H] (subscripts and the accordingly altered value of aG
omitted) recover (3.30), (3.32), (3.33) and thus the aforementioned Goldstein-type
“near-near” wake; note (4.3). Far downstream, (4.4) reproduces the near wake in § 3.3.3:[Ψ,A] ∼ [X2/3f(ζ), aGX1/3], here ζ = Z/X1/3. Their collapse in the trivial caseG = T = 0,
thus Ψ −Z = P = 0 (X ⩽ 0), H+ ≡ 0, and finally A = aGX1/3 θ(X) ≡H− confirms the flow
structure outlined in § 3.3.3, (I). Inspection of (4.18) and (3.33) and also P̄ in (4.7)
for T > 0 and (3.34) indicates the overlap of the interactive and the non-interactive
flow regimes, with the downfall parabola predominating in the expressions for h±(x) as
G = O(1); see (3.25). These considerations complete the theory for T ≲ ǫ12/7, where the
NS region covers the intermediate domain (4.16).

4.4. Sufficiently strong surface tension: new near-near wake

For T ≫ ǫ12/7, (4.4a,b) with Ψ0 ∼ Λ(Γ )Z2/2 +P ′(0−)Z3/3 +O(Z5) (Z → 0) induce a
novel near-near Goldstein-type wake in the regime (4.16), driven by the capillary pressure
gradient:

[Ψ/Λ1/3, P /Λ4/3] ∼X2/3[FG(ξ), ω/2]+O(X), ξ ∶= Z(Λ/X)1/3 = O(1), (4.20)

F ′2G − 2FGF
′′
G = −ω + 3F ′′′G , F (0) = F ′(0) = 0, F ′′(∞) = 1. (4.21)

The eigenvalue ω is chosen such that F ′G ∼ ξ +TST (ξ →∞) and thus Ψ − Ψ0 = o(X1/3)
in that limit since (4.17) and (4.6) imply H ′−(0) = 0 and continuity of A′ for T > 0. An
investigation of (4.21) shows that this is indeed achieved for a unique value of ω ≠ 0; the
numerically found ω ≃ 1.2267 means an initially adverse pressure gradient. The plot in
figure 5 (b) compares the so obtained FG with Goldstein’s original function fG. Again,
the P -disturbance of O(X) in (4.20) is adjusted such that the displacement exerted by
the respective Ψ -perturbation (matching Ψ0 −ΛZ2/2) avoids a displacement term leading
to A = O(X2/3). Then
Ψ − Ψ0 ∼ Λ4/3ω

2
X2/3 Ψ ′0∫ ∞

Z

dt

Ψ ′2
0
(t) +O(X), H− ∼

9Λ4/3ω

80

∣T − 1∣
T

X8/3 +O(X3) (4.22)

on account of (4.4) and (4.8).
Interestingly, both P and H− are found positive immediately downstream of the edge.

For 0 <X = O(T 3/8) and T ≪ 1, (4.4a,b) are fully restored in a subregion according to the
affine transformation [X,Z,Ψ,P ]↦ [T 3/8X,T 1/8Z,T 1/4Ψ,T 1/4P ]. This limit provides
the transition to the near-near wake considered for T = 0 above.

5. Further outlook: route to choking and beyond

So far, we have highlighted the significance of streamline curvature in an higher-
order analysis beyond the classical shallow-water formulation of developed liquid layers,
especially in their passage of an abrupt trailing edge of the guiding horizontal plate under
the presence of vertical gravitational acceleration. As a definite novelty in the theory of
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free interaction in other physical situations, we have dealt with due care with its linear
precursor in § 3.2.2. Amongst other things, this predicts the onset of capillary waves.
The local results presented in § 4.1 and § 4.4 aid in obtaining the portion of the numer-

ical solution of the interaction problem for X > 0 by downstream marching. According
to (4.8), this is parametrised by T and G where the latter only affects the flow history
condensed into the initial condition provided for X = 0. This topic is currently under con-
sideration, where specific emphasis is laid on the yet unclear determination of argΓ0 for
T > 1 and the subtleties emerging for T ≪ 1, both indicated above. The follow-up study
mentioned in § 1 covers an elaborate discussion of the full solutions of the interaction
problem, hence alongside with our ongoing analytical effort put into the appealing and
promising extension of the theory for g ≫ ǫ4/7. Let us delineate a systematic reduction
of the Froude number in brief by the following stages of different limits, becoming
progressively more intricate and scrutinised individually in our subsequent work.
g ≪ ǫ2/7∶ Immediately upstream of the edge, the expansive finite-X singularity (Smith

1977) predicts A = O(G1/2), G−P = O(G) for 0 >X = O(G−1/4), according to (4.14).
However, this indicates incompleteness of the current theory, where the flow is con-
trolled at the trailing edge by an interaction between streamline curvature and viscous
displacement but not hydrostatic pressure variations, for much larger values of g.
g = O(ǫ2/7)∶ The only weak hydrostatic pressure correction −ǫ2/4GA, currently captured

by the terms of O(ǫ6/7) in (4.6), replaces the constant G in (4.8). This reveals the
classical interaction law for the now joint interactive effect of streamline curvature and
gravity studied by Bowles & Smith (1992) and thus typically requires g to measure the
LD thickness and g3 the streamwise interaction length. The above singularity is again
avoided as (4.8) is now restored for X = O(ǫ1/14) or x = O(ǫ13/14) upstream of the edge
so as to enable the pressure drop required by (4.17).
1≫ g ≫ ǫ2/7∶ The neglect of streamline curvature, i.e. of the A′′-term in (4.8), involves

the purely hydrostatic or hypersonic interaction law (cf. Bowles & Smith 1992). It entails
a version of the finite-X singularity as imposed by Higuera (1994), and already mentioned
in § 1, to close the shallow-water equations for g = O(1). This is in contrast to the
alternative form put forward by Brown, Stewartson & Williams (1976). Anticipating
cross-flow effects further downstream, this is also tied in with locally choked or critical
flow. Just upstream of the edge, a new interaction law dominated by both streamline
curvature and gravity holds on an newly arising short length scale. It accounts for a
weakly resonant flow under transcritical conditions, similar to that found by Kluwick
et al. (2010). Accordingly, gravity waves (hitherto having a wave speed of O(1), according
to Brotherthon-Ratcliffe & Smith 1989, they are much faster than the capillary ones) are
expected to be observed first in this short-range regime. Most important, this interactive
limit gives way to a Rayleigh stage around the edge, required to transform the attached
layer into a downfall.
g = O(1)∶ The Rayleigh stage has become a full Euler stage; that new type of interaction

applies immediately upstream of it; hence a shallow-water region, characterised by choked
flow at its downstream end according to Higuera’s theory, emerges further upstream
where x = O(1). (It is noteworthy that Gajjar & Smith 1983 arrived at this shallow-
water limit for developed flow at a Froude number of O(1) in a related situation, namely,
by reducing the Reynolds number in their study of gravity-induced, localised triple-
deck-type interaction.) This scenario finally completes the theory of a developed layer
passing the trailing plate edge in the spirit of the introductory outline (§ 1); see also the
preliminary overview by Scheichl & Bowles (2017).
As mentioned earlier, the assumption of a fully developed (i.e. Watson’s) flow along the

plate does not restrict the generality of the analysis substantially, given general solutions
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of the shallow-water problem for developed flow. Such would refer to an accordingly
shortened distance from jet impingement to the trailing edge of the plate. Another
most attractive, albeit straightforward, relaxation concerns the axisymmetric flow over a
(rotating) plate (cf. Scheichl & Kluwick 2017). The flow through the orifice of a nozzle,
upstream of it modelled by a planar or axisymmetric fully developed (i.e. Poiseuille) flow,
provides a further important application and sensible continuation of the present theory.
In this context, the recent asymptotic analysis by Khayat (2016) specified for a wall-slip
rheology deserves recognition. Also, a yet lacking experimental confirmation, to a viable
extent, of the flow structure seems desired, specifically of the localised capillary waves,
possibly tied in with pre-separation, as the most intriguing phenomenon.
Finally, considering a developed turbulent time-mean layer upstream of the edge

provides an important extension. Here the classical structure of the time-mean flow in
the high-Reynolds-number limit yields a linearisation of the inertia terms in the shallow-
water approximation of (2.2a) across most of the layer, due to the small velocity deficit
with respect to the potential-flow limit. This provides a striking difference to the present
situation, and substantial research in this direction has not been undertaken yet.

Financial support from the Austrian Research Promotion Agency (FWF, grant no.:
84109, COMET K2 program: XTribology) and from a UCL Mathematics Teaching
Assistantship is gratefully acknowledged. The authors express their thanks to the referees
for their fruitful comments.

Appendix. Strong impact of gravity on irregular perturbations

Inspection of (3.20a) for −1 < x < 0 shows that following the considered real branch of
I in downstream direction might terminate at a turning point, indicated by x = xt where
7I = 6Gǫ(1 + xt)3. Hence, xt satisfies

(66/77)G7

ǫ(1 + xt)21 = T (1 + xt) − 1 = T (xt − xT ). (A 1)

Since xt − xT must be positive, there is no turning point for T < 1 under the constraint
xt < 0; cf. figure 8 (a): I(x) undergoes a minimum for any Gǫ > 0. For T > 1, inspection of
(A 1) then reveals termination of the real branch in a turning point having xt ⩾ xT > −1,
with xt equal to xT for Gǫ = 0 and lying quite close otherwise. The variation of xt in
dependence of Gǫ and T is discussed conveniently if (A 1) is brought into normalised
form, see figure 8 (b):

Ǧ7(1 + x̌/20)21 = (21/20)21x̌, (A 2a)

x̌ ∶= 20T (xt − xT ), Ǧ ∶= Gǫ

Gt
ǫ

, Gt
ǫ ∶= CT 3, C ∶= (77 2020

66 2121
)1/7≃ 0.8486. (A 2b)

The so obtained function x̌(Ǧ) has a turning point at Ǧ = x̌ = 1, i.e. for xt = 21/(20T )− 1.
Hence, a breakdown of the real branch (having I → 1− as x→ −1+) at some x = xt < 0,
see (A 1), and downstream of the virtual origin occurs exactly under the restrictions

Gǫ { < 7(T − 1)1/7/66/7 (21/20 ⩾ T > 1),
⩽ Gt

ǫ (21/20 < T < ∞). (A 3)

The complex continuation of that branch for x > xt where Im I branches from zero renders
(3.20a) a dispersion relation governing the stationary capillarity-driven undulations.
These replace the strictly monotonic increase of γ downstream of x = xt and highlight
the physical significance of the parametric range specified by (A3) and (A 2b).
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Figure 9: Re Ī (solid, left ordinates) and Im Ī (dashed, right ordinates) as given by (A 4);
(a) vs. x̄; (b) vs. Ĝ.

Under the present assumption Gǫ → 0, that turning point is transformed into
a sevenfold zero with respect to I of (3.20a). On the other hand, for Gǫ > 0 and
x − xT → 0+, (3.20a) predicts the emergence three pairs of conjugate-complex branches
where Re(I6) < 0. Since none of those allows for setting Reσ > 0, all associated
perturbations generated at x = xT decay instantaneously according to (3.18), and
we are left with the complex continuation of the real branch envisaged so far. Two
canonical local representations of (3.20a), the second only valid for x ⩾ xT , illustrate the
nearing coincidence xt ∼ xT adequately:

Ī7 − Ī6 ∼ −x̄, Ī ∶= I T 3/Gǫ, x̄ ∶= (x − xT )T 22/G7

ǫ , (A 4a)

Î7 − ĜÎ6 ∼ −1, Î ∶= I[T (x − xT )]1/7, Ĝ ∶= Gǫ/[T 4(x − xT )]. (A 4b)

Their relevant branches are visualised in figure 9, where the singular points indicate the
turning point. It emerges for (x̄, Ī) = (66/77, 6/7), i.e. downstream of the capillary thresh-
old, or (Ĝ, Î) = (61/7 + 6−6/7, 61/7). That is, the above real branch is recovered for smaller
(larger) values of x̄ (Ĝ). We have Î → exp(iπ/7) (Ĝ→ 0), accordingly Ī ∼ x̄ exp(iπ/7)
(x̄ →∞), and Î ∼ Ĝ − Ĝ−6 (Ĝ→∞). Only the principal seventh root assures the at-
tainment of ∣argσ∣ < π downstream of the short region introduced by (A4a). Let us
redefine σ ∶= exp[−i arg(Ī3)] there. Then the inner limit (A 4) describes the continuous
transformation of the real branch into a complex one together with that of (3.19) into
(3.23). By (3.20b), the integral in (3.18) is of O(ǫ−6/7), where the rapid variation near the
turning point (A 4a) provides a local contribution only of O(G4

ǫ) relative to the latter.
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For Gǫ > 0, we typically find I ∼ √D(xt − x) with D denoting some positive function
of Gǫ and T , as shown canonically through (A4a) and figure 9 (a). Admittedly, the
regularisation of this singularity, and the associated one of γ/γ0, remains unsettled in the
current study. Let us note that it leads to a Rayleigh stage in the core of the layer, to be
envisaged in the forthcoming investigation focussing on much smaller Froude numbers. If
Gǫ becomes arbitrarily small, which points to the most relevant case in the present study,
even the non-smooth but continuous modification of σ during the passage of x across
x = xt provided by (A4) fails through the collapse of xt and xT . Then the singularity in
the integrand of Ω in (3.24) replaces the above one.
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