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Summary

A computationally efficient framework is presented for modification of sto-

chastic ground motion models to establish compatibility with the seismic

hazard for specific seismicity scenarios and a given structure/site. The modifi-

cation pertains to the probabilistic predictive models that relate the parameters

of the ground motion model to seismicity/site characteristics. These predictive

models are defined through a mean prediction and an associated variance, and

both these properties are modified in the proposed framework. For a given

seismicity scenario, defined for example by the moment magnitude and

source‐to‐site distance, the conditional hazard is described through the mean

and the dispersion of some structure‐specific intensity measure(s). Therefore,

for both the predictive models and the seismic hazard, a probabilistic descrip-

tion is considered, extending previous work of the authors that had examined

description only through mean value characteristics. The proposed modifica-

tion is defined as a bi‐objective optimization. The first objective corresponds

to comparison for a chosen seismicity scenario between the target hazard

and the predictions established through the stochastic ground motion model.

The second objective corresponds to comparison of the modified predictive

relationships to the pre‐existing ones that were developed considering regional

data, and guarantees that the resultant ground motions will have features com-

patible with observed trends. The relative entropy is adopted to quantify both

objectives, and a computational framework relying on kriging surrogate model-

ing is established for an efficient optimization. Computational discussions

focus on the estimation of the various statistics of the stochastic ground motion

model output needed for the entropy calculation.
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1 | INTRODUCTION

The relevance of techniques that model acceleration time‐series of seismic events has increased during the past decades
due to the growing popularity of simulation‐based probabilistic seismic risk assessment1-3 and performance‐based
earthquake engineering.4-6 Though the most popular methodology for performing this task is the selection of real (ie,
recorded from past events) ground motions,7-10 potentially scaled based on a target intensity measure (IM), an alterna-
tive philosophy is the use of simulated ground motions.11,12 A specific modeling approach for the latter which has been
steadily gaining increasing attention by the structural engineering community,13-15 is the use of stochastic ground
motion models.16-22 These models are based on a parametric description of the spectral and temporal characteristics
of the excitation, with synthetic time‐histories obtained by filtering a stochastic sequence through the resultant fre-
quency and time domain modulating functions. The parameters involved in this description are related to seismicity
(for example moment magnitude and rupture distance) and site characteristics (for example shear wave velocity for soil
profile) through predictive models/relationships.16,20 Sample ground motions for a specific seismicity scenario and site
can be generated by determining the parameters of the stochastic ground motion model through these predictive rela-
tionships and by utilizing a sample stochastic sequence. This approach may ultimately support a comprehensive
description of the seismic hazard,6,23 and its essential component is the predictive models relating seismicity/site char-
acteristics to ground motion model parameters.

The two main methodologies for establishing such stochastic ground motion models are record‐based and physics‐
based approaches. Record‐based models (also known as site‐based) are developed by fitting a preselected “waveform” to
a suite of recorded regional ground motions. Regression analysis is used for establishing the predictive models, which
leads to a probabilistic characterization described by mean predictions along with an associated variability.16,19 On
the other hand, stochastic physics‐based models rely on physical modeling of the rupture and wave propagation mech-
anisms.20,21 The predictive relationships in this case are typically described by deterministic models that represent the
underlying mean physical properties, though approaches exist for addressing variability in these properties.13,24 Empha-
sis in this study will be on record‐based models, though the techniques discussed can be extended to any type of
stochastic ground motion model, with the assumption that the corresponding predictive models are characterized by
both a mean prediction and an associated variance.

An important concern related to the use of stochastic ground motion models for structural engineering applications is
the fact that through current approaches in selecting their predictive models, compatibility to the seismic hazard for spe-
cific structures and sites is not necessarily obtained. This hazard is typically characterized through a Probabilistic Seismic
Hazard Analysis,25 for example through de‐aggregation that identifies the seismicity scenarios, described through relevant
seismicity characteristics, mainly the moment magnitude and rupture distance, that have the largest contribution to the
hazard for a specific structure. Essential part of Probabilistic Seismic Hazard Analysis are ground motion prediction equa-
tions (GMPEs). GMPEs provide predictions, as function of seismicity characteristics, for both the median and the disper-
sion of IMs, determining ultimately the conditional hazard for seismic events corresponding to these characteristics.

Recognizing the importance of matching stochastic ground motion models to some target IM the modification of the
predictive relationships for accommodating such a match was recently examined.26,27 This was posed as an optimization
problem with objective to minimize the discrepancy between the median predictions of the ground motion model and the
spectral acceleration estimates of GMPEs for different period ranges (or, more broadly, a range of target IMs). Appropriate
constraints were set in this optimization to preserve desired ground motion physical characteristics, so that unrealistic
time‐histories are not obtained. This formulation was first introduced in Scherbaum et al,26 with Vetter et al27 offering
a computationally efficient approach for performing the associated optimization, leveraging surrogate modeling principles.
Recent work by the authors28 extended this framework by addressing a critical shortcoming, the fact that physical descrip-
tors of the resulting acceleration time‐series were incorporated in the optimization merely as constraints, something that
required significant experience in ground motion characterization for proper definition of the optimization problem. The
shortcoming was addressed28 by introducing a bi‐objective optimization problem, transforming the aforementioned
constraint for the physical characteristics of the resultant ground acceleration time‐series to an explicit objective. The pro-
posed tuning was performed for specific seismicity scenarios and identified the ground motion model that achieves the
minimum modification of the existing predictive relationships that will yield the desired compatibility with the target IM.

All the aforementioned studies focused, however, on the mean model characteristics and associated hazard. Optimi-
zation utilized only the mean of the predictive relationships of the stochastic ground motion model, whereas, more
importantly, match only to a target IM vector (taken to represent the mean hazard) was investigated, ignoring any
variability in the IM predictions. The latter is an important constraint because for seismic risk assessment applications
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hazard compatibility is expressed in terms of both the mean and dispersion of the target IMs.25 From a practical stand-
point, capturing the actual variability of target IMs is essential to capture extreme structural response values and, there-
fore, in properly assessing the likelihood of consequences due to such extreme seismic demand values.

The current study extends approach28 to (1) match the prescribed conditional hazard (not simply mean IMs) for a
specific site and structure (or range of structures) while (2) preserving desired trends and correlations in the physical
characteristics of the resultant ground acceleration time‐series, including consideration of the variability of these
characteristics. This is again formulated as a bi‐objective optimization problem. The first objective is to minimize
the discrepancy between the statistics (mean and dispersion) of the outputs for a suite of acceleration time‐histories
obtained from the ground motion model and the target IM statistics for a given seismicity scenario. The second objec-
tive is to establish the smallest deviation from the model characteristics suggested by existing predictive models, exam-
ining both the mean and the variance of the model parameters. Both objectives are expressed as comparison between
probability distributions, and the relative entropy is adopted to quantify them. This setting creates a fundamental
difference to the previous study28 with respect to both the optimization characteristics (alter both mean and variance
of predictive models) as well as the goal (match to mean and dispersion for conditional hazard). In Tsioulou et al,28 the
ground motion model was tuned so that outputs from a single parametric description of the ground motion model
match a target IM vector for each seismicity scenario. The goal of the current study is to produce an ensemble of
ground motion models whose output statistics yield the desired compatibility with the hazard (IM mean and disper-
sion) for that scenario. For efficiently solving the multi‐objective optimization problem, a surrogate modeling approach
is adopted27,28 for approximating the desired IMs for specific values of the ground motion model parameters. Emphasis
is placed here on the efficient estimation of the response statistics for the modified ground motion model output,
leveraging Monte Carlo techniques. This requires further extension of the surrogate modeling framework, compared
with the approach adopted in Tsioulou et al,28 for facilitating this estimation. Different assumptions are also examined
for the evaluation of the entropy for the first objective. The corresponding bi‐objective optimization is finally solved
using a random search approach. The novelty of the current work stems from both the fundamentally different theo-
retical framework for formulating the stochastic ground motion modification as well as the computational advances
required for efficiently calculating the response statistics for the first objective and performing the associated
optimization.

In the next section, the general problem of developing simulated ground motions compatible with target IM distri-
butions is defined, and then specific aspects of the framework are discussed in detail.
2 | PROBLEM FORMULATION

2.1 | Preliminaries and baseline predictive relationships formulation

The foundation of the problem formulation is the same as in Tsioulou et al.28 A stochastic ground motion model is con-
sidered that provides acceleration time‐histories €a tjθ;wð Þ by modulating a discretized Gaussian white‐noise sequence,
w, through appropriate time/frequency functions that are parameterized through the nθ‐dimensional model parameter
vector θ ¼ θ1 θ2 … θnθ½ �∈ℜnθ . θ completely defines the parametric description of the model, ie, along with w facilitates
the generation of a time‐history €a tjθ;wð Þ, and is typically composed of various excitation properties such as Arias inten-
sity, strong ground motion duration, or parameters related to frequency characteristics of the ground motion. It should
be noted that θ corresponds typically to a low‐dimensional vector and w to a high‐dimensional sequence.

Predictive models/relationships are utilized to relate θ to seismicity and local site characteristics, such as the fault
type F, the moment magnitude, M, the rupture distance, R, and the shear wave velocity in the upper 30 m of soil,
Vs30.

16,20 The vector of these characteristics is denoted as z. For record‐based models, the standard approach for devel-
opment of these predictive relationships16,29 relies on first matching the waveform of recorded ground motions (ie, iden-
tify first θ for each of the recorded ground motions in a given database) and then carrying out a regression to relate θ to
z. Typically, this is performed by first transforming problem to the standard Gaussian space through a nonlinear
mapping for each component θi.

16 The transformed Gaussian vector is denoted v. Approach ultimately leads to a Gauss-
ian probability model v~N(μr(z),Σr) with mean μr(z) and covariance matrix Σr. Note that the latter is independent of z.
The notation N(a, b) stands for Normal distribution with mean a and covariance b whereas notation c~d stands for ran-
dom variable c following distribution d. The resultant probability model for θ is denoted p(θ|μr(z),Σr) and determines
the predictive model for the ground motion model parameters. Note that a similar description can be readily established
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for physics‐based models,28 with the uncertainty characterization stemming from an explicit treatment of the epistemic
uncertainties associated with the physics‐based formulation.13,24 The predictive model for θ will be denoted herein as
p(θ|μr(z),Σr), with the understanding that it is not necessarily constrained to models established through regression
analysis, rather simply can be parameterized by quantities μr(z) and Σr, with μr(z) representing the mean predictions,
and Σr the variability of these predictions.
2.2 | Modification of predictive models for hazard matching

As discussed in the introduction, the formulation of the predictive model for θ provides synthetic ground motions whose
statistics (mean and dispersion) of output IMs do not necessarily match the intended hazard for specific structures and
sites. For accommodating such a match, a modification of the existing predictive model for θ is proposed for specific
seismicity scenarios defined through z, with objective to get a suite of acceleration time‐series for that scenario whose
(1) mean and dispersion match a target IM mean and dispersion vectors, while (2) maintaining similarity to the predic-
tive relationships already established for the model. Equivalently, this can be viewed as identifying the updated proba-
bilistic model p(θ|μ,Σ) that is closest to the established model p(θ|μr(z),Σr) and also matches the intended conditional
hazard. μ and Σ represent the updated parametric description for the probability model of θ. In the context of record‐
based models, these correspond, respectively, to the mean vector and covariance matrix for v. The IM vector may
include different response quantities of interest,28 for example direct characteristics of the ground motion, such as peak
ground acceleration or elastic and inelastic spectral responses for different periods of a single degree of freedom oscil-
lator. The conditional hazard for most of these IMs may be described through a GMPE.30,31 Because the proposed mod-
ification refers to the conditional hazard, for simplifying terminology for the remainder of the paper, the description as
“conditional” will be removed: term hazard corresponds to conditional hazard.

To formalize these concepts mathematically, let, Yi(z); i = 1, . …ny denote the IMs of interest. The target hazard for
them is quantified through a probabilistic description, denoted by pt(ln(Yi)| z). As is common in earthquake engineering
and without loss of generality, the statistics are assumed here to be determined for the logarithm of the IM. To better
align approach with current GMPE standards a lognormal underlying model is assumed, leading to

ln Yi zð Þð ÞteN ln Yi zð Þ� �
; σ2i zð Þ� �

with ln Yi zð Þ� �
and σ2i zð Þ corresponding to the mean and variance, respectively, of

the logarithmic IM. Note, however, that the computational framework can support any probabilistic IM description
pt(ln(Yi)| z), not constrained to one provided by GMPEs or defined through a lognormal probabilistic model. Also, the
superscripts/subscripts t and g (the latter defined in the next paragraph) are used herein to distinguish between target
prediction and prediction facilitated through the stochastic ground motion model.

To quantify the hazard predictions through the stochastic ground motion model, letYg
i θ;wð Þ denote the estimate for

Yi established through this model for specific values of the model parameter vector θ and a specific white noise sequence
w (ie for a specific ground motion time‐history €a tjθ;wð Þ). Yg

i θ;wð Þ will be referenced herein as response output of the
ground motion model. The statistical characterization for ln(Yi) through the stochastic ground motion model for the
updated parametric description is denoted by pg(ln(Yi)|μ,Σ) and using the total probability theorem is equal to:

pg ln Yið Þjμ;Σð Þ ¼ ∫ ∫p ln Yg
ið Þjθ;w; μ;Σð Þp θ;wjμ;Σð Þdθdw ¼ ∫ ∫p ln Yg

ið Þjθ;wð Þp θjμ;Σð Þp wð Þdθdw (1)

where p(w) is the probability distribution for the stochastic sequence w, which by definition is independent of p(θ|μ,Σ).
In deriving the second equality in Equation 1 the fact that the stochastic ground motion model is completely defined by
pair θ, w was also used. This simplifies p ln Yg

ið Þjθ;w;μ;Σð Þ = p ln Yg
ið Þjθ;wð Þ because knowledge of μ and Σ is redun-

dant if θ is also known. Note that Yg
i is itself a random variable with randomness in its description stemming from both

w and θ. In this context, Yg
i θ;wð Þ may be viewed as a realization of the random variable.

Distribution pg(ln(Yi)|μ,Σ) can be approximated through kernel density estimation (KDE) as discussed in Appendix
A. To further simplify framework, the same hypothesis as for the hazard can be adopted, assuming a lognormal distri-

bution, leading to ln Yið ÞgeN ln Y
g
i μ;Σð Þ� �

; σgi μ;Σð Þð Þ2
� �

, where the mean and variance for ln(Yi)
g, considering the

variability in both the low‐dimensional θ and high‐dimensional w, are:

ln Y
g
i μ;Σð Þ� � ¼ E ln Yg

ið Þ½ � ¼ ∫ ∫ ln Yg
i θ;wð Þð Þp θjμ;Σð Þp wð Þdθdw (2)

σgi μ;Σð Þð Þ2 ¼ Var ln Yg
ið Þ½ � ¼ ∫ ∫ ln Yg

i θ;wð Þð Þ− ln Y
g
i μ;Σð Þ� �� �2

p θjμ;Σð Þp wð Þdθdw (3)
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with E[.], Var[.] denoting the expectation and variance operators, respectively. The functional dependence of the statis-
tics of ln (Yi(z))

g on μ and Σ is explicitly noted herein to facilitate an easier understanding of the ground motion model
modification framework. The log‐normal assumption will be primarily used for pg (ln(Yi)|μ,Σ), and its validity will be
examined in the illustrative example later by comparing to the KDE‐based estimation.

The hazard compatible modeling corresponds to modification of the probability model for θ, ultimately of the
parametric description defined through μ and Σ, and is formulated as multi‐objective optimization problem with two
competing objectives

μ;Σ½ �*¼ argmin Fp1 μ;Σjzð Þ;Fp2 μ;Σjzð Þ� 	
(4)

The first objective Fp1 corresponds to the weighted discrepancy of the target seismic hazard to the hazard predicted
through the ground motion model, ie, to a comparison between pg (ln(Yi(z)|μ(z),Σ) and pt (ln(Yi)| z). The relative
entropy, a popular measure to quantify differences between distributions,32 is utilized as metric for this discrepancy,
given by

D pg ln Yið Þjμ;Σð Þ‖pt ln Yið Þjzð Þ
h i

¼ ∫ℜ pg ln Yið Þjμ;Σð Þ log pg ln Yið Þjμ;Σð Þ
pt ln Yið Þjzð Þ


 �
d ln Yið Þ: (5)

This leads to definition of Fp1 as

Fp1 μ;Σjzð Þ ¼ 1

∑ny
i¼1γi

∑ny
i¼1γiD pg ln Yið Þjμ;Σð Þ‖pt ln Yið Þjzð Þ

h i
¼ 1

∑ny
i¼1γi

∑ny
i¼1γiD pg ln Yið Þjμ;Σð Þ‖N ln Yi zð Þ� �

; σ2
i zð Þ� �h i (6)

with γi corresponding to the weights prioritizing the match to different IM components (eg, spectral accelerations at
different structural periods). For the assumption of lognormal distribution for Yg

i , this simplifies to

Fp1 μ;Σjzð Þ ¼ 1

∑ny
i¼1γi

∑ny
i¼1γiD N ln Y

g
i μ;Σð Þ� �

; σgi μ;Σð Þð Þ2� �
‖N ln Yi zð Þ� �

; σ2i zð Þ� �� �
(7)

with closed‐form solution32:

D N ln Y
g
i μ;Σð Þ� �

; σgi μ;Σð Þð Þ2� �
‖N ln Yi zð Þ� �

; σ2i zð Þ� �� � ¼
ln Y

g
i μ;Σð Þ� �

− ln Yi zð Þ� �� �2
2σ2i zð Þ þ 1

2
σ g
i μ;Σð Þð Þ2
σ2i zð Þ − 1− ln

σgi μ;Σð Þð Þ2
σ2i zð Þ

 !" #
:

(8)

Objective Fp2 measures that discrepancy between the initial predictive model for θ, p(θ|μr(z),Σr), and the modified
one, p(θ|μ,Σ). The relative entropy is utilized again as measure to quantify differences:

Fp2 μ;Σjzð Þ ¼ D p θjμ;Σð Þ‖p θjμr zð Þ;Σrð Þ½ � ¼ ∫ℜnθp θjμ;Σð Þ log p θjμ;Σð Þ
p θjμr zð Þ;Σrð Þ

 �

dθ: (9)

Because the relative entropy is invariant under a coordinate transformation for θ,32 the comparison can be established
in the transformed Gaussian space, leading to

Fp2 μ;Σjzð Þ ¼ D N μ;Σð Þ‖N μr zð Þ;Σrð Þ½ � (10)

with the latter expression readily evaluated32 as

D N μ;Σð Þ‖N μr zð Þ;Σrð Þ½ � ¼ 1=2 tr ΣΣ−1
r

� �þ μr zð Þ−μð ÞTΣ−1
r μr zð Þ−μð Þ−nθ− ln det ΣΣ−1

r

� �� �h i
(11)

where tr[.] and det[.] stand for trace and determinant, respectively.
Objective Fp1 enforces hazard compatibility (mean and dispersion), whereas objective Fp2 guarantees compatibility

of the physical characteristics of the resultant ground motions with the regional trends observed in recorded ground
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motions. Solution of the multi‐objective optimization of Equation 4 ultimately leads to a Pareto set of dominant solu-
tions {(μp,Σp); p = 1, …,np} that expresses a different compromise between the competing objectives Fp1 and Fp2. A
solution is characterized as dominant (or Pareto optimal) and belongs in the Pareto set if there is no other solution
that simultaneously improves both objectives Fp1 and Fp2. The representation of the Pareto set in the performance
objective [Fp1,Fp2] space, {[Fp1(μp,Σp),Fp2(μp,Σp)]; p = 1, …,np} is termed as the Pareto front. Illustrations of such Pareto
fronts are included in the example discussed later. One can eventually select a model configuration from the identified
Pareto set that yields the desired hazard compatibility without deviating significantly from regional ground motion
characteristics. This will be further discussed in the illustrative implementation. Note that a Pareto set for optimiza-
tion of Equation 4 always exist apart from the extreme case that the original stochastic ground motion model provides
an exact match to the hazard, ie, Fp1(μr(z),Σr| z) = 0. In that case, the entire set corresponds to a single point
(μr(z),Σr).

Identifying the Pareto set is, however, challenging because the computational burden in evaluation of objective Fp1
is significant, requiring calculation of the multidimensional integrals of Equations 2 and 3 (or samples needed for the
KDE approximation discussed in Appendix A) which can be only performed numerically and entails hundreds esti-
mates of the response output of the ground motion model. To facilitate an efficient optimization that can be repeated
for any desired seismicity scenario z, a surrogate modeling (ie, metamodeling) approach is adopted, specifically selecting
kriging as metamodel due to its proven capability to approximate well even complex functions.33 As input for the
metamodel, the low‐dimensional vector θ is chosen. This choice corresponds to the smallest possible dimension for
the metamodel input, something that can greatly enhance accuracy,33 a very important consideration because
metamodel will be eventually used for optimization, and larger metamodel errors can lead to identification of subopti-
mal solutions. Alternative choices were to additionally include w in the metamodel input definition which is completely
impractical (due to high‐dimensionality of w), or to use directly pair {μ,Σ} as the metamodel inputs (and statistics of
Equations 2 and 3 as outputs) which significantly increases, however, the input dimension. Under this selection of θ
as metamodel input, the metamodel output corresponds to the response output statistics considering variability with
respect to w only (ie, conditional on θ statistics). Here, statistics refers to all quantities needed to eventually calculate
Fp1. The variability with respect to θ in quantifying the hazard (and ultimately objective Fp1) will be addressed through
the approach discussed in Section 4.

This creates a similar setting as in Tsioulou et al28 for the metamodel formulation, with the additional requirement,
however, to eventually incorporate variability stemming from θ in the overall framework, so that variability in both θ
and w is explicitly considered. The kriging metamodel development is briefly reviewed in the next section, and the
details of the kriging‐aided optimization problem are discussed in Section 4. A schematic of the overall optimization
approach is provided in Figure 1 on the next page.
3 | KRIGING METAMODEL DEVELOPMENT

As discussed in the previous section, θ is chosen as metamodel input. A modification of this input should be further
adopted if the relationship between some components of θ and the response output Yg

i θ;wð Þ is explicitly known. This
is true for stochastic ground motion models that include a scaling parameter, denoted θs herein, that directly controls
the amplitude of the excitation. For example, for the model that will be used in the illustrative example16 θs corresponds
to the Arias intensity. This means that Yg

i θ;wð Þ ¼ f θsð Þsi x;wð Þ with x corresponding to the remaining model param-
eters excluding θs, si(x,w) representing the output Yg

i θ;wð Þ for θs = 1 and f(θs) being a simple function of θs. Without

loss of generality, we will adopt here this assumption, ie, representation Yg
i θ;wð Þ ¼ ffiffiffiffi

θs
p

si x;wð Þ . The choice of square
root for function f(.) is made here simply to match the model used in the illustrative example. Numerical approach
discussed herein can accommodate any other function. This setting leads to modification of the metamodel input to
x, and, respectively, of metamodel output to the statistics of si(x,w) conditional on x. Once the latter statistics are
known the statistics for Yg

i θ;wð Þ conditional on θ can be easily obtained as will be shown in Section 4, because the rela-
tionship to the remaining component of vector θ, θs, is explicitly known. This modification ultimately reduces the
dimension of the metamodel input, which as discussed earlier facilitates improved accuracy. Note that similar to Yg

i ,
si is also a random variable with randomness in its description stemming from w and x.

The approximated statistics, the ones required for calculating Fp1, are the conditional on x mean and variance of
ln(si), given by
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ln si xð Þð Þ ¼ E ln sið Þjx½ � ¼ ∫ ln si x;wð Þð Þp wð Þdw (12)
σsi xð Þ� �2 ¼ Var ln sið Þjx½ � ¼ ∫ ln si x;wð Þð Þ− ln si xð Þð Þ½ �2p wð Þdw (13)

where independence of w from x was used in deriving the last equalities in both expressions. These statistics define the
metamodel output. It should be pointed out that this output is independent of the predictive relationships; rather is sim-
ply functions of x (reason for introducing the functional dependence on x notation). This is what contributes to the effi-
ciency of the approach: the surrogate model is established with respect to the low dimensional vector x and can be then
leveraged to evaluate the required statistics for different selections of the predictive models (ie, different μ and Σ) as
detailed in the next section.

For developing the metamodel, a database with n observations is initially obtained that provides information for the
x− ln si xð Þð Þ and x−σsi xð Þ input/output pairs. For this purpose, n samples for {x j, j = 1,…,n} also known as support points
or experiments are obtained over the domain of interest for x. This domain, denoted X, should encompass the antici-
pated range that the metamodel will be implemented in to avoid extrapolations, ie, domain covered by p(θ|μ,Σ), approx-
imated in this case as domain for p(θ|μr(z),Σr) (for further details for definition of X please refer to Tsioulou et al28). The
predictions provided through the ground motion model for each x j are then established through the following process:
(Step 1) generate nw sample acceleration time‐histories for different white‐noise sequences {wk, k = 1,…,nw} using θs =1
for all samples; (Step 2) for each sample evaluate the response outputs of interest {si(x

j,wk); i = 1,…,ny} using response‐
history analysis for spectral IMs; (Step 3) estimate the statistics (logarithmic mean and variance) over the sample‐set to

obtain ln si xj
� �� �

and σsi x
jð Þ.

Using this database, the surrogate model can be formulated following the approach presented in Tsioulou et al.28

Only difference is that output for metamodel also includes σsi xð Þ. The computationally intensive aspect of the
formulation is the development of the database which requires response‐history analysis. This needs to be performed,
though, only once. As soon as the metamodel is established using this database, it can predict ln si xð Þð Þ and σsi xð Þ for
any other x desired. Metamodel predictions can be also vectorized,34 something that will be leveraged in the numerical
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optimization discussed in the next section. The accuracy of the metamodel depends on the number of experiments n as
well as the exact selection of these experiments. Details for both these tasks, including a sequential, adaptive metamodel
formulation that gradually increases n, stopping when pre‐specified accuracy criteria are satisfied, are provided in
Tsioulou et al.28
4 | MULTI ‐OBJECTIVE OPTIMIZATION TO MATCH CONDITIONAL
HAZARD SUPPORTED BY KRIGING METAMODELING

4.1 | Calculation of statistics of interest

Evaluation of objective Fp1 boils down to estimation of Equations 2 and 3. Using representation Yg
i θ;wð Þ ¼ ffiffiffiffi

θs
p

si x;wð Þ,
this simplifies to

ln Y
g
i μ;Σð Þ� � ¼ E ln Yg

ið Þ½ � ¼ E ln
ffiffiffiffi
θs

p
si

� �h i
¼ E ln θsð Þ½ �=2þ E ln sið Þ½ � (14)

σgi μ;Σð Þð Þ2 ¼ Var ln
ffiffiffiffi
θs

p
si

� �h i
¼ Var ln θsð Þ½ �=4þ Var ln sið Þ½ � þ Cov ln θsð Þ; ln sið Þ½ � (15)

where Cov[a,b] stands for the covariance between random variables a and b. The statistics with respect to θs, that is the
mean E[ln(θs)] and variance Var[ln(θs)] can be readily calculated using the marginal distribution p(θs|μ,Σ). The statistics
that involve si may be calculated using the metamodel to approximate variability with respect to w. Using the laws of
total expectation and variance we have for these statistics

E ln sið Þ½ � ¼ E E ln sið Þjx½ �½ � ¼ E ln si xð Þð Þ½ � ¼ ∫ ln si xð Þð Þp xjμ;Σð Þdx (16)

Var ln sið Þ½ � ¼ E Var ln sið Þjx½ �½ � þ Var E ln sið Þjx½ �½ � ¼ E σsi xð Þ� �2h i
þ Var ln si xð Þð Þ½ �

¼ ∫ σsi xð Þ� �2
p xjμ;Σð Þdx þ ∫ ln si xð Þð Þ− E ln si xð Þð Þ½ �ð Þ2p xjμ;Σð Þdx

(17)

Cov ln θsð Þ; ln sið Þ½ � ¼ E ln θsð Þ ln sið Þ½ �− E ln θsð Þ½ �E ln sið Þ½ � ¼ E E ln θsð Þ ln sið Þjx½ �½ �− E ln θsð Þ½ �E ln sið Þ½ �
¼ E ln θsð ÞE ln sið Þjx½ �½ �− E ln θsð Þ½ �E ln sið Þ½ � ¼ E ln θsð Þ ln si xð Þð Þ½ �− E ln θsð Þ½ �E ln sið Þ½ �
¼ ∫ ln θsð Þ ln si xð Þð Þp θjμ;Σð Þdθ− E ln θsð Þ½ �E ln sið Þ½ �

(18)

where the expectation (integrals) with respect to x or θ have been explicitly expressed in all these equations. These inte-
grals address the variability stemming from the predictive relationships and need to be calculated through Monte Carlo
simulation (MCS). Rather than performing two different MCS: one for the integrals involved in the expectation E[ln(si)]
and variance Var[ln(si)], which require samples from the marginal distribution p(x|μ,Σ), and one for the covariance
Cov[ln(θs), ln(si)], which requires samples from joint distribution p(θ|μ,Σ), a single MCS is performed, utilizing a com-
mon set of samples for all these statistics. This leads to the following approximations for the quantities needed for
Equations 14 and 15

E ln sið Þ½ �≈ 1
Ns

∑Ns
j¼1 ln si x j

� �� �
(19)

Var ln sið Þ½ �≈ 1
Ns

∑Ns
j¼1 σsi x j

� �� �2 þ 1
Ns

∑Ns
j¼1 ln si x j

� �� �
− E ln sið Þ½ �� �2

(20)

Cov ln θsð Þ; ln sið Þ½ �≈ 1
Ns

∑Ns
j¼1 ln θ j

s

� �
ln si xj

� �� �
−E ln θsð Þ½ �E ln sið Þ½ � (21)
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where θ j
s ; x

j
� �

correspond to samples from p(θ|μ,Σ), Ns is the total number of samples used, and ln si xð Þð Þ and σsi xð Þ are
approximated through the kriging metamodel for each one of these samples. Utilizing vectorized manipulations for the
metamodel predictions, both these quantities can be calculated with very small computational effort, meaning that the
MCS‐based estimation of Equations 19 to 21 can be performed very efficiently. Further numerical details (computa-
tional times) are provided in the illustrative example.

For reducing the relative importance of the MCS estimation error within the multi‐objective problem of Equation 4,
common random numbers (CRN) are utilized.35 This is facilitated by getting first samples in the standard Gaussian
space (which is independent of μ and Σ) and then transforming them to the desired samples for θ. Approach is equiv-
alent to transforming integrals in Equations 16 to 18 to standard Gaussian space and for record‐based model is easily
performed, as these models typically entail16 a Gaussian predictive model for v. The CRN is implemented by using
the same sample set for the standard Gaussian samples across the entire optimization as also shown earlier in
Figure 1. Adoption of CRN creates a consistent estimation error in the MCS application for the different examined μ
and Σ values and therefore improves the optimization accuracy for identifying the correct Pareto front.35 In other words,
it allows use of smaller value for Ns because it reduces the relative importance of the MCS estimation error within the
optimization.
4.2 | Multi objective optimization

Calculation of statistics given by Equations 14 and 15, utilizing MCS estimates of Equations 19 to 21, facilitates an effi-
cient approximation for performance objective Fp1 given by Equation 8. If the lognormal assumption for the distribution
of Yg

i is not used, then Fp1 can be estimated through the approach discussed in Appendix A, leveraging again MCS prin-
ciples. Note that calculation of objective Fp2 is computationally trivial. Therefore, through the introduction of the
metamodel, an efficient estimation of both objectives involved in the optimization described by Equation 4 can be
established. It should be noted that in Tsioulou et al28 the explicit incorporation in the optimization of the metamodel
error was also considered, established through appropriate modification of the equivalent objective function Fp1. It was
shown, however, that this reduces computational efficiency and is not necessary if the underlying surrogate model has
high accuracy. As calculation of objective Fp1 requires Ns evaluations of the metamodel in a MCS setting (only 1 eval-
uation was needed in Tsioulou et al28) the inclusion of the metamodel error is not advocated here as the computational
burden is expected to be higher. Additionally, the benefits of explicitly including this error in the current formulation
are expected to be smaller because objective Fp1 represents a statistical quantity over θ. In evaluating the necessary sta-
tistic, the response, and therefore associated metamodel errors, over different θ values are averaged. Potential large
errors that may exist for specific θ values end up averaged with smaller errors from other θ's and therefore do not
impact Fp1 estimates as much as they would if these θ values were the only contribution to Fp1 (as was the case in
Tsioulou et al28).

For solving the resultant multi‐objective optimization, a variety of numerical approaches can be utilized.36 In
Tsioulou et al,28 two such approaches were examined, one gradient‐free and one gradient‐based, and preference was
ultimately given to the former because it can support higher robustness and computational efficiency for identifying
the entire Pareto front. This recommendation is adopted here, and a gradient‐free, random search approach is imple-
mented as follows. A large number of nbc candidate solutions for μ and Σ are generated that are close to μr(z) and
Σr. This is established by creating uniform random samples centered around μr(z) and Σr. The range for these samples
is chosen so that the value of Fp2 does not become excessively large, because the latter indicates significant departure of
the modified model from the initial one, which might produce ground motions with unrealistic characteristics. Because
estimation of Fp2 is simple, a pre‐screening can be implemented, rejecting any candidate solution with (large) value of
Fp2 over some desired threshold. Value close to 10 is appropriate for the latter threshold. This choice corresponds to
modification of the standard deviation up to 50% and modification of μ within hypersphere 5 standard deviations away
from μr(z). Once all nbc candidate solutions are obtained, objective functions Fp1 and Fp2 are calculated for each of them.
Estimation of objective Fp1 in this case leverages the computational efficiency of the metamodel in performing
vectorized predictions: the calculations are simultaneously performed for all nbc candidate solutions, or using subsets
with a lower number of members depending on the available computational resources (memory can be a problem
for vectorized operations depending on n and nbc

28). The dominant solutions representing the Pareto front can be then
readily identified by comparing the values for the two objectives over all candidate solutions. The only challenge is that
the value of nbc needs to be large in order to obtain an adequate representation of the Pareto front. Proper selection for
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nbs is examined in the illustrative example. Once the Pareto front has been identified, a solution (among the Pareto set)
can be adopted using any desired criterion. This will be further discussed in the illustrative implementation.
5 | ILLUSTRATIVE IMPLEMENTATION

The illustrative implementation considers the stochastic ground motion model developed by Rezaeian and Der
Kiureghian16 with model parameter vector including the arias intensity Ia, the significant duration D5–95, the time cor-
responding to 50% of the intensity tmid and the associated spectral frequency ωmid, the rate of change for that frequency
ω', and the damping ratio ζf for the excitation spectrum. The arias intensity simply scales the ground motion, so it cor-

responds to parameter θs in representation Yg
i θ;wð Þ ¼ ffiffiffiffi

θs
p

si x;wð Þ, with the 5 remaining parameters corresponding to
x. For the target hazard, GMPEs used in the Western US are selected here,37-40 whereas the suggestions in Kaklamanos
et al41 are adopted to estimate unknown inputs for some of the GMPEs. As target, IM predictions of the logarithmic
mean and variance from individual GMPEs as well as the average of their predictions are used. Note that the latter pro-
vides single target hazard for each structural period examined, simply that hazard is obtained by averaging information
from multiple GMPEs. All computations are performed in a quad‐core 3.0‐GHz Xeon processor with 16 Gb of RAM.
Fault and site characteristics are taken, respectively, as strike‐slip fault and shear wave velocity in upper 30 m of soil
Vs,30 = 800 m/s. For moment magnitude M and rupture distance R, different values will be examined. As IM for the
seismic hazard description, the peak pseudo‐acceleration (PSA) (Sa) for a single degree of freedom system with 5%
damping ratio is utilized. Different ranges of structural periods will be examined for Sa and, unless otherwise specified,
the objective function Fp1 is estimated as the weighted average of the entropies for each scalar IM as in Equation 7, with
the weights chosen as γi = 1, so that no specific structural period is prioritized.
5.1 | Details for metamodel development

For the characterization of domain X and the selection of the support points for the metamodel development, the same
approach as in Tsioulou et al28 is adopted, the only difference being that a larger domain is considered here with a
relative increase of 70% compared with Tsioulou et al.28 The reason for the latter is to support higher accuracy in the
MCS implementation: in Tsioulou et al28 evaluation only at the new (modified) predictive relationships was required
so proximity to the initial predictive relationships needed to account only for that modification, whereas here the
MCS estimation will need to utilize the metamodel predictions for parameters even further away from the modified
(and therefore from the initial) mean predictive relationships.

Logarithmic mean and variance for Sa for different periods, the ones used by the aforementioned GMPEs, is adopted
as the response output for the metamodel development whereas the white noise samples are chosen as nw= 100. Three
different accuracy criteria with associated coefficient of determination 0.92, 0.94, and 0.96 are selected for the adaptive
metamodel development.28 This leads to metamodels with 1500, 3000, and 4500 number of support points, respectively.
Note that the accuracy of the established metamodels is much higher for prediction of the logarithmic mean rather than
the logarithmic variance. For example, for the metamodel with 4500 support points the average coefficient of determi-
nation is 0.99 for the logarithmic mean and 0.94 for the logarithmic variance. This trend agrees with past studies42 that
have examined the use of metamodels in approximating seismic hazard when stochastic ground motion models are uti-
lized for the description of the latter. This should be also viewed as a positive attribute of the metamodel approximation
for the purposes of this study: the logarithmic mean has a higher importance towards the hazard description for the typ-
ical earthquake engineering applications that have logarithmic variance smaller than 1 (the scaling of difference of log-
arithmic means by 1/ σ2i zð Þ >1 in Equation 8 when estimating discrepancy form target also reveals this), which means
that a higher degree of confidence exists for properly approximating this hazard than the average coefficient of determi-
nation (averaged over both logarithmic mean and variance) indicates, because the accuracy for the more important
component (logarithmic mean) is higher.

Estimation of metamodel response for 10 000 samples requires 3.6, 7.5, and 10.7 seconds for the metamodels with
1500, 3000, and 4500 support points, respectively. Note that adoption of larger value of samples prohibits efficient
vectorization of operations for the n = 4500 points due to memory restrictions. Calculation of objective function Fp1
for Ns = 100 MCS samples requires 0.005, 0.10, and 0.16 seconds for the metamodels with 1500, 3000, and 4500 support
points, respectively. It should be stressed that, as advocated earlier, evaluation of the metamodel across multiple candi-
date solutions is simultaneously performed to better leverage the computational efficiency allotted by the vectorized
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metamodel evaluation. For example, for Ns = 100, 100 different candidate solutions are examined; this leads to a total of
100 × 100 = 10 000 samples for the metamodel evaluation, which avoids memory problems even for the metamodel
with 4500 support points.
5.2 | Validation of lognormal distribution assumption

First the validation of the lognormal assumption for the response output Yg
i distribution is examined. This is performed

separately for the response output from the exact stochastic ground motion model as well as for the metamodel approx-
imation. Distribution pg (ln(Yi)|μ,Σ) is approximated though KDE (Equation A1) as discussed in Appendix A using
ns = 1000 samples of Yg

i . Comparison is primarily expressed though objective Fp1 because this is the critical quantity
utilized in the proposed framework. The target hazard corresponds to the average of the aforementioned four GMPEs.
The predictive model proposed in Rezaeian and Der Kiureghian,16 referenced herein as unmodified model, is used for
defining μ and Σ, but comparison extends over a wide range of seismicity scenarios, M in range [6 8] and R in range [10
100] km. The latter guarantees that validation extends over the wider range that the optimization is going to examine
with respect to the predictive relationships. Figure 2 shows Fp1 evaluated either through the lognormal assumption
or through the KDE approximation for three periods Ts = [0.01 0.5 2] seconds (columns of the figure). In this instance
Fp1 is evaluated for each period separately to assess impact over specific structural characteristics, rather than averaged
over the different IMs. Top row corresponds to comparison with respect to the actual stochastic ground motion model
and bottom row to comparison with respect to the metamodel approximation. The comparisons in this figure show
exceptionally close agreement for objective Fp1 between the lognormal assumption and the KDE approximation (com-
pare the two curves in each subplot) over the entire seismicity range and for all structural periods. This agreement holds
for both the actual model and the metamodel. The results in the figure allow for some additional observations. First
there is a very good agreement between the metamodel and the actual model (compare the results across the rows). This
provides a preliminary validation, examined further in the following sections, of the proposed, metamodel‐based frame-
work. Secondarily, for certain seismicity ranges, the unmodified model has large discrepancy (large Fp1 values) from the
target hazard. This validates the claim that motivated this study, that existing approaches for selecting predictive rela-
tionships do not necessarily provide a close match to the desired hazard for some structures or seismicity scenarios. For
FIGURE 2 Comparison for Fp1 evaluated either through lognormal assumption for Yg
i or KDE approximation utilizing samples for actual

ground motion model (top row) and metamodel predictions (bottom row). Columns correspond to three different Yi, representing,

respectively, PSA for 0.01, 0.5, or 2 seconds (s) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com


FIGURE 3 Comparison for the CDF Yg
i =PSA (P[PSA < x]) based on lognormal assumption or KDE approximation utilizing samples for

actual ground motion model and metamodel predictions. Cases correspond to PSA for (A), 0.01, (B), 0.5, or (C), 2 seconds (s)
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assessing what constitutes large value of Fp1 based on Equation 8, values close to 0.005 should be considered as small,
values close to 0.02 as moderate, and values over 0.05 as large.

The compatibility with respect to the lognormal assumption is further examined in Figure 3, which shows the cumu-
lative distribution functions (CDF) for Yg

i for a particular seismicity scenario, corresponding to M = 6 and R = 20 km.
Similarly to Figure 2, each column corresponds to a different period Ts. The results in Figure 3 show, again, a very good
match not just between the CDFs using the KDE approximation or the lognormal assumption but also between the
CDFs using the actual model and the metamodel. Overall, the comparisons in Figures 2 and 3 justify the use of a log-
normal assumption for the distribution of Yg

i . Additionally, they provide a first validation for the accuracy of the
metamodel approximation, when compared with the actual ground motion model, with respect to both the entropy
(Figure 2) but also the exact distribution of Yg

i (Figure 3).
5.3 | Optimization details and metamodel accuracy

This section examines details of the numerical solution of the optimization problem. For the MCS of Equations 19 to 21,
Latin hypercube sampling was adopted, and for the sample size Ns different values in range [20 150] were examined.
The selection of the exact value of Ns is a compromise between numerical efficiency (it proportionally impacts the com-
putational burden) and robustness of the multi‐objective optimization (identification of correct Pareto front). After sen-
sitivity analysis, a value of Ns = 70 was chosen. The coefficient of variation for Fp1 using MCS estimates of Equations 19
to 21 with Ns = 70 was found to be in range 3% to 4% which should be deemed sufficient considering the fact that CRN
are further utilized35 to reduce the importance of the associated estimation error in the comparisons established across
the optimization.

The discussion moves next to the impact of the number of points used in the random search nbc. The considerations
are similar to the selection of Ns (efficiency versus robustness) although in this case the selection is not as straightfor-
ward because there are no simple statistics like the coefficient of variation to compare. The sensitivity analysis is per-
formed instead by solving the optimization problem for different values of nbc. The target used in this section
corresponds to structural periods Ts = [0.4 0.5 0.75 1.0 1.5 2.0] seconds and hazard described by the average of the con-
sidered GMPEs. Three different seismicity scenarios M = 6‐R = 20 km, M = 7‐R = 30 km, and M = 8‐R = 50 km are
considered. The first scenario represents a case that the unmodified model provides a poor match to the target hazard,
the second one achieves a good match, and the last case lies in between the other two. Figure 4 presents the Pareto
fronts identified through random search for different number of points nbc. The metamodel with 4500 support points
is used in this case. Only a few representative solutions and not the entire front are shown for clarity. Results are

reported in this figure and in the remaining of the manuscript with respect to
ffiffiffiffiffiffiffi
Fp1

p
and

ffiffiffiffiffiffiffi
Fp2

p
to facilitate an easier

comparison (differences of extreme values easier to discern). Figure 4 shows that the differences between the identified

fronts for different nbc values are only minor, and they occur primarily for small
ffiffiffiffiffiffiffi
Fp1

p
‐ large

ffiffiffiffiffiffiffi
Fp2

p
combinations. Note

that the objective function
ffiffiffiffiffiffiffi
Fp1

p
values for the M = 7‐R = 30 km scenario are very low (due to an already good match of

the unmodified model to the target hazard); therefore, any identified differences between the Pareto fronts for different
number of points nbc are of smaller relevance. This comparison shows that a value of nbc around 100 000 to 250 000
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should be considered as sufficient for identifying an adequate representation of the Pareto front. An nbc value equal to
150 000 is adopted for the random search results presented in the remaining of the manuscript.

The impact of the metamodel accuracy is examined next. This is established by considering additionally the results
obtained by using the exact stochastic ground motion model, which represents the measure for evaluating the actual
hazard compatibility of the identified ground motion model. Comparison is performed across different Pareto optimal
solutions. The Pareto fronts identified by using the metamodels with the three different number of support points are
presented in Figure 5 for seismicity scenario M = 6‐R = 20 km and M = 8‐R = 50 km. Note that for seismicity scenario
M = 7‐R = 30 km which was also presented in Figure 4, the results are of limited interest because the unmodified
ground motion model provides a good compatibility to the target hazard. This is the reason that this seismicity scenario
is not presented here. In all cases, the random search is implemented with the same candidate solutions, to facilitate a
consistency in the corresponding comparisons. Then, Figure 6 presents spectral plot comparisons for the solution
(among the Pareto set identified in each case) corresponding to the minimum of Fp1 for the seismicity scenario
M = 6‐R = 20 km. Similar trends hold for the M = 8‐R = 50 km seismicity scenario (not reported here due to space con-
straints). In all plots, the predictions using the metamodel and the actual ground motion model are reported. Figure 6
offers comparisons in context of both average response (top row) using curves corresponding to median and 14th to 86th

percentiles (denoted as median ± σlog herein), and logarithmic standard deviation (bottom row). The former assesses the
hazard compatibility with respect to different IM statistics and the latter explicitly with respect to the IM dispersion.

The results show that good agreement is established between the metamodel predictions and the actual model pre-
dictions along the Pareto front for all metamodel cases: 1500, 3000, and 4500 support points. This is evident in both the
Pareto fronts (Figure 5) and the corresponding spectral plots (Figure 6), the latter indicating a good match in terms of
both the mean and variability of the hazard. For the lower accuracy metamodel utilizing only 1500 support points
FIGURE 5 Pareto fronts identified using metamodels with (A), 1500, (B), 3000, or (C), 4500 support points and comparison to predictions

by exact stochastic ground motion model. Two seismicity scenarios examined M = 6‐R = 20 km [black] and M = 8‐R = 50 km [gray]



FIGURE 6 Spectral plots for the solutions corresponding to minimum of Fp1 in the Pareto fronts identified in Figure 5 for the M = 6‐

R = 20 km seismicity scenario. Top row shows curves corresponding to median and median ± σlog for the response. Bottom row shows

logarithmic standard deviation (σlog)
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greater differences exist, especially for smaller Fp1 values, but the discrepancies even for it are overall quite small, sig-
nificantly smaller than the ones reported in Tsioulou et al28 where this metamodel was shown to lead to erroneous
results, identifying suboptimal solutions when the metamodel error was not explicitly considered in the optimization.
This should be attributed to the fact, discussed also in Section 4.2, that objective Fp1 represents a statistical quantity over
θ, and averaging over different θ values for evaluating Fp1 reduces the potential influence of larger errors for specific θ
values. This discussion and the good agreement reported in Figures 5 and 6 also further validate the choice to avoid the
explicit consideration of the metamodel prediction error in the problem formulation (see discussion in Section 4.2). This
consideration would increase the computational burden while providing negligible benefits in terms of the quality of the
identified Pareto fronts. Overall, all examined here metamodels provide adequate accuracy in the identification of the
Pareto front, with no need to explicitly consider the metamodel prediction error, with preference towards the
metamodel with 3000 or 4500 support points. The latter will be utilized in all remaining comparisons in this manuscript.

Some final remarks are warranted with respect to the overall computational cost. The primary computational
burden of optimization of Equation 4 stems from the Ns·nbc evaluations of the metamodel required for the MCS of
Equations 19 to 21 across the search for the Pareto front. For the scenario advocated earlier with Ns = 70, nbc = 150 000
and use of metamodel with 4500 support points the time is 180 minutes per seismicity scenario. If the metamodel with
3000 support points is used instead the required time reduces to 120 minutes. Compared with the study Tsioulou et al,28

this represents an important increase of the computational cost: there is ultimately a Ns‐fold increase of this cost for
same nbc value, stemming from the MCS step.
5.4 | Implementation for different seismicity scenarios

With the computational details ironed out, the discussion moves next to the hazard compatibility established by the
proposed modification of the ground motion model. Figure 7 shows results for 6 seismicity scenarios targeting seismic
hazard given by the average of the aforementioned GMPEs for two different ranges of Ts: Ts = [0.4 0.5 0.75 1.0 1.5 2.0]
seconds and Ts = [0.4 0.5 0.75] seconds. These two different cases are referenced herein as long and short, respectively,
period ranges. The proposed framework identifies in each case a Pareto front that clearly demonstrates the compromise
between the two objectives, with different characteristics in each case, depending on how close the unmodified ground
motion model was to the target hazard. Choosing a shorter period range for the target IMs facilitates an overall better



FIGURE 7 Pareto fronts for different seismicity scenarios considering match to long (black) or short (gray) period range IMs for defining

the seismic hazard. In each plot, the Pareto point with minimum distance from utopia point is shown with x and the utopia point with a □
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match (smaller Fp1 values); this is anticipated because objective Fp1 imposes less strict requirements (fewer number of
components to match) in this case.

To select a solution within the identified Pareto set, one of the most common approaches within the multi‐objec-
tive optimization literature43 is to choose the one that has the smallest normalized distance from the utopia point,
defined as the point in the Pareto front that corresponds to the idealized (unachievable) minimum of the two objec-
tives across the front. Following the guidelines in Tsioulou et al28 for choosing the normalization, the following dis-
tance metric is chosen

Dp θð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
i¼1;2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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ffiffiffiffiffiffi
Fpi

p
max

ffiffiffiffiffiffi
Fpi

p
− min

ffiffiffiffiffiffi
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p !2
vuut ; max

ffiffiffiffiffiffi
Fpi

p ¼ max
fθp;i¼1;…npg

ffiffiffiffiffiffi
Fpi

p� �
; min

ffiffiffiffiffiffi
Fpi

p ¼ min
fθp;i¼1;…npg

ffiffiffiffiffiffi
Fpi

p� �
: (22)

The corresponding point is identified in all cases in Figure 7. Another option would have been to choose the solution
that satisfies a pre‐determined threshold for the match to the targeted IMs.

These selections are finally demonstrated for a wide range of seismicity scenarios, M in range [6 8] and R in range
[10 100] km, in Figures 8 to 13. For each scenario, three different Pareto points are selected, the one with smallest dis-

tance Dp(θ) from the utopia point and the ones with objective
ffiffiffiffiffiffiffi
Fp1

p
smaller than 0.15 or 0.075. These three cases are

denoted, Ut, Cl, and Cs, respectively. The thresholds for Cl and Cs modifications were chosen so that to reflect medium
and small, respectively, incompatibility to the target hazard. In addition, results for the unmodified model are pre-

sented, denoted Un. Figure 8 shows plots for (i—first row)
ffiffiffiffiffiffiffi
Fp1

p
for Ut and Un (

ffiffiffiffiffiffiffi
Fp1

p
is constrained for the other

two cases) and for (ii—second and third rows)
ffiffiffiffiffiffiffi
Fp2

p
for Ut, Cl, and Cs (

ffiffiffiffiffiffiffi
Fp2

p
is zero for Un). To better demonstrate

the differences, results are presented separately for Ut (second row) and for the pair Cl and Cs (third row) in the latter
case. The three different columns in the figure correspond to three different implementation cases: target hazard given
by the average of the aforementioned four GMPEs for both the (A) long and (B) short period ranges as well as (C) target
hazard given only by GMPE38 for the long period range. These scenarios are denoted herein as SC1, SC2, and SC3,
respectively. Figures 9 to 11 show spectral plots for a selection of seismicity scenarios, defined by combinations of M
[6.2, 6.8, 7.4, 8] and R [30, 60, 90] km, for SC1. For each of the 12 M‐R combinations spectral curves corresponding to
the target hazard, the unmodified model and the predictions by the three aforementioned model modifications are shown
to facilitate comparisons. More specifically, Figure 9 shows curves corresponding to different statistics of the response



FIGURE 8 Results for
ffiffiffiffiffiffiffi
Fp1

p
and

ffiffiffiffiffiffiffi
Fp2

p
for unmodified ground motion model (Un) and modified ground motion model corresponding to

three different selections criteria: Minimum distance from utopia point (Ut) and value
ffiffiffiffiffiffiffi
Fp1

p
smaller than 0.15 (Cl) or 0.075 (Cs).

Implementations in the different columns correspond to (A) long and (B) short period ranges for matching to the average considered GMPEs

and (C) long period ranges for match to GMPE38 [Colour figure can be viewed at wileyonlinelibrary.com]
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(median and median ± σlog) for the unmodified model and the model corresponding to the Pareto point with smallest dis-
tance from the utopia point (Ut case). Figure 10 presents the same curves for the models corresponding to the Pareto
points with average relative entropy thresholds Cl and Cs. Figure 11 presents same comparison directly in terms of loga-
rithmic standard deviation (ie, IM dispersion). In all these figures, the curves corresponding to the target are also shown.

Finally, Figures 12 and 13 show the predictive relationships for all examined seismicity scenarios for the modified
model corresponding to the Pareto point with smallest distance from the utopia point (Ut case) for SC1. In particular,
Figure 12 shows the mean model parameters θ of the modified predictive model (corresponding to μ for the aforemen-
tioned Pareto point). The unmodified ground motion model parameters (corresponding to μr) as well as another case
that will be discussed in the next section are also included. Then, Figure 13 shows the ratio of standard deviation for
the modified and unmodified model (comparison of square root of the diagonal points of Σ for the aforementioned
Pareto point and Σr). Note that some of the curves shown in these figures have non‐smooth characteristics. As discussed
in Tsioulou et al,28 this should be attributed to the fact that a discrete representation of the Pareto front is obtained and
to the random search characteristics of the adopted optimization algorithm for identifying the Pareto front.

The baseline trends observed in the figures are similar to the ones in Tsioulou et al.28 These trends are enhanced in
this study with additional considerations with respect to the variability associated with the seismic hazard. The unmod-
ified model does not provide a good match to the target hazard for the entire seismicity range as observed in first row of
Figure 8 and also in the spectral plots in Figures 9 and 11. This is particularly true for the logarithmic mean, ie, median
(Figure 9), with logarithmic variance, ie, dispersion (Figure 11), showing better compatibility to start with. The proposed

http://wileyonlinelibrary.com
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modification (cases Ut, Cl, and Cs) significantly improve the match to the hazard (Figure 8), establishing a balance
between Fp1 and Fp2, with the characteristics of the balance depending on the criteria for selection of the final model
among the Pareto optimal solutions. Similar to Tsioulou et al28 when the unmodified model has larger discrepancies
from the target hazard, then the modifications lead to larger values for Fp2, but still successfully identify models, inde-
pendent of the implementation case, that provide an improved match to the IM target mean and variance. This is clearly
observed for Cl and Cs cases; Cs imposes a smaller discrepancy between the modified model and the target hazard and
the modification leads to identification of a model with bigger differences from the original one (larger values for Fp2).
The Ut modification identifies a model with moderate discrepancy from the unmodified one, corresponding to values offfiffiffiffiffiffiffi

Fp2
p

in the range of 0.2 to 0.8, whereas the two other modification approaches, Cl and Cs, identify models with greater

variability across the different seismicity scenarios. For scenarios in the range of M = 7–7.5, the unmodified model
provides a good match to the target hazard, and therefore modification of it provides limited benefits. This is perhaps

better captured by the Cl case, which corresponds to low
ffiffiffiffiffiffiffi
Fp2

p
values for this seismicity range, significantly lower than

the Ut modification. This indicates that a satisfactory match to the target hazard, ie, a match satisfying the predefined
compatibility threshold, is established with no need to greatly modify the initial predictive models. Thus, selection of
the Pareto optimal model based on a targeted accuracy to the GMPEs, ie, value for Fp1 below a certain threshold as
in the Cs and Cl cases, provides a more rational selection for the final model as it allows a more direct recognition of
the seismicity ranges where modification is not truly required. Selection of a small threshold (Cs case), however, results
in identification of a model with large discrepancies from the unmodified model (large Fp2 values). This model will typ-
ically be far away from the Ut case and belong in a steep part of the Pareto front (check Figure 7 earlier), meaning that
small improvements in Fp1 come at a large increase of Fp2. A multi‐level selection criterion similar to the one proposed
in Tsioulou et al28 may be therefore advocated: select the Pareto optimal solution that satisfies a certain accuracy thresh-
old for Fp1 unless this solution leads to a greater Fp2 value than the Pareto optimal solution with minimum distance
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from the utopia point. If the latter happens, then select the Pareto optimal solution with minimum distance from the
utopia point.

From the comparison of the different implementation cases shown in Figure 8, it is evident that selection of a
shorter period range [compare cases (B) and (A)] establishes an easier match to the target, as it results in smaller overall
values for Fp1 and Fp2. The selection of a different target [compare cases (A) and (C)], although not imposing any addi-
tional constraint in the optimization implementation, leads to different results. Overall, the discrepancy between the
unmodified model and the target hazard follows the same trends in all implementation cases. This demonstrates the
versatility of the proposed framework as the modification facilitates an enhanced hazard compatibility for all IMs
and hazard targets considered.

The spectral plots in Figure 9 to 11 provide the decomposition of the overall Fp1 match to the different structural
periods and the statistics of the IM distribution (median and dispersion). The comparison between the unmodified
and modified cases shows that the match to both the target median and dispersion are separately addressed within
the proposed optimization. This is also supported by the trends in Figures 12 and 13; not only the mean
(Figure 12) but also the standard deviation (Figure 13) of the predictive model is adjusted. Overall for the ground
motion model examined here, the match to the target dispersion offered by the unmodified model, and subsequently
by the modified one, is quite good (compare relative discrepancies for Un in Figures 8 and 11). Although the proposed
modifications also impact this dispersion (Figure 11), the impact on the median (Figures 9 and 10) is more substantial.

This should be attributed to ability to influence value of objective Fp1 more by adjustments in ln Y
g
i μ;Σð Þ� �

rather

than σg
i μ;Σð Þ [formulation of Equation 8 and scaling of differences from the target for the former by σ2i zð Þ also reveals

that], something automatically leveraged by the optimization. With respect to the different modifications, the Cs

always provides a better match compared with Cl one, although the spectral curves of the two modifications are very
close to each other especially for lower magnitude ranges M = 6.2–6.8. The Ut modification also provides a good
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match to the target, frequently very close to the Cl and Cs cases, depending on the original match of the unmodified
model (ie, how much is the modification truly needed). This observation further supports the multi‐level selection cri-
terion discussed earlier.

The results in Figures 12 and 13 show that the model modification leads to similar characteristics as observed for the
unmodified model. This guarantees that the proposed ground motion model modification does not deviate significantly
from observed regional trends and was achieved by incorporating this deviation as an objective in the problem formu-
lation (objective Fp2). Parameters Ia, ζf, and ω' show bigger variability compared with their initial mean values
(Figure 12). This should be attributed to a greater sensitivity with respect to them of the resultant ground motions
and agrees with the trends reported in Tsiouou et al.28 With respect to the adjustment of the variability of the predictive
model, the ratio of standard deviations remains close to 1 (Figure 13) with values in the range of 0.8 to 1.05, indicating
small (but not negligible) overall adjustment.

The overall discussion shows the importance of the established framework: once the initial metamodel is developed,
it can support the efficient identification of ground motion models that (1) match conditional hazard for any desired
IMs and chosen period range while (2) maintaining a small deviation from the initial predictive models. This can be
seamlessly repeated for any seismicity scenario. The final ground motion model modification can be chosen based on
the criteria discussed earlier.
5.5 | Comparison to modification of mean value characteristics only

As discussed in Section 5.3, the computational cost of the proposed modification to match the probabilistic seismic haz-
ard is significantly higher than previous efforts to match only the IM predictions corresponding to the mean predictive
relationships for the ground motion model,28 ie, completely ignoring the variability stemming from Σ in the predictive
model for θ (using Σ = 0). This increase in computational burden stems ultimately from the need to estimate the sta-
tistics of the response when the variability of the predictive model p(θ|μ,Σ) is considered. It is therefore of interest to
examine whether the computationally less demanding problem of matching only the IM predictions corresponding to
the mean of the predictive relationships28 can be adopted as a surrogate for the problem of interest here. This is



FIGURE 12 Mean for physical ground motion model parameters θ corresponding to unmodified ground motion model (Un), modified

ground motion model with minimum distance from utopia point for matching the complete probabilistic hazard (Ut), or the hazard

corresponding to mean predictive relationships (Utm). Implementation scenario corresponds to matching to the average considered GMPEs

and long period range [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 13 Ratio of standard deviations for the ground motion model parameters between modified and unmodified ground motion

model (Un and Ut cases in Figures 12)
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equivalent to assuming Σ = 0 in the optimization of Equation 4 and leads to modification of the mean only predictive
relationships, while greatly reduces computational cost of the numerical optimization as it entails no MCS step (because
Σ = 0). This facilitates a Ns fold reduction of the computational burden as discussed earlier. The resultant modification
of the predictive relationships will be denoted μm herein.

http://wileyonlinelibrary.com
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The quality of the solution obtained from this approximate problem may be then assessed by evaluating objectives
Fp1 and Fp2 assuming distribution p(θ|μm,Σr), ie, adopting the initial variability of the predictive models Σr, or p(θ|μm,0),
ie, ignoring any variability in the predictive models and utilizing only the variability stemming from the white noise to
calculate response statistics. The comparison can be performed with respect to the entire Pareto front for limited num-
ber of seismicity scenarios or with respect to a specific solution along the front over a wider range of scenarios. Due to
space constraints, the latter is only reported here, with specific solution chosen as the point with minimum distance
from the Utopia point. The solution available from Tsioulou et al28 is directly utilized for μm. The case corresponding
to p(θ|μm,Σr) is denoted as Utm and case corresponding to p(θ|μm,0) as Utmn. Results are shown in Figures 14 and 15,
following same guidelines as the study reported in Figures 8 and 9. Comparison with respect to the dispersion only
(similar to Figure 10) is not reported due to space constraints. Figure 14 compares Un, Ut, and Utm across both objectives
over a range of seismicity scenarios (ie, adds Utm curve in the results reported in Figure 8), and Figure 15 presents spec-
tral plots for the target seismic hazard, Utm and Utmn. Latter figure should be compared directly to Figure 9 to evaluate
the relative advantages of Ut (adding that curve in this plot is avoided to improve clarity of the presentation). Solution
for the physical parameters corresponding to μm has been also reported earlier in Figure 12. Note that this solution is
same for both Utm and Utmn.

With respect to Utmn first (Figure 15), the results show the importance of considering the variability of the predictive
relationships. Reliance only on the variability stemming from the white noise provides significantly lower variability for
the seismic hazard than the variability prescribed by GMPEs (compare median and median ± σlog curves for target and
Utm cases). This ultimately leads to large values for Fp1 for Utmn which is the reason that results for it are not reported in
Figure 14. Comparison now between Ut and Utm in Figure 14 shows that the explicit optimization for the probabilistic
hazard provides for some scenarios a noticeably better match (smaller Fp1 values for Ut) for the same level of modifica-
tion of the initial probability model (similar Fp2 values for Ut and Utm). Utm modifications even underperform the
unmodified model Un for some scenarios, corresponding to cases for which Un provides an adequate match to the target
hazard to start with. Same trends are observed in the spectral plots in Figure 15. Overall Utm is shown to provide an
improvement over Un when the initial match to the hazard is not adequate, although it might underperform Ut due
to its inability to explicitly accommodate the hazard variability. It should be also pointed out that based on the results
in Figure 12, even the mean value vectors for the predictive relationships identified by different modification
approaches (Ut and Utm) are different. A final interesting comparison can be established with respect to the mean
FIGURE 14 Results for
ffiffiffiffiffiffiffi
Fp1

p
and

ffiffiffiffiffiffiffi
Fp2

p
for unmodified ground motion model (Un) and modified ground motion model with minimum

distance from utopia point for matching the complete probabilistic hazard (Ut) or the hazard corresponding to mean predictive relationships

(Utm). For the latter estimation of objectives adopts variability of the initial (Un) predictive model but with the corresponding updated

predictive mean. Implementations in the different columns correspond to (A) long and (B) short period ranges for matching to the average

considered GMPEs and (C) long period ranges for match to GMPE38 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 15 Spectral plots for seismicity scenarios (different subplots) corresponding to combinations of M [6.2, 6.8, 7.4, 8] and R [30, 60,

90] km, for the target hazard (target), and modified ground motion model with minimum distance from utopia point for matching the hazard

corresponding to mean predictive relationships. For the latter, the cases adopting variability of the initial predictive model (Utm) or no

variability (Utmn) are presented. Implementation scenario shown corresponds to matching to the average considered GMPEs and long period

range. Curves corresponding to median and median ± σlog shown
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spectral response for Utm and Utmn (black curves in Figure 15). Consideration of the variability in the predictive model
after the optimization (Utm case) impacts even the mean of the predicted response, not only the variability of that
response, and overall moves that response further away from the desired target, which, recall, was the objective in
the underlying modification for the mean predictive relationships μm. This discussion shows that even though the sur-
rogate optimization for only μm may provide an improvement over the unmodified model for scenarios of high initial
discrepancy from the target probabilistic hazard, the post‐consideration of variability in the predictive models is prob-
lematic. Setting initially Σ = 0 to identify μm and then calculating the hazard for predictive model (μm,Σr) provides ulti-
mately a lower quality fit to the target hazard. Despite the higher computational burden associated with it, the
simultaneous modification of the entire predictive model for θ (both μ and Σ) is therefore advocated.
6 | CONCLUSIONS

The modification of stochastic ground motion models to establish hazard compatibility for specific seismicity scenarios
was discussed in this paper. The hazard for each scenario was described with respect to some IM of interest and a prob-
abilistic description was adopted for it, for example defined through mean and dispersion characteristics. The modifica-
tion of the ground motion model was defined as an adjustment of the probabilistic predictive models/relationships that
relate the parameters of the ground motion model to seismicity characteristics. Both the mean of the predictive model
and the associated variance were adjusted. The proposed modification was defined as a bi‐objective optimization with
dual objective of minimizing the discrepancy between the hazard for a given structure/site and the predictions
established through the stochastic ground motion model, while maintaining a small deviation from the original predic-
tive relationships, assumed to facilitate similarity to observed regional trends. This setting extends previous efforts of the
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authors28 that examined modification of only the mean predictive relationships with goal to match the corresponding
IM predictions, ignoring any variability in either of these two components. The relative entropy was adopted as metric
to quantify the objectives considered in the multi‐objective optimization problem whereas the same surrogate modeling
framework as in Tsioulou et al28 was utilized for an efficient optimization. Emphasis was placed on the estimation of
the various response statistics needed for the entropy calculation, and a MCS approach was advocated for it coupled
with assumption for lognormal distribution of the response when considering the variability of the predictive
models/relationships. The computational approach explicitly considered the fact that most ground motion models
involve a separate parameter that impacts their scaling. This parameter was separately treated with respect to both
the surrogate model development and the MCS. Different statistical assumption for the distribution of the ground
motion model output were also examined for the evaluation of the entropy for the first objective.

In the illustrative example, the proposed framework was applied using a recently developed record‐based sto-
chastic ground motion model. It was shown that lognormal distribution assumption for calculating the first objec-
tive provides an adequate approximation for the application at hand, whereas the metamodel‐aided optimization
can facilitate an accurate identification of the Pareto front even when lower accuracy metamodels are utilized, a
feature that did not hold in study.28 The necessity to calculate response statistics through MCS increases, though,
the computational burden of the approach. Application to wide range of seismicity scenarios and different
approaches for determining the seismic hazard (different IMs or sources for the target values) were examined, illus-
trating the advantages for the proposed framework: it allows significant improvements to the target hazard match,
especially for seismicity scenarios for which the unmodified model provides a poor initial fit, with minor only mod-
ifications to the original predictive model, something that can guarantee a good agreement with observed regional
trends. With respect to selection of the final model across the identified Pareto front, same recommendation as in
Tsioulou et al28 is made: select the Pareto optimal solution that satisfies a certain accuracy threshold for match to
the target hazard (Fp1 constraint) unless this solution leads to a greater modification for the predictive model (Fp2
value) than the Pareto optimal solution with minimum distance from the Utopia point. Finally, the approach
presented in this paper was compared with the modification of only the mean predictive relationships to match
the corresponding hazard for these mean predictions.28 It was shown in this case that the latter approach may pro-
vide an adequate surrogate for seismicity scenarios with high initial discrepancy to the target hazard, though overall
it is better to explicitly consider the impact of the variability in the predictive models (ie, calculate response statis-
tics) and simultaneously modify the entire predictive model (ie, not only focus on the mean of the predictive
relationships).

The main limitation of the approach is the significant computational burden for performing the multi‐objective opti-
mization to identify the Pareto front, a burden stemming from the MCS step. Considering the fact that the proposed
modification needs to be repeated for each seismicity scenario of interest, further reduction of this burden, which will
have to come from a more computational efficient implementation of the surrogate model predictions, is an important
extension of this work, currently under investigation by the authors.
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APPENDIX A

KERNEL ‐BASED APPROXIMATION OF THE PROBABILITY DISTRIBUTION OF THE LN(IM)
FOR THE GROUND MOTION MODEL AND ENTROPY ESTIMATION

This Appendix considers the estimation of pg(ln(Yi)|μ,Σ) and of objective Fp1 when the lognormal assumption is not
invoked for the distribution of Yg

i . Approach relies on obtaining samples from pg(ln(Yi)|μ,Σ), which when using the
actual ground motion model is established through the following process. First generate nd samples for θ from
p(θ|μ,Σ), {θd;d = 1,…,nd}, and nd sample white noise sequences, {wd;d = 1,…,nd}, and obtain the corresponding accel-

eration time‐histories €a tjθd;wd
� �

; d ¼ 1;…; nd . For each sample, the response output of interest is estimated providing

samples of f ln�Yg;d
i

�
; d ¼ 1;…;ndg from pg(ln(Yi)| z). The latter can be a pproximated using KDE based on these

samples as:

epg ln Yið Þjμ;Σð Þ ¼ 1
nd

∑
nd

d¼1

1
h
K

ln Yið Þ− ln
�
Yg;d

i

�
h

 !
;K tð Þ ¼ 1ffiffiffiffiffiffi

2π
p e−

t2
2 (A1)

where K(.) is the chosen kernel and h is the Kernel bandwidth. In this study, the widely used Gaussian kernel is
employed, shown also in Equation A1 with bandwidth chosen as44 h = 1.06 ⋅ nd−1/5σd where σd is the standard deviation

of the samples f ln�Yg;d
i

�
; d ¼ 1;…;ndg. The entropy in Equation 6 can be then approximated using the KDE estimate in

Equation A1, with the scalar integral calculated through numerical integration (trapezoidal rule).

When the IM is approximated through use of the metamodel Yg
i θ;wð Þ ¼ ffiffiffiffi

θs
p

si x;wð Þ, then the approach for

obtaining the samples f ln�Yg;d
i

�
; d ¼ 1;…;ndg changes and requires, additionally, another statistical assumption for

the distribution of Yg
i θ;wð Þ under the influence of w. Note that this is a different setting than invoking a specific dis-

tribution for Yg
i , because in this case the assumption pertains only to the influence of the white noise. The standard sta-

tistical approximation, with proven accuracy in a number of studies,42 is lognormal assumption. In this case, the desired
samples are obtained through the following process. First generate nd samples for θ from p(θ|μ,Σ), {θd;d = 1,…,nd}, and

estimate through the metamodel outputs ln si xd
� �� �

and σsi xd
� �

for d = 1,…,nd. Generate nd samples {ed;d = 1,…,nd}
from a standard Gaussian distribution and obtain each of the desired samples as

ln
�
Yg;d

i

� ¼ ln si xd
� �� �þ σsi xd

� �
ed þ 1

2
lnθds : (A2)

Once these samples are obtained, then the KDE estimation of pg(ln(Yi)|μ,Σ) and the calculation of Fp1 follow same
approach as in the case that actual ground motion model was utilized.
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