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Wave radiation and diffraction by a circular cylinder submerged below an ice sheet with
a crack is considered based on the linearized velocity potential theory together with the
multipole expansion. The solution starts from the potential due to a single source, or
the Green function satisfying both the ice sheet condition and the crack condition, as
well as all other conditions apart from that on the body surface. This is obtained in an
integral form through Fourier transform, in contrast to what has been obtained previously
in which the Green function is in the series form based on the method of matched
eigenfunction expansion in the each domain on both sides of the crack. The multipole
expansion is then constructed through direct differentiation of the Green function with
respect to the source position, rather than treating each multipole as a separate problem.
The use of the Green function enables the problem of wave diffraction by the crack in
the absence of the body to be solved directly. For the circular cylinder, wave radiation
and diffraction problems are solved by applying the body surface boundary condition to
the multipole expansion, through which the unknown coefficients are obtained. Extensive
results are provided for the added mass and damping coefficient as well as the exciting
force. When the cylinder is away from the crack, a wide spacing approximation method
is used, which is found to provide accurate results apart from when the cylinder is quite
close to the crack.
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1. Introduction

As the Arctic region may become a possible shipping route (Smith & Stephenson 2013),
there has been an increasing interest in understanding the behaviour of a ship or other
structures in water covered by an ice sheet over a large extent. The motion of a ship
in such an environment is expected to be very different from that of a ship in the open
sea. One of the main reasons is that the geophysical condition in the Arctic is different,
or typical wave which the ship encounters is different. Another reason is that when the
ship is set into motion by an incoming wave, its radiated wave will be reflected by the
ice sheet. It will propagate back to the ship and have further interactions with the ship.
This makes interactions of a ship with the external environment more complex.
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The work on wave/ice interactions without a floating body in the context of geophysics
started very early. Following the work of Greenhill (1887), when the horizontal dimension
of the ice sheet is much larger than its vertical dimension, it is very common to use
the elastic plate model for the sea ice. In many cases, the fluid flow due to wave/ice
interaction can be modelled by the linear velocity potential theory. These assumptions
are valid for a wide range of problems in the polar region as explained in the review
papers by Squire et al. (1995) and Squire (2007, 2011). Based on this model, Fox & Squire
(1990) considered the problem of wave propagating from open sea to the shore fast ice.
They obtained the reflection and transmission coefficients for wave into a semi-infinite
ice sheet. The wave direction was normal to the edge of ice sheet, and the problem was
two dimensional and was solved through the matched eigenfunction expansions (MEE),
in which the unknowns were found by numerically minimizing the errors in the matching
conditions and edge conditions. This was then extended to the oblique incident wave
by Fox & Squire (1994). Similar problem was considered by Sahoo et al. (2001), where
the unknowns in the eigenfunction expansions were found through introducing an inner
product of orthogonality. The problem was also solved through the Wiener-Hopf method
initiated by Evans & Davies (1968), as done by Balmforth & Craster (1999), Chung
& Fox (2002), and Tkacheva (2004). For an ice sheet of finite length or an ice floe,
Meylan & Squire (1993) obtained an approximate solution based on the large length
assumption. They provided an explicit equation which showed that there would be an
infinite number of discrete frequencies at which the reflection coefficient would be zero or
perfect transmission would occur. The problem was also solved without the large length
assumption by Meylan & Squire (1994) through the Green function method. Chung
& Linton (2005) considered an open lead or polynya, while Williams & Squire (2006)
considered the case in which the surface of polynya was refrozen. Zero reflection was also
found in these cases. For an infinite ice sheet with a crack, Barrett & Squire (1996) solved
the wave reflection problem of finite depth through the MEE method similar to that in
Fox & Squire (1994). For infinite water depth, by using the Green function for the ice
sheet without crack, Squire & Dixon (2000) solved the problem for the normal incident
wave, while Williams & Squire (2002) did for the oblique incident wave. By separating the
problem into the symmetric and antisymmetric parts, Evans & Porter (2003) obtained
the solution for oblique wave in a series form for finite water depth, and the localized
edge waves travelling along the crack were found to be possible. The problem was further
extended to the multiple parallel cracks of infinite length by Porter & Evans (2006), and
to cracks of finite length by Porter & Evans (2007).

The work with the body present in wave/ice interaction problem started relatively
later. Das & Mandal (2006) used the multipole expansion method for wave scattering
by a circular cylinder submerged below a surface entirely covered by an ice sheet. Wave
reflection and transmission coefficients were obtained for various ice flexural stiffness.
Sturova (2014b) obtained the Green function for the water surface covered by a semi-
infinite ice sheet through the MEE method. The unknown coefficients were found through
a matrix equation which was resolved for different source position. The wave radiation
problem by a submerged cylinder was solved through the boundary element method.
This was further extended to the problem for infinitely extended ice sheet with a crack
(Sturova 2015a), and an ice floe or a polynya (Sturova 2015b). The effect of an ice floe
on the hydrodynamic coefficients of a submerged body was also considered by Tkacheva
(2015), in which the Green function was obtained through the Wiener-Hopf technique.
For a body floating on a polynya, Ren et al. (2016) solved the problem for a rectangular
body using the MEE method, while Li et al. (2018) used a hybrid eigenfunction expansion
and boundary element method and solved the problem for a floating body of arbitrary



A circular cylinder submerged below an ice sheet with a crack 3

shape. Using the wide polynya approximation, Li et al. (2017a) solved the problem of a
body floating on polynya based on the solutions for polynya without a body and a floating
body without ice. Explicit equations were derived, which uncovered the mechanism for
the oscillatory behaviours of the hydrodynamic force and the body motion. The nonlinear
effect of the body position during its motion was considered by Li et al. (2017b) through
using the multipole expansion for a circular cylinder.

In this paper, we consider the problem of wave interaction with a circular cylinder
submerged in water covered by an ice sheet with a crack. Although the problem is
two dimensional (2D), as in common in other physical problem, such a simplification
is appropriate when the variation of the physical parameters in the third dimension
is much smaller than that in the other two. Also the obtained results often shed some
important insight into general three dimensional problem. For this reason, the 2D problem
has been considered widely in the context of wave/ice interaction (Squire 2007). For the
problems in the naval architecture, the 2D solution for each cross section of a ship can
be incorporated into the strip method (Newman 1977) and the so called 2D+t method
(Faltinsen 2005) to be used as a practical design tool.

There are some significantly different features between the present work and those done
previously. Firstly, we shall derive the Green function, or the potential due to a single
source, which satisfies both the ice sheet and crack condition. This allows us to obtain the
solution for wave diffraction by the ice crack directly, while this problem was solved by
Evans & Porter (2003) using the Green function for the ice sheet without crack. We shall
show that our result is identical to theirs for this particular case. Secondly, we should
mention that the Green function which satisfies both the ice sheet and crack condition
was obtained by Sturova (2015a). She started solution from the Green function without
the crack. To satisfy the condition at the crack, expansions of the potential based on MEE
were used on both sides of the crack. The series was then truncated at a finite number.
The coefficients in the expansions were found through the solution of the matrix equation
obtained from matching conditions at the interface. This is different from the free surface
problem where the coefficients are given explicitly. The procedure was repeated for each
different location of the source whose horizontal coordinate should not be the same as that
of the crack. Here we shall use Fourier transform and the Green function is obtained in a
simple integral form, which does not require re-derivation when the source is at different
point. Also infinite water depth is merely a special case of the present formation, for
which the MEE is no longer applicable. It should be emphasized that the integral form
of the Green function may be standard for a homogenous upper surface condition, as in
Evans & Porter (2003) for an infinite ice sheet without crack. However its derivation for
the ice sheet with a crack is less straightforward and therefore it is one of the principal
contributions of the present paper. Thirdly, in addition to being used more efficiently
than the series form of Sturova (2015a) in the boundary element method for a body of
arbitrary shape, from the derived Green function, we may obtain the potential due to
multipoles through direct differentiation with respect to the position of the source. The
method was initiated by Ursell (1949, 1950) to solve the water wave interaction with a
floating semi-circular cylinder and a submerged circular cylinder. His pioneering work
made a major impact in naval architecture, especially in the development of strip theory
for ship motion in waves. However, equivalent multipole expansion method has not been
developed in the problem of ice sheet with a crack. Some attempts were made to use
multipole expansion method for a circular cylinder near the edge of a semi-infinite sheet
(Sturova 2014a). However, the coefficients in the series expansion for each multipole
were obtained separately. Here by taking the advantage of the simple form of the newly
derived Green function, the multipole is constructed directly through differentiation of the
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Green function with respect to the source position. Finally, a wide spacing approximation
method (Srokosz & Evans 1979) is adopted for this type of problem. This enables us to
obtain accurate results from the solution for cylinder without the crack and the solution
for crack without the cylinder, similar to that for a body in a wide polynya (Li et al.
2017a). It also enables us to have some deep understanding of physical nature of the
problem.

The paper is organized as follows. A description of the linearized velocity potential
problem for the ice sheet with a crack is presented in §2. The Green function, or the
potential due to an oscillating source, is derived in §3.1, from which the multipole
expansion is constructed in §3.2. The potentials for the radiation and diffraction problems
of a submerged circular cylinder are then constructed in §3.3 and §3.4 respectively. Special
cases including wide spacing approximation and deep water limit are considered in §3.5.
Results are presented and discussed in §4, followed by the conclusion in §5. In Appendixes
A and B, the far field formulas for damping coefficient and wave exciting force are
presented respectively, while in Appendix C the Haskind relation for wave exciting force
is derived.

2. Mathematical model

We consider the problem of wave interaction with a circular cylinder of radius a
submerged in water covered by an ice sheet with a crack, as sketched in figure 1. A
Cartesian coordinate systemO−xz is defined, with the x-axis along the undisturbed mean
upper surface, and the z-axis pointing vertically upwards. The ice sheet with uniform
properties is extended from x = −∞ to x = +∞. Its draught is assumed to be zero, and
the crack is assumed to be located at x = 0, as shown in the figure.

The fluid with density ρ and depth H is assumed to be inviscid, incompressible and
homogeneous, and its motion to be irrotational. Thus the velocity potential Φ can be
introduced to describe the fluid flow. Under the assumption that the amplitude of the
wave motion is small compared to its length and the dimension of the body, the linearized
velocity potential theory can be further used. Based on the assumption that the motion
is sinusoidal in time with frequency ω, the total velocity potential can be written in the
following form

Φ(x, z, t) = Re

α0φ0(x, z)eiωt +

2∑
j=1

iωαjφj(x, z)e
iωt

 , (2.1)

where the scattering potential φ0 contains the incident potential φI and diffracted
potential φD, α0 is the amplitude of the incident wave; φj (j = 1, 2) is the radiation
potential due to body oscillation with complex amplitude αj in x and z directions
respectively. The rotational mode is not included in (2.1) as the rotation of a circular
cylinder about its centre does not disturb the fluid. Mass conservation requires that the
potential φj satisfies the Laplace’s equation

∇2φj = 0, (j = 0, 1, 2), (2.2)

throughout the fluid. The ice sheet is modelled as a continuous elastic plate with uniform
properties, i.e. thickness h, density ρ0, Young’s modulus E, Poisson’s ratio ν are all
constant. Thus the boundary condition on the ice sheet can be written as (Fox & Squire
1990) (

L
∂4

∂x4
−mω2 + ρg

)
∂φj
∂z
− ρω2φj = 0, (|x| > 0, z = 0), (2.3)
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Figure 1. Coordinate system and sketch of the problem.

where L = Eh3/[12(1−ν2)] is the effective flexural rigidity of the ice sheet, and m = hρ0
is its mass per unit area. As the ice sheet has a crack at x = 0, the zero bending
moment and shear force are assumed there (Squire 2007). This leads to the following two
conditions

∂2

∂x2

(
∂φj
∂z

)
= 0 and

∂3

∂x3

(
∂φj
∂z

)
= 0, (x = 0, z = 0). (2.4)

It may be noticed that we can also impose other conditions at the crack, e.g. the two semi-
infinite sheets are hinged or connected by springs. These can be done through specifying
proper combinations of the displacements, slopes, bending moments and shear forces, on
both sides of the crack. The impermeable condition on the body surface is

∂φ0
∂n

= 0 and
∂φj
∂n

= nj , (j = 1, 2), (2.5)

where n1 and n2 are the x, z components of the unit normal vector ~n pointing into the
body. On the flat seabed, the following condition should be also enforced

∂φj
∂z

= 0, (z = −H). (2.6)

The radiation condition at infinity requires the wave to propagate outwards

lim
x→±∞

(
∂φD
∂x
± iλφD

)
= 0 and lim

x→±∞

(
∂φj
∂x
± iλφj

)
= 0, (j = 1, 2), (2.7)

where λ is the purely positive real root of the dispersion equation for flexural gravity
wave in the ice sheet, or

K(ω, λ) ≡ (Lλ4 + ρg −mω2)λ tanh(λH)− ρω2 = 0. (2.8)

3. Solution procedures

3.1. Velocity potential due to a single source: the Green function

The Green function G(x, z;x0, z0) is defined as the velocity potential at point p(x, z)
due to a source at q(x0, z0). It then satisfies the following equation

∇2G = 2πδ(x− x0)δ(z − z0), (3.1)
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and the same boundary conditions as those in (2.3), (2.4), (2.6) and (2.7). Here, δ(x) is
the Dirac delta-function. In order to derive G, we shall use the Fourier transform

G̃ =
1

2π

∫ +∞

−∞
Ge−ikxdx. (3.2)

We may replace ω in (2.1) with γ = ω − iε, where ε→ 0+(Lighthill 1978). For a non-
zero ε, G→ 0 when |x| → ∞, and the radiation condition in (2.7) will be satisfied when
ε is taken zero. Applying (3.2) to (3.1), we obtain

− k2G̃+
∂2G̃

∂z2
= δ(z − z0)e−ikx0 . (3.3)

Here we introduce

z> = max(z, z0) and z< = min(z, z0). (3.4)

Then the solution for (3.3) with the boundary condition in (2.6) can be written in the
following form

G̃ =
e−ikx0

k
[αk cosh(kz>) + β sinh(kz>)]Z(z<), (3.5)

where α and β are two unknown constants to be solved,

Z(z) = cosh[k(z +H)]. (3.6)

Integrating (3.3) with respect to z from z−0 to z+0 , we have(
∂G̃

∂z

)z=z+0
z=z−0

= e−ikx0 . (3.7)

Substituting (3.5) into (3.7), we obtain

− αk sinh(kH) + β cosh(kH) = 1. (3.8)

Fourier transform can also be applied to the boundary condition on the ice sheet in (2.3).
We have

Ũ + (ρg −mγ2)
∂G̃

∂z
− ργ2G̃ = 0, (3.9)

where

Ũ =
L

2π

∫ +∞

−∞

∂5G

∂x4∂z
e−ikxdx. (3.10)

Through integrating by parts and using the condition of G → 0 at |x| → ∞ when ε is
non zero, (3.10) can be given as

Ũ =
L

2π

[(
∂4G

∂x3∂z
+ ik

∂3G

∂x2∂z
− k2 ∂

2G

∂x∂z
− ik3

∂G

∂z

)
e−ikx

]x=0−

x=0+
+ Lk4

∂G̃

∂z
. (3.11)

At the ice crack, we have condition (2.4). It is expected that the displacements and the
slopes on both sides of the crack are discontinuous. Thus we may write(

∂G

∂z

)x=0−

x=0+
= A, (z = 0), (3.12)

(
∂2G

∂x∂z

)x=0−

x=0+
= B, (z = 0). (3.13)
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Then (3.11) can be written as

Ũ = − L

2π
(ik3A+ k2B) + Lk4

∂G̃

∂z
. (3.14)

It may be noticed that for crack conditions of different from, those in (3.12) and (3.13),
similar procedure may be followed, leading to a different form of (3.14). Substituting
(3.5) together with (3.14) into (3.9) and invoking (3.8), we obtain

α =
L

2π

ik3A+ k2B

K(γ, k)Z(z0)
eikx0 − Lk4 + ρg −mγ2

K(γ, k)Z(0)
, (3.15)

β =
L

2π

(ik3A+ k2B)Z ′(0)

K(γ, k)Z(z0)Z(0)
eikx0 − ργ2

K(γ, k)Z(0)
, (3.16)

where the prime denotes partial derivative with respect to z. Substituting (3.15) and
(3.16) into (3.5), we have

G̃ =− e−ikx0

k

(Lk4 + ρg −mγ2)k cosh(kz>) + ργ2 sinh(kz>)

K(γ, k)Z(0)
Z(z<)

+
L

2π

(ik3A+ k2B)[cosh(kz>) + tanh(kH) sinh(kz>)]

K(γ, k)Z(z0)
Z(z<).

(3.17)

Using

ln
(r1
H

)
=

∫ +∞

0

e−kH − e−k(z>−z<) cos[k(x− x0)]

k
dk, (3.18)

ln
(r2
H

)
=

∫ +∞

0

e−kH − e−k(z>+z<+2H) cos[k(x− x0)]

k
dk, (3.19)

where r1 is the distance between p and q, and r2 is the distance between p and the
mirror image of q about the flat seabed z = −H, and then performing the inverse
Fourier transform of G̃, the solution due to a single source can be written as

G = Gice(x, z;x0, z0) +A× ∂G1(x, z)

∂x
+B ×G1(x, z), (3.20)

where

Gice = ln
(r1
H

)
+ ln

(r2
H

)
− 2

∫ +∞

0

e−kH

k
{P (k)Z(z)Z(z0) cos[k(x− x0)] + 1}dk, (3.21)

with

P (k) =
(Lk4 + ρg −mγ2)k + ργ2

K(γ, k)Z(0)
, (3.22)

and

G1 =
L

π

∫ +∞

0

Z(z)

K(γ, k)Z(0)
k2 cos(kx)dk. (3.23)

We may notice that Gice is in fact the Green function without the crack (Evans & Porter
2003). We may also notice that G1 satisfies (2.3) and

G1(x, z) =
L

2πργ2

(
∂3Gice(x0, z0;x, z)

∂z0∂x20

)
x0=0,z0=0

. (3.24)

For the current problem with a crack, there are still two unknown coefficients A and
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B in (3.20), which can be determined by condition in (2.4). The zero bending moment
and shear force conditions respectively give

lim
x,z→0

Gzxx =
2πργ2

L
G1(x0, z0) +A lim

x,z→0

∂4G1(x, z)

∂z∂x3
+B lim

x,z→0

∂3G1(x, z)

∂z∂x2
= 0, (3.25)

lim
x,z→0

Gzxxx = −2πργ2

L

∂G1(x0, z0)

∂x0
+A lim

x,z→0

∂5G1(x, z)

∂z∂x4
+B lim

x,z→0

∂4G1(x, z)

∂z∂x3
= 0,

(3.26)

where (3.24) has been used. We then notice that when x = r sinΘ and z = −r cosΘ we
have at z < 0

ei(m+1)Θ

rm+1
=

1

m!

∫ +∞

0

ekzkmeikxdk. (3.27)

This means that when Θ → π/2, or z → 0, we have

lim
z→0

∫ +∞

0

ekzkm cos(kx)dk = 0 for an even m, (3.28)

and

lim
z→0

∫ +∞

0

ekzkm sin(kx)dk = 0 for an odd m. (3.29)

(3.28) and (3.29) further provide

lim
z→0

∫ +∞

0

Z ′(z)

Z ′(0)
km cos(kx)dk = 0 for an even m, (3.30)

and

lim
z→0

∫ +∞

0

Z ′(z)

Z ′(0)
km sin(kx)dk = 0 for an odd m. (3.31)

Using these two equations, we have

lim
z→0

∂3G1(x, z)

∂z∂x2
= − 1

π

∫ +∞

0

ργ2 − (ρg −mγ2)k tanh(kH)

K(γ, k)
cos(kx)dk, (3.32)

lim
z→0

∂4G1(x, z)

∂z∂x3
=

1

π

∫ +∞

0

ργ2 − (ρg −mγ2)k tanh(kH)

K(γ, k)
k sin(kx)dk, (3.33)

lim
z→0

∂5G1(x, z)

∂z∂x4
=

1

π

∫ +∞

0

ργ2 − (ρg −mγ2)k tanh(kH)

K(γ, k)
k2 cos(kx)dk. (3.34)

Through these results, (3.26) and (3.25) then respectively give

A =
2π2ργ2

LI1
∂G1(x0, z0)

∂x0
, (3.35)

and

B =
2π2ργ2

LI2
G1(x0, z0), (3.36)

where

I1 = π lim
x,z→0

∂5G1(x, z)

∂z∂x4
=

∫ +∞

0

ργ2 − (ρg −mγ2)k tanh(kH)

K(γ, k)
k2dk, (3.37a)

I2 = −π lim
x,z→0

∂3G1(x, z)

∂z∂x2
=

∫ +∞

0

ργ2 − (ρg −mγ2)k tanh(kH)

K(γ, k)
dk. (3.37b)
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Substituting (3.35) and (3.36) into (3.20), we then obtain the solution of the Green
function for an ice sheet with a crack at the origin

G = Gice(x, z;x0, z0) +
2π2ργ2

L

[
1

I1
∂G1(x, z)

∂x

∂G1(x0, z0)

∂x0
+
G1(x, z)G1(x0, z0)

I2

]
.

(3.38)
The replacement of ω with γ = ω − iε in (2.8) during the derivation moves the pole

k = λ off the real axis of k. Letting ε → 0+, the Taylor expansion of the dispersion
equation K(γ, k) with respect to ε provides the root at

k = λ− iε′, (3.39)

where

ε′ =
ε

ω

Lλ4 + ρg

Lλ4 + ρg −mω2

/[
1

2λ
+

H

sinh(2λH)
+

2Lλ3

Lλ4 + ρg −mω2

]
. (3.40)

Thus when ε → 0+, the pole will approach the real axis of k from below. Therefore,
the integration route D in (3.38) from 0 to +∞ should pass over the pole at k = λ,
which is consistent with the radiation condition, i.e. the wave will propagate away from
the source into infinity. With such a definition of D, γ in (3.38) can be replaced by ω.
We may notice that (3.38) is a summation of the Green function Gice for the ice sheet
without crack and two additional terms equivalent to the loads applied at the crack to
ensure that the shear force and bending moment there are zero. We may also notice that
the integrand of G in (3.38) has only a simple pole at k = λ where K(ω, k) = 0. The
integration may be calculated by using the Gauss-Legendre principal value integration
procedure (Noble 2000). This may also be done by following the numerical procedure in
Wu & Eatock Taylor (1987), which effectively removes the singularity.

3.2. Multipole expansion

Potentials due to multipoles or singularities of higher order may be found by differ-
entiating (3.38) with respect to the position of the source point. In such a way, none of
the boundary conditions will be affected and will be still satisfied. As shown in figure 1,
we have x − x0 = r sin θ and z − z0 = r cos θ. Similar to Wu (1998), we may apply the
operator

(D±)n = − 1

2n−1(n− 1)!

(
∂

∂z0
± i

∂

∂x0

)n
(3.41)

to (3.38). Using the result

(D±)n ln(r1) =
e±inθ

rn
, (3.42)

and noticing (D+) exp(±kz0 ± ikx0) = 0 and (D−) exp(±kz0 ∓ ikx0) = 0, we have

fn =(D+)nG

=
e+inθ

rn
+

(−1)n

(n− 1)!

∫ +∞

0

e−k(z+z0+2H)−ik(x−x0)kn−1dk

+
2in

(n− 1)!

∫
D
Z(z) cosh[k(z0 +H) + ik(x− x0)− inπ/2]e−kHP (k)kn−1dk

− πρω2

(n− 1)!

[
iG1(n)

I1
∂G1(x, z)

∂x
− G1(n− 1)G1(x, z)

I2

]
,

(3.43)
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and

gn =(D−)nG

=
e−inθ

rn
+

(−1)n

(n− 1)!

∫ +∞

0

e−k(z+z0+2H)+ik(x−x0)kn−1dk

+
2in

(n− 1)!

∫
D
Z(z) cosh[k(z0 +H)− ik(x− x0)− inπ/2]e−kHP (k)kn−1dk

+
πρω2

(n− 1)!

[
iG2(n)

I1
∂G1(x, z)

∂x
+
G2(n− 1)G1(x, z)

I2

]
,

(3.44)

where

G1(n) =

∫
D

(−1)ne−k(z0+H)+ikx0 − ek(z0+H)−ikx0

K(ω, k)Z(0)
kn+3dk, (3.45a)

G2(n) =

∫
D

(−1)ne−k(z0+H)−ikx0 − ek(z0+H)+ikx0

K(ω, k)Z(0)
kn+3dk. (3.45b)

We notice here that when i in (3.43) is replaced by −i, fn becomes gn.

3.3. Solution for the radiation problem

Here we consider the wave radiation due to the body undergoing sinusoidal oscillation
with frequency ω. By using (3.43) and (3.44), we can write the potentials φj in terms of
multipole expansions in the polar coordinate system as

φj =

∞∑
n=1

an(Ajnfn +Bjngn). (3.46)

φj now satisfies the governing equation and all the boundary conditions apart from that
on the body surface, which is to be used to obtain the coefficients Ajn and Bjn. When
j = 1, 2, we respectively have

∂φ1
∂r

= −∂φ1
∂n

= sin θ and
∂φ2
∂r

= −∂φ2
∂n

= cos θ, (r = a), (3.47)

where the minus sign is due to the fact that ~n points into the body. Since

ekz±ikx = exp(kz0 ± ikx0 + kre±iθ) = ekz0±ikx0

∞∑
l=0

klrle±ilθ

l!
, (3.48)

φj can be expressed in the polar coordinate system as

φj =

∞∑
n=1

Ajna
n

{
e+inθ

rn
+

1

(n− 1)!

∞∑
l=0

rl

l!
[e+ilθC(n, l) + e−ilθD(n, l)]

}

+

∞∑
n=1

Bjna
n

{
e−inθ

rn
+

1

(n− 1)!

∞∑
l=0

rl

l!
[e−ilθC(l, n) + e+ilθE(n, l)]

}
,

(3.49)
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where

C(n, l) =(−1)n+lJ1(n+ l) +
J3(n+ l)

2
− Lρω2

4

[
G1(n)G2(l)

I1
+
G1(n− 1)G2(l − 1)

I2

]
,

(3.50a)

D(n, l) =[(−1)l + (−1)n]
J2(n+ l)

2
+
Lρω2

4

[
G1(n)G1(l)

I1
− G1(n− 1)G1(l − 1)

I2

]
,

(3.50b)

E(n, l) =[(−1)l + (−1)n]
J2(n+ l)

2
+
Lρω2

4

[
G2(n)G2(l)

I1
− G2(n− 1)G2(l − 1)

I2

]
,

(3.50c)

and

J1(n) = Γ (n)/[2(z0 +H)]n, (3.51a)

J2(n) =

∫
D

e−kHP (k)kn−1dk, (3.51b)

J3(n) =

∫
D

[(−1)ne−2k(z0+H) + e2k(z0+H)]e−kHP (k)kn−1dk. (3.51c)

Here, Γ (n) is the Gamma function (Abramowitz & Stegun 1965). Invoking (3.47), then
using the orthogonality of trigonometric function, we have

− l
Ajl
a

+

∞∑
n=1

Ajna
n+l−1C(n, l)

(n− 1)!(l − 1)!
+

∞∑
n=1

Bjna
n+l−1E(n, l)

(n− 1)!(l − 1)!
= ul(j), (3.52)

and

− l
Bjl
a

+

∞∑
n=1

Bjna
n+l−1C(l, n)

(n− 1)!(l − 1)!
+

∞∑
n=1

Ajna
n+l−1D(n, l)

(n− 1)!(l − 1)!
= vl(j), (3.53)

for l = 1, 2, . . ., where

ul(1) =
1

2i
δl1, vl(1) = −ul(1), (3.54)

and

ul(2) =
1

2
δl1, vl(2) = ul(2). (3.55)

Here δl1 is the Kronecker delta function, and j = 1, 2 in (3.52) and (3.53) correspond
to φ1 and φ2 respectively. For each l, (3.52) and (3.53) provide two linear equations for
Ajn and Bjn. Thus when the infinite summation is truncated at a finite number, we can
obtain a matrix equation, from which Ajn and Bjn can be solved. When the solutions for
φ1 and φ2 have been obtained, the added mass µjs and damping coefficients λjs can be
computed through (Newman 1977)

τjs = µjs − i
λjs
ω

= ρ

∫
S0

φsnjdS, (3.56)

for j, s = 1, 2, where S0 represents the body surface. Multiplying both sides of (3.52) and
(3.53) respectively by e+ilθ and e−ilθ, then taking summation with respect to l from 1 to
+∞, substituting the obtained results into (3.49), and letting r = a, we have (Wu 1993)

φs = 2

∞∑
n=1

[Asne+inθ +Bsne−inθ] + a

∞∑
n=1

1

n
[e+inθun(s) + e−inθvn(s)] + φsc, (3.57)
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where

φsc =

∞∑
n=1

Asna
n

(n− 1)!
[C(n, 0) +D(n, 0)] +

∞∑
n=1

Bsna
n

(n− 1)!
[C(0, n) + E(n, 0)]. (3.58)

Substituting (3.57) into (3.56), we obtain

τ1s = −i2πρa(As1 −Bs1)− δ1sπρa2, (3.59)

and

τ2s = −2πρa(As1 +Bs1)− δ2sπρa2. (3.60)

3.4. Solution for the diffraction problem

Wave diffraction potential consists of two parts and the total diffraction potential φD
can be written as

φD = φ1D + φ2D, (3.61)

where φ1D is the diffraction potential by the crack to φI , and φ2D is the diffraction potential
by the cylinder to ϕ = φI + φ1D. For periodic wave from x = −∞ to x = +∞, φI can be
given as

φI = Ie−iλxψ(z), (3.62)

with

ψ(z) = cosh[λ(H + z)]/ cosh(λH), (3.63)

and I = g/iω. Applying the Green’s second identity to φ1D and G in (3.38) over the fluid
boundary S, we have

2πφ1D(x, z) =

∫
S

[
φ1D(ξ, ζ)

∂G(x, z; ξ, ζ)

∂n
−G(x, z; ξ, ζ)

∂φ1D(ξ, ζ)

∂n

]
dS, (3.64)

where the derivative and integration are with respect to (ξ, ζ). Invoking the boundary
conditions for φ1D and G, only the ice sheet will remain on the right hand side of (3.64).
Using condition (2.3) and through integrating by parts, this equation can be further
written as

2πφ1D =
L

ρω2

[(
∂4φ1D
∂ξ3∂ζ

∂G

∂ζ
− ∂3φ1D
∂ξ2∂ζ

∂2G

∂ξ∂ζ

)ξ=0−

ξ=0+

]
ζ=0

. (3.65)

Noticing that ϕ = φI + φ1D should satisfy the crack condition in (2.4), then φ1D(x, z) can
be obtained directly through the Green function as

φ1D = −πIλ3 tanh(λH)

[
iλ

I1
∂G1(x, z)

∂x
+
G1(x, z)

I2

]
. (3.66)

To obtain the solution for φ2D, ϕ = φI + φ1D can be expressed in the polar coordinate
system through using (3.48)

ϕ = I

∞∑
n=0

rn

4n!
[e+inθF1(n) + e−inθF2(n)], (3.67)
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where

F1(n) =
2(−λ)ne−λ(z0+H)−iλx0

cosh(λH)
− Lλ3 tanh(λH)

[
λG2(n)

I1
− G2(n− 1)

I2

]
, (3.68a)

F2(n) =
2λneλ(z0+H)−iλx0

cosh(λH)
+ Lλ3 tanh(λH)

[
λG1(n)

I1
+
G1(n− 1)

I2

]
. (3.68b)

Then invoking the boundary condition on the body surface for φ2D

∂φ2D
∂n

= −∂ϕ
∂n

, (3.69)

we have

ul(0) = −Ia
l−1F1(l)

4(l − 1)!
, vl(0) = −Ia

l−1F2(l)

4(l − 1)!
, (3.70)

for j = 0 in (3.52) and (3.53) respectively. Invoking (3.57) we further have at r = a

φ2D = 2

∞∑
n=1

[A0
ne+inθ +B0

ne−inθ] + a

∞∑
n=1

1

n
[e+inθun(0) + e−inθvn(0)] + φ0c . (3.71)

When the solution for φ2D have been obtained, the wave exciting force can be computed
through (Newman 1977)

fE,j = −iωρ

∫
S0

φ0njdS. (3.72)

Substituting (3.71) together with (3.67) into (3.72), we have

fE,1 = −2πaρω(A0
1 −B0

1), (3.73)

fE,2 = i2πaρω(A0
1 +B0

1). (3.74)

We may notice that fE,j in (3.72) can be also computed through ϕ and φj by using the
Haskind relation (C 5).

3.5. Some special cases

3.5.1. Simplified solution procedure at large |x0/a|
When the circular cylinder is located far away from the crack, or |x0/a| � 1, the

problems in §3.3 and §3.4 can be solved by using the wide spacing approximation, based
on the assumption that the mutual effects of evanescent waves between the crack and
the body can be neglected. Without losing generality, here we may assume x0 > 0 and
the incoming wave is from x = −∞. We denote the radiation and scattering potentials of
the body, with its centre at x = 0 and submerged below the ice sheet without the crack,
as ψrj and ψ0 respectively. The solutions of these potentials can be obtained by dropping
the terms of I1 and I2 in (3.43) and (3.44), and the procedure will be much simpler. We
further define the velocity potentials ψL and ψR for ice sheet with a crack but without
the body. They correspond to incoming waves from x = −∞ and x = +∞ respectively,
and contain both the incident and diffracted potentials. These two potentials can be
obtained directly from (3.62) and (3.66). Using these results the solution for the current
problem of a body submerged beneath an ice sheet with a crack can be easily constructed
for |x0/a| � 1, following the method used for multi bodies with large gap (Srokosz &
Evans 1979) and a floating body in a wide polynya (Li et al. 2017a).

We may notice that the transmission coefficient Tc and reflection coefficient Rc corre-
spond to ψL and ψR are the same, which can be easily confirmed through reversing the
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direction of x axis. At infinity, the evanescent waves will tend to zero and the velocity
potentials defined above will have the following asymptotic forms

ψrj = A±j e∓iλxψ(z) as x→ ±∞, (j = 1, 2), (3.75a)

ψ0 = t0e−iλxψ(z) as x→ +∞, (3.75b)

ψ0 = (e−iλx + r0e+iλx)ψ(z) as x→ −∞, (3.75c)

ψL = Tce
−iλxψ(z) as x→ +∞, (3.75d)

ψL = (e−iλx +Rce
+iλx)ψ(z) as x→ −∞, (3.75e)

ψR = (e+iλx +Rce
−iλx)ψ(z) as x→ +∞, (3.75f )

ψR = Tce
+iλxψ(z) as x→ −∞. (3.75g)

For the submerged circular cylinder undergoing oscillation in the j-th mode, by following
the procedure in Srokosz & Evans (1979), the velocity potential near the body can be
written as a summation of the potential without crack and the potential due to the wave
reflected by the crack

φj(x, z) = ψrj (x− x0, z) + εjψ0(x− x0, z). (3.76)

Near the crack we may write the velocity potential as

φj(x, z) = ηjψR(x, z), (3.77)

which is due to the incoming wave to the crack generated by the body motion and its
reflection by the crack. εj and ηj in the two equations are two unknown coefficients to be
determined. x−x0 in (3.76) reflects the fact that the solutions for ψrj and ψ0 correspond
to the cylinder with centre located at (0, z0), which in the current problem is at (x0, z0).

The solution has now been constructed based on results which could be obtained much
more easily. The only task is to find the two unknown coefficients. We may consider (3.76)
and (3.77) at a vertical line at x = xI between the crack and cylinder. On this vertical
interface, the continuity conditions of pressure and normal velocity may be enforced, i.e.

φj(xI−, z) = φj(xI+, z),
∂φj(xI−, z)

∂x
=
∂φj(xI+, z)

∂x
, (3.78)

where the subscripts + and −mean that the potentials should be taken from the solutions
on the right and left hand sides of the vertical line, or (3.76) and (3.77), respectively. On
the basis 0� xI � x0, (3.75a)∼(3.75g) become applicable at x = xI . Substituting (3.76)
and (3.77), and the corresponding asymptotic expansions into (3.78), we can obtain

εj =
A−j Rc

e2iλx0 −Rcr0
, (3.79)

ηj =
A−j eiλx0

e2iλx0 −Rcr0
. (3.80)

Substituting (3.76) into (3.56), we can obtain the added mass and damping coefficient as

τjs = τojs − εsfoE,j/g, (3.81)

where the superscript o means that the results are from the ice sheet without crack.
Similarly, for the diffraction problem, near the body we may write the potential as

φ0(x, z) = ε0ψ0(x− x0, z), (3.82)
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and near the crack we may write the potential as

φ0(x, z) = ψL(x, z) + η0ψR(x, z). (3.83)

Using the asymptotic expansion and imposing the continuity condition (3.78) at x = xI ,
we have

ε0 =
Tce

iλx0

e2iλx0 −Rcr0
, (3.84)

η0 =
Tcr0

e2iλx0 −Rcr0
. (3.85)

Substituting (3.82) into (3.72), we can obtain the wave exciting force on the cylinder
below the ice sheet with a crack from the result without the crack

fE,j = ε0f
o
E,j . (3.86)

We should notice that (3.81) and (3.86) are not limited to a circular cylinder and they
are applicable for a body of arbitrary shape.

3.5.2. Solution for the infinite water depth

When the water depth tends to infinity or H → +∞, Gice and G1 in the Green function
(3.38) respectively become

Gice = ln(r1)− ln(r′1)− 2

∫
D

Lk4 + ρg −mω2

K(ω, k)
ek(z+z0) cos[k(x− x0)]dk, (3.87)

and

G1 =
L

π

∫
D

ekz

K(ω, k)
k2 cos(kx)dk, (3.88)

together with I1 and I2 simplified as

I1 =

∫
D

ρω2 − (ρg −mω2)k

K(ω, k)
k2dk, (3.89a)

I2 =

∫
D

ρω2 − (ρg −mω2)k

K(ω, k)
dk, (3.89b)

where r′1 is the distance between p and the mirror image of q about the mean upper
surface z = 0, and

K(ω, k) = (Lk4 + ρg −mω2)k − ρω2. (3.90)

For the multipole expansions, (3.45a) and (3.45b) become

G1(n) = −2

∫
D

ekz0−ikx0

K(ω, k)
kn+3dk, (3.91a)

G2(n) = −2

∫
D

ekz0+ikx0

K(ω, k)
kn+3dk, (3.91b)

and (3.51a)∼(3.51c) are simplified as

J1(n) = 0, (3.92a)

J2(n) = 0, (3.92b)

J3(n) = 2

∫
D

[
1 +

2ρω2

K(ω, k)

]
e2kz0kn−1dk. (3.92c)



16 Z. F. Li, G. X. Wu and C. Y. Ji

For the problem of wave propagation across the crack, F1(n) and F2(n) in (3.67)
respectively become

F1(n) = −Lλ3
[
λG2(n)

I1
− G2(n− 1)

I2

]
, (3.93a)

F2(n) = 4λ4eλz0−iλx0 + Lλ3
[
λG1(n)

I1
+
G1(n− 1)

I2

]
. (3.93b)

The simplified solution in §3.5.1 can be also extended to infinite water depth. This is
obtained by setting ψ(z) in (3.75a)∼(3.75g) as eλz, while the other equations remain the
same.

When there is no ice crack, i.e. removing the terms of I1 and I2, F1(n) in (3.93a) and
E(n, l) in (3.50c) become zero. Then (3.52) provides A0

l = 0. By letting H → +∞ in
(3.44), we obtain limx→−∞ gn = 0. Thus according to (3.46), we can conclude that there
is no wave reflection by the circular cylinder. If the ice thickness is taken to be zero,
this becomes the well-known case for a free surface, as has been shown by Dean (1948)
and Ursell (1950). When the ice sheet has a crack, this conclusion is not true in general.
However (3.91b) provides limx0→+∞ G2(n) = 0 and we can also obtain A0

l = 0. Thus
there will be no reflection in such a case. This is of course quite obvious as the wave due
to ϕ = φI + φ1D becomes the normal incident wave when x0 → +∞, or the cylinder is
infinitely away from the crack.

4. Numerical results

The typical physical parameters of the ice sheet are chosen as the same as those in
Sturova (2015b), i.e.

E = 5Gpa, ν = 0.3, ρ0 = 922.5kg m−3, ρ = 1025kg m−3, H = 100m. (4.1)

Numerical results are obtained by truncating the infinite series of the multipole expan-
sions at a finite number n = N , and they are presented in the dimensionless form, based
on a characteristic length scale, the density of water ρ and acceleration due to gravity
g = 9.80m s−2.

4.1. Wave scattering by an ice crack

We may use the problem of wave propagation beneath an ice sheet with a crack to first
verify the present formulation. The case has been considered by Evans & Porter (2003). In
that work, the problem was first divided into the symmetric and antisymmetric parts, and
then Green identity was applied to each part together with the Green function satisfying
the condition on the ice sheet without crack. Thus the result for each part turned out to
be a single series multiplied by an unknown constant which was further determined by
the condition at the crack. Here, by taking the advantage of the Green function in (3.38),
which itself already satisfies the ice crack condition, the solution can be obtained directly
through Green identity, as shown in (3.66). If we convert the integration in (3.66) into
the series form, it can be found that the solution is identical to that of Evans & Porter
(2003). Taking x 6 0 as an example, we first extend the route of integrations in (3.66)
to k ∈ (−∞,+∞), and add an integration along a semicircular of infinite radius in the
lower half complex plane of k. The latter does not affect the result as it is in fact a zero
term, which follows Jordan’s lemma. Then using residue theorem and noticing the poles
at −kn, n = −2,−1, 0, 1, . . . in the lower half plane, the potential ϕ can be expressed in
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Figure 2. Comparison of reflection coefficients. Solid line: Rc for a crack; dashed line: Rp for a
polynya with b = 0.05. (H = 100, h = 1, m = 0.9, L = 45582)

the series form as

ϕ =
I

Z0(0)
ϕ0, (4.2)

where

ϕ0 =eik0xZ0(z)

+

 k30Z
′
0(0)∑∞

n=−2
k6nZ

′
n(0)

X ′(kn)

∞∑
n=−2

k3nZn(z)e−iknx

X ′(kn)
− k20Z

′
0(0)∑∞

n=−2
k4nZ

′
n(0)

X ′(kn)

∞∑
n=−2

k2nZn(z)e−iknx

X ′(kn)

 ,
(4.3)

and

X (k) = (Lλ4 + ρg −mω2)k sinh(kH)− ρω2 cosh(kH), (4.4)

Zn(z) = cosh[kn(z +H)]. (4.5)

Here, k0 = −λ, kn with n = 1, 2, . . . are the purely positive imaginary roots of (2.8), k−1
and k−2 are the corresponding two complex roots with positive imaginary parts. It can
be seen that (4.3) is identical to (2.17) in Evans & Porter (2003) for the normal incident
case, by noticing that the time factor adopted by them is e−iωt, while e+iωt is used in
(2.1) here.

At x→ ±∞, by applying the Fourier integrals (13.16) in Wehausen & Laitone (1960)
to φ1D in (3.66), the potential ϕ can be given as

ϕ =

{
I × Tce−iλxψ(z) at x→ +∞

I(e−iλx +Rce
+iλx)ψ(z) at x→ −∞ , (4.6)

with transmission coefficient Tc and reflection coefficient Rc given in (B 7) and (B 8)
respectively. It may be interesting to compare these results for a wave propagation below
an ice sheet with a crack and those through a polynya confined between two semi-infinite
ice sheets. When the polynya width b tends to zero, the result is expected to tend to that
of an ice sheet with a crack. Comparison of the reflection coefficients is shown in figure 2,
where σ = ω2h/g, and |Rp| for polynya with b = 0.05 is computed by MEE (Ren et al.
2016). From the figure, it can be seen that |Rp| and |Rc| agree with each other very well
within the frequency range calculated.
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Figure 3. Hydrodynamic coefficients of a submerged circular cylinder against σ with different
N . Solid lines: N = 7; dashed lines: N = 5; dash-dotted lines: N = 3; dotted lines: N = 1.
(a = 1, x0 = 20, z0 = −1.2, H = 20, h = 0.2, m = 0.18, L = 72.932)

4.2. The radiation problem

We consider the radiation problem of a submerged circular cylinder, with its radius
a taken as the characteristic length. The convergence study with N is first carried out
through the hydrodynamic coefficients against σ = ω2a/g, as presented in figure 3. It
can be seen that the numerical results converge very rapidly, and N = 5 and N = 7 give
graphically indistinguishable results in the figure. The far field formula in the appendix
has been used for calculating the damping coefficient and excellent agreement with the
near field result has been found. For the results obtained subsequently we have taken
N = 5.

In figure 4 we show the hydrodynamic coefficients at different x0. As can be observed
in this figure, when σ → 0, the results with the crack will tend to those without the crack.
This is due to that at very small σ, condition in (2.3) tends to ∂φj/∂z = 0 on z = 0,
which means ∂3φj/∂z∂x

2 → 0 and ∂4φj/∂z∂x
3 → 0 on the whole ice sheet. Therefore,

the conditions at the crack will be automatically satisfied. Also as σ → 0, the effect of the
position of x0 diminishes. When x0 = 0, we have G1(n) = G2(n) in (3.45a) and (3.45b),
which means in (3.50a)∼(3.50c) C(n, l) = C(l, n) and D(n, l) = E(n, l). Then (3.52) and
(3.53) give

A1
l +B1

l = 0, A2
l −B2

l = 0. (4.7)

This suggests that φ1 and φ2 in (3.46) are antisymmetric and symmetric about the body
centre respectively, as fully expected. Therefore, we have τjs equal zero when j 6= s.

We may notice in figure 4 that when x0 6= 0, the results are oscillatory with the
frequency. Obviously, this is due to the fact that the wave generated by the body motion
will arrive at the crack and then be reflected back to the body. This process is very much
frequency dependent. Also we may infer that if we move the body position from x0 to
x0+`/2, where ` = 2π/λ is the wave length of the travelling wave generated by the body,
the effect of the crack may be almost the same. To verify that, in figure 5 we plot µ22
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Figure 4. Hydrodynamic coefficients of a submerged circular cylinder against σ at different x0.
Solid lines: ice sheet without crack; dashed lines: x0 = 0; dash-dotted lines: x0 = 10. (a = 1,
z0 = −1.2, H = 20, h = 0.2, m = 0.18, L = 72.932)

 
Figure 5. Hydrodynamic coefficients of a submerged circular cylinder against Λ in heave mode.
In (a) and (d), σ = 0.50; in (b) and (e), σ = 3.00; in (c) and (f ), σ = 6.00. Solid line is for the
exact results, while dashed line denotes the results from wide spacing approximation. (a = 1,
z0 = −1.2, H = 20, h = 0.2, m = 0.18, L = 72.932)
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and λ22 against Λ = λx0 at various σ, or a fixed λ when x0 varies. It can be seen that the
results become virtually periodic with x0 when Λ > 4 and they also become graphically
indistinguishable to those from wide approximation method. To provide further insight
into what has been observed in figure 5, we may follow the procedure in Li et al. (2017a)
and use the equations in §3.5.1.

Similar to (B 4), foE,j for ice sheet without the crack can be expressed through the far
field formula as

foE,j = 2IρωQ0CgA
−
j , (4.8)

where Q0 and Cg are given in (A 7) and (A 8) respectively. Then invoking (3.81), we have

τjs = τojs + 2iρQ0CgAjs, (4.9)

where

Ajs =
A−j A

−
s Rc

e2iΛ −Rcr0
. (4.10)

For a given σ, (4.10) shows that Ajs is periodic against x0 with period of `/2. This
means that µjs and λjs both will respectively have the same values at x0 + n`/2, where
n includes all integers to ensure that x0 is positive. From (4.10) it can be also seen that
Ajs maps the unit circle e2iΛ to a circle with centre at

yc,r = xc,r + izc,r = −|Rcr0|rreiϑr , (4.11)

and radius as

rr =
|A−j A−s Rc|
1− |Rcr0|2

, (4.12)

where

eiϑr =
A−j A

−
s r̄0

|A−j A
−
s r̄0|

. (4.13)

From (4.11) and (4.12), (4.10) can be rewritten as

Ajs = yc,r + rre
iτr . (4.14)

This indicates that the peak (+) and trough (−) of µjs respectively equal

µ±js = µojs − 2ρQ0Cg(zc,r ∓ rr), (4.15)

and they occur respectively when τr equals −π/2 or π/2. Similarly, the peak (+) and
trough (−) of λjs respectively equal

λ±js = λojs − 2ωρQ0Cg(xc,r ∓ rr), (4.16)

and they occur respectively when τr equals π or 0. We may notice that the correspond
Λ for µ±js and λ±js can be further obtained from (4.10) and (4.14).

The above discussions are valid for a body of general shape. For the circular cylinder,
(4.10) may be further simplified. As shown in §3.5.2, |r0| is zero for infinite water depth.
For the finite water depth neither µl(0) nor E(n, l) is zero, and |r0| will not exactly be
zero. However, |r0| is still much smaller than |t0|. In fact it has been found that |r0| < 0.01
over the range of σ in figures 4 and 5. Thus (4.10) can be approximated as

Ajs ≈ A−j A
−
s Rce

−2iΛ, (4.17)

which gives yc,r ≈ 0 and rr ≈ |A−j A−s Rc|. These indicate that the local extremums of µjs
and λjs will appear when Ajs respectively becomes a purely imaginary or real number,



A circular cylinder submerged below an ice sheet with a crack 21

 
Figure 6. Hydrodynamic coefficients of a submerged circular cylinder against H. Solid line
represents the results by the method for finite water depth, while dashed line represents those
by the method for infinite water depth. (a = 1, (x0, z0) = (5.0,−1.2), σ = 3.00, h = 0.2,
m = 0.18, L = 72.932)

and if one of them reaches a local extremum, the other will reach the value for ice sheet
without the crack.

In figure 6, we show the hydrodynamic coefficients against H for a given σ. As can be
expected, the results tend to those for infinite water depth as H becomes larger. However
for the heave mode, or j = 2, it can be seen that this trend is very slow.

For the problem of free surface with infinite water depth, Ogilvie (1963) found that
the generated wave by the forced body oscillation would propagate only in one direction
if the path of the circular cylinder centre follows a circular orbit. When the water surface
is covered by an ice sheet, similar conclusion may be drawn. Removing the terms related
to I1 and I2 in (3.50a)∼(3.50c) and noticing (3.92a)∼(3.92c), invoking (3.52) we have

A2
l = iA1

l . (4.18)

We may take the clockwise rotation as an example. This is achieved by taking the motion
amplitudes |α1| = |α2| in (2.1), and their phases ϑ2 = ϑ1+π/2. Invoking (3.46) and (4.18)
we obtain

Φ(x, z, t) = Re

[
iωeiωtα1

∞∑
n=1

an(B1
neiϑ1 + iB2

neiϑ1)gn

]
. (4.19)

Since limx→−∞ gn = 0, we can conclude that clockwise oscillation will generate the wave
propagating to x = +∞ only. Similarly, the counterclockwise oscillation will generate
the wave propagating to x = −∞ only due to limx→+∞ fn = 0. When there is a crack in
the ice sheet, since equations for Ajl and Bjl are coupled, (4.18) is not valid in general.
However, when x0 → +∞, we have G2(n) → 0 in (3.91b), which gives E(n, l) → 0
in (3.50c). Substituting this into (3.52), we can obtain (4.18) again, i.e. no wave will
propagate to x = −∞ for clockwise oscillation.
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Figure 7. Wave exciting force on a submerged circular cylinder against σ at different x0. Solid
lines: x0 = 0; dashed lines: x0 = 10; dash-dotted lines: x0 = 20; dotted lines: ice sheet without
crack. x-mark and +-mark are the wide spacing solutions for x0 = 10 and x0 = 20, respectively.
(a = 1, z0 = −1.2, H = 20, h = 0.2, m = 0.18, L = 72.932)

4.3. The diffraction problem

We then consider the problem of wave diffraction by the submerged circular cylinder.
Figure 7 presents the results for the excitation force at different x0 against σ, together
with those for the ice sheet without crack. From each figure, it can be seen that the results
tend to the same value when σ → 0, for the reason discussed in §4.2. It can also be seen
that when x0 is sufficiently large, the exact results are hardly different from those by
the wide spacing method in §3.5.1, even at very long waves although the approximation
is based on the assumption that x0 is much larger than the wavelength. The reason for
that is when σ → 0, ε0 → 1. Then invoking (3.86) we have that fE,j tends to foE,j , or
it tends to the exact result. This reveals that the wide spacing approximation can work
well for both small and large σ.

We may use the wide spacing approximation in (3.86) to give some insights into the
features of the wave exciting force. Substituting (3.84) into (3.86) and invoking (4.8), we
obtain

fE,j = −2iρgQ0Cg(A
−
j ε0eiΛ)e−iΛ. (4.20)

Here

A−j ε0eiΛ =
A−j Tce

2iΛ

e2iΛ −Rcr0
. (4.21)

It should be noticed that the oscillatory term A−j ε0eiΛ is due to the interaction between

the cylinder and the crack, while the oscillatory term e−iΛ is due to the initial phase
of the incident potential φI relative to the body at x0. From (4.20), we can see that
at a fixed σ, fE,j is periodic against Λ or it varies periodically with x0. The period for
Re(fE,j) and Im(fE,j) equals 2π, as can be observed in figure 8.

From (4.21) it can be seen that A−j ε0eiΛ maps the unit circle e2iΛ to a circle with centre
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Figure 8. Wave exciting force on a submerged circular cylinder against Λ. Solid line is for the
exact results, while dashed line denotes the results from wide spacing approximation. (a = 1,
z0 = −1.2, σ = 3.00, H = 20, h = 0.2, m = 0.18, L = 72.932)

at

yc,d = xc,d + izc,d =
|1− 2|Rcr0|2|
|Rcr0|

rde
iϑd , (4.22)

and radius as

rd =
|A−j TLRcr0|
1− |Rcr0|2

, (4.23)

where

eiϑd =
(1− 2|Rcr0|2)A−j Tc

|(1− 2|Rcr0|2)A−j Tc|
. (4.24)

From (4.22) and (4.23), (4.21) can be rewritten as

A−j ε0eiΛ = yc,d + rde
iτd . (4.25)

This indicates that the peak (+) and trough (−) of |fE,j | respectively equal

|f±E,j | = 2ρgQ0Cg||yc,d| ± rd|, (4.26)

and they occur respectively when τd equals ϑd or ϑd + π, and the correspond Λ can be
further obtained according to (4.21) and (4.25). For the special case 1 − 2|Rcr0|2 = 0,
we have yc,d = 0 and |f+E,j | = |f−E,j |, which means that the location of the cylinder no
longer has effect on the magnitude of the force and the magnitude of the force is no
longer oscillatory with respect to x0.

We may notice that the above discussions are valid for a body of generalized shape. For
the present case of a circular cylinder, we may use the fact that r0 ≈ 0. (4.21) becomes

A−j ε0eiΛ ≈ A−j Tc. (4.27)

Substituting (4.27) into (4.20), it can be found that the oscillations of Re(fE,j) and
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Im(fE,j) in figure 8 are purely due to the fact that the cylinder is placed at different
horizontal position which causes the relative phase change of the incident wave. The
magnitude of the exciting force becomes |fE,j | = 2ρgQ0Cg|A−j Tc|, which is not affected
by x0, as can be seen in figure 8. We may notice that although |fE,j | tends to a constant
as x0 increases, the value of the constant is different from the force on the body without
crack. This is because φ1D in (3.61) at the body does not tend to zero even when x0 → +∞.
In fact, we have |fE,j | < |foE,j | because |Tc| < 1 is always valid based on the energy
conservation equation (Barrett & Squire 1996).

5. Conclusions

The solution for the wave radiation and diffraction by a circular cylinder submerged
below an ice sheet with a crack has been presented. Green function satisfying both the
ice sheet and the crack conditions is obtained in an integral form. By using this Green
function, the solution for the problem of wave diffraction by the crack in the absence of
the body is solved directly. The solution for each multipole is derived directly from the
differentiation of the Green function with respect to the source position, from which the
velocity potential for a submerged circular cylinder is constructed.

For the solution of wave diffraction by a polynya, results show that the reflection
coefficient tends to that of a crack when the polynya width tends to zero. The hydro-
dynamic coefficients and exciting force of a submerged cylinder are found to be quite
oscillatory with the frequency when the body is not right below the crack. However,
the oscillation of the exciting force is observed only in its real and imaginary parts
separately and there is no strong oscillation in the magnitude of the force. When the
cylinder is away from the crack, accurate solution can be obtained through the wide
spacing approximation method. From this method, it is shown explicitly that at a given
frequency, the hydrodynamic coefficients, and real and imaginary parts of the exciting
force vary periodically with the distance between the cylinder and crack. This means
that the effect of the crack always exists even when the distance tends to infinity. It can
therefore be expected that the motion amplitude of the body will be quite oscillatory
with the wave frequency and with the location of the crack, as in the case of polynya (Li
et al. 2018), which has important implications for the performance of a marine vehicle
in ice covered waters.

The Green function derived in this work also has much wider applications apart from
being used as the starting point for the multipole expansion in the paper. Its simple form
allows the function to be evaluated efficiently, instead of through solving a large matrix
equation obtained from truncations of infinite series repeatedly for the source at each
different position, as done in the previous work. The derived Green function allows the
traditional method of source distribution over the body surface in the free surface flow
problem to be used directly for a body submerged below an ice sheet with a crack. This
makes the simulation for a cross section of a realistic ship possible.

The solution procedure can be further extended to other form crack conditions, e.g.
hinged or connected by springs, which may have practical implications in wave power
absorptions or hydroelasticities. The solution procedure can be also used as a base for the
derivation of solution for ice sheet with multiple cracks. However, the method is limited
to the case in which the physical properties of ice sheet are constant. It should be also
mentioned that the analysis is within the scope of the linear velocity potential theory,
which is not valid when the incoming wave amplitude or the body motion amplitude is
large compared with the wavelength or the body dimension.
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Appendix A. The far field formula for the damping coefficient

From (3.56), we have

τjs − τsj = ρ

∫
S0

(
φs
∂φj
∂n
− φj

∂φs
∂n

)
dS. (A 1)

The integral over the body surface S0 can be converted into the rest of the fluid boundary
through the Green’s identity. By using the corresponding boundary conditions, we can
obtain τjs − τsj = 0, or

µjs = µsj , λjs = λsj . (A 2)

For the damping coefficient λjs, (3.56) gives

− 2i

ω
λjs = ρ

∫
S0

(
φs
∂φ̄j
∂n
− φ̄j

∂φs
∂n

)
dS, (A 3)

where the over bar means conjugation. This integral can be converted to the rest of the
fluid boundary and it will become

−2i

ω
λjs =− ρ

∫
S+∞+S−∞

(
φs
∂φ̄j
∂n
− φ̄j

∂φs
∂n

)
dS

− L

ω2

[(
∂4φs
∂x3∂z

∂φ̄j
∂z
− ∂3φs
∂x2∂z

∂2φ̄j
∂x∂z

+
∂3φ̄j
∂x2∂z

∂2φs
∂x∂z

− ∂4φ̄j
∂x3∂z

∂φs
∂z

)
z=0

]x=+∞

x=−∞
,

(A 4)
once the boundary conditions on the bottom and ice sheet, and at the crack has been
used. Here, S±∞ are two vertical lines located at x = ±∞ respectively. We may write
the asymptotic expression of φj as

φj =

{
R+
j e−iλxψ(z) at x→ +∞

R−j e+iλxψ(z) at x→ −∞ . (A 5)

Substituting this into (A 4), we have

λjs = (R−s R̄
−
j +R+

s R̄
+
j )ρωQ0Cg, (A 6)

where

Q0 =
ρω(Lλ4 + ρg)

(Lλ4 + ρg −mω2)2
, (A 7)

and

Cg =
2Lλ3ω

Lλ4 + ρg
+

ω

2λ

[
1 +

2λH

sinh(2λH)

]
Lλ4 + ρg −mω2

Lλ4 + ρg
(A 8)

is the group velocity for the flexural gravity wave. The radiation coefficients R+
j and R−j
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in (A 6) can be obtained by letting x→ ±∞ in (3.46). We have

R+
j =

iπ

K ′(ω, λ)

∞∑
n=1

an

(n− 1)!

{
Ajn

{
2(−λ)n−1e−λ(z0+2H)+iλx0

× [(Lλ4 + ρg −mω2)λ+ ρω2] + Lρω2λ2
[
λG1(n)

I1
− G1(n− 1)

I2

]}
−Bjn

{
2λn−1eλz0+iλx0

× [(Lλ4 + ρg −mω2)λ+ ρω2] + Lρω2λ2
[
λG2(n)

I1
+
G2(n− 1)

I2

]}}
,

(A 9)

and

R−j =
iπ

K ′(ω, λ)

∞∑
n=1

an

(n− 1)!

{
Ajn

{
− 2λn−1eλz0−iλx0

× [(Lλ4 + ρg −mω2)λ+ ρω2]− Lρω2λ2
[
λG1(n)

I1
+
G1(n− 1)

I2

]}
+Bjn

{
2(−λ)n−1e−λ(z0+2H)−iλx0

× [(Lλ4 + ρg −mω2)λ+ ρω2] + Lρω2λ2
[
λG2(n)

I1
− G2(n− 1)

I2

]}}
,

(A 10)

where the prime in K ′(ω, λ) denotes partial derivative with respect to λ.

Appendix B. The far field formula for the wave exciting force

By noticing the condition in (2.5), the wave exciting force in (3.72) can be given as

fE,j = −iωρ

∫
S0

(
φ0
∂φj
∂n
− φj

∂φ0
∂n

)
dS. (B 1)

As for the damping coefficient, this can be converted as

fE,j =iωρ

∫
S+∞+S−∞

(
φ0
∂φj
∂n
− φj

∂φ0
∂n

)
dS

+ i
L

ω

[(
∂4φ0
∂x3∂z

∂φj
∂z
− ∂3φ0
∂x2∂z

∂2φj
∂x∂z

+
∂3φj
∂x2∂z

∂2φ0
∂x∂z

− ∂4φj
∂x3∂z

∂φ0
∂z

)
z=0

]x=+∞

x=−∞
.

(B 2)
At x→ ±∞, φ0 can be written in the following asymptotic form

φ0 =

{
T e−iλxψ(z) at x→ +∞

(Ie−iλx +Re+iλx)ψ(z) at x→ −∞ . (B 3)

Thus (B 2) becomes

fE,j = 2IρωQ0CgR
−
j . (B 4)

The transmission and reflection coefficients in (B 3) can be obtained by letting x→ ±∞
in (3.46) and (3.66). We obtain

T = T0 + I × Tc, (B 5)

R = R0 + I ×Rc, (B 6)
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where T0 and R0 are due to φ2D and can be obtained through equations similar to (A 9)
and (A 10); Tc and Rc are due to φ1D and can be obtained from (3.66)

Tc = 1 +
iπ

K ′(ω, λ)
Lλ5 tanh(λH)

(
λ2

I1
+

1

I2

)
, (B 7)

Rc = − iπ

K ′(ω, λ)
Lλ5 tanh(λH)

(
λ2

I1
− 1

I2

)
. (B 8)

Appendix C. Haskind relation for wave exciting force

Substituting ϕ = φI + φ1D and φ2D into (3.72), and noticing the condition in (2.5), we
can write the wave exciting force as

fE,j = −iωρ

∫
S0

(
ϕ
∂φj
∂n

+ φ2D
∂φj
∂n

)
dS. (C 1)

Applying the Green’s second identity to φ2D and φj over the fluid boundary S, we have

0 =

∫
S

(
φ2D

∂φj
∂n
− φj

∂φ2D
∂n

)
dS. (C 2)

Noticing that both φ2D and φj represent the outgoing wave at infinity and satisfy the ice
sheet and seabed conditions, we can rewrite (C 2) as

0 =

∫
S0

(
φ2D

∂φj
∂n
− φj

∂φ2D
∂n

)
dS

+
L

ρω2

[(
∂4φ2D
∂x3∂z

∂φj
∂z
− ∂3φ2D
∂x2∂z

∂2φj
∂x∂z

+
∂3φj
∂x2∂z

∂2φ2D
∂x∂z

− ∂4φj
∂x3∂z

∂φ2D
∂z

)
z=0

]x=0−

x=0+
.

(C 3)
Through the condition in (2.4) for φ2D and φj at the crack, (C 3) gives∫

S0

(
φ2D

∂φj
∂n

)
dS =

∫
S0

(
φj
∂φ2D
∂n

)
dS. (C 4)

Substituting this into (C 1) and noticing the condition in (3.69), we can obtain the
Haskind relation for fE,j as

fE,j = −iωρ

∫
S0

(
ϕ
∂φj
∂n
− φj

∂ϕ

∂n

)
dS, (C 5)

which is similar to that for infinitely extended free surface (Mei et al. 2005). It should be
noticed that in the free surface problem ϕ includes the incident potential φI from infinity
only, while in (C 5) ϕ contains not only φI but also its diffraction potential φ1D by the
crack.
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