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Abstract.—The phylogenetic likelihood function (PLF) is the major computational bottleneck in several applications of
evolutionary biology such as phylogenetic inference, species delimitation, model selection, and divergence times estimation.
Given the alignment, a tree and the evolutionary model parameters, the likelihood function computes the conditional
likelihood vectors for every node of the tree. Vector entries for which all input data are identical result in redundant
likelihood operations which, in turn, yield identical conditional values. Such operations can be omitted for improving run-
time and, using appropriate data structures, reducing memory usage. We present a fast, novel method for identifying and
omitting such redundant operations in phylogenetic likelihood calculations, and assess the performance improvement and
memory savings attained by our method. Using empirical and simulated data sets, we show that a prototype implementation
of our method yields up to 12-fold speedups and uses up to 78% less memory than one of the fastest and most highly tuned
implementations of the PLF currently available. Our method is generic and can seamlessly be integrated into any phylogenetic
likelihood implementation. [Algorithms; maximum likelihood; phylogenetic likelihood function; phylogenetics]

A typical approach in many phylogenetic analyses,
such as Maximum Likelihood (ML) tree searches or
Bayesian Inference (BI), is to evaluate the likelihood
along each branch of a phylogeny with the assumption
that mutation events follow a continuous time Markov
process. Often, in such approaches, the repeated
evaluation of the phylogenetic likelihood function (PLF) is
by far the most costly operation. This is partially due to
redundant calculations during the PLF evaluation that
can be omitted. Accelerating the PLF is possible by taking
into account that (sub-)trees with identical leaf labels (in
our case nucleotides), identical branch lengths and the
same model parameters always yield the same likelihood
score or conditional likelihood values. Therefore, we can
save computations by detecting repeating site patterns
in the multiple sequence alignment (MSA) for a given (sub-
)tree topology. From here on, we will refer to those
repeating site patterns as repeats. Many phylogenetic
inference tools such as PhyML (Guindon et al. 2010),
RAxML (Stamatakis 2014), ExaBayes (Aberer et al. 2014),
and MrBayes (Ronquist et al. 2012) utilize two methods
exploiting this property to reduce computations. The
first commonly used method consists in evaluating
only the likelihood of unique columns of an MSA.
Assuming only one set of model parameters for the entire
MSA (i.e., unpartitioned analysis), identical sites yield
the same likelihood. Therefore, the likelihood can be
calculated by assigning a weight to each unique site,
which corresponds to the site frequency in the original
MSA. In the documentation of PHYLIP (Felsenstein
1993), Felsenstein refers to this method as aliasing (also
frequently referred to as site pattern compression). The
second standard technique for accelerating the PLF at
cherries, that is, inner nodes whose descendants are
both tips (or leaves), is to precompute the conditional
likelihood entries for any combination of two states.

Since there is a small, finite number of character states,
those precomputed entries can be stored in a lookup
table, and queried when needed, instead of repeatedly
recomputing them. These two techniques are standard
methods and are incorporated in virtually all PLF
implementations providing faster computation times
and often, considerable memory savings.

Apart from the aforementioned standard techniques,
there are several studies on improving the run-time of the
PLF. (Sumner and Charleston 2010) presented a method
that relies on partial likelihood tensors. There, for each
site of the alignment, the nucleotides at each tip node
are iteratively included in the calculations. Let si be the
nucleotide for site s at tip node i. The values are first
calculated for (s1), then (s1,s2), (s1,s2,s3), and so on,
until (s1,s2,s3,...,sm) has been processed, where m is the
number of tip nodes. If the likelihood for another site
s′ with s′1=s1, s′2=s2, and s′3 �=s3 is to be computed, the
results for s, restricted to the first two tip nodes (s1,s2),
can be reused for this site. A lexicographical sorting of
the sites is applied in an attempt to increase the number
of operations that can be saved with this method. The
authors report run-time improvements for data sets with
up to 16 taxa. For more than 16 taxa, the performance
of the method is reported to degrade significantly.
Additionally, the authors measured the relative speedup
of the PLF with respect to their own, unoptimized
implementation and not the absolute speedup compared
to the fastest implementation available at that time.
(Izquierdo-Carrasco et al. 2011) mention the idea of
using general site repeats for avoiding redundant PLF
operations, but dismiss it as impractical because of the
high book-keeping overhead. Instead, they only consider
repeating subtree patterns consisting entirely of gaps,
since they can be easily identified using bit-vectors,
maintaining a low book-keeping overhead. In so-called
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“gappy” MSAs (alignments with a high percentage
of gaps), the authors report a speedup of 25–40%
and 65–68% memory savings on gappy alignments
consisting of 81.53% and 83.4% gaps (missing data).
The underlying data structure used for identifying such
repeating subtree sites is called subtree equality vector
(SEV) and was originally introduced by (Stamatakis
et al. 2002). There, only homogeneous subtree columns
are considered, that is, a repeat is only stored as such
if all nucleotides in that subtree column are identical.
This is again done to avoid the perceived complexity
associated with finding general (heterogeneous) site
repeats. By using this strategy, (Stamatakis et al. 2002)
report a speedup of 19–22% for the PLF computation.
Similar to (Sumner and Charleston 2010), (Pond and
Muse 2004) devised a method for accelerating the
likelihood computation of a site by storing and reusing
the results obtained for a preceding site. Since only
the results for one single site (the preceding site)
are retained, an appropriate sorting of the sites is
required. This column sorting approach is reported to
yield speedups in settings where the PLF is evaluated
multiple times for the same topology. The authors
showed that sorting the sites to maximize the saving
potential, can lead to run-time reductions from roughly
10% to over 80%, which corresponds to a more than
5-fold speedup. However, the authors also note that
an ideal algorithm for PLF calculations would reuse
all previously computed values from all sites and not
just the neighboring ones. Furthermore, the optimal
column sorting relies on solving the NP-hard traveling
salesman problem and relies on the tree topology.
Thus, to construct a polynomial-time algorithm, a search
heuristic—that may yield sub-optimal results—is used.
This means that the proposed column sorting may not
yield the maximum amount of savings. (Larget and
Simon 1998) propose another algorithm that considers
site repeats. To identify repeated sites, at every node
their method builds one bit-mask (that is in size linear
to the number of taxa in the tree) for each site in
the alignment. However, since this process relies on
constructing and manipulating large bit-vectors at every
node, and relies on sorting them for finding identical
entries, it incurs a high computational overhead. (Valle
et al. 2014) present another method that focuses on
positive selection analysis, and that also deploys a
variation of site repeats to accelerate the PLF. The
authors implemented it into a redesigned, optimized
version of CodeML [from the PAML package (Yang
2007)] called FastCodeML and tested its performance
against the original CodeML package. Their method,
which is specific to codon models and limited to fixed
tree topologies, gives speedups of up to 5.8 over the
sequential version of CodeML.

Here we show that it is possible to reduce memory
requirements and attain a substantial acceleration of
the PLF by generalizing the aliasing and cherry
precomputation techniques. This can be achieved by
detecting all conditional likelihood entries at any node

in the tree, that yield identical likelihood values.
Computing these entries only once is sufficient to
calculate the overall tree likelihood or any of the omitted
(duplicate) entries. The algorithm we present can be
applied to both fixed and changing tree topologies. To
have a practical application, such an algorithm must
exhibit certain properties. First, the overhead incurred
by finding repeats must be relatively small such that the
overall PLF execution is faster. Second, the book-keeping
overhead must be small such that it does not increase
the PLF memory footprint. Third, the algorithm and the
corresponding data structures must be flexible enough to
allow for partial tree traversals. When evaluating new tree
topologies via some tree rearrangement procedure (e.g.,
nearest neighbor joining, subtree pruning and regrafting),
not all conditional likelihood vectors (CLVs) need to
be updated. An efficient method for calculating repeats
must take this into account and analogously only update
the necessary data structures for the partial traversal (i.e.,
a subset of conditional likelihoods). Thus, the overall
goal is to minimize the book-keeping cost for detecting
repeats such that the memory usage and run-time is
favorable. Furthermore, it is also necessary to consider
hardware related issues such as nonlinear memory
accesses which may lead to cache misses and expensive
loads from RAM. For that reason, the absolute speedup
of a new algorithm should be determined by using a
highly optimized software for PLF calculations and not
toy implementations.

We present a new, simple algorithm that satisfies the
efficiency properties described above; it detects identical
sites at any node of the phylogenetic tree and not only at
the (selected) root, and thus minimizes the number of
operations required for likelihood evaluation. It is based
on our linear-time and linear-space (on the size of tree)
algorithm for detecting repeating patterns in general,
unordered, unrooted, n-ary trees (Flouri et al. 2013,
2014). To obtain the desired run-time improvements, we
present an adapted version of this algorithm for the
PLF that reduces book-keeping overhead and relies on
two additional properties of phylogenies as opposed to
general multifurcating (or n-ary) trees. First, we assume a
bifurcating (binary) tree (although multifurcating trees
can be used by arbitrarily resolving multifurcations).
Second, the calculation of the so-called conditional
likelihood depends on the transition probability of one
state to another. These probabilities are not generally the
same for different branches in the tree. Thus, we only
consider identical nucleotide patterns to be repeats if
they appear at the tips of the same (ordered) subtree. We
test the performance of our method against PLL (Flouri
et al. 2015)—a library derived from RAxML (Stamatakis
2014)—which offers one of the most highly optimized
PLF implementations available. In particular, we show
that a prototype implementation of the PLF, that uses our
method, consistently outperforms the PLL/RAxML PLF
by a factor of 2–12. In addition, the memory requirements
are significantly lower, with cases where up to 78% less
memory is required in comparison to RAxML. For the
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theoretical part of this article and the sake of simplicity,
we assume that genetic sequences only contain the four
DNA bases (i.e., A, C, G, T). However, the approach we
present can be easily adapted to any number of states
(e.g., degenerate DNA characters with gaps or protein
sequence data). The data sets we use for benchmarking
our method are empirical DNA data sets that do contain
gaps and ambiguous characters.

ALGORITHM

First, we introduce the notation which we will use
throughout the article. A tree T= (V,E) is a connected
acyclic graph, where V is the set of nodes and E the set
of edges (or branches), such that E⊂V×V. We use the
notation (u,v)∈E to refer to an edge with end points
u,v∈V, and �u,v to denote the parameters associated
with it (such as branch length and evolutionary rate).
The set Tip(T) comprises the tip nodes. We use Tu to
denote a subtree of a (rooted) tree T rooted at node u.

The PLF
Before we introduce our method, it is necessary to give

a brief description of PLF computations. The likelihood
is a function of the states �, the transition probabilities P
for all branches, and the equilibrium frequencies of the
states �=⋃∀s∈�{�s}. In his seminal paper, (Felsenstein
1981) introduced the pruning algorithm, which is a
dynamic programming approach for calculating the
likelihood of a given tree T. The method iteratively
computes all conditional (or partial) likelihoods Li

u(s), that
is, the likelihood for a subtree rooted at node u, for site
i, assuming the state at node u is s, via a post-order
(bottom-up) traversal of the tree. Such a traversal always
performs the first computation at a cherry and conducts
computations at a node only after both its children were
visited. Now, let us assume an MSA of n sites (columns)
and m sequences constructed from s states (e.g., four
for nucleotide data). The conditional likelihood Li

u(s) of
any tip node u∈Tip(T) with the sequence x=x1x2 ...xn
is defined as

Li
u(s)=

{
1 : s∈xi
0 : s /∈xi

where xi is the set of observed states for site i. In the case
of inner nodes (i.e., u /∈Tip(T)), the conditional likelihood
for site i is defined as

Li
u(s)=

( ∑
∀sv∈�

Ps�→sv (�u,v)Li
v(sv)

)( ∑
∀sw∈�

Ps�→sw (�u,w)Li
w(sw)

)
,

(1)

where Px �→y(z) is the probability of generating a
substitution from state x to y given parameter z, and v
and w are the two descendants of u. We write the CLV
entries for all possible states at a particular site i of node

u as
Lu(i)=

⋃
∀s∈�

Li
u(s). (2)

Finally, the overall likelihood L for a rooted tree T with
root node r is computed as

L=
n∏

i=1

∑
∀s∈�

Li
r(s)�s. (3)

We evaluate the overall likelihood of an unrooted binary
tree at branch (u,v) as

L=
n∏

i=1

( ∑
∀su∈�

Li
u(su)�su

∑
∀sv∈�

Psu �→sv (�u,v)Li
v(sv)

)
. (4)

For more details on the PLF, see (Felsenstein 2004).

Site Repeats
Let Tu be the subtree of T that presents the

evolutionary relationships among the taxa at tip nodes
Tip(Tu). We denote the sequence of the i-th taxon xi=
xi

1xi
2 ...xi

n. Two sites j and k are called repeats of one
another iff xi

j=xi
k for all taxa i, 1≤ i≤|Tip(Tu)|, in Tu.

Obervation 1. Let u be a node whose two direct descendants
(children) are nodes v and w. Then, two sites j and k are repeats
in Tu if and only if j and k are also repeats in Tv and Tw.

Based on this observation, we can formulate the
algorithm for detecting site repeats in binary
phylogenetic trees. However, before we formalize the
algorithm, let us consider Figure 1. From Observation 1,
we see that the only repeating sites at the root node
(node u), are sites 2 and 5. This is obviously correct,
since both have the nucleotide pattern A C C T at the
tips.

Calculating Repeats
The method we propose identifies site repeats at each

node via a bottom-up (post-order) traversal of the tree,
meaning that a node is processed once the repeats for
its two children have been determined. As tip nodes
maintain only the trivial repeats of all sites that show
a common character (for DNA, A, C, G, or T), the method
always starts at a cherry. By construction, a cherry always
exists in any binary tree, and assuming four nucleotide
states, there are 16 possible combinations of homologous
nucleotide pairs in the sequences of its two tip nodes.
To assign a unique identifier to each nucleotide pair,
we use a bijective mapping � : �̂× �̂→{1,2,...,�̂2}, where
�̂ corresponds to the set of observed states (four for
nucleotides or 16 when considering ambiguities and
gaps). When dealing with DNA data, nucleotide states
are typically encoded into integer values. Most (if not
all) phylogenetic inference tools use the one-hot (also
called 1 out of N) encoding, which ensures that the binary
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(a) (b)

FIGURE 1. a) Sites 1,2, and 5 form repeats at node w as they share the same pattern A C. Another repeating pattern is located at sites 3 and
4 (C G) for the same node. Note that node v also induces a subtree with pattern A C at the tips. However, since branch lengths can be different
than for the subtree rooted at node w, the conditional likelihoods may differ as well. Analogously, sites 2 and 5 are site repeats for node v as they
have the same pattern C T, and hence the conditional likelihood is the same for those two sites. Finally, sites 2 and 5 form repeats for node u (A
C C T). b) Repeats are not necessarily substrings of MSA sites. For this particular tree topology, node v has two sets of repeats: sites 2 and 5 (A C
T) and sites 3 and 4 (C G G). The repeats are not contiguous in the alignment columns.

(a) (b) (c)

FIGURE 2. Identifier associations of nodes w (a), v (b), and u (c) for the tree from Figure 1a. The respective lists at the bottom store the
corresponding CLVs that are computed for each unique identifier. Table (a) shows that node w requires two likelihood computations (sites 1 and
3), whereas the remaining sites are repeats of those two. Tables (b) and (c) show the corresponding information for nodes v and u.

representations of encoded nucleotides have exactly one
bit set (e.g., A �→1, C �→2, G �→4, and T �→8). This
is beneficial, because ambiguities, which are typically
represented as disjoint unions of nucleotide characters
(e.g., R = { A, G}), can be encoded as the bit-wise OR (or
sum) of the corresponding nucleotide codes (e.g.,R �→5).
Assuming that the sequence data is already encoded into
integer values, we outline the method for identifying
repeats at each of the three possible node types: cherry
nodes (both its descendants are tip nodes), tip–inner
nodes (one descendant is a tip and the other an inner
node), and inner–inner nodes (both descendants are tip
nodes).

Tip–tip (cherry) case.—Let xv and xw be the (encoded)
sequences of length n at the two children v and w
of the parent node u. Each site i of u is assigned the
identifier �u(i)=�(xv

i ,xw
i ). By construction, this function

assigns the same identifier to all sites j which are repeats

of site i in Tu [by Observation 1, xv
j =xv

i , xw
j =xw

i , and
thus �(xv

j ,xw
j )=�(xv

i ,xw
i )=�u(i)]. Figure 2 illustrates the

assignment of identifiers to nucleotide pairs at the tips
for the example in Figure 1. For every identifier k∈
{�u(i) | 1≤ i≤n}, we compute the CLV entries of only the
first site that was assigned k. These entries correspond
to the unique CLV values for node u. By Observation 1,
if a site j is a repeat of site i (i.e., both sites are assigned
the same identifier), then the method can either (i) copy
the CLV from site i (run-time saving), or (ii) completely
omit the likelihood value, since it can always retrieve it
from site i (run-time and memory saving). Furthermore,
by Observation 1, we know that each repeat is identified
by this method.

Tip–inner and inner–inner cases.—We proceed
analogously to detect repeats at nodes for which
at least one child is an inner node. Again, let u be
the parent node and v and w the two child nodes for
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FIGURE 3. Identifiers (here �x) are shown for every site of the alignment at every node in the tree. As we have already observed, sites 2 and
5 are repeats at node u, and thus, have been assigned the same identifier. For simplicity, identifiers at tip nodes are represented as nucleotide
bases.

which we already computed all repeats. Further, let
�v(i) and �w(i) be the respective identifiers of v and w
at site i. In case one of the two nodes, say v, is a tip,
then its identifier �v(i) is set to the encoded value of the
observed states at site i. A site j of node u is a repeat
of some other site i, iff the child node identifiers �v(i)
and �w(i), are identical (one-to-one) with the identifiers
�v(j) and �w(j). Therefore, the problem of detecting
repeated sites is equivalent to finding duplicate records
(in our case “pairs of identifiers”) in a hash table or
index structure. Here, for simplicity, we use a multilevel
table structure for indexing the identifiers. Let vmax be
the maximum value of �v(i) and wmax the maximum
value of �w(i) over all sites i. Those values represent the
number of unique sites at nodes v and w, and hence
there cannot be more than vmax×wmax unique sites
at u. Thus, we construct a vmax×wmax integer matrix
M, where element M�v(i),�w(i) indicates that either (a)
the identifiers �v(i) and �w(i) were not observed for
another site before (in which case M�v(i),�w(i)=0), or (b)
they were observed for a site which was assigned the
identifier M�v(i),�w(i). Therefore, we query the element
M�v(i),�w(i) for each site i of u. If it is the first time a
particular site is observed, we create a new, unique
identifier ident, and assign it to M�v(i),�w(i) and �u(i).
In practice, ident is a simple counter initialized to one,
which we increase each time a new pair of (so far
unique) identifiers is detected. The CLV for site i is
then calculated and stored at position ident of an array
called LH. Any subsequent site j with identical child
node identifiers as site i [i.e., �v(j)=�v(i), �w(j)=�w(i)],
yields a nonzero value when querying entry M�v(j),�w(j).
The retrieved value M�v(j),�w(j) is the identifier of site
i and we use it to (a) set the identifier of site j [i.e.,
�u(j)←M�v(j),�w(j)], and (b) retrieve its CLV entries from
LH(M�v(j),�w(j)).

Figure 2c demonstrates the identifier calculation at
node u for the example tree and MSA from Figure
1, whereas Figure 3 shows the combined overall
result. The listing in Figure 4 outlines the algorithm
REPEATS(u,v,w,�), which calculates the CLV for a node u
given child nodes v and w, taking into account site repeat

information. We will use the basic algorithm REPEATS to
gradually build the complete method, that performs a
post-order traversal over all nodes of tree T, and which
incorporates the memory saving technique to reduce
memory requirements. For that, we first explain how our
method maintains the lookup table M and the additional
auxiliary data structures, and then we describe in detail
the memory saving technique.

Lookup table.—Since our focus is on an efficient
implementation of the algorithm, we need to consider
some technical issues in more detail. First, matrix M
(defined in algorithm REPEATS) can, in the worst case,
become quadratic in size with respect to the number of
sites in the alignment. This is unfortunate, since filling M
affects overall asymptotic run-time. However, in terms of
practical space requirements, M may be allocated only
once and subsequently be reused for each inner node. A
linear list clean with one entry per MSA site, can be used
to keep track of which entries are valid, that is, contain
identifiers assigned to sites of the current node, and
which entries are invalid and contain identifiers assigned
to the sites of a preceding node. After assigning an
identifier i to a site of node u, which we store in the array
M, for example, at position d, we also store the pair (d,u)
in array clean at position i. When we process a different
node, say v, and by chance, decide to assign the same
identifier i to some site, and again, by chance, the location
for which we have to query matrix M is d, the element
clean[i] helps us distinguish between valid and invalid
records in M. Invalid records are treated equivalently
to empty records and are overwritten. Further, in the
actual implementation we limit the size of M to a
constant maximum size. We implement this limit to
adapt the impact of the quadratic complexity for filling
M. Additionally, as M grows larger (i.e., we move closer
to the root of the tree), it becomes increasingly less
likely to encounter repeats in the alignment. Thus, if the
product of maximum identifiers for two child nodes at
some node u (i.e., vmax×wmax) exceeds our threshold
for the size of M, we do not calculate repeats any more.
Instead, the CLV entries are calculated separately for
all sites as in standard PLF implementations. In other
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210 SYSTEMATIC BIOLOGY VOL. 66

FIGURE 4. The algorithm to compute the CLV of a parent node u. The most costly operation is the calculation of the CLVs, expressed here as
Lu(i) [see Equation (2)]. The algorithm minimizes the number of calls to this function by taking into account site repeats.

words, if calculating repeats becomes disadvantageous,
repeat calculations are omitted. This allows to trade
repeat detection overhead, against PLF efficiency. In
section “Computational Results,” Table 2 gives an
overview of the size of M for different data sets. Other
methods with fast lookup times, such as hashing the
pairs of identifiers, may work equally well as a constant
size lookup table and, in fact, reduce the memory
footprint and, consequently, cache misses. The constant
size matrix M defined here was chosen for simplicity of
presentation and implementation.

Memory savings.—Notice that, given algorithm REPEATS,
not all entries in the CLVs of child nodes v and w are
needed to calculate the CLV at the parent node u. In
particular, the CLV entries at site i for nodes v and w
are only needed if the CLV at site i must be computed for
u (see Fig. 5). In fact, the CLV entries that are necessary
to keep for any node (e.g., for computing the CLV of its
parent node), are the ones stored in array LH. This array
is filled by executing algorithm REPEATS and contains
only the unique CLV entries. Hence, we can replace
the CLV array with the LH array, and, when needed,
access the entries of site i from LH[�u(i)]. In practice, this
observation allows us to reduce the memory footprint of
the PLF significantly, as each CLV entry stores more than
one single or double precision floating point value. For
example, RAxML stores one double precision floating
point number (typically 8 bytes) per DNA character and
per evolutionary rate for each CLV entry. Typically, the

FIGURE 5. Not all sites are needed for the likelihood calculation at
parent node u. According to the identifiers of this example, sites 2 and
5 are repeats of site 1, and site 4 is a repeat of site 3. Therefore, the CLVs
at sites 2, 4, and 5 do not need to be computed nor stored, as the CLV
for sites 2 and 5, and site 4, of node u can be copied from sites 1 and 3.

� model of rate heterogeneity is used [see (Yang 1994)]
with four discrete rate categories. Thus, the memory
footprint of a standard PLF algorithm for a MSA with
n sequences of length m is 8×4×4×(n−2)×m bytes.
On the other hand, storing the site identifiers at each
node only requires a single, unsigned integer per site.
Thus, the memory required for storing CLVs without
compression is 4×4=16 times higher than that of the
site identifier list.

Thus, despite the fact that we need additional data
structures, and hence space for keeping track of site
identifiers, the memory requirements (if we do not store
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FIGURE 6. Full description for computing all CLVs of a tree T with the memory saving technique and site repeat detection. Input parameters
are a tree T of m taxa, the encoded sequences of size n (denoted xu for the sequence at tip node u), and the size tsize of the matrix M used for
indexing site repeats. The algorithm computes only the necessary CLVs required for evaluating the likelihood of tree T and skips PLF calls on
repeated sites.

duplicate CLV entries) are smaller than those of standard
production level tools (Flouri et al. 2015; Stamatakis
2014). While the identifiers are not the only additional
data structures required for the actual implementation
of the algorithm, the above argument indicates that
storing fewer CLV entries can save substantial amounts
of RAM. The overall algorithm, with memory savings
and a bounded M, is given by algorithm REPEATS-FULL
in Figure 6. One of the main differences compared to the
snippet of Figure 4, is the introduction of a new array
(maxid) which stores the maximal identifier assigned to
each of the 2m−1 nodes of the rooted tree T (assuming
T has m tip nodes). Thereby, we eliminate the run time
O(n) required for finding the maximal identifiers of the
two child nodes (lines 3–6 in Fig. 4) at the cost of �(m)
memory. The second difference is that we can no longer
use the original set Lu(i) for the CLV entries of a site i
at a node u. This is due to the memory saving technique
that omits the computation and storage of duplicate CLV
entries as illustrated in Figure 5. The problem here is
that the CLV entries of the two children v and w may not

reside at position i because repeats might have occurred.
Instead, by construction of the identifiers �v(i) and �w(i),
the correct values can be found at entries L�v(i)

v and L�w(i)
w .

To take this into account, we define a new CLV L̂u(i)
analogously to Equation (1) as:

L̂u(i)=
⋃
∀s∈�

( ∑
∀sv∈�

Ps�→sv (�u,v)L�v(i)
v (sv)

)

( ∑
∀sw∈�

Ps�→sw (�u,w)L�w(i)
w (sw)

)
.

Note that, in the algorithm REPEATS-FULL, L�v(i)
v and L�w(i)

w
are extracted from CLV[v,�v(i)] and CLV[w,�w(i)].
Observation 2 (Run-time). Algorithm REPEATS-FULL
computes all site repeats, and the corresponding CLVs, in
linear time with respect to the size of the alignment (number
of sites × number of sequences), provided the allocated
table M.
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This observation holds by inspection. For a description
of the general, linear-time and linear-space algorithm that
identifies all repeats in arbitrary n-ary trees and forests,
see Section 3a of (Flouri et al. 2014). Since that algorithm
relies on several sorting steps using bucket sort—a
linear-time sorting method not based on the comparison
model—it could, in practice, be slower than the method
we present here, which only queries a lookup table.
To compute all repeats, our method requires quadratic
space (with respect to the number of sites) in the worst
case, which, however, is allocated only once and reused
for each node. When less memory is allocated, our
method skips repeats identification for nodes where the
product of unique site repeats for its two child nodes is
larger than the entries of the allocated lookup table (i.e.,
low number of repeats). This is advantageous, since the
overhead of repeat identification for such nodes could
potentially cancel out the run-time savings.

Finally, when creating parallel implementations of the
PLF that take advantage of our method, it is important
to have in mind that sites do not necessarily have the
same computational cost. A simple, shared-memory
parallelization scheme that uniformly distributes the
computation of a node’s CLV entries across threads
requires a modification, as not all entries need to be
computed, and therefore, distributing the computation
uniformly, could end up in load imbalance. However,
when identifying repeated entries, the memory saving
technique can be adjusted to weigh the computational
cost for each entry by assigning a weight of (i) one to
entries that require calculation, and (ii) the proportion
of time required to copy a CLV entry compared to
calculating it for entries that will only be copied (repeats).
Therefore, we can divide the load across threads such
that the total weight is equally distributed. This can be
trivially accomplished with an additional loop over the
calculated weights. For more involved parallelization
schemes, as presented by (Kobert et al. 2014), that
are suitable for large scale computing, (Scholl et al.
2016) discuss a number of heuristic approaches for
distributing load balance across computing nodes.

COMPUTATIONAL RESULTS

We implemented a prototype of our algorithm in
a new, low-level implementation of the PLL (Flouri
et al. 2015) (which we refer to as LLPLL), that does
not make use of the highly optimized PLF of PLL,
but allows for a straightforward implementation of
our algorithm. To demonstrate the applicability of
our method under different settings, we created two
implementations; one suitable for Site Repeats with
Dynamic changing Topologies (SRDT) and one suitable
for fixed, Site Repeats with Constant Topologies (SRCT).
The first variant (SRDT) assumes no prior knowledge
of the site repeats of a tree topology, and therefore,
computes them before each PLF call. This variation is
required for tree space exploration as site repeats change
every time the tree topology is modified. The second

variant (SRCT) computes site repeats only once as part
of an initialization step. Assuming a constant, fixed
topology, the PLF reuses the precomputed information
from the initialization step at each invocation, as site
repeats remain unchanged. This variant is suitable for
applications where no tree exploration is performed, as,
for example, in divergence time estimation (Heath et al.
2011) and model selection (Abascal et al. 2005), or during
tree inference when parameters such as substitution
rates or the 	 shape parameter of the gamma distribution
are optimized.

To assess the performance of our method, we
compared it with the sequential AVX-vectorized
PLF implementation of the PLL which uses the
same, highly optimized, PLF as RAxML. We selected
PLL/RAxML because (i) it is our own code and hence
we have a thorough understanding of it and (ii) it
is currently among the fastest and most optimized
PLF implementations available. This guarantees a fair
comparison (i.e., determining the absolute speedup)
and ensures that our method can truly be used in
practice for speeding up state-of-the-art inference tools.
We compare against two flavors of PLL: the plain
version (we refer to it as PLL) and the memory saving
SEV-based implementations of PLF (accessible through
the -U switch in RAxML) which we refer to as PLL-SEV.
The latter is faster and requires less memory than the
former in the case of particularly gappy alignments
(Stamatakis et al. 2002). To obtain an accurate speedup
estimate of our method, we vectorized the LLPLL
likelihood function using AVX instructions. However,
since LLPLL is in an early development phase, the
PLL is still slightly faster by a factor of, approximately,
1.02–1.08 than LLPLL (without site repeats), as we
show further. Despite this fact, we show that using our
method, the LLPLL in its current state outperforms
both PLL and PLL-SEV by up to a factor of 12.35. Our
prototype implementation is available at http://www.
exelixis-lab.org/web/software/site-repeats/.

Data sets.—For performing the experiments, we used
one simulated (data set 7764) and nine empirical
(corresponding to various bacterial, plant, and animal
organisms) DNA data sets which are summarized in
Table 1. All data sets contain gaps and ambiguous
DNA characters and they have been used as benchmark
data in previous PLF acceleration studies (Stamatakis
and Alachiotis 2010; Stamatakis 2014). Table 1 also
reports the percentages of gaps and site repeats in the
alignments. The amount of gaps is important, as it affects
the performance of the PLL-SEV implementation. The
percentages of site repeats are given for an arbitrary
rooting of the parsimony trees calculated for these data
sets using RAxML. While the data set with 2000 taxa
exhibits the lowest percentage of site repeats, it still
has 86.95% repeats (which directly translate to identical
conditional likelihood entries). We want to emphasize
here that we did not choose these data sets based on
their repeat percentages. In fact, the fraction of site
repeats for each data set was previously unknown to
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TABLE 1. Summary of nucleotide data sets

Data set/sequences 59 128 354 404 500 994 1 512 2 000 3 782 7 764
Sites 6951 29,198 460 13,158 1398 5533 1577 1251 1371 851
Repeats (%) 92.04 91.78 94.65 96.49 89.43 94.63 90.09 86.95 94.18 87.62
Gaps (%) 44.24 32.48 14.71 78.92 2.25 71.39 3.02 12.65 2.70 20.60

Notes: For each data set, sites present the length of the provided MSA, and repeats denote the amount of sites over all nodes that are repeats of
another site at the same node. The amount of repeats depends on the tree topology, the selected root, and the MSA. The (unrooted) trees were
obtained by running a maximum parsimony tree search for each of the data sets and we randomly chose one node as the root to estimate the
number of repeats.

TABLE 2. Summary of memory requirements for each method to evaluate the PLF at a random rooting of the parsimony tree

Sequences 59 128 354 404 500 994 1512 2000 3782 7764
Sites 6951 29,198 460 13,158 1398 5533 1577 1251 1371 851
Memory PLL (MB) 53 474 24.5 680 93 707 312 328 678 875
Memory PLL-SEV (MB) 46 403 21.5 326 93 256 308 297 674 819
Memory SRCT/SRDT (MB) 32 303 7.5 202 34 164 104 120 171 298
Table size 5.3 168.69 0.07 23.5 0.82 6.6 2.9 2.4 2.8 0.87

Notes: The table size entry specifies the size of the lookup table M of Algorithm REPEATS-FULL required to compute all possible repeats. It is
presented in millions of entries (unsigned integers) and hence, its size in MB is four times as high as the presented numbers. The entries for
“Memory SRCT/SRDT (MB)” already include the table size in MB. For the data set with 128 species only a table of 200 MB is allocated, as the
table size is bounded by this number for our experiments.

us. All data sets used for testing, are available online
at https://github.com/stamatak/test-Datasets.

Experimental setup.—For assessing the performance of
our method, we conducted five types of experiments that
cover the typical PLF use cases. First, we exhaustively
assess the performance of full traversals for all possible
rootings of the parsimony trees on two MSAs. Second,
we assess the performance of full traversals on all 10
MSAs for a limited number of random rootings. Third,
we evaluate the performance for partial traversals, that
is, when not all CLVs need to be recomputed. Fourth,
we assess the performance of our method on fixed tree
topologies. In this setting, preprocessing of site repeats
is done only once and not at each invocation of the
PLF. Finally, using the three empirical multi-gene data
sets in our collection, we determine the amount of
memory required for maintaining the repeat tables when
performing partitioned analysis. For the experiments,
we used a 4-core Intel i7-2600 multi-core system with 16
GB of RAM. To eradicate the potential impact of server-
side events such as context-switching or performance
peaks of running processes, we always executed several
(usually 10,000) independent likelihood computations.
Also note that for all run-time comparisons, we focus
purely on the PLF evaluation. Branch lengths and model
parameters are fixed and remain unchanged as they do
not impact the run-time of PLF.

Table 2 presents the memory savings due to site
repeats together with the actual size of the lookup
table for preprocessing all repeats. In the experiments,
the size of the lookup table was bounded to 200 MB
which corresponds to roughly 50 million entries (namely
unsigned integer values). The actual memory for the
lookup table was only allocated as needed. For most
data sets, less than 200 MB of RAM was required. The

notable exception is the data set containing 128 taxa,
which requires 168.69 million entries (roughly 680 MB)
to compute all site repeats. Since we bound the size of
M to 200 MB, not all repeats were preprocessed when
analyzing this particular data set.

Exhaustive Evaluation of All Rootings
To get an initial estimate of the impact of distinct

rootings on run-time, we used data sets 59 and 354 to
evaluate the PLF at each terminal edge (an edge whose
one end-point is a tip node) of their respective parsimony
tree. This choice of rootings was selected because PLL
requires that likelihood evaluations using full traversals
of unrooted trees start at terminal edges. For each
such rooting, we executed 10,000 independent PLF
computations using each of the four implementations:
the LLPLL (without site repeats), SRDT (LLPLL with our
method), PLL, and PLL-SEV. For SRDT, we bounded the
table size M to 200 MB, which, according to Table 2, is
sufficient to find all repeats for these two data sets.

Table 3 summarizes the results of the experiments.
PLL is, on average, 1.08 times faster than LLPLL on data
set 59 and 1.02 times faster on data set 354. PLL-SEV
has a slightly better run-time than PLL, and is 1.17 times
faster than LLPLL on data set 59 and 1.09 times faster on
data set 354. The difference in speed between LLPLL and
PLL/PLL-SEV can be explained by two factors. First, PLL
is a highly optimized software for PLF calculations that
was directly derived from RAxML, which in turn, has
been developed and optimized for over 10 years, whereas
LLPLL is in an early phase of development. Second,
the standard optimization technique explained in the
introduction, namely, the precomputation of conditional
likelihoods for all combinations of two states with the
subsequent querying from a lookup table (for tip–tip
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TABLE 3. Summary of run-times for evaluating the PLF at each terminal edge of the parsimony trees (data sets 59 and 354)

Data set 59 Data set 354

Implementation Minimum Maximum Average SD Minimum Maximum Average SD

PLL 132.73 141.03 134.77 1.66 57.57 61.067 58.11 0.54
PLL-SEV 122.56 132.34 124.73 2.05 55.13 57.299 54.45 0.41
LLPLL 143.98 148.24 145.68 0.72 58.08 59.95 59.14 0.27
SRDT 27.04 37.25 31.8 2.53 8.81 12.22 9.9 0.64

Notes: Presented are the minimum, maximum, and average run-times over all rootings for each of the four implementations, and for each data
set, along with the SD of run-times among all rootings.

TABLE 4. Speedups obtained when evaluating the PLF using SRDT over PLL and PLL-SEV for each of the 10 data sets

Summary of speedups obtained using SRDT for a sample of rootings

Data set 59 128 354 404 500 994 1512 2000 3782 7764
Speedup over PLL 4.25 3.75 6.44 6.04 3.39 5.12 3.67 3.06 4.76 3.3
Speedup over PLL-SEV 3.88 3.41 6.22 3.3 3.56 2.08 3.84 2.93 5 3.32

Notes: SRDT is consistently faster than both methods. Speedups are computed as fractions of average run-times over 10 random rootings.

cases), is not implemented in LLPLL yet. This missing
feature affects performance. Despite this fact, SRDT is on
average 4.24 times faster than PLL and 3.92 times faster
than PLL-SEV for the “gappy” data set 59. Similarly, for
data set 354, SRDT is on average 5.87 times faster than
PLL and 5.5 times faster than PLL-SEV. Note that, the
standard deviation (SD) for SRDT is higher than PLL
(and PLL-SEV), which is expected given that the amount
of repeats changes with different rootings.

Evaluation of a Sample of Rootings
For the comprehensive comparison of full tree

traversal times between SRDT and PLL, we use
nucleotide data sets ranging from 59 to 7764 taxa
(see Table 1). We measured the run-times for 10
different rootings chosen at random, and which are
not necessarily the same for SRDT and the PLL
implementations. However, this comparison is sufficient
given the SD among the run-times of different rootings
computed for the exhaustive comparison of data sets 59
and 354. We again restricted the rootings to terminal
branches, and for each of the 10 random rootings, we
executed 10,000 full tree traversals. For each of the
three implementations (SRDT, PLL, and PLL-SEV) we
computed the average run-time over all 10 rootings. Table
4 shows the speedup of SRDT compared to PLL and
PLL-SEV. As we see, SRDT is consistently at least three
times as fast as PLL. In fact, the lowest observed average
speedup is 3.3 compared to PLL and 2.08 compared to
PLL-SEV. The maximal observed speedup was for the
MSA with 354 taxa, where SRDT is 6.44 times faster than
PLL. On the other hand, the largest decrease in speedups
when comparing against PLL-SEV is observed for data
sets 404 and 994 which comprise over 70% gaps. Note
also that run-times for PLL-SEV were higher than for
PLL on data sets with a low amount of gaps, such as 500,
1512, 3782, and 7764.

Partial Traversal Performance
In phylogenetic inference, it is not always necessary

to perform full tree traversals to calculate the overall
likelihood of a tree. In particular, when conducting BI or
ML tree searches that deploy local topological updates
using, for instance, nearest neighbor interchange or
subtree pruning and regrafting moves, only the CLVs of a
subset of tree nodes need to be recomputed. Depending
on the topological update, those CLVs may be located
at the inner part of the tree where the number of
repeats is lower. We assessed the performance of our
approach for this scenario by emulating partial CLV
updates as follows. For each parsimony tree, we choose
two adjacent nodes (sharing an edge) at random and
place them in an empty list of nodes whose CLVs are
to be updated. Next, with probability P, we choose
whether to continue adding nodes to the list or stop
(with probability 1−P) the procedure. If we choose to
add nodes, we randomly pick one (unvisited) adjacent
inner node to each of the (at most) two nodes selected
in the previous step, and add them to the list. The
procedure is repeated until we choose to stop or until
no single inner node is available anymore for selection.
This pattern of CLV updates emulates the topological
moves described by (Lakner et al. 2008) for BI. As
mentioned before, in addition to the time spent in the
PLF, other factors, such as branch length and model
parameter optimization for ML, also contribute to the
overall execution time. Here, we concentrate only on
measuring the time for calculating the PLF. We used
the method described above to simulate 10 partial
CLV updates for each data set from Table 1. Each
simulation consists of a path of nodes generated from a
randomly chosen pair of adjacent nodes with probability
P set to 0.95. We calculated each CLV along the path
10,000 times and measured the total execution time
for LLPLL and SRDT. Figure 7 presents the individual
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FIGURE 7. Run-time improvements of the SRDT method over LLPLL,
plotted against the average number of CLV updates. Each data set is
represented by 10 measurements for 10 different nodes.

speedups for each data set and each simulation, plotted
against the number of nodes updated for the particular
simulation. We did not compare SRDT to PLL/PLL-
SEV since a fair comparison requires that exactly the
same partial updates are evaluated, which is difficult to
achieve given the different internal structures of the two
implementations. Therefore, the speedup for the partial
updates is not the absolute speedup for different PLF
implementations. Instead, our results show the relative
speedup that can be achieved by incorporating our
method into any PLF implementation.

Performance on Fixed Topologies
Many phylogenetic tools use a fixed tree topology

on which the likelihood is repeatedly evaluated while
other parameters, such as substitution rates and branch
lengths, are modified. Divergence times estimation
(Heath et al. 2011) and model selection (Abascal et al.
2005) are typical representations for this setting. With
fixed topologies, repeats can be precomputed once in an
initialization step and then reused for subsequent PLF
invocations. We tested our method under this setting,
by evaluating the likelihood 10,000 times, rooted at 10
randomly selected terminal edges of the parsimony trees
of each of the 10 data sets. We averaged the run-time over
the 10 rootings and report the speedups of SRCT over
PLL and PLL-SEV in Table 5. We computed the speedup
for each data set as the ratio of the average run-time of
PLL or PLL-SEV from section “Evaluation of a sample
of rootings” divided by the average run-time of SRCT.
Data set 994 yields the lowest speedup over PLL-SEV,
which is due to the high number of gaps in the data set,
followed by data set 2000 which has the lowest number
of repeats. On the other hand, the highest speedup of
SRCT over PLL-SEV was for data set 354 which has a
high number of repeats combined with a low amount
of gaps. As expected, the highest speedup of SRCT over
PLL is observed for data set 404, since it has the highest
amount of repeats among all data sets.

Partitioned Analyses
We performed partitioned analysis on the three

empirical multi-gene data sets (59, 128 and 404) in
our collection to compare the accumulated memory
requirement of per-partition repeat tables against
single repeat tables from unpartitioned analyses. This
experiment is of high practical relevance because typical
phylogenetic analyses are partitioned nowadays. Table
6 provides a summary of the per-gene partitions of
each data set, the required per-partition table size for
computing all repeats, and the per-partition speedups
over PLL-SEV. For measuring the speedups, we used the
same parsimony trees from the previous experiments,
and computed an average run-time over 10 random
terminal edge rootings. As in the rest of the experiments,
the rootings may not be the same between PLL-SEV and
LLPLL. Similarly to Table 2, per-partition table sizes are
presented in millions of entries (unsigned integers). One
important result is that the accumulated table size for
each partitioned data set is considerably smaller than
the table size required for processing single-partitioned
data sets (see Table 2). Compared to their single-partition
counterparts, dataset 59, 128 and 404, require 10, 13,
and 6 times less memory for storing the per-partition
tables. Not surprisingly, this is due to the way we index
elements in the table (see line 21 of Figure 6). This kind
of indexing may cause the table to grow quadratically
to the maximum number of unique repeats at a node,
which in turn, increases with the size of the alignment.

CONCLUSION

The PLF is among the computationally most time-
consuming functions in evolutionary biology and often
constitutes the largest portion of total run-time in
analyses involving PLF calculations. Especially in the
era of genomics, where datasets comprise thousands or
even millions of alignment sites (Jarvis et al. 2014; Misof
et al. 2014), accelerating the PLF can save weeks or even
months of CPU time.

We introduce a novel method for quickly identifying
all repeating site patterns, and consequently, minimizing
the number of operations required for evaluating the
PLF. It is based on our linear-time and linear-space
algorithm for identifying repeating subtrees in general
labeled, unordered, n-ary trees. Our new method is
optimized to work with phylogenetic trees (rooted or
unrooted binary trees) and discards many of the hidden
constants behind the complexity of the original method
for n-ary trees. Moreover, its simplicity allows it to be
incorporated into virtually any PLF implementation.

To measure the speed of the PLF during tree searches
or model parameter optimizations, we compared a
prototype implementation of our method against PLL—
a library derived from the RAxML code—which uses one
of the fastest and most highly tuned implementations
of the PLF. Using empirical and simulated data,
we measured the speedup under different, realistic
settings. For fixed and dynamically changing tree
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TABLE 5. Speedups obtained using the SRCT method which considers a fixed topology over the PLL and PLL-SEV

Summary of speedups obtained using SRCT when considering fixed topologies

Sequences 59 128 354 404 500 994 1512 2000 3782 7764
Sites 6951 29198 460 13158 1398 5533 1577 1251 1371 851
Speedup over PLL 7.56 5.66 11.6 12.35 5.39 10 5.84 4.59 8.45 4.94
Speedup over PLL-SEV 6.89 5.16 11.2 6.74 5.66 4.03 6.12 4.39 8.85 4.96

TABLE 6. Summary of per-partition table sizes for data sets 59, 128, and 404

Partition Sites Speedup Table size Partition Sites Speedup Table size

Data set 59: Poaceae

5.8S 160 6.64 0.001 ndhf1st 2183 4.82 0.24
cprs 364 2.78 0.053 phyb3rd 1182 4.18 0.08
gbss13rd 774 4.64 0.016 rbcl1st 1344 6.27 0.033
its2 264 2.25 0.06 rpoc23rd 680 3.39 0.038

Data set 128: Mammalia

12S_rRNA 860 3.79 0.28 Cytb 1149 3.25 0.74
16S_rRNA 1275 3.89 0.36 EDG1 978 5.51 0.085
ADORA3 330 4.72 0.025 IRBP 1233 4.32 0.45
ADRB2 833 5.32 0.08 ND1 963 3.41 0.56
APOB 1335 4.14 0.47 ND2 1050 2.92 0.85
APP 717 4.12 0.09 ND3 349 2.76 0.1
ATP6 681 2.94 0.24 ND4L 297 2.77 0.057
ATP7A 684 4.26 0.095 ND4 1378 3.07 0.99
ATP8 213 2.43 0.048 ND5 1836 2.85 2.69
BDNF 582 5.59 0.024 ND6 555 2.9 0.23
BMI 340 5.30 0.0086 PLCB4 373 3.37 0.067
BRCA1 2934 3.85 2.38 PNOC 333 4.21 0.022
CNR1 993 6.06 0.069 RAG1 975 4.93 0.088
COX1 1557 3.82 0.77 RAG2 444 5.01 0.024
COX2 708 3.21 0.22 tRNAs 1341 3.84 0.46
COX3 804 3.35 0.24 TYR 426 4.37 0.028
CREM 468 4.28 0.04 ZFX 204 5.55 0.0022

Data set 404: Poaceae

ndhF 2161 4.2 1.17 rbcL 1437 5.06 0.28
rpoC2 802 2.94 0.24 phyB 1218 3.8 0.28
tRNA 1646 2.8 1.15 psbA 1020 3.56 0.002
rps4 588 5.56 0.0027 rps16 1025 2.84 0.032
adh1 852 3.37 0.03 matK 1581 4.43 0.22
its1, 5.8S, its2 828 2.63 0.33 — — —

Notes: All table sizes are presented in millions of entries (unsigned integers) and indicate the size of the lookup table M required to compute all
possible repeats. When performing partitioned analysis, data set 59 requires a total of 0.521 million entries, data set 128 requires 12.88, and data
set 404 requires 3.74. We also present the speedups over PLL-SEV for evaluating the PLF for each partition.

topologies, we observe an up to 12-fold speedup.
For partial CLV updates, that is, when only a small
number of CLVs is recomputed due to a topological
rearrangement of the tree, we still observe an up to
5-fold speedup. Furthermore, our method, including
the book-keeping information for site repeats requires
significantly less memory than PLL, sometimes up to
78% less. Using empirical data, we also show that
the book-keeping storage requirements for partitioned
analyses are significantly smaller than for unpartitioned
analyses (up to 13 times less), which is particularly
important for optimizing large phylogenomic analyses.

Moreover, the table used for book-keeping information
is flexible, and can be dynamically adjusted, for example,
in an “auto-tuning” step, to determine the table size—
and consequently the amount of identified repeats—
that minimizes PLF run-time. When the allocated
table size is exceeded (e.g., at a node with a small
amount of repeated sites), our method will omit
repeat identification for all subsequent nodes, as the
amount of repeats decreases towards the root of
the tree. This allows our method to omit repeat
computations at nodes for which calculating them is
disadvantageous.
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SUPPLEMENTARY MATERIAL

Data available from the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.8f0c8.
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