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Model-based design of experiments in the presence of
structural model uncertainty: an extended information

matrix approach
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aDepartment of Chemical Engineering, University College London (UCL), Torrington5

Place, WC1E 7JE London, United Kingdom

Abstract

The identification of a parametric model, once a suitable model structure is pro-
posed, requires the estimation of its non-measurable parameters. Model-based
design of experiment (MBDoE) methods have been proposed in the literature
for maximising the collection of information whenever there is a limited amount
of resources available for conducting the experiments. Conventional MBDoE
methods do not take into account the structural uncertainty on the model equa-
tions and this may lead to a substantial miscalculation of the information in the
experimental design stage. In this work, an extended formulation of the Fisher
information matrix is proposed as a metric of information accounting for model
misspecification. The properties of the extended Fisher information matrix are
presented and discussed with the support of two simulated case studies.

Keywords: model identification, maximum likelihood, design of experiments,
Fisher information

1. Introduction10

Many chemical and biochemical systems of interest in chemical engineering
are too complex for allowing the identification of the exact mathematical laws
governing the phenomena. The identification of comprehensive model struc-
tures is hindered by observability limits (e.g. impossibility of measuring some
physical quantities) and/or practical limits (e.g. excessive experimental cost)15

[1]. Due to these limitations, the aim of the scientist is recast in terms of
identifying the model structure that represents an optimal compromise between
model identifiability and model descriptive capabilities [2]. The identification
of such compromise may be extremely challenging and it may result in the con-
struction of model structures that embody a certain degree of misspecification.20

Whenever experimental evidence highlights the presence of model misspecifica-
tion, the following research activities may focus on finding the answer to the
following questions:

1. what is the best way of planning the future experimental activities to
estimate parameters in a model affected by misspecification?25
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2. is it possible to define data driven criteria to diagnose the source of model
misspecification and provide guidance for improving the model structure?

The objective of this work is to pave the way to the development of a frame-
work for guiding both the modelling and the experimental activities whenever
there is a high uncertainty on how to describe a physical system. Specifically,30

this work is concerned with parameter estimation and experimental design prob-
lems in the presence of misspecified model structures.

In the field of linear regression, where models are algebraic expressions that
are linear in both the parameters and the variables, the effect of fitting a mis-
specified model to experimental data is well studied [3, 4]. In a linear modelling35

framework there are two types of misspecification [3]: 1 ) the inclusion of ex-
traneous variables in the model; 2 ) the omission of relevant variables from the
model. The effect of omitting a variable generally produces a bias in the pa-
rameter estimates, i.e., there is a discrepancy between the expected value of the
estimates and their true value [3]. In nonlinear regression, model misspecifica-40

tion types span over a much wider spectrum and cannot be classified exhaus-
tively within the two aforementioned categories. Furthermore, true values for
the parameters may not exist and the statistical concepts of biased and accu-
rate estimates are not applicable in classical terms. The parameter estimation
problem in nonlinear misspecified models has already got the attention of the45

scientific community [5–7]. However, despite the contribution of many scientists
in the field of regression and experimental design, a general framework for the
identification of misspecified model structures is yet to be established.

A variety of model-based design of experiments (MBDoE) techniques were
proposed in the literature for designing experiments with the aim of improving50

the statistical quality of the parameter estimates. Conventional MBDoE meth-
ods for parameter precision are based on the solution of an optimisation problem
where the objective function to maximise is a metric of information. Usually the
design metric is a scalar quantity (e.g. the determinant) of the expected Fisher
Information Matrix (FIM) [8]. Once the experiment is performed, data are col-55

lected and included in the parameter estimation problem and the observed FIM
can be computed. The existing MBDoE frameworks implicitly assume that the
model structure adopted at the experimental design stage is exact [9–12], i.e.
the expected value for the model residuals is assumed to be null. Few works
have been proposed in the scientific literature to address the problem of optimal60

experimental design in conditions of high system uncertainty. Specifically, the
main sources of uncertainty that were considered in the available scientific lit-
erature are: the presence of significant, unknown measurement noise [13, 14] or
the presence of significant unknown random inputs to the system [14]. However,
the problem of the MBDoE under structural model uncertainty has not received65

much attention from the scientific community.
Fisher information measures the sensitivity of the model responses to a vari-

ation in the values of the model parameters [8]. The fitting of data with high
Fisher information content is a fundamental requirement for identifying para-
metric models, whether a misspecification is present in the model structure or70
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not. Fisher information is required to reduce the volume of the confidence region
associated to the parameter estimates and concomitantly reduce the uncertainty
on the model predictions [15]. Minimising the uncertainty on the model outputs
is fundamental not only when the model is correct, but also in the presence of
an incorrect parametrisation to help the diagnosis of the misspecification [5].75

Furthermore, whenever multiple competing model structures are proposed, re-
ducing the uncertainty on their predicted responses is necessary to prompt their
mutual discrimination and determining which is the best model out of the set
of candidates [16–18].

In this work, it is shown that whenever the model is nonlinear and the80

parametrisation is misspecified, there is significant discrepancy between the ex-
pected and the observed FIM. In such conditions, the employment of the expected
FIM as information metric leads to an inaccurate prediction of the information
across the design space, which in turns may lead to a suboptimal experimen-
tal design. The discrepancy in nonlinear, misspecified models is due to two85

aspects: 1 ) both expected and observed FIM are functions of the parameter
values and there may be a significant difference between the initial parameter
estimates (employed to compute the expected FIM), and the parameter esti-
mates optimised after the execution of the experiment (used to compute the
observed FIM); 2 ) high residuals in misspecified model structures result in the90

rising of an accidental term in the observed FIM, namely the information of
deviation, which is not considered in conventional design metrics.

A framework for the MBDoE under structural model uncertainty is proposed
in this manuscript, where an extended FIM is employed as information metric.
In the extended FIM, an additional term is included to model the deviation and95

provide a more accurate quantification of the information across the experimen-
tal design space. It is shown that the extended FIM reduces to the expected
FIM when the model structure is exact. The properties of the extended FIM
are illustrated through two case studies simulated in silico.

2. Methodology100

2.1. Problem definition

An approximated mechanistic model is proposed to describe a system. In
general, the candidate model is described by a set of differential and algebraic
equations and it is given in (1) in its standard reduced form [15]. For simplicity
of notation and without loss of generality it is assumed that the model involves105

only one measurable output variable ŷ.

f(ẋ,x,u, t,θ) = 0
ŷ = g(x,u, t,θ)

(1)

In (1), g is a scalar function, f is a Nf -dimensional array of model equations,
x is an Nx-dimensional vector of state variables, u is an Nu-dimensional vector
of control input variables, t is time and array θ ∈ Θ represents a set of Nθ
non-measurable model parameters. 0 is the Nf -dimensional null vector. The110
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estimation of the model parameters requires the fitting of experimental data.
It is assumed that the proposed model satisfies the requirements for structural
identifiability, i.e. values for the model parameters can be uniquely identified
[19]. A popular method for estimating non-measurable quantities in a para-
metric model is the maximum likelihood estimator. A number of preliminary115

experiments is performed, leading to the collection of a dataset Ψ0 consisting of
N measurements: Ψ0 = {yi| i = 1, ..., N}. We assume that measurements are
affected by Gaussian uncorrelated noise with standard deviations σi. The com-
putation of the maximum likelihood estimate θ̂ then requires the maximisation
of the likelihood function L or, indifferently, its natural logarithm Φ = lnL (2).120

Φ(θ|Ψ0) =
1

2

N∑
i=1

−ln(2πσ2
i )−

(gi(θ)− yi
σi

)2

(2)

θ̂ = arg max
θ∈Θ

Φ(θ|Ψ0) (3)

In (2) gi represents the model prediction for the measurement yi. The charac-
terisation of the parameter estimates requires the computation of a confidence
region in the parameter space, due to the fact that fitted experimental data
are affected by measurement errors. For a wide class of maximum likelihood125

estimates, the covariance matrix V0 of the parameter estimates is well approx-
imated by the inverse of the observed Fisher Information Matrix (FIM) H.

V0 ' H−1 (4)

Where H is defined as the negative Hessian of the log-likelihood function Φ
evaluated at the maximum likelihood estimate θ̂ (5).

H = −∇∇TΦ(θ̂|Ψ0) (5)

The quality of the approximation (4) improves as the variance of the mea-130

surement errors decreases and the fitting of the model gets better [15]. From
(4) it is possible to perform tests on the statistical significance of the parameter
estimates and also diagnose potential problems of model identifiability. If one is
willing to enhance the precision on the parameter estimates, i.e., reducing the
volume of the confidence region in the parameter space, then it is necessary to135

collect new data and include them in the parameter estimation problem.

2.1.1. Model-based Design of Experiments

The precise estimation of the model parameters relies on the fitting of mea-
surements collected at experimental conditions in which model predictions are
sensitive to a parameter change [20]. This sensitivity can be interpreted as the140

information that measurable model variables bring regarding the value of non-
measurable model parameters and it is quantified by the Fisher Information
Matrix (FIM) [8]. A variety of Model-based Design of Experiments (MBDoE)
methods have been proposed in the literature for driving the design of trials

4
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with the aim of collecting the most valuable information, assuming a limited145

amount of resources for performing the experiments [9–12]. A class of MBDoE
methods for parameter precision is based on the computation of the expected
covariance matrix of the model parameters Vθ as a function of the expected
FIM F̂ and the preliminary information available H, according to (6).

Vθ ' C−1 =
[
H + F̂

]−1
(6)

In (6), the information predictor is denoted with the symbol C as the sum150

of preliminary information H, defined as in (5), and the information F̂ expected
from the experiment (or experiments) to be designed1. Assume that the ex-
perimental budget allows for the design of a single additional experiment with
a number Nd of sampling points. In this situation, under the assumption of
uncorrelated Gaussian errors with known standard deviations σ, the expected155

FIM has the form [8]:

F̂ =

Nd∑
i=1

1

σ2
i

∇gi∇gTi
∣∣∣∣
θ=θ̂

(7)

The expected FIM F̂ is a function of the experimental conditions, i.e., the
control input variables u and the sampling times tk with k = 1, ..., Nd. The
MBDoE problem is then recast in terms of minimising the expected confidence160

region of the parameters after the conduction of the experiment to be designed.
In order to summarise the multidimensional nature of Vθ into a scalar quantity,
different measures ψ of Vθ were proposed in the literature as objective functions
to be minimised for the optimal MBDoE. The most popular design criteria are
[9]:165

• A-optimal : the objective function is ψ = Tr(Vθ) and it is equivalent
to minimising the volume of the rectangular hyper-box that contains the
expected confidence ellipsoid;

• D-optimal : where the objective function chosen for minimisation is ψ =
Det(Vθ) and it corresponds to minimising the volume of the expected170

confidence ellipsoid in the parameter space (notice that this is equivalent
to maximising ψ−1 = Det(C));

• E-optimal : this criterion aims at minimising the largest eigenvalue of Vθ

and it is equivalent to minimising the longest axis of the expected confi-
dence ellipsoid;175

1Although this is not common in the MBDoE literature, in this work the symbol C is intro-
duced to denote the information predictor as it is defined by the classic MBDoE theory; this
is primarily done for practical reasons, to make the distinction between classic and alternative
design metrics easier in the rest of the manuscript.
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• modified E-optimal : the criterion involves the maximisation the ratio be-
tween the smallest and the largest eigenvalues of Vθ and has the effect of
reducing the structural correlation among model parameters [21];

If the model (1) is structurally exact then it is reasonable to adopt F̂ as infor-
mation metric at the experimental design stage. In fact, in the presence of a180

correctly specified model structure, the expected value for the model residuals
is null (i.e. E[ŷ − y] = 0) and the following equality holds:

E[−∇∇TΦ] = F =

N∑
i=1

1

σ2
i

∇gi∇gTi (N →∞) (8)

Hence, if it is assumed that the maximum likelihood estimate θ̂ is close to
the true parameter value θ∗, then (7) represents a very good approximation of185

the distribution of the information across the experimental design space. The
quality of the approximation improves as θ̂ approaches θ∗.

If the model (1) is incorrectly specified, true values for the model parameters

may not exist and the parameter estimate θ̂ may not approach any parameter
value as the experimental campaign proceeds, i.e. the concept of accuracy in the190

parameter estimates loses its significance. However it is still possible to define
confidence intervals for the parameter estimates by computing the covariance
matrix given the current amount of observed Fisher information according to
(4). The fitting of data carrying valuable Fisher information is a fundamental re-
quirement even in the presence of a misspecified parametrisation [17]. In fact, a195

reduction in the confidence region of the parameter estimates results in a reduc-
tion of the uncertainty on the model prediction ŷ. A reduced uncertainty on the
model response is required to distinguish statistically the distribution associated
to the model prediction from the distribution of the measurement and support
the detection of the incorrect model parametrisation. Hence, whenever a mod-200

eller is asked to design a model-based experimental campaign for identifying a
parametric model, the aim shall be the collection of high Fisher information re-
gardless of the correct or misspecified nature of the model. However, two crucial
issues arise in the design stage if the model is incorrectly specified:

Issue 1 one cannot assume zero as the expected value for the model residuals,205

i.e., E[ŷ − y] 6= 0;

Issue 2 the estimate θ̂ adopted for computing (6) may vary significantly when
the experiment is performed and additional experimental data are included
in the parameter estimation problem.

As a consequence of Issue 1, if the proposed model is nonlinear in the pa-210

rameters (i.e. ∇g is a function of θ), then a discrepancy is present between F
and the observed FIM H, namely the information of deviation D.

H = F + D (9)

6
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N∑
i=1

1

σ2
i

(gi − yi)∇∇T gi (10)

If the model is misspecified, the deviation term D does not tend to the zero
matrix as the number of fitted measurements increases. As a consequence of215

Issue 2, even if the deviation term D were negligible, the information predic-
tor C, computed at the design stage, may be significantly different from the
observed FIM H (after the execution and fitting of the designed experiment)
because of an important variation in the values of parameters. In the following
sections, a framework is proposed to address the problems associated to Issue 1,220

i.e. the presence of a significant deviation component in the information matrix.
In future studies, more robust design frameworks will be proposed and tested
for addressing also Issue 2, i.e. situations in which there is a high uncertainty
on the parameter values [22, 23].

2.2. Proposed framework for the MBDoE under structural model uncertainty225

Most models in chemical and biochemical engineering are derived from sim-
plifying hypotheses. Approximated models may not be capable of realising
negligible residuals across the experimental design space. From this limitation
comes the necessity of developing more accurate design criteria that take into ac-
count the expected model accuracy across the space of experimental conditions.230

In Figure 1, a framework is proposed to account for model misspecification in
experimental design metrics. The procedure starts from the availability of a
candidate model and the execution of a preliminary campaign of experiments.
Assume that the model is known to be approximated. Starting from the whole
dataset available, the procedure splits into two parallel branches. In fact, the235

available dataset is used for two purposes:

1. setting up a parameter estimation problem for computing a preliminary
instance θ̂ of the model parameters;

2. identifying a support model in the form:

ẑ = h(u, t) (11)

the support model (11) has the primary purpose of offering a more accurate
representation of the data than the approximated model. Its structure240

does not have to reflect necessarily the internal mechanisms of the system.
Hence, the support model may be a data driven empirical model, e.g. a
response surface. The discrepancy between the support model predictions
and the experimental data shall be small for the whole available dataset.

The covariance matrix of the parameter estimates is then computed according245

to Eq. (4) and the statistical significance of the preliminary parameter instance

θ̂ is checked. In this work, the statistical quality of each parameter estimate
θi ∈ θ̂ ∀ i = 1, ..., Nθ is assessed through a t-test with 95% of significance. The
t-test is employed to evaluate if the available dataset is sufficiently informative

7



Page 8 of 32

Acc
ep

te
d 

M
an

us
cr

ip
t

Figure 1: Proposed framework for model identification. Boldface blocks represent fundamental
steps in the framework. The procedure starts from the execution of a preliminary experiment
and a mechanistic model proposed to describe the experimental observations. The available
dataset is used for two purposes: 1 ) computing an instance of model parameters for the
mechanistic model; 2 ) identifying a support model (e.g. a response surface) characterised by
a good fitting across the explored design space. The response difference between the instance
of the mechanistic model and the support model provides a prediction of model residuals that
can be used at the following experimental design stage.

8
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to falsify the hypothesis that parameter estimates are distributed as normal250

random variables with zero mean. In other words, the t-test is employed to
falsify the hypothesis that a certain parameter is irrelevant for fitting the data
[24]. It is known that the assumption of normality of the parameter estimate
distributions is typically not satisfied if the model is nonlinear in the parameters,
even in the case of exact model structure [1]. However, it is also recognised that255

in many situations the assumption of normality is an acceptable approximation
of the actual distribution [15, 25].

If some parameter estimates are found to be statistically unacceptable, ad-
ditional experimental data have to be collected and included in the likelihood
function. The location of optimal experimental conditions to investigate shall260

be identified through MBDoE methodologies. In the proposed framework, it is
possible to include knowledge about the expected model residuals in the infor-
mation metrics adopted at the design stage. Expected residuals are quantified
as the response difference between the candidate mechanistic model and the
support model.265

2.2.1. An extended metric of information

Suppose that a proposed model structure is falsified by some experimental
observations. If one is willing to complete the identification of the available
model shrinking the confidence region of its parameter estimates, then the fol-
lowing experimental effort shall take into account that the model residuals can-270

not be expected to be null. In this work, an extended formulation E of the FIM
is proposed as information predictor when structural uncertainty in the model
equations is present.

E = F̂ + D̂ + H =

Nd∑
i=1

1

σ2
i

∇gi∇gTi +

Nd∑
i=1

1

σ2
i

(gi − E[yi])∇∇T gi + H (12)

In (12) the first sum, i.e. F̂, represents the expected FIM employed in a275

conventional MBDoE framework. The second sum D̂ quantifies the predicted
information of deviation. Matrix D̂ is evaluated at the most likely value of
the parameters, i.e. θ̂, and the measurements yi are substituted by a mea-
surement expectation E[y], which is approximated through the support model,

i.e. it is assumed that E[y] ' ẑ. Notice that because of the presence of D̂ in280

(12), the extended FIM is not positive semidefinite and may therefore admit
negative eigenvalues. For this reason, E shall not be interpreted as the inverse
of a posterior covariance matrix for the parameters. Thus, the inversion of E
loses significance and may also result in critical numerical problems because of
changes in the sign of its determinant. Design criteria based on the extended285

FIM shall be based on the maximisation of a certain direct scalar measure of E
to avoid the numerical issues caused by the inversion of the matrix2.

2In this work, the form of the deviation term D̂ is derived from theoretical considerations

9
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Notice that the proposed formulation of E in (12) is compatible with the
conventional information predictor C. In fact, in the case of a correctly specified
model, the predicted information of deviation D̂ approaches the zero matrix as290

θ̂ approaches the true value of parameters θ∗. The non-convergence of the
deviation component of the information to the zero matrix is an indication of
model structure misspecification [5].

3. Case studies and Results

The properties of the extended formulation of the FIM (12) are illustrated295

with the support of two case studies simulated in silico: a biomass model de-
scribing baker’s yeast growth [19] and a model describing the behaviour of a
bacterial population under antibacterial treatment [26, 27]. For each case study,
two models structures are postulated: i) a structure to simulate the physical sys-
tem, which is employed to perform the in silico experiments and ii) a proposed,300

misspecified model structure. In the following, the model used to simulate the
in silico experiments will be also referred as the true model for practical rea-
sons, although nothing such as the true model may exist in reality [28]. Once a
preliminary instance of the model parameters for each of the structurally incor-
rect models is obtained, both case studies involve an experimental design stage.305

Different information metrics for optimal experimental design are employed:

1. Conventional D-optimal Design: The posterior covariance is approximated

as Vθ '
[
C
]−1

and Det(C) is adopted as design metric to be maximised.
2. Extended D-optimal Design: matrix E (12) is assumed as information

predictor and Det(E) is employed as design metric to be maximised. In310

order to reduce the amount of uncertainty that is present in the problem,
it is chosen to employ the true model for the computation of E[y] in E.

Two independent scenarios are then considered: 1) the experiment designed
through the conventional D-optimal approach is carried out; 2) the experiment
designed with the extended D-optimal is performed. The accuracy in the pre-315

diction of the information and the parameter statistics are used as indices for
comparing the performance of the two considered information metrics. A χ2-
test with 95% of significance is also performed at every stage of the model
identification procedure [29]. This is reported to assess whether the fitted data
are sufficient to detect the misspecification of the candidate model through a320

discrepancy between the distribution of model residuals and the expected dis-
tribution of measurement errors.

The results presented in the following sections were obtained employing
scripts implemented in Python 2.7 (the scripts are available as additional ma-
terial). The in silico experiments and the integration of the dynamic systems325

on the observed FIM under model misspecification. However, different formulations of D̂
will be studied in future works with the aim of obtaining an extended FIM that satisfies the
property of being positive semidefinite.

10
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for the computation of the information metrics were performed using the lsoda
library from the package scipy [30]. The computation of the Hessian matrix
for evaluating the deviation term of the information was performed through the
package numdifftools [31]. Parameter estimation was performed employing the
software gPROMS ModelBuilder 5.0 [32].330

An additional scenario was considered for the bacterial population model
where an algebraic, linear response surface is employed as support model instead
of the true model for the computation of E[y] in E. Since the results in this
additional case were found to be similar to the aforementioned scenario 2, where
the true model was employed, it was chosen to omit it from the manuscript and335

it is reported in Appendix A.

3.1. Case study 1: Baker’s yeast growth model

The candidate model with incorrect structure involves the set of differential
equations (13) and (14) with a Monod-type kinetic (15).

dx1

dt
= (r − u1 − θ4) · x1 (13)

dx2

dt
= −r · x1

θ3
+ u1 · (u2 − x2) (14)

Candidate model: Monod→r =
θ1 · x2

θ2 + x2
(15)

where x1(t) represents the biomass concentration [g/L], x2(t) is the substrate340

concentration [g/L], u1(t) is the dilution factor (range 0.05-0.20 h−1), u2(t) is
the substrate concentration in the feed (range 5-35 g/L) and θ = [θ1, θ2, θ3, θ4]
is a set of four non-measurable kinetic parameters.

True model: Cantois→r =
θ1 · x2

θ2 · x1 + x2
(16)

The physical biomass system is instead assumed to be described by the
true model involving (13) and (14) with a Cantois-type kinetic (16). The true345

values for the parameters referring to the true model structure are reported
in Table 1 together with a synthetic description of their physical significance.
The true model is employed for generating experimental data in silico assuming
that measurements of x1 and x2 are affected by Gaussian noise with variance
σ2

1 = 0.01 and σ2
2 = 0.05 respectively.350

A preliminary experiment is performed adopting: u1 = 0.13 h−1 and u2 =
35.0 g/L as time-invariant controls; x1(0) = 5.0 g/L and x2(0) = 0.01 g/L as
initial values for the differential variables. Both biomass concentration x1 and
substrate concentration x2 are sampled at 5.0 h, 10.0 h, 15.0 h and 20.0 h, thus
leading to the generation of a preliminary dataset Ψ0 involving 8 measurements.355

Measurements obtained in silico from the execution of the preliminary experi-
ment are reported in Table 2. The candidate kinetic model, i.e. the Monod-type

11
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Table 1: Assumed true values for the parameters in the true baker’s yeast growth model.

Parameter Description Value

θ1 Biomass growth rate kinetic coefficient 0.310
θ2 Biomass growth inhibition coefficient 0.180
θ3 Substrate consumption rate 0.550
θ4 Biomass death rate coefficient 0.050

(a) (b)

Figure 2: Case study 1: Baker’s yeast growth model; experimental data obtained from the
simulation of the preliminary experiment with sampling every 5.0 h. Predictions of the candi-
date model, i.e., Monod-type kinetic, after data fitting. Model predictions and measurements
are given for (a) biomass concentration and (b) substrate concentration.

kinetics, is fitted to the dataset Ψ0 to obtain a preliminary instance of the model
parameters θ̂0 adopting a maximum likelihood approach.

Model profiles obtained simulating the preliminary experiment with the can-360

didate model are given for biomass and substrate concentration in Figure 2. The
instance θ̂0 is given in Table 3 with the related t-values and the sum of squared
residuals associated to the identified parameter instance, i.e. χ2

sample. The t-
value of reference tref is also given in the table. This represents a t-value with
95% of significance derived from a Student’s distribution with degree of freedom365

equal to the number of fitted measurements minus the number of estimated pa-
rameters. A t-value larger than tref is interpreted as an index of satisfactory
parameter precision. The information content of the preliminary dataset Ψ0 was
sufficient to estimate satisfactorily only parameter θ3 while the estimation of θ1,
θ2 and θ4 is still poor, thus justifying the design of a new trial with the aim370

of improving parameter statistics. As one can see from Table 3, the χ2
sample is

larger than χ2
ref . A failed χ2-test after the fitting of the preliminary experiment

highlights the misspecification of the candidate model.
It is assumed that the experimental budget only allows for a single dynamic

12
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Table 2: Case study 1: Baker’s yeast growth model; measurements obtained from preliminary
experiment adopting time-invariant controls u1 = 0.125 h−1 and u2 = 35.0 g/L. Initial
conditions for biomass concentration and substrate concentration are set to x1(0) = 5.0 g/L
and x2(0) = 0.01 g/L.

Preliminary experiment

Sampling time [h]
Biomass

concentration [g/L]
Substrate

concentration [g/L]

5.0 7.098 6.683
10.0 10.135 5.860
15.0 12.108 3.209
20.0 12.491 2.993

experiment in which both the biomass concentration and substrate concentra-375

tion are sampled at regular intervals of 5.0 h, i.e., the sampling times are fixed
at ts = (5.0, 10.0, 15.0, 20.0). For the experimental design purpose, it is assumed
that the design space is two-dimensional, identified by dilution factor u1 and
substrate concentration in the feed u2 (both treated as time-invariant controls).
Initial conditions for the differential variables are fixed at x1(0) = 5.0 g/L and380

x2(0) = 0.01 g/L.
The normalised distribution of Det(C) in the design space is given in Figure

3a. The conventional D-optimal design criterion leads to the design of a trial in
the top-right corner of the design space, i.e. the region at high dilution factor
and high substrate concentration in the feed. The predicted information in this385

point of the design space is Det(C) = 1.47 · 1016. The normalised distribution
of Det(E) is instead given in Figure 3b. As one can see from a comparison of
Figure 3a and 3b, the information distribution in the design space is significantly
different for the two considered criteria. The optimal design conditions for the
extended D-optimal case are obtained in the bottom-left corner of the design390

space, thus for the lowest values of dilution factor and substrate concentration
in the feed. The information predicted by the extended design in the optimal
conditions is Det(E) = 3.11 · 1014.

The model instances obtained in the two scenarios are given in Table 5. In
both scenarios the information content of the additional experiment was suffi-395

cient to provide a precise estimation of all model parameters, i.e. t-values above
tref . The observed information after the fitting of the additional experiment in
the conventional case is Det(H) = 1.31·1019. In the extended case, the observed
information was instead Det(H) = 8.73 · 1015. Evaluating the information on a
log10 scale, the conventional design underestimated the information content of400

the designed experiment by −18.23% while in the extended case it was underes-
timated only by −10.00%. Design points and performance of the two methods in
predicting the information content of the experiments are summarised in Table
4.
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(a) (b)

Figure 3: Case study 1: Baker’s yeast growth model; normalised design metric distributions in
the bi-dimensional design space identified by dilution factor u1 and substrate concentration in
the feed u2 in the case of : (a) conventional D-optimal design; (b) extended D-optimal design.
White areas represent regions with high predicted information content. Red dots indicate the
optimal design points.

Table 3: Case study 1: Baker’s yeast growth model; parameter estimation results obtained
from the preliminary experiment. t-values quantifying parameter precision and the sum of
squared residuals χ2

sample quantifying the goodness of fit are given.

Model Instance After Preliminary Experiment

Parameter Value
95% t-value*
tref = 2.13

θ1 0.531 0.612*
θ2 7.854 0.327*
θ3 0.474 4.057
θ4 0.019 0.374*

χ2-test** (95% χ2
ref = 9.49)

χ2
sample =59.251**

*a t-value lower than the reference indicates that the information given by
the experiments may not be sufficient to estimate the parameter precisely
**a χ2

sample larger than χ2
ref tends to indicate a bad fit

14
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information observed after the execution of the designed experiment and prediction error.
Predicted information is quantified as the determinant of the predictor (i.e. Det(C) for con-
ventional D-optimal and Det(E) for extended D-optimal), computed in the design point. The
observed information is quantified as the determinant of H after the execution and fitting of
the experiment.

Conventional D-optimal Extended D-optimal

Design point [u1, u2] [0.20, 35.0] [0.05, 5.0]
Predicted information 1.47 · 1016 3.11 · 1014

Observed information 1.31 · 1019 8.73 · 1015

Prediction error* -18.23% -10.00%

*error evaluated as (log10(predicted)− log10(observed))/ log10(predicted)

Table 5: Case study 1: Baker’s yeast growth model; parameter estimates after the fitting
of the designed experiment. The two scenarios considered in this case study are given in
the table: experiment designed adopting a conventional D-optimal approach and experiment
designed adopting an extended D-optimal approach. t-values quantifying parameter precision
and the sum of squared residuals χ2

sample quantifying the goodness of fit are given for both
cases.

Model Instance After Designed Experiment

Conventional D-optimal Extended D-optimal

Parameter Value
95%

t-value*
tref = 1.78

Parameter Value
95%

t-value*
tref = 1.78

θ1 0.326 33.569 θ1 0.386 7.653
θ2 1.491 8.560 θ2 3.345 2.716
θ3 0.555 21.984 θ3 0.524 33.111
θ4 0.057 5.284 θ4 0.041 6.869

χ2-test** (95% χ2
ref = 21.02) χ2-test** (95% χ2

ref = 21.02)

χ2
sample = 137.57** χ2

sample = 82.45**

*a t-value lower than the reference indicates that the information given by
the experiments may not be sufficient to estimate the parameter precisely
**a χ2

sample larger than χ2
ref tends to indicate a bad fit
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Table 6: Assumed true values for the parameters in the true bacterial growth model.

Parameter Description Value

θ1 Concentration to achieve 50% of max kill-rate 2.29
θ2 Growth rate constant for bacterial population 1.50
θ3 Maximum kill rate constant 4.71
θ4 Sigmodicity constant for bacterial population 2.83
θ5 Maximum population size on log10 scale 9.87
θ6 Maximal adaptation of the population 5.85
θ7 Adaptation rate of the population 9.5 · 10−3

3.2. Case study 2: Bacterial population growth model405

The true model describing a bacterial population growth is assumed to in-
volve the set of equations proposed by Tam et al. [26]. The time response of
the bacterial burden N(t) expressed in [cfu/mL] is modelled through equations
(17-20).

dx

dt
= log10(e) · (G(x)−K(CA)) (17)

G(x) = θ2 · [1− 10x−θ5 ] (18)

K(CA) =
θ3 · Cθ4A

Cθ4A + (α · θ1)θ4
(19)

True model: α = 1 + θ6 · (1− e−CA·θ7·t) (20)

where x = log10(N) quantifies the bacterial concentration on a log10 scale.410

G and K are the growth and kill rate respectively. α is a function describing
bacterial adaptation to the antibacterial treatment over time. CA is the antibi-
otic concentration introduced in the system (range 0-16 as mg/L). The model
involves a set of 7 parameters θ = [θ1, θ2, θ3, θ4, θ5, θ6, θ7]. True values of param-
eters θ∗ are assumed equal to the values obtained by Tam et al. by measuring415

the response of the bacterial variety Pseudomonas aeruginosa when treated with
meropenem. The assumed true parameter values are reported in Table 6 with
a brief description of their physical significance. The true model is employed
for generating experimental data in silico assuming that measurements of x are
affected by Gaussian noise with variance σ2 = 4 · 10−4.420

The candidate model with incorrect structure is instead assumed to be de-
scribed by the set of equations (17-19) considering (21) as adaptation function.

Candidate model: α = 1 + θ6 · (1− e−θ7·t) (21)

Two preliminary experiments are performed setting: CA = 0.25 mg/L in the
first experiment and CA = 4.00 mg/L in the second experiment. Initial inoculum
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Figure 4: Case study 2: Bacterial population growth system; bacterial concentration profiles
predicted by the candidate model after fitting the preliminary experiments. Experimental
samples for the time-kill experiment at CA = 0.25 mg/L (squares) and for the time-kill
experiment at CA = 4.0 mg/L (triangles).

is set at x(0) = 8.0 log10(cfu/L). In both trials the bacterial concentration425

is sampled every 4.0 h over an experimental time-frame of 24.0 h obtaining
a preliminary dataset Ψ0 consisting of 12 measurements. Analogously to the
previous case study, the preliminary dataset is fitted with the candidate model
through a maximum likelihood approach to obtain a preliminary parameter
instance θ̂0. The preliminary parameter instance θ̂0 is reported in Table 7 with430

the respective t-values statistics. The information content of the preliminary
experiments was sufficient to estimate precisely parameters θ2, θ3, θ4 and θ5.
The t-values for the remaining parameters, i.e. θ1, θ6 and θ7, are below the
reference value tref , thus justifying the design of an additional trial for improving
parameter precision. As one can see from Table 7, the quality of fitting achieved435

by the candidate model after the preliminary experiments is good even if the
model structure is misspecified, i.e. the identified model passes the χ2-test with
95% of significance. A visual proof of the goodness of fit is given in Figure
4, where experimental data are plotted together with the respective time-kill
curves predicted by the incorrect model for the two preliminary trials.440

The following analysis focuses on the design of an optimal trial to im-
prove parameter precision. It is assumed that the experimental budget al-
lows for the execution of an experiment in which the bacterial concentration
is sampled at regular intervals of 4.0 h, i.e. the sampling times are fixed at
ts = (4.0, 8.0, 12.0, 16.0, 20.0, 24.0). Initial inoculum is fixed at x(0) = 8.0445

log10(cfu/L). A one-dimensional design space is assumed in which the antibiotic
concentration CA has to be optimised as time-invariant control. The distribu-
tion of the two considered design metrics, i.e. Det(C) for the conventional
D-optimal and Det(E) for the extended D-optimal are reported in the graph in
Figure 5. As one can see from the graph, the two curves follow a similar trend,450
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Figure 5: Case study 2: Bacterial population growth system; information metrics distribution
in the considered monodimensional design space identified by the antibiotic concentration CA

[mg/L]: for conventional D-optimal (black); for extended D-optimal (red).

but the extended D-optimal predicts and information that is 7-8 orders of magni-
tude higher than the conventional D-optimal. The discrepancy between the two
design metrics is due to the fact that a significant information of deviation is pre-
dicted across the design space. The conventional D-optimal suggests the conduc-
tion of the additional experiment setting CA = 10.776 mg/L, predicting the col-455

lection of an amount of information equal to Det(C)=1.58 · 1025. The extended
D-optimal instead leads to the design of a trial at CA = 9.565 mg/L, where the
respective information design metric is much higher, i.e. Det(E)=2.33 · 1033.

The parameter instances obtained in the two scenarios are reported in Table
8. In both scenarios, the information content of the additional experiment was460

sufficient to obtain satisfactory parameter estimates according to the chosen
significance of the t-test (95%). From Table 8 it is also possible to appre-
ciate that the fitting of the additional experiment leads to the failure of the
χ2-test with 95% of significance, highlighting the misspecification of the can-
didate model structure. In this second case study, the conventional D-optimal465

outperforms the extended D-optimal in terms of accuracy in predicting the in-
formation of the additional experiment. The information observed after the
additional experiment is performed is: Det(C)=5.55 · 1021 for the conventional
case; Det(E)=1.08 · 1021 for the extended case. Evaluating the information on
a log10 scale, the extended design overestimates the information content of the470

experiment by 36.97% while the overestimation in the conventional design is
only 13.71%. The performance of the two designs is summarised in Table 9.
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Table 7: Case study 2: Bacterial population growth model; parameter estimation results
obtained from the preliminary experiments. t-values quantifying parameter precision and the
sum of squared residuals χ2

sample quantifying the goodness of fit are given.

Model Instance After Preliminary Experiment

Parameter Value
95% t-value*
tref = 1.79

θ1 1.487 1.320*
θ2 1.524 9.504
θ3 4.005 4.612
θ4 2.605 3.750
θ5 9.890 488.1
θ6 10.018 1.168*
θ7 3.8 · 10−2 1.268*

χ2-test** (95% χ2
ref = 11.07)

χ2
sample =8.718

*a t-value lower than the reference indicates that the information given by
the experiments may not be sufficient to estimate the parameter precisely
**a χ2

sample larger than χ2
ref tends to indicate a bad fit

3.3. Results discussion

Two case studies were considered in this work for testing the performance
of an extended FIM (12) on the design of experiments for parameter precision475

in the presence of model misspecification. In the first case study on the baker’s
yeast model, the extended D-optimal design provided a more accurate prediction
of the information than a conventional D-optimal design metric (see Table 4).
In the second case study on the bacterial population model, the extended design
was instead less accurate than the conventional design (see Table 9). The reason480

is in the fact that the formulation of the extended FIM is evaluated at the most
likely parameter estimate available, i.e. θ̂0. Thus, the extended formulation (12)
does not take into account that, if the model is misspecified, the introduction of
additional experimental data in the parameter estimation problem may result
in a significant variation in the model parameter estimates.485

The shift of the maximum likelihood estimate in the extended D-optimal
case, can be appreciated in the graphs of Figure 7 for the baker’s yeast growth
model and in Figure 8 for the bacterial population model. As one can see from
Figure 7, parameter estimates in the Baker’s yeast case after the additional
experiment is performed (black squares in the graphs) are within the 95% confi-490

dence range associated to the preliminary parameter estimate (red ellipsoids)3.

3The only parameter pair that is outside the respective prior confidence region is θ1-θ2.
However both estimates for θ1 and θ2 after the extended D-optimal are within 2 standard
deviations of the confidence range of their respective preliminary estimates.
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fitting of the designed experiment. The two scenarios considered in this case study are given in
the table: experiment designed adopting a conventional D-optimal approach and experiment
designed adopting an extended D-optimal approach. t-values quantifying parameter precision
and the sum of squared residuals χ2

sample quantifying the goodness of fit are given for both
cases.

Model Instance After Designed Experiment

Conventional D-optimal Extended D-optimal

Parameter Value
95%

t-value*
tref = 1.78

Parameter Value
95%

t-value*
tref = 1.78

θ1 0.677 9.515 θ1 0.820 12.144
θ2 2.222 10.033 θ2 2.058 10.958
θ3 6.213 14.799 θ3 6.154 14.649
θ4 0.999 11.474 θ4 1.021 11.387
θ5 9.345 492.2 θ5 9.929 534.5
θ6 116.0 6.227 θ6 398.5 2.289
θ7 1.37 · 10−2 3.781 θ7 3.45 · 10−3 2.053

χ2-test** (95% χ2
ref = 19.67) χ2-test** (95% χ2

ref = 19.67)

χ2
sample = 166.48** χ2

sample = 153.32**

*a t-value lower than the reference indicates that the information given by
the experiments may not be sufficient to estimate the parameter precisely
**a χ2

sample larger than χ2
ref tends to indicate a bad fit

Table 9: Case study 2: Bacterial population growth model; design point, predicted infor-
mation, information observed after the execution of the designed experiment and prediction
error. Predicted information is quantified as the determinant of the predictor (i.e. C for
conventional D-optimal and E for extended D-optimal), computed in the design point. The
observed information is quantified as the determinant of H after the execution and fitting of
the experiment.

Conventional D-optimal Extended D-optimal

Design point [CA] [10.776] [9.565]
Predicted information 1.58 · 1025 2.33 · 1033

Observed information 5.55 · 1021 1.08 · 1021

Prediction error* 13.71% 36.97%

*error evaluated as (log10(predicted)− log10(observed))/ log10(predicted)
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Figure 6: Case study 2: Bacterial population growth system; normalised residuals predicted
for the designed experiment.

Instead, as one can see from Figure 8, in the bacterial population case there
is a much more significant difference between the parameter estimates before
and after the fitting of the additional experiment. This important parameter
variation is the cause of the significant discrepancy between the information495

prediction provided by E and the information observed after performing the
experiment in the bacterial population case. It will be object of future work to
test the extended FIM in a robust design framework [22, 23, 33, 34] to take into
account also the uncertainty on the location of the parameter estimate point in
the parameter space.500

Still with reference to the bacterial population case, as one can see from
Figure 5, there is an important difference between the two considered metrics of
information, i.e. Det(C) and Det(E). The difference is caused by the presence

of a significant component of deviation D̂ in the predicted information. The
predicted deviation is function of the predicted model residuals in the design505

points. As one can see from Figure 6, the predicted normalised residual is nearly
-800 in proximity of the experiment designed by the extended D-optimal. The
execution of an experiment at those conditions was then expected to result in a
significant worsening of the fitting and in an important shift of the parameter
estimates in the parameter space. The predicted information of deviation, to-510

gether with the predicted residuals represent indices of model inappropriateness
and may be employed for defining further design criteria, e.g. criteria for design-
ing experiments with the aim of falsifying the model structure or discriminating
among competing proposed models [16–18, 35]. The study of the extended FIM
may also provide useful insights for diagnosing the cause of mismatch between515

the candidate model and the experimental observations. Exploring these appli-
cations of the extended FIM will be object of future studies.
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θ 2

θ1

θ 3 θ 3

θ1 θ2

θ 4 θ 4 θ 4

θ1 θ2 θ3

1Figure 7: Case study 1: Baker’s yeast growth model; 95% confidence ellipsoids and maximum
likelihood estimates referring to the candidate model with incorrect structure, i.e. the Monod-
type kinetics. Maximum likelihood estimates and corresponding ellipsoids are plotted for two
cases: after the fitting of the preliminary experiment (red); after the fitting of the additional
experiment designed through extended D-optimal (green).
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θ 2

θ1

θ 3 θ 3

θ1 θ2

θ 4 θ 4 θ 4

θ1 θ2 θ3

1Figure 8: Case study 2: Bacterial population growth model; 95% confidence ellipsoids and
maximum likelihood estimates referring to the candidate model with incorrect structure, i.e.
assuming an adaptation function that is independent from antibiotic concentration. Maximum
likelihood estimates and corresponding ellipsoids are plotted for two cases: after the fitting
of the preliminary experiment (red); after the fitting of the additional experiment designed
through extended D-optimal (green). Parameters θ5, θ6 and θ7 are not represented in the
figure for space limitations.
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4. Conclusion

An extensive literature is available on the optimal Model-Based Design of
Experiments (MBDoE) for parameter precision. These methods are based on520

the maximisation of a certain scalar measure of the expected Fisher Information
Matrix (FIM). Conventional methodologies implicitly assume that the model
employed for experimental design and data fitting is structurally exact and
model accuracy is therefore not considered at the experimental design stage.
However, in many cases it may be inappropriate to assume that the model525

structure is correct.
In the present manuscript, it was shown that in the presence of nonlinear

misspecified models, conventional MBDoE methodologies lead to a substantial
miscalculation of the information at the design stage, i.e. significant discrepancy
between expected information and information observed after the execution of530

the experiment. This discrepancy is interpreted as an indication of the incorrect
model parametrisation.

The inaccurate prediction of the information is linked to two causes: 1 ) high
model residuals lead to the rising of an incidental term in the observed FIM,
namely the information of deviation, which is always neglected in the conven-535

tional MBDoE; 2 ) the value of the model parameters adopted for predicting
the information in the design stage may vary significantly once the experiment
is performed and the additional data are fitted. A framework for the optimal
MBDoE for parameter precision in the presence of structural model uncertainty
is proposed in this work to account for the expected model accuracy at the540

design stage. An extended formulation of the FIM was also proposed including
a term for predicting the information of deviation, i.e. for addressing the first
cause of discrepancy. The performance of the extended FIM was tested in silico
and compared to a conventional D-optimal design on two case studies, where
experimental design was performed with misspecified model structures:545

• In the first case study on a baker’s yeast growth model, an initial instance
of the model parameters was obtained fitting a preliminary experiment.
The fitting of the preliminary experiment highlighted the incorrect struc-
ture of the model. An additional experiment was then designed adopting
two different information metrics. A D-optimal design with the extended550

FIM provided a more accurate prediction of the information than a con-
ventional D-optimal design based on the expected FIM.

• In the second case study on a bacterial population growth system, a pre-
liminary instance for the model parameters was obtained fitting the ex-
perimental data from two time-kill curves. The fitting of the preliminary555

experiments was statistically satisfactory despite the known model mis-
specification. In the design stage, a conventional D-optimal design pro-
vided a more accurate prediction of the information with respect to the
extended D-optimal.

In the second case study, the low accuracy of the extended FIM (i.e. high560

difference between information predicted at the design stage and information
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observed once the experiment is performed) is related to the second cause of
discrepancy. In fact, the current formulation of the extended FIM does not con-
sider that a significant variation in the values of parameters may occur when the
data collected in the designed experiment are fitted. It will be object of future565

works to develop more robust and accurate information metrics to support the
MBDoE in the presence of misspecified model structures.

A high discrepancy between predicted and observed information indicates
a likely model misspecification even if the parameter fitting is satisfactory.
Thus, the information of deviation represents an index of inappropriate model570

parametrisation. Its accurate prediction may lead to the definition of metrics
for further design criteria, e.g. design criteria for model structure falsification
or model discrimination among a set of competing models. Furthermore, the
extended FIM may represent a useful tool for diagnosing the reasons of the mis-
match between experimental observations and model predictions, leading to the575

construction of tools for amending the incorrect model parametrisation. The
investigation of these potential applications of the extended FIM is going to be
the focus of future research activities.
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tAppendix A. Additional case study with linear support model680

In the present Appendix, an additional case study is proposed, where the
experimental design is performed through an extended D-optimal criterion em-
ploying a data driven surrogate model as the support model. This additional
case is reported to assess the sensitivity of the extended design metric to the
choice of the support model. The considered system is the bacterial population685

under antibacterial treatment presented in Section 3.2. The assumptions made
in Section 3.2 regarding the model structures are briefly recalled here. The true
model employed to perform the in silico experiments is described by equations
(17-20) in Section 3.2. The assumed true values for the parameters are reported
in Table 6. The proposed model that needs to be identified is assumed to be690

described by the set of equations (17-19) and includes a misspecified adaptation
function (21). As in case study 2 (see Section 3.2), the preliminary instance for
the parameters of the incorrectly specified model is computed from the fitting of
two time-killing curves at different antibiotic concentrations: CA = 0.25 mg/L
in the first experiment and CA = 4.00 mg/L in the second experiment. Pre-695

liminary parameters are reported in Table 7 together with relevant statistical
indices for assessing the quality of the estimate. As one can see from Table 7,
parameter θ1, θ6 and θ7 did not pass the 95% t-test, thus justifying the design
of additional trials to improve their statistical quality.

Analogously to case study 2 in Section 3.2, it is assumed that the experimen-700

tal budget allows for performing an additional experiment where the only design
variable is the antibiotic concentration CA as time-invariant control. Sampling
times are fixed at ts = (4.0, 8.0, 12.0, 16.0, 20.0, 24.0). Initial inoculum is fixed at
x(0) = 8.0 log10(cfu/L). Two scenarios are here considered in which the design
is performed employing an extended D-optimal criterion, but adopting different705

support models:
• Scenario A: the true model is employed as support model to compute the

term E[y] in E (this scenario was already considered in Section 3.2);

• Scenario B : a linear response surface is adopted as support model for
computing an approximation of E[y] in E.710

With reference to Scenario B, the linear response surface model in the form
ẑ = h(CA, t) was identified from the preliminary dataset and it is reported in
(A.1).

E[y] ' ẑ = 8.24− 0.72 · CA + 0.13 · t (A.1)

The response surface was identified using the regression tool available in
the software Origin (OriginLab, Northampton, MA) adopting a weighted least715

squares method. The design metrics related to the two considered scenarios
are plotted in Figure A.9. The optimal design in Scenario A is achieved for an
antibiotic concentration CA = 9.565 mg/L. In Scenario B, the optimum point is
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Figure A.9: Bacterial population growth system; information metrics distribution in the con-
sidered monodimensional design space identified by the antibiotic concentration CA [mg/L]
in: Scenario A with extended D-optimal employing the true model as support model (red);
Scenario B with extended D-optimal employing a linear response surface as support model
(blue). Arrows highlight optimal experimental design points according to the different criteria.

achieved at CA = 10.240 mg/L. In Table A.10, the parameter estimates obtained
after the execution of the designed experiments in the two scenarios are reported.720

As one can see, the employment of a linear response surface does not affect
significantly the result. The two considered design metrics suggest the execution
of a trial at similar conditions and consequently the model instances identified
after the experiments are performed do not differ significantly in parameter
estimates and fitting quality. In Table A.11, a summary of the quality of the725

information prediction offered by the two design criteria in the design points is
reported. For both scenarios, the information at the design points is significantly
overestimated (see Table A.11). However, the prediction error (evaluated on a
log10 scale), is not significantly affected by the choice of the support model: it
increases from 36.97% in Scenario A to 39.27% in Scenario B.730
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Table A.10: Bacterial population growth model; parameter estimates after the fitting of the
designed experiment. Two scenarios considered in this case study are given in the table:
experiment designed adopting an extended D-optimal approach employing the true model as
support model; experiment designed with an extended D-optimal approach employing a linear
response surface as support model. t-values quantifying parameter precision and the sum of
squared residuals χ2

sample quantifying the goodness of fit are given for both cases.

Model Instance After extended D-optimal Experiment

Scenario A
support model: true model

Scenario B
support model: linear response surface

Parameter Value
95%

t-value*
tref = 1.78

Parameter Value
95%

t-value*
tref = 1.78

θ1 0.820 12.144 θ1 0.741 8.611
θ2 2.058 10.958 θ2 2.155 9.905
θ3 6.154 14.649 θ3 6.200 13.963
θ4 1.021 11.387 θ4 1.004 10.780
θ5 9.929 534.5 θ5 9.932 519.6
θ6 398.5 2.289 θ6 167.5 2.861
θ7 3.45 · 10−3 2.053 θ7 0.89 · 10−2 2.132

χ2-test** (95% χ2
ref = 19.67) χ2-test** (95% χ2

ref = 19.67)

χ2
sample = 153.32** χ2

sample = 160.50**

*a t-value lower than the reference indicates that the information given by
the experiments may not be sufficient to estimate the parameter precisely
**a χ2

sample larger than χ2
ref tends to indicate a bad fit

Table A.11: Case study 2: Bacterial population growth model; additional scenario employing
a linear response surface as support model for the extended D-optimal. Design point, pre-
dicted information, information observed after the execution of the designed experiment and
prediction error are reported. Predicted information is quantified as the determinant of the
predictor (i.e. C for conventional D-optimal and E for extended D-optimal), computed in
the design point. The observed information is quantified as the determinant of H after the
execution and fitting of the experiment.

Scenario A
support model:

true model

Scenario B
support model:

linear response surface

Design point [CA] [9.565] [10.240]
Predicted information 2.33 · 1033 7.42 · 1034

Observed information 1.08 · 1021 1.50 · 1021

Prediction error* 36.97% 39.27%

*error evaluated as (log10(predicted)− log10(observed))/ log10(predicted)
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TITLE: Model‐based design of experiments in the presence of structural model uncertainty: an 

extended information matrix approach 

HIGHLIGHTS: 

 Conventional MBDoE may lead to suboptimal trial design if the model is not exact 

 A framework for the MBDoE under structural model uncertainty is proposed 

 An extended Fisher information matrix (FIM) is proposed as suitable design metric  

 The extended formulation of the FIM is tested on two simulated case studies 

 A difference between extended and conventional FIM is an index of inexact structure 
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