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Abstract

Computer simulations can aid in understanding how collective materials properties emerge
from interactions between simple constituents. Here, we introduce a coarse-grained model that
enables simulation of networks of actin filaments, myosin motors, and crosslinking proteins
at biologically relevant time and length scales. We demonstrate that the model qualitatively
and quantitatively captures a suite of trends observed experimentally, including the statistics of
filament fluctuations, mechanical responses to shear, motor motilities, and network rearrange-
ments. We use the simulation to predict the viscoelastic scaling behavior of crosslinked actin
networks, characterize the trajectories of actin in a myosin motility assay, and develop order
parameters to measure contractility of a simulated actin network. The model can thus serve as
a platform for interpretation and design of cytoskeletal materials experiments, as well as for
further development of simulations incorporating active elements.



1 Introduction

The actin cytoskeleton is a network of proteins that enables cells to control their shapes, exert forces
internally and externally, and direct their movements. Globular actin proteins (G-actin) polymerize
into polar filaments (F-actin) that are microns long and nanometers thick. Many different proteins
bind to actin filaments; such proteins often have multiple binding sites that enable them to crosslink
actin filaments into networks that can transmit force. Myosin proteins are composed of head, neck,
and tail domains and aggregate via their tails to form minifilaments that can attach multiple heads
to actin filaments (1). Each myosin head can bind to actin and harness the energy from ATP
hydrolysis such that a minifilament can walk along an actin filament in a directed fashion—i.e., it
is a motor. These dynamics have been extensively studied, and it is well understood, for example,
how they give rise to muscle contraction. In muscle cells, myosin II minifilaments bind to regularly
arrayed antiparallel actin filaments and walk toward the barbed ends (2). In other types of cells
lacking this level of network organization, however, the ways in which the elementary molecular
dynamics act in concert to give rise to complex cytoskeletal behaviors remain poorly understood.

Addressing this issue requires a combination of experiment, physical theory, and accurate sim-
ulation. The last of these is our focus here—we present a nonequilibrium molecular dynamics
framework that can be used to efficiently explore the structural and dynamical state space of as-
semblies of semiflexible filaments, molecular motors, and crosslinkers. By allowing independent
manipulation of parameters normally coupled in experiment, this computational model can guide
our understanding of the relationship between the microscopic biochemical protein-protein inter-
actions and the macroscopic mechanical functions of assemblies. Additionally, because the model
simulates filaments, motors, and crosslinkers explicitly, we can elucidate microscopic mechanisms
by studying its stochastic trajectories at levels of detail that are experimentally inaccessible. The
fact that complex behaviors can emerge from simple interactions also allows simulations to be used
to evaluate predictions from theory.

In this work we detail the model and demonstrate that, it reproduces an array of known ex-
perimental results for actin filaments, assemblies of actin and crosslinkers (passive networks), and
assemblies of actin and myosin (active networks). We go further to provide new experimentally
testable predictions about these systems. For single polymers, we reproduce the spatiotemporal
fluctuation statistics of actin filaments. For passively crosslinked networks, we reproduce known
stress-strain relationships and predict the dependence of the shear modulus on crosslinker stiffness.
For active networks, we reproduce velocity distributions of actin filaments in myosin motility as-
says and show how one can tune their dynamical properties by varying experimentally control-
lable parameters. In separate studies, we use the model to clarify microscopic mechanisms of
actomyosin contractility and investigate how assemblies of actin filaments and crosslinkers can be
tunably rearranged by myosin motors to form structures with distinct biophysical and mechani-
cal functions (3). The collection of this benchmark suite is itself useful, as prior models (4-14)
have focused on specific cytoskeletal features, making the tradeoffs needed to capture the selected
behaviors unclear.

Indeed, our model builds on earlier studies, which we briefly review to make clear similarities
and differences of the models (see also (15) for a list of cytoskeletal simulations). The most finely
detailed simulations focus on the motion of a myosin minifilament with respect to a single actin
filament. Erdmann and Schwarz (9) used Monte Carlo simulations to verify a master equation
describing the attachment of a minifilament and, in turn, the duty ratio and force velocity curves



as functions of the myosin assembly size. Stam et al. (16) used simulations to study force buildup
on a single filament by a multi-headed motor and found distinct timescale regimes over which
different biological motors could exert force and act as crosslinkers. These models of actin-myosin
interactions are important for understanding the mechanics at the level of a single filament, and
their results can be incorporated into larger network simulations.

A number of publications have dealt with understanding the rheological properties of cross-
linked actin networks (4-7). For example, to study the viscoelasticity of passive networks, Head
et al. (3)) distributed filaments randomly on a two-dimensional (2D) plane, crosslinked filament
intersections to form a force-propagating network, sheared this network, and let it relax to an
energy minimum. From this model, they were able to identify three elastic regimes that were
characterized by the mean distance between crosslinkers and the temperature. Dasanyake and
coworkers (8) extended this model to include a term in the potential energy that corresponded to
myosin motor activity and observed the emergence of force chains that transmit stress throughout
the network. These studies address questions about how forces propagate and how crosslinker
densities alter mesh stiffness.

Other studies characterized network structure and contractility as functions of model parame-
ters. Wang and Wolynes (10) considered a graph of crosslinkers (nodes) and rigid filaments (edges)
in which motor activity was simulated via antisymmetric kicks along the filaments. They calculated
a phase diagram for contractility as a function of crosslinker and motor densities. Such a simu-
lation can provide qualitative insights into general principles of filament networks, but the model
did not account for filament bending, and structures were sampled via a Monte Carlo scheme that
was not calibrated to yield information about dynamics. Cyron et. al. (17) used Brownian dynam-
ics simulations to investigate structures that can form via mixtures of semiflexible filaments and
crosslinkers and determined a phase diagram and phase transitions (18)) between differently bun-
dled actin networks that form as one varies crosslinker density and crosslinker-filament binding
angle. Nedelec and coworkers performed dynamic simulations of assemblies of semiflexible mi-
crotubules and kinesin motor proteins, which share features with assemblies of F-actin and myosin;
they used their simulation package, CytoSim, to understand aster and network formation in micro-
tubule assays (11) and showed recently that the model can be adapted to treat actin networks (12).
Gordon et al. (13)), Kim (14), and most recently Popov et al. (15)) similarly simulated dynamics of
F-actin networks and included semiflexible filaments, motors and crosslinkers. By varying motor
and crosslinker concentrations, Gordon et al. (13) and Popov et al. (15) showed various structures
that can emerge from assemblies of this type, and Kim (7, |14 additionally quantified how these
changes could effect force propagation within the network.

We have strived to include many of the best features of these preceding models in our model.
We use the potential energy of Head et al. (5) for filament bending and stretching. However, in
contrast to (3, 18), which simply relax the network, we simulate the stochastic dynamics, including
thermal fluctuations, crosslinkers and motors binding and unbinding, and the processive activity of
myosin. The force propagation rules and kinetic equations for binding and unbinding are similar
to those of (11, [13)), while the length and time scales simulated are on the order of those performed
in (12} [14). We expand on these works by combining and documenting key elements in a single
model, demonstrating that the model can capture experimentally determined trends for cytoskeletal
materials quantitatively, and illustrating how the model can be used to study systems of current
experimental interest.



2 Materials and Methods

To access the time and length scales relevant to cytoskeletal network reorganization, we treat actin
filaments, myosin minifilaments, and crosslinkers as coarse-grained entities (Fig. [T]A). We model
actin filaments as polar worm-like chains (WLC) such that one end of the WLC represents the
barbed end of an actin filament and the other represents the pointed end. We model crosslinkers
as Hookean springs with ends that can bind and unbind from filaments. Thus, the connectivity
of a network and, in turn, its capacity for force propagation varies during simulations. We model
molecular motors similarly to crosslinkers except that each bound motor head can walk toward
the filament barbed end with a load-dependent speed. The motors can slide filaments, translocate
across filaments, and increase network connectivity. We simulate the system using Langevin dy-
namics in 2D because the in vitro experiments we wish to interpret are quasi-two-dimensional, and
approximating the system as 2D allows us to treat larger systems for longer times. To account for
the fact that a three-dimensional (3D) system would have greater conformational freedom, we do
not include steric interactions for our filaments, motors and crosslinkers. This implementation of
filaments, motors and crosslinkers, which we detail below, allows for motor-driven filament sliding
and filament buckling, as seen in Fig.[TD-E. A complete list of model parameters, their values, and
references is provided in Table[I]
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Figure 1: Overview of the model. See|[Materials and Methods|for details. (A) Schematic of a configuration
of the model. Filaments are red, crosslinkers are green, and motors are black. (B) Expanded view of the
actin filament representation: a chain of beads connected by springs with spring constant k,, rest length [,
and bending modulus g, as detailed in (C) The process by which a crosslinker finds a filament
to bind, as detailed in The solid red link is indexed to the grid points marked with either red
or purple stars, and the solid green motor head searches the grid points marked with either green or purple
stars for links to bind. The crosslinker head then stochastically binds to the nearest spot on the filament (see
Section [S1|and Fig. in the Supporting Materials) here marked with a purple x. (D) Successive images
of two antiparallel 10 pum filaments (barbed end marked in blue) interacting with one motor at the center.
The motor binds to both filaments and slides them past each other. (E) Similar to (D) but with a crosslinker
that pins the top filament’s pointed end to the bottom filament’s barbed end. The motor, bound to both,
walks toward the barbed end of the bottom filament and buckles the top filament.

2.1 Filaments

The WLC model for actin filaments is implemented as a chain of N + 1 beads connected by N
harmonic springs (links) and N — 1 angular harmonic springs, as depicted in Fig. [I[B. The N
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linear springs penalize stretching and keep the filament’s average end-to-end length approximately
constant. The N — 1 angular springs penalize bending and determine the persistence length for a
free filament. The filament configurations are governed by the potential energy Uy:

U Ustretch + Ubend

Ustretch _ Ea Z — 7 1’ —1 )

N
bend — KB §
21,
=2

where 7; is the position of the i'* bead on a filament, §; is the angle between the i and (i — 1)
links, k, is the stretching force constant, x5 is the bending modulus, and [, is the equilibrium
length of a link. In practice, Uy enters the simulation through its Cartesian spatial derivatives (i.e.,
the forces in Eq. [6). In this regard, it is important to note that linearized forms for the bend-
ing forces are employed in the literature for filaments whose length is constrained via Lagrange
multipliers (11), but we found that it was necessary to use the full nonlinear force to obtain consis-
tent estimates for the persistence length, L,, for bead-spring-chain filaments (see [Actin filaments|
lexhibit predicted spatial and temporal fluctuations| below). We thus employ the full nonlinear
Cartesian forces throughout this work, using the expressions in Appendix C of (19) following the
implementation in the LAMMPS Molecular Dynamics Simulator (20).

The bending force constant is derived from the persistence length L, such that kg = L,kgT),
where kg is Boltzmann’s constant, and 7" is the temperature (21). Experimentally, L, = 17 um, so
kp = 0.068 pNum? for T' = 300 K (22).

The elasticity per unit length measured for actin filaments with lengths on the order of a micron
is 55 £ 15 pN/nm (23| 24)). This implies that a reasonable value for the segment stretching force
constant, k,, would be of this order of magnitude. However, simulating a network of such stiff
filaments is computationally infeasible since the maximum timestep of a simulation is inversely
proportional to the largest force constant in the simulation (25)). Therefore, we set k, to a smaller
value than estimated from experiment. We note that prevalent extensile behavior, which occurs
when filaments interact with two populations of motors with opposite polarities (26), would neces-
sitate using a more realistic k,. However, because k, > kp/ lf’; still, upon compression, filaments
prefer bending to stretching, and, as we show, the ability of our model to capture contractile net-
work properties quantitatively is not compromised. Unless otherwise indicated, we use [, = 1 um,
because it is the largest segment length that results in the expected spatial and temporal fluctuations
for filaments (see |Actin filaments exhibit predicted spatial and temporal fluctuations| below). We
note that very high motor densities can cause filaments to buckle at length scales of ~ 1 ym, and
in these cases it would be necessary to use a smaller [, to capture those effects (27).

&)

2.2 Crosslinkers

There are a variety of different actin binding proteins that serve as crosslinkers in the cell cortex,
including filamin, fascin, and a-actinin. Crosslinkers connect filaments dynamically and propagate
force within the network. Thus, the crosslinkers in our model must be able to attach and detach
from filaments with realistic kinetic rules and be compliant when bound. To this end, we model
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them as Hookean springs with stiffness k,; and rest length [,;. Like actin filaments, the Young’s
modulus of most crosslinkers is significantly higher than would be reasonable to simulate; there-
fore, for network simulations without large external forces, we set k,; = k, so that the bending
mode of actin filaments is significantly softer than the stretching mode of crosslinkers. The rest
length [,; corresponds to the size of the crosslinker and therefore differs based on the particular
actin binding protein one wishes to study.

The statistics of the bound (on) and unbound (off) states of each crosslinker are determined by
a potential energy of the form

le — Usz‘,retch + Ubf”d(fl T [2>

Uzt = Sea(7i — 7~ L)? @

Ul = —kpTn (k27 /K]
where 77 (2) is the position of head 1(2), /(9 is 1 if head 1(2) is bound and 0 otherwise, and k2’
(k:;{ Ty are the rates of binding (unbinding).

Owing to the form of Eq. [2|and the Monte Carlo rule for binding (below), it is inefficient for a
crosslinker to attempt attachment to every filament link in the simulation box. Rather, we assign a
cutoff distance r. = \/kpT/ky such that if the distance between a motor and a filament is greater
than 7. the probability of attachment is zero. This implementation allows us to use the following
neighbor list scheme, illustrated in Fig.[I[C, to determine crosslinker-filament attachment. A grid
of lattice size of at least r. is drawn on the 2D plane of the simulation, and each filament link is
indexed to the smallest rectangle of grid points that completely enclose it. In practice the lattice
size is generally larger than 7. due to memory constraints, and is denoted by the model parameter
g, the number of grid points per um in both the = and y directions. Since a crosslinker head cannot
bind to a filament link that is farther away than r, it suffices for a crosslinker head to only attempt
attachment to the nearby filament links indexed to its four nearest grid points.

At each timestep of duration At¢, we enumerate the accessible filament links available to each
unbound head. For each link, we determine the nearest point to the head’s present position and
compute a Metropolis factor for moving to that point: P%//°" = min[1, exp( — AU [kpT))]

xl,i

(28). The head then binds to accessible filament link ¢ with probability (kg?At)PfI{ 779" and stays
unbound with probability 1 — S°. (ko At) PS5 77" 29).

xl,i

At each timestep, we attempt to move each bound head to a position 7, generated by reversing
the displacement made upon binding, rotated to account for filament reorientation in the inter-
vening time. This choice of 77, allows us to satisfy detailed balance for binding and unbinding
by accepting the unbinding transition with probability (k% At) min[1, exp(—AUSreh [k T)], as
explained in Section[S1|in the Supporting Materials.

When both crosslinker heads are attached to filaments, the crosslinker is generally stretched
or compressed. We propagate the tensile force stored in the crosslinker onto the filaments via the
lever rule described in (13} 30). Specifically, if the tensile force of a crosslinker head at position

7 between filament beads ¢ and 7 + 1 is F);, then,

|71 — T3] 3)
Fip1=Fy — F
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are the forces on beads ¢ and ¢ + 1 respectively due to the crosslinker.

2.3 Motors

In the present work, we focus on the motor protein myosin II. As mentioned above, tens of myosin
IT proteins aggregate into bipolar assemblies called myosin minifilaments (16). For both myosin
minifilaments, and monomeric myosin, motility assay experiments have shown that, on aver-
age, bound myosin heads walk toward the barbed end of actin filaments at speeds in the range
0.2 — 4 pm/s (31-34). Since myosin also functions to increase the local elasticity of networks
where it is bound, we model a motor similarly to a crosslinker, in that it behaves like a Hookean
spring with two heads, a stiffness k,,,, and a rest length /,,,. The two heads of this spring do not cor-
respond directly to individual myosin protein heads; rather each of them represents tens of myosin
molecules. Experimentally minifilaments have a very high Young’s modulus, and it is unlikely that
their lengths change noticeably in cytoskeletal networks. As with the passive crosslinkers, we set
k., = k, so that filament bending is still the softest mode. The rest length was set to the average
length of minifilaments, /,, = 0.5 pm (1). Attachment and detachment kinetics, as well as force
propagation rules for motors, are the same as for crosslinkers, subscripted with m instead of x/ in
Egs. (2) and (3).

Unlike crosslinkers, motors move towards the barbed end of actin filaments to which they
are bound at speeds that decrease with tensile force along the motor. Myosin motors have been
observed to stop walking when the force on them exceeds the stall force, F; ~ 4 pN, and most do
not step backward (35, 136). We model this behavior by giving each motor head a positive velocity
in the direction of the barbed end of the filament to which it is attached; this velocity linearly
decreases with the motor’s tension projected on the filament, i.e.,

) F, i
U(Fm):vgmax{1+ i3 - , 0}, 4)
where vy is the unloaded motor speed, F},, = —k(|ry — 72| — L,,,) is the spring force on the motor,

and 7 is the tangent to the filament at the point where the motor is bound; 7 points toward the
pointed end of the filament. In the simulations below, we use a value of vy = 1 um/s, which is
within range of experimental measurements, but we use a lower value of F;, = 0.5 pN, so that
motors are not stretched to unphysical lengths as they walk.

If the length of a motor’s step is larger than the remaining length of filament, then the myosin
moves to the barbed end of the filament. At the barbed end, it has speed vy = 0, and detachment
rate k<!, We found that k"¢ = 10k°// yielded reasonable results for motility assay and contractile
network simulations. In experiments, where each myosin minifilament contains many myosins, a
lower barbed end affinity may arise from fewer of the minifilament’s myosins remaining attached
to the actin filament. In the program, we treat crosslinkers and motors with equivalent objects, but
set vy = 0, and k& = k;{ 7 for the crosslinkers.

2.4 Dynamics

We use overdamped Langevin dynamics to solve for the motion of filament beads, motors, and
crosslinkers. The Langevin equation of motion for a spherical bead of mass m, radius R at position
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7(t) at time ¢, forced by F'(7(t)) in a medium with dynamic viscosity v is
mi(t) = F(7(t)) + B(t) — (1) /. (5)

where B (t) is a Brownian forcing term that introduces thermal energy, and we use the Stokes
relation ¢ = (6mRr)~! in the damping term. The fastest motions in this simulation are the
filament bead fluctuations. Taking the bead radius to be 0.5 pum, the maximum speed to be
(2kpTu/At)Y/2 = 200 pm/s and the dynamic viscosity to be v = 0.001 Pa-s (corresponding
to water), the Reynolds number is very low: Re =~ 10~*. Hence, we treat the dynamics as
overdamped and set m = 0 in Eq. [5| Furthermore, in the limit of small A¢, we may write
F(t) =~ (F(t + At) — 7(t))/At. These two approximations allow us to rewrite Eq. as

Pt + At) = 7(t) + F(7(t)) ut + B(t) pAt. (6)

For the Brownian term, we use the form of Leimkuhler and Matthews (37)):

B(t) = /252? (W(t) + V2V(t - At)) | -

where W(t) is a vector of IID random numbers drawn from the standard normal distribution. This
numerical integrator minimizes deviations from canonical averages in harmonic systems; given
that all the mechanical forces in our model are harmonic, we expect this choice to yield accurate
statistics in the present context as well. The value for At in Eq. [6]is most strongly dependent on
the largest force constant in the simulation, k,, but also depends on other simulation parameters
for both motors and crosslinkers, such as vg, k°", and k°//. Table |[l|can be used as a rough guide
for how high one can set the value of At for a given set of input parameters; e.g., for a contracting
network with k, = 1 pN/um, vy = 1 um/s, ko = ko = k&d = 1571, k;’{f = k°// =0.157!, and
kend = 10 s~1, a value of At = 2 x 107° s is just low enough to iteratively solve Eq. |§] without
accumulating large errors.

2.5 Environment

In general we use periodic boundary conditions so as to limit finite-size effects. We implemented
square boundaries to model closed systems, as well as Lees-Edwards boundaries for shearing sim-
ulations (19). The dimensions of the simulation box (Table |I)) were chosen to be five times the
contour length of filaments so as to be large enough to avoid artifacts due to the self-interaction of
constituent components.

To ignore steric interactions, the fraction ¢ = N;m(D/2)*L/V of N; actin filaments (length
L and diameter D) in a volume V' must be lower than the critical volume fraction at which steric
interactions yield an isotropic to nematic transition, which for long worm-like chains (D < L,
and D < L)is ¢. = 5.4D/L (38, 39). For a network of 500 filaments of length L = 10 um
and diameter D = 0.01 gm, in a 50 x 50 x 0.1 um? plate, this condition is fulfilled, since ¢ =
0.0015 < ¢. = 0.0054. While it is difficult to estimate the exact thickness of in vitro experimental
actomyosin assays due to the complexity of their preparation, we estimate that they are not thinner
than 0.1 pm (40). We have also ignored hydrodynamic interactions between filament beads; the
restriction to low packing fraction obviates the need to incorporate anisotropic drag, so we take p
to be equivalent for both transverse and longitudinal motion (41).
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3 Implementation

The model is implemented as an open source C++ package called Active Fila-
ment Network Simulation (AFiNeS) that is available for download at http://dinner-
group.uchicago.edu/downloads.html. Installation instructions are available in the README
file in the top directory of the AFiNeS package, and all information needed to reproduce the
materials in this paper are available in the subfolder “versatile framework_paper”. To run a
simulation, a user must compile the code into an executable (e.g., with the provided Makefile)
and create an output directory. A user can set parameters using command line arguments or
a file. For example, if the user has compiled the code into the executable ‘“afines”, created
the output directory “test”, and wants to run a simulation of 500 10 pm actin filaments (with
l, = 1 pm), interacting with 0.2 motors/um?, and 1 crosslinker/um? (passive motors), in a cell
that is 50 um x 50 pm, for 100 s, he or she could write the following to the file my_config.cfg

xrange=50 # system size in X
yrange=50 # system size in Y

npolymer=500 # number of actin filaments
nmonomer=11 # number of actin beads per filament

a_motor_density=1 # motor density
p_motor_density=1 # crosslinker density

tf=100 # duration of simulation
dir="'‘test’’ # output directory

and then run the code using the command
afines —-c¢ my_config.cfg
Alternatively, the user could bypass the configuration file and issue the following command:

afines —--xrange 50 --yrange 50 —-—-npolymer 500 ——-nmonomer 11 \
—-—a_motor_density 1 —--p_motor_density 1 —--tf 100 --dir test

In this example, all other parameters were set to their default values (see README file for full list
of program parameters). With an executable compiled using g++ with the -O3 optimization flag
and run on an Intel E5-2680 node with 2 Gb of memory and a 2.7 GHz processor, this example
required less than 1.5 days of wall-clock time. In general, the wall-clock time of the simulation
scales linearly with system size (Fig.[2).


http://dinner-group.uchicago.edu/downloads.html
http://dinner-group.uchicago.edu/downloads.html
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Figure 2: Wall clock time for a 10000-step simulation with step size At = 0.0001 s. (A) For a constant
system size, run time scales linearly or sublinearly as both filament density (red dots) and motor density
(blue dots) are increased independently. If both are increased together (black dots), a quadratic scaling is
approached for large numbers of particles. (B) Blue: At constant motor, filament, and grid densities, run
time scales linearly with system size (i.e., the area of the simulation box, XY'). Red: At constant system size,
run time decreases with increasing grid density, g2, and thereby the number of neighbor-list grid elements,
> XY, used to calculate motor-filament interactions. All benchmarks are for an Intel E5-2680 node with 2
Gb of memory and a 2.70 GHz processor.
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Table 1: Parameter Values

Symbol | Description (units) (references) Simulation
L, Shear MAOtlhty Network
ssay
Actin Filaments
Ny Number of filaments 20 500 1 500
Np Number of beads per filament [21,201] 11 2, 26] 11
la Link rest length (pzm) [0.1,1] 1 1 1
k, Stretching force constant (pN/m) 0.01, 1000 1000 1 1
KB Bending modulus (pNum?) (22) 10,005, 800) 0.068 0.068 0.068
Myosin Motors
Pm Motor density (;zm~2) n/a n/a 0,9 0.2
L, Rest length (pm) (1) n/a n/a 0.5 0.5
ko Stiffness (pN/pm) n/a n/a 1 1
kor Max attachment rate (s~ ') n/a n/a [0.001, 2] 1
k:f,!f f Max detachment rate (s~1) n/a n/a 1 0.1
Jend 1(\;[51?) detachment rate at barbed end /a /a 10 1
Vo Unloaded speed (um/s) (31) n/a n/a 1 1
F, Stall force of myosin (pN) (42) n/a n/a 0.5 0.5
Crosslinkers
Pal Crosslink density (m™2) n/a 0.42 n/a 1
- Rest length (Filamin) (xm) (43) n/a 0.150 n/a 0.150
[ Stiffness (pN/um) n/a 0.1, 1000] n/a 1
Eo} Max attachment rate (s™*) n/a 1 n/a 1
k;{ ! Max detachment rate (s 1) n/a 0.1 n/a 0.1
Environment
At Dynamics timestep (s) 1076, 10~9] 1077 0.00005 | 0.00002
Tr Total simulated time (s) 2000 0.5 1000 400
X, Y Length and width of assay (xm) n/a 75 50 50
g Grid density (um™!) n/a 2 2 2
T Temperature (K) 300 300 300 300
v Dynamic viscosity (Pa-s) 0.001 0.001 0.001 0.001
Ay Strain (%) (44) n/a 0.001 n/a n/a
trelax Time between sequential strains (s) n/a 0.001 n/a n/a
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4 Results and Discussion

In this section, we numerically integrate the model to obtain stochastic trajectories and compare
their statistics to known analytical results for semiflexible polymers and networks, as well as ex-
perimental observations. We also use the model to investigate these systems, including how the
viscoelasticity of semiflexible polymer networks depends on crosslinker stiffness, and how the
extent of directed motion in actin motility assays depends on filament and motor characteristics.
Finally, we use the model to show how one can quantify contractility in a simulated actin network.

4.1 Actin filaments exhibit predicted spatial and temporal fluctuations

The persistence length of a semiflexible filament with bending modulus x5 is expected to be
L, = kp/kgT. However, when simulating the dynamics, approximations can enter both the eval-
uation of the forces and the discretized numerical integration of the equations of motion. Because
the persistence length is a measure of filament bending fluctuations, and not an input to the simu-
lation, its dependence on simulation parameters must be determined numerically. As discussed in
and further below, some care is required to obtain reliable estimates of L,,.

For a two dimensional filament it is possible to show analytically that if a small bend between
links 7 and 7 — 1 of an NV link chain results in a local change in free energy of (kp/2l,)0?, then

(0*(1)) =1/L, (8)

(cos(0(1))) = exp (=1/2Ly), ©)

where 6(1) = 6; —0;, 1 = l,(j — 1) (2 < i < j < N) @5). To test our WLC model against
these predictions, we let 20 filaments of L = 20 um and xp = 0.068 pNum? fluctuate at 7' = 300
K for T = 2000 s and measured the resulting filament configurations. The configurations saved
were chosen to be 2 s apart, since the decorrelation time for #(1) was at most 1.1 s (see Section
and Fig. [S2] for details). The first 100 s of each simulation was disregarded as filaments had
not yet equilibrated. For each of the 20 filaments, we evaluated (#*(1)) and (cos(6(l))) for each
l€1,2,...,19 um from its 1900 saved configurations. We show the average for each of these
values over all filaments in Fig. 3B, along with the expected behavior, given the input .
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Figure 3: Spatial and temporal fluctuations of the bead-spring WLC. (A) Schematic of a filament and
the order parameters that characterize its fluctuations. Spatial fluctuations are characterized by the angle
between two tangent vectors cz; and CZ;+1 along the filament as a function of the contour length between
them, . Temporal fluctuations are characterized by the eigenvalues Aj 2(¢) of the covariance matrix of
filament endpoint positions as a function of time. The red arrow indicates the larger moment (A1, measuring
transverse fluctuations) while the blue arrow indicates the smaller moment (A2, measuring longitudinal
fluctuations). (B) Decorrelation of tangent vectors (red circles) and fluctuations in angles between links
(blue circles) as a function of the arc length between them. For the N = 20 filaments analyzed, the blue
(red) dots show the mean of (A(1)2) ((cos (A(1)))) and the error bars show their standard errors, o/+v/N,
where ¢ is their standard deviation. Dashed lines show expected behavior for kg = 0.068 pNum?2. (C)
Eigenvalues of covariance matrices for the positions of endpoints of filaments as a function of time. Red
dots show A (), which is expected to be proportional to ¢3/4 (red line) while blue dots show Ao(t), which
is expected to be proportional to ¢7/® (blue line). Standard error is smaller than the size of the data points.

As alluded to above, the numerical integration can make the persistence length depend on
simulation parameters in nonobvious ways. Consequently, we measured the sensitivity of L, to
independent variations of g, [,, and k,. The results shown in Fig. 4| are obtained from using the
definition L, = 1/(d(6*(1))/dl) (i.e., the inverse of the slope of the “blue” line in [3B). Fig. HA
shows that in the range of kp € [1,10°] umxkpT, L, determined from the simulation agrees well
with the input bending modulus, and can be easily tuned to simulate filaments of varying rigidity.
Fig. shows that for a wide range of link stiffnesses, L, is independent of k,. We also tested
the dependence of L, on the link rest length, /,. In thermal equilibrium, the variance of the link
lengths is (Al%2) = kpT/k,. Thus, to keep the fluctuations in the filament’s contour length L
constant, one should set k, o< [ 2. In practice, this scaling is computationally difficult to achieve
when [, < 0.3 pm because high k, requires a very small At in Eq. [ We therefore used a less
steep variation, k, = 1 pN/I,, and show in Fig. that consistent values of L,, are obtained when
l, € [0.1,1] pm. We thus see that, there is a range in which L, is independent of the filament
link parameters, k, and [,, although high stiffness and low link length both require using a small
timestep, and therefore limit the duration of the simulation. In Section [S3] (Fig. [S4) we measure
the persistence length of fibers simulated using Cytosim and obtain similar results.
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Figure 4: Dependence of the persistence length on the parameters for numerically integrated semiflexible
filaments. Error bars are o/ \/N , where o is the standard deviation of the values of L, obtained from fitting
a line to the first 5 data points of (#2(I)) for each of the N = 20 filaments simulated. The dashed lines
show the predicted persistence length, based on the input bending modulus k. The default parameters are
kp = 17umxkgT, k, = 1 pN/um, and I, = 1um. In (A)-(C), At > 1070 s, and the largest At that
yielded stable integration was used. In (C), k, = 1pN/l,.

The statistics of temporal fluctuations are also known for semiflexible filaments. Fluctuations
transverse to the filament orientation increase as (dr?) oc t*/4, while longitudinal fluctuations
increase as (drﬁ) oc t7/8 (46)). To determine if our simulations agreed with these theoretical scaling
relations, we followed the procedure outlined in (46) and generated N = 100 initial filament
configurations of a 20 pym filament. This length was chosen because it satisfied the constraint
provided in (46) for the fluctuations of the two ends of the filament to be uncorrelated at long
times (here ¢ = 1 s); i.e., 20 um > (thgT/v)"® (kp/ksT)”® = 7 um. For each configuration
we ran M = 1000 simulations of the filament diffusing freely for 1 s. We denote each of the
M positions for each endpoint at each time by 7.(¢). For each of the clouds of points shown
in Fig. , we ca}culated t}}e moments, as the eigenvalues of the covariance matrix with elements
((Te(t)1—(Te(t)-2)) (Te(t)- 7 —(Te(t)-7))) for i, 5 € {x,y}. The larger eigenvalue A (¢) corresponds
to the transverse fluctuations (i.e., A;(¢) oc 3/*) while the smaller eigenvalue corresponds to the
longitudinal fluctuations (Ay(t) o< t7/®). We show these results in Fig. . Each data point is the
average over the 2N M eigenvalues for \;(¢) and \y(¢). As evident, the computed scaling relations
are in good agreement with theoretically predicted behaviors.

4.2 Tunable elastic behavior of crosslinked filament networks

The mechanical properties of crosslinked F-actin have important ramifications for force generation
and propagation within a cell. They are generally inferred from rheological measurements of in
vitro networks (47-50). In a typical experiment, actin and crosslinker proteins are mixed to form a
crosslinked mesh and then sheared in a rheometer by a prestress, oy. The prestressed network then
undergoes a sinusoidal differential stress of magnitude do < . By measuring the resulting strain,
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one can calculate the differential elastic modulus G(o() = do/dy. Results from such experiments
indicate that, in contrast to a purely viscous fluid, crosslinked F-actin networks resist shear, and GG
increases nonlinearly with stress indicative of shear stiffening.

In experiments using a stiff crosslinker, such as scruin, the dependence of the differential mod-
ulus on high prestress is G' < 03/ ® (@7, 150). Force-extension experiments with semiflexible fila-
ments, in which one directly measures the force F' required to extend a filament by a distance [,
yield a remarkably similar relationship, dF'/dl oc F*/? (51, 52). As remarked in (47), this sug-
gests that the shear stiffening is a direct result of the nonlinear force-extension relationship of actin.
Rheology studies using more compliant crosslinkers, such as filamin, have found a softer response,
G « 0y, indicating that a significant amount of stress is mediated through the crosslinkers, and not
the filaments (49). These results suggest that the strain stiffening behavior of a crosslinked network
can be tuned by varying the crosslinker stiffness.

To test this possibility and benchmark our simulations, we subjected passive networks com-
prised of filaments and crosslinkers to shear. We initialized each simulation with N = 500 ran-
domly oriented filaments of length 15 pm in a square box of area 75 pym X 75 pm. A 0.150 pum
crosslink (corresponding to the length of filamin) was initially placed at each filament intersec-
tion. To inhibit network restructuring, the detachment rate of the crosslinkers was set to zero. We
performed 24 such simulations, each with a different crosslinker stiffness in the range 0.1 — 1000
pN/pm.

Simulating shear rheology experiments requires modifying the equations of motion and the
boundary conditions to achieve a planar Couette flow. In general, planar Couette flow can be
simulated via molecular dynamics using Eq. (4.1) in (33):

my = Fmt,y>

where x and y are the Cartesian coordinates of a particle being sheared, Fj,,; .., Fiy: 4 are the internal
forces on those particles and + is the strain. Simultaneously, the upper and lower boundaries must
be sheared by the total strain on the simulation box (19). Comparing Eq. with Eq. [5 we
substitute F},; , = F(x(t)) + B;(t) — #(t)/u. In the overdamped limit, &; = 0, so implementing
Eq. [I0]is equivalent to updating filament bead positions via Eq. [6] and shifting the horizontal
position of a bead (z;) by

i — Ti 4+ Ay (y?) (11)

where Ay = 4At and Y is the simulation cell height. The boundary conditions follow the Lees-
Edwards convention (19).

Since moving the particles A~ is equivalent to the addition of a significant external force on the
system, it is necessary to let the network relax for a specified amount of time ¢, after each shear
event, before measuring the network’s internal energy. The magnitude of t,.;,, depends on A~,
which in turn depends on the chosen discretization of the strain and the timestep At. As shown in
Sectionand Fig. we found that Ay = 0.001, At = 1077 s, and #,¢j4, = 0.001 s yielded a
stable planar Couette flow, with high enough strains to observe strain stiffening. This protocol was
performed for 7y = 0.5 s yielding a total strain of v = AYT /t,c1q, = 0.5.

We measured the elastic behavior of the network for each crosslinker stiffness by calculating
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w, the strain energy density at each timestep:

1
w(t) = (Z Uy +ZU$1>, (12)
f xl

where Uy is the mechanical energy of individual filaments (Eq. E[) and U,, is the mechanical energy
of each crosslink (Eq. . By averaging over windows of size ?,..;,., we determine w(7y). Fig.
shows the results of these calculations for various values of k,;. For extremely low k,;, the strain
energy scaled linearly with strain, w o -, indicating that the network showed no resistance to
shear: G = d*w / dv* = 0. For high k,;, we observe a neo-Hookean strain stiffening behavior,
w o< y* (54). Thus, we can tune the material properties of crosslinked semiflexible networks from
being liquid-like, with w o< +, through the Hookean elastic regime of w o< ~? up to the strain
stiffening regimes of w o< 72 and w o< 3, as previously reported in experiments (47, 49). We
show in Section [S4|and Fig. [S5| that the monotonic increase in scaling for low k,; corresponds to
a regime where the strain energy is mostly stored in the crosslinkers, while the plateau at high £,
corresponds to a regime where the strain energy is mostly stored in filaments.
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Figure 5: Tunable elasticity of crosslinked networks. (A) Snapshots of a strained network (k, = 1000
pN/um, k;; = 20pN/um) at v = 0.1, v = 0.25, and v = 0.5. Color indicates stretching energy on each
link, with green being the lowest and yellow being the highest. For all snapshots, ¢ = v x 1 s. (B) The
potential energy of the network as a function of time shown at different strains 79 = 0.1 (circles), vg = 0.25
(squares), and 9 = 0.4 (triangles), where tg = 79 x 1 s. Black dashed line shows the strain protocol.
(C) Strain energy density (w = U/XY) for various values of crosslinker stiffness k,;. Blue dashed line
indicates expected behavior for a linearly elastic solid (w o 7?) and green dashed line indicates strain
stiffening behavior of w o< 4> as expected for semiflexible polymer networks (47, 50). (D) The power-law
exponent of w(~y) as a function of crosslinker stiffness, evaluated by least squares fitting In (w) as a function
of In (7).
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4.3 Ensembles of motors interacting with individual filaments simulate
actin motility assays

While the attachment, detachment and speed of an individual myosin motor is a model input (de-
scribed in [Crosslinkers| and [Motors| above), the collective action of many motors on a filament is
an output that can be compared with actin motility assays (36, 155)). In the canonical motility assay
experiments, a layer of myosin is attached to a glass coverslip, and actin filaments are distributed
on top of the layer of myosin motors. The fixed motors translocate the actin filaments. The speed
of an actin filament has been reported to depend nonlinearly on the concentration of myosin and
the concentration of ATP in the sample (32, 33). Thus, by allowing the filaments to interact with
more motors, one can monotonically increase the filament speed to a constant value.

To explore the dynamics of such an assay, we randomly distributed motors on a 50 pm x50 pm
periodic simulation cell and tethered one head of each motor to its initial position. These model
motors represent myosin minifilaments with dozens of heads, and therefore have a high default
duty ratio (rp = 0.5), and rest length /,,, = 0.5 pm (1} 156). Filaments were then introduced in the
simulation cell and allowed to interact with the free motor heads. The strength of motor-filament
interactions was manipulated in three ways: by varying the motor concentration p,,, the filament
contour length L, and the duty ratio rp = k°"/(k" + k°/7). While L and rp are difficult to
modulate experimentally in a well-controlled fashion, as they require the addition of other actin-
binding proteins to the assay, they are predicted to impact the dynamics of actin by varying the
number of myosin heads bound to an actin filament at any one time (33). Since they are both
simple functions of the model’s parameters, we were able to test this hypothesis directly. We plot
our simulation results in Fig.[6]as functions of the dimensionless control parameter M = p,,,l,, Lrp
(where p,,[,, is the linear motor density), which represents the average number of bound motor
heads per filament.

Our findings are qualitatively similar to the previously reported experimental results and ex-
pand on them by collapsing the trends observed while varying p,,, L, and rp into a single effective
parameter. At low M, i.e., low motor density, filament length, or duty ratio, Fig. shows that
transverse motion dominates over longitudinal motion as the filament is not propelled by motors
faster than diffusion, and transverse filament fluctuations are larger than longitudinal fluctuations
(consistent with Fig. Ep). However, as M increases, longitudinal motion dominates. Consistent
with experimental results (31, 133), the longitudinal speed of the filament plateaus at v ~ 1 um/s,
which is the input unloaded speed of a single motor. In Fig. [6[C, we plot the mean squared dis-
placement (MSD) of the filament, (Ar?) = (|7(¢ 4 6t) — 7(¢)|*) with angle brackets indicating an
average over time t. We show that low M yields diffusive behavior with (Ar?®) oc 6t, and high
M yields ballistic motion with (Ar?) oc 6¢>. We obtain similar results for motility assay behavior
with a corresponding Cytosim simulation, as shown in Section [S3] (Fig. [S6)).

An interesting outcome of these simulations is how the direction of a filament changes over
time for varying M. Specifically, we calculate the directional autocorrelation of a filament and, in
turn, the persistence length of the path of the filament by applying Eq. [0]to the center of mass of
the filament at frames separated by A¢ = 1 s (Fig. [fD). Scaling arguments suggest that the path’s
persistence length depends strongly on motor density, duty ratio, and filament length (57). In the
limit of high M, the distance between motors that are bound to a filament is sufficiently short
that the filament does not diffuse transversely; however, fluctuations in the filament configuration
still allow directional decorrelation, and consequently the path’s persistence length is L,. At low
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M, the distance between bound motors is sufficiently large that rotational diffusion causes the
filament’s path to be completely decorrelated, such that the path’s persistence length approaches
0. In Fig. [6D, we show that the simulation agrees with theoretically predicted scaling laws at low
and high M (57). Our results delineate the values of M at which there are crossovers between the
predicted limiting regimes.
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Figure 6: Nonlinear dependence of filament motility on motor-filament interaction probability. (A) Tra-
jectory of a filament for p,, = 4 um~2 and L = 15 pum as a function of time for different values of the
duty ratio, rp. Depth of color indicates time of the snapshot, as indicated by the scale. Blue dot marks the
barbed end. (B) Filament speed decomposed into longitudinal (filled circles) and transverse (empty squares)
components as a function of the dimensionless parameter M = p,,[,,Lrp, by independently varying p
(green), L (red), and rp (blue). The default parameters were p = 4 um~2, L = 15 pum, and rp = 0.5. (C)
Mean squared displacement for various values of M. Blue dashed line shows diffusive behavior and orange
dashed line shows ballistic behavior. (D) Path persistence length for simulations described in (B), evaluated
via Eq. [9over 5 replicates. Dashed lines are theoretical predictions for these values using equations (1)-(6)
in (57).

4.4 Molecular motors cause flexible, crosslinked networks to contract

When motors, crosslinkers, and filaments are combined into a single assembly, simulated net-
works contract. The structure and dynamics of these networks exhibits a rich dependence on
motor and crosslinker densities, binding/unbinding kinetics, and stiffness parameters. Here, we
show one illustrative example to demonstrate that our model reproduces actomyosin contractility
for a reasonable choice of parameters (Fig. [7]A). The network is initialized by randomly orient-
ing 500 filaments, each 10 pm long, within a 50 pm x 50 pm simulation cell. We distribute
0.15 um long crosslinkers throughout the simulation cell at a density of 1 yum~2, and 0.5 um
long motor oligomers at a density of 0.2 um~2. As the simulation evolves, the actin density be-
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comes more heterogenous as motors condense actin filaments into dense disordered aggregates.
This density heterogeneity can be quantified by the radial distribution function of actin filaments,
g(r) = P(r)/(2rrdorps), where P(r) is the probability that two filaments are separated by a dis-
tance r, 6r = 0.1 pum is the spatial bin size, and p; is the filament density. As shown by Fig. [7B,
g(r) =~ latt = 0 for all r as the actin filaments are homogeneously distributed. However, over
time it becomes more peaked at lower separation distances between filaments, indicating filament
aggregation.

To measure the contractile activity of the network, we evaluate the divergence of its velocity
field. This is done by calculating the velocity of each of the actin beads, followed by a grid-based
interpolation of a velocity vector field from those values (black arrows in Fig. [7IC; interpolation
scheme described in Section [S6). One can then evaluate the divergence V - ¢/ of the interpolated
field at every spatial location (color of Fig. [7C). Since there is no flux of actin into the simulation
box, the total divergence of the flow field is zero at all times (i.e., [ (V - ¥) dA = 0). Therefore, we
weight the divergence of each patch of the network by its local density and measure [ p,(V - ¥)dA
where p, = n,/dA is the number density of actin beads and (V - ¥) is the average actin divergence
in the patch of size dA. As shown in Section [S6| this order parameter shows consistent behavior
for small patches (dA < (10 um)?) and a range of step sizes (h < 20 s) for the velocity calculation
(Eq.|S . We also measure the average filament strain As, in the network, where

|7y — 70
As=|(1- — , (13)
( Zz’]\il |75 — 71l

7 is the position of the i*" bead on an (N + 1)-bead filament, and the bar denotes an average
over all filaments. Fig. shows the results of measuring network divergence and filament strain
from 20 simulations with the same parameter choices as in Fig. [7A, but with different random
number seeds. The divergence measurement (blue) shows that the network is contractile, since
the density weighted divergence is negative, and its shape echoes the experimental results in (38)),
where the magnitude of contractility decreases to a minimum before plateauing. The filament strain
measurement (red) shows that as the network is contracting, individual filaments are buckling. This
supports the notion that the mechanism behind contractility in disordered actomyosin networks is
actin filament buckling (39, 60). We note that, while the parameterization of motors that we used
for the motility assays yields contractile networks (Fig. , using a lower value of k%// resulted in
kinetics closer to those observed in experiment (58)). This improvement with higher motor affinity
may reflect differences in the number of participating motor heads in contractility and motility
assays.
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Figure 7: Contractility of a crosslinked filament network driven by motors. Filaments are red, motors
are black, and crosslinkers are green. (A) Network configurations at ¢ = 0, 50, 150, and 398 s. While
all filaments are shown, only 10% of crosslinkers and 50% of motors are shown for clarity. (B) Radial
distribution function at frames corresponding to (A). (C) Quantification of the motion at ¢ = 50 s. Arrows
(directions and sizes) indicate the filament-bead velocity field generated by the procedure in Section [S6]
Colors map the corresponding divergence. (D) The density weighted divergence (blue; dA = (1 um)?) and
average filament strain (red) of actin filaments for contractile networks. Dark lines for both curves shows
the mean 1i(¢) of these results at each time ¢ over N = 20 simulations. Shaded areas show the standard error
of the mean y(t) + o(t) /v/N where o (t) is the standard deviation.

5 Conclusion

In this paper, we have introduced an agent-based modeling framework that can accurately and
efficiently simulate active networks of filaments, motors, and crosslinkers to aid in the interpreta-
tion and design of experiments on cytoskeletal materials and synthetic analogs. While our focus
here has been on selecting parameters that are representative of the actin cytoskeleton, we expect
that this framework can be adapted to treating other active polymer assemblies as well, such as
microtubule-kinesin-dynein networks. We demonstrated that the model gives rise to both qual-
itative and quantitative trends for structure and dynamics observed in experiments and provides
experimentally testable predictions. Specifically, we reproduced the experimentally observed and
theoretically described fluctuation statistics of actin filaments. We also captured strain stiffening
scalings and predicted how network elasticity can potentially be tuned via crosslinker stiffness.
We modeled sliding filament assays and determined specific system parameters that lead to the
crossover from transversely diffusive to longitudinally processive motion first predicted in (57). In
separate studies, we use our model to explore the phase space of various network structures and
the dynamics that lead to them (3).

While our model captures many experimental observations, we simplified certain features to
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limit both computational cost and model complexity. First, the structure of myosin minifilaments
is significantly more complex than a two-headed spring. As mentioned, minifilaments have dozens
of heads, which allows them to attach to more than two filaments simultaneously, significantly
increasing local network elasticity (61) and enabling more complex motor dynamics (62)). Second,
filaments do not polymerize, depolymerize, or sever in the simulations; it is clear, however, that
recycling of actin monomers, actin treadmilling and, to a lesser degree, filament severing play im-
portant roles in contraction and shape formation (60, [63). Third, our simulations are restricted to
2D, without steric or hydrodynamic interactions. This can play a role in motility assays, for exam-
ple, where at high actin densities, actin filaments organize into polar patterns with characteristic
autocorrelation times (64). It would be valuable to make the model a progressively more faithful
representation of reality in the future to better understand how each of these choices impacts the
behavior of the model and in turn the implications for the associated physics.
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A versatile framework for simulating the dynamic
mechanical structure of cytoskeletal networks:
Supporting Material

S. L. Freedman, S. Banerjee, G. M. Hocky, A. R. Dinner

S1 Calculation of crosslinker head position during binding and
unbinding

In this section, we describe how we update the binding state (/;(2) in Eq. [2)) and position (7)) of
a crosslinker head. The binding states and positions of the two heads of a crosslinker are coupled
only through the potential energy (Eq. [2).

We first discuss binding. An unbound crosslinker head with position 77, can attempt to bind to
the closest point on each nearby filament link. Let l: = 7; — 1;_1, where 77 is the position of the ith
bead on the filament to which the link belongs. Then, we propose a bound state with binding point

Ti—1 |Z|:OOTP§0
T p=>1 (S1)

i1+ pl:- otherwise

udl
Il

where p = (r, — 75) - l_; Eq. can be interpreted easily in a reference frame in which l: is
oriented vertically (Fig. [STJA): if 7, is below the link, 77, = 7;_;; if it is above the filament then
7, = T5; otherwise 77, is the intersection of l: with the line perpendicular to l: that passes through
7. If |7, — 7| < r., the changes in binding state and position are accepted with probability

(k;g?At)P;{ /79" (see main text, |Crosslinkers|).




Figure S1: Position of crosslinker head upon binding or unbinding. (A) Any crosslinker head in the aqua,
yellow, and gray areas (such as the filled blue, green, and black circles) can bind to the blue, green, and
black binding points (circles with crosses), respectively. (B) The process by which a crosslinker generates
an unbinding point (r,,) at time ¢ + h using its original displacement at time ¢ when it snapped to the binding
point 7.

For unbinding, we do the following. At the time of binding (¢), we record the displacement
vector, 7, = 75(t) — 7, (t), and the vector connecting the ends of the filament link, [;(¢) = 7;(t) —
7;—1(t). At the time that we attempt unbinding (¢ + h), we determine the angle of rotation of the

filament link: ~ ~
0 = arccos ( l_i,(t) : lf(t +h) ) . (S2)
L)Lt + h)]

Then, the position to which the crosslinker head tries to jump is

7ot +h) =7yt + h) — (Zfs ézg - :)I; EZ))) Fou(t) (S3)

as shown in Fig. . This jump is accepted with probability (k;{ f At)P;’[ffof !, The motivation
for this scheme is that it ensures that a head that jumps onto (off) a filament link returns to its
original position if it unbinds (rebinds) immediately. Detailed balanced consistent with Eq. chan
thus be satisfied through the acceptance probabilities (k:;"At)POf I=om and (k%7 At) Pon_mf

S2 Relaxation times scales

In this section, we present data on filament and network time scales that inform our choices of
sampling frequencies.

S2.1 Decorrelation of filament angles

The evaluations of persistence length in |Actin filaments exhibit predicted spatial and temporal]
in the main text average over independent configurations of filaments. To determine
the amount of time between independent configurations in a trajectory of a single filament, we
evaluated the integrated autocorrelation time of the angles 6, for i € [2...20] between links along




a 21 bead filament. Fig. shows the autocorrelation

6(1)6(t —(0(t))*
(6, 5) = 1O+ 5)) = (012)
(0(t)?) — (0(1))
where s is the time between realizations and the angle brackets represent an average over all 19

angles and all 1900 saved configurations. Fig.[S2B shows the integrated autocorrelation time 7 as
a function of the simulation cutoff time £ ,,,;, Where

(S4)

Lfinal
7(0) :/f R(0, s)ds. (S5)
0

For all choices of ¢4, 7 < 2 s and therefore configurations that are separated by at least 2 s
should be independent realizations with respect to angles between subsequent filament links.
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Figure S2: Estimation of the characteristic decorrelation time for persistence length measurements. (A)
Decorrelation of angles between filament links for a 21 bead filament with k, = 1 pN/um, [, = 1 um, and
kp = 0.068 pNum?. (B) Measurement of the integrated autocorrelation time 7 for different values of the
cutoff time £ 5,41

S2.2 Shear relaxation times

One extra parameter that must be set for shear simulations is the relaxation time (%,¢;q.)—i.€.,
the minimum time between strain steps for responses to be history independent. We probed this
question computationally by determining if the parameter of interest (total potential energy of
filaments and crosslinkers) varied significantly for different periods of relaxation between steps
of Ay = 0.001. Fig. [S3| shows that while very small ¢,,, values do yield higher energies at
equivalent strains, as t,.. 1S increased, the curves collapse for identical strains. In the shear
simulations in the main text (Tunable elastic behavior of crosslinked filament networks)), ¢,¢.. = 1
ms (yellow curve).
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Figure S3: Total potential energy as a function of strain for various relaxation times. Simulation parameters,
are otherwise identical to the shear simulations in the main text.

S3 Comparison with CytoSim

Cyotsim is a freely available C++ software package developed to simulate active polymer networks
and described in (1). While AFiNeS shares many of the same features, for clarity we enumerate
the technical differences.

e The filament model. AFiNeS uses a bead spring chain and CytoSim uses a chain con-
strained via Lagrange multipliers.

e Attachment of motors and crosslinkers. CytoSim uses a continuous-time Monte Carlo
procedure (the Gillespie algorithm (2))) to calculate when a motor should attempt attach-
ment to a filament, while AFiNeS attempts with the probability computed for each discrete
timestep of fixed duration. In Cytosim, the attachment of a motor to a filament is not depen-
dent on the distance from the filament, other than that it must be below a threshold, whereas
in AFiNeS, a closer motor has a higher probability of attachment, due to detailed balance
considerations.

e Detachment of motors and crosslinkers. CytoSim has a force dependent detachment of
crosslinkers. This was not a necessary detail to reproduce the benchmarks shown in the re-
sults section, and detailed balance would require altering the motor and crosslinker dynam-
ics, so we have not included it in the present version. We plan in the future to understand
how this detail effects cytoskeletal networks in general and add it as an option to AFiNeS.

e Capabilities present in one and not the other. AFiNeS implements network shearing.
CytoSim implements filament polymerization and depolymerization, microtubule asters, and
spherical geometries.

To compare the two packages, we have used CytoSim to run the benchmarks associated with
filament fluctuations (Fig. [S4) and motility assays (Fig. [S6, below). For the filament fluctuation
benchmarks, shown in Fig. we find that while CytoSim is able to yield nearly the correct
persistence length of filaments, at long segment lengths it performs worse than AFiNeS, perhaps
because it uses linearized versions of the angle forces (1)).
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Figure S4: Measurements of persistence length for CytoSim filaments (red) compared with the same mea-
surements for AFiNeS (blue). (A) Cosine correlation function and Af? correlation function for 20 CytoSim
fibers with L, = 17 ym fluctuating for 2000 seconds. See Section 4.1 of the main text for details. (B)
Measurement of L,, as function of segment length, /,, using the fit to the first 5 data points of (A6?) in (A).
(C) Measurement of L,, as a function of input bending modulus for CytoSim and AFiNes. Colors are the
same as panel B.

S4 Parsing the energy in sheared networks

To further examine the source of the energy scalings shown in Fig. 5D, we measure the fraction
of the total energy density w from each of its sources in the network, the stretching energy of
filaments, the stretching energy of crosslinkers, and the bending energy of filaments, as shown
in Fig. In general, we find that shearing the network stretches and bends actin filaments,
and also stretches crosslinkers, as in Fig. [S5A-C. Fig. [S3B-C show that, as crosslinkers become
more stiff, more of the energy from the strain is concentrated on the filaments. Fig. [S5A shows
that for crosslinkers, the trend is not monotonic. When k,; < 100 pN/um, increasing crosslinker
stiffness results in more energy in the crosslinkers, and in this regime, the scaling of w(~y) increases
monotonically. However, for k,; > 100 pN/um, the trend reverses, and the strain energy density
concentrates on the filaments more than the crosslinkers, as seen in Fig. [S5D-E. In this regime,
the scaling of w(+) plateaus near the value 3.5, reflecting the prediction for the differential shear
modulus in a strain controlled rheology experiment, G' = d*w/d~y? o v*/? (3).
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Figure S5: Absolute (A-C) and relative (D-F) energy contributions from crosslinkers stretching (A, D),

filaments stretching (B, E), and filaments bending (C, F) for the sheared network discussed in
|elastlc behavior of crosslinked filament networks}

SS Comparison with Cytosim for motility assays

We also used Cytosim to simulate the motility assays described in the main text
[motors 1nteracting with individual filaments simulate actin motility assays)). The results, shown in

Fig.[S6] are generally congruent with the results from AFiNeS in Fig.[6] We find that increasing
motor density, filament length, and duty ratio increase longitudinal motion and decrease transverse
motion of the filament (Fig. [S6B), and makes the filament move more ballistically (Fig. [S6C).
Furthermore, the path persistence length plots (Fig.[S6D) are nearly identical to the measurements

obtained using AFiNES. Thus, it is reassuring that the two models agree to this extent despite the
differences in filament and binding implementations.
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Figure S6: Motility measurements at varying motor density, filament length, and duty ratio generated using
CytoSim. For a detailed description of this calculation see main text, [Ensembles of motors interacting with|
individual filaments simulate actin motility assays|

S6 Procedure for quantifying contractility

An actin assay can be considered contractile if it has regions to which most of the actin aggregates.
In an experiment with a limited field of view, the net flux of actin into the field of view is positive
when the system is contractile. This flux corresponds mathematically to a negative value for the
integral of the divergence of the velocity field over the area (4, I5). However, in our simulations,
all particles’ positions are known and there is no flux of material into or out of the simulation
region owing to the periodic boundary condition. Thus the total divergence obtained by integrating
over the simulation box must be zero. Nevertheless, we can still compute the density-weighted
divergence to quantify contractility, as we now describe.

To ensure that the divergence is well-defined at all points, we first interpolate a continuous ve-
locity field. When the data are experimental images, the velocity field is determined using Particle
Image Velocimetry (PIV). Here, we take a similar approach, with the advantage that positions of
actin beads are a direct output of the simulation, analogous to tracer particles in experiments. To
this end, for each filament bead ¢ with position 7;(¢) at time ¢, we calculate the velocity by forward
finite difference: . .

(7, ) = Ti(t+hf)b—7‘z(t)7 (S6)
where h is a suitable amount of time to characterize motion. We calculate the average velocity of
each (5 pm)? bin. Similarly to PIV, we lower the noise further by setting a threshold, and only
consider bins with at least n actin beads. We then interpolate the bin values with Gaussian radial

basis functions (RBFs):

M
(F) = Zwke‘(|F‘Fk|/€)2 (S7)

k=1



where M is the number of bins with at least n actin beads, ¢ is a constant related to the width of the
Gaussian RBFs, and w0, are their weights. The optimal value for € is generally close to the value
of the average distance between RBFs (6); we found ¢ = 5 um and a threshold of n = 10 yielded
a robust interpolation across many different actin structures. We use the scipy.interpolate.Rbf
Python package to determine the weights (6). We calculate the divergence of the resulting field
dv,(7)/dx + dv,(7)/dy by using finite difference approximations for the derivatives of Eq.
Examples of this velocity field and the local divergence are shown in Fig.[7IC and Fig.[S7C.

As noted above, given V - U, we quantify the contractility by the density weighted divergence,
[ pa(V - U)dA. In Fig. we show an example where the density weighting has the effect of
significantly increasing the magnitude of the areas with negative divergence. To understand how
the contractility varies with length scale, we replace the integral with the sum over square regions

> pa(F)(V - T)pdA (S8)
k

and vary the size of the regions, dA = dxdy (Fig. ). For the maximum size dA = (50 pum)?
(yellow curve), the density weighted divergence fluctuates around 0 as expected from the zero actin
flux. However for region sizes dA < (10 pum)?, the values are consistently negative, indicating
contractility; the curves decrease to a minimum before plateauing closer to 0, as seen in experiment
(5). We also show, in Fig. [S7|G, that the trend of this order parameter is independent of the time
scale h used to calculate the velocity in Eq.
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Figure S7: Calculation of density weighted divergence for a simulated contractile actomyosin network. (A-
D) Identical to Fig. [7] but with k:f;{f =10s"1, kf;l}d =1s"! and pm =1 ,um_Q. In (A), all filaments and
10% of motors and crosslinkers are shown. (E) Same as (C), but the color is weighted by the actin density
pa- (F) Dependence of the density weighted divergence on the patch size used for integration, dA = dxdy,
with h = 10 s. (G) Dependence of the density weighted divergence on the time scale h used in calculating
the velocity of actin v in Eq. @with dr =dy =1 um.
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