l‘)

Check for
updates

Concurrent Kleene Algebra: Free Model
and Completeness

Tobias Kappé®), Paul Brunet, Alexandra Silva, and Fabio Zanasi

University College London, London, UK
tkappe@cs.ucl.ac.uk

Abstract. Concurrent Kleene Algebra (CKA) was introduced by Hoare,
Moeller, Struth and Wehrman in 2009 as a framework to reason about
concurrent programs. We prove that the axioms for CKA with bounded
parallelism are complete for the semantics proposed in the original paper;
consequently, these semantics are the free model for this fragment. This
result settles a conjecture of Hoare and collaborators. Moreover, the tech-
nique developed to this end allows us to establish a Kleene Theorem for
CKA, extending an earlier Kleene Theorem for a fragment of CKA.

1 Introduction

Concurrent Kleene Algebra (CKA) [8] is a mathematical formalism which extends
Kleene Algebra (KA) with a parallel composition operator, in order to express
concurrent program behaviour.! In spite of such a seemingly simple addition,
extending the existing KA toolkit (notably, completeness) to the setting of CKA
turned out to be a challenging task. A lot of research happened since the original
paper, both foundational [13,20] and on how CKA could be used to reason about
important verification tasks in concurrent systems [9,11]. However, and despite
several conjectures [9,13], the question of the characterisation of the free CKA
and the completeness of the axioms remained open, making it impractical to use
CKA in verification tasks. This paper settles these two open questions. We answer
positively the conjecture that the free model of CKA is formed by series parallel
pomset languages, downward-closed under Gischer’s subsumption order [6]—a
generalisation of regular languages to sets of partially ordered words. To this
end, we prove that the original axioms proposed in [8] are indeed complete.
Our proof of completeness is based on extending an existing complete-
ness result that establishes series-parallel rational pomset languages as the free
Bi-Kleene Algebra (BKA) [20]. The extension to the existing result for BKA pro-
vides a clear understanding of the difficulties introduced by the presence of the
exchange axiom and shows how to separate concerns between CKA and BKA, a
technique which is also useful elsewhere. For one, our construction also provides

! In its original formulation, CKA also features an operator (parallel star) for
unbounded parallelism: in harmony with several recent works [13,14], we study the
variant of CKA without parallel star, sometimes called “weak” CKA.

© The Author(s) 2018

A. Ahmed (Ed.): ESOP 2018, LNCS 10801, pp. 856-882, 2018.
https://doi.org/10.1007/978-3-319-89884-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-89884-1_30&domain=pdf

Concurrent Kleene Algebra: Free Model and Completeness 857

an extension of (half of) Kleene’s theorem for BKA [14] to CKA, establishing
pomset automata as an operational model for CKA and opening the door to
decidability procedures similar to those previously studied for KA. Furthermore,
it reduces deciding the equational theory of CKA to deciding the equational
theory of BKA.

BKA is defined as CKA with the only (but significant) omission of the
exchange law, (e || f) - (g || h) Sxa (€-¢g) || (f - k). The exchange law is the
core element of CKA as it softens true concurrency: it states that when two
sequentially composed programs (i.e., e - g and f - h) are composed in parallel,
they can be implemented by running their heads in parallel, followed by running
their tails in parallel (i.e., e || f, then g || k). The exchange law allows the imple-
menter of a CKA expression to interleave threads at will, without violating the
specification.

To illustrate the use of the exchange law, consider a protocol with three
actions: query a channel ¢, collect an answer from the same channel, and print
an unrelated message m on screen. The specification for this protocol requires
the query to happen before reception of the message, but the printing action
being independent, it may be executed concurrently. We will write this specifica-
tion as (q(c) - r(¢)) || p(m), with the operator - denoting sequential composition.
However, if one wants to implement this protocol in a sequential programming
language, a total ordering of these events has to be introduced. Suppose we
choose to implement this protocol by printing m while we wait to receive an
answer. This implementation can be written ¢(c) - p(m) - r(c). Using the laws
of CKA, we can prove that g(c) - p(m) - r(c) Sca (g(c) - r(c)) || p(m), which we
interpret as the fact that this implementation respects the specification. Intu-
itively, this means that the specification lists the necessary dependencies, but
the implementation can introduce more.

Having a complete axiomatisation of CKA has two main benefits. First, it
allows one to get certificates of correctness. Indeed, if one wants to use CKA for
program verification, the decision procedure presented in [3] may be used to test
program equivalence. If the test gives a negative answer, this algorithm provides
a counter-example. However if the answer is positive, no meaningful witness
is produced. With the completeness result presented here, that is constructive
in nature, one could generate an axiomatic proof of equivalence in these cases.
Second, it gives one a simple way of checking when the aforementioned procedure
applies. By construction, we know that two terms are semantically equivalent
whenever they are equal in every concurrent Kleene algebra, that is any model of
the axioms of CKA. This means that if we consider a specific semantic domain,
one simply needs to check that the axioms of CKA hold in there to know that
the decision procedure of [3] is sound in this model.

While this paper was in writing, a manuscript with the same result
appeared [19]. Among other things, the proof presented here is different in that it
explicitly shows how to syntactically construct terms that express certain pom-
set languages, as opposed to showing that such terms must exist by reasoning
on a semantic level. We refer to Sect. 5 for a more extensive comparison.

858 T. Kappé et al.

The remainder of this paper is organised as follows. In Sect.2, we give an
informal overview of the completeness proof. In Sect. 3, we introduce the nec-
essary concepts, notation and lemmas. In Sect.4, we work out the proof. We
discuss the result in a broader perspective and outline further work in Sect. 5.

2 Overview of the Completeness Proof

We start with an overview of the steps necessary to arrive at the main result. As
mentioned, our strategy in tackling CKA-completeness is to build on the existing
BKA-completeness result. Following an observation by Laurence and Struth, we
identify downward-closure (under Gischer’s subsumption order [6]) as the feature
that distinguishes the pomsets giving semantics to BKA-expressions from those
associated with CKA-expressions. In a slogan,

CKA-semantics = BKA-semantics + downward-closure.

This situation is depicted in the upper part of the commuting diagram in Fig. 1.
Intuitively, downward-closure can be thought of as the semantic outcome of
adding the exchange axiom, which distinguishes CKA from BKA. Thus, if a and
b are events that can happen in parallel according to the BKA-semantics of a
term, then a and b may also be ordered in the CKA-semantics of that same term.

[—loxa series-parallel
terms
pomset languages
/- Y
syntactic Cry semantic

closure closure
_ downward-closed

downward-closed [—Texa

series-parallel
terms
pomset languages

Fig. 1. The connection between BKA and CKA semantics mediated by closure.

The core of our CKA-completeness proof will be to construct a syntactic
counterpart to the semantic closure. Concretely, we shall build a function that
maps a CKA term e to an equivalent term e, called the (syntactic) closure of e.
The lower part of the commuting diagram in Fig. 1 shows the property that e]
must satisfy in order to deserve the name of closure: its BKA semantics has to
be the same as the CKA semantics of e.

Concurrent Kleene Algebra: Free Model and Completeness 859

Ezxample 2.1. Consider e = a || b, whose CKA-semantics prescribe that a and
b are events that may happen in parallel. One closure of this term would be
el =al b+a-b+b-a, whose BKA-semantics stipulate that either a and b execute
purely in parallel, or a precedes b, or b precedes a—thus matching the optional
parallelism of a and b. For a more non-trivial example, take e = a* || b*, which
represents that finitely many repetitions of a and b occur, possibly in parallel.
A closure of this term would be e| = (a* || b*)*: finitely many repetitions of a
and b occur truly in parallel, which is repeated indefinitely.

In order to find e| systematically, we are going to construct it in stages,
through a completely syntactic procedure where each transformation has to be
valid according to the axioms. There are three main stages.

(i) We note that, not unexpectedly, the hardest case for computing the closure
of a term is when e is a parallel composition, i.e., when e = ¢g || e; for
some CKA terms ey and e;. For the other operators, the closure of the
result can be obtained by applying the same operator to the closures of its
arguments. For instance, (e + f) | = e| + f|. This means that we can focus
on calculating the closure for the particular case of parallel composition.

(ii) We construct a preclosure of such terms e, whose BKA semantics contains
all but possibly the sequentially composed pomsets of the CKA semantics
of e. Since every sequentially composed pomset decomposes (uniquely) into
non-sequential pomsets, we can use the preclosure as a basis for induction.

(iii) We extend this preclosure of e to a proper closure, by leveraging the fixpoint
axioms of KA to solve a system of linear inequations. This system encodes
“stringing together” non-sequential pomsets to build all pomsets in e.

As a straightforward consequence of the closure construction, we obtain a
completeness theorem for CKA, which establishes the set of closed series-rational
pomset languages as the free CKA.

3 Preliminaries

We fix a finite set of symbols X, the alphabet. We use the symbols a, b and ¢ to
denote elements of X. The two-element set {0,1} is denoted by 2. Given a set
S, the set of subsets (powerset) of S is denoted by 2°.

In the interest of readability, the proofs for technical lemmas in this section
can be found in the full version [15].

3.1 Pomsets

A trace of a sequential program can be modelled as a word, where each letter
represents an atomic event, and the order of the letters in the word represents
the order in which the events took place. Analogously, a trace of a concurrent
program can be thought of as word where letters are partially ordered, i.e., there
need not be a causal link between events. In literature, such a partially ordered

860 T. Kappé et al.

word is commonly called a partial word [7], or partially ordered multiset (pomset,
for short) [6]; we use the latter term.

A formal definition of pomsets requires some work, because the partial order
should order occurrences of events rather than the events themselves. For this
reason, we first define a labelled poset.

Definition 3.1. A labelled poset is a tuple (S, <, A}, where (S, <) is a partially
ordered set (i.e., S is a set and < is a partial order on S), in which S is called
the carrier and < is the order; A : S — X is a function called the labelling.

We denote labelled posets with lower-case bold symbols u, v, et cetera. Given
a labelled poset u, we write S, for its carrier, <, for its order and A, for its
labelling. We write 1 for the empty labelled poset. We say that two labelled
posets are disjoint if their carriers are disjoint.

Disjoint labelled posets can be composed parallelly and sequentially; parallel
composition simply juxtaposes the events, while sequential composition imposes
an ordering between occurrences of events originating from the left operand and
those originating from the right operand.

Definition 3.2. Let u and v be disjoint. We write u || v for the parallel com-
position of u and v, which is the labelled poset with the carrier Syuvy = SuU Sy,
the order <yv = <u U <y and the labeling \y|v defined by

Au() 2« € Sy;
Au|v<x>={kvgx§ e

Similarly, we write u-v for the sequential composition of u and v, that is,
labelled poset with the carrier Suuv and the partial order

<uv = <UL U (Su X Sv)a
as well as the labelling Au.v = Ay|v-

Note that 1 is neutral for sequential and parallel composition, in the sense that
wehave 1 [u=1-u=u=u-1=u| 1.

There is a natural ordering between labelled posets with regard to concur-
rency.

Definition 3.3. Let u,v be labelled posets. A subsumption from u to v is a
bijection h : Sy — Sy that preserves order and labels, i.e., u <y v’ implies that
h(u) <y h(u'), and Ay oh = \y. We simplify and write h : u — v for a subsump-
tion from u to v. If such a subsumption exists, we write v C u. Furthermore, h
is an isomorphism if both h and its inverse h™! are subsumptions. If there exists
an isomorphism from u to v we write u = v.

Intuitively, if u C v, then u and v both order the same set of (occurrences
of) events, but u has more causal links, or “is more sequential” than v. One
easily sees that C is a preorder on labelled posets of finite carrier.

Since the actual contents of the carrier of a labelled poset do not matter, we
can abstract from them using isomorphism. This gives rise to pomsets.

Concurrent Kleene Algebra: Free Model and Completeness 861

Definition 3.4. A pomset is an isomorphism class of labelled posets, i.e., the
class [v] & {u:u =2 v} for some labelled poset v. Composition lifts to pomsets:
we write [u] || [v] for [u]| v] and [u] - [v] for [u-v]. Similarly, subsumption also
lifts to pomsets: we write [u] C [v], precisely when u C v.

We denote pomsets with upper-case symbols U, V, et cetera. The empty
pomset, i.e., [1] = {1}, is denoted by 1; this pomset is neutral for sequential
and parallel composition. To ensure that [v] is a set, we limit the discussion to
labelled posets whose carrier is a subset of some set S. The labelled posets in
this paper have finite carrier; it thus suffices to choose S = N to represent all
pomsets with finite (or even countably infinite) carrier.

Composition of pomsets is well-defined: if u and v are not disjoint, we can
find u’, v/ disjoint from u, v respectively such that u = u’ and v = v’. The choice
of representative does not matter, for if u = u’ and v v/, thenu-v=u'-v’.
Subsumption of pomsets is also well-defined: if u’ 2 u C v & v/, then u’ C v'.
One easily sees that C is a partial order on finite pomsets, and that sequential
and parallel composition are monotone with respect to C, i.e., if U C W and
VEX, then U-VCEW-X and U | V C W || X. Lastly, we note that both
types of composition are associative, both on the level of pomsets and labelled
posets; we therefore omit parentheses when no ambiguity is likely.

Series-Parallel Pomsets. If a € 3, we can construct a labelled poset with a
single element labelled by a; indeed, since any labelled poset thus constructed
is isomorphic, we also use a to denote this isomorphism class; such a pomset is
called a primitive pomset. A pomset built from primitive pomsets and sequential
and parallel composition is called series-parallel; more formally:

Definition 3.5. The set of series-parallel pomsets, denoted SP(X), is the small-
est set such that 1 € SP(X) as well as a € SP(X) for every a € X, and is closed
under parallel and sequential composition.

We elide the sequential composition operator when we explicitly construct a
pomset from primitive pomsets, i.e., we write ab instead of a - b for the pomset
obtained by sequentially composing the (primitive) pomsets a and b. In this
notation, sequential composition takes precedence over parallel composition.

All pomsets encountered in this paper are series-parallel. A useful feature of
series-parallel pomsets is that we can deconstruct them in a standard fashion [6].

Lemma 3.1. Let U € SP(X). Then exactly one of the following is true: either
(i) U =1, or (ii)) U = a for some a € X, or (i) U = Uy - Uy for Uy, Uy €
SP(XY\ A1}, or (iv) U =Uy || Uy for Uy, Uy € SP(X)\ {1}.

In the sequel, it will be useful to refer to pomsets that are not of the third
kind above, i.e., cannot be written as Uy - Uy for Uy, Uy € SP(X) \ {1}, as non-
sequential pomsets. Lemma 3.1 gives a normal form for series-parallel pomsets,
as follows.

Corollary 3.1. A pomset U € SP(X) can be uniquely decomposed as U = Uy -
Uy---U,_1, where for all 0 < i < n, U; is series parallel and non-sequential.

862 T. Kappé et al.

Factorisation. We now go over some lemmas on pomsets that will allow us
to factorise pomsets later on. First of all, one easily shows that subsumption is
irrelevant on empty and primitive pomsets, as witnessed by the following lemma.

Lemma 3.2. Let U and V be pomsets such that U &V or V C U. If U is
empty or primitive, then U =V .

We can also consider how pomset composition and subsumption relate. It is
not hard to see that if a pomset is subsumed by a sequentially composed pomset,
then this sequential composition also appears in the subsumed pomset. A similar
statement holds for pomsets that subsume a parallel composition.

Lemma 3.3 (Factorisation). Let U, Vp, and Vy be pomsets such that U is
subsumed by Vi - V1. Then there exist pomsets Uy and Uy such that:

U=Uy-Uy, Uy E Vg, and U; CE V.

Also, if Uy, Uy and V' are pomsets such that Uy || Uy C V, then there exist
pomsets Vy and Vi such that:

V=V | Vi, Up C Vy, and Uy C V1.

The next lemma can be thought of as a generalisation of Levi’s lemma [21],
a well-known statement about words, to pomsets. It says that if a sequential
composition is subsumed by another (possibly longer) sequential composition,
then there must be a pomset “in the middle”, describing the overlap between
the two; this pomset gives rise to a factorisation.

Lemma 3.4. Let U and V' be pomsets, and let Wo, W1, ... , W,_1 withn > 0 be
non-empty pomsets such that U -V C Wy - Wy ---W,,_1. There exists an m <n
and pomsets Y, Z such that:

Y - ZCW,,, UC Wy - Wy Wit Y, and VEZ -Wphiq - Whgo- - Wy

Moreover, if U and V' are series-parallel, then so are Y and Z.
Levi’s lemma also has an analogue for parallel composition.

Lemma 3.5. Let U, V,W, X be pomsets such that U ||V =W || X. There exist
pomsets Yy, Y1, Zy, Z1 such that

U:Yb”Yl,V:ZO HZhW:YO ||Z0, andX:Y1 ||Z1

The final lemma is useful when we have a sequentially composed pomset
subsumed by a parallelly composed pomset. It tells us that we can factor the
involved pomsets to find subsumptions between smaller pomsets. This lemma
first appeared in [6], where it is called the interpolation lemma.

Concurrent Kleene Algebra: Free Model and Completeness 863

Lemma 3.6 (Interpolation). Let U,V,W,X be pomsets such that U -V is
subsumed by W || X. Then there exist pomsets Wy, W1, Xo, X1 such that

Wo Wi CW,Xo- X1 EX,UC W, | Xo, and VC W, || X;.
Moreover, if W and X are series-parallel, then so are Wy, W1, Xy and X;.

On a semi-formal level, the interpolation lemma can be understood as follows.
IfU-VCW || X, then the events in W are partitioned between those that end
up in U, and those that end up in V; these give rise to the “sub-pomsets” W
and Wy of W, respectively. Similarly, X partitions into “sub-pomsets” X, and
X71. We refer to Fig. 2 for a graphical depiction of this situation.

Now, if y precedes z in Wy || Xo, then y must precede z in W || X, and
therefore also in U - V. Since y and z are both events in U, it then follows that
y precedes z in U, establishing that U C Wy || Xo. Furthermore, if y precedes z
in W, then we can exclude the case where y is in W; and z in Wy, for then z
precedes y in U -V, contradicting that y precedes z in U - V. Accordingly, either
y and z both belong to Wy or W1, or y is in W, while z is in W7; in all of these
cases, y must precede z in Wy - Wy. The other subsumptions hold analogously.

U 174
Xo X, Xo X1 X
C
Wo Wi Wo Wy W

Fig. 2. Splitting pomsets in the interpolation lemma

Pomset Languages. The semantics of BKA and CKA are given in terms of sets
of series-parallel pomsets.

Definition 3.6. A subset of SP(X) is referred to as a pomset language.

As a convention, we denote pomset languages by the symbols U, V, et cetera.
Sequential and parallel composition of pomsets extends to pomset languages in
a pointwise manner, i.e.,

U-VEU-V:UEUTV eV}

and similarly for parallel composition. Like languages of words, pomset languages
have a Kleene star operator, which is similarly defined, i.e., U* £ UnenU™, where
the n'" power of U is inductively defined as ° £ {1} and U™+ £ Y™ - U.

A pomset language U is closed under subsumption (or simply closed) if when-
ever U € Y with U' C U and U’ € SP(X), it holds that U’ € U. The closure
under subsumption (or simply closure) of a pomset language U, denoted U], is
defined as the smallest pomset language that contains U and is closed, i.e.,

UL L{U' eSP(X):3U €. U' CU}

Closure relates to union, sequential composition and iteration as follows.

864 T. Kappé et al.

Lemma 3.7. Let U,V be pomset languages; then:
UUV] =ULUV], U- V)] =U| - V], andU*| =U|".

Proof. The first claim holds for infinite unions, too, and follows immediately
from the definition of closure.

For the second claim, suppose that U € Y and V € V, and that W C U - V.
By Lemma 3.3, we find pomsets Wy and W7 such that W = W, - Wy, with
Wy E U and W7 C V. It then holds that Wy € U| and W7 € V|, meaning that
W =Wy-Wy €U -V]. This shows that (U - V)| C U] -V|. Proving the reverse
inclusion is a simple matter of unfolding the definitions.

For the third claim, we can calculate directly using the first and second parts
of this lemma:

* *
wi=(Uuu—u)=J Wy u)- Uul Ul--- Ul =ul

ne n times neN n times n times O

3.2 Concurrent Kleene Algebra

We now consider two extensions of Kleene Algebra (KA), known as Bi-Kleene
Algebra (BKA) and Concurrent Kleene Algebra (CKA). Both extend KA with an
operator for parallel composition and thus share a common syntax.

Definition 3.7. The set T is the smallest set generated by the grammar
efu=0]1]aeX |et+fleflelf]e

The BKA-semantics of a term is a straightforward inductive application of
the operators on the level of pomset languages. The CKA-semantics of a term
is the BKA-semantics, downward-closed under the subsumption order; the CKA-
semantics thus includes all possible sequentialisations.

Definition 3.8. The function [—],,. : T — 25°*) is defined as follows:

[[]]BKA
II]]BKA

0 e + loca = [eoca Y [floa [e Ten = lelun
{1} le - flaka = Telon - [fTuka

[alews = {a} e | flocn = [elaa Il [fTowa

Finally, [~]o : T — 257 is defined as [€] ., = [e]nl-

Following Lodaya and Weil [22], if I/ is a pomset language such that U =
[€].y, for some e € T, we say that the language U is series-rational. Note that
if is such that U = [e],, for some term e € 7, then U is closed by definition.

To axiomatise semantic equivalence between terms, we build the following
relations, which match the axioms proposed in [20]. The axioms of CKA as
defined in [8] come from a double quantale structure mediated by the exchange
law; these imply the ones given here. The converse implication does not hold;
in particular, our syntax does not include an infinitary greatest lower bound
operator. However, BKA (as defined in this paper) does have a finitary greatest
lower bound [20], and by the existence of closure, so does CKA.

> >

>

CKA

Concurrent Kleene Algebra: Free Model and Completeness 865

Definition 3.9. The relation =g, is the smallest congruence on T (with respect
to all operators) such that for all e, f,g € T:

e+0=gn e e+e =gt e+ f =en f+e e+ (f+9) Zexa (f +9)+h
e-1 =g e 1-e=gme e (f-9) =exale-f)-g
e 0=px0=pn0-¢ e (ftg)=eme freh (e+f)g=sme g+f-g
ell f=eaflle el 1=eme el (f 1 9) =en (el f) Il g
el 0=ea 0 ell (f+9) =eacell frelyg 1+e-e" =g e*
et [9Sung = [TeSaanyg

in which we use e Sgen | as a shorthand for e+ f =wa f. The final (conditional)
axiom is referred to as the least fixpoint axiom.

The relation =ca is the smallest congruence on T that satisfies the rules of
=ea, and furthermore satisfies the exchange law for all e, f,g,h € T :

(el f)-(gllh) Scale-g)ll (f-h)

where we similarly use e Sca [as a shorthand for e + f =ca f.

We can see that =g, includes the familiar axioms of KA, and stipulates
that || is commutative and associative with unit 1 and annihilator 0, as well as
distributive over +. When using CKA to model concurrent program flow, the
exchange law models sequentialisation: if we have two programs, the first of
which executes e followed by g, and the second of which executes f followed by
h, then we can sequentialise this by executing e and f in parallel, followed by
executing g and h in parallel.

We use the symbol T in statements that are true for T € {BKA, CKA}. The
relation = is sound for equivalence of terms under T [13].

Lemma 3.8. Lete, f € T. Ife =, f, then [e], = [f],.

Since all binary operators are associative (up to =;), we drop parentheses
when writing terms like e + f + g—this does not incur ambiguity with regard to
[—]- We furthermore consider - to have precedence over ||, which has precedence
over +; as usual, the Kleene star has the highest precedence of all operators. For
instance, when we write e + f - g* || h, this should be read as e+ ((f - (¢*)) || h).

In case of BKA, the implication in Lemma 3.8 is an equivalence [20], and thus
gives a complete axiomatisation of semantic BKA-equivalence of terms.?

Theorem 3.1. Lete, f € T. Then e =gn [if and only if [e] .., = [f]aka-

Given a term e € 7, we can determine syntactically whether its (BKA or
CKA) semantics contains the empty pomset, using the function defined below.

2 Strictly speaking, the proof in [20] includes the parallel star operator in BKA. Since
this is a conservative extension of BKA, this proof applies to BKA as well.

866 T. Kappé et al.

Definition 3.10. The nullability function € : 7 — 2 is defined as follows:

€(0) =0 ele+ f) = ele) Ve(f) ele’) 21
e(l) 21 ele- f) = e(e) Ne(f)
e(a) =0 e(ell f) = ele) Ne(f)

in which V and N\ are understood as the usual lattice operations on 2.

That e encodes the presence of 1 in the semantics is witnessed by the
following.

Lemma 3.9. Let e € T. Then e(e) < e and 1 € [e], if and only if e(e) = 1.

In the sequel, we need the (parallel) width of a term. This is defined as follows.

Definition 3.11. Lete € 7. The (parallel) width of e, denoted by |e|, is defined
as 0 when e =ga 0; for all other cases, it is defined inductively, as follows:

=0 e+ f| = max(le], | f]) le [f1= le] + |f]
la 1 le - f| £ max(|el, | f]) le*| = e
The width of a term is invariant with respect to equivalence of terms.
Lemma 3.10. Lete, f € T. If e =g« f, then le| = |f].
The width of a term is related to its semantics as demonstrated below.

Lemma 3.11. Let e € 7, and let U € [e],,, be such that U # 1. Then |e| > 0.

BKA

3.3 Linear Systems

KA is equipped to find the least solutions to linear inequations. For instance,
if we want to find X such that e- X + f <q X, it is not hard to show that
e* - [is the least solution for X, in the sense that this choice of X satisfies the
inequation, and for any choice of X that also satisfies this inequation it holds that
e* - f <xa X. Since KA is contained in BKA and CKA, the same constructions
also apply there. These axioms generalise to systems of linear inequations in
a straightforward manner; indeed, Kozen [18] exploited this generalisation to
axiomatise KA. In this paper, we use systems of linear inequations to construct
particular expressions. To do this, we introduce vectors and matrices of terms.
For the remainder of this section, we fix I as a finite set.

Definition 3.12. An [-vector is a function from I to T. Addition of I-vectors
s defined pointwise, i.e., if p and q are I-vectors, then p + q is the I-vector
defined fori € I by (p+ q)(i) = p(i) + q(d).

An I-matrix is a function from I? to T. Left-multiplication of an I-vector
by an I-matriz is defined in the usual fashion, i.e., if M is an I-matriz and p is
an I-vector, then M - p is the I-vector defined for i € I by

(M -p)(i) £ > M(i,5) - p(j)

Jel

Concurrent Kleene Algebra: Free Model and Completeness 867

Equivalence between terms extends pointwise to I-vectors. More precisely,
we write p = ¢ for I-vectors p and ¢ when p(i) =; q(i) for all i € I, and p <1 ¢
when p+ ¢ =1 q.

Definition 3.13. An [-linear system £ is a pair (M, p) where M is an I-matric
and p is an I-vector. A solution to £ in T is an [-vector s such that M -s+p <+ s.
A least solution to £ in T is a solution s in T such that for any solution t in T
it holds that s <; t.

It is not very hard to show that least solutions of a linear system are unique,
up to =¢; we therefore speak of the least solution of a linear system.

Interestingly, any I-linear system has a least solution, and one can con-
struct this solution using only the operators of KA. The construction proceeds
by induction on |I|. In the base, where I is empty, the solution is trivial; for the
inductive step it suffices to reduce the problem to finding the least solution of a
strictly smaller linear system. This construction is not unlike Kleene’s procedure
to obtain a regular expression from a finite automaton [17]. Alternatively, we
can regard the existence of least solutions as a special case of Kozen’s proof of
the fixpoint for matrices over a KA, as seen in [18, Lemma 9.

As a matter of fact, because this construction uses the axioms of KA exclu-
sively, the least solution that is constructed is the same for both BKA and CKA.

Lemma 3.12. Let £ be an I-linear system. One can construct a single I-
vector x that is the least solution to £ in both BKA and CKA.

We include a full proof of the lemma above using the notation of this paper
in the full version of this paper [15].

4 Completeness of CKA

We now turn our attention to proving that =, is complete for CKA-semantic
equivalence of terms, i.e., that if e, f € 7 are such that [e]., = [f]n, then
e = f- In the interest of readability, proofs of technical lemmas in this section
can be found in the full version of this paper [15].

As mentioned before, our proof of completeness is based on the completeness
result for BKA reproduced in Theorem 3.1. Recall that [e],, = [e]4,). To reuse
completeness of BKA, we construct a syntactic variant of the closure operator,
which is formalised below.

Definition 4.1. Let e € T. We say that e| is a closure of e if both e = €l
and [el],, = [elgunl hold.

BKA

Ezample 4.1. Let e = a || b; as proposed in Sect.2, we claim that e| = a ||
b+b-a+a-bis a closure of e. To see why, first note that e <., €| by construction.
Furthermore,

ab=ca (a (| 1) - (1|) Scka (@~ 1) | (1-0) Zcaa ||

and similarly ba Sca e; thus, e =c, €]. Lastly, the pomsets in [e],,, | and [e|],,,
are simply a || b, ab and ba, and therefore [e]],,, = [€].\!-

868 T. Kappé et al.

Laurence and Struth observed that the existence of a closure for every term
implies a completeness theorem for CKA, as follows.

Lemma 4.1. Suppose that we can construct a closure for every element of T .
Ife, f € T such that [€] ., = [flexn> then e =cea f-

Proof. Since [e] ., = [€]oal = [€l]aka and similarly [f] ., = [fl]sa, We have
lellsun = [f []sa- By Theorem 3.1, we get €| =g f1|, and thus e| =c, f, since
all axioms of BKA are also axioms of CKA. By e =, €] and f| =«a f, we can
then conclude that e =, f. O

The remainder of this section is dedicated to showing that the premise of
Lemma 4.1 holds. We do this by explicitly constructing a closure e for every
e € T. First, we note that closure can be constructed for the base terms.

Lemma 4.2. Let e € 2 or e = a for some a € Y. Then e is a closure of itself.

Furthermore, closure can be constructed compositionally for all operators
except parallel composition, in the following sense.

Lemma 4.3. Suppose that eg,e1 € T, and that eq and e have closures eg] and
e1l. Then (i) egl +e1] is a closure of eq+e1, (ii) el -e1] is a closure of eg - ey,
and (iii) (egl)” is a closure of efy.

Proof. Since eg| =ca €0 and e1] =cka €1, by the fact that =, is a congruence we
obtain eg| + e1] =ca €0 + €1. Similar observations hold for the other operators.
We conclude using Lemma 3.7. O

It remains to consider the case where e = eq || 1. In doing so, our induction
hypothesis is that any f € 7 with |f] < |eg || e1] has a closure, as well as any
strict subterm of eq || 7.

4.1 Preclosure

To get to a closure of a parallel composition, we first need an operator on terms
that is not a closure quite yet, but whose BKA-semantics is “closed enough” to
cover the non-sequential elements of the CKA-semantics of the term.

Definition 4.2. Lete € 7. A preclosure of e is a term é € T such that € =, €.
Moreover, if U € [€],, is non-sequential, then U € [€]

BKA*

Ezample 4.2. Suppose that eg || e = (a || b) || ¢. A preclosure of eg || e1 could be
e=albllct(a-b+b-a)||lc+(b-c+c-b)]a+(a-c+c-a)|bd

To verify this, note that e <, € by construction; remains to show that € S, €.

This is fairly straightforward: since a-b+b-a Scka a || b, we have (a-b+b-a) || ¢ Scxa

e; the other terms are treated similarly. Consequently, e =, €. Furthermore,
there are seven non-sequential pomsets in [e],,; they are
allb]e ab || ¢ ba || ¢ be || a ch || a ac || b ca || b

It should be noted that € is not a closure
while abe ¢ [€]

Each of these pomsets is found in [€],, .

of e; to see this, consider for instance that abe € [e]

CKA? BKA®

Concurrent Kleene Algebra: Free Model and Completeness 869

The remainder of this section is dedicated to showing that, under the induc-
tion hypothesis, we can construct a preclosure for any parallelly composed term.
This is not perfectly straightforward; for instance, consider the term e || e; dis-
cussed in Example 4.2. At first glance, one might be tempted to choose eg] || e1]
as a preclosure, since eg| and eq] exist by the induction hypothesis. In that case,
eol =a || b+a-b+b-aisaclosure of ey. Furthermore, e; | = ¢ is a closure of ey,
by Lemma 4.2. However, eg| || e1| is not a preclosure of eq || e1, since (a-¢) || b
is non-sequential and found in [eq || €1],,, but not in [Jeq| || e1]]4,-

The problem is that the preclosure of ey and e; should also allow (partial)
sequentialisation of parallel parts of ey and eq; in this case, we need to sequen-
tialise the a part of a || b with ¢, and leave b untouched. To do so, we need
to be able to split ey || e; into pairs of constituent terms, each of which rep-
resents a possible way to divvy up its parallel parts. For instance, we can split
eo |l er = (a || b) || ¢ parallelly into a || b and ¢, but also into a and b || ¢, or into
a || ¢ and b. The definition below formalises this procedure.

Definition 4.3. Let e € T; A, is the smallest relation on T such that

LA, T LA, T LA r

1A e e, 1 CAcitey T CAcyte, T {Aox 1
LA, eler) =1 LA r eleg) =1 Ly Ay o 0y Ay 1
gAeo-el T €Aeo.el T g(] H 41 Aeo”ﬁ To H (&

Given e € T, we refer to A, as the parallel splitting relation of e, and to
the elements of A, as parallel splices of e. Before we can use A. to construct
the preclosure of e, we go over a number of properties of the parallel splitting
relation. The first of these properties is that a given e € 7 has only finitely many
parallel splices. This will be useful later, when we involve all parallel splices of
e in building a new term, i.e., to guarantee that the constructed term is finite.

Lemma 4.4. Fore € T, A, is finite.

We furthermore note that the parallel composition of any parallel splice of e
is ordered below e by <g.. This guarantees that parallel splices never contain
extra information, i.e., that their semantics do not contain pomsets that do not
occur in the semantics of e. It also allows us to bound the width of the parallel
splices by the width of the term being split, as a result of Lemma 3.10.

Lemma 4.5. Lete € T. If L Ao r, then £ || 1 Sga €.
Corollary 4.1. Lete € T. If ¢ A. r, then [£| + |r| < |e].

Finally, we show that A, is dense when it comes to parallel pomsets, meaning
that if we have a parallelly composed pomset in the semantics of e, then we can
find a parallel splice where one parallel component is contained in the semantics
of one side of the pair, and the other component in that of the other.

870 T. Kappé et al.

Lemma 4.6. Let e € T, and let V,W be pomsets such that V | W € [e]
Then there exist £, € T with £ Ae r such that V € [{],.. and W € [r]

BKA*

BKA BKA

Proof. The proof proceeds by induction on e. In the base, we can discount the
case where e = 0, for then the claim holds vacuously. This leaves us two cases.

~Ife=1,then V || W € [e],, entails V || W = 1. By Lemma 3.1, we find
that V =W = 1. Since 1 A, 1 by definition of A., the claim follows when we
choose ¢ =r = 1.

— If e = a for some a € X, then V || W € [e],,, entails V' || W = a. By Lemma
3.1, we find that either V=1 and W = a, or V = a and W = 1. In the
former case, we can choose ¢ = 1 and r = a, while in the latter case we can
choose ¢ = a and r = 1. It is then easy to see that our claim holds in either
case.

For the inductive step, there are four cases to consider.

— Ife=eg+ e, then Uy || Ui € [ei],,, for some i € 2. But then, by induction,
we find ¢,r € T with £ A, r such that V € [{],., and W € [r],,,.. Since this
implies that £ A, r, the claim follows.

— If e = eg - 1, then there exist pomsets Uy, Uy such that V' || W = Uy - Uy, and
Ui € [ei] s for all i € 2. By Lemma 3.1, there are two cases to consider.

e Suppose that U; = 1 for some i € 2, meaning that V | W = Uy - Uy =
Ui—; € [e1—i],, for this i. By induction, we find ¢,r € T with £ A, , r,
and V € [{],,, as well as W € [r],,,. Since U; = 1 € [e;],,, we have that
€(e;) = 1 by Lemma 3.9, and thus ¢ A, r.

e Suppose that V = 1 or W = 1. In the former case, V || W = W =
U - Uy € [€] .- We then choose £ = 1 and r = e to satisfy the claim.
In the latter case, we can choose £ = e and r = 1 to satisfy the claim
analogously.

— If e = eg || e1, then there exist pomsets Uy, Uy such that V || W = Uy || Uy,
and U; € [e;],,, for all i € 2. By Lemma 3.5, we find pomsets Vy, Vi, Wy, W
such that V =V | Vi, W =Wy | Wi, and U; = V; || W; for ¢ € 2. For i € 2,
we then find by induction ¢;,r; € 7 with ¢; A., r; such that V; € [¢],,, and
W; € [7;] 4. We then choose £ = £y || ¢1 and r =1 || 71. Since V =V} || V4,
it follows that V' € [{]..,, and similarly we find that W € [r],,,. Since £ A, r,
the claim follows.

— If e = ef, then there exist Uy, Us,...,Un—1 € [eo]4, such that V || W =
Up- Uy -Upoqr. Un=0,1e, V| W=1, then V=W = 1. In that case, we
can choose £ = e and r = 1 to find that £ A, r, V € [{],,, and W € [r]
satisfying the claim.

If n > 0, we can assume without loss of generality that, for 0 < i < n, it
holds that U; # 1. By Lemma 3.1, there are two subcases to consider.

e Suppose that VW # 1; then n = 1 (for otherwise U; = 1 for some
0 < j < n by Lemma 3.1, which contradicts the above). Since V||
W = Uy € [eo],y,, we find by induction ¢, € 7 with ¢ A, r such that
V e [, and W € [r],.,. The claim then follows by the fact that £ A, r.

BKA BKA®

BKA?

BKA? BKA®

BKA BKA?

BKA BKA®

Concurrent Kleene Algebra: Free Model and Completeness 871

e Suppose that V=1 or W = 1. In the former case, V | W = W =
Up-Up---Up—1 € [e] - We then choose £ =1 and r = e to satisfy the
claim. In the latter case, we can choose ¢ = e and r = 1 to satisfy the
claim analogously. a

Example 4.3. Let U = a || c and V = b, and note that U || V € [eg || 1], We
can then find that a A, 1 and 1 Ay b, and thus a || 1 A, 1 || b. Since also ¢ A, 1,
it follows that (a || 1) || ¢ Aegje, (11|) || 1. We can then choose £ = (a || 1) || ¢
and 7 = (1) || 1 to find that U € [{],,, and V & [r],,,, while £ A, |, .

BKA BKA?

With parallel splitting in hand, we can define an operator on terms that
combines all parallel splices of a parallel composition in a way that accounts for
all of their downward closures.

Definition 4.4. Let e, f € T, and suppose that, for every g € T such that
lg| < |e| + | f|, there exists a closure g|. The term e @ f is defined as follows:

eof&elf+ >]
LA g
[, Ir|<lell f|

Note that e® f is well-defined: the sum is finite since A, s is finite by Lemma
4.4, and furthermore ¢| and r| exist, as we required that |[¢|,|r| < |e || f]-

Ezample 4.4. Let us compute eg ® e; and verify that we obtain a preclosure of
eo || e1. Working through the definition, we see that A.|., consists of the pairs

(DL alo) e (ANDe@lo)) (@)L al1)]e
(@foyfieinlty (el D)ILANO)I[Ie) Lalf1)]e @]o)]1)

Since closure is invariant with respect to =\, we can simplify these terms by
applying the axioms of CKA. After folding the unit subterms, we are left with

Lalolle Aealb) (balc) (bllca (able (alcb
Recall that a || b+ a-b+b-ais a closure of a || b. Now, we find that

eo@er=(alb)llctell(@lb+a-b+b-a)
tol(afleta-cte-a)+(bllctb-cte-b)fa
+al(@llctb-c+ec-b)+(allc+a-c+c-a)|d
=xallb|lctall(b-c+ec-b)+b|(a-c+c-a)+c]|(a-b+b-a)

which was shown to be a preclosure of eq || e; in Example 4.2.

The general proof of correctness for © as a preclosure plays out as follows.

872 T. Kappé et al.

Lemma 4.7. Lete, f € T, and suppose that, for every g € T with |g| < |e|+]f],
there exists a closure g|. Then e ® f is a preclosure of e || f.

Proof. We start by showing that e® f =ca e || f. First, note that e || f Sexa €@ f
by definition of e® f. For the other direction, suppose that ¢,r € 7 are such that
¢ Ay r. By definition of closure, we know that £| ||] =ca £ || r. By Lemma
4.5, we have £ || r Sgua € || f. Since every subterm of e ® f is ordered below e || f
by Scka, we have that e ® f Scka e || f. It then follows that e || f =ca € ® f.
For the second requirement, suppose that X € [e || f], is non-sequential.
We then know that there exists a Y € [e || f].., such that X C Y. This leaves

us two cases to consider.

BKA

— If X is empty or primitive, then Y = X by Lemma 3.2, thus X € [e || f]
By the fact that e || f Sgua e © f and by Lemma 3.8, we find X € [e ® f],,,.

— If X = Xy || X1 for non-empty pomsets Xy and X7, then by Lemma 3.3 we
find non-empty pomsets Yy and Y7 with Y = Yj || Y7 such that X; C'Y; for
i € 2. By Lemma 4.6, we find £, € T with £ Ay r such that Yy € [{],,,
and Y; € [r],.,. By Lemma 3.11, we find that |¢|,|r| > 1. Corollary 4.1 then
allows us to conclude that |¢|, |r| < e | f].
This means that £] || | Sgea e ® f. Since Xo € [¢]]
definition of closure, we can derive by Lemma 3.8 that

X =X H X1 € Vl H rl]]BKA - [[‘e@fﬂsm O

BKA®

and X; € [r|],., by

4.2 Closure

The preclosure operator discussed above covers the non-sequential pomsets in
the language [e || f].,; it remains to find a term that covers the sequential
pomsets contained in [e || f],,-

To better give some intuition to the construction ahead, we first explore
the observations that can be made when a sequential pomset W - X appears
in the language [e || f].: without loss of generality, assume that W is non-
sequential. In this setting, there must exist U € [e],,, and V' € [f],,, such that

W.XCU| V.By Lemma 3.6, we find pomsets Uy, U1, Vp, V1 such that

WEU | Vo XCU W Up-UyEU Vo -ViLV

This means that Uy - U; € [e]
find eq, €1, fo, f1 € T such that

and Vp - Vi € [f] .- Now, suppose we could

CKA

€0 - €1 §CKA & UO € [[GOHCKA U1 € Hel]]CKA

fO : fl §CKA f Vo € [[fo]]CKA Vi e [[flﬂcKA

Then we have W € [eg ® folu,, and X € [e1 || fi]en- Thus, if we can find a
closure of e || f1, then we have a term whose BKA-semantics contains W - X.

Concurrent Kleene Algebra: Free Model and Completeness 873

There are two obstacles that need to be resolved before we can use the obser-
vations above to find the closure of e || f. The first problem is that we need to
be sure that this process of splitting terms into sequential components is at all
possible, i.e., that we can split e into eg and e; with eg-e1 Sca € and U; € [e;] .,
for i € 2. We do this by designing a sequential analogue to the parallel splitting
relation seen before. The second problem, which we will address later in this
section, is whether this process of splitting a parallel term e || f according to the
exchange law and finding a closure of remaining term ey || fi is well-founded,
i.e., if we can find “enough” of these terms to cover all possible ways of sequen-
tialising e || f. This will turn out to be possible, by using the fixpoint axioms of
KA as in Sect. 3.3 with linear systems.

We start by defining the sequential splitting relation.?

Definition 4.5. Let e € T; V. is the smallest relation on T such that

£V T AV
1V;1 aV,1 1V,a 1 veé 1 UV ote, T UV eoter T

UNey T UNe, T by Ve, To by Ve, 11 U T
UV ey T €1 €0 Ve, T Co || 41 Vegjje, o |l 71 et Ves - €

Given e € T, we refer to V. as the sequential splitting relation of e, and to the
elements of V. as sequential splices of e. We need to establish a few properties
of the sequential splitting relation that will be useful later on. The first of these
properties is that, as for parallel splitting, V. is finite.

Lemma 4.8. Forec T, V., is finite.

We also have that the sequential composition of splices is provably below
the term being split. Just like the analogous lemma for parallel splitting, this
guarantees that our sequential splices never give rise to semantics not contained
in the split term. This lemma also yields an observation about the width of
sequential splices when compared to the term being split.

Lemma 4.9. Letec€ T. Iff,r € T with { V., then £ -1 Scxa €.
Corollary 4.2. Lete e T. Ifb,r € T with £ V., then |¢|,|r| < le|.

Lastly, we show that the splices cover every way of (sequentially) splitting
up the semantics of the term being split, i.e., that V. is dense when it comes to
sequentially composed pomsets.

Lemma 4.10. Lete € T, and let V and W be pomsets such that V-W € [e]
Then there exist £,7 € T with £ Ve r such that V € [{]... and W € [r]

CKA®

CKA CKA”

Proof. The proof proceeds by induction on e. In the base, we can discount the
case where e = 0, for then the claim holds vacuously. This leaves us two cases.

3 The contents of this relation are very similar to the set of left- and right-spines of a
NetKAT expression as used in [5].

874 T. Kappé et al.

—Ife=1, then V-W = 1; by Lemma 3.1, we find that V = W = 1. Since
1 V. 1 by definition of V., the claim follows when we choose ¢ = r = 1.

— If e = a for some a € X, then V- W = a; by Lemma 3.1, we find that either
V=aand W=10or V =1and W = a. In the former case, we can choose
£ =a and r =1 to satisfy the claim; the latter case can be treated similarly.

For the inductive step, there are four cases to consider.

~If e =eg+ey, then V- W € [e], for some i € 2. By induction, we find
C,r € T with ¢ V., r such that V € [{].., and W € [r]_.,. Since £ V. r in
this case, the claim follows.

~If e = eg - eq, then there exist Uy € [eo],, and Uy € [e1], such that
V-W =Uy-U;. By Lemma 3.4, we find a series-parallel pomset X such that
either VEUp- X and X -WEUj,or V-XCUyand W E X -U;. In the
former case, we find that X - W € [e;],, and thus by induction ¢, € T
with ¢’ V., r such that X € [¢'] ., and W € [r],,. We then choose £ = eg - £
to find that £ V. r, as well as V T Uy - X € [eo]n - [{']lkn = [and
thus V' € [{],. The latter case can be treated similarly; here, we use the
induction hypothesis on eg.

—If e = eg || er, then there exist Uy € [eo] ., and U; € [ei], such that
V-W C Uy || Uy. By Lemma 3.6, we find series-parallel pomsets Vy, V1, Wy, Wy
such that VT V, || Vi and W C Wy || Wy, as well as V; - W; C U; for all
i € 2. In that case, V;- W; € [e;], for all i € 2, and thus by induction we find
Ui,y € T with £; Ve, r; such that V; € [4],, and W; € [r;],,. We choose
EZEO H 61 and r = To || r1 to find that V € [[60 || To]] and W € H[l H Tlﬂ
as well as £ V, r.

— If e = e, then there exist Up,Ui,...,Up—1 € [eo]., such that V- W =
Up-Uy---U,_1. Without loss of generality, we can assume that for 0 <i <n
it holds that U; # 1. In the case where n = 0 we have that V - W = 1, thus
V =W =1, we can choose ¢ = r = 1 to satisfy the claim.

For the case where n > 0, we find by Lemma 3.4 an 0 < m < n and series-
parallel pomsets X,Y such that X - Y C U, and V C Uy -Uy---Upyp—1 - X
and W C Y - Upy1 - Ungo---Up. Since X - Y C U, € [eo], and thus
X Y € [eo]«n» we find by induction ¢/, 7" € T with ¢/ V., " and X € [¢'],,
and Y € [r'] ... We can then choose £ = efj- ¢ and 7 = 1’ - ¢ to find that V C

Up-Ui- - Up—1-X € [€§]cun[0]cxn = [l and W Y -Uppi1 -Uppyo - - - Uy, €

[l cka - [€5] cxn = [7] ks and thus that V' e [€] ., and W € [r],,. Since £ V.

holds, the claim follows. O

CKA CKA®

CKA CKA?

Ezxample 4.5. Let U be the pomset ca and let V' be be. Furthermore, let e be the
term (a-b+c¢)”, and note that U -V € [e],,. We then find that a V, 1, and
thus a V4. 1-b. We can now choose £ = (a-b+¢)"-aand r = (1-b)-(a-b+c)”
to find that U € [{].,, and V € [r]..., while £ V, r.

CKA CKA?

We know how to split a term sequentially. To resolve the second problem,
we need to show that the process of splitting terms repeatedly ends somewhere.
This is formalised in the notion of right-hand remainders, which are the terms
that can appear as the right hand of a sequential splice of a term.

Concurrent Kleene Algebra: Free Model and Completeness 875

Definition 4.6. Let e € T. The set of (right-hand) remainders of e, written
R(e), is the smallest satisfying the rules
fe R(E) 1 Vf r
e € R(e) r € R(e)

Lemma 4.11. Let e € T. R(e) is finite.

With splitting and remainders we are in a position to define the linear system
that will yield the closure of a parallel composition. Intuitively, we can think of
this system as an automaton: every variable corresponds to a state, and every row
of the matrix describes the “transitions” of the corresponding state, while every
element of the vector describes the language “accepted” by that state without
taking a single transition. Solving the system for a least fixpoint can be thought
of as finding an expression that describes the language of the automaton.

Definition 4.7. Let e, f € T, and suppose that, for every g € T such that
lg| < lel + | f|, there exists a closure g|. We choose

Iy ={g |l h:ge€ R(e),h e R(f)}

The I, y-vector pe s and I r-matriz M.y are chosen as follows.

Peslgllh) 2 gl f Meg(g | hog I B) & D" Ly00,
nggg/

I is finite by Lemma 4.11. We write L. ¢ for the I j-linear system
<Me,f7pe,f>'

We can check that M, ¢ is well-defined. First, the sum is finite, because V,
and V), are finite by Lemma 4.8. Second, if g || h € I and £y, 7y, lp,rn € T
such that ¢, Vg vy and £, V, rp, then |y < |g| < |e] and |¢,] < |h| < |f| by
Corollary 4.2, and thus, if d € T such that |d| < [¢4] + [¢4], then |d| < |e| + |f],
and therefore a closure of d exists, meaning that ¢, ©® ¢, exists, too.

The least solution to £. s obtained through Lemma 3.12 is the I-vector
denoted by s. r. We write e @ f for s. ¢(e || f), i.e., the least solution at e || f.

Using the previous lemmas, we can then show that e ® f is indeed a closure
of e || f, provided that we have closures for all terms of strictly lower width. The
intuition of this proof is that we use the uniqueness of least fixpoints to show
that e || f =ca € ® f, and then use the properties of preclosure and the normal
form of series-parallel pomsets to show that [e || f] .., = [® f]uxa-

Lemma 4.12. Let e, f € T, and suppose that, for every g € T with |g| <
le| + | f|, there exists a closure g|. Then e® f is a closure of e || f.

876 T. Kappé et al.

Proof. We begin by showing that e || f =« e ® f. We can see that pe s is a
solution to £, s, by calculating for g || h € I, s:

(Pe.s + Mg - pes)(g || B)

—gln+ X (X 00) (gl (def. M, f,pe.s)
rgllrh€l MgV gry
fhvh’r‘h
=g+ X Yo by ©Ly) - (rg |l Th) (distributivity)
rgllrnel L4V gryg
h VhTh
=cw«a 9 H h + Z Z (gg || ly) - (Tg || Th) (Lemma 4.7)
rgllrh €l £gVgrg
h hTh
S gllh+ X Yo (g 1) || By -Th) (exchange)
rgllrn€l L4V gy
LV pTh
Sangllh+ > >ogllh (Lemma 4.9)
rgllrh €l £gVgrg
Zhvh’l‘h
SR (idempotence)
= pe,s(g | h) (def. pe.r)

To see that pe r is the least solution to £ f, let g,y be a solution to £, r. We
then know that Mc ¢ - ge f + De,f Scxa Ge,f; thus, in particular, pe f Scaa ge,s-
Since the least solution to a linear system is unique up to =cna, we find that
Se,f =cxa De,f, and therefore that e ® f = se s(e || f) =cn Desle || f) =e | f.

It remains to show that if U € [e || f] ., then U € [e ® f],,,. To show this,
we show the more general claim that if g | h € I and U € [g || h],, then
U € [5e,1(g || h)]gen- Write U = U - Uy -+ - Up—1 such that for 0 < i < n, U; is
non-sequential (as in Corollary 3.1). The proof proceeds by induction on n. In the
base, we have that n = 0. In this case, U = 1, and thus U € [g || h],,, by Lemma
3.2.Since g || h = pe,f(g || h) Sexa Se,r(g || h), it follows that U € [se, r(g || h)]
by Lemma 3.8.

For the inductive step, assume the claim holds for n—1. We write U = Uy-U’,
with U' = Uy - Uy -+ Up—1. Since Uy - U’ € [g || h],, there exist W € [g]..,
and X € [h], such that Uy -U" T W || X. By Lemma 3.6, we find pomsets
Wo, Wl,Xo,Xl such that WO'Wl C W and X()'X1 C X, as well as UO C W() || X()
and U’ T W1 || X1. By Lemma 4.10, we find {4,714, ¢p,r, € T with £, V4 rg and
Ch Vi 7w, such that Wy € [€g] ., W1 € [rg] > Xo € [€n] e and X1 € [ra] -

From this, we know that Us € [ly || £1] ., and U’ € [rg || 74],- Since Uy is
non-sequential, we have that Uy € [¢y, © ¢4],,,. Moreover, by induction we find
that U’ € [se,f(rg || 71)]zea- Since £y © £y, Sgua Me (g || Ry 7g || 74) by definition
of M, ¢, we furthermore find that

BKA

(Kg O L) - Se,f(rg Il 71n) Sexa ME,f(g | A Tg I 74) - 567.f(rg | 74)

Since 74 || 7, € I, we find by definition of the solution to a linear system that

Me(g |l hyrg I 7h) - Se,£ (g || 7h) Sexa Ses (9 [h)

By Lemma 3.8 and the above, we conclude that U = Uy - U’ € [sc,¢(g || h)] O

BKA®

Concurrent Kleene Algebra: Free Model and Completeness 877

For a concrete example where we find a closure of a (non-trivial) parallel
composition by solving a linear system, we refer to Appendix A.

With closure of parallel composition, we can construct a closure for any term
and therefore conclude completeness of CKA.

Theorem 4.1. Let e € 7. We can construct a closure e| of e.

Proof. The proof proceeds by induction on |e| and the structure of e, i.e., by
considering f before g if |f| < |g|, or if f is a strict subterm of g (in which case
|7] < |g] also holds). It is not hard to see that this induces a well-ordering on 7.
Let e be a term of width n, and suppose that the claim holds for all terms
of width at most n — 1, and for all strict subterms of e. There are three cases.

—Ife=0,e=1or e=a for some a € X, the claim follows from Lemma 4.2.

- Ife=ey+er, ore=ep-eq, or e=ej, the claim follows from Lemma 4.3.

—If e = ey || e1, then ey ® e; exists by the induction hypothesis. By Lemma
4.12, we then find that ey ® e; is a closure of e. a

Corollary 4.3. Lete, f € T. If [e]n = [f]exns then e =cia f.

Proof. Follows from Theorem 4.1 and Lemma 4.1. O

5 Discussion and Further Work

By building a syntactic closure for each series-rational expression, we have shown
that the standard axiomatisation of CKA is complete with respect to the CKA-
semantics of series-rational terms. Consequently, the algebra of closed series-
rational pomset languages forms the free CKA.

Our result leads to several decision procedures for the equational theory of
CKA. For instance, one can compute the closure of a term as described in the
present paper, and use an existing decision procedure for BKA [3,12,20]. Note
however that although this approach seems suited for theoretical developments
(such as formalising the results in a proof assistant), its complexity makes it less
appealing for practical use. More practically, one could leverage recent work by
Brunet et al. [3], which provides an algorithm to compare closed series-rational
pomset languages. Since this is the free concurrent Kleene algebra, this algorithm
can now be used to decide the equational theory of CKA. We also obtain from
the latter paper that this decision problem is EXPSPACE-complete.

We furthermore note that the algorithm to compute downward closure can
be used to extend half of the result from [14] to a Kleene theorem that relates the
CKA-semantics of expressions to the pomset automata proposed there: if e € T,
we can construct a pomset automaton A with a state ¢ such that L4 (q) = [e] -

Having established pomset automata as an operational model of CKA, a
further question is whether these automata are amenable to a bisimulation-based
equivalence algorithm, as is the case for finite automata [10]. If this is the case,
optimisations such as those in [2] might have analogues for pomset automata
that can be found using the coalgebraic method [23].

878 T. Kappé et al.

While this work was in development, an unpublished draft by Laurence and
Struth [19] appeared, with a first proof of completeness for CKA. The general
outline of their proof is similar to our own, in that they prove that closure of
pomset languages preserves series-rationality, and hence there exists a syntac-
tic closure for every series-rational expression. However, the techniques used to
establish this fact are quite different from the developments in the present paper.
First, we build the closure via syntactic methods: explicit splitting relations and
solutions of linear systems. Instead, their proof uses automata theoretic construc-
tions and algebraic closure properties of regular languages; in particular, they
rely on congruences of finite index and language homomorphisms. We believe
that our approach leads to a substantially simpler and more transparent proof.
Furthermore, even though Laurence and Struth do not seem to use any fun-
damentally non-constructive argument, their proof does not obviously yield an
algorithm to effectively compute the closure of a given term. In contrast, our
proof is explicit enough to be implemented directly; we wrote a simple Python
script (under six hundred lines) to do just that [16].

A crucial ingredient in this work was the computation of least solutions of
linear systems. This kind of construction has been used on several occasions for
the study of Kleene algebras [1,4,18], and we provide here yet another variation
of such a result. We feel that linear systems may not have yet been used to their
full potential in this context, and could still lead to interesting developments.

A natural extension of the work conducted here would be to turn our atten-
tion to the signature of concurrent Kleene algebra that includes a “parallel star”
operator el. The completeness result of Laurence and Struth [20] holds for BKA
with the parallel star, so in principle one could hope to extend our syntactic
closure construction to include this operator. Unfortunately, using the results of
Laurence and Struth, we can show that this is not possible. They defined a notion
of depth of a series-parallel pomset, intuitively corresponding to the nesting of
parallel and sequential components. An important step in their development
consists of proving that for every series-parallel-rational language there exists a
finite upper bound on the depth of its elements. However, the language [[a”]]CKA
does not enjoy this property: it contains every series-parallel pomset exclusively
labelled with the symbol a. Since we can build such pomsets with arbitrary
depth, it follows that there does not exist a syntactic closure of the term all.
New methods would thus be required to tackle the parallel star operator.

Another aspect of CKA that is not yet developed to the extent of KA is the
coalgebraic perspective. We intend to investigate whether the coalgebraic tools
developed for KA can be extended to CKA, which will hopefully lead to efficient
bisimulation-based decision procedures [2,5].

Acknowledgements. We thank the anonymous reviewers for their insightful com-
ments. This work was partially supported by the ERC Starting Grant ProFoundNet
(grant code 679127).

Concurrent Kleene Algebra: Free Model and Completeness 879

A Worked Example: A Non-trivial Closure

In this appendix, we solve an instance of a linear system as defined in Defini-
tion 4.7 for a given parallel composition. For the sake of brevity, the steps are
somewhat coarse-grained; the reader is encouraged to reproduce the steps by
hand.

Consider the expression e || f = a* || b. The linear system £. s that we
obtain from this expression consists of six inequations; in matrix form (with
zeroes omitted), this system is summarised as follows:*

11 1 i 1
1] b b1)
a-a* |1 a a* a-a* ' a-a*
a* |1 1 a* a*-a ‘ a*
a-a*|b| allb a a||b a-a*||b o a-a* ! a-a*|b
a* || b b 1 a*||b a-a*||b a a-a* ‘ a* || b

Let us proceed under the assumption that z is a solution to the system; the
constraint imposed on = by the first two rows is given by the inequations

(1| 1)+1 S z(l] 1) (1)

(L] 1) + (1] b) +b = z(1]| b) (2)

Because these inequations do not involve the other positions of the system, we

can solve them in isolation, and use their solutions to find solutions for the

remaining positions; it turns out that choosing (1 || 1) = 1 and (1 || b) = b
suffices here.

We carry on to fill these values into the inequations given by the third and
fourth row of the linear system. After some simplification, these work out to be

a-a*+a-a*-z@||1)+a-z(a-a* ||1) S z(a-a* || 1) (3)
a*+a -a-z@||1)+a -z(a-a ||1) Sca x(a* || 1) (4)

Applying the least fixpoint axiom to (3) and simplifying, we obtain
a-a*+a-a* x(a||1) Sxaxz(a-a* || 1) (5)
Substituting this into (4) and simplifying, we find that

a*+a-a*-x(@* || 1) S x(a* | 1) (6)

axiom. Plugging this back into (3) and simplifying, we find that

This inequation, in turn, gives us that a* Sc, x(a* || 1) by the least fixpoint

a-a*+a -z(a-a* ||1) Sqn z(a-a* || 1) (7)

4 Actually, the system obtained from a* || b as a result of Definition4.7 is slightly
larger; it also contains rows and columns labelled by 1-a* || 1 and 1-a* || b; these
turn out to be redundant. We omit these rows from the example for simplicity.

880 T. Kappé et al.

Again by the least fixpoint axiom, this tells us that a - a* S z(a-a* || 1). One

easily checks that z(a-a* || 1) = a - a* and z(a* || 1) = a* are solutions to (3)
and (4); by the observations above, they are also the least solutions.

It remains to find the least solutions for the final two positions. Filling in the
values that we already have, we find the following for the fifth row:

allb+a-b+(a*||b)-a-a*+(a-a*|b)-a*
+a - z(a-a* ||b)+a-a*-x(a*||b)+a-a* || bScw xz(a-a* || b) (8)

Applying the exchange law® to the first three terms, we find that they are con-
tained in (a - a* || b) - a*, as is the last term; (8) thus simplifies to

(a-a*|b)-a*+a*-z(a-a*||b)+a-a* x(a* | b) Sca x(a-a* | b) (9)
By the least fixpoint axiom, we find that
a*(a-a* || b)-a*+a-a* x(a*|b) Sk z(a-a” | b) (10)
For the sixth row, we find that after filling in the solved positions, we have
b+b+ (a*||b)-a-a*+(a-a”|b)-a*
+a*-xz(a-a* ||b)+a-a* xz(a*||b)+a* || bZca x(a” || b) (11)
Simplifying and applying the exchange law as before, it follows that
(a*||b)-a*+a* -x(a-a*||b)+a-a*-z(a* ||) Sca z(a™ | b) (12)
We then subsitute (10) into (12) to find that
(@ [|b)-a” +a-a” a(a” || b) Scin x(a” || D) (13)

which, by the least fixpoint axiom, tells us that a* - (a* || b) - a* Scxa z(a* || b).
Plugging the latter back into (9), we find that

a* (a-a*||b)-a*+a-a* -a*(a"[|b) a* Sk x(a-a* || b) (14)
which can, using the exchange law, be reworked into

a* - (a-a* || b)-a* Scax(a-a* || b) (15)

Now, if we choose x(a-a* || b) =a*-(a-a* || b)-a* and z(a* || b) = a* - (a* ||
b) - a*, we find that these choices satisfy (9) and (12)—making them part of a
solution; by construction, they are also the least solutions.

In summary, x is a solution to the linear system, and by construction it is
also the least solution. The reader is encouraged to verify that our choice of
x(a* || b) is indeed a closure of a* || b.

5 A caveat here is that applying the exchange law indiscriminately may lead to a
term that is not a closure (specifically, it may violate the semantic requirement in
Definition 4.1). The algorithm used to solve arbitrary linear systems in Lemma 3.12
does not make use of the exchange law to simplify terms, and thus avoids this pitfall.

Concurrent Kleene Algebra: Free Model and Completeness 881

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Backhouse, R.: Closure algorithms and the star-height problem of regular lan-
guages. Ph.D. thesis, University of London (1975)

Bonchi, F., Pous, D.: Checking NFA equivalence with bisimulations up to congru-
ence. In: Proceedings of the Principles of Programming Languages (POPL), pp.
457-468 (2013)

Brunet, P., Pous, D., Struth, G.: On decidability of concurrent Kleene algebra. In:
Proceedings of the Concurrency Theory (CONCUR), pp. 28:1-28:15 (2017)
Conway, J.H.: Regular Algebra and Finite Machines. Chapman and Hall Ltd.,
London (1971)

Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalgebraic deci-
sion procedure for NetKAT. In: Proceedings of the Principles of Programming
Languages (POPL), pp. 343-355 (2015)

Gischer, J.L.: The equational theory of pomsets. Theor. Comput. Sci. 61, 199-224
(1988)

Grabowski, J.: On partial languages. Fundam. Inform. 4(2), 427 (1981)

Hoare, T., Moller, B., Struth, G., Wehrman, I.: Concurrent Kleene algebra. In:
Proceedings of the Concurrency Theory (CONCUR), pp. 399-414 (2009)

Hoare, T., van Staden, S., Moller, B., Struth, G., Zhu, H.: Developments in con-
current Kleene algebra. J. Log. Algebr. Meth. Program. 85(4), 617-636 (2016)
Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. Technical report, TR71-114, December 1971

Horn, A., Kroening, D.: On partial order semantics for SAT/SMT-based sym-
bolic encodings of weak memory concurrency. In: Graf, S., Viswanathan, M. (eds.)
FORTE 2015. LNCS, vol. 9039, pp. 19-34. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-19195-9_2

Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite
nets. Theor. Comput. Sci. 154(1), 107-143 (1996)

Jipsen, P., Moshier, M.A.: Concurrent Kleene algebra with tests and branching
automata. J. Log. Algebr. Methods Program. 85(4), 637-652 (2016)

Kappé, T., Brunet, P., Luttik, B., Silva, A., Zanasi, F.: Brzozowski goes
concurrent—a Kleene theorem for pomset languages. In: Proceedings of the Con-
currency Theory (CONCUR), pp. 25:1-25:16 (2017)

Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Concurrent Kleene algebra: free model
and completeness. https://arxiv.org/abs/1710.02787

Kappé, T., Brunet, P., Silva, A., Zanasi, F.: Tools for concurrent Kleene algebra,
Sep 2017. https://doi.org/10.5281 /zenodo.926823

Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shan-
non, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3-41. Princeton University
Press, Princeton (1956)

Kozen, D.: A completeness theorem for Kleene algebras and the algebra of regular
events. Inf. Comput. 110(2), 366-390 (1994)

Laurence, M.R., Struth, G.: Completeness theorems for pomset languages and
concurrent Kleene algebras. https://arxiv.org/abs/1705.05896

Laurence, M.R., Struth, G.: Completeness theorems for Bi-Kleene algebras and
series-parallel rational pomset languages. In: Hofner, P.; Jipsen, P., Kahl, W,
Miiller, M.E. (eds.) RAMICS 2014. LNCS, vol. 8428, pp. 65-82. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-06251-8_5

Levi, F.W.: On semigroups. Bull. Calcutta Math. Soc. 36(141-146), 82 (1944)

https://doi.org/10.1007/978-3-319-19195-9_2
https://doi.org/10.1007/978-3-319-19195-9_2
https://arxiv.org/abs/1710.02787
https://doi.org/10.5281/zenodo.926823
https://arxiv.org/abs/1705.05896
https://doi.org/10.1007/978-3-319-06251-8_5

882 T. Kappé et al.

22. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theor. Comput. Sci. 237(1), 347-380 (2000)

23. Rot, J., Bonsangue, M., Rutten, J.: Coalgebraic bisimulation-up-to. In: van Emde
Boas, P., Groen, F.C.A., Ttaliano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM
2013. LNCS, vol. 7741, pp. 369-381. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-35843-2_32

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/978-3-642-35843-2_32
https://doi.org/10.1007/978-3-642-35843-2_32
http://creativecommons.org/licenses/by/4.0/

	ETAPS Foreword
	Preface
	Organization
	RustBelt: Logical Foundations for the Future of Safe Systems Programming
	Contents
	Language Design
	Consistent Subtyping for All
	1 Introduction
	2 Background and Motivation
	2.1 Gradual Subtyping
	2.2 The Odersky-Läufer Type System
	2.3 Motivation: Gradually Typed Higher-Rank Polymorphism

	3 Revisiting Consistent Subtyping
	3.1 Consistency and Subtyping
	3.2 Towards Consistent Subtyping
	3.3 Abstracting Gradual Typing
	3.4 Directed Consistency
	3.5 Consistent Subtyping Without Existentials

	4 Gradually Typed Implicit Polymorphism
	4.1 Typing in Detail
	4.2 Type-Directed Translation
	4.3 Correctness Criteria

	5 Algorithmic Type System
	5.1 Algorithmic Consistent Subtyping and Instantiation
	5.2 Algorithmic Typing
	5.3 Completeness and Soundness

	6 Discussion
	6.1 Top Types
	6.2 Interpretation of the Dynamic Semantics
	6.3 The Dynamic Guarantee

	7 Related Work
	8 Conclusion
	References

	HOBiT: Programming Lenses Without Using Lens Combinators
	1 Introduction
	1.1 The Challenge of Programmability
	1.2 Contributions

	2 Overview: Bidirectional Programming Without Combinators
	2.1 The case Construct
	2.2 A More Elaborate Example: linesB

	3 Syntax and Type System of HOBiT Core
	3.1 Syntax
	3.2 Type System

	4 Semantics of HOBiT Core
	4.1 Basic Idea: Staging
	4.2 Three Evaluation Relations: Unidirectional, get and put
	4.3 Correctness

	5 Extensions
	5.1 In-Language Lens Definition
	5.2 Lens Combinators as Language Constructs
	5.3 Guards
	5.4 Syntax Sugar for Reconciliation Functions
	5.5 Inference of Exit Conditions

	6 An Involved Example: Desugaring
	7 Related Work
	8 Conclusion
	References

	Dualizing Generalized Algebraic Data Types by Matrix Transposition
	1 Introduction
	2 Informal Overview
	3 Formal Semantics
	3.1 Language Design Rationale
	3.2 Notational Conventions
	3.3 Syntax
	3.4 Operational Semantics
	3.5 Typing
	3.6 GADTs and GAcoDTs

	4 Properties of GADTT
	4.1 Type Soundness
	4.2 Defunctionalization and Refunctionalization
	4.3 Extensibility

	5 Discussion
	5.1 Applications
	5.2 Limitations
	5.3 Termination and Productivity
	5.4 Going Beyond System F-like Polymorphism
	5.5 Coq Formalization

	6 Related Work
	7 Conclusions
	References

	Deterministic Concurrency: A Clock-Synchronised Shared Memory Approach
	1 Introduction
	2 Synchronous Policies
	2.1 Syntax
	2.2 Limited Abstraction in SP
	2.3 Concurrent Access Policies
	2.4 Enabling and Policy Conformance
	2.5 Coherence and Determinacy
	2.6 Policies and Modularity

	3 Constructive Semantics of DCoL
	3.1 Determinacy, Termination and Constructiveness

	4 Related Work
	5 Conclusion
	References

	Probabilistic Programming
	An Assertion-Based Program Logic for Probabilistic Programs
	1 Introduction
	2 Mathematical Preliminaries
	3 Programs and Assertions
	4 Proof System
	5 A Concrete Program Logic
	6 Case Studies: Embedding Lightweight Logics
	6.1 Law and Independence Logic
	6.2 Embedding the Union Bound Logic

	7 Case Studies: Verifying Randomized Algorithms
	8 Implementation and Mechanization
	9 Related Work
	10 Conclusion and Perspectives
	References

	Fine-Grained Semantics for Probabilistic Programs
	1 Introduction
	2 Overview
	2.1 Features of Probabilistic Programs
	2.2 Interaction of Exception States

	3 Preliminaries
	4 A Probabilistic Language and Its Semantics
	4.1 Syntax
	4.2 Typing Judgments
	4.3 Semantics
	4.4 Recursion
	4.5 Higher-Order Functions
	4.6 Non-determinism

	5 Properties of Semantics
	5.1 Commutativity
	5.2 Associativity
	5.3 Adding the score Primitive

	6 Related Work
	7 Conclusion
	A Proofs for Preliminaries
	A.1 Measures
	A.2 Lebesgue Integral
	A.3 Kernels

	B Proofs for Semantics
	C Probability Kernel
	D Proofs for Consequences
	References

	How long, O Bayesian network, will I sample thee?
	1 Introduction
	2 Related Work
	3 Probabilistic Programs
	3.1 The Probabilistic Guarded Command Language
	3.2 The Weakest Preexpectation Transformer
	3.3 The Expected Runtime Transformer

	4 Expected Runtimes of i.i.d Loops
	5 A Programming Language for Bayesian Networks
	5.1 The Bayesian Network Language
	5.2 Bayesian Networks
	5.3 From Bayesian Networks to BNL

	6 Implementation
	7 Conclusion
	References

	Relational Reasoning for Markov Chains in a Probabilistic Guarded Lambda Calculus
	1 Introduction
	2 Mathematical Preliminaries
	3 Overview of the System
	3.1 Base Logic: Guarded Higher-Order Logic
	3.2 A System for Relational Reasoning
	3.3 Examples

	4 Probabilistic Guarded Lambda Calculus
	5 Guarded Higher-Order Logic
	6 Relational Proof System
	6.1 Proof Rules
	6.2 Metatheory
	6.3 Shift Couplings Revisited

	7 Related Work
	8 Conclusion
	References

	Types and Effects
	Failure is Not an Option
	1 Introduction
	2 The Exceptional Translation
	2.1 Adding Exceptions to CC
	2.2 Exceptional Inductive Types
	2.3 Flirting with Inconsistency
	2.4 Living in an Exceptional World

	3 Kreisel Meets Martin-Löf
	3.1 Exceptional Parametricity in a Negative World
	3.2 Exceptional Parametric Translation of CIC
	3.3 Meta-Theoretical Properties of TEp

	4 Effectively Extending CIC
	4.1 Markov's Rule
	4.2 Function Intensionality with -expansion
	4.3 Independence of Premise
	4.4 Non-provability of Markov's Principle

	5 Possible Extensions
	5.1 Negative Records
	5.2 Impredicative Universe

	6 The Exceptional Translation in Practice
	6.1 Implementation as a Coq Plugin
	6.2 Usecase: A Cast Framework

	7 Related Work
	8 Conclusion and Future Work
	References

	Let Arguments Go First
	1 Introduction
	2 Overview
	2.1 Background: Bi-directional Type Checking
	2.2 Bi-directional Type Checking with the Application Mode
	2.3 Benefits of Information Flowing from Arguments to Functions
	2.4 Application 1: Type Inference of Higher-Ranked Types
	2.5 Application 2: More Expressive Type Applications

	3 A Polymorphic Language with Higher-Ranked Types
	3.1 Syntax
	3.2 Type System
	3.3 Subtyping
	3.4 Translation to System F, Coherence and Type-Safety
	3.5 Algorithmic System

	4 More Expressive Type Applications
	4.1 Syntax
	4.2 Type System
	4.3 Meta Theory

	5 Discussion
	5.1 Combining Application and Checked Modes
	5.2 Additional Constructs
	5.3 Dependent Type Systems

	6 Related Work
	6.1 Bi-directional Type Checking
	6.2 Type Inference for Higher-Ranked Types
	6.3 Tracking Type Equalities

	7 Conclusion
	References

	Behavioural Equivalence via Modalities for Algebraic Effects
	1 Introduction
	2 A Simple Programming Language
	3 Behavioural Logic and Modalities
	4 Behavioural Equivalence
	5 Applicative O-(bi)similarity
	6 Howe's Method
	7 Pure Behavioural Logic
	8 Discussion and Related Work
	References

	Explicit Effect Subtyping
	1 Introduction
	2 Overview
	2.1 Algebraic Effect Handlers
	2.2 Elaborating Subtyping
	2.3 Polymorphic Subtyping for Types and Effects
	2.4 Guaranteed Erasure with Skeletons

	3 The ImpEff Language
	3.1 Syntax
	3.2 Typing

	4 The ExEff Language
	4.1 Syntax
	4.2 Typing
	4.3 Operational Semantics

	5 Type Inference and Elaboration
	5.1 Elaboration of ImpEff into ExEff
	5.2 Constraint Generation and Elaboration
	5.3 Constraint Solving
	5.4 Discussion

	6 Erasure of Effect Information from ExEff
	6.1 The SkelEff Language
	6.2 Erasure

	7 Related Work and Conclusion
	References

	Concurrency
	A Separation Logic for a Promising Semantics
	1 Introduction
	2 Our Logic
	2.1 The Assertions of the Logic
	2.2 The Rules of the Logic for Relaxed Accesses
	2.3 Reasoning About Coherence
	2.4 Handling Release and Acquire Accesses
	2.5 Plain Accesses

	3 The Promising Semantics
	3.1 Storage Subsystem
	3.2 Thread Subsystem
	3.3 Interaction Between a Thread and the Storage Subsystem
	3.4 Constraining Promises
	3.5 Full Machine

	4 Semantics and Soundness
	4.1 The Intuition
	4.2 A Closer Look at the Resources and the Assertion Semantics
	4.3 Relating Concrete State and Resources
	4.4 Soundness

	5 Related Work
	6 Conclusion
	References

	Logical Reasoning for Disjoint Permissions
	1 Introduction
	2 Technical Preliminaries
	3 Predicate Multiplication
	3.1 Proof Rules for Predicate Multiplication
	3.2 Verification of processTree using predicate multiplication

	4 Bi-abductive Inference with Fractional Permissions
	4.1 Fractional Residue Computation
	4.2 Extension of Predicate Axioms
	4.3 Abductive Inference and Frame Inference

	5 A Proof Theory for Fractional Permissions
	5.1 Proof Theory for Predicate Multiplication and Fractional Maps-To
	5.2 Proof Theory for Proving that Predicates Are Precise
	5.3 Proof Theory for Induction over the Finiteness of the Heap
	5.4 Using Our Proof Theory

	6 The ShareInfer fractional biabduction engine
	7 Building a Model for Our Logic
	7.1 Cancellative Separation Algebras
	7.2 Fractional Share Algebras
	7.3 Scaling Separation Algebra
	7.4 Compositionality of Scaling Separation Algebras
	7.5 Model for Inductive Logic

	8 Lower Bounds on Predicate Multiplication
	8.1 Predicate Multiplication's Axioms Force Share Model Properties
	8.2 Disjointness in a Multiplicative Setting

	9 Related Work
	10 Conclusion
	References

	Deadlock-Free Monitors
	1 Introduction
	2 Background Information on the Underlying Approaches
	2.1 Verifying Absence of Data Races
	2.2 Verifying Absence of Deadlock
	2.3 Proof Rules

	3 Deadlock-Free Monitors
	3.1 High-Level Idea
	3.2 Tracking Numbers of Waiting Threads and Obligations
	3.3 Resource Transfer on Notification
	3.4 Proof Rules
	3.5 Verifying Channels
	3.6 Other Examples

	4 Relaxing the Precedence Relation
	4.1 A Relaxed Precedence Relation
	4.2 A Further Relaxation

	5 Soundness Proof
	6 Related Work
	7 Conclusion
	References

	Fragment Abstraction for Concurrent Shape Analysis
	1 Introduction
	2 Overview
	3 Concurrent Data Structure Implementations
	3.1 Concurrent Data Structure Implementations
	3.2 Linearizability

	4 Verification Using Fragment Abstraction for Skiplists
	4.1 Symbolic Representation
	4.2 Symbolic Postcondition Computation

	5 Arrays of Singly-Linked Lists with Timestamps
	6 Experimental Results
	7 Conclusions
	References

	Security
	Reasoning About a Machine with Local Capabilities
	1 Introduction
	2 A Capability Machine with Local Capabilities
	3 Stack and Return Pointer Management Using Local Capabilities
	4 Logical Relation
	4.1 Worlds
	4.2 Logical Relation
	4.3 Safety of the Capability Machine

	5 Examples
	5.1 Encapsulation of Local State
	5.2 Well-Bracketed Control-Flow

	6 Discussion
	7 Related Work
	References

	Modular Product Programs
	1 Introduction
	2 Overview
	2.1 Relational Specifications
	2.2 Modular Product Programs
	2.3 Interpretation of Relational Specifications
	2.4 Product Program Verification

	3 Preliminaries
	4 Modular k-Product Programs
	4.1 Product Construction
	4.2 Transformation of Assertions
	4.3 Heap-Manipulating Programs

	5 Soundness and Completeness
	5.1 Soundness with Unary Specifications
	5.2 Soundness for Relational Specifications
	5.3 Completeness

	6 Modular Verification of Secure Information Flow
	6.1 Non-interference
	6.2 Information Flow Specifications
	6.3 Secure Information Flow with Arbitrary Security Lattices
	6.4 Declassification
	6.5 Preventing Termination Channels
	6.6 Preventing Timing Channels

	7 Implementation and Evaluation
	7.1 Implementation in Viper
	7.2 Qualitative Evaluation
	7.3 Performance

	8 Related Work
	9 Conclusion and Future Work
	References

	Program Verification
	A Fistful of Dollars: Formalizing Asymptotic Complexity Claims via Deductive Program Verification
	1 Introduction
	2 Challenges in Reasoning with the O Notation
	3 Formalizing the O Notation
	3.1 Domination
	3.2 Filters
	3.3 Examples of Filters
	3.4 Properties of Domination
	3.5 Tactics

	4 Specifications with Asymptotic Complexity Claims
	4.1 CFML with Time Credits for Cost Analysis
	4.2 A Modularity Challenge
	4.3 A Record for Specifications
	4.4 Why Cost Functions Must Be Nonnegative
	4.5 Why Cost Functions Must Be Monotonic

	5 Interactive Proofs of Asymptotic Complexity Claims
	5.1 Synthesizing Cost Expressions for Straight-Line Code
	5.2 Synthesizing and Solving Recurrence Equations

	6 Examples
	7 Related Work
	References

	Verified Learning Without Regret
	1 Introduction
	1.1 Contributions
	1.2 Organization

	2 Background
	2.1 Games
	2.2 Algorithmic Game Theory

	3 Cage by Example
	3.1 Overview
	3.2 Smooth Games DSL
	3.3 Example: Distributed Routing
	3.4 Example: Load Balancing

	4 Smooth Games
	4.1 Combinators

	5 Multiplicative Weights (MW)
	5.1 The Algorithm
	5.2 MW Is No Regret
	5.3 MW Architecture
	5.4 MW DSL
	5.5 Interpreter
	5.6 Proof

	6 Coordinated MW
	6.1 Machine Semantics
	6.2 Convergence and Optimality

	7 Related Work
	8 Conclusion
	References

	Program Verification by Coinduction
	1 Introduction
	2 Overview and Basic Notions
	2.1 Intuitive Hoare Logic Proof
	2.2 Intuitive Coinduction Proof
	2.3 Defining Execution Step Relations

	3 Coinduction as Partial Correctness
	3.1 Definitions and Main Theorem
	3.2 Example Proof: Sum
	3.3 Example Proof: Reverse

	4 Experiments
	4.1 Languages
	4.2 Specifying Data Structures
	4.3 Specifying Reachability Claims
	4.4 Proofs and Automation
	4.5 Other Data Structures
	4.6 Schorr-Waite
	4.7 Divergence
	4.8 Summary of Experiments

	5 Subsuming Reachability Logic
	5.1 Advantages of Coinduction
	5.2 Reachability Logic Proof System
	5.3 Reachability Logic is Coinduction

	6 Other Related Work
	6.1 Current Verification Tools
	6.2 Operational Semantics Based Approaches
	6.3 Other Coinduction Schemata

	7 Conclusion and Future Work
	References

	Velisarios: Byzantine Fault-Tolerant Protocols Powered by Coq
	1 Introduction
	2 PBFT Recap
	2.1 Overview of the Protocol
	2.2 Properties
	2.3 Differences with Castro's Implementation

	3 Velisarios Model
	3.1 The Logic of Events
	3.2 Messages
	3.3 Authentication
	3.4 Event Orderings
	3.5 Computational Model
	3.6 Assumptions

	4 Methodology
	4.1 Automated Inductive Reasoning
	4.2 Quorums
	4.3 Certificates
	4.4 Knowledge Theory

	5 Verification of PBFT
	6 Extraction and Evaluation
	7 Related Work
	7.1 Logics and Models
	7.2 Tools

	8 Conclusions and Future Work
	References

	Program Analysis and Automated Verification
	Evaluating Design Tradeoffs in Numeric Static Analysis for Java
	1 Introduction
	2 Numeric Static Analysis
	3 The Heap
	3.1 Summary Objects (SO)
	3.2 Access Paths (AP)
	3.3 Abstract Object Representation (OR)

	4 Method Calls
	4.1 Interprocedural Analysis Order (AO)
	4.2 Context Sensitivity (CS)

	5 Implementation
	6 Evaluation
	6.1 Experimental Setup
	6.2 RQ1: Performance
	6.3 RQ2: Precision
	6.4 RQ3: Tradeoffs

	7 Related Work
	8 Conclusion and Future Work
	References

	An Abstract Interpretation Framework for Input Data Usage
	1 Introduction
	2 Trace Semantics
	3 Input Data Usage
	4 Sound Input Data Usage Validation
	5 Outcome Semantics
	6 Dependency Semantics
	7 Input Data Usage Abstractions
	8 Secure Information Flow Abstractions
	9 Strongly Live Variable Abstraction
	10 Syntactic Dependency Abstractions
	11 Piecewise Abstractions
	12 Related Work
	13 Conclusion and Future Work
	References

	Higher-Order Program Verification via HFL Model Checking
	1 Introduction
	2 (Extended) HFL
	2.1 Syntax
	2.2 Semantics and HFLZ Model Checking
	2.3 HES

	3 Warming Up
	4 Target Language
	4.1 Syntax and Typing
	4.2 Operational Semantics

	5 May/Must-Reachability Verification
	5.1 May-Reachability
	5.2 Must-Reachability

	6 Trace Properties
	7 Linear-Time Temporal Properties
	7.1 Call-Sequence Analysis
	7.2 From Temporal Verification to Call-Sequence Analysis

	8 Related Work
	9 Conclusion
	References

	Quantitative Analysis of Smart Contracts
	1 Introduction
	2 Background on Ethereum Smart Contracts
	2.1 Programmable Smart Contracts
	2.2 Tokens and User Utility

	3 Programming Language for Smart Contracts
	3.1 Syntax
	3.2 Semantics
	3.3 Objective Function and Values of Contracts
	3.4 Examples

	4 Bounded Analysis and Games
	4.1 Bounded Analysis
	4.2 Concurrent Games
	4.3 Translating Contracts to Games

	5 Abstraction for Quantitative Concurrent Games
	5.1 Abstraction for Quantitative Concurrent Games
	5.2 Abstraction: Soundness, Refinement, and Completeness in Limit
	5.3 Interval Abstraction

	6 Experimental Results
	7 Comparison with Related Work
	8 Conclusion
	References

	Session Types and Concurrency
	Session-Typed Concurrent Contracts
	1 Introduction
	2 Session Types
	3 Contract Examples
	4 Monitors as Partial Identity Processes
	4.1 Buffering Values
	4.2 Rule Summary
	4.3 Spawning New Processes
	4.4 Transparency

	5 Refinements as Contracts
	5.1 Syntax and Typing Rules
	5.2 Translation to Monitors
	5.3 Metatheory

	6 Related Work
	7 Conclusion
	References

	A Typing Discipline for Statically Verified Crash Failure Handling in Distributed Systems
	1 Introduction
	2 System and Failure Model
	3 Global Types for Explicit Handling of Partial Failures
	4 A Process Calculus for Coordinator-Based Failure Handling
	5 Local Types
	6 Type System
	7 Properties
	8 Related Work
	9 Final Remarks
	References

	On Polymorphic Sessions and Functions
	1 Introduction
	2 Polymorphic Session -Calculus
	2.1 Processes and Typing

	3 To Linear-F and Back
	3.1 Encoding Linear-F into Session -Calculus
	3.2 Encoding Session -calculus to Linear-F
	3.3 Inversion and Full Abstraction

	4 Applications of the Encodings
	4.1 Inductive and Coinductive Session Types
	4.2 Communicating Values – Sess
	4.3 Higher-Order Session Processes – Sess+

	5 Related Work and Concluding Remarks
	References

	Concurrent Kleene Algebra: Free Model and Completeness
	1 Introduction
	2 Overview of the Completeness Proof
	3 Preliminaries
	3.1 Pomsets
	3.2 Concurrent Kleene Algebra
	3.3 Linear Systems

	4 Completeness of CKA
	4.1 Preclosure
	4.2 Closure

	5 Discussion and Further Work
	A Worked Example: A Non-trivial Closure
	References

	Concurrency and Distribution
	Correctness of a Concurrent Object Collector for Actor Languages
	1 Introduction
	2 Host Language Requirements
	2.1 Actors and Objects
	2.2 Mutation, Transfer and Accessibility
	2.3 Capabilities and Accessibility
	2.4 Causality

	3 Overview of ORCA
	3.1 Mutation and Collection
	3.2 Local Collection
	3.3 Messages and Collection
	3.4 Example

	4 The ORCA Protocol
	4.1 Capabilities and Accessibility
	4.2 Well-Formed Configurations
	4.3 Actor States
	4.4 Garbage Collection
	4.5 Receiving and Sending Messages
	4.6 Actor Behaviour

	5 Soundness and Completeness
	5.1 I1 and I2 Support Safe Local GC
	5.2 Completeness
	5.3 Dealing with Fine-Grained Concurrency
	5.4 Soundness

	6 Related Work
	7 Conclusions
	References

	Paxos Consensus, Deconstructed and Abstracted
	1 Introduction
	2 The Single-Decree Paxos Algorithm
	3 The Faithful Deconstruction of SD-Paxos
	4 Modularly Verifying SD-Paxos
	5 Multi-Paxos via Network Transformations
	5.1 Abstract Distributed Protocols
	5.2 Out-of-Thin-Air Semantics
	5.3 Slot-Replicating Network Semantics
	5.4 Widening Network Semantics
	5.5 Optimised Widening Semantics
	5.6 Bunching Semantics
	5.7 The Big Picture

	6 Putting It All Together
	7 Related Work
	8 Conclusion and Future Work
	References

	On Parallel Snapshot Isolation and Release/Acquire Consistency
	1 Introduction
	2 Background and Main Ideas
	2.1 Implementing Software Transactional Memory
	2.2 Parallel Snapshot Isolation (PSI)
	2.3 Towards a Lock-Based Reference Implementation for PSI

	3 The Release-Acquire Memory Model for STM
	3.1 Software Transactional Memory in RA: Specification

	4 Parallel Snapshot Isolation (PSI)
	4.1 A Declarative Specification of PSI STMs in RA
	4.2 A Lock-Based PSI Implementation in RA
	4.3 Implementation Soundness
	4.4 Implementation Completeness

	5 Robust Parallel Snapshot Isolation (RPSI)
	5.1 A Declarative Specification of RPSI STMs in RA
	5.2 A Lock-Based RPSI Implementation in RA
	5.3 Implementation Soundness
	5.4 Implementation Completeness

	6 Conclusions and Future Work
	References

	Eventual Consistency for CRDTs
	1 Introduction
	2 Understanding Replicated Sets
	2.1 Mutators and Non-mutators
	2.2 Dependency
	2.3 Puns
	2.4 Frontiers
	2.5 Stuttering

	3 Eventual Consistency for CRDTs
	3.1 Executions
	3.2 Specifications and Stuttering Equivalence
	3.3 Eventual Consistency
	3.4 Properties of Eventual Consistency
	3.5 Correctness of the Add-Wins Set

	4 A Collaborative Text Editing Protocol
	5 Compositional Reasoning
	6 A Replicated Graph Algorithm
	7 Conclusions
	References

	Compiler Verification
	A Verified Compiler from Isabelle/HOL to CakeML
	1 Introduction
	2 Related Work
	3 Deep Embedding
	4 Terms, Matching and Substitution
	4.1 De Bruijn terms (term)
	4.2 Named Bound Variables (nterm)
	4.3 Explicit Pattern Matching (pterm)
	4.4 Sequential Clauses (sterm)
	4.5 Irreducible Terms (value)

	5 Intermediate Semantics and Compiler Phases
	5.1 Side Conditions
	5.2 Naming Bound Variables: From term to nterm
	5.3 Explicit Pattern Matching: From nterm to pterm
	5.4 Sequentialization: From pterm to sterm
	5.5 Big-Step Semantics for sterm
	5.6 Evaluation Semantics: Refining sterm to value
	5.7 Evaluation with Recursive Closures
	5.8 CakeML

	6 Composition
	7 Dictionary Construction
	8 Evaluation
	9 Conclusion
	References

	Compositional Verification of Compiler Optimisations on Relaxed Memory
	1 Introduction
	2 Observation and Transformation
	3 Target Language and Core Memory Model
	3.1 Relaxed Memory Primer
	3.2 Language Syntax
	3.3 Memory Model Structure
	3.4 Thread-Local Semantics
	3.5 Execution Structure and Validity Axioms
	3.6 Relaxed Observations
	3.7 Differences from C11

	4 Denotations of Code-Blocks
	4.1 Block-Local Executions
	4.2 Histories
	4.3 Comparing Denotations
	4.4 Example Transformation

	5 A Finite Denotation
	5.1 Cutting Predicate
	5.2 Extended History (histE)
	5.3 Finiteness

	6 Prototype Verification Tool
	7 Transformations with Non-atomics
	7.1 Memory Model with Non-atomics
	7.2 Denotation with Non-atomics

	8 Full Abstraction
	9 Related Work
	10 Conclusions
	References

	Author Index

