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We study the stability of different higher dimensional thin–shell wormholes (HDTSW) in gen-
eral relativity with a cosmological constant. We show that a d–dimensional thin–shell wormhole
surrounded by quintessence can have three different throat geometries: spherical, planar and hyper-
bolic. Unlike the spherical geometry, the planar and hyperbolic geometries allow different topologies
that can be interpreted as higher-dimensional domain walls or branes connecting two universes. To
construct these geometries, we use the cut-and-paste procedure by joining two identical vacuum
spacetime solutions. Properties such as the null energy condition and geodesics are also studied. A
linear stability analysis around the static solutions is carried out. Our stability analysis takes into
account a more general HDTSW geometry than previous works so it is possible to recover other
well-known stability HDTSW conditions.
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I. INTRODUCTION

One of the most interesting solutions in General Rel-
ativity (GR) are known as wormhole solutions. GR
predicts that the spacetime is deformable due to en-
ergy/matter allowing the existence of this exotic geome-
tries. Basically, a wormhole is a tunnel which connects
two different asymptotically flat regions from the space-
time. The first ideas related to wormhole geometries were
suggested by Flamm [1] and later by Einstein and Rosen
[2]. The later introduced the so-called “Einstein-Rosen
bridge” constructed by the Schwarzschild solution by us-
ing the idea of two black holes connecting two different
regions of spacetime. However, it was demonstrated that
this geometry cannot be traversable due to the singular-
ity. In 1962, Fuller and Wheeler [3] employed Kruskal co-
ordinates to describe the geometry of the Schwarzschild
wormhole showing that it is not traversable. They
showed that if that wormhole is opened, it would close
so quickly that even a single photon could not be able
to travel through it. The interest of studying worm-
holes geometries was highly stimulated after the work
of traversable wormholes done by Morris & Thorne [4].
They constructed transversable wormhole geometries as
tunnels from one region of spacetime to another. They
showed that in order to travel through this region, the
matter supporting those geometries necessarily need to
violate the standard energy conditions [4–7]. Hence, in
the framework of GR, the so-called “exotic matter” which
violates the standard energy conditions is needed to have
a transversable wormhole. Since this kind of matter has
not been directly observed in the nature, it is a prob-
lematic theoretical issue to deal. One possible way to
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study this problem is by introducing thin-shell worm-
holes. One can restrict the violation of the energy con-
ditions to an infinitesimally small thin-shell allowing to
construct wormhole which violates the energy conditions
only in this region [8, 9]. Therefore, even if we can not
ignore it completely, one can concentrate the study on
a thin-shell. Thus, using the cut-and-paste technique,
one can concentrate the exotic matter at the wormhole
throat. The surface stress-energy tensor components at
the throat are determined invoking the Darmois-Israel
formalism [10, 11], which leads to the Lanczos equations
[12–14]. If the equation of state for the matter on the
shell is provided, we can obtain the dynamical evolution
of the wormhole using the solution of the Lanczos equa-
tion.

In this scenario, stability analysis of wormholes and
thin-shell wormholes under linear perturbations preserv-
ing the original symmetries have been carried out by sev-
eral authors. Poisson and Visser [15] performed a sta-
bility analysis for the Schwarzschild thin-shell wormhole
without assuming specific equations of state (EoS) for
the exotic matter. Considering the same stability anal-
ysis, more general geometries have been studied in the
literature such as incorporating a charge, a cosmological
constant or another physical quantities (see, for example,
references [16–20, 22–28, 60]). Stability analysis of cylin-
drical thin-shell wormholes have been studied in [29–31].
Different thin-shell wormholes with different EoS have
been also discussed in various works [32–38].

In 1920, Kaluza and Klein unified electromagnetism
and gravity by introducing a 5 dimensional theory. Ac-
cording to the Kaluza-Klein picture, extra dimensions
are compactified to a small radius at the order of the
Planck length when one is considering low energy physics.
String theory/M-Theory predicts the existence of extra
dimensions at low energies and introduced the notion of
Braneworlds. These theories are promising candidates
for a quantum theory of gravity and then for the uni-
fication of gravity and quantum effects. This motivates
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the study of geometries in higher dimensional spacetimes.
In Braneworld scenarios [39–42], the Standard Model of
particles is confined on a 3-brane, where only gravity is
allowed to penetrate the extra dimensions. In this con-
text, the 4-dimensional universe is viewed as a hypersur-
face called the “brane”, which is embedded in a higher
dimensional spacetime called “the bulk”. Under these
models, all the matter fields are confined to the Brane
with a variety of different mechanisms, while gravity can
propagate in the bulk. During the last two decades, to
understand in a more general way how gravity behaves
in higher dimensions, various important solutions of the
Einstein equations in higher dimensions have been stud-
ied (for example see [43–49])

The study of GR in higher dimensions gives the addi-
tional motivation to find possible factors and interesting
features that are not revealed in dimensions other than
four. Hence, the study of higher dimensional wormholes
or thin-shell wormholes are also a very interesting subject
to analyse. There are different interesting studies related
to Lorentzian and also Euclidean wormholes in higher di-
mensional gravity. Euclidean wormholes have been stud-
ied by Jianjun and Sicong and by Gonzales-Diaz [50, 51].
Self-dual Lorentzian wormholes have been also studied in
the context of N -dimensional Einstein gravity by Mauri-
cio Cataldo et al.[52]. They have also studied (N + 1)-
dimensional evolving wormholes supported by matter
satisfying a polytropic equation of state [53]. Other
higher dimensional evolving wormholes have been stud-
ied, see for example [54–56, 58, 65]. Electrically charged
thin-shell wormholes in higher dimensional gravity with
a cosmological constant has been discussed in [59, 60]. d-
dimensional non-asymptotically flat thin-shell wormholes
in Einstein-Yang-Mills-dilaton (EYMD) gravity has been
considered in [61] and its extension to Einstein-Yang-
Mills-Gauss-Bonnet was performed in [61, 62]. Recently,
an interesting well studied higher dimensional thin-shell
wormholes have been found in [63, 64]. In this paper we
are interested on studying d-dimensional thin-shell worm-
holes in a spherically symmetric spacetime surrounded
by quintessence. Using the standard stability analysis,
we will find the general stability conditions for that ge-
ometry and we will see that from our model, different

other well-known thin-shell wormholes can be obtained
with their respective stability conditions.

This article is organized as follows: Sec. II establishes
the basic notions for a d-dimensional spherically sym-
metric space-time surrounded by quintessence. In Sec.
III, we construct thin-shell wormholes for this space-time
by using the cut-and-paste technique. In addition, we
directly derive the geodesic equation for a test particle
which moves radially and initially is at rest. Sec. IV
is devoted to study the stability analysis using the stan-
dard linearised expansion method. Within this sections,
we derive the general stability conditions for the thin-
shell wormhole. In Sec. V we demonstrate that from our
general result, some interesting different particular cases
studied before can be recovered. Additionally, we explore
one new example and study the stability regions depend-
ing on the parameters. Finally, in Sec. VI we conclude
our main results.

II. d-DIMENSIONAL SPHERICALLY
SYMMETRIC SPACETIME SURROUNDED BY

QUINTESSENCE

Let us consider a d-dimensional static spherically sym-
metric metric surrounded by quintessence, which reads
[66]

ds2 = −f(r)dt2 + f(r)−1dr2 + r2dΩ2
d−2 , (1)

where Ω2
d−2 represents the metric of the (d − 2) unit-

sphere and the metric function is given by

f(r) =

[
1− 2M

rd−3
− C

r(d−1)wq+d−3

]
. (2)

The space-time depends on the dimension d, the
quintessence state parameter wq ≤ 0, the mass M and a
constant C. This geometry is the generalisation in higher
dimensions of the well-known Kiselev solution in 4 dimen-
sions (see [67–71] for some relevant studies related to it).
For instance, when wq = −1, the metric Eq. (1) becomes

ds2 = −
[
1− 2M

rd−3
− Cr2

]
dt2 +

[
1− 2M

rd−3
− Cr2

]−1
dr2 + r2dΩ2

d−2 , (3)

which reduces to the d-dimensional Schwarzschild de
Sitter black hole where C is the cosmological con-
stant. Moreover, the metric Eq. (1) reduces to
the d-dimensional Reissner-Nordström black hole if the

quintessence state parameter takes the following form

wq =
d− 3

d− 1
. (4)

In the following section, we will focus our study on the
construction of thin-shell wormholes in this spacetime.
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III. CONSTRUCTION OF THIN-SHELL
WORMHOLE AND THE GRAVITATIONAL

FIELD

We start the mathematical construction for our thin-
shell wormhole considering two identical copies of the
vacuum solution and removing from each copy the space-
time region given by

Ω± ≡ {r± ≤ a| a > rh} , (5)

where a is a radius constant grater than the event horizon
rh to avoid the presence of horizon and singularities for
the metric (1). The removal of the regions from each
spacetime gives two geodesically incomplete manifolds,
with the timelike hypersurfaces as boundaries given by

∂Ω± ≡ {r± = a| a > rh} . (6)

We obtain a geodesically complete manifold by identi-
fying the timelike hyperfurface ∂Ω+ = ∂Ω−, where two
regions are connected by a wormhole. The identified re-
gion ∂Ω is called the “throat of the wormhole” where the
exotic matter is concentrated. The induced metric on the
hypersurface ∂Ω takes the following form

ds2 = −dτ2 + a2(τ)dΩ2
d−2 , (7)

where τ is the proper time along the hypersurface ∂Ω and
a(τ) defines the radius of the throat as a function of the
proper time. The surface stress at the junction boundary
are determined using the Darmois-Israel formulation.

The Lanczos equation gives the intrinsic surface stress-
energy tensor Sij which reads,

Sij = − 1

8π

(
κij − δijκmm

)
, (8)

where the quantity κij = K+
ij − K

−
ij represents the dis-

continuity in the extrinsic curvature K±ij . Note that the
symbol − and + corresponds to the interior and exterior
spacetime respectively. The second fundamental form
the extrinsic curvature can be defined as follows

K±ij = −ην
(
∂2xν

∂ξi∂ξj
+ Γν±αβ

∂xα

∂ξi
∂xβ

∂ξj

)
, (9)

where ην represents the unit normal vector at the junc-
tion and ξi represents the intrinsic co-ordinates. At the
hypersurface ∂Ω, the parametric equation is given by
f
(
xµ(ξi)

)
= 0. By using this equation, we derive the

formula for the unit normal vector to the hypersurface
∂Ω, which is given by

nµ = ±
∣∣∣gαβ ∂f

∂xα
∂f

∂xβ

∣∣∣− 1
2 ∂f

∂xµ
, (10)

where the unitary condition nµn
µ = +1 holds and the

discontinuity of the extrinsic curvature κij can be writ-
ten in a simplified form due to spherical symmetry as

κij = diag
(
κττ , κ

θ1
θ1
, ......, κ

θd−2

θd−2

)
. Therefore, we can write

the surface-energy tensor as Sij = diag (−σ, P, ....., P ),
where σ is the surface energy density and P is the sur-
face pressure.
Now, by using the Lanczos equation we find that

σ(a) = − (d− 2)

4πa

√
f(a) + ȧ2 , (11)

and

P (a) = −d− 3

d− 2
σ +

f ′(a) + ä

8π
√
f(a) + ȧ2

, (12)

where primes and dots denote differentiation with respect
to a and τ respectively and the function f(a) is given in
Eq. (2). Here, the energy density σ and surface pressure
P obey the following conservation equation

d

dτ

(
σad−2

)
+ P

d

dτ

(
ad−2

)
= 0 . (13)

For a static configuration of radius a = a0, we have ȧ = 0
and ä = 0 so that, from Eqs. (11) and (12) we directly
find

σ(a0) = − (d− 2)

4πa0

√
f(a0) , (14)

and

P (a0) = −d− 3

d− 2
σ +

f ′(a0)

8π
√
f(a0)

. (15)

Let us now analyse the attraction and repulsive nature of
the wormhole on test particles. To do this, we calculate
the four-acceleration for the static wormhole (ȧ = 0),
which is written as

aµ = uµ;νu
ν , (16)

where the 4-velocity is uµ = dxµ

dτ = ( 1√
f(r)

, 0, 0, ....., 0).

The only non-zero component of the acceleration is given
by

ar = Γrtt

(
dt

dτ

)2

=
M(d− 3)

rd−2
+
C[(d− 1)wq + d− 3]

2r(d−1)wq+d−2
.

(17)
Let us now consider a test particle which moves in ra-
dial direction and initially it is at rest. The equation of
motion for this particle takes the following form

d2r

dτ2
= −Γrtt

(
dt

dτ

)2

= −ar , (18)

which gives the geodesic equation if ar = 0. From here
we can notice that the wormhole is attractive if ar > 0
and repulsive if ar < 0.
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IV. LINEARIZED STABILITY ANALYSIS

Equations of motion (11) and (12) can be rewritten in
the following form

ȧ2 − 16π2a2

(d− 2)2
σ2 = −1 +

2M

ad−3
+

C

a(d−1)wq+d−3
, (19)

σ̇ = −(d− 2)
ȧ

a
(σ + P ) . (20)

Now, if we integrate the energy conservation equation,
Eq. (13), we get

ln(a) = − 1

d− 2

∫
dσ

σ + P (σ)
, (21)

which can be formally inverted to provide σ = σ(a). To
find the stability conditions for our configuration, we con-

sider linear perturbations around a static solution with
radius a0 [15]. The surface energy density σ(a0) and the
surface pressure P (a0) for the static solution are explic-
itly given in Eqs. (14) and (15) respectively. Now, the
thin-shell equation of motion can be obtained by rewrit-
ing Eq. (19) as

ȧ+ V (a) = 0 , (22)

where the potential V (a) is defined as

V (a) = f(a)− 16π2a2

(d− 2)2
σ2 . (23)

Since we are linearising around the static solution a0, we
expand V (a) around a0 using Taylor series expansion up
to second order in powers of (a− a0), which provides us

V (a) = V (a0) + V ′(a0)(a− a0) +
1

2
V ′′(a0)(a− a0)2 +O

[
(a− a0)3

]
, (24)

where prime denotes derivatives with respect to a. The
first order derivative of V (a) is given by

V ′(a) = f ′(a)− 32π2

(d− 2)2
[σ + aσ′] aσ . (25)

Now, if we use Eq. (20), which is the conservation
equation of the surface stress energy tensor, the above
expression becomes

V ′(a) = f ′(a) +
32π2

(d− 2)2
a
[
(d− 3)σ2 + (d− 2)σP

]
.

(26)

For the second derivative of the potential, we define a
very useful parameter η(σ) = dp/dσ = P ′/σ′. Hence, the
second derivative of the potential can be written as

V ′′(a) = f ′′(a)− 32π2

(d− 2)2

{
[(d− 3)σ + (d− 2)P ]2 + (d− 2) (d− 3 + (d− 2)η)σ(σ + P )

}
. (27)

Since we are linearising around a = a0, we can now go
back to Eqs. (23) and (26) to substitute for a = a0 to find
that V (a0) = 0 and V ′(a0) = 0, respectively. Therefore,
the potential V (a) from Eq. (24) is reduced to

V (a) =
1

2
V ′′(a0)(a− a0)2 +O[(a− a0)3] , (28)

so that the equation of motion of the wormhole throat is

given by

ȧ2 = −1

2
V ′′(a0)(a− a0)2 +O[(a− a0)3] . (29)

Thus, the wormhole is stable if and only if V ′′(a0) > 0.
Hence, V (a0) has a local minimum at a0. To carry out
this analysis, we can study which conditions we need for
having stable wormholes. In our case, we find that this
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parameter needs to satisfy

η0 <
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(a0f ′0 − 2f0)
− d− 3

d− 2
, (30)

where all the quantities with a suffix 0 denote that they
are evaluated at a = a0.
Since we are interested in a more general scenario, we
have to take into account the relation between the ADM
mass M and the black hole mass parameter M in the

case of a d–dimensional spacetime. More specifically, in
the case of a spherical geometry (k = 1), we have the
following relation

M =
16π Γ(d−12 )

(d− 2)2π
d−1
2

M . (31)

Therefore, Eq. (30) can also be written as

η0 <
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2f0 + M(d−3)
ad−3
0

+
C[(d−1)wq+d−3]
a
(d−1)wq+d−3

0

)
− d− 3

d− 2
, if − 2f0 +

M(d− 3)

ad−30

+
C[(d− 1)wq + d− 3]

a
(d−1)wq+d−3
0

> 0 (32)

and

η0 >
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2f0 + M(d−3)
ad−3
0

+
C[(d−1)wq+d−3]
a
(d−1)wq+d−3

0

)
− d− 3

d− 2
, if −2f0 +

M(d− 3)

ad−30

+
C[(d− 1)wq + d− 3]

a
(d−1)wq+d−3
0

< 0 . (33)

These two above inequalities give us the condition where
the wormhole is stable or not depending on all the pa-
rameters of the space-time. Following Dias and Lemos
approach [59], we can write the general static met-
ric solution for a d-dimensional solution with different
(d − 2) geometric–topologies which are encoded by the
geometric-topological factor k. In that case, the function
f0 ≡ f(a0), given in Eq. (2) evaluated at a0 is given by

f(a0) = k − M
ad−30

− C

a
(d−1)wq+d−3
0

, (34)

where we have three special cases: k = 1 for spherical,
k = 0 for planar, and k = −1 for hyperbolic geometries.
Morover for f ′0 and f ′′0 we have

f ′(a0) =
M(d− 3)

ad−20

+
C[(d− 1)wq + d− 3]

a
(d−1)wq+d−2
0

, (35)

and

f ′′(a0) = −M(d− 3)(d− 2)

ad−10

− C[(d− 1)wq + d− 3][(d− 1)wq + d− 2]

a
(d−1)wq+d−1
0

. (36)

V. SPECIAL CASES AND NEW EXAMPLE

We now turn out our attention for some special cases
which were already studied by some authors. We will
see that from our general result, we can recover the same
stability conditions for a particular set of choices for the
parameters. Additionally, a new interesting example is
presented here.

A. Poisson–Visser, d = 4, k = 1, M 6= 0, C = 0 and
wq = 0

Let us start with the simplest wormhole stability solu-
tion, namely, the four-dimensional solution with spheri-
cal symmetry without charge and quintessence. In other
words by setting d = 4, k = 1, M 6= 0, C = 0 and
wq = 0 from Eq. (32) and (33) we find that the stability
conditions become

η0 <
−1 + 3M/a0 − 3M2/a20

2
(

1− 2M
a0

)(
1− 3M

a0

) , if 1− 3M

a0
> 0 (37)
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and

η0 >
−1 + 3M/a0 − 3M2/a20

2
(

1− 2M
a0

)(
1− 3M

a0

) , if 1− 3M

a0
< 0 . (38)

Note that in d = 4, we have used the fact that M =
2M since Γ(3/2) =

√
π/2. The above result first was

found by Poisson and Visser in [15].

B. Eiroa–Romero, d = 4, k = 1, M 6= 0, C 6= 0 and
wq = 1/3

Our solution can be extended to study the stability of
four-dimensional spherical symmetry charged thin-shell
wormhole, which corresponds to d = 4 and wq = 1/3.
From Eq. (32) and (33) it follows that this wormhole
will be stable if

η0 <
−1 + 3M/a0 − 3M2/a20 −MC/a30

2
(

1− 2M
a0
− C

a20

)(
1− 3M

a0
− 2C

a20

) , (39)

if

1− 3M

a0
− 2C

a20
> 0 ,

and

η0 >
−1 + 3M/a0 − 3M2/a20 −MC/a30

2
(

1− 2M
a0
− C

a20

)(
1− 3M

a0
− 2C

a20

) , (40)

if

1− 3M

a0
− 2C

a20
< 0 .

Furthermore, if we replace C = −Q2 in the above equa-
tions we recover the Reissner–Nordstrom TSW solution
reported by Eiroa and Romero in [17].

C. Lobo–Crawford, d = 4, k = 1, M 6= 0, C 6= 0 and
wq = −1

We will now show that from Eqs (32) and (33) one can
recover a spherically symmetric four-dimensional TSW
solution with a cosmological constant. This case can be
recoved by setting the quintessence parameter wq = −1
and d = 4. From Eqs (32) and (33) is not difficult to
show that if

η0 <
−1 + 3M/a0 − 3M2/a20 + 3CMa0

2
(

1− 3M
a0

)(
1− 2M

a0
− Ca20

) , if a0 > 3M

(41)
and

η0 >
−1 + 3M/a0 − 3M2/a20 + 3CMa0

2
(

1− 3M
a0

)(
1− 2M

a0
− Ca20

) , if a0 < 3M ,

(42)

the wormhole will be stable. Note that if we choose C =
Λ/3, these inequalities are reduced to the solution found
by Lobo and Crawford in [18].

D. Rahaman–Kalam–Chakraborty, d = d, k = 1,
M 6= 0 and wq = (d− 3)/(d− 1)

Further interesting generalizations can be recovered
if we consider a d-dimensional spacetime with spher-
ical geometry with the quintessence parameter being
wq = (d − 3)/(d − 1). Note that in this case we have
a charged d-dimensional TSW with spherical geometry.
Here we also need to write the relation between the
charge parameter Q and the ADM charge Q which is
given by

Q2 =
2

(d− 2)(d− 3)
Q2 . (43)

Moreover, by setting C = −Q2 and by using the gen-
eral conditions (32) and (33), it follows that the wormhole
will be stable if

η0 <
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2 + M(d−1)
ad−3
0

− 2Q2(d−2)
a
2(d−3)
0

)
− d− 3

d− 2
,

(44)
if

− 2 +
M(d− 1)

ad−30

− 2Q2(d− 2)

a
2(d−3)
0

) > 0 ,

and

η0 >
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2 + M(d−1)
ad−3
0

− 2Q2(d−2)
a
2(d−3)
0

)
− d− 3

d− 2
,

(45)
if

− 2 +
M(d− 1)

ad−30

− 2Q2(d− 2)

a
2(d−3)
0

) < 0 .

This solution in the literature was first studied by
Rahaman–Kalam–Chakraborty [60].

E. Dias–Lemos, d = d, k = 1, 0,−1, M 6= 0 and
wq = −1

Let us now recover the solution to a d-dimensional
TSW with a cosmological constant and vanishing charge,
i.e. Q = 0. This result can be found from Eqs. (32) and
(33) by setting the quintessence parameter wq = −1. Af-
ter some algebraic manipulation we find that the stability
conditions become

η0 <
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2k + M(d−1)
ad−3
0

)
− d− 3

d− 2
, (46)
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if

− 2k +
M(d− 1)

ad−30

> 0 ,

and

η0 >
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2k + M(d−1)
ad−3
0

)
− d− 3

d− 2
, (47)

if

− 2k +
M(d− 1)

ad−30

< 0 .

The d-dimensional TSW with a cosmological constant
and three different geometries encoded by the parameter
k was recently investigated by Dias and Lemos. If we let
wq = −1 and C = Λ/3, the function f0 = f(a0) can be
written as

f(a0) = k − M
ad−30

− Λa20
3

, (48)

which corresponds to Dias and Lemos solution found re-
cently in [59].

F. A new example, d = d, k = 1, 0,−1, M 6= 0 and
wq 6= 0

Finally we can now consider a more general scenario,
namely, a d-dimensional TSW wormhole surrounded by
quintessence wq 6= 0. This case has not been considered
yet in the literature. Note that since the energy density
ρq for quintessence should be positive and explicitly given
as [66]

ρq = −Cwq(d− 1)(d− 2)

4r(d−1)(wq+1)
, (49)

the quintessence parameter wq, must be negative, i.e.
wq ≤ 0. Hence, for this case, the stability conditions
Eqs (32) and (33) related to three different geometries
tells us that the TSW is stable when:

η0 <
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2k + M(d−1)
ad−3
0

+
C(d−1)(wq+1)

a
(d−1)wq+d−3

0

)
− d− 3

d− 2
, if − 2k +

M(d− 1)

ad−30

+
C(d− 1)(wq + 1)

a
(d−1)wq+d−3
0

> 0, (50)

and

η0 >
a20f
′2
0 − 2a20f

′′
0 f0

2(d− 2)f0(−2k + M(d−1)
ad−3
0

+
C(d−1)(wq+1)

a
(d−1)wq+d−3

0

)
− d− 3

d− 2
, if − 2k +

M(d− 1)

ad−30

+
C(d− 1)(wq + 1)

a
(d−1)wq+d−3
0

< 0 . (51)

For a useful information on the wormhole stability in
different geometries and different dimensions we show
graphically the wormhole stability in terms of the pa-
rameter η0 and a0, for different values of d, M, C and
wq.

In Fig. 1 we show the stability region for the spherical
geometry, i.e. k = 1. As we can see, in the first and
second plot there are two interesting intervals that are
worth of mentioning. The first interval is between the
left and the right asymptote where the region of stability
is located above the curve. The second interval is on the
right to the right asymptote with the region of stability
being located below the curve. In the third plot, there is
only one interval worth of mentioning with the region of
stability below the curve.

In Fig. 2 we show graphically the stability region for
the planar geometry, i.e. k = 0. There are two impor-
tant intervals for the first and second plot and only one
interval for the third plot. The corresponding region of
stability in the first case is above the curve, while in the
later case the region of stability is below the curve.

Finally, in Fig. 3 the stability region for the hyperbolic
geometry (k = −1) is depicted. From the first and second
plot we can easily observe that the regions of stability
are above (below) the curve in the first (second) interval.
Last but not least, we are left with only one interesting
interval with the region of stability below the curve in
the last plot. From those examples if follows that, the
stability domain of the HDTSW increases if we increase
the number of dimensions.
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FIG. 1: Stability regions of HDTSW for k = 1 and M = 10
in all cases. In the first case we have chosen d = 5, C = −0.5,
and wq = −0.5. In the second case d = 8, C = −0.5, and
wq = −0.6 while in the last plot we have chosen d = 24,
C = −0.5, and wq = −0.9. The stability region is denoted by
S.

FIG. 2: Stability regions of HDTSW for k = 0 and M = 10
in all cases. In the first case we have chosen d = 5, C = −0.7,
and wq = −0.4. In the second case d = 8, C = −0.3, and
wq = −0.9 while in the last plot we have chosen d = 24,
C = −0.5, and wq = −0.9. The stability region is denoted by
S.

VI. CONCLUSIONS

In this work we have used the cut-and-paste
method and the Darmois-Israel formalism to construct
a d-dimensional thin-shell wormhole surrounded by
quintessence. Taking into account the standard junction
conditions we have investigated a more general class of
stability conditions under radial perturbations preserv-



9

FIG. 3: Stability regions of HDTSW for k = −1 and M = 10
in all cases. In the first plot we have chosen d = 5, C = −0.3,
and wq = −0.8. In the second plot d = 9, C = −0.3, and
wq = −0.9 while in the third plot we have chosen d = 100,
C = −0.3, and wq = −0.9. The stability region is denoted by
S.

ing the spherically symmetry in three different geome-
tries and explore the stability regions in different dimen-
sions. In particular we investigated the wormhole sta-
bility regions for a spherical geometry, planar geometry,
and hyperbolic geometry. Finally we discuss the stabil-
ity regions in different dimensions d and investigate the
effects of different values of the parameters wq ≤ 0, M,
and C for the stability of the wormhole. For all three
different geometries it is shown that by increasing the
number of dimensions, increases the stability domain for
obtaining stable d–dimensional wormholes surrounded by
quintessence. In particular, for a given state parameter
wq ≤ 0 of the quintessence, we observe from Figures 1-3
that as the number of dimensions d increases, the gap be-
tween the asymptotes get shorter. The other peculiarity
of our d-dimensional wormhole solution, is the assump-
tion that our d-dimensional wormhole is surrounded by
the quintessence matter which is not only on the brane
but also in the bulk. This means that, essentially, we
have found a more general wormhole solution and stud-
ied the stability domain of our wormhole with the role
played by the quintessence which is also known as one of
the possible candidates of dark energy in cosmology.
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