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ABSTRACT 

Aims As a sine qua non for arterial wall physiology, local hemodynamic forces such as endothelial shear stress (ESS) 

may influence long-term vessel changes as bioabsorbable scaffolds dissolve. The aim of this study was to perform 

serial computational fluid dynamic (CFD) simulations to examine immediate and long-term haemodynamic and 

vascular changes following bioresorbable scaffold placement. 

Methods and results Coronary arterial models with long-term serial assessment (baseline and 5 years) were 

reconstructed through fusion of intravascular optical coherence tomography and angiography. Pulsatile non-

Newtonian CFD simulations were performed to calculate the ESS and relative blood viscosity. Time-averaged, 

systolic, and diastolic results were compared between follow-ups. Seven patients (seven lesions) were included in 

this analysis. A marked heterogeneity in ESS and localised regions of high blood viscosity were observed post-

implantation. Percent vessel area exposed to low averaged ESS (<1 Pa) significantly decreased over 5 years (15.92% 

vs. 4.99%, P < 0.0001) whereas moderate (1–7 Pa) and high ESS (>7 Pa) did not significantly change (moderate ESS: 

76.93% vs. 80.7%, P = 0.546; high ESS: 7.15% vs. 14.31%, P = 0.281), leading to higher ESS at follow-up. A positive 

correlation was observed between baseline ESS and change in lumen area at 5 years (P < 0.0001). Maximum blood 

viscosity significantly decreased over 5 years (4.30 ± 1.54 vs. 3.21± 0.57, P = 0.028). 

Conclusion Immediately after scaffold implantation, coronary arteries demonstrate an alternans of extremely low 

and high ESS values and localized areas of high blood viscosity. These initial local haemodynamic disturbances may 

trigger fibrin deposition and thrombosis. Also, low ESS can promote neointimal hyperplasia, but may also contribute 

to appropriate scaffold healing with normalisation of ESS and reduction in peak blood viscosity by 5 years.  
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Introduction 

The fundamental concept of a stent and its complications has not changed greatly since pioneering work in the early 

20th century.1 The technology underlying these devices, however, has undergone great and rapid advances that seem, 

perhaps, to be accelerating. 

Despite excellent clinical outcomes with current generation of metallic drug-eluting stents, their permanent nature 

remains a theoretical limitation. In that sense, the adoption of bioresorbable materials is one recent leap forward in 

stent technology. The ideal bioresorbable stent is meant to fulfil a temporary function as a vascular scaffold to aid 

vessel healing and stabilisation, and then disappear. 

The Absorb Bioresorbable Vascular Scaffold (BVS, Abbott Vascular, Santa Clara, CA, USA) has been the most implanted 

and studied bioresorbable scaffold. The longest-term clinical data currently available indicates 5-year outcomes similar 

to standard comparator metallic drug-eluting stents.2,3 Resorption of the Absorb may also be accompanied by a partial 

and gradual return of normal vasomotion, late lumen enlargement, and plaque stabilisation.4–8 However, recent 

evidence from larger trials shows that while rare, late thrombosis occurs more frequently with the Absorb scaffold.9–

11 There remain many unanswered questions regarding the mechanisms of late scaffold complications, but certain 

clues may lie in the dynamics of blood flow after scaffolding. 

Fluid shear stress exerted by blood flow directly regulates vascular physiology and pathology.12,13 Changes in arterial 

geometry induced by stent or scaffold placement can significantly change blood flow throughout the vessel,14,15 

thereby altering the macro-level shear stress distribution. Individual stent struts may themselves disturb flow at an 

even smaller scale near the endothelium,16–19 creating so-called micro-level disturbances. After implantation, such 

macro- and microlevel flow disturbances may have repercussions not only for the development of scaffold thrombosis 

and restenosis, but also for appropriate neointimal healing and vessel remodelling. 

The aim of this study was to perform serial high-fidelity computational fluid dynamic (CFD) simulations to examine 

immediate and long-term haemodynamic and vascular changes following bioresorbable scaffold placement. 

 

Methods 

Patient selection and study design 

Patients with serial imaging from the ABSORB Cohort B clinical trial were retrospectively identified for further 

computational analysis. The original study design and protocol have been previously described.20 Patients underwent 

serial invasive imaging with coronary angiography and optical coherence tomography (OCT) immediately after scaffold 

implantation and again at 5 years. 

Exclusion criteria were lack of two angiographic views separated by >25, excessive vessel foreshortening, suboptimal 

OCT images, and side branches >2 mm within the scaffold which prohibited 3D reconstruction. Angiography and OCT 

images from each time point were fused to reconstruct 3D models of the scaffolded artery at baseline and 5 years. 

Computational fluid dynamic analysis was then performed to calculate endothelial shear stress (ESS) and local blood 

viscosity at baseline and 5 years. 

Image acquisition and data analysis 

Optical coherence tomography is an intravascular imaging technique providing high-resolution (10–20 m) cross-

sectional images of coronary arteries and scaffolds.21 Optical coherence tomography was performed immediately after 

scaffold implantation and at 5 years in all treated coronary arteries using a frequency-domain OCT system (C7-XR or 

C8XR OCT Intravascular Imaging System; St. Jude Medical, St. Paul, MN, USA). All image acquisitions were performed 

using non-occlusive contrast flushing according to standard guidelines.21 Angiography was performed as previously 

described.20 

Three-dimensional arterial reconstruction 

For each time point, OCT and angiography were fused to reconstruct patient-specific 3D models of the scaffolded 

artery at baseline and 5 years (Figure 1).22 Briefly, dual plane end-diastolic angiographic images (orthogonal views >25 

difference) were used to extract the 3D luminal centreline (QAngio XA 3D, Medis Specials Bv, Netherlands). The 

radiopaque scaffold markers and side branches were used as landmarks to co-register angiography with OCT. The OCT 
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lumen and scaffold contours were semiautomatically detected (QCU-CMS v4.69, LKEB, Leiden University, Netherlands). 

The contours were placed onto the angiographic centreline using scaffold markers and vessel landmarks to correct the 

rotational and longitudinal orientation of the OCT frames (MATLAB R2015b, Mathworks Inc., Natick, MA, USA), and 

the baseline and 5-year scaffolded vessel surfaces were generated (Meshlab, Visual Computing Lab ISTI-CNR, Pisa, 

Italy).23 

Computational fluid dynamic simulation 

Each reconstruction was discretised into approximately 30 million tetrahedral elements using ICEM CFD v15.0 (ANSYS 

Inc., Canonsburg, PA, USA). Computational fluid dynamic analysis was accomplished through direct solution of the 

incompressible Navier–Stokes equations describing fluid motion (OpenFOAM-2.1.1, OpenCFD Ltd, ESI group, Bracknell, 

UK). A time-varying (pulsatile) parabolic velocity profile with a mean inlet flow of 1.3 cc/s was applied at the inlet. The 

arterial wall was considered rigid with a no-slip boundary and a non-specific distal vascular resistance was applied at 

the outlet. Blood density was assumed 1060 kg/m3 and haematocrit 45%. Non-Newtonian blood behaviour was 

modelled using the Quemada equation, in which viscosity varies depending on shear rate and haematocrit.24 

OpenFOAM was run on the Victorian Life Sciences Computation Initiative (VLSCI) supercomputer consisting of 1024 

IBM Blue Gene/Q CPUs at 1.6 GHz (IBM Research, Australia). 

Endothelial shear stress was calculated as the product of viscosity and velocity gradient (shear rate) at the wall. For 

quantitative calculations ESS was classified as low (<1 Pa), moderate (1–7 Pa), or high (>7 Pa) (see Supplementary 

material online, Methods).25–27 Percent lumen area exposed to low, moderate, and high ESS at systolic, diastolic, and 

timeaveraged flow was determined at baseline and 5 years. In order to assess the change in lumen dimensions, the 

baseline and 5-year arterial reconstructions were matched by using the scaffold markers and anatomical landmarks. 

The impact of baseline ESS on the change in lumen area was investigated. 

Due to its shear-thinning properties, blood exhibits higher viscosity at low shear rates and approaches a constant low 

viscosity at high shear rates. Computational fluid dynamic simulations using a Newtonian model of blood behaviour 

assume that shear rate is high enough that viscosity is constant (0.0035 Pa s). However, the non-Newtonian model 

used in this study allowed direct calculation of local blood viscosity,24 which was expressed as a ratio of non-Newtonian 

to constant Newtonian viscosity28,29 and henceforth referred to as relative viscosity. Maximum relative blood viscosity 

was determined at systolic, diastolic, and time-averaged flow at baseline and 5 years. 

 

Statistical analysis 

Continuous variables were reported as mean (standard deviation) if they followed a Gaussian distribution. Binary 

variables were reported as counts and percentages. Changes in ESS between baseline and 5 years were compared with 

a generalized linear mixed-effect model with a random intercept. To examine the association between baseline shear 

stress and changes in luminal area a one-level hierarchical linear model was used. No formal hypothesis testing was 

planned. A Wilcoxon rank sum test was used to evaluate the change in relative blood viscosity. All P-values were two-

sided. However, the P-values presented are exploratory analyses only, and should therefore be interpreted cautiously. 

A nonparametric Robust method (CLSI C28-A3) was used to calculate 95% confidence interval.30 Data analysis was 

performed using SPSS, version 24 (Chicago, IL, USA). 

 

Results 

Seven patients (seven lesions) fulfilled the study criteria and were included in the present analysis. The scaffold was 

implanted the left anterior descending coronary artery (5), left circumflex artery (1), and right coronary artery (1). 

Patient characteristics are demonstrated in Table 1. Procedural characteristics are shown in Table 2. None of the 

patients developed adverse clinical events including death, myocardial infarction, revascularisation, or scaffold 

thrombosis during 5 years of clinical observation (see Supplementary material online, Table S1). 

Since peak coronary flow occurs during diastole, the vessel was exposed to predominantly high ESS (Take home figure 

A and C) without evidence of micro-recirculation. During systole, a rapid drop in coronary flow results in exposure to 

very low ESS (Take home figure B and D) and, due to the steep negative flow gradient, unmasks micro-recirculation of 

blood between scaffold struts at baseline (Take home figure B1 and B2). By 5 years, ESS has homogenised to more 

physiological values and systolic micro-recirculation has dissipated (Take home figure D1 and D2). 
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Quantitative measurements demonstrate that although ESS distribution varied considerably through the cardiac cycle, 

the mean percent lumen area exposed to ESS <1 Pa significantly decreased between baseline and 5 years during 

diastolic, systolic, and timeaveraged conditions (diastole: 6.90 vs. 2.78%, P=0.008; systole: 53.31 vs. 38.37%, P= 0.042; 

time-averaged: 15.92 vs. 4.99%, P< 0.0001) (Table 3). Although individual cases demonstrated slightly different 

patterns of increases in moderate and high ESS (Figure 2) (see Supplementary material online, Table S2), overall mean 

vessel exposure to moderate and high ESS did not significantly change over 5 years in diastolic, systolic, or time-

averaged flow conditions (Table 3). 

Figure 3 represents the relationship between post-implantation ESS and the change in lumen area over 5 years. A 

positive association was observed (y= 0.32x–1.49; P< 0.0001), indicating that higher baseline ESS values after scaffold 

implantation were correlated with an increase in lumen area. A serial point-by-point analysis was also performed to 

investigate the change in lumen radius, and demonstrated a similar qualitative relationship to baseline ESS (Figure 4). 

High blood viscosity was apparent in two broadly distinctive regions: at the centre of the artery where shear rate is 

low but blood velocity is high, and at specific locations near the lumen surface where both shear rate and blood velocity 

are low. Notably, near-wall regions of high blood viscosity were observed in the vicinity of scaffold struts (Figure 5), 

corresponding to locations of microrecirculation and low ESS. 

Quantitative analysis of all seven cases demonstrated an approximately 35% higher time-averaged blood viscosity 

throughout the arteries than is conscribed by the Newtonian model. Although mean viscosity did not change, 

maximum relative viscosity significantly decreased over 5 years (systole: 8.84 vs. 5.33, P= 0.043; diastole: 4.46 vs. 3.18, 

P= 0.063; time-averaged: 4.30 vs. 3.21, P=0.028) (Table 4). Like ESS, viscosity also fluctuated considerably throughout 

the cardiac cycle, peaking in systole for all cases at both baseline and 5 years (see Supplementary material online, 

Table S3). Remarkably, in Cases 1, 5, and 7 the maximum relative viscosity approached a 10-fold increase in some 

locations at baseline. 

 

Discssion 

The high fidelity CFD simulations conducted in this study revealed that haemodynamics in scaffolded coronary arteries 

are marked by wide fluctuation in ESS throughout the cardiac cycle, resulting in transient micro-recirculation, and 

pockets of high blood viscosity in the scaffolded region that largely disappear as the scaffold dissolves. This process 

was accompanied by vessel exposure to more physiological levels of ESS, reduced peak blood viscosity, and late lumen 

enlargement over 5 years. 

Bioresorbable medical devices have gained exceptional attention over recent years but there remain many 

unanswered questions about how these devices perform over time. These questions have been particularly relevant 

with the Absorb coronary scaffold, which has been hampered by late scaffold thrombosis.2,10,11,31 The mechanisms are 

thought to involve late scaffold dismantling and inflammation,8,32 but other factors governing scaffold outcomes could 

include local blood flow dynamics. 

Fluid dynamic phenomena of blood flow directly regulate vascular biology and influence the development of 

atherosclerosis.12,13 Abnormally low and high ESS have been correlated with atherosclerotic plaque progression, 

vulnerability, and perhaps even disruption, platelet activation, and subsequent thrombosis.33–36 Similarly, changes in 

arterial geometry induced by stent or scaffold placement can also significantly alter blood flow and ESS distribution at 

the strut and vessel scale.37 Such post-intervention flow disturbances may have repercussions for the development of 

scaffold thrombosis and restenosis.15,18,38 

In order to gain new insights into local haemodynamics within scaffolded arteries, this study employed serial OCT 

imaging over 5 years as the basis for CFD analysis. Due to the use of pulsatile flow conditions and a non-Newtonian 

model of blood behaviour, these simulations are of unprecedented scope and detail. This methodology has allowed 

several key observations. 

First, higher ESS values immediately after scaffold implantation are significantly correlated with lumen enlargement 

by 5 years. Several intravascular ultrasound based studies in native arteries and OCT-based studies in scaffolded 

arteries suggest a similar relationship between ESS and subsequent vessel change.36,39–42 Whether this phenomenon 

is unique to polymeric bioresorbable devices is unknown, but the consistent upward shift in ESS values observed in 
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this study may continue to push the balance toward positive Glagovian remodelling and late lumen enlargement.8,43–

45 

Second, there is significant fluctuation in ESS and relative blood viscosity throughout the cardiac cycle, indicating that 

coronary arteries experience extreme absolute values and sudden shifts in local haemodynamics with each heartbeat. 

Exceptionally high ESS values identified in diastole are notable given the putative role of high ESS in platelet activation, 

plaque destabilisation, and perhaps even rupture.33,35,46 Conversely, the rapid drop in coronary flow at the onset of 

systole unmasks micro-recirculation of blood between scaffold struts, reflecting areas prone to momentary blood 

stagnation and high viscosity in every cardiac cycle. In fact, after scaffold implantation blood manifested up to a 10-

fold increase in relative viscosity around scaffold struts during systole. Some regions of high viscosity persisted even 

in diastole. 

Third, regardless of time point within the cardiac cycle, all cases demonstrated homogenisation of ESS over 5 years, 

with less exposure to atherogenic low ESS and increased exposure to moderate and high ESS which are generally 

thought to be more atheroprotective. Critically, this was accompanied by a significant reduction in maximum blood 

viscosity. Immediately after implantation, microrecirculation, low ESS, and high peak viscosity within the scaffolded 

region may contribute to early accumulation of fibrin, platelets, and other blood components just distal to each strut.47 

In a sense, the scaffold may act as a template for neointimal growth between struts as these aggregated materials 

organize. Once neointimal tissue has grown to cover the struts and the lumen surface becomes smooth, the alternans 

of high and low ESS dissipates, overall ESS increases, and peak viscosity is reduced. In such an ideal scenario there is 

no longer strong stimulus for thrombosis or neointimal hyperplasia. Remarkably, as bioresorbable devices dissolve, 

underlying arteries have demonstrated a partial and gradual return of normal arterial vasoreactivity and plaque 

stabilisation in addition to late lumen gain.4–7 We postulate that some of these observations may be related to the 

normalisation of haemodynamics after scaffold implantation. 

Although none of the patients in the current study developed adverse clinical events during 5 years of follow-up, our 

findings may add to previous work in explaining certain mechanisms of scaffold thrombosis and the potential 

mechanisms of long-term benefit. Factors associated with very late scaffold thrombosis include poor neointimal 

healing, uncovered struts, and persistent scaffold malapposition.32 In some cases, suboptimal local haemodynamics 

immediately after scaffold implantation may contribute to poor neointimal growth and persistently uncovered or 

malapposed struts.17 Such struts protruding into the lumen are exposed to high ESS, which is associated with platelet 

activation.46 Regions distal to protruding struts are prone to low ESS and high viscosity, where activated platelets can 

aggregate. 

Non-Newtonian simulations provide uniquely complementary haemodynamic data about blood viscosity. Blood is a 

non-Newtonian fluid with primarily shear-thinning properties: at low shear rates blood is thick, but at high shear rates 

it becomes thinner with viscosity approaching a constant. Although most arterial CFD simulations safely assume that 

blood behaves as a Newtonian fluid with a constant viscosity, under certain flow conditions the local shear rate can 

drop enough that the Newtonian assumption no longer holds.48–51 This appears to be the case in coronary arteries 

under pulsatile flow and harbouring curvatures and scaffolds: even after averaging viscosity throughout each entire 

simulated artery, relative blood viscosity was approximately 35% greater than the Newtonian model, a finding 

consistent with previous studies in unstented arteries.29,52–54 That we have demonstrated discrete and consistent 

increases in blood viscosity in patient-specific scaffolded coronary arteries suggests that the Newtonian assumption 

may not always be accurate in this setting. 

The ability to measure local blood viscosity in vivo has the potential to add an entirely new dimension to the study of 

local arterial haemodynamics. Although some clinical evidence points to a correlation between higher plasma viscosity 

and coronary disease,55 whether and how local blood viscosity relates to clinical outcomes will require much larger 

dedicated studies. Additionally, previous CFD studies suggest that neglecting non-Newtonian behaviours of blood may 

reduce the accuracy of ESS measurements.48–50 This may partially explain the persistent limitation of ESS to detect and 

predict progressive atherosclerosis.56 It is possible that in combination with traditional wall-based haemodynamic 

metrics, non-Newtonian simulations and viscosity calculations may improve the accuracy and specificity of CFD 

simulations by identifying areas at risk for platelet activation, blood stagnation, plaque growth, neointimal hyperplasia, 

and thrombosis. 
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Limitations 

This study has several limitations that must be acknowledged. First is the retrospective design, which means that OCT 

acquisition techniques to optimise arterial reconstruction were not specified in the original protocol. Second is the low 

number of cases studied. This was related to the low number of patients with serial OCT in the original study, but also 

to the absence of pre-definedOCT acquisition standards leading to several OCT studies that were suboptimal for 

arterial reconstruction. Due to our strict exclusion criteria, all such cases were excluded from CFD analysis, contributing 

to the low number of cases. Despite a small sample size, the overall consistency of our results suggests that the 

observations may indeed merit further investigation through dedicated pre-specified substudies of larger clinical 

device trials. Third, our analysis only included interval changes in lumen dimensions—it did not explicitly evaluate 

tissue characteristics. Quantitative OCT tissue characterisation is currently in development, and will provide further 

insights into the relationship between local haemodynamics and tissue changes in the future.57 Fourth, although 

differences in scaffold architecture, connector design, and strut geometry will alter the haemodynamic 

microenvironment, CFD principles are universal and remain operational in the analysis of other scaffold designs.58 

Using CFD, our group has investigated two other scaffold designs with different strut thicknesses, the Mirage 

Bioresorbable Microfiber Scaffold (125 mm) and the ArterioSorb scaffold (95 mm). In both preclinical and randomized 

clinical trials, we have demonstrated that the circular struts of the Mirage become better embedded such that the 

area of laminar flow disturbances and low ESS were reduced from 49.30% in Absorb to 24.48% in Mirage (P < 

0.0001).59–61 In addition, using pulsatile and non-Newtonian CFD, we have shown that the ArterioSorb scaffold exhibits 

major reductions in area of low ESS area compared to Absorb, and in fact shear stress assessment has been reported 

as ‘a method to differentiate bioresorbable scaffold platforms’.58 

 

Conclusion 

In conclusion, high fidelity pulsatile non-Newtonian CFD simulations reveal micro- and macro-level haemodynamics in 

scaffolded coronary arteries. Early haemodynamic disturbances induced after scaffold implantation may direct 

subsequent neointimal growth as the scaffold degrades, leading to more physiological ESS, reduced peak blood 

viscosity, and in some cases lumen enlargement. The ability to identify intravascular regions of high blood viscosity 

may have implications for further clinical characterisation of thrombosis, neointimal growth, and vessel healing. 
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Table 1 Baseline characteristics of the studied population (n=7, lesions=7) 

Age (years) 62 ± 9 

Male 4 (57) 

Hypertension 3 (43) 

Hypercholesterolaemia 5 (71) 

Diabetes mellitus 0 (0) 

Current smoking 1 (14) 

Prior percutaneous coronary intervention 2 (29) 

Prior myocardial infarction 2 (29) 

Stable angina 5 (71) 

Unstable angina 1 (14) 

Silent ischaemia 0 (0) 

Treated vessel  

Left anterior descending artery 5 (71) 

Left circumflex artery 1 (14) 

Right coronary artery 1 (14) 

Ramus intermedius 0 (0) 

Values are mean ± standard deviation or n (%) 

 

 

Table 2 Procedural characteristics 

 n = 7, lesions = 7 

ACC/AHA legion class  

A 0 (0) 

B1 5 (71) 

B2 2 (29) 

C 0 (0) 

Pre-dilatation 7/7 (100) 

Mean pre-dilatation pressure (atm) 11.77 ± 2.56 

Diameter of scaffolds (mm) 3.00 ± 0.0 

Expected scaffold diameter (mm) 3.26 ± 0.10 

Total length of study devices (mm) 18.0 ± 0.0 

Nominal scaffold area (mm2) 7.07 ± 0.0 

Expected scaffold area (mm2) 8.37 ± 0.53 

Mean deployment pressure (atm) 13.00 ± 3.01 

Post-dilatation 4/7 (57) 

Mean post-dilatation pressure (atm) 17.64 ± 5.28 

Procedural complications 0/7 (0) 

Clinical device success 7/7 (100) 

Clinical procedure sucess 7/7 (100) 

Values are mean ± standard deviation or n (%) 

ACC, American College of Cardiology; AHA, American Heart Association 
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Table 3 Pulsatility-dependent endothelial shear stress at baseline and 5 years, all cases combined 

 Systole Diastole Time-averaged 

Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value 

ESS < 1 53.31 38.37 0.042 6.9 2.78 0.008 15.92 4.99 <0.0001 

 (14.23 to 102.61) (-24.11 to 99.05) (-5.02 to 17.74) (-10.72 to 12.83) (1.06 to 27.89) (-10.42 to 18.16) 

1 < ESS < 7 46.23 58.98 0.067 68.79 61.28 0.434 76.93 80.7 0.546 

 (-0.88 to 84.10) (6.01 to 116.29) (36.82 to 91.75) (1.66 to 122.01) (58.67 to 94.70) (46.40 to 123.14) 

ESS > 7 0.46 2.65 NS 24.31 35.94 0.218 7.15 14.31 0.281 

 (-1.65 to 2.03) (0 to 9.89) (-6.06 to 58.17) (-30.82 to 102.02) (-8.16 to 20.21) (-31.11 to 49.68) 

Values are expressed as percent lumen area exposed to low, moderate, and high ESS. 

CI, confidence interval; ESS, endothelial shear stress; NS, not significant. 

 

 

Table 4 Local blood viscosity at baseline and 5 years, all cases combined 

 Systole Diastole Time-averaged 

Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value Baseline 

(95% CI) 

5 years 

(95% CI) 

P-value 

Maximum 

viscosity 

8.84 ± 1.79 

(4.01 to 13.70) 

5.33 ± 3.63 

(-5.31 to 13.25) 

0.043 4.46 ± 1.50 

(0.23 to 7.88) 

3.18 ± 0.90 

(0.58 to 5.52) 

0.063 4.30 ± 1.54 

(-0.08 to 7.82) 

3.21 ± 0.57 

(1.51 to 4.84) 

0.028 

Relative viscosity is expressed as a ratio of non-Newtonian viscosity to the constant Newtonian viscosity (0.0035 Pa s). Maximum viscosity values are presented as relative 

viscosity± standard deviation. 

CI, confidence interval; Pa, pascal. 
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Figure 2 Histogram demonstrating percent of the lumen area exposed to various levels of endothelial shear stress at 

baseline and 5 years for each case. ESS, endothelial shear stress. 

 

 
Figure 1 Three-dimensional arterial models were reconstructed from the fusion of angiography and optical 
coherence tomography. (A, E) Angiography was used to extract the vessel centreline in the scaffolded segment 
(between white lines). (B, C, F, G) Optical coherence tomography images were used to generate the detailed lumen 
and scaffold surface. Representative optical coherence tomography images show the same locations at baseline 
and 5 years (green and orange arrows). (D, H) Computational fluid dynamic simulations were performed to calculate 
endothelial shear stress and local blood viscosity. ESS, endothelial shear stress. 
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Figure 3 Scatterplot of baseline endothelial shear stress vs. the interval change in lumen area over 5 years for all cases 

combined, coloured by the relative density of data points (yellow indicates high density, blue indicates low density). 

Baseline and 5-year arterial reconstructions were precisely aligned and compared on a frameby-frame basis. Higher 

baseline endothelial shear stress values are correlated with an increase in lumen area over 5 years. ESS, endothelial 

shear stress. 

 

 

Figure 4 After optimal alignment, baseline and 5-year arterial reconstructions were compared on a point-by-point 

basis. A scatterplot of baseline endothelial shear stress vs. the interval change in lumen radius over 5 years from a 

single representative case, coloured by density of data points (yellow indicates high density; blue indicates low density). 

Qualitatively, higher baseline endothelial shear stress values are correlated with an increase in lumen radius at that 

point over 5 years. ESS, endothelial shear stress. 
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Figure 5 (A, B) Time-averaged endothelial shear stress within the scaffolded segment. (C, D) Longitudinal cut-plane 

view of the scaffolded segment, with volume-rendered near-wall regions of high blood viscosity. The lumen surface is 

solid white in colour. Regions of red indicate relative viscosity >1.4. (C) At baseline, regions of high viscosity localise to 

the inter-strut region and the distal segment of the curved artery. (C1) A closer view shows that after implantation, 

high viscosity may extend over struts and further into the lumen (white arrowheads). (D, D1) By 5 years, a region of 

high viscosity persists at the distal curvature, however, the inter-strut regions of high viscosity have largely 

disappeared. 
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Take home figure Pulsatile computational fluid dynamic simulation provides detailed local haemodynamics in diastole 

and systole. (A, B) At baseline, the vessel has a corrugated appearance arising from high endothelial shear stress on 

top of scaffold struts and low endothelial shear stress in between. (C, D) At 5 years, only broad swaths of low,moderate, 

and high endothelial shear stress remain. (B1, D1) Cut-plane views of the area within the dashed white box in B and D, 

respectively, demonstrate laminar flow at the centre of the artery but micro-recirculation near the wall. By 5 years 

systolic micro-recirculation has been eliminated. (B2, D2) Enlarged view of area within the dashed white box in B1 and 

D1, respectively, show that micro-recirculation occurs only at baseline between scaffold struts. ESS, endothelial shear 

stress. 
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Supplementary material 

 

Methods 

Selection of ESS thresholds 

Since a normal range of ESS values are exceedingly difficult to measure directly in vivo, there are no 

definitively established thresholds for “low” and “high” ESS. However, estimates calculated from 

experimental data suggest a normal range between 1-7 Pa, and perhaps a great deal higher in complex 

geometries. Similarly, ESS values below 0.5-1 Pa seem to be associated with endothelial dysfunction. To our 

knowledge, there is no such empirically-derived threshold for what is considered high ESS. Therefore, with 

the understanding that these are somewhat arbitrary thresholds, ESS was classified as low (<1 Pa), moderate 

(1-7 Pa), or high (>7 Pa). 

 

Results 

Changes in ESS over five years in individual cases 

During diastole, all cases showed a decrease in exposure to low ESS over five years, which 

was balanced by increases in either moderate or high ESS, and in some cases both. Whereas Cases 1 

and 2 demonstrated increased exposure to moderate ESS, Cases 3-7 demonstrated greater increases 

in high ESS (Online Table 2). This accounted for the mean increase in diastolic exposure to high 

ESS. In systole, Cases 1 and 2 demonstrated a very slight increase in exposure to low ESS but cases 

3-7 consistently demonstrated a decrease in exposure to low ESS that, except for Case 6, was mainly 

accounted for by increases in moderate ESS. Time averaged results largely reflect the systolic and 

diastolic ESS patterns: every case demonstrated a decrease in exposure to ESS<1 Pa, with a 

concomitant increase in moderate and/or high ESS. Again, Cases 1 and 2 showed large increases in 

exposure to moderate ESS, whereas 3-7 demonstrated greater increases in exposure to high ESS. 
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Supplementary Table 1: Five-year clinical outcomes  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

 N=7, lesions=7 

All deaths 0 (0%) 

Cardiac deaths 0 (0%) 

Myocardial infarction per protocol 0 (0%) 

Target vessel myocardial infarction 0 (0%) 

Non-target vessel myocardial infarction 0 (0%) 

All target-lesion revascularisation 0 (0%) 

All target-vessel revascularisation 0 (0%) 

Non-target-vessel revascularisation  0 (0%) 

All revascularisation 0 (0%) 

Definite scaffold or stent thrombosis 0 (0%) 

Definite or probable scaffold or stent thrombosis 0 (0%) 
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Supplementary Table 2: Pulsatility-dependent ESS at baseline and five-years, each case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Values are expressed as percent of lumen area exposed to low, moderate, and high ESS 

 

  

Case ESS (Pa) 
Systole Diastole Time-averaged 

Baseline 5 Years Baseline 5 Years Baseline 5 Years 

1 

<1 70.95 72.88 11.02 2.91 26.34 10.01 

1<ESS<7 28.81 27.12 70.02 87.71 69.18 89.42 

>7 0.24 0 18.96 9.38 4.48 0.57 

2 

<1 60.35 61.52 8.23 0.3 17.4 1.32 

1<ESS<7 39.65 38.48 63.85 83.16 78 98.02 

>7 0 0 27.92 16.54 4.6 0.66 

3 

<1 55.06 17.29 3.04 0.51 10.08 0.79 

1<ESS<7 44.94 72.82 78.47 25.79 87.38 53.07 

>7 0 9.89 18.49 73.7 2.54 46.14 

4 

<1 53.94 35.2 5.27 2.84 15.74 7.22 

1<ESS<7 45.37 64.66 61.15 50.27 70.17 75.06 

>7 0.69 0.14 33.58 46.89 14.09 17.72 

5 

<1 60.65 22.91 3.12 0.02 14.4 0.38 

1<ESS<7 39.28 77.09 63.73 47.12 75.18 83.81 

>7 0.07 0 33.15 52.86 10.42 15.81 

6 

<1 15.61 13.08 13.07 12.09 14.34 12.48 

1<ESS<7 82.42 78.38 83.94 76.47 83.17 77.22 

>7 1.97 8.54 2.99 11.44 2.49 10.29 

7 

<1 56.59 45.71 4.53 0.79 13.15 2.73 

1<ESS<7 43.15 54.29 60.38 58.42 75.45 88.32 

>7 0.26 0 35.09 40.79 11.4 8.95 
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Supplementary Table 3: Relative viscosity at baseline and 5 years, each case 

 

 

Relative viscosity is expressed as a ratio of non-Newtonian viscosity to the constant Newtonian viscosity (0.0035 Pa 

s). Pa, pascal 

 

 

 

 Baseline  5 Years 

Case Mean Median Min Max St Dev  Mean Median Min Max St Dev 

1            

Time-averaged 1.390 1.369 1.224 7.292 0.105  1.418 1.386 1.23

7 

4.041 0.152 

Diastole 1.330 1.318 1.219 3.990 0.067  1.369 1.332 1.22

8 

4.444 0.163 

Systole 1.503 1.447 1.232 10.890 0.214  1.516 1.472 1.25

0 

13.460 0.186 

2            

Time-averaged 1.365 1.347 1.222 4.785 0.082  1.372 1.362 1.23

6 

3.455 0.067 

Diastole 1.317 1.306 1.217 6.310 0.062  1.332 1.313 1.22

8 

3.111 0.074 

Systole 1.460 1.415 1.229 7.960 0.169  1.454 1.434 1.24

9 

3.556 0.090 

3            

Time-averaged 1.364 1.352 1.217 2.364 0.060  1.331 1.314 1.22

6 

2.557 0.076 

Diastole 1.318 1.310 1.213 2.156 0.044  1.305 1.284 1.21

7 

2.423 0.076 

Systole 1.449 1.423 1.223 7.033 0.120  1.381 1.363 1.23

9 

4.325 0.097 

4            

Time-averaged 1.359 1.337 1.219 4.184 0.084  1.360 1.338 1.23

4 

2.969 0.082 

Diastole 1.311 1.299 1.215 4.089 0.053  1.326 1.302 1.22

7 

2.965 0.070 

Systole 1.449 1.401 1.226 8.892 0.159  1.426 1.396 1.24

5 

3.610 0.112 

5            

Time-averaged 1.387 1.365 1.218 3.655 0.096  1.346 1.333 1.23

2 

2.884 0.067 

Diastole 1.325 1.313 1.214 3.749 0.065  1.311 1.296 1.22

4 

2.556 0.058 

Systole 1.524 1.451 1.224 10.770 0.241  1.408 1.390 1.24

2 

3.150 0.085 

6            

Time-averaged 1.363 1.347 1.221 4.392 0.070  1.349 1.325 1.22

4 

3.846 0.085 

Diastole 1.360 1.345 1.220 6.449 0.069  1.348 1.323 1.22

4 

4.440 0.085 

Systole 1.366 1.351 1.221 6.387 0.071  1.354 1.326 1.22

4 

4.749 0.088 

7            

Time-averaged 1.361 1.341 1.220 3.417 0.076  1.363 1.345 1.23

4 

2.710 0.075 

Diastole 1.314 1.0300 1.215 4.475 0.058  1.326 1.305 1.22

7 

2.350 0.073 

Systole 1.519 1.452 1.230 9.971 0.205  1.439 1.408 1.24

5 

4.428 0.118 

All cases            

Time-averaged 1.370 1.351 1.220 4.298 0.082  1.363 1.343 1.23

2 

3.209 0.086 

Diastole 1.325 1.313 1.216 4.460 0.060  1.331 1.308 1.22

5 

3.184 0.085 

Systole 1.467 1.420 1.226 8.843 0.168  1.425 1.399 1.24

2 

5.325 0.111 


