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Abstract

Mutations are the proximal causes of cancer and of drug resistance. Better under-
standing the causation of mutations before and during cancer can open up avenues
for improved cancer prevention and treatment. Early mutations may be of particular

interest for therapeutic targeting and early detection.

In Chapter 2, I use a mathematical model of breast cancer development to
assess the hypothesis that varying numbers of progenitor cells causes a slow-down
in mutation accumulation. In Chapter 3, I present an adapted method to time the
accumulation of copy number changes using sequencing data, and an application
of this method in colorectal cancer. This application supports the hypothesis of a
catastrophic process where multiple copy number alterations develop at the same

time in colorectal cancer.

In Chapter 4, I present evidence that a mutational process linked to defects in
the POLE gene causes key driver mutations in colorectal and endometrial cancer.
Based on this evidence and other analyses I argue that POLE mutations are very

early events in colorectal and endometrial cancer.

In Chapter 5, I build on the ideas presented in Chapter 4 to assess the causa-
tion of driver mutations by mutational processes in a pan-cancer analysis. These
results suggest causal explanations for key driver mutations in terms of mutational
processes, and shed light on the important underlying biology of selection of driver

mutations.
In whole my work expands our knowledge of the effects of mutational pro-
cesses on cancer mutations and the timing of these mutations, indicates research

strategies for novel approaches to cancer prevention and treatment, and informs our
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understanding of the biological context of cancer evolution.



Impact Statement

In this thesis I present several mathematical modelling-based analyses that investi-
gate the causation and timing of mutations, and the cellular dynamics of tumours.

The key findings of the research include:

(1) Evidence that copy number alterations (CNAs) often occur in a punctuated
fashion, close in time to the last common ancestor of all tumour cells, in colorectal
cancers.

(i1) Evidence that pathogenic mutations in the POLE gene are early events in the
colorectal and endometrial cancers in which these mutations occur.

(ii1) Suggestive evidence of causal relationships between mutational processes and
driver mutations.

(iv) Evidence for differences in selection between different mutations (amino acid

changes) in the same driver gene and related driver genes.

There are several ways in which the work presented in this thesis could have a

beneficial impact:

My findings on mutation timing have potential implications for tumour surveil-
lance. I argue that POLE mutations are early events in colorectal and endometrial
cancers in which they occur somatically. CNAs, by contrast, appear to often occur
in a cluster of late events (close to the last common ancestor of cancer cells) in
colorectal cancer. The early occurrence of POLE mutations make them good can-
didates for surveillance programs, albeit the relatively small proportion of tumours

in which these mutations are found must be taken into account. In terms of CNA
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mutations, my results suggest that there may be limited scope to assess progres-
sion towards colorectal cancer in terms of CNA accumulation, since the window of
time before the last clonal expansion during which these changes are detectable is
relatively narrow.

The results presented here also point to possible mechanisms of mutation cau-
sation that could be of relevance for cancer prevention. The results in Chapters 4
and 5 identify a key role for potentially modifiable alterations to the mutation rate
in accumulation of driver mutations. Whereas, the results of Chapter 3 support the
hypothesis that WGD events play an important role in the aetiology of colorectal
cancer, and motivate further research into the mechanisms of this type of change.

The differential selection results presented here are of interest for our wider
understanding of cancer evolution. These results challenge the prevailing thinking
on driver mutations and passenger mutations by demonstrating a spectrum of selec-
tive effects between driver mutations. Many previous studies have assumed a fixed
selective impact among drivers [Beerenwinkel et al., 2007, Waclaw et al., 2015,
McFarland et al., 2014]. Some studies have allowed for a distribution of effects,
but have relied on indirect estimates for parameter estimation [Foo et al., 2015].
My results argue in favour of incorporating such distributions in future studies, and
also point to possible parameterisations. Thus, these findings have the potential to
impact discourse and thinking in the cancer research field, to promote future dis-
coveries.

In summary, the results presented in this thesis have the potential to impact
tumour surveillance and prevention, and could also impact our wider understanding
of cancer evolution. In total, the work provides a contribution to the growing body

of work on the forces that govern the course of tumour evolution.
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Chapter 1

Introduction

1.1 Précis

Mutations play a causal role in cancer initiation and progression. Mutations arise
due to mutation-causing processes (mutation processes or mutational processes) in
somatic tissues and change in frequency in the population due to natural selection
and drift. Improved understanding of these mutation processes is therefore of inter-
est for prevention, early detection, and treatment of cancer. In addition, refined un-
derstanding of mutation causation is important to define a null model against which
it is possible to identify those mutations that are more frequent than expected in
cancer genomes, and are subject to selection; a task of central importance to cancer
research. The lack of data following the evolution of individual patients over time
presents a major challenge for identification of mutation processes. Mathematical
modelling can be a useful toolset to recover information on the causes of mutation
in data that comes from a single point in time. Here, I present several analyses
that aim to infer mutation-causing processes from molecular data that represents a
snapshot in time. In the final chapter, I will present an application of a model of
mutation-causing processes that aims to infer the strength of selection experienced
by individual mutations. Overall, I aim to contribute to the expanding literature on
the operation of mutation-causing processes in cancer and the selective impact of

individual mutations.
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1.2 Motivation

Genetic mutations are proximal causes of cancer inititiation [Lawrence et al., 2014,
Vogelstein et al., 2013], and play an important role in resistance to targeted ther-
apy [Chong and Janne, 2013, Weisberg et al., 2007]. In addition, somatic mutations
can lead to the recognition of tumours by the immune system [Brown et al., 2014],
and this recognition can be harnessed for therapy [McGranahan et al., 2016]. Al-
beit, the identity of the mutations that play a causal role in disease is a mat-
ter of long-standing research and the subject of ongoing debate [Cooper, 1982,
Lawrence et al., 2014, Martincorena et al., 2017]. Mutations arise in human tissues
at varying rates, their survival and expansion depends on natural selection and drift,

both of which relate to population structure.

As aresult, understanding the causation and timing of mutations during cancer
evolution is important for several reasons. First, due to the causal role of mutation in
disease progression, in a straightforward sense this understanding is important for
cancer prevention and treatment. Indeed, many existing cancer prevention strate-
gies are based on removal of mutation-causing processes that have already been
identified, including strategies to reduce ultra-violet, and tobacco exposure. By the
same token understanding of mutation-causing processes and how they impact the
accumulation of mutations in the evolving tumour population could enable better
prognostication. In many cases the mutation processes present in cancer genomes
are measurable [Alexandrov et al., 2013a], so in theory it may be possible to predict

evolutionary trajectories.

Secondly, there is a particular rationale for identifying early mutation-causing
processes and mutations [Loeb, 2011]: In a straightforward sense early mutations
have the most relevance for early detection. In addition, mutations that occur before
the last common ancestor of all tumour cells (LCA) are expected to be present
in every tumour cell (clonal) and can consequently be targeted in every tumour
cell by a therapy. Finally, some researchers have argued that oncogene addiction
is most likely for early mutations [Cristea et al., 2017]. Oncogene addiction is a

phenomenon where tumour cells, but not healthy cells, become dependent on the
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presence of a mutation for survival [Weinstein, 2002].

In addition, accurate understanding of muation-causing processes is key
to determining the selective impacts of individual mutations. Multiple stud-
ies (reviewed below) have aimed to identify genes under selection by finding
genes that are mutated more (or less) frequently in tumours than would be ex-
pected based on underlying mutation rates [Greenman et al., 2007, Kan et al., 2010,
Martincorena et al., 2017]. The conclusions of these studies have been shown to be
sensitive to the underlying model of mutation rate [Lawrence et al., 2013], and have
generally developed in step with improved understanding of mutation-causing pro-
cesses (see below). Further improvements in the understanding of mutation-causing

processes could continue to drive these efforts forward.

Identifying the role played by individual mutations in disease can help to
design treatments. The EGFR gene is a case in point. Multiple lines of evi-
dence, including frequent mutations, supported a causal role for this gene in disease
[Dowell and Minna, 2006]. This lead to the development of treatments targeting the
protein encoded by this gene, including Erlotinib, which interferes with the capacity
of the EGFR-coded protein to propagate signalling cascades via phosphorylation
[Dowell and Minna, 2006, Schettino et al., 2008]. Although resistance remains a
major problem, such therapies have improved survival time in non-small cell lung
cancer [Dowell and Minna, 2006]. Treatments targeting a fusion mutation involv-
ing the genes BCR and ABL provide another example in chronic myeloid leukemia
[Mitelman et al., 2007, Quintas-Cardama et al., 2009]. Thus, mutations that play a

causal role in disease can provide good treatment targets.

A major challenge for the identification of mutation processes, and indeed in
cancer research more broadly, is that the process of cancer development in humans
cannot usually be directly observed. By necessity, the molecular data that is avail-
able to cancer researchers represents a single snapshot in time at the point when
the tumour was removed. There are some exceptions in the case of blood cancers
[da Silva-Coelho et al., 2017], and promising technological advances suggest that

this may not always be the case for solid tumours; recent research has demonstrated
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that tumour DNA is detectable in the blood from the earliest stages of tumorigenesis
and tumour relapse [Abbosh et al., 2017, Cohen et al., 2018]. At present, though,

single time-point data remains a major challenge for most tumour types.

At that single timepoint, there has recently been a rapid expansion in the
amount of data available. Of note, since 2005 the Cancer Genome Atlas (TCGA)
study generated publicly available whole exome sequencing (WXS) data for over
11,000 patients across 21 primary cancer sites (https://portal.gdc.cancer.gov). The
PanCancer Analysis of Whole Genome (PCAWG) study that is currently in progress
promises to generate a similarly rich public resource of tumour whole genome se-

quencing (WGS) data.

There is a precedent for mathematical modelling approaches to these questions
(which I discuss). However, there are two, informative, reasons why they are not
more common. First, the complexity of the process of mutation accumulation and
subsequent DNA sequencing means that mathematical models of mutation accumu-
lation often have multiple free parameters. This has historically been the case for
mathematical models of cancer development. A case in point is the seminal 1954
study by Armitage and Doll [Armitage and Doll, 1954] that provided key evidence
that cancer initiation is a multi-step process. While the study is rightly regarded as
one of the key contributions of mathematical modelling to cancer research, the con-
clusions on the specific number of mutations required for cancer have been ques-
tioned by later research — it has become clear that changes to the model to take
into account the impact of clonal expansions can greatly effect the estimation of
the number of steps required for cancer [Moolgavkar, 2004]. This exemplifies the
fact that the findings from mathematical modelling studies are typically subject to

caveats, and progress can be incremental.

Secondly, this approach is mutli-disciplinary. My approach requires applica-
tions of mathematical techniques to biological content (including formalisation of
biological concepts and synthesis of diverse areas of biological theory). This re-
quires some appreciation of both the mathematics and the biology in the researcher,

in addition to close collaboration between genuine subject area experts. As a result,
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the pool of researchers and groups with appropriate interests and backgrounds is
relatively limited.

Below, I review the literature on causes and timing of mutations in cancer. |
first review the literature on mutation-causing processes. I then turn to the literature
on the inference of selection, which often relies on modelling of mutation processes.
Finally, I review the literature on the impact of varying mutation rates on outcomes

in cancer.

1.3 Identification and timing of mutator processes:

Theory

The question of whether mutator phenotypes (defined as an increased cell-intrinsic
mutation rates compared to non-cancerous cells) are common in cancer is a matter
of longstanding debate. Two types of argument have been made in favour of preva-
lent mutator phenotypes, by Lawrence Loeb and others. First, it has been argued
that increased mutation rates are necessary to explain disordered genomes found
in cancer cells, and the high incidence levels of cancer [Loeb, 2001] (necessity ar-
guments). The second argument is based on two observations. First, that there are
numerous genetically-encoded cellular processes involved in the faithful replication
of DNA and the repair of insults to DNA [Loeb, 2011]. Secondly, that cancer initi-
ation requires the accumulation of multiple genetic mutations that occur slowly in
the absence of a mutator phenotype. The argument claims that, as a result, mutator
mutations and likely to be common during the process of carcinogenesis, leading
to mutator phenotypes in the resulting cancers [Christians et al., 1995, Loeb, 2011]
(efficiency arguments).

Historically necessity arguments for a mutator phenotype by Loeb and col-
leagues have relied on the need for more than two rate-limiting steps in carcinogen-
esis [Loeb, 1991], and the possibility that even six or 12 mutations are required for
carcinogenesis. [Loeb, 2001, Armitage and Doll, 1954].

Theoretical models [Moolgavkar and Knudson, 1981] and novel data-driven

approaches [Tomasetti et al., 2015] have challenged traditional views that a large
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number of mutations are required for cancer development — the latter study sug-
gested that only three driver mutations are required for the development of lung
cancer and colon cancer. In addition, studies that consider the effects of clonal ex-
pansion have predicted faster rates of mutation accumulation under normal mutation
rates, and concluded that mutator phenotypes are unlikely to be necessary to explain

mutation and incidence rates [Beerenwinkel et al., 2007, Tomlinson et al., 1996].

However, none of these considerations are definitive. The Tomasetti study
was restricted to colon cancer and lung cancer, and the length of routes to cancer
across all cancer types is not known. Regarding the effects of clonal expansions -
[Beerenwinkel et al., 2007] finds that cancers can develop within a human lifespan
under a normal mutation rate assuming that drivers confer a selective advantage of
1%. However, the study assumes a well-mixed population in which the effects of

selection could be overstated.

It is likely that the necessity or not of a mutator will depend on the balance
between the length of routes to cancer (i.e. the number of causal mutations required
and the probability of these mutations), and the efficacy of selection to accelerate

mutagenesis, and there is still a long way to go to understand that balance.

There is a related body of literature evaluating efficiency arguments, describ-
ing whether faithful DNA replication should be expected to fail en route to cancer,
given its complexity, and in light of the number of mutations required for cancer,
and at what time during carcinogenesis we should expect these failures to occur. An
important paper in the field investigated the required effect size of a mutator pheno-
type that would lead to the expectation of seeing mutator phenotypes in over half of
cancers [Beckman and Loeb, 2006]. The study found that the required effect size
varied over 1,000-fold depending on the number of mutations required for cancer,
the number of mutator loci and the mutation rate. The same study found that if

mutator phenotypes emerge, then they are more likely to be early events.

A model that took into account both clonal expansion and the effects of dele-
terious mutations [Datta et al., 2013] also found a wide range of predictions regard-

ing the likelihood of a mutator phenotype emerging, with the probability of mutator
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phenotypes varying between zero and one depending on the probability of mutator
mutations. Interestingly this study predicted that mutator phenotypes were more
likely to occur under intermediate selection for drivers, than under strong or weak

selection regimes.

Ian Tomlinson made the intriguing prediction, that although mutator pheno-
types were predicted to be early events if they occurred, that they are more likely
to occur in later onset cancers [Tomlinson et al., 1996], due to the extra steps re-
quired for these cancers to develop. In a model that allows for back-mutation Ko-
marova et al. recently predicted that when the selective effects of drivers muta-
tions are in balance with the potential effects of deleterious mutations, then mutator
phenotypes can emerge early in cancer development and later revert to stability

[Asatryan and Komarova, 2016]

The impact of ‘tumour suppressor genes’ (TSGs) which may require two hits
before conferring a selective advantage has been studied in detail by Franziska Mi-
chor and colleagues. These studies generally focus on chromosomal instability
(CIN) as opposed to instability at the level of point mutations, since classical TSGs
are thought to be inactivated by chromosomal mutations. A study by Franziska
Michor found that the requirement to inactivate a tumour suppressor gene en route
to cancer meant that CIN is likely to occur early even if only one or a few CIN-
conferring mutations are possible, given a fixed cell population size [Michor, 2005].
The same study found that the requirement for two TSGs to be inactivated implies
CIN is likely to occur early even if the mutations that lead to CIN come at a selec-
tive cost. A later study, which included a growing population of cells found that the
tendency of clones with CIN to accumulate deleterious mutations that could slow
their growth had little effect on the prediction that these mutations would be early
in the context of tumour suppressor genes [Nowak et al., 2006]. These results sug-
gest that tumour suppressor genes increases the likelihood of early instability during
the develop of cancer. However, it is unclear how these results are affected by the
complicating factors of multiple possible mutational paths to cancer, some of which

may not involve tumour suppressor genes.
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These modelling results illustrate the complexity of the evolutionary setting in
which cancer develops, often confounding firm predictions from theory. However,
on a more optimistic note, they also illustrate the unexpected dynamics that can
arise in this complex setting, motivating further research, and potential therapeutic

targets.

1.4 Identification and timing of mutation processes:

Data

To discuss the literature on mutation-causing processes (mutation processes) it is
useful to distinguish two major classes of mutation. Single nucleotide alterations
(SNAs) describe substitution of one DNA base (A,C,G or T) for another in the linear
DNA sequence, as well as insertions and deletions on the same length scale. Copy
number alterations (CNAs) describe changes at the level of megabases. CNAs in-
clude duplications (copies of a large section of DNA), and deletions; duplications
that are re-inserted adjacent to the copied sequence are known as tandem duplica-
tions. CNAs also include rearrangements of the continuous DNA sequence. Here,
I have included rearrangements in the definition of CNAs, even though they do not
alter copy number (in the sense of the number of genomic copies of a stretch of
sequence), for ease of exposition; since my focus here is on mutation-causing pro-
cesses and many processes that cause CNAs (more narrowly defined) also cause
rearrangements. Thus, the term CNA used here, may be thought of as a short-hand
for CNA and rearrangement as used elsewhere in the literature.

Although there is a broad literature on mutation processes in cancer, these
studies generally share some commonalities in approach. In general, mutations
with common genomic features are inferred to be caused by a similar mutation
process, often backed up by evidence from experimental systems. It is possible
to partially reconstruct the dynamics in several ways. First, temporal information
can be accessed by harnessing the idea that different individuals represent different
time-points of a common process. Thus types of mutation that correlate across in-

dividuals can identify the influence of a common process realised across different
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time-points. Similarly, evidence from putative pre-malignant lesions can be com-
pared to frank carcinomas to approximate temporal data. Further evidence is pro-
vided by studies of the clonal status of mutations attributed to different processes;
mutations that are present in every cell probably occurred before the last common
ancestor of all tumour cells. In addition, for copy number change in particular, the
final state records some information on the order of events. This is the case for
two reasons. First, since copy number changes effect large regions of the genome
they often overlap and the order of events influences the final pattern. Secondly,
the SNAs within CNA mutations can be used as a molecular clock to time their
occurrence. This research has cast light on multiple mutation processes involving

different types of mutation that are active in cancer (reviewed presently).

1.4.1 SNA mutation processes

There are a number of well-described mutation processes at the level of SNAs,
two of these processes merit special mention given their relevance to the content
of the thesis. The first is microsatellite instability (MSI). Microsatellites are seg-
ments of DNA consisting of multiple repeats of the same short sequence of one
to several bases. In microsatellite instability frequent indels increase or decrease
the number of repeats in the segment. MSI was described in 1993 in colorectal
cancer [Thibodeau et al., 1993]. It has since been shown to occur in around 15%
of colorectal cancers [Vilar and Gruber, 2010]. In this setting it is most commonly
caused by methylation of the MLHI gene, which is one of those genes involved
in the mismatch repair (MMR) process that repairs microsatellite indels, in addi-
tion to other types of mutation [Vilar and Gruber, 2010]. While MSI is traditionally
recognised as playing a role in colorectal, endometrial and gastric cancers, a re-
cent support suggested that that MSI may occur at low levels in most tumour types
[Hause et al., 2016].

The second is a mutation process linked with mutations in the POLE gene
(discussed in detail in Chapter 4). The POLE gene encodes a subunit of the DNA
replicase (Pol€) [Rayner et al., 2016]. A subset of mutations in the gene cause a

mutation process involving a very high rate of C>A changes that occur at TCT trin-
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ucleotides due to disrupted DNA repair [Rayner et al., 2016]. These mutations are
found in 7-12% of endometrial cancers and 1-2% of colorectal cancers, as well as a
range of other tumour types [Rayner et al., 2016], referred to as ‘ultramutator’ can-
cers. Endometrial cancers with POLE mutations are associated with high immune

infiltration and improved prognosis [Hussein et al., 2015, Church et al., 2015].

In 2013 Ludmil Alexandrov and colleagues published a landmark paper in-
troducing a mutational signature framework in cancer that provides a way of es-
timating the SNA mutation-causing processes involved in the history of a tu-
mour sample and ascribing mutations probabilistically to individual processes
[Alexandrov et al., 2013b, Alexandrov et al., 2013a]. The framework classifies
SNAs into 96 types defined by the base change (such as C>T), and the genomic
context including the two flanking bases of the mutated base (such as TCT). Under
the assumption that each mutation process creates a characteristic distribution of
mutations across the types (or a mutational signature), the study used the mutational
catalogues from multiple tumours to identify 21 inferred processes and their asso-
ciated mutational signatures. The signatures framework has since been extended to
over 30 processes and associated signatures [Petljak and Alexandrov, 2016]. Many,
but not all, of the signatures have a biological interpretation. Signatures 6, 15, 20
and 26 are linked to MMR defects, and signature 10 is linked to POLE mutation.
Other signatures are linked to a range of processes including tobacco-induced dam-
age (signature 4), mutation by APOBEC (apolipoprotein B mRNA editing enzyme,
catalytic polypeptide-like) deaminases (signatures 2 and 13) and ultraviolet radia-

tion (UV) (signature 7) (cancer.sanger.ac.uk/cosmic/signatures).

Studies have indicated diverse patterns with respect to SNA mutation process
timing. A study that analysed mutation accumulation in individuals spanning a large
age range suggests that some SNA mutation processes may occur gradually over
the course of a lifetime, showing a clock-like relationship with age, in both tumour
tissue [Alexandrov et al., 2015] and normal tissue [Blokzijl et al., 2016]. These in-
clude a mutation process thought to be caused by deamination of methylated cy-

tosines, which causes C>T mutations where the C base is followed by a G base in
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the normal sequence (signature 1), and a process of unknown etiology which causes
a broad spectrum of SNAs (signature 5) [Helleday et al., 2014].

Studies of the clonal status of SNA mutations can also reveal information on
the timing of SNA mutational processes. One of the key discoveries of cancer
research of recent years has been the widespread presence of intra-tumour het-
erogeneity at the level of SNAs [Gerlinger et al., 2012, Andor et al., 2016]. This
discovery tends to suggest that SNA processes are ongoing in tumours. However,
variation in the rate of SNA processes over time has been identified. Mcgranahan et
al. [McGranahan et al., 2015] analysed whether mutations associated with a range
of SNA mutation processes were clonal (present in all cancer cells), or sublconal, in
a range of cancer types. Notably, mutations likely to be caused by APOBEC were
enriched for subconal mutations, consistent with a later onset in carcinogenesis of
this mutation process. In a multi-region sequencing study of lung cancer, de Bruin
et al. also found that mutations likely to be caused by APOBEC were enriched for
subclonal mutations, whereas mutations likely to be caused by smoking were de-
pleted among these later mutations [de Bruin et al., 2014]. As against this, a very
recent report found heterogoneous timing with respect to the timing of APOBEC
signatures, with heterogeneity between patients, including some where the signa-
ture was predominantly early and clonal [Yates et al., 2017]. This suggests that

APOBEC-linked mutations can also occur in the earlier stages of tumorigenesis.

1.4.2 CNA mutation processes

Copy number alterations were the first type of mutations to be recognised in
cancer. In 1914 Theodor Boveri theorised that cancer involves the disruption
of cellular chromosomes [Harris, 2008, Jeggo et al., 2016]. Around twenty years
later the observation was made that human cancer cells are frequently found
with abnormal chromosome numbers [Harris, 2008, Jeggo et al., 2016]. The ad-
vent of next generation sequencing has confirmed that over half of breast can-
cers, colorectal cancers and non-small cell lung cancers have non-diploid chro-
mosome complement [Sansregret et al., 2018]. In 1997, Bert Vogelstein demon-

strated ongoing chromosomal instability (CIN) in human colorectal cancer cell
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lines [Lengauer et al., 1997]; this provided the first evidence that some cancers
have genuinely unstable genomes, as opposed to a stably aneuploid genome. In
the literature the presence of aneuploidy is often, confusingly, reported as CIN
[Sansregret et al., 2018]. However, determining the extent of ongoing CIN across
human cancers remains a major challenge due to the lack of temporally-resolved

mutation data.

In 2011 a study identified a mutation process which was labelled chromoth-
ripsis, involving multiple localised CNAs [Stephens et al., 2011]. In this study,
Stephens and colleagues identified complex genomic rearrangements in cancer
samples rewiring the linear DNA sequence localised to one or a few chromo-
somes [Stephens et al., 2011]. They found this pattern in 2-3% of all cancers
and 25% of bone cancers. In the same year, Kloosterman et al. found evidence
for widespread chromothripsis events in primary and metastatic colorectal cancer
[Kloosterman et al., 2011]. In 2016 Notta et al. found evidence for at least one chro-
mothripsis event in 65% (70/107) of pancreatic cancers subjected to whole genome

sequencing [Notta et al., 2016].

In the original study that identified chromothripsis, the authors put forward
several arguments to suggest that these changes are likely to occur in a single catas-
trophic event, as opposed to gradually over many cell divisions. The main line
of argument observes that the copy number states alternate between just one and
sometimes two values. They argue that this is consistent with a single shattering
event followed by stitching together of the fragments by DNA repair processes.
By contrast, they use an intuitive argument, backed up with Monte Carlo simula-
tions, to argue that this pattern is very unlikely based on a gradual model involving
the successive accumulation of multiple types of CNA over multiple cell divisions.
However, in my view, the assumed model of what gradual change would look like
is rather artificially restricted, and there are plausible scenarios of gradual change
that may explain the data, that are not considered in their model. In particular, the
model seems to assume gradual change would consist of the random accumulation

of CNAs of many types, including duplications, and deletions, and they do not seem
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to consider the plausible scenario of multiple small-scale events of shattering and
repair. In my view their secondary argument, that it is difficult to explain the highly
clustered nature of the CNA breakpoints under a gradual scenario may be more

convincing.

More recent experimental evidence has clarified some of these issues. In 2015
another group used a combination of live-cell imaging and DNA sequencing to
show that the hallmarks of chromothripsis can indeed result from changes that take
place in a single cell division [Zhang et al., 2015]. Specifically, they observed in-
dividual cells with a structure called a micronucleus, which is presumed to contain
a lagging chromosome that was incorrectly segregated during cell division (mi-
cronucleated cells). Single-cell sequencing revealed an asymmetric pattern of copy
number change in daughter cells of micronucleated cells, with DNA damage in
some daughter cells that recapitulated the hallmarks of chromothripsis. The authors
also showed that DNA in micro-nuclei is under-replicated. Therefore one explana-
tion for the data is that under-replicated chromosome fragments in micro-nuclei are
stitched together by the cells DNA repair machinery during cell division, leading to

chromothripsis.

In 2013, Baca et al. identified complex chains of rearrangements in 88%
(50/57) of prostate cancers sequenced by whole genome sequencing, which they
labelled chromoplexy [Baca et al., 2013]. 63% of tumours had two or more of these
chains. Some of these chains involved five or more chromosomes, in contrast to
chromothripsis which typically occurs over a few chromosomes (but can involve
more in some cases) [Stephens et al., 2011]. However, the authors note that some
of the instances of chromoplexy resembled chromothripsis, and it seems plausible

that the underlying mechanism may be related.

Another CNA mutation process involving multiple contemporaneous CNA
events which may be widespread in cancer is whole genome doubling (WGD). In
normal tissue WGD events (tetraploidisations) play a role in the development of a
range of cell types [Sansregret et al., 2018]. Carter et al considered the number of

copies of the two alleles of each chromosome across samples in a pan-cancer anal-
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ysis [Carter et al., 2012]. They found that in high ploidy samples the allele with
the higher copy number tended to have an even copy number. They show that this
is consistent with a model where gains occur by whole-genome doublings (after
which both alleles with have the same even copy number), followed by individ-
ual copy losses (which leave two copy states for each allele, with the highest state
being even). Based on their analysis they argue that WGD events occurred in the
history of over 40% of oesophageal adenocarcinomas and in high proportions of
lung adenocarcinomas and several other cancer types. However, arguably, there are
other explanations for this pattern of copy number change that are plausible, such as
common duplications of individual chromosomes, and this method may be prone to
over or under-call WGD events in individual samples. A later pan-cancer study by
the same group found a multimodal distribution of copy number states across can-
cer types which is suggestive of frequent past WGD events [Zack et al., 2013]. One
report argues that genome doubling events occurred in the majority of colorectal
cancers [Dewhurst et al., 2014]. However, the parsimony-type method for identify-
ing historic WGD used in this study cannot distinguish genuine WGD cases from
those cases that have reached high ploidy through other routes. Together, the cu-
mulative evidence supports an important role for WGD events in cancer, but other

explanations for the data appear to be possible.

At the molecular level, a variety of mechanisms can lead to whole genome
doubling and may underlie WGD events in cancer. Cells may undergo a pro-
cess called endoreplication where DNA duplication proceeds without cell division
[Sansregret et al., 2018]. Relatedly, defects in cellular processes including DNA
replication and the functioning of the mitotic spindle can cause cells to abort cell
division, producing a tetraploid cell [Storchova and Pellman, 2004]. Additionally,
entosis, engulfment by another cell, may lead to tetraploidisation by blocking cell
division [Sansregret et al., 2018]. Cell fusions are known to play a role in de-
velopment and disease, and could also play a role in tetraploidisation in cancer

[Storchova and Pellman, 2004].

Multiple other molecular mechanisms of CNA accumulation are thought to
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play a role in cancer, suggesting possible causal sequences of events among the
observed CNAs in tumour samples. Merotelic chromosomal attachments are one
well-described mechanism of CNA accumulation in cancer [Sansregret et al., 2018,
Gordon et al., 2012]. This phenomenon arises when a single chromosomal kine-
tochore becomes attached to mircotubules from both poles of the mitotic spindle
[Gordon et al., 2012] and has been linked with lagging chromosomes during cell
division [Sansregret et al., 2018]. Experimentally, a study using long-term live-cell
imaging showed that the presence of extra copies of nuclear bodies called centro-
somes leads to merotelic attachments and chromosome mis-segregation in cell lines
[Ganem et al., 2009]. Thus, given the link between lagging chromosomes and chro-
mothripsis, one possible sequence of events is that WGD due to failed division leads
to supernumerary centrosomes and ongoing instability including chromothripsis via

frequent merotely.

Another mechanism that is likely to play a role in CNA formation is a phe-
nomenon known as ‘telomere crisis’, reviewed in [Maciejowski and de Lange, 2017].
Telomeres are composed of long tracts of repetitive double-stranded DNA. They
function to protect the ends of chromosomes from recognition as sites of DNA
damage by the cell. In most human somatic cells telomeres are depleted by around
50bps in each cell division. Loss of telomeres can trigger apoptosis or senescence.
However, cells lacking the capacity for cell cycle arrest may undergo what is known
as ‘telomere crisis’, a process involving multiple DNA aberrations, including fused
dicentric chromosomes. Exit from telomere crisis may be acheived by activation of

telomerase enzymes by the cell [Maciejowski and de Lange, 2017].

Two recent studies have demonstrated intriguing links between telomere short-
ing and mutations observed in cancer. The first study showed that human cells in
telomere crisis underwent tetraploidisation [Davoli and de Lange, 2012]. The sec-
ond study used live-cell imaging to show that cells with dicentric chromosomes in-
duce rupture of the nuclear envelope and that cell clones that have undergone telom-
ere crisis show chromothripsis [Maciejowski et al., 2015]. Additionally, the break-

age of dicentric chromosomes found in telomere crisis can lead to what is known
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as breakage-fusion-bridge cycle (BFB cycle) [Maciejowski and de Lange, 2017].
BFB cycles can result in a range of CNAs, including gene amplification and rear-
rangements. These results suggest another possible chain of events in some human
cancers whereby cells undergo telomere crisis, resulting in WGD and chromothrip-

sis, followed by ongoing stability as telomerase activity is restored.

Various other mechanisms of CNA accumulation in cancer have been de-
scribed, with both cell-intrinsic and cell-extrinsic origins [Sansregret et al., 2018].
Defects in the spindle assembly checkpoint (SAC), and in chromosome cohe-
sion are two cell-intrinsic mechanisms that are of uncertain significance in hu-
man cancer [Gordon et al., 2012]. In normal functioning the SAC monitors the
correct attachment of kinetochores to the mitotic spindle [Gordon et al., 2012].
SAC defects promote cancer in mice, and predispose to cancer in the rare condi-
tion mosaic variegated aneuploidy, albeit the pathway is rarely mutated in humans
[Gordon et al., 2012]. Chromosome cohesion is one of the processes involved in
ensuring correct chromosome segregation. Mutations in genes related to chromo-
some cohesion have been found in colorectal cancer, suggesting a potential role for
disruption of cohesion in disease [Gordon et al., 2012]. External to the cell, aspects
of the tumour micro-environment including hypoxia and glucose deprivation can
induce CNAs [Sansregret et al., 2018], and cell migration may lead to karyotypic

abnormalities due to nuclear envelope rupture [Sansregret et al., 2018].

There are also interesting links between CNA mutation processes and SNA
mutation processes. Nuclear envelope rupture, which is implicated in chromoth-
ripsis [Zhang et al., 2015, Maciejowski et al., 2015], exposes DNA to a nuclease
present in the cytosol, which can create the single-stranded substrate for SNAs
caused by APOBEC [Sansregret et al., 2018]. This may explain clusters of localised
mutations, termed kataegis, that have been found near chromothripsis breakpoints
[Maciejowski et al., 2015]. Thus, mechanisms that cause CIN may be responsible

for SNAs caused by APOBEC found in cancer.

There is increasing evidence to suggest that WGD events frequently occur

early in cancer. Abou-Elhamd et al. carried out an analysis of premalignant
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(n=41) and malignant (n=79) Head and Neck Squamous Cell Carcinoma (HN-
SCC) lesions using image cytomtery [Abou-Elhamd and Habib, 2007]. They found
that 37% of premalignant lesions were tetraploid (appeared genome doubled) and
17% were aneuploid. By contrast, 90% of malignant lesions were aneuploid,
and none were tetraploid. This data is consistent with early WGD events giving
way to ongoing instability in HNSCC. Supporting this, Jamal-Hanjani et al. re-
ported a high level of clonal WGD events and a significant correlation between
WGD and sub-clonal copy number diversity in a large multi-region sequencing
study of lung cancer [Jamal-Hanjani et al., 2017]. Studies of pre-cancerous le-
sions [Stachler et al., 2015, Li et al., 2014] support an early role for WGD events
in esophageal adenocarcinoma and colorectal cancer. Finally, a study in pancre-
atic cancer provides additional temporal resolution by using SNAs within the CNA
regions as a molecular clock. This study made three observations. First, polyploidi-
sation events were predominantly clonal. Secondly, most SNA mutations attributed
to a mutational signature linked with ageing occurred before polyploidisation. Fi-
nally, most CNAs occurred after polyploidisation. These observations support the
impression that WGD events can occur early and give rise to ongoing instability,
and the first two observations additionally suggest that early WGD events may oc-

cur shortly before the last common ancestor of all tumour cells.

Adding to this picture, emerging data suggests heterogeneity in the rate of CNA
accumulation across tumours. A recent single-cell sequencing study in triple neg-
ative breast cancer by Gao et al. found high inter-tumour copy number profile het-
erogeneity but high within-tumour copy-number homogeneity among single cells
within each of 13 cancers [Gao et al., 2016]. They argue that, precluding a recent
clonal expansion, these profiles suggest historic chromosomal instability that has
given way to regained stability, representing a historic punctuated burst of evolution
(Figure 1.1 A). These data are consistent with earlier longitudinal studies in breast
cancer that found similar CNA profiles between (1/2) paired pre-cancerous ‘DCIS’
lesions invasive carcinomas [Kuukasjarvi et al., 1997b] and between some paired

carcinomas and metastases [Kuukasjarvi et al., 1997a]. Very recently similar results
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Figure 1.1: Cartoon illustrating punctuated evolution of the genome. The cartoon in A)
shows a more punctuated pattern of mutation accumulation than that in B),
which shows a more gradual pattern of evolution. Emerging evidence suggests
that some (but not all) tumours follow a punctuated pattern of CNA accumula-
tion

' ‘ ‘

Time

have been found in a follow-up study in breast cancer [Casasent et al., 2018], and
using single-cell sequencing in three patients with HB V-related hepatocellular car-
cinoma [Duan et al., 2018]. Analyses of 21 breast cancer [Nik-Zainal et al., 2012a]
and 5 ovarian cancer [Purdom et al., 2013] using SNAs within CNAs as molecular
clocks, have found evidence that some tumours accrued CNAs in a punctuated man-
ner, while others followed an approximately constant rate of accumulation (Figure
1.1 B). In summary, these data suggest that both punctuated and gradual patterns of
CNA accumulation occur in cancer. Further studies in additional tumour types and
with larger sample sizes will be important to assess how widespread these different

modes of CNA accumulation are across cancers.

1.5 Selection

As alluded to above, the identification of mutations that are subject to selection dur-

ing cancer evolution has been one of the most fervently pursued projects in cancer
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research in the genomic era. While these studies (reviewed below) have become
increasingly sophisticated as new knowledge has emerged on the mechanisms of
mutation, they generally follow a common structure: They define a background
mutation rate at which non-selected mutations are expected to occur in a cohort
of cancer samples. They identify mutations that are found at a higher frequency
than expected under neutrality, significantly recurrent mutations (SRMs). These
mutations are then classified as driver mutations, typically defined as mutations that
have been selected at some point during tumour growth, and the genes that contain
them are deemed driver genes. Often these mutations are considered good targets
for potential treatment. The implicit rationale for considering these mutations for

targeting is that reverting the mutation to wild type could arrest tumour growth.

Before reviewing the findings, it is useful to highlight three points about this
argument that are rarely spelled out explicitly. First, the claim that SRMs are driver
mutations, in the sense of conferring a selective growth advantage at some point
during tumour growth, is not straightforward. Consider a classical tumour sup-
pressor gene, which requires a mutation, or ‘hit’, to both alleles before providing
a growth advantage. Conceivably, a particular mutation that provided the first hit
could be recurrent in a set of tumour samples but not have ever provided a selec-
tive growth advantage (although the combined mutation consisting of the two hits
would provide an advantage). Secondly, consider a mutator mutation, that is neu-
tral or deleterious on whatever background it occurs but increases the rate of future
positively selected mutations. Again, this mutation may be recurrent but never have
provided a growth advantage. Finally, the argument that an SRM was selected also
relies on the assumption that individual mutations occur independently. As a result
of these considerations a more appropriate definition of driver gene (that deals with
the first two considerations) would perhaps be a mutation that increases the likely

number of future progeny of a cell.

Secondly, the rationale that reverting a driver mutation could arrest tumour
growth may often be very weak as it depends on biological parameters that are dif-

ficult to estimate. The effects of epistasis i.e. the way in which fitness of a mutation
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at one genomic sites depends on fitness at others, influence the extent to which the
effects of a mutation on one genetic background can predict the effects of reverting
the mutation on a likely different genetic background at the time of treatment. Sim-
ilarly, to the extent that the selective effects of mutations are context-dependent, the
reversion of a mutation that was selected early in tumour growth could have unpre-
dictable effects. Consider a hypothetical mutation that is highly immunogenic but is
selected in early tumour growth due to an immune-privileged environment. Target-
ing such a mutation in a later immune-exposed tumour could actually be deleterious.
A 2010 study that found that restoration of p53 activity failed to shrink tumours in
some mice due to context-specific effects of the gene, illustrates the relevance of
this point [Junttila et al., 2010] — Although, the effectiveness of targeting APC in
colorectal cancer models provides a counterpoint [Dow et al., 2015]. It is important
to bear these considerations in mind when interpreting conclusions about SRMs,

including those presented here.

The analysis of selection in cancer genomes has developed in step with im-
proved understanding of background mutation rates. Early studies to identify se-
lection from cancer genomes compared numbers of nonsynonymous mutations in
genes to a simple cohort-level background mutation rate model inferred from non-
synonymous mutations [Greenman et al., 2007, Kan et al., 2010]. The MutSigCV
method represented a major step forward when it was introduced in 2013. This
method takes into account patient-specific and gene-specific mutation rates to re-
fine the background mutation model [Lawrence et al., 2013, Lawrence et al., 2014].
Gene-specific mutation rates are determined based on the replication timing and
transcription level of the gene, which are known to covary with mutation rate across
the genome [Makova and Hardison, 2015]. The method also took into account dif-
ferent rates for several different classes of SNA mutation (such as C>T). The au-
thors demonstrate that these changes can reduce the false positive rate for detecting
driver genes. A recent study by the same group that developed MutSigCV identifies
suspected indel driver mutations using a model of background indel mutation rates

[Maruvka et al., 2017]. It is worth noting that these methods focus on distinguish-



1.5. Selection 37

ing genes that are subject to positive selection from those that are not, and do not
attempt to quantify the selection experienced by individual genes beyond this binary

distinction.

A very recent study by Martincorena and colleagues represented another
major advance [Martincorena et al., 2017]. The mutation rate model used
in this study takes into account all 96 SNA mutation classes considered by
[Alexandrov et al., 2013b] as well as information on the transcribed versus the non-
transcribed strand of genes, and other epigenetic mutation rate covariates. More
importantly, this study models a distribution of per-gene mutation rates rather than
assuming a point mutation rate per gene, and thereby takes into account remaining
uncertainty surrounding per-gene mutation rates. This innovation is particularly
important given the history of previous refinements to mutation rate models that
may suggest further discoveries are likely. Both this study, and another very recent
study [Weghorn and Sunyaev, 2017] quantify the effects of selection on individual
genes by estimating the ratio of non-synonymous changes to synonymous changes

in the gene (dN/dS). Albeit, this dN/dS measure is difficult to interpret.

Another strand of work has focused on identifying the effects of selection
based on the frequencies of sub-clonal SNAs. The effects of selection are inter-
twined with the pattern of cancer growth, and selection may be harder to detect
that is usually assumed. A study by Sottoriva et al. indicated that sub-clonal
diversity diversity that arose early in colorectal tumour development was main-
tained during tumour growth, suggesting weak selection at the level of subclones
[Sottoriva et al., 2015]. Previous work showed that in c. 30% of tumours the dis-
tribution of sub-clonal mutations is consistent with the expectation under neutrality
[Williams et al., 2016]. The authors have since gone on to develop techniques to di-
rectly quantify the effects of selection, and measure individual fitness effects from
samples that deviate from this expected mutation distribution (Williams et al., in

press).

Inference of selection for CNAs is much less developed, probably due to chal-

lenges in determining mutation rates in the absence of selection. A 2013 study by



1.5. Selection 38

Zach et al. using TCGA data reported recurrent CNA mutations with the caveat
that the recurrence could represent increased mutation rates rather than selection.
Of note, the single study that has developed a mutational signature framework for
CNAs in breast cancer attempted to use these background mutation rates to infer
selected changes, although they do not appear to have used the rearrangement sig-

natures in their inference directly.

In addition to these studies there is a related body of literature on experimental
measurement of somatic selection in model systems. These results are important
because they circumvent some of the problems of interpretation mentioned above,
and it is also generally possible to make more accurate quantitative measurements in
these controlled experimental systems. One important study measured the coloni-
sation of mouse colonic crypts by genetically induced mutations over time. The
authors observed colonisation by cells with Kras G12D mutations and single-allelic
Apc and bi-allelic Apc mutations, which are related to common mutations found in
human cancers. The results suggested that the probability of a Kras G12D-mutant
cell replacing a neighbouring wild-type cell is greater than half (0.75 to 0.81).
Single-allelic Apc mutations replaced wild-type cells with probability between 0.58
and 0.66, wherease bi-allelic Apc mutants replaced wild-type cells with probabilities
between 0.75 and 0.82. In yeast, high-throughput experimentation combined with
novel cell barcoding techniques have enabled the measurement of the distribution
of fitness effects across all genomic mutations [Venkataram et al., 2016]. Important
differences between both these model systems and human cancer place a limit on
the relevance of these results to human cancer, both in terms of the differences in
mutation effects compared to humans and in the micro-environment in which these
mutations are selected. Illustrating this, an extensive study that applied the type
of selection inference model described above to mutation data from mouse mod-
els found marked differences in the genes that were selected compared to human
cancers [Ben-David et al., 2017]. However, while results for individual genes and
mutations may not be translatable across systems, it seems plausible that general

properties in terms of the distribution of selective effects may be less variable.
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1.6 Prognostic implications of mutation processes

Here I review the relationship between mutation processes and outcomes in cancer.
These relationships provide further motivation for the thesis, by showing in more

detail the importance of mutation rates in terms of clinical outcome.

There is a complex relationship between mutation rates and outcome in can-
cer. Genetically unstable colorectal cancer cells show multidrug resistance in
culture [Lee et al., 2011]. In mice, chromosomal instability confers tumours with
the ability to survive the removal of an oncogene [Sansregret et al., 2018]. How-
ever, in breast cancer, very high levels of chromosomal instability portend a bet-
ter prognosis, compared to more genetically stable cancers [Birkbak et al., 2011,
Roylance et al., 2011].  As mentioned above, in some tissue types at least,
ultramutator cancers with POLE mutations, also have a better prognosis
[Church et al., 2015]. And colon cancers with MSI show high immune
cell infiltration and improved prognosis compared to other colon cancers

[Vilar and Gruber, 2010].

There is a related complex relationship between mutation diversity and out-
comes, which is also informative on the role of mutation processes influencing
outcomes, given the close relationship between mutation diversity and the muta-
tion rates that generate this diversity. In Barrett’s Oesophagus, higher copy number
diversity predicts progression to cancer [Maley et al., 2006, Martinez et al., 2016].
In lung cancer, copy number diversity is an independent factor associated with in-
creased risk of recurrence or death [Jamal-Hanjani et al., 2017]. However, in a pan-
cancer analysis tumours in the highest (or lowest) quartile of copy number diversity
had reduced mortality risk [Andor et al., 2016]. And in the lung cancer study above,
SNA diversity does not predict worse outcome, despite a large sample size (n=100)

[Jamal-Hanjani et al., 2017].

One possible explanation for these observations is that raised mutation rates,
as well as increasing the likelihood of mutations leading to disease progres-
sion, cause mutations that form novel cell-surface proteins, which are recog-

nised by the immune system or neo-antigens. In support of this view, MSI
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colon cancers upregulate the ligand PD-1, which suppresses anti-tumour immune
response [Llosa et al., 2015], suggesting possible coevolution of cancer and im-
mune cells in the MSI context, with a higher immune response creating a se-
lection pressure for immunosuppressive mutations in the cancer - a phenomenon
called immunoediting. More generally, there is a pan-cancer association between
the predicted number of neo-antigens, inferred tumour cytotoxic T cell content
and prognosis [Brown et al., 2014]. In addition, novel checkpoint inhibitor im-
munotherapies that inhibit the effects of PD-1, are more effective in lung cancers
with more neoantigens, and, in particular, cancers with more clonal neoantigens
[McGranahan et al., 2016]. A recent report showed that the clonal status and likeli-
hood of immune recognition of neoantigens predicted response to immunotherapy

in cohorts of lung cancer and melanoma patients [Luksza et al., 2017].

A fascinating strand of theory work accompanies these findings. A study by
McFarland predicts that mutator cancers will accumulate deleterious mutations,
which could include neo-antigens. In particular the authors predict that many
moderately deleterious mutations accumulate in mutator tumours, whereas strongly
deleterious mutations are filtered out by selection [McFarland et al., 2013]. A fol-
lowup study shows that these predictions explain certain features of incidence data
[McFarland et al., 2014]. Relating these findings to prognosis, a study in HIV
viruses has found evidence for a mutational meltdown, caused by a mutation rate
beyond which the viruses cannot adapt [Loeb and Mullins, 2000]. There is an in-
dication that a limit of around 20,000 somatic SNAs exists in some cancers with
POLE mutations [Shlien et al., 2015], which could support the existence of muta-
tional meltdown in tumours. Albeit issues related to the detection limit of sequenc-

ing confound the latter observation.

In conclusion, although difficulties in accurately measuring mutation rates in
human tumours have limited the amount of data available, there is data to suggest a
paradoxical relationship between mutation rates and outcomes in cancer, with high-
est mutation rates portending a better prognosis. Build-up of deleterious mutations,

especially at higher mutation rates, may underlie this data. Improved understand-
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ing of the dynamics that relate underlying mutation rates to the accumulation of
mutations in the tumour population as a whole, are needed to fully understand the

influence of mutation processes on tumour evolution.

1.7 Aims and objectives

In this chapter I have provided a motivation for attempting to better understand
the mutation processes that are operative in cancer. I surveyed the literature on
mutation processes active in human cancer, the inference of selection in cancer and

the prognostic impliations of mutation processes.

Although major progress has been made in the understanding of mutation pro-
cesses operative in cancer, important questions remain. In particular, questions re-
main around the timing of SNAs and CNAs during cancer evolution, as well as
around identifying the links between mutation causing processes and individual mu-
tations. While improvements in the identification of selection from tumour genomes
have been made in step with improvements in understanding mutation rate, there is

a need for research that can quantify the effects of selection in a meaningful manner.

At the start of the thesis, in Chapter 2, I present a study of the factors influ-
encing mutation accumulation in breast cancer. I aim to shed light on the influence
of population size variation on mutation accumulation during early cancer develop-
ment, as well as to give a more detailed motivation of the mathematical modelling

approach to cancer research.

In the following Chapters (Chapters 3 and 4) I aim to address specific questions
about the timing of SNA and CNA mutations during cancer evolution. In chapter
3, I aim to assess the timing of CNA accumulation during colorectal cancer evolu-
tion. In chapter 4, I aim to shed light on the timing of POLE mutations during the

evolution of colorectal and endometrial cancers.

I then turn to analyse the the causal relationships between mutation-causing
processes and individual SNA driver mutations in chapter 5.

Finally, also in chapter 5, I aim to infer the selective differences between driver

mutations through application of a recent model of mutation causation.
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My broader aim in the thesis, in addition to answering the specific points men-
tioned above, is to make progress towards understanding the complex web of inter-
actions that link the causation of mutations (via population dynamics and selection)

to the occurrence and timing of these mutations in patient tumours.



Chapter 2

Mathematical modeling links
pregnancy-associated changes and

breast cancer risk

The work in this chapter is now published in Cancer Research [Temko et al., 2017].

2.1 Precis

Recent debate has concentrated on the contribution of unavoidable mutations, that
may occur on cell division, to cancer development. The tight correlation between
the number of tissue-specific stem cell divisions and cancer risk of the same tissue
suggests that bad luck has an important role to play in tumor development, but the
full extent of this contribution remains an open question. Improved understand-
ing of the interplay between extrinsic (external to the population of cells at risk of
cancer) and intrinsic (internal to the population of cells at risk of cancer) factors at
molecular scales is one promising route to identifying the limits on extrinsic control
of tumor initiation, which is highly relevant to cancer prevention. Here we use a
simple mathematical model to show that recent data on the variation in numbers
of breast epithelial cells with progenitor features due to pregnancy are sufficient to
explain the known protective effect of full-term pregnancy in early adulthood for
estrogen receptor positive (ER+) breast cancer later in life. Our work provides a

mechanism for this previously ill-understood effect and illuminates the complex in-
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fluence of extrinsic factors at the molecular level in breast cancer. These findings
represent an important contribution to the ongoing research into the role of bad luck

in human tumorigenesis.

2.2 Contribution

Work on this project had already begun when I joined the project; the mathematical
model was already largely in place and coded in C++. My main contributions were:
(i) To broaden the aims of the analysis to include a more detailed analysis of the
model predictions and compare the model predictions to epidemiological data. (ii)
To adapt the model outputs for these purposes. (iii) To make some changes to the
model, including to accommodate changes in cell proliferation after menopause.
(iv) To run the model simulations and analyse the results. (v) To implement a sen-
sitivity analysis, including necessary adaptations to the model code. (vi) To write
the manuscript sections other than ‘Mathematical Framework’, with input from my
co-authors (vii) To produce the figures, other than figure 2.2, with input from my

co-authors.

2.3 Introduction

A recent study [Tomasetti and Vogelstein, 2015] by Tomasetti and Vogelstein anal-
ysed the relationship between the number of stem cell divisions and cancer risk
across tissues to investigate the role of “bad luck™ in carcinogenesis. The authors
demonstrated that the logarithm of lifetime cancer incidence in a tissue is closely
correlated with the logarithm of the cumulative number of stem cell divisions in the
same tissue (R? = 0.64; Figure 2.1 A). One possible interpretation of these results
runs as follows. The correlation suggests that random mutations that occur when
stem cells divide explain most of the differences in cancer risk between tissues.
Consequently, exposure to exogeneous mutagens make only a limited contribution
to the risk differences between tissues, despite large presumed variation in expo-
sures between anatomic sites. As a result of the correlation the authors claimed that
the majority of the variance in cancer risk among tissues is due to bad luck.

In the reporting of the study and ensuing debate some commentators drew
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Figure 2.1: Multiple factors can affect cancer risk in a complex setting. A, An analysis
by Tomassetti and Vogelstein demonstrated a close correlation between the log
of lifetime cancer incidence in a tissue and the cumulative number of stem
cell divisions in the same tissue. Plot shown is a schematic showing randomly
generated data, illustrating the linear relationship that was found by the study.
B, Variation in multiple molecular factors may affect cancer risk when they
change from the homeostatic state (top left), including the number of progenitor
cells (top right), the mutation rate (bottom left), and the fitness effect conferred
by mutations (bottom right). Blue circles represent wild-type cells, red circles
represent mutated cells.
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broader conclusions from the correlation found by Tomasetti and Vogelstein. While
the initial study claimed that two thirds of the variation in cancer risk between tis-
sues is due to bad luck, an accompanying commentary suggested that two thirds
of all cancers, rather than two thirds of the variation, are due to random muta-
tions in healthy cells [Couzin-Frankel, 2015]. Subsequent analyses have shown that
the initial correlation is not sufficient to imply a lower bound on the proportion
of all cancers that are due to bad luck at 64%. To draw this conclusion from the
study would require strong assumptions about the effects of controllable factors
in the data set considered. To adapt an example given by Weinberg and Zaykin
[Weinberg and Zaykin, 2015]: suppose that all cancers were made four times as
likely by a carcinogen; then the correlation between log incidence and log stem cell
divisions would remain the same at 0.64. However, cancer risk could be reduced by
75% by removing the carcinogen. So clearly we cannot conclude from the data as

it stands that at least 64% of all cancers are due to bad luck.
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Importantly, the regression analysis used by Tomassetti and Vogelstein
cannot quantify the possible effects of extrinsic factors that do not already
vary within the data set used, which notably did not include breast cancer
[Potter and Prentice, 2015]. Therefore, the regression cannot be used to draw
conclusions about unavoidable bad luck, taking into account the variation of all
possible extrinsic factors. To illustrate this point, consider the (perhaps unlikely)
possibility that it is possible to safely alter the fitness advantage of mutations that
can lead to cancer. The correlation analysis presented in the study cannot tell us

about the impact such variation could have on cancer risk.

The insufficiency of the current evidence to draw conclusions about the con-
tribution of unavoidable bad luck to cancer demonstrates the important potential
role of mechanistic models in determining the contribution of controllable factors
to different cancer types, and whether these factors can be harnessed for cancer
prevention. The changes that lead to cancer are thought to develop in a complex
molecular setting, which defies simple characterization. In this setting variation of
any number of parameters may affect lifetime risk of cancer; these include but are
not limited to the number of cells susceptible to transformation, the mutation rate of
cells, and the fitness advantage conferred by those mutations when they occur (Fig.

2.1 B).

Full-term pregnancy in young adulthood is a well-documented natural protec-
tive factor for breast cancer [MacMahon et al., 1970, Albrektsen et al., 2005]. Es-
timates suggest that risk increases by 5% for every five-year increase in the age at
first birth for women with one birth [Albrektsen et al., 2005]. The specific effects of
parity vary by hormone-receptor status of the resulting tumors [Colditz et al., 2004].
Analysis of the Nurses Health Study (NHS) cohort showed that the risk for ER+
breast cancer decreases with the number of pre-menopausal years accumulated
since first birth [Colditz et al., 2004]. Hence, early first birth confers the greatest
protective effect; a woman with four births at age 20, 23, 26 and 29 years old has an
estimated 29% reduced risk of ER+/PR+ breast cancer between the ages of 30 and

70, compared to a nulliparous woman during the same time period. The same study
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found that first birth causes a one-off increase in risk for PR- cancer compared to
nulliparous women, with an effect size that increases with age at first birth. As a
result, women with a first birth over the age of 35 can be at an increased risk of

breast cancer.

Mathematical models, informed by data, have demonstrated the plausibility of
general molecular explanations for the protective effects of pregnancy. An impor-
tant study by Moolgavkar et al. explored a framework where breast cancer is caused
by two cellular transitions occurring in normal cells [Moolgavkar et al., 1980]. In
this model, pregnancy decreases the numbers of normal and partially transformed
cells at risk of progression. The study leads to a good fit to the data of MacMa-
hon and colleagues [MacMahon et al., 1970]. Another study [Pike et al., 1983]
uses a concept of breast tissue age: breast cancer incidence is modeled as a lin-
ear function of the logarithm of breast tissue age, and risk factors for breast can-
cer alter the rate of breast tissue aging. First full-term pregnancy causes a one-
off increase in breast tissue age, but decreases its subsequent rate of increase.
This study also demonstrated a good fit to the Moolgavkar et al. data. Ros-
ner and Colditz then adapted and extended the model developed by Pike et al.,
including changes to further improve the fit and accommodate multiple births,
and applied the adapted model to data from the NHS cohort [Colditz et al., 2004,
Rosner et al., 1994, Rosner and Colditz, 1996]. The fit of these models to epidemi-
ological data provide support for the theory that pregnancy alters the number of cells
that are at risk for accumulating changes leading to breast cancer. However, they do
not identify the molecular mechanisms responsible, nor do they accommodate the

effects of a cellular hierarchy of stem and progenitor cells.

Recently, single cell technology has made it possible to collect quantitative
data on changes in individual mammary sub-populations, presenting the possibility
to quantitatively assess the molecular-level changes, as well as the epidemiological
incidence curves, associated with pregnancy. Studies in mice and humans provide
evidence that p27+ mammary epithelial cells decrease in number with pregnancy,

and are present in high numbers in BRCAI and BRCA2 germline mutation carriers



2.4. Mathematical Framework 48

[Choudhury et al., 2013, Huh et al., 2015]. Evidence was presented that a subset of
p27+ cells with progenitor features are hormone-responsive quiescent luminal pro-
genitors with proliferative potential, and that their variation could relate to breast
cancer risk [Choudhury et al., 2013]. Briefly, p27 cells were found to express es-
trogen receptor (ER), indicating they may be hormone responsive. The fraction of
p27+ cells correlated inversely with the fraction of cells expressing the prolifera-
tion marker Ki67, and the two proteins were mutually exclusively expressed, sug-
gesting that the p27+ and Ki67+ cells could represent quiescent and proliferative
hormone-responsive cells respectively. Finally, a subset of p27+ cells also express
the progenitor cell marker CD44, and the expression of p27 in CD44+ cells de-
creases significantly with pregnancy. These data, raise the possibility that a subset of
p27 cells represent quiescent-hormone responsive progenitors and their number de-
creases with pregnancy. Here, we use a simple mathematical model to test whether,
given a role for p27+ progenitor cells as proliferative progenitors which can accu-
mulate changes leading to breast cancer, the observed reduction in the populations
of p27+ progenitor cells with pregnancy is sufficient to explain the protective effect

of pregnancy.

2.4 Mathematical Framework

2.4.1 Mathematical model

We aimed to test the hypothesis that a decreasing cell number and proliferative ca-
pacity of luminal progenitor cells after pregnancy can result in a protective effect
against breast cancer and that the effect decreases with increasing age of pregnancy.
To this end, we designed a mathematical model of the dynamics of proliferating
cells in the breast tissue that can accumulate the changes leading to cancer initia-
tion. We considered two types of cells: a self-renewing population of stem cells,
and a population of proliferating luminal progenitor cells that result from differen-
tiation of these stem cells and respond to hormonal stimuli. We first tested whether
we could identify a biologically plausible parameter setting in our model under

which the variation in progenitor cell numbers results in a risk decrease that fits the
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quantitative risk decreases observed with pregnancy (Section 2.5.1). We then tested
the robustness of the fit of our model in the surrounding parameter space (Section

2.5.2).

We first studied the dynamics of stem cells in the breast ductal system. Given
the population structure inherent to breast ducts, we considered the stem cells in
each duct to act independently. As such, we investigated the dynamics of a sin-
gle duct within the breast since the total probability of cancer initiation is given
by the probability per niche times the number of niches; thus, the relative likeli-
hood of cancer initiation is not altered by considering only one niche. The over-
all number of stem cells in the breast is estimated to be on the order of 5 to 10
cells per duct [Eirew et al., 2008, Villadsen et al., 2007], and we denoted this num-
ber by N (Fig. 2.2), although there is some uncertainty in these estimates. We
defined a fundamental time unit of our system to be dictated by the division time
of stem cells, Z¢ycje, Which varies during pregnancy. In in vivo experiments, the
mean cell cycle length of benign breast cancer cells was approximately 162 hours
per cell [Schiffer et al., 1979]. We assumed that even pre-cancerous cells divide
faster than stem cells; thus, using 7., = 162 hours as the average pre-menopausal
stem cell cycle length when not pregnant may be an overestimation of the number
of stem cell divisions that occur in the normal breast, and we verified that our re-
sults were unaffected at higher stem cell cell cycle lengths (shown below). Further,
previous data [Choudhury et al., 2013, Popnikolov et al., 2001, Taylor et al., 2009,
Chung et al., 2012, Olsson et al., 1996, Going et al., 1988, Anderson et al., 1989]
suggests that the percentage of cells in normal breast that stain positive for Ki67
are approximately 3% and 12% in the follicular and luteal phases of the menstrual
cycle, respectively. Assuming that the duration of these two menstrual cycle phases
is roughly the same, at two weeks per cycle, leads to an average Ki67 value of 7.5%.
Considering that Ki67 is detectable for 24 hours during the active phases of the cell
cycle [Scholzen and Gerdes, 2000, Cooper, 2000], this translates to an estimate of
320 hours (24 / 0.075) for the average cell cycle length, which is also within the

range tested (162 hours to 324 hours). Other studies have shown a broadly consis-
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tent range of results [Olsson et al., 1996] or results consistent with still longer cell

cycle times [Taylor et al., 2009, Chung et al., 2012].

Experimental data suggests that proliferation decreases 4-5 fold after
menopause, irrespective of parity [Choudhury et al., 2013, Huh et al., 2016]. To
take this effect into account, we assumed that the cell cycle length increases by
a factor of O4nenopause = 4 after menopause. In our model, a single stem cell in
each duct is randomly chosen to divide during each time step, proportional to
the fitness of the cell, following a stochastic process known as the Moran model
[Moran, 1962]. According to this model, the divided cell is replaced by one of
the daughter cells of the division, while the other daughter replaces another stem
cell that was randomly selected from the population to die. The use of this model
ensures preservation of homeostasis in the normal breast epithelial cell population.
Since the specific dynamics of stem cells in the breast are not known, we chose the
Moran model as it has been used to model stem cell populations in other tissues
[Hambardzumyan et al., 2011, Traulsen et al., 2013, Foo et al., 2015]. For each cell
division, we allowed for a single mutation to arise in one of the two daughter cells

of the division with a certain probability.

In the mature breast, stem cells divide primarily to maintain cellular in-
tegrity. However, differentiating events do occur, although rarely [Bresciani, 1968,
Daniel and Young, 1971, Faulkin and Deome, 1960]. In our model, with probabil-
ity p, we allowed the cell division in the current time step to be asymmetric, produc-
ing one daughter stem cell to maintain the stem cell population and one progenitor
daughter to arise (Fig. 2.2). Since the exact rate of differentiation is unknown, we
tested p = 10~! to 1073, With the remaining 1 — p probability, the stem cell divi-
sion is symmetric and follows the usual Moran division dynamics. In each time step
thereafter, all cells resulting from the progenitor daughter divide and differentiate
further until a total of z cell divisions are accumulated. The number of luminal ep-
ithelial progenitors in humans is unknown. As a result, we set z = 10 to fit data from
mouse mammary fat pad transplantation experiments [Kordon and Smith, 1998],

and tested a wide range of alternate values for this parameter. After z,,. divisions,



2.4. Mathematical Framework 51

we considered the cells differentiated and at this point, they are no longer consid-
ered in our mathematical model. Thus, in the wild-type system, there are N stem
cells per duct and 2°7! — 1 progenitor cells per differentiation cascade. Since the
dynamics of progenitor cells in the human breast are not known, we have adopted
the assumption that progenitor cells undergo a limited number of divisions, similar
to what has been observed for transit-amplifying cells in the colon and other tissues.

Figure 2.2 A describes the temporal dynamics of the system.

During each cell division, genetic alterations contributing to cancer initiation
may arise with a small probability. We considered a number n,,,, of mutations that,
when combined, result in a single cell leading to cancer initiation. These mutations
could each be any of the many mutations commonly found in breast cancer with
initiation potential. As a simplifying assumption we considered a mutation rate on
the order of 10™> mutations per oncogenic mutation per cell division to limit the

required number of simulations for detection to a reasonable number.

The baseline mutation rate is roughly 5 x 10~ per base pair per cell division
[Jones et al., 2008, Salk et al., 2010]. It is estimated that there are roughly 34,000
possible driver base pairs in the genome [Bozic et al., 2010], thus it may be reason-
able to assume that there are on the order of 10,000 possible ways to achieve each
oncogenic mutation, which would lead to the above rates on the order of 1073 mu-
tations per oncogenic mutation. However, it is important to note that not all driver
loci are relevant in breast cancer, and in particular the exact combinations of driver
loci that could cause breast cancer are unknown, thus the 10~ figure can only be
a broad approximation. For this reason, we also tested our model at other mutation
rates, and found that our main conclusions were also consistent at lower mutation

rates (shown below).

We studied the following mutational effects for each mutation: under the de-
fault assumptions in stem cells, mutant cells had a relative fitness of f,,,,;, = 1.1, i.e.
a fitness increase of 10%, resulting in an increased probability of dividing, while
mutant progenitor cells divided an additional z,,,; = 1 times (Fig. 2.2 B). In gen-

eral a stem cell with n mutations was assumed to have a relative fitness of 1.17,
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Figure 2.2: Schematic representation of the mathematical model. A, Initially, there are

A)

k=z

B)

N wild-type stem cells (blue), which give rise to a differentiation cascade of
27+l _ 1 wild-type luminal progenitor cells (purple). At each time step, all
progenitor cells as well as one randomly selected stem cell divide. With prob-
ability 1 — p, the stem cell divides symmetrically and one daughter cell re-
places another randomly chosen stem cell. With probability p, the stem cell di-
vides asymmetrically and one daughter cell remains a stem cell while the other
daughter cell becomes committed to the progenitor population (light pink). Re-
gardless of the dividing stem cell’s fate, all existing progenitor cells divide sym-
metrically for a total of z times to give rise to successively more differentiated
cells (progressively darker shades of purple) before becoming terminally dif-
ferentiated. In the figure, the darkening purple gradations refer to successively
more differentiated cells and serve to clarify a single time step of the stochastic
process. B, The acquisition of mutations leading to breast cancer initiation all
result in an increased relative fitness (i.e. growth rate) f,,,, in stem cells (red)
as compared to wild-type cells (blue) and an additional number of divisions
Zmur Progenitor cells can undergo before terminally differentiating. C, During
pregnancy, progenitor cells experience an expansion in proliferative capacity
through an additional number of divisions z,,e in order to form terminally dif-
ferentiated milk-producing cells (dotted triangle) and a decrease in cell cycle
length.
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whereas a progenitor cell with n mutations could divide an additional n times be-
fore terminal differentiation. Since the number of stem cells per duct is small, the
fitness of mutant alleles has little effect on cancer initiation probabilities, as the
fixation time of mutations is much smaller than the mutation accumulation time
[Hambardzumyan et al., 2011]; we also tested our results at other values of f,,,
and z,,,,. Additionally, progenitor cells must accumulate some propensity towards
self-renewal: we defined a parameter ¥ = Ypuse — ((Ypase) /(2 % z) as the probability
of a progenitor cell at differentiation level 0 < i < z+ ngz,,; to acquire self-renewal.
Here n is the number of mutations borne by the progenitor cell. Therefore we as-
sumed that cells closer to the stem cel