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Abstract 

Tackling antimicrobial resistance (AMR) is a national and global priority. Despite 

this, much of our understanding of the epidemiology and transmission of AMR 

outside the hospital, and thus, how we might control it, remains limited. Long 

term care facilities (LTCFs) play an important role in the care of older people. 

However, there have been few studies of the epidemiology and transmission of 

AMR in this setting. LTCF residents present with frequent co-morbidities which 

increase their risk of hospitalisation and of AMR infection. LTCFs also offer 

opportunities for transmission of AMR strains due to the long lengths of stay of 

residents and the lack of strictly applied infection control measures. This thesis 

focuses on urinary tract infections (UTIs), one of the most common bacterial 

infections in LTCFs, hospitals and the community. I first present a systematic 

review of mathematical models of infectious disease transmission set in LTCFs 

and a critical review of mathematical models evaluating interventions against 

AMR bacteria in LTCFs. A checklist for good quality models in this area is 

proposed. Next, using data from routinely collected microbiology samples, the 

frequency of AMR in urinary tract E. coli and Klebsiella was compared in LTCF 

residents with that in older people living in their own homes. Residents of 

LTCFs had more than four times the rate of E. coli and Klebsiella UTI caused by 

antibiotic-resistant bacteria compared with those living in the community. The 

seasonality of UTI consultations was also assessed. A September to November 

peak in UTI consultation incidence was observed for ages 14-69. This 

seasonality progressively faded in older age groups and no seasonality was 

found in individuals aged 85 and over. Finally, a stochastic compartmental 

mathematical model was developed to explore the transmission of trimethoprim-

resistant E. coli in LTCFs. Different treatment, importation and transmission 

scenarios were addressed.  

  



6 

 

Impact statement 

First, this work contributes towards improving our understanding of the 

dynamics of UTI (Chapter 6). Due to increases in temperature during the 

summer, which can make individuals prone to dehydration, UTIs could be 

expected to peak during this time. These changes could be particularly 

pronounced in the elderly population, as aging is a risk factor for water 

homeostasis impairments and inadequate water intake. However, GP 

consultations for UTI in older people in the UK were not found to be seasonal. 

This contrasts with the autumnal peak observed for individuals aged 14 to 69. 

As UTIs in older people are common year round, UTI prevention in this 

population should warrant attention throughout the year. The autumnal peak in 

UTI consultation incidence observed in younger age groups could also be 

helpful in interpreting the results of interventions and surveillance reports. This 

work was published in the journal Epidemiology and Infection. 1 

Second, UTIs caused by AMR E. coli and Klebsiella were shown to be more 

common in LTCFs in the West Midlands than in older people residing in their 

own homes, even after adjusting for confounders. This highlights that LTCFs 

should be a focus of antibiotic stewardship and infection prevention and control 

interventions aiming to prevent the spread of AMR bacteria, as well as of 

increased surveillance of AMR and antimicrobial prescribing. Findings from this 

thesis also support the recent switch in the national primary care treatment 

guidelines for uncomplicated UTI from recommending trimethoprim to 

nitrofurantoin, as trimethoprim was shown to be ineffective to treat a large 

proportion of the UTIs in LTCF residents due to the high prevalence of 

resistance in this population. This work was published in the Journal of 

Antimicrobial Chemotherapy.2 

Third, antibiotic-resistant Gram-negative bacteria are currently organisms of 

high public health importance and, as shown in the systematic review of the 

literature (Chapter 2), an increasing number of studies modelling the 

transmission of infectious diseases in LTCFs are being published. Therefore, 

the conclusions of mathematical models that simulate the transmission of 

Gram-negative bacteria in LTCFs could be important for policy making. A 
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checklist was developed to guide policy makers in assessing the quality of such 

models. This work was published in Infection Control and Hospital 

Epidemiology.3 

Finally, the output from the mathematical model developed to simulate the 

transmission of E. coli resistant to trimethoprim in the LTCF (in Chapter 7) 

suggested that LTCFs with a high prevalence of resistance could contribute 

towards the prevalence of resistance in hospitals, highlighting the importance of 

reducing avoidable hospital admissions by enhancing support for LTCF 

residents and the potential of screening strategies. In addition, the transmission 

of E. coli resistant to trimethoprim was found to have a greater impact on the 

prevalence of E. coli resistant to trimethoprim in the LTCF than trimethoprim 

treatment, at least in LTCFs with a high incidence of trimethoprim-resistant 

urinary E. coli submitted for laboratory testing. These findings suggest that 

reducing transmission may be key to diminishing the prevalence of carriage of 

trimethoprim-resistant E. coli in LTCFs.  



8 

 

Table of contents 

Acknowledgements 3 

Abstract 5 

Impact statement 6 

Table of contents 8 

List of figures 13 

Main text 13 

Appendix 15 

List of tables 18 

Main text 18 

Appendix 20 

Abbreviations 22 

Ethics 24 

Chapter 1 Introduction 25 

The problem of antibiotic resistance 25 

Urinary tract infections- why do they matter? 27 

Long-term care facilities 30 

AMR in Gram-negative bacteria in LTCFs 31 

How can mathematical modelling can help? 33 

Thesis objectives 35 

Thesis outline 36 

Chapter 2 Systematic review of published peer-reviewed dynamic 

mathematical models of infectious disease transmission set in long-term 

care facilities 37 

Aim 37 



9 

 

Introduction 37 

Methods 41 

Database search and abstract screening 41 

Full-text assessment 41 

Update of review for thesis submission 42 

Results 44 

Organism 44 

Chronology 45 

Setting 45 

Theme 46 

Methodology 46 

Discussion 48 

Conclusions 52 

Chapter 3 Critical review of mathematical models of interventions 

against antimicrobial resistant bacteria in LTCFs and checklist of good 

quality models for policy making. 53 

Aims 53 

Introduction 53 

Methods 55 

Comparison of model results 57 

Were the model structures and parameters used realistic? 60 

Chronology 60 

Model structure and model type 61 

Parameter validity, estimation and uncertainty 63 

Were the interventions modelled appropriately? 68 

Summary and critical evaluation 69 

What makes a good mathematical model for the evaluation of interventions? 74 

Discussion 78 

Conclusions 83 

Chapter 4 AMR in LTCFs: linking the AmSurv dataset to the CQC 

dataset. 85 

Aims 85 

Introduction 85 



10 

 

Methods 89 

Data extraction from AmSurv 89 

Data linkage of the AmSurv and CQC datasets to determine LTCF residence 89 

Cleaning of the overall dataset 90 

Microbiology 93 

Cleaning of the organism-antibiotic combinations 94 

Description of the overall dataset 99 

Description of the urine dataset 100 

Description of urinary tract E. coli and Klebsiella 101 

Discussion 114 

Conclusions 118 

Chapter 5 Impact of LTCF residence on the antibiotic resistance of 

urinary tract E. coli and Klebsiella 119 

Aim 119 

Introduction 119 

Methods 121 

Crude rate comparisons 121 

Comparison of resistance levels in culture confirmed samples 122 

Rate of E. coli and Klebsiella UTI caused by AMR bacteria in LTCF and non-LTCF 

samples 126 

Prevalence of AMR and odds ratio of AMR 128 

Discussion 139 

Summary of main findings 139 

Strengths 139 

Limitations 140 

Implications for clinical practice and policy 142 

Future work 145 

Conclusions 146 

Chapter 6 Seasonality of UTIs in the United Kingdom in different age 

groups: longitudinal analysis of THIN data 148 

Aim 148 

Introduction 148 

Methods 154 

Reasoning for analysing both GP consultations and antibiotic prescriptions 154 

Statistical methods 158 



11 

 

Sensitivity analysis 159 

Results 160 

UTI consultations and trimethoprim and nitrofurantoin prescriptions 160 

Trend 162 

Seasonality by age 168 

Seasonality by sex 175 

Discussion 178 

Summary 178 

Mechanism 178 

Findings in context 179 

Strengths and limitations 180 

Clinical implications 181 

Further research 181 

Conclusions 183 

Chapter 7 Mathematical modelling of the transmission of E. coli 

resistant trimethoprim in the LTCF 184 

Aims 184 

Introduction 184 

Methods 187 

Modelling approach 187 

Model structure and description 187 

Model equations 190 

Assumptions 190 

Data 193 

Parameter sources and values 195 

Incidence data and model fitting procedure: estimating 𝜷, 𝜷′ and 𝒓𝒉𝒐 214 

Sensitivity analyses 226 

Scenarios 226 

Modelling output 226 

Results 228 

Baseline scenario 228 

Sensitivity analysis 234 

Scenario analysis 240 

Discussion 244 

Baseline scenario findings: incidence and prevalence of resistance 244 

Movement in and out of the LTCF 246 

Treatment 246 

Transmission 247 

What are the main drivers of trimethoprim resistance and what does this mean? 248 

Strengths 249 

Limitations of the assumptions 250 

Limitations of the parameterisation 252 

Future work 256 



12 

 

Conclusions 258 

Chapter 8 Discussion 259 

Summary of findings 259 

Implications for clinical practice and public health policy 261 

Strengths 266 

Limitations 268 

Further work 270 

Conclusions 273 

References 274 

Appendix 308 

Appendix Chapter 2 308 

Appendix Chapter 3 318 

Appendix Chapter 5 324 

Appendix Chapter 6 PART A 344 

Appendix Chapter 6 PART B 373 

Appendix Chapter 7 374 

  



13 

 

List of figures  

Main text 

Figure 2-1. Flow chart of the review process. ................................................... 42 

Figure 2-2. Infectious disease modelling in LTCFs: publications per year. ....... 45 

Figure 3-1. Assessing the effects of interventions against MRSA in LTCFs 

through modelling. ............................................................................................ 58 

Figure 3-2. Impact of MRSA interventions on a generic susceptible (S) –

colonised (C)-susceptible (S) model structure in the long-term care facility 

(LTCF). ............................................................................................................. 60 

Figure 3-3. Structures of patient flow. ............................................................... 63 

Figure 3-4. Model transmission structures. ....................................................... 63 

Figure 4-1. Flow diagram showing the complexity of the AmSurv dataset. ....... 87 

Figure 4-2. Definition of specimens, specimen sites, samples and tests. ......... 88 

Figure 4-3. Flow diagram showing the data cleaning process of an example 

bacterium-antibiotic combination: Klebsiella samples tested against Trim 

(trimethoprim). ................................................................................................... 91 

Figure 4-4. Distribution of samples per specimen site. ................................... 100 

Figure 4-5. Distribution of urine samples by organism. ................................... 101 

Figure 4-6. Total number of samples per laboratory over the four years of the 

study. .............................................................................................................. 102 

Figure 4-7. Distribution of household size of LTCF postcodes that matched ONS 

postcodes. ...................................................................................................... 113 

Figure 5-1. Percentage of Klebsiella and E. coli samples resistant to 

trimethoprim, nitrofurantoin, third-generation cephalosporins, and ciprofloxacin.

 ........................................................................................................................ 135 

Figure 5-2 Percentage of Klebsiella and E. coli samples resistant to 

imipenem/meropenem, temocillin, and gentamicin. ........................................ 136 

Figure 5-3. Percentage of Klebsiella and E. coli samples resistant to 

piperacillin/tazobactam, first-generation cephalosporins (1GC), second-

generation cephalosporins (2GC), and co-amoxiclav+. ................................... 137 

Figure 6-1. Percentage of monthly UTI consultation coded with any antibiotic 

prescription on the same day for which that antibiotic was trimethoprim or 

nitrofurantoin, by age group. ........................................................................... 156 



14 

 

Figure 6-2. Percentage of monthly trimethoprim and nitrofurantoin prescriptions 

that had a UTI consultation coded on the same day for those aged under 85 

and 85 or over. ................................................................................................ 157 

Figure 6-3. Monthly UTI consultations coded by GPs per 100,000 person years 

in the UK by age group and sex. ..................................................................... 163 

Figure 6-4. Monthly UTI consultations coded by GPs per 100,000 person years 

in England and in the UK by age group. ......................................................... 167 

Figure 6-5. Seasonality in UTI consultations coded in the UK per 100,000 

person years by age. ...................................................................................... 169 

Figure 6-6. Scaled monthly UTI consultations coded per 100,000 person years 

in the UK by age group. .................................................................................. 171 

Figure 6-7. Monthly nitrofurantoin and trimethoprim prescriptions administered 

by GPs per 100,000 person years in the UK by age group. ............................ 173 

Figure 6-8. Monthly UTI consultations coded per 100,000 person years in 

England by age group. .................................................................................... 174 

Figure 6-9. Seasonality in UTI consultations coded in the UK per 100,000 

person years by age group and sex. ............................................................... 176 

Figure 6-10. Monthly nitrofurantoin and trimethoprim prescriptions administered 

by GPs to males per 100,000 person years in the UK by age group. ............. 177 

Figure 7-1. Model structure. ............................................................................ 189 

Figure 7-2. Percentage of urinary E. coli samples resistant to trimethoprim 

submitted to AmSurv by hospitals in the West Midlands from individuals aged 

70 and over. .................................................................................................... 201 

Figure 7-3. Percentage of urinary E. coli samples resistant to trimethoprim 

submitted to AmSurv by GPs in the West Midlands from individuals aged 70 

and over. ......................................................................................................... 203 

Figure 7-4. Proportion of individuals aged 70 or older in the community in the 

West Midlands treated with trimethoprim. ....................................................... 204 

Figure 7-5. Rate of trimethoprim prescription in the West Midlands in individuals 

aged 70 and over. ........................................................................................... 207 

Figure 7-6. Percentage of urinary E. coli samples resistant to trimethoprim in the 

West Midlands in individuals aged 70 and over residing in LTCFs. ................ 211 

Figure 7-7 The number of urine E. coli samples resistant to trimethoprim 

submitted to AmSurv per bed day, by LTCF. .................................................. 216 

Figure 7-8. Number of beds per LTCF. ........................................................... 217 



15 

 

Figure 7-9. The weekly incidence of urine E. coli samples resistant to 

trimethoprim submitted to AmSurv for each of the LTCFs that were selected for 

simulation. ....................................................................................................... 218 

Figure 7-10. Total LTCF population size by week of the study period. ........... 229 

Figure 7-11. Distribution of individuals between the four compartments of the 

model during the study period. ........................................................................ 231 

Figure 7-12. Distribution of individuals between the four compartments of the 

model by week of the study period. ................................................................. 232 

Figure 7-13. Weekly incidence of UTIs caused by E. coli resistant to 

trimethoprim in the data compared to the model. ............................................ 233 

Figure 7-14. Outputs from the deterministic model in which 𝒑𝒓𝒄, 𝒑𝒕𝒄, and 𝒑𝒓𝒉 

were fixed at the mean (in red) compared to the scenario in which they were 

made to increase linearly in agreement with the data (in blue). ...................... 237 

 

Appendix 

Figure A- 1. West Midlands yearly 70+ and all ages population. .................... 345 

Figure A- 2. Monthly rate of UTIs caused by E. coli and Klebsiella in older 

people residing in and outside of long-term care facilities in the West Midlands 

from April 2010 to March 2014. ....................................................................... 349 

Figure A- 3. Monthly rate of UTIs caused by E. coli and Klebsiella that were 

susceptible to trimethoprim in older people residing in and outside of long-term 

care facilities in the West Midlands. ................................................................ 350 

Figure A- 4. Monthly rate of UTIs caused by E. coli and Klebsiella that were 

resistant to trimethoprim in older people residing in and outside of long-term 

care facilities in the West Midlands. ................................................................ 351 

Figure A- 5. Seasonality in the monthly rate of UTIs caused by E. coli in elderly 

patients residing in and outside of long-term care facilities in the West Midlands 

from April 2010 to March 2014. ....................................................................... 355 

Figure A- 6. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regression without seasonality fit to the monthly UTIs 

caused by E. coli in elderly patients residing in LTCFs and outside LTCFs in the 

West Midlands. ............................................................................................... 355 

Figure A- 7. Seasonality in the monthly rate of UTIs caused by E. coli 

susceptible and resistant to trimethoprim in elderly patients residing in and 

outside of long-term care facilities in the West Midlands. ............................... 356 

Figure A- 8. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regressions without seasonality fit to the monthly UTIs 



16 

 

caused by E. coli sensitive (top plots) and sensitive (bottom plots) to 

trimethoprim in elderly patients residing in LTCFs (left plots) and outside of 

LTCFs (right plots) in the West Midlands. ....................................................... 357 

Figure A- 9. Seasonality in the monthly rate of UTIs caused by Klebsiella in 

elderly patients residing in and outside of long-term care facilities in the West 

Midlands from April 2010 to March 2014. ....................................................... 359 

Figure A- 10. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regression without seasonality fit to the monthly UTIs 

caused by Klebsiella in elderly patients residing in LTCFs and outside LTCFs in 

the West Midlands. ......................................................................................... 359 

Figure A- 11. Seasonality in the monthly rate of UTIs caused by Klebsiella 

susceptible and resistant to trimethoprim in elderly patients residing in and 

outside of long-term care facilities in the West Midlands. ............................... 361 

Figure A- 12. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regressions without seasonality fit to the monthly UTIs 

caused by Klebsiella sensitive (top plots) and sensitive (bottom plots) to 

trimethoprim in elderly patients residing in LTCFs (left plots) and outside of 

LTCFs (right plots) in the West Midlands. ....................................................... 362 

Figure A- 13. Monthly rate of UTIs caused by E. coli and Klebsiella in older 

people residing in and outside of long-term care facilities in the West Midlands 

reported by GPs. ............................................................................................. 363 

Figure A- 14. Seasonality in the monthly rate of UTIs caused by E. coli and 

Klebsiella in elderly patients residing in and outside of long-term care facilities in 

the West Midlands reported by GPs. .............................................................. 364 

Figure A- 15. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regressions without seasonality fit to the monthly UTIs 

caused by E. coli (top plots) and Klebsiella (bottom plots) in elderly patients 

residing in LTCFs (left plots) and outside of LTCFs (right plots) in the West 

Midlands reported by GPs. ............................................................................. 365 

Figure A- 16. Increasing trend in the monthly rate of GP trimethoprim and 

nitrofurantoin prescriptions for all ages in the West Midlands from August 2010 

to March 2014. ................................................................................................ 367 

Figure A- 17. Seasonality in the monthly rate of GP trimethoprim and 

nitrofurantoin prescriptions for all ages in the West Midlands from August 2010 

to March 2014. In red, the fitted predictions of the negative binomial polynomial 

regression model of degree two with offset. .................................................... 368 

Figure A- 18. The autocorrelation function (ACF) for lags 0-12 of the residuals of 

the negative binomial regression without (5a) and with (5b) seasonality fit to the 

monthly GP trimethoprim and nitrofurantoin prescriptions for all ages in the 

West Midlands. ............................................................................................... 368 



17 

 

Figure A- 19. The weekly incidence of resistant urine E. coli samples submitted 

to AmSurv for each of the LTCFs in the highest incidence quartile................. 375 

Figure A- 20. The weekly incidence of resistant urine E. coli samples submitted 

to AmSurv for each of the LTCFs in the second highest incidence quartile. ... 376 

Figure A- 21. The weekly incidence of resistant urine E. coli samples submitted 

to AmSurv for each of the LTCFs in the second lowest incidence quartile. .... 377 

Figure A- 22. The weekly incidence of resistant urine E. coli samples submitted 

to AmSurv for each of the LTCFs in the lowest incidence quartile. ................. 378 

Figure A- 23. Number of deaths from each of the four compartments of the 

model by week of the study period. ................................................................. 380 

Figure A- 24. Number of individuals discharged from the LTCF to hospital from 

each of the four compartments in the model by week of the study period. ..... 381 

Figure A- 25. Number of individuals admitted to the LTCF from the community 

into each of the four model compartments by week of the study period. ........ 382 

Figure A- 26. Number of individuals admitted to the LTCF from hosital into each 

of the four model compartments by week of the study period. ........................ 383 

 

  



18 

 

List of tables 

Main text 

Table 2-1. Modelling terms definitions. ............................................................. 38 

Table 3-1. Characterisation of the papers that modelled MRSA transmission in 

LTCFs and assessed the impact of one or more interventions. ........................ 61 

Table 3-2. Comparison of key parameters used by Barnes et al. (2011)142, 

Chamchod and Ruan (2012)102 and Lee et al. (2013)104. .................................. 65 

Table 3-3. Critical appraisal of Barnes et al. (2011)115, Chamchod and Ruan 

(2012)102 and Lee et al. (2013)104. ..................................................................... 71 

Table 3-4. Checklist for the critical appraisal of mathematical models of AMR 

bacteria in LTCFs. ............................................................................................. 76 

Table 4-1. Number of samples per year submitted to AmSurv by laboratories in 

the West Midlands. ........................................................................................... 92 

Table 4-2. Panel of antibiotic tests selected for E. coli. ..................................... 95 

Table 4-3. Panel of antibiotic tests selected for Klebsiella. ............................... 96 

Table 4-4. Number of laboratories included after cleaning per bacterium-

antibiotic combination. ...................................................................................... 97 

Table 4-5. Number of beds in LTCFs in the Care Quality commission dataset 

compared to those that were matched to urine specimens in the AmSurv 

dataset. ........................................................................................................... 102 

Table 4-6. Main characteristics of each bacterium-antibiotic combination. ..... 104 

Table 4-7. LTCF characteristics of each bacterium-antibiotic combination. .... 106 

Table 4-8. Number of samples per bed in LTCFs ........................................... 108 

Table 4-9. Distribution of Klebsiella samples tested by species for each 

antibiotic selected. .......................................................................................... 110 

Table 4-10. Distribution of antibiotics tested against E. coli and Klebsiella where 

the precise antibiotic was not specified. .......................................................... 111 

Table 4-11. Characteristics of urine E. coli and Klebsiella positive samples. .. 112 

Table 5-1. Multivariable model fit with interactions. ......................................... 124 

Table 5-2. Comparing the multivariable model fit with and without interactions.

 ........................................................................................................................ 125 

Table 5-3. Rate of E. coli and Klebsiella UTI and E. coli and Klebsiella UTI 

caused by antibiotic-resistant bacteria for LTCF and non-LTCF residents per 

100 person years. ........................................................................................... 126 



19 

 

Table 5-4. Sensitivity analysis for the rate of E. coli and Klebsiella UTI and E. 

coli and Klebsiella UTI caused by antibiotic-resistant bacteria per 100 person 

years for LTCF and non-LTCF residents. ....................................................... 127 

Table 5-5 Prevalence of antibiotic resistance in LTCF, non-LTCF, residential 

LTCF, and nursing LTCF samples. ................................................................. 129 

Table 5-6. Unadjusted and adjusted odds ratio of antibiotic resistance in 

bacteria from LTCF samples compared to non-LTCF samples....................... 130 

Table 5-7. Unadjusted and adjusted odds ratio of antibiotic resistance in 

bacteria from residential LTCF samples compared to non-LTCF samples and 

from nursing LTCF samples compared to non-LTCF samples........................ 132 

Table 5-8. Prevalence of antibiotic resistance in urinary tract bacteria present in 

LTCF samples, in non-LTCF samples, in samples sent by GPs, and in samples 

sent from hospitals. ......................................................................................... 133 

Table 6-1. Studies that analysed the seasonality of UTI ................................. 151 

Table 6-2. Descriptive table of the rates of UTI consultations and trimethoprim 

and nitrofurantoin prescriptions by age group and sex. .................................. 161 

Table 6-3. Akaike information criteria (AIC) for the models of UTI consultations 

in the UK including a seasonal component with no trend term, a linear trend 

term and a quadratic trend term, by sex and age group. ................................ 164 

Table 6-4. Coefficients and 95% confidence intervals (CI) of the models of UTI 

consultations in the UK by sex and age group. ............................................... 165 

Table 6-5. Akaike information criteria (AIC) and the percentage deviance 

explained by the models of UTI consultations in the UK including a seasonal 

component and models that did not by age group. ......................................... 168 

Table 6-6. Month of the year with the highest number of UTI consultations or 

trimethoprim and nitrofurantoin prescriptions by age group. ........................... 170 

Table 6-7. Akaike information criteria (AIC) for models of the scaled UTI 

consultations in the UK which included a seasonal component and models that 

did not by age group. ...................................................................................... 172 

Table 7-1. Parameters in the model ................................................................ 196 

Table 7-2. Estimating β and rho for different values of tr. ............................... 221 

Table 7-3. Estimating rho and tr for different values of β. ............................... 223 

Table 7-4. Sensitivity analysis part 1. .............................................................. 235 

Table 7-5. Sensitivity analysis part 2. .............................................................. 238 

Table 7-6. Movement, transmission and treatment scenarios. ........................ 241 

  



20 

 

Appendix 

Table A- 1. Univariable logistic regression results- odds of resistance in bacteria 

from LTCF samples (vs. non-LTCF samples), residential LTCF samples (vs. 

non-LTCF samples), and nursing LTCFs samples (vs. non-LTCF samples) for 

all bacterium-antibiotic combinations. ............................................................. 324 

Table A- 2. Univariable logistic regression results- odds of resistance in bacteria 

from male samples (vs. females) for all bacterium-antibiotic combinations. ... 326 

Table A- 3. Univariable logistic regression results- odds of resistance in bacteria 

from samples from those aged 75 to 80 (vs. 70-74), 81-85 (vs. 70-74), and over 

85 (vs.70-74) for all bacterium-antibiotic combinations. Confidence intervals are 

adjusted for clustering at the postcode level. .................................................. 328 

Table A- 4. Univariable logistic regression results- odds of resistance in bacteria 

from samples taken in hospital (vs. from GPs) for all bacterium-antibiotic 

combinations. .................................................................................................. 330 

Table A- 5. Univariable logistic regression results- odds of resistance in bacteria 

from samples from the second year of the study (vs. the first year), the third 

year of the study (vs. the first year), and the fourth year of the study (vs. the first 

year) for all bacterium-antibiotic combinations. ............................................... 332 

Table A- 6. Multivariable logistic regression results for all bacterium-antibiotic 

combinations with LTCF residence included as a binary variable (LTCF samples 

vs. non-LTCF samples) PART A. .................................................................... 334 

Table A- 7. Multivariable logistic regression results for all bacterium-antibiotic 

combinations with LTCF residence included as a binary variable (LTCF samples 

vs. non-LTCF samples) PART B. .................................................................... 335 

Table A- 8. Multivariable logistic regression results for all bacterium-antibiotic 

combinations with LTCF residence included as a binary variable (LTCF samples 

vs. non-LTCF samples) PART C. .................................................................... 337 

Table A- 9. Multivariable logistic regression results for all bacterium-antibiotic 

combinations where the odds of resistance of bacteria from residential (Res) 

and nursing (Ns) LTCF samples are each compared to that of non-LTCF 

samples PART A. ............................................................................................ 339 

Table A- 10. Multivariable logistic regression results for all bacterium-antibiotic 

combinations where the odds of resistance of bacteria from residential (Res) 

and nursing (Ns) LTCF samples are each compared to that of non-LTCF 

samples PART B. ............................................................................................ 340 

Table A- 11. Multivariable logistic regression results for all bacterium-antibiotic 

combinations where the odds of resistance of bacteria from residential (Res) 

and nursing (Ns) LTCF samples are each compared to that of non-LTCF 

samples PART C. ........................................................................................... 342 



21 

 

Table A- 12. UTIs caused by E. coli and Klebsiella in LTCF residents and in the 

elderly living in their own homes per 100,000 elderly individuals living in the 

West Midlands. ............................................................................................... 353 

  



22 

 

Abbreviations 

AIC: Akaike information criterion 

AMR: antimicrobial resistance 

aORs : adjusted odds ratios  

BSAC: The British Society for Antimicrobial Chemotherapy 

BSI: bloodstream infection 

CE-pc: communal establishment postcodes 

CLSI: Clinical Laboratory and Standards Institute 

CPRD: Clinical Practice Research Datalink 

CQC: Care Quality Commission 

EUCAST: The European Committee on Antimicrobial Susceptibility Testing 

GP: general practitioner 

HES: Hospital Episode Statistics 

IBM: individual-based model 

LTACH: long-term acute care hospital 

LTCF: long-term care facility 

LTCF CE-pc: LTCF postcodes classified by the ONS as “communal 

establishment only”  

MRSA: methicillin-resistant Staphylococcus aureus 

MSSA: methicillin-sensitive Staphylococcus aureus 



23 

 

NEQAS: National External Quality Assurance Scheme 

ONS: Office for National Statistics 

RR: rate ratio 

THIN: The Health Improvement Network 

UTI: urinary tract infection 

  



24 

 

Ethics 

This work was conducted as a PHE employee, on a PhD programme funded by 

PHE with the aim of this informing PHE strategy for control of antimicrobial 

resistance. On the 11th of November 2013, I became a PHE employee in the 

position of PhD student and I continue to be employed by PHE after the PhD 

position. PHE has National Information Governance Board for Health and Social 

Care approval for the collation and analysis of this surveillance data in 

accordance with section 251 of the NHS Act 2006. This thesis included a 

secondary analysis of routinely collected AmSurv data. Patient postcode, NHS 

number, age and sex were included in the AmSurv database extract provided 

by PHE, as well as GP name and hospital name. This thesis also included a 

secondary analysis of The Health Improvement Network (THIN) data. THIN is a 

primary care electronic database that contains anonymised patient, prescribing 

practice, and consultation data. The data collection scheme for THIN is 

approved by the UK Multicentre Research Ethics Committee (reference 

number: 07H1102103). In accordance with this approval, the study protocol was 

reviewed and approved by an independent Scientific Review Committee 

(reference number 17THIN017). All of this analysis was carried out on PHE 

servers with appropriate information governance approvals. 

  



25 

 

Chapter 1 Introduction 

This thesis focuses on the problem of antimicrobial resistance (AMR) in long-

term care facilities (LTCF) for older people, with a particular focus on the 

antibiotic resistance of bacteria that cause urinary tract infections. Previous 

research on antibiotic resistance has mostly focused either on primary care or 

secondary care, and relatively little research has been carried out within LTCFs. 

LTCFs are a critical part of the healthcare system, housing residents whose 

needs do not warrant acute care in hospitals, but cannot be met in their own 

homes. Demographic shifts mean that an increasing proportion of our 

population are elderly.4 In addition, increases in life expectancy have outpaced 

improvements in disability-free life expectancy, meaning that a greater 

proportion of the population lives with disability later in life.5 The combination of 

these factors is driving an increasing demand for LTCF residence in older 

people, which is struggling to be met due to reductions in local authority 

budgets.5,6 Residents of LTCFs have high levels of co-morbidity, predisposing 

them to a wide range of infections, which are an important cause of hospital 

admissions.7–10 High levels of antibiotic exposure are, therefore, likely, and 

infections, including those caused by resistant bacteria, will likely spread readily 

in these congregate settings. It is, therefore, likely that AMR is a significant 

problem in the LTCF setting and that this setting makes an important 

contribution to the overall problem of antimicrobial resistance. This thesis uses 

statistical and mathematical modelling tools to shed light on the epidemiology of 

AMR in LTCFs using routinely available data.  

The problem of antibiotic resistance 

Bacteria can easily spread between humans, animals and the environment. We 

carry approximately 38 trillion of these organisms in our bodies, mostly in our 

gut and on our skin.11 Although most bacteria are not harmful, and in fact play 

an important role in our good health, they also cause infection.12 Bacteria that 

are commonly carried asymptomatically (without any symptoms) are 

problematic to survey, as their spread goes mostly undetected.13 
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Antimicrobials are therapeutic agents used to kill or slow the growth of 

organisms that cause infection such as bacteria, fungi, viruses or parasites. The 

first antimicrobial was discovered by Paul Ehrlich in 1909.14,15 This was a 

synthetic arsenic-based compound that was highly effective at treating syphilis. 

Nineteen years later, in 1928, Alexander Fleming discovered penicillin, the first 

antimicrobial of clinical relevance derived from microorganisms, which was 

introduced as a therapeutic in 1941.16–18 Sulfonamides were discovered soon 

after penicillin, in 1932.18 The discovery of these agents triggered the 

subsequent discovery of most of the antimicrobials used to date, in what is 

known as the “golden age” of antimicrobial discovery (1940s-1960s).16,18 

Antimicrobials have been instrumental in healthcare, enabling the treatment and 

prevention of infections. Surgical procedures and treatments that suppress 

immunity, such as chemotherapy, have become much safer in the knowledge 

that infections may be prevented or treated by antimicrobials.19 Antimicrobials 

are also widely used in veterinary medicine and in agriculture for the treatment 

and prevention of infections in animals and plants.19 However, tied hand in hand 

with antimicrobial use, is the development of AMR. 

AMR arises when organisms develop mechanisms to counteract the effect of 

antimicrobials, enabling them to survive and grow despite the presence of the 

antimicrobial.16 Antibiotics are a type of antimicrobials that target bacteria. 

Bacteria are able to develop and spread antibiotic resistant traits at a high rate 

due to their elevated growth rate and their ability to transfer genes between 

individuals, strains and even families.16 In many cases, genes encoding 

antibiotic resistant traits precede the use of antibiotics in human beings. They 

have been found in bacteria isolated in extreme environments that are unlikely 

to have been contaminated with antibiotics manufactured by humans.16,20 

However, resistant traits are favoured by antibiotic use. Antibiotic treatment 

confers an evolutionary selective advantage for the acquisition of antibiotic 

resistant traits, allowing bacteria with these traits to resist antibiotic treatment, 

survive and proliferate.16 A famous evolutionary hypothesis is the Red Queen 

effect, which proposes that organisms constantly evolve and adapt in response 

to their ever-changing environment.21 This metaphor of an evolutionary arms 

race was coined by Leigh Van Valen in 197321 and was derived from a passage 
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of Through the Looking-Glass by Lewis Carroll (1871): “Now, here, you see, it 

takes all the running you can do, to keep in the same place”. This plight for 

adaption and survival is not unlike that of bacteria in the presence of antibiotic 

drug development.22 

Although the lack of access to antibiotics is still a problem in many countries, 

particularly in the developing world23, antibiotic use has been increasing, thus 

providing a selection pressure for resistant strains of bacteria to prevail.16 

Antibiotics are frequently misused in the treatment and prevention of infection in 

humans.23 The four conditions which contributed most to inappropriate 

prescribing in primary care were sore throat (23.0% of identified inappropriate 

prescriptions), cough (22.2%), sinusitis (7.6%) and acute otitis media (5.7%).24 

Antibiotics are also prescribed in even larger quantities in animal husbandry. 

Although important, this was beyond the scope of this thesis.25,26  

Due to the paucity of new antibiotics being developed, a rise in antibiotic 

resistance limits treatment options and increases the risk of treatment failure, 

leading to increases in morbidity and mortality.19,27 The spread of antibiotic 

resistance is a major healthcare concern nationally and worldwide.19,28,29 In 

particular, antibiotic-resistant Gram-negative bacteria have been highlighted as 

organisms of concern.30–32 Gram-negative bacteria are a group of bacteria that 

contain small levels of peptidoglycan in their cell wall and possess an outer 

membrane, which confers them protection against several antibiotics. Two 

Gram-negative bacteria, Escherichia coli and Klebsiella have recently been 

highlighted as critical priority pathogens for research and development of new 

antibiotics by the World Health Organization.30 E. coli and Klebsiella have also 

been highlighted as bacteria to monitor for resistance in the five year AMR 

strategy for the UK (2013-2018).31  

Urinary tract infections- why do they matter? 

Gram-negative bacteria such as E. coli are part of the natural microflora of the 

gut; however, they are also the primary cause of urinary tract infections (UTIs).  
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UTIs comprise both infections of the upper and lower urinary tract. Common 

symptoms of UTI include dysuria (painful or difficult urination), a high frequency 

of urination, suprapubic tenderness, urgency in urination, polyuria (abnormally 

large passage of urine), new incontinence, fever and haematuria (blood in the 

urine).  

UTIs impact quality of life and are the most common cause of acute emergency 

admissions to hospitals amongst conditions that could be effectively treated and 

managed in the community10,33. Age and sex adjusted admissions for UTI per 

100,000 population increased from 102 in 2001/2002 to 229 in 2012/201334. In 

2015, UTIs were the second most common cause for antibiotic prescribing in 

primary care and prescribing for UTI has been increasing from 2010 to 201535. 

As such, antibiotic treatment for UTI is an important driver of antibiotic 

resistance. 

UTI sequelae include recurrences, pyelonephritis, complications associated with 

antibiotic use, such as antibiotic resistance and Clostridium difficile colitis, and 

bloodstream infection (BSI).36 BSIs are severe infections associated with high 

mortality, in particular if they are caused by antibiotic resistant bacteria.37 

Studies performed in English hospitals during the winter of 2012/2013, between 

April 2012 and March 2014 and between July 2011 and June 2012 found that 

51.2%, 41.1% and 52.4% of BSIs caused by E. coli, respectively, had a 

urogenital tract focus of infection.37–39 One of these studies showed that 98.4% 

of BSIs that had their origin in the urogenital tract were UTIs.39 In England, the 

Department of Health and NHS England demands the mandatory surveillance 

of the incidence of E. coli BSI by NHS Acute Trusts. From 2012 to 2016, the 

cases reported increased by 24.3%, with 40,272 cases reported in 2016.40 A 

steady increase was also observed from 2002 to 2008 in the BSIs reported to 

EARS-Net from laboratories across Europe.41 The rate of laboratory reports of 

Klebsiella BSI have increased steadily since 2013.42 The incidence of MRSA 

BSI, in contrast, has been decreasing since 2007.43 Given this increase in E. 

coli BSI, the Secretary of State for Health has set an ambition of reducing 

healthcare-associated Gram-negative BSIs by 50% by 2020.32 NHS England 

has developed the Quality Premium Scheme to reward clinical commissioning 



29 

 

groups for quality improvements in the aim of meeting this goal. The 

inappropriate prescribing of antibiotics for UTI may result in recurrences or 

treatment failure which may lead to BSI. Therefore, one of the targets in 

reducing BSIs is the reduction of inappropriate antibiotic prescribing for UTIs in 

primary care.44  

Urine has long been thought to be sterile; however, recent evidence suggests 

that bacteria are present in small concentrations in the healthy human bladder, 

and certain bacteria may in fact have a protective effect for UTI. 45 Particularly in 

the elderly, where catheterisation and asymptomatic bacteriuria (the presence 

of bacteria in the urine in the absence of clinical UTI symptoms) are common46–

48, the presence of Gram-negative bacteria in the urine, even in high 

concentrations, does not necessarily equate to a UTI. It is, therefore, important 

that symptoms are accounted for in UTI diagnoses. Accordingly, English 

national guidelines do not recommend sending urines from elderly people with a 

suspected lower UTI for laboratory culture unless two or more signs of infection 

are present or in case of treatment failure, and this is not recommended if 

patients are catheterised. Dipsticks with nitrite are recommended only in women 

under 65 years of age with cloudy urine and either mild symptoms, or two or 

fewer symptoms of UTI.49 The guidelines also recommend that suspected lower 

UTIs in elderly people should be treated empirically only when fever and one 

other symptom is present. 49,50 Due to the high frequency of co-morbidities such 

as dementia, which may hinder the ability to verbalise symptoms, and other 

comorbidities such as incontinence, diagnosis is complex. The distinction 

between colonisation and infection is, therefore, problematic when interpreting 

electronic health records capturing consultation for UTIs or surveillance 

databases capturing antibiotic susceptibility results and attempting to derive 

from this the rate or incidence of infection. Empiric treatment for UTI is frequent 

and may also complicate the interpretation of susceptibility data, as cultures 

may only be taken after treatment failure. 

UTIs are most frequent in the elderly. As mentioned above, the clinical 

management of UTI in this population is complex due to the high frequency of 

co-morbidities. Residence in a LTCF is a known risk factor for UTI.47 
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Long-term care facilities 

LTCFs are defined in different ways in the literature, comprising, for example, 

acute-care hospitals with long lengths of stay, residential facilities, and facilities 

that provide care to people of all ages including those with learning disabilities. 

However, for the purpose of this thesis, LTCFs are defined as facilities that 

provide accommodation for elderly people and support them in their daily 

activities such as washing, dressing and eating.51 They are otherwise known as 

care homes. Some LTCFs additionally provide nursing services. In 2011, 

291,000 people in England over 65 years of age (3.2% of the total population 

aged 65 and over) were recorded in the census as living in LTCFs52. This is 

predicted to increase in the coming years as the population in Europe ages and 

healthcare systems strive for cost optimisation, which frequently results in 

shorter hospital stays.53  

LTCF residents are at an increased their risk of being hospitalised compared to 

elderly individuals residing in their own homes.9 It has been shown that the ratio 

of emergency admissions and A&E attendances to elective attendances is 40-

50% higher in residents of a postcode containing a LTCF than in individuals 

aged >75 that did not live in a postcode containing a LTCF.9 The five year 

forward view suggested that many of these admissions to hospital could be 

avoidable54, which has resulted in the “enhanced health in care home” 

vanguards pioneered by NHS England.55 

Immunosenescence, the progressive decline in immune function that occurs 

during aging, increases the risk of infection in older people.7,56–58 Frailty, which 

is common in the old, increases individuals’ vulnerability to stresses such as 

infection and worsens their prognosis.59 LTCF residents additionally present 

with functional impairment, such as faecal and urinary incontinence; 

malnutrition; frequent co-morbidities, which often require the use of invasive 

devices such as catheters; and are potentially dehydrated.7,8,60  

Infection control can be challenging in LTCFs due to frequent opportunities for 

transmission through group activities; sharing of living space, objects and 

bathroom facilities; poor coordination of medical care; as well as a lack of staff 
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adequately trained in infection control.61,62 Infection control is also challenged by 

the fact that LTCFs are residents’ homes, and, as such, it is neither possible nor 

desirable to implement infection control measures similar to those in hospitals.  

In a point-prevalence survey carried out in LTCFs across Europe, UTIs were 

found to be the joint most common healthcare-associated infection together with 

respiratory tract infections (31%).63 In England, UTIs in LTCFs were the second 

most common healthcare-associated infection after respiratory tract infections 

(35.7%).63  

AMR in Gram-negative bacteria in LTCFs 

Point prevalence studies have also shown that a high proportion of residents 

were prescribed an antibiotic at any one time in LTCFs in Europe and 

Canada.63–66 In 2011, a literature review found that, any one time in Europe, 

between 4.8% and 15.2% of LTCF residents are being treated with antibiotics, 

and between 47% and 79% of LTCF residents in Canada, USA, and Italy 

receive at least one course of antibiotics per year.66 A point-prevalence survey 

co-ordinated by the European Centre for Disease Prevention and Control 

conducted between April and May 2013 in LTCFs across Europe found that 

4.4% of residents were being treated with at least one antibiotic on the day of 

the survey (N=3,367/77,264). Amongst the 16 English LTCFs included in this 

study, the prevalence of antibiotic treatment was higher, at 9% (N=37/409). In 

this subset of facilities, 86.8% of prescriptions made were aimed at treating 

infections (13.2% were prophylaxis prescriptions), and 45.5% of these were 

prescribed for UTIs. 63 However, antibiotic prescription is likely to vary 

significantly between LTCFs. 67 

Antibiotic treatment in LTCF residents and in elderly individuals living in their 

own homes was compared in the literature. A study of the national prescribing 

records in Sweden in 2008 found a higher usage of antibiotics for UTI in LTCF 

residents compared to elderly individuals living in their own homes.68 In 

England, a study of the electronic health records routinely collected by GPs in 

Hampshire showed that care home residents aged 75 or older had an 

unadjusted odd’s ratio of 2.66 (95% CI 2.51-2.82) of being prescribed a UTI 
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antibiotic when compared to individuals aged 75 or older residing in their own 

homes, and 2.12 (95% CI 1.99-2.26) after adjusting for gender, age, co-

morbidities and presence of a urinary catheter.69 With this exception, antibiotic 

usage in England has not yet been linked to LTCF data and is not routinely 

surveyed.  

The prevalence of colonisation with AMR Gram-negative bacteria has been 

shown to be high in several studies of individual LTCFs.70–72 Larger carriage 

surveys of AMR in Gram-negative bacteria have also been carried out in 

LTCFs. For example, a point-prevalence set in 107 LTCFs in the Netherlands 

between October 2012 and July 2014 found that 25% (95% CI 23-27%) of E. 

coli isolated from urine screening samples were resistant to trimethoprim, 1% 

(95% CI 0.6-1.6%) to nitrofurantoin, and 20% (95% CI 18-23%) to 

ciprofloxacin.73 Another study surveyed 20 LTCFs in Belfast (Northern Ireland) 

between July 2005 and May 2006 and found a large variability between LTCFs 

in the prevalence of colonisation by Extended spectrum beta-lactamase-

producing E. coli, ranging from 0% to 75%.74  

Several small studies have aimed to compare the prevalence of resistance in 

urinary isolates from LTCFs and from elderly individuals living in their own 

homes using GP data in Dublin (Ireland)75 and in Vestfold County (Norway)76; 

and using hospital data in Melbourne (Australia)77 and Dundee (Scotland)78. In 

Dublin, Dundee and Australia there was a higher prevalence of resistant Gram-

negative bacteria in the LTCF population compared to elderly individuals living 

in their own homes. The Norwegian study found no significant differences 

between the two groups. 

Only one study analysed the prevalence of carriage of antibiotic resistant Gram-

negative bacteria in English LTCFs. This study was set in Cambridgeshire in a 

LTCF of 105 beds during 2014. Stool and urine specimens were collected 

weekly from 45 participants, and 17 patients (38%) were found to be carriers of 

ESBL-producing E. coli at some point during the six months of the study.79 This 

study additionally showed that the strains isolated from several residents in the 

LTCF were highly related, suggesting that either transmission or acquisition 
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from a common source was occurring. In addition, the lineages of these isolated 

strains were highly related to that of strains associated with BSI in a local 

hospital. Another study found LTCFs to be a driver of hospital outbreaks of 

carbapenem-resistant Klebsiella pneumoniae.80 A prospective study set in three 

LTCFs in Philadelphia (USA) also found a high acquisition rate for 

fluoroquinolone-resistant E. coli, as detected through serial faecal sampling, 

with 47.5% of 120 residents newly acquiring this colonisation during a year of 

follow up.81 

In summary, although the combined evidence from the literature suggests that 

antibiotic usage and antibiotic resistance in Gram-negative bacteria are high in 

the LTCF setting; antibiotic prescribing and susceptibility data is not routinely 

collected and surveyed in LTCFs. Very few studies have investigated this 

problem in England. 

How can mathematical modelling can help? 

By definition, infectious diseases are different from non-communicable diseases 

in that they can be transmitted from one organism to another. Therefore, 

transmission often needs to be considered to fully understand the natural 

history of an infectious disease, or the impact of any intervention to control it.82 

Dynamic mathematical models incorporate transmission, and as a result, have 

become important tools in epidemiology and public health. They are used to 

understand the epidemiology of infectious diseases, to target interventions 

appropriately and to evaluate their health and economic impact.82–85  

Infectious disease transmission has been simulated extensively in the hospital 

setting using dynamic mathematical models.86 These are useful tools to 

simulate different “what if” scenarios under different sets of assumptions. They 

have been used to predict the impact of infection control interventions such as 

hand hygiene, antibiotic stewardship, isolation, healthcare worker cohorting, 

screening, decolonisation, patient cohorting, barrier precautions, environmental 

cleaning, vaccination and prophylaxis in hospitals.86–93 In addition, dynamic 

models have been used to analyse the impact of changes in antibiotic exposure 

and screening upon hospital admission on the prevalence of vancomycin-
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resistant enterococci (VRE).94 Mathematical models have also been used to 

propose novel strategies to reduce antibiotic resistance in hospitals such as 

informed switching between antibiotics.95 Furthermore, findings from 

mathematical models have been used to make policy decisions for hospitals. 

For example, a model used to analyse the cost-effectiveness of screening of all 

patients admitted to hospitals in England for MRSA has helped to shape the 

current national MRSA screening policy.87 Because of their mechanistic nature, 

mathematical models can also help us understand how a particular infection 

control strategy in a hospital can affect the epidemiology of an infection. For 

example, modelling the long-term impact of different mupirocin usage strategies 

for MRSA decolonisation in hospitals has helped identify the fitness cost of 

mupirocin resistance in MRSA.88  

Likewise, mathematical modelling has the potential to provide insight into the 

transmission of infections in LTCFs. Like in hospitals, LTCF residents live in 

close proximity to one another, and are more likely than the general population 

to be older and frailer individuals with chronic conditions which may warrant 

invasive devices such as catheters, or surgical operations, which increase their 

risk of contracting infections.7,9,96 However, LTCFs offer greater opportunities for 

infectious disease transmission than hospitals through many more shared 

objects and spaces, higher contact between residents, and longer lengths of 

stay, which favour prolonged exposure to the organisms residents may be 

carrying.97–99 Hence, existing insights from mathematical models of infectious 

disease transmission in the hospital may not apply in LTCFs.  

In addition, dynamic transmission models can incorporate patient movement 

dynamics between different institutions, which may be important for the spread 

of infectious diseases. Elderly residents in LTCFs are frequently admitted 

directly from their LTCF into a hospital and then discharged from the hospital 

back to the LTCF9. This process may occur repeatedly and is known as the 

“revolving door syndrome”. 96 Patients might acquire infections or become 

carriers of infectious diseases present in hospitals or in LTCFs, and may then 

transmit them to hospitalised patients during their visit or to other residents 

upon their return to the LTCF. In this scenario, infection control measures in 
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LTCFs alone may fail to decrease the prevalence of infection due to the 

constant re-admission of infected or carrier residents to hospital, coupled with 

high rates of transmission within LTCFs. Infection control measures in hospitals 

could also be hampered by this amplification of transmission through LTCFs.  

Thesis objectives 

The objectives of this thesis were four-fold: 

 First, to review the literature of dynamic transmission modelling of 

infectious diseases in LTCFs; to critically compare the mathematical 

models evaluating interventions against AMR bacteria in the LTCF; and 

to establish a checklist for policy makers to review the quality of 

mathematical models of interventions against AMR bacteria in LTCFs. 

 Second, to link antibiotic susceptibility data to the LTCF registry in 

England in order to determine if patients from which the samples were 

taken were LTCF residents, and use this dataset to compare the 

prevalence of AMR in LTCF samples and in older people living in their 

own homes. 

 Third, to determine the seasonality of UTIs in the UK, in order to 

understand whether this needed to be accounted for in transmission 

models. 

 Fourth, to develop a mathematical model to simulate the transmission of 

E. coli resistant to trimethoprim in the LTCF. 
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Chapter 2 Systematic review of published peer-

reviewed dynamic mathematical models of infectious 

disease transmission set in long-term care facilities 

Published in Infection Control and Hospital Epidemiology.3
 

 

Aim 

To review the published peer reviewed literature that described any dynamic 

mathematical models relating to infectious disease transmission in LTCFs, and 

summarise their methods and research themes.  

Introduction 

Chapter 1 introduced the use of mathematical models in explaining infectious 

disease dynamics. One of their main features is that they can explicitly simulate 

the transmission infectious diseases between individuals. Infectious disease 

population dynamic models generally represent changes in infection states (e.g. 

being susceptible to infection, being infected or being infectious).82 Changes 

between these states depend on parameters that can vary according to the 

proportion of the population in each infection state and, therefore, can vary over 

time.  

Table 2-1 defines the main terminology relating to mathematical models. 

Broadly, mathematical models used in infectious disease epidemiology can be 

divided into deterministic and stochastic models. In a deterministic model, the 

output of the model is simply determined by its parameters and, as such, the 

model output remains the same every time the model is run. Stochastic models, 

however, take into account randomness or variations which may occur by 

chance, producing different model outputs every time they are run.82,84  
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Table 2-1. Modelling terms definitions. 

Static model Model in which transmission does not change with the number of 

infected or colonised individuals in the population. Therefore, the 

infectious process does not vary over time. This type of model has 

been applied, for example, to the progression of varicella to herpes 

zoster.
100

 

Dynamic model Model representing a process (infection) that changes over time in 

such a way that the transmission to susceptible individuals is 

dependent on the number of infected or colonised individuals in the 

population. This type of model has been used to study most 

infectious diseases, for example measles.
101

 

Deterministic model  Model in which the output of the model is simply determined by its 

parameters and, as such, the model output remains the same every 

time the model is run. Deterministic models have been used to 

describe infections in large populations, for example pertussis 

resurgence in England and Wales.
102

 

Stochastic model Model that takes into account randomness or variations which occur 

by chance, producing different model outputs every time they are 

run. Stochastic models are more appropriate to simulate diseases 

transmitted within small confined environments, for example, in 

hospital wards
103

, where the effect of randomness becomes more 

important.   

Compartmental 

model 

Model that groups individuals into categories (e.g. infectious 

individuals). All individuals in one category are assigned the same 

set of parameter values. Individuals then transition through infectious 

states as groups. Compartmental models have been used, for 

example, to simulate the transmission dynamics of Ebola.
104

 

Individual-based 

model (IBM) 

Model that follows individuals as separate entities and infection 

states are recorded for each individual.
82,83

 Amongst others, IBMs 

have been used to understand sexually transmitted infections such 

as HPV.
105

 

Model fitting The inference of unknown model parameters.
86

 In frequentist theory, 

this is achieved by obtaining the set of parameters that are most 

likely given the data observed. 

Model validation Comparing the model predictions to a second dataset that has not 

been used for model fitting. 
86
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Dynamic transmission models can also be divided into those that are individual-

based and those that are compartmental. Compartmental models group 

individuals into categories (e.g. infectious individuals). All individuals in one 

category are assigned the same set of parameter values. Individuals then 

transition through infectious states as groups. Individual-based models (IBMs), 

however, model individuals as separate entities and infection states are 

recorded for each individual.82,83  

The choice of mathematical model type should be based on the question the 

researcher is aiming to answer.82 Stochasticity is important when modelling 

processes in small populations in which chance events might interrupt 

transmission but are less important in larger populations. Stochasticity also 

becomes important when attempting to understand the persistence of infection. 

IBMs are more complex and computationally intensive than compartmental 

models. They are appropriate when individual patient characteristics such as 

demographics, medical history, or contact patterns are relevant to the question 

addressed, and where the corresponding data is available to inform them. 

A variety of techniques are available to improve the quality of a mathematical 

model. Ideally, models should be fit against empirical data to make them more 

realistic. This empirical data can include, for example, data concerning the 

incidence or the duration of infection. Model fitting can be achieved through the 

statistical calibration of model parameters.86 In frequentist theory, this is 

achieved by obtaining the set of parameters that are most likely given the data 

observed106. Sensitivity analyses explore the impact of varying parameter 

values on model outputs. This could also encompass the sensitivity of the 

model outputs to assumptions surrounding the biology of the infection and 

transmission, which may impact the model structure. Sensitivity analyses are 

important in order to check for errors in models, to test their robustness, to 

increase our understanding of the underlying dynamics and to determine 

uncertainty in model parameters, structure and, therefore, in the outputs.86 

Validation involves comparing the model output to a second dataset.86  
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Chapter 1 highlighted the potential of mathematical models in studying 

infectious disease dynamics in the LTCF setting. To our knowledge, no 

systematic review of mathematical models of infectious disease transmission in 

LTCFs has been conducted. This chapter describes the peer reviewed dynamic 

mathematical models relating to infectious disease transmission in LTCFs and 

summarises their methods and research themes. This was carried out in order 

to identify research gaps, which in turn helped guide the direction of this thesis, 

and was published in Infection Control and Hospital Epidemiology.3 This search 

was then updated for the thesis submission. 
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Methods 

Database search and abstract screening 

The CINAHL, EMBASE, Global Health, MEDLINE and Scopus databases were 

systematically searched on the 27/12/13 for abstracts and titles that included 

terms relating to  “model” AND “long-term care facility” AND “mathematical” 

(see Appendix Chapter 2). An outline of the review process can be found in 

Figure 2-1. The Scopus search alone bore 5,971 results and, therefore, had to 

be limited thematically to immunology and microbiology, computer science and 

mathematics, which yielded 450 results. Under these criteria, the search 

generated 1,562 results (164 CINAHL, 523 EMBASE, 1 Global Health, 424 

MEDLINE, 450 Scopus). Upon de-duplication, these were reduced to 1,067 

records (88 CINAHL, 481 EMBASE, 1 Global Health, 76 MEDLINE, 421 

Scopus). The abstracts of these 1,067 papers were read. All peer reviewed 

dynamic mathematical models describing infectious disease transmission in 

LTCFs written in English were included. Those describing animal work, 

statistical models and within-host models were discarded. This left 21 papers for 

full text assessment.  

This search was performed again on the 19/02/16. Using the same search 

strategy, the EMBASE search yielded 729 new results, MEDLINE 630, Scopus 

133, CINAHL 13 and Global Health zero. Of these, two further studies were 

included for full text assessment. 

Full-text assessment  

Twenty three papers were read in full text. Studies that did not report 

mathematical models of infectious disease transmission in LTCFs were 

excluded. Studies were only considered to be set in LTCFs if they provided 

accommodation and support for elderly people in their daily activities such as 

washing, dressing and eating. LTCFs included facilities with and without nursing 

care. Rehabilitation centres, long-term acute care facilities and facilities for 

younger users did not meet the eligibility criteria for this study.  
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Only one paper was excluded due to access restrictions107. Two papers were 

excluded because they didn’t include mathematical models108,109, two because 

they were congress abstracts and there was no full text available110,111 and two 

because they didn’t include dynamic transmission models but statistical models 

analysing cost-effectiveness112,113. This left 16 papers114–129. From the 

references of the selected 16 papers, two additional papers were identified that 

fulfilled our criteria130,131 giving a total of 18 papers to review. These were 

categorised according to organism, date, setting, theme and methodology. 

Update of review for thesis submission 

The EMBASE and MEDLINE searches were kept active since the completion of 

this review until thesis submission (October 2017). Nine new papers describing 

infectious disease transmission in LTCFs through mathematical modelling were 

published. 132–140 These are also included in the description below. 

 

Figure 2-1. Flow chart of the review process. One thousand five hundred and sixty two 

records were identified through the CINAHL, EMBASE, Global Health, MEDLINE and Scopus 
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databases. After all duplicates were removed, 1,046 records were excluded through abstract 

screening, seven full-text articles were excluded through full-text assessment, two additional 

papers were identified through reference searching and two more through in an updated search 

on the 19/02/16. Nine papers were identified after the review for thesis submission. Twenty-

seven papers were selected for review.   
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Results 

Twenty-seven papers describing 22 different models were selected for 

review.114–127,130–140 In the original review carried out in February 2016, 1067 

abstracts were identified for screening and 18 papers that examined 15 different 

dynamic models of infectious disease transmission in LTCFs were selected for 

review. In October 2017, nine further papers had been published on this 

subject. In total, therefore, 27 papers were reviewed. 

Organism 

The most commonly studied micro-organisms were influenza viruses (nine 

papers: five seasonal120,123,125,128,131, three pandemic118,124,130 and one both121) 

and methicillin-resistant Staphylococcus aureus (MRSA) (seven papers114–

117,127,138,139). One of the latter studied both MRSA and methicillin-sensitive 

Staphylococcus aureus (MSSA).139 Of the remaining studies, three focused on 

the transmission of Gram-negative bacteria (two of carbapenem-resistant 

Enterobacteriaceae 132,133 and one of E. coli ST131134), three on 

norovirus126,129,137, two on Clostridium difficile.135,136, and in three cases the 

authors did not specify a bacterial species (two generic non-species-specific 

AMR bacteria119,140 and one generic non-species-specific bacteria in 

healthcare122) (see Figure 2-2). 
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Figure 2-2. Infectious disease modelling in LTCFs: publications per year. CRE, 

carbapenem-resistant Enterobacteriaceae; Bacteria in HC, Bacteria in healthcare; AMR 

bacteria, antimicrobial-resistant bacteria; MRSA, methicillin-resistant Staphylococcus aureus.  

Chronology 

The first models studying infectious disease transmission in LTCFs were 

published in 1993125,131. These were two papers describing the same model. 

For the ten subsequent years there were no publications in this field. Since 

2003 there has been a resurgence of publication in this area. From 2003 until 

2016, the number of papers published remained small, averaging at 1.5 

publications per year. In 2016, eight papers were published on this subject. 

Setting 

Eight papers modelled transmission within LTCFs114,118,120,125,126,137,138,141, nine 

in both LTCFs and hospitals115–117,122,127,129,132,139,140, one in the community, 

hospital and LTCFs (stratified into 5 demographic groups)135, one in the 

community, ICU and LTCFs136, one in the community, LTCFs, long-term acute 

care hospitals and acute care hospitals133, one in a small population (a small 

urban US community)124, one in a medium size population of 800,000 with 
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3,000 individuals in hospital and 7,000 in LTCFs134, two in larger populations (a 

country-size population and a USA state-sized population)123,128 and three did 

not define their population size119,130,131. Most papers were either explicitly or 

implicitly (though their choice of parameters) set in the USA (N=11 

115,116,119,124,127,128,132,133,135,138,139) or did not indicate a national setting (N=5 

114,118,122,125,131). Three other studies were set in the Netherlands120,121,140, two in 

France130,137, two in England129,136, one in Belgium126, one in Spain134, and one 

in an unspecified developed country123. One was an international study that 

utilised data from both Canada and the USA117.  

Theme 

Twenty-two papers assessed one or several interventions114,116–118,120–124,126–

128,130,132–140. The most common intervention (evaluated in nine 

papers114,118,122,124,126,130,132,133,135) was the isolation of residents. Other 

commonly studied interventions included decolonisation114,122,127,139, 

screening114,118,127, different types of surveillance systems132,133,135,139, contact 

precautions116,122,132,139, hand hygiene measures137, and prophylactic 

treatment120,123,128,130. Two papers researched the impact of altering patterns 

and rates of patient transfer and lengths of stay114,117 and three others 

investigated vaccination121,128,130. Altering staff to patient ratios and increasing 

staff shifts were each researched in one paper114,118. One study assessed the 

impact of reducing community and LTCF transmission, although the precise 

methods of how this would be achieved were not discussed.135 Other themes 

researched included the role of LTCFs in infectious disease prevalence and 

transmission (in seven papers114–116,119,127,132,133), the impact of patient transfers 

among institutions (in three papers117,127,139), the spread of AMR overall (in two 

papers119,140), theoretical concepts about a particular model (in two 

papers125,131) and modelling methodology for small outbreaks129.  

Methodology 

The majority of these papers (N=19115–118,120–122,124,125,128–133,135–137,139,140) 

described stochastic models whilst four papers described deterministic 

models119,123,126,127, one described a deterministic model with a stochastic 



47 

 

component for transmission128 and three described both types114,134,138. Thirteen 

papers described compartmental models114,118,119,122,123,126–129,134,135,137,138 and 

thirteen IBMs115–117,120,121,124,125,130–133,136,139. The three models that were 

repeated in two different papers each were stochastic IBMs. One was a network 

model140. 

Various model structures were described in the papers. One was a modification 

of a susceptible-infectious-recovered (SIR) model127; ten were based on a 

susceptible-infectious-susceptible (SIS) model114–117,119,132,133,138–140; one on a 

susceptible-exposed-infectious (SEI) model124; ten on variants of a susceptible-

exposed-infectious-recovered (SEIR) model118,120,121,123,125,126,128–131, one on a 

SEIS variant134, one on a variation of a PSCIC structure (protected, susceptible, 

colonised, infected, colonised) which included colonised individuals that were 

immune and not immune, one on two different structures: susceptible-colonised 

(SC) and susceptible-colonised-infected-isolated (SCII)122, and one on a UCIRc 

structure (uncolonised, asymptomatically colonised, infected and colonised 

subject to recurrence) that was then modified to include treatment.  

Five models were fit to data using formal statistical inference or emulation 

methods.128,129,134,135,137 One used a chi-squared goodness-of-fit test128, two 

using the least-square criterion 134,137, one used Markov Chain Monte Carlo135, 

and one used a gradient-based optimisation code to find the maximum-

likelihood estimate129. Only four studies validated their findings128,129,134,136. Two 

papers described simple fitting processes for some parameters used in the 

models117,126 and 17 of the 27 papers did carry out sensitivity analyses of the 

parameter sets114,116,120,121,123–125,128–131,133,134,136–139. Of these, five were carried 

out through Latin hypercube sampling120,121,125,136,137. 
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Discussion 

From 2003 until 2015, the number of papers publishing dynamic models of 

infectious disease transmission in LTCFs remained small, averaging at 1.5 

publications per year. However, in 2016, eight papers were published on this 

subject, which could indicate a potential increase in interest in studying 

infectious diseases in this setting. 

Up until February 2016, the scope of the organisms studied in the literature was 

limited to three organisms (norovirus, MRSA and the influenza virus) in addition 

to two more generic organism categories which were not sub-specified further 

(bacteria in healthcare and AMR bacteria). Norovirus, MRSA and the influenza 

virus are organisms that frequently cause infections in LTCFs; however, the 

transmission of other organisms such as Gram-negative bacteria, which also 

very commonly cause infection in this setting, were not studied. UTIs (together 

with respiratory tract infections) are in fact the most common infections in 

LTCFs and they are in their majority caused by Gram-negative bacteria. As 

discussed in Chapter 1, infections caused by Gram-negative bacteria are 

increasingly becoming problematic in hospitals as they are now the most 

frequent cause of bloodstream infections (BSIs), and have been highlighted as 

critical priority pathogens for research and development of new antibiotics by 

the World Health Organization.30 Interventions to prevent their spread are being 

trialled28,142–145. For these reasons policy makers are likely to be interested in 

models of Gram-negative bacteria transmission in LTCFs. The transmission of 

other infections such as Clostridum difficile infection and scabies, common in 

older people, had also not been modelled. From February 2016 to October 

2017, nine new papers describing infectious disease transmission in LTCFs 

through mathematical modelling had been published. 132–140 Three papers 

described the transmission of Gram-negative bacteria (two of carbapenem-

resistant Enterobacteriaceae 132,133 and one of E. coli ST131134) and two of 

Clostridium difficile.135,136 These studies begin to address the abovementioned 

gap in the type of organisms modelled in this setting; however, they focus on 

infections caused by particularly pathogenic Gram-negative bacteria, which may 

not be representative of most infections caused by Gram-negative bacteria 
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observed in LTCFs. The dynamics of Klebsiella colonisation and infection have 

also not been studied to date.  

The means of transmission, the time between infection and infectiousness and 

the duration of infectiousness vary greatly between organisms. As such, the 

infection processes of different organisms may warrant different types of 

mathematical models. The conclusions obtained from modelling the spread of 

one specific organism in the LTCF cannot be meaningfully extrapolated beyond 

this to other organisms without the necessary model adaptations, which could 

range from adjusting the model parameters to a completely new model structure 

and model type. 

Either explicitly or through their choice of parameter set, most studies were set 

in the USA and none were set in developing countries. This distribution may be 

reflective both of the mathematical modelling groups worldwide and of the 

countries in which LTCFs are most common. Eight studies modelled the 

transmission of infectious disease in LTCFs without taking into account other 

facilities such as hospitals or the community. Due to their frailty, LTCF residents 

are known to frequently visit hospitals9 and hospitals may act as an amplifier for 

some infections, particularly for healthcare-associated infections. Therefore, 

including patient hospitalisation may be important to accurately reflect the 

dynamics of transmission of infectious diseases in LTCFs.  

Several interventions were rarely addressed or not studied at all in the studies 

reviewed. Vaccination against influenza was explored; however, vaccination 

against bacterial infections was only explored in one study published in 2016136, 

which sought to quantify the impact of vaccination against C. difficile. This was 

perhaps due to the lack of licenced vaccines to this effect. However, as 

vaccines for infections which are common in LTCFs become closer to being 

licenced and are undergoing phase III clinical trials146–148, and in the face of 

growing antibiotic resistance, it becomes important to analyse the effect of 

vaccines on transmission dynamics in this setting.  

Other important interventions to model in LTCFs relate to antibiotic treatment 

and include antibiotic switching and antibiotic stewardship. The effect of these 
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interventions would have on transmission in the LTCF setting is still not well 

understood. Four studies published in 2016/2017 have aimed to address some 

of these questions. One study assessed the impact of switching between 

antimicrobial drug classes on C. difficile infection135. The authors additionally 

assessed the impact of improving hospital hygiene which had also not been 

previously assessed. 135 Another study investigated the effect of reducing the 

exposure to fluoroquinolones and cephalosporins in the population colonised by 

E. coli ST131 from 5% to 0%134. However, this was considered implausible. A 

further study assessed the impact of antibiotic use in the previous 3 months on 

the epidemic potential of MRSA USA-300 and MRSA non-USA-300. The 

authors did not model the reduction of antibiotic use as an intervention but 

rather compared the epidemic potential with and without previous antibiotic 

use.138  

The majority of these papers (N=19115–118,120–122,124,125,128–133,135–137,139,140) 

described stochastic models. The choice of model type, as mentioned in the 

introduction, should be dependent on the question posed. In the LTCF setting, 

stochasticity is important as these are generally small enclosed environments 

where chance events may become critical. Deterministic models would 

therefore not simulate the infection process accurately. Formal fitting techniques 

improve the reliability of model parameters and therefore, of the conclusions 

drawn from the model. However, only seven of the studies reviewed fit their 

models to data in some form117,126,128,129,134,135,137. In absence of formal model 

fitting, the full uncertainty surrounding the parameters should be presented. 

Sensitivity analyses of the parameter sets were carried out in 17 of the 27 

papers 114,116,120,121,123–125,128–131,133,134,136–139. If possible, models should be 

validated through the use of other available data to allow the generalisability of 

their findings to be ascertained. Only four studies validated their 

findings128,129,134,136. 

The range of organisms studied (and therefore, the range of interventions and 

models developed) complicated an in-depth comparison of the methods. 

Chapter 3 aims to address this by focusing on the models of interventions 



51 

 

against AMR bacteria identified in the original review of the literature carried out 

in February 2016.  

  



52 

 

Conclusions 

Few (27) mathematical models have characterised the spread of infectious 

diseases in LTCFs, nine of which were published during the last year. Eight of 

the studies reviewed did not account for the movement of individuals between 

LTCFs and hospitals, which are frequent and may act as an amplifier for some 

infections. The scope of the microorganisms studied is also limited. The 

transmission of Gram-negative bacteria is particularly understudied given the 

commonality of the infections they cause and their increasing public health 

importance.30,31 Future models require more robust methodology. Authors 

should carry out extensive sensitivity analyses and, when possible, employ 

formal fitting techniques to ensure the model accurately represents the data and 

is sufficiently robust to produce sound conclusions. In addition, the effect of 

interventions relating to antibiotic treatment such as antibiotic stewardship on 

the transmission of infections caused by antibiotic-resistant bacteria in the LTCF 

has not been investigated rigorously to date and could provide a valuable 

solution for reducing antibiotic resistance in this setting.  
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Chapter 3  Critical review of mathematical models 

of interventions against antimicrobial resistant bacteria 

in LTCFs and checklist of good quality models for 

policy making. 

Published in Infection Control and Hospital Epidemiology.3
 

 

Aims 

1. To critically evaluate models of interventions against antimicrobial 

resistant bacteria in LTCFs. 

2. To develop a checklist for epidemiologists and policy makers to 

distinguish good quality models of AMR in LTCFs. 

Introduction 

As described in Chapter 2, dynamic mathematical models have been useful to 

evaluate the impact of a variety of infection control interventions in hospitals.86 

In particular, many of these models have been used to evaluate interventions 

against AMR bacteria. Dynamic mathematical models allow better interpretation 

of the long-term impact of any intervention that aims to prevent infection by 

resistant bacteria than static models, as transmission and patient movement 

dynamics are complex and their impact on control measures are not intuitive.  

Although mathematical models can be useful in evaluating the impact of 

interventions, conclusions from these models will only be as good as the quality 

of the model from which they are drawn. For example, a mathematical model 

that underestimates the importation of AMR bacteria to the LTCF will likely 

conclude that screening upon admission to the LTCF is an ineffective strategy. 

Similarly, a model parameterised with outdated estimates could lead to 

conclusions that are not relevant to current LTCFs. Therefore, it is important to 

assess the quality of mathematical models published prior to their use in policy-

making. 
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When using mathematical models to inform policy at a local or national level 

there is a growing consensus as to what is desirable in model design, 

parameterisation and reporting.82,149–151 Despite this, there is no practical guide 

summarising best practice for mathematical modelling of interventions against 

AMR bacteria in LTCFs. Infection control specialists and policy makers making 

decisions about infection prevention and control in LTCFs may wish to interpret 

the validity of findings from mathematical models in this setting to guide their 

decision-making. For example, they may wish to implement interventions that 

have been shown to be effective in mathematical modelling studies. In order for 

this type of decisions to be successful, they should be based on high quality 

mathematical models that accurately represent the infection dynamics.  

This chapter will evaluate the quality of the existing models that quantify the 

impact of interventions against AMR in LTCFs and create a practical checklist to 

assess the quality of these models. It is important to develop a particular 

checklist for the LTCF setting. Firstly, LTCFs vary greatly in characteristics such 

as their size, the services they provide, and their case mix.152 Therefore, it 

becomes important to define precisely the type of facility being modelled and 

ensure that all the parameters in the model align with the type of facility being 

studied. In addition, LTCFs have strong links with other institutions such as 

hospitals, such that epidemics in one institution may drive epidemics in another 

or one institution may act as a reservoir for another; hence, it is important to 

model the flow of patients between them. LTCFs are also generally small 

institutions where chance events become important and stochasticity should 

also be included.  

This best practice checklist would also be useful in this thesis to aid the 

development of a mathematical model of transmission of E. coli resistant to 

trimethoprim (presented in Chapter 7). 
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Methods 

In order to facilitate the critical evaluation of models of interventions against 

infectious diseases in LTCFs, this analysis focused on models that assessed 

interventions against similar organisms, in this case AMR bacterial infections as 

these were closer to the subject of this thesis. In Chapter 2, 22 papers were 

identified that assessed one or several interventions against infectious diseases 

in the LTCF setting.114,116–118,120–124,126–128,130 Four of these evaluated 

interventions targeted at resistant bacterial infections.114,116,117,127 One of these 

studies was excluded as it evaluated altering transfer rates between hospital 

and LTCFs. This study was not included in the critical review because altering 

transfer rates between hospital and LTCFs was not considered an intervention 

that could realistically be introduced as hospital transfers from LTCFs may not 

be able to be safely reduced. All three remaining studies assessed interventions 

against MRSA.114,116,127 

These studies were critically evaluated. As criteria to evaluate these types of 

model have not yet been developed, these had to be determined in light of 

growing consensus in the literature to what is desirable in model design, 

parameterisation and reporting82,149–151, as well as expert opinion from AMR 

modellers. The following criteria were applied: Firstly, the reporting itself was 

considered important to enable replicability and the understanding of the study. 

The design should be justified, the aims clearly stated, the importance of the 

question studied made clear, the methodology appropriately described, and the 

assumptions made explicit. Secondly, the research question should determine 

the model structure and model type. This is so that the model is able to answer 

the question posed. Thirdly, the outcome measures used to answer the study 

question should be relevant and measured and valued appropriately to facilitate 

the decisions made by policy makers. Ideally, these should permit the 

comparison between studies; therefore, numerical reporting was considered 

preferable. Finally, the model parameterisation is key. Parameters should be 

taken from current sources and be relevant to the setting so that the model 

yields pertinent results to the setting evaluated, and sensitivity analyses should 

be carried out to determine uncertainty and, therefore, the robustness of the 
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model outputs to the parameter values. Preferably, data should be used for 

formal model fitting or validation. 

Using the criteria obtained from this critical evaluation; a checklist was 

developed that will enable clinicians and other decision-makers to appraise 

mathematical models of AMR in LTCFs. 
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Comparison of model results  

Together, the three studies selected for critical review114,116,127 found four 

interventions to be effective in reducing MRSA prevalence in the LTCF setting: 

screening and decolonisation, hand hygiene, contact precautions and 

increasing the staff to patient ratio. Figure 3-1 describes the interventions 

assessed, how their action was simulated in the model and the results 

observed. A detailed description of each model is provided in Appendix Chapter 

3. Barnes et al.127, aimed to evaluate the impact of screening and 

decolonisation on the equilibrium prevalence of MRSA in the LTCF. Chamchod 

and Ruan114, assessed the conditions under which screening and 

decolonisation, hand hygiene, and increasing the staff to patient ratio eliminated 

the probability of invasion of MRSA. Lee et al.116, sought to assess the impact of 

contact precautions for different sub-groups of LTCF residents on the number of 

acquisitions adverted within six months. 
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Figure 3-1. Assessing the effects of interventions against MRSA in LTCFs through modelling. Three papers have published models of interventions 

against methicillin-resistant Staphyloccocus aureus (MRSA) in long-term care facilities (LTCFs). The models have assessed five types of interventions in this 

setting. Two reduced the probability of transmission, one reduced the prevalence of colonisation and one reduced the contact rate. The results from the 

interventions modelled are shown on the right.  
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The likely outcome of an intervention is determined by the model pathways that 

are targeted by an intervention, the parameters associated with it and the 

assumptions behind it. Screening and decolonisation reduces the prevalence of 

colonisation by moving patients from a colonised state (for Barnes et al.127, both 

persistently colonised and transiently colonised) to a susceptible state 

(uncolonised). The opportunities for transmission are also reduced as the pool 

of infectious individuals is decreased. The other three interventions only prevent 

or decrease the rate of colonisation. In this case, interventions will take longer 

to reduce the prevalence of colonisation if there are frequently patients admitted 

to the LTCF who are colonised on admission. The impact of MRSA 

interventions on a generic susceptible-infected-susceptible (SIS) model 

structure is depicted in Figure 3-2. 
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Figure 3-2. Impact of MRSA interventions on a generic susceptible (S) –colonised (C)-

susceptible (S) model structure in the long-term care facility (LTCF). Whilst hand hygiene, 

increase of staff to patient ratio and contact precaution decrease the rate of colonisation, 

screening and decolonisation interventions reduce the prevalence of colonisation, therefore 

increasing the rate of decolonisation.  

Were the model structures and parameters used realistic? 

Chronology 

The main characteristics of the papers reviewed are summarised in Table 3-1. 

The three models114,116,127 were recently published (2011-2013), however, some 

parameters used by Barnes et al.127 and Chamchod and Ruan114 were based 

on older estimates that may be out-dated. Barnes et al.127 (published in 2011) 

based their parameter estimates on literature from 2004 to 2010 and Chamchod 

and Ruan114 (published in 2012) from 1999 to 2010. Lee et al.116 (published in 
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2013) based their estimates on current sources, using data published from 

2010-2011, with the exception of length of stay, which was the only parameter 

they based on data published before 2010 (2007).  

Table 3-1. Characterisation of the papers that modelled MRSA transmission in LTCFs and 

assessed the impact of one or more interventions. 

IBM: individual-based model 

Model structure and model type 

Chamchod and Ruan’s114 model only involved one LTCF and didn’t take into 

account the “revolving door syndrome” of patient transfer between hospital and 

LTCFs which might be important in driving transmission. Lee et al.’s IBM 

model116 was the most complex, incorporating LTCF, hospital and community 

settings and accounting for stochasticity. Barnes et al.’s model127 was the 

simplest, a deterministic compartmental model. 

The patient flow and transmission structures for the models are represented in 

Figure 3-3 and Figure 3-4, respectively. Patients were assumed to mix 

homogeneously within LTCFs across all models. A particular strength of the 

model developed by Lee et al., was that it used data to parameterise patient 

flow between healthcare facilities, where the other models did not. Barnes et al. 

 Barnes et al. Chamchod and Ruan Lee et al. 

Year 2011 2012 2013 

Deterministic/ 

Stochastic 

Deterministic Both Stochastic  

Compartmental/IBM Compartmental Compartmental IBM 

Formally fit to data? No No No  

Sensitivity analysis? No Yes  Yes, but only 

adherence to 

intervention 

Type  Univariate Univariate 

Formally validated? No No No 

Population setting LTCFs and 

hospitals 

LTCF LTCFs, hospital 

and community 

Country setting USA Not stated Orange County, 

CA, USA 
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differentiated between persistently and transiently colonised individuals. 

Evidence for these different types of colonisation by S. aureus is mixed153. 

Chamchod and Ruan114 and Lee et al.116 distinguished between healthcare 

workers and residents and between residents taking contact precautions and 

residents that did not, respectively, adapting the disease states in their model to 

fit the questions addressed. 
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Figure 3-3. Structures of patient flow. 3a: Patient flow between hospitals (H) and example 

long-term care facilities 1 and 2 (LTCF1 and LTCF2) in the compartmental model of Barnes et 

al.
127

. 3b: Patient flow between example hospital 1 (H1), example hospital 2 (H2), example LTCF 

1 (LTCF1), example LTCF 2 (LTCF2) and the community (sub-classified into those that remain 

for more and less than 365 days) in a representation of Lee et al.’s individual-based model. 
116

 

 

Figure 3-4. Model transmission structures. 4a: Transitions between uncolonised (U), 

persistently colonised (P) and transiently colonised (T) disease states in Barnes et al.’s 

compartmental model
127

. 4b: Transitions between the uncolonised (U) and colonised (C) 

disease states (for residents) and between the uncontaminated (H) and contaminated (Hc) 

disease states (for healthcare workers) in Chamchod and Ruan’s compartmental model
114

. 4c: 

Representation of transitions between the susceptible with precautions (Sp), susceptible without 

precautions (Sφ), infectious with precautions (Ip) and the infectious without precautions (Iφ) 

disease states in Lee et al.’s individual-based model. 
116

 

Parameter validity, estimation and uncertainty 

Table 3-2 summarises the key parameters used by Barnes et al.127, Chamchod 

and Ruan114 and Lee et al.116. The parameters used by the models, including 

the LTCF size, the transmission rates, the prevalence of colonisation and the 
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duration of colonisation, were very different in different models and often 

involved different units of measurement that did not allow for comparison across 

models (for example, the transmission rates). In addition, many parameter 

estimates were based on expert opinion instead of data. None of the models 

were formally fit to data. Chamchod and Ruan114 carried out univariate 

sensitivity analyses, which added credibility to their findings, whilst Barnes et al. 

did not.127 Lee et al.116 only carried out a sensitivity analysis on the adherence 

to the intervention.  
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Table 3-2. Comparison of key parameters used by Barnes et al. (2011)
154

, Chamchod and 

Ruan (2012)
114

 and Lee et al. (2013)
116

. 

 Barnes et al. (2011) Chamchod and 

Ruan.(2012) 

Lee et al. (2013) 

Size of 

institution 

(number of 

beds) 

300 for hospitals, 100 for 

LTCFs and 20 for hospital 

units 

2000 (LTCF) mean for hospital 

228.6 (SD=120.2) 

and mean for LTCF 

108.6 (SD=58) 

Rate(s) of 

transmission of 

MRSA (per day)  

 

0.15 (low), 0.25 (medium), 

0.35 (high) for hospitals 

and hospital units. 0.05 

(low), 0.075 (medium) and 

0.1 (high) for LTCFs.  

0.015 (resident to 

resident), 0.12 

(healthcare worker to 

resident) and 0.12 

(resident to healthcare 

worker) 

mean for hospital 

0.0099
a
 

(SD=0.0402) and 

mean for LTCFs 

0.000082
a
 

(SD=0.000056)  

MRSA 

colonisation 

prevalence on 

admission 

10% for both facilities 10%  mean for hospital 

6.1% (SD=5.4) and 

mean for LTCF 

26.1% (SD=8.6) 

Duration of 

colonisation 

(days) 

5 for transiently colonised 

and 50 for persistently 

colonised across all 

institution types 

60 and 80 (two 

scenarios)  

1/3 of those 

colonised with 

MRSA had 

indefinite carriage. 

The remaining 2/3 

lost their carriage 

linearly with a half-

life of 6 months. 

a
rate of transmission per person per day (vs. effective contact resulting in transmission, rate 

averaged per day) 

The three studies chose different sizes of LTCFs, ranging from 100127 to 2000 

beds114. However, the average number of beds in care homes registered in 

England by the Care Quality commission (the regulator of health and social care 

in England) on the 01/04/2014 was 37 beds152. Only 1.3% (116) of care homes 

were able to cater for over 100 residents and the largest registered LTCF had 

215 residents. In the USA, the average nursing home size was 106 beds 

(ranging from 2 to 1,389) and the average capacity of residential care 

communities was 38 beds (ranging from 4 to 582)155. A LTCF with 2000 
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residents114 is, therefore, highly implausible in the English and American 

settings. A large LTCF size is likely to reduce the effect of stochasticity, diluting 

the importance of a chance event. For example, an additional infected individual 

entering the LTCF won’t be very important in a large population; however, in a 

small population this could greatly increase the infection prevalence in the 

LTCF. Therefore, a large LTCF size will reduce the probability of a “die out” (in 

this case, the AMR bacteria not being dominant in any individual within the 

LTCF) or rapidly increasing due to a chance event.  

Lee et al.116 referenced their transmission parameter for MRSA in LTCFs as 

belonging from a study of MRSA transmission in LTCFs.156 The origin of the 

transmission parameters in the models published by Barnes et al.127 and 

Chamchod and Ruan114 was unclear. Barnes et al.127 modelled three different 

levels of transmission rates for LTCFs (0.05 (low), 0.075 (medium) and 0.1 

(high)) but did not report the source of these estimates. Chamchod and Ruan114 

reported different transmission rates for resident to resident, healthcare worker 

to resident, and resident to healthcare worker. These were derived from their 

respective probabilities of colonisation, which were referenced as originating 

from two studies157,158, multiplied by the average number of contacts between 

residents and between residents and healthcare workers (estimated as 1 and 8, 

respectively). The two studies referenced were a study of MRSA transmission 

carried out in a hospital158 and a modelling study set in a tertiary care 

hospital157. The later, in turn, based their transmission estimates on the 

literature. Chamchod and Ruan114 assumed the probability of colonisation 

between residents, healthcare worker to resident, and resident to healthcare 

worker was the same (0.015). However, as the average number of contacts 

between residents and healthcare workers was eight times higher than between 

residents, the resulting transmission rates were also eight times higher between 

residents and healthcare workers than between residents. It was unclear how 

the average number of contacts between residents and between residents and 

healthcare workers was estimated.  

Lee et al.116 and Barnes et al.127 assumed that transmission rates for hospitals 

were much higher than those for LTCFs, which is not necessarily the case159. 
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As described above, Lee et al.116 parameterised the transmission rate in LTCFs 

using the results of a study of MRSA transmission in LTCFs.156 They then 

parameterised the hospital transmission coefficient using estimates from a 

previous study that calibrated this parameter so as to obtain 1%, 2% and 3% 

incidence of MRSA in general wards, long-term acute care wards and ICUs, 

respectively. 160 Barnes et al.127, in the same way as for LTCFs, modelled three 

different levels of transmission rates for hospitals and did not report the source 

of these estimates. Barnes et al.127 did not provide a justification for the 

transmission rates in hospitals being higher than in LTCFs. 

Other assumptions, such as that the prevalence of MRSA on admission being 

broadly equal to the population prevalence of MRSA in the USA114,127, 10%161, 

may be incorrect as age is a risk factor for MRSA infection162–165. Older studies 

carried out in USA LTCFs (in 2005 and 2003-2004, respectively) have shown 

double this prevalence (59% and 40%, respectively)166,167. It also may not be 

generalisable across settings. Lee et al. estimated MRSA prevalence in LTCFs 

at 26.1%, which is in line with most of the published literature (21% in Leeds 

(England), 23% in Northern Ireland, 17% in Spain and 22% in Hong Kong 168–

170). The population-weighted mean MRSA percentage in the EU/EEA has 

decreased significantly over the recent years.171 Evidence of this decline in the 

USA is conflicting.172 Timely prevalence estimates of MRSA on admission may 

impact the best interventions to implement in the LTCF. For example, 

underestimating prevalence on admission will underestimate the effectiveness 

of interventions relating to screening on admission. 

Antibiotic prescription was not simulated by any of these models; however, it is 

a main driver of resistance. It increases the risk of colonisation and subsequent 

infection by resistant bacteria.28 Antibiotic treatment in the LTCF setting has 

been shown to be high and associated with MRSA carriage. 173–176 Antibiotic 

stewardship is, therefore, a very important strategy to reduce antibiotic 

resistance and should be one of the main interventions modelled.  
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Were the interventions modelled appropriately? 

Barnes et al.127 and Chamchod and Ruan114 did not clearly report their 

intervention outcomes and their relevance for clinical practice was not easy to 

interpret. Barnes et al.127 reported prevalence at equilibrium (a theoretical state 

of model stability) in numerical and graphical form whilst Chamchod and 

Ruan114 reported prevalence at equilibrium only in graphical form. For this 

reason, it was only possible to derive the threshold at which an intervention 

would eliminate MRSA at equilibrium prevalence or eliminate the probability of 

invasion. Lee et al.116 reported the median percentage decrease in MRSA 

prevalence at equilibrium and, in addition, calculated the acquisitions of MRSA 

adverted under certain adherence conditions, which facilitated the interpretation 

of their findings. 

Overall, Barnes et al.127 and Chamchod and Ruan114 described the assumptions 

related to the interventions they modelled in very little detail. Barnes et al.127 

assumed that, on average, two cycles of five-day “decolonisation” treatments 

were necessary for patients to be successfully decolonised (10 days). After 

these 10 days, therefore, the intervention was assumed to be 100% effective. 

Neither the adherence to this protocol, nor the impact of this assumption on the 

results were reported. Chamchod and Ruan114 merely reported the thresholds 

of decolonisation rate, duration of colonisation and resident to staff ratio 

reduction that were necessary to eliminate the equilibrium of prevalence and the 

probability of invasion. They did not report the effectiveness, adherence or time 

necessary for the interventions to be successful in achieving these thresholds; 

therefore, their validity cannot be judged.  

In contrast, Lee et al.116 assessed the effect of contact precautions in LTCFs 

under three different levels of adherence (25%, 50% and 75%). This allowed 

comparison across a spectrum of scenarios that were realistically 

parameterised when compared to the literature177,178. Their findings were also 

comparable to those from hospital models, suggesting that focusing 

interventions on the small minority of clinically apparent MRSA cases will be 

ineffective179. Therefore, the findings from this study are more robust compared 

to the two other papers.  
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Summary and critical evaluation 

The results from the critical appraisal are summarised below in Table 3-3. The 

choice of design was justified in all three papers and the importance of the 

question was made clear in the introductions. Barnes et al.127 and Lee et al.116 

set clearly focused questions and aims for their paper. Barnes et al.127 aimed to 

determine the effect of patient movement between hospitals and LTCFs on 

steady-state prevalence. As a secondary question they studied the 

effectiveness of screening and decolonisation. Lee et al.116 aimed to understand 

if contact precautions in LTCFs reduced MRSA prevalence in LTCFs and 

hospitals. In contrast, Chamchod and Ruan114 set broad objectives, to 

understand the persistence and prevalence of MRSA and possible means of 

control in LTCFs. The evaluation of interventions was purely theoretical and 

derived from the model behaviour a-posteriori.  

Chamchod and Ruan114 did not model the transfer of patients between LTCFs 

and hospitals, failing to include the dynamics of the “revolving door syndrome”. 

Barnes et al.127 did not address stochasticity in their model which could be 

important in in LTCFs as these are generally small contained environments, 

heavily influenced by chance events. 

Chamchod and Ruan114 only presented their outcomes in graphical form which 

made comparison with other studies challenging. Model assumptions governing 

structure and transmission were made explicit but the assumptions behind 

interventions were often not explained nor tested. None of the models were 

formally fit to data, and only Chamchod and Ruan and Lee et al. carried out any 

univariate sensitivity analyses114,116. Most of the parameters in these three 

studies were chosen from the literature. Only Lee et al. 116 used data to 

parameterise their model. Parameters chosen from older literature may be out-

dated. Chamchod and Ruan114 chose an unrealistically large LTCF size114 and 

both Barnes et al.127 and Chamchod and Ruan114 based the prevalence of 

MRSA on admission on the population prevalence of MRSA in the USA. This 

did not take into account that the population likely to be admitted to LTCFs is at 

a higher risk of MRSA carriage due to older age and frailty. Antibiotic treatment 

was also not considered in any of the models.  
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In their current state, none of the models reviewed were deemed of sufficient 

quality to inform policy concerning interventions in LTCFs. Although Lee et al.116 

explicitly described the assumptions behind their intervention and considered 

different levels of adherence; used data to parameterise their model and 

adopted a very complete model structure; they did not formally fit their model 

nor, in absence of this, test the robustness of their parameter estimates through 

sensitivity analyses for anything other than the intervention adherence. In 

addition, the authors did not consider antibiotic treatment and how this could 

impact their predictions. 
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Table 3-3. Critical appraisal of Barnes et al. (2011)
127

, Chamchod and Ruan (2012)
114

 and 

Lee et al. (2013)
116

. 

  Barnes et al. (2011) Chamchod and Ruan 

(2012) 

Lee et al. (2013) 

Was the choice 

of design 

justified? 

Authors chose 

deterministic 

compartmental model 

as an “introductory 

model” on the subject 

Authors chose both 

stochastic and 

deterministic models 

model variations due 

to chance 

Authors chose 

individual based model 

to simulate patient 

movement in complex 

Orange County facility 

network 

Were the 

question and 

aims 

appropriately 

focused and 

clearly stated? 

Specific goal: 

Determine the effect of 

patient movement 

between hospitals and 

LTCFs on steady-state 

prevalence Secondary 

question: Study 

screening and 

decolonisation 

effectiveness. 

Broad goals: What is 

the persistence and 

prevalence of MRSA 

and possible means of 

control in LTCFs? 

 

Specific goal: Can 

contact precautions in 

LTCFs reduce MRSA 

prevalence in LTCFs 

and hospitals? 

Was the 

importance of 

the question 

made clear? 

Yes, in introduction of 

paper. 

Yes, in introduction of 

paper. 

Yes, in introduction of 

paper. 

Was the 

methodology 

appropriately 

described? 

Some confusion about 

terms “hybrid” and 

“agency-based model”  

Clearly described Clearly described 

Was the 

structure of the 

model 

appropriate to 

answer the 

research 

question? 

Yes, authors included 

the transfer between 

hospital and LTCFs 

No, authors did not 

include the transfer 

between hospital and 

LTCFs 

Yes, authors included 

the transfer between 

hospital and LTCFs as 

well as the community. 
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Was the choice 

of model type 

appropriate to 

answer the 

research 

question? 

No, stochasticity 

should be included.  

Yes, stochasticity was 

included.  

Yes, stochasticity was 

included and contact 

precautions were 

explicitly modelled as 

disease states to 

address research 

question. 

Were the 

outcome 

measures used 

to answer the 

study question 

relevant and 

measured and 

valued 

appropriately? 

Yes, steady-state 

prevalence reported. 

Resulting graphs 

included numbers 

which helped 

interpretation 

Yes, prevalence and 

equilibrium prevalence 

are commonly used 

measures. Graphical 

outcomes only with no 

numerical reporting. 

Yes, median % 

decrease in MRSA 

prevalence and MRSA 

acquisitions adverted 

(shown in tables) 

reported.  

Graphical example of 

change in prevalence 

over time provided a 

good additional 

explanation. Numerical 

values also reported. 

Were any 

assumptions 

made explicit? 

The adherence to the 

intervention was not 

addressed. Other 

assumptions were 

made explicit. 

The effectiveness of 

the interventions and 

the adherence to these 

were not addressed. 

Other assumptions 

were made explicit. 

Clearly outlined 

Were data used 

for formal model 

fitting and/or 

validation? 

No No Data from a national 

long-term care 

dataset, 2006-2008 

hospital and LTCF 

surveys, 2007 

California mandatory 

hospital dataset and 

patient screenings 

were used to 

parameterise the 

model but the model 

was not formally fit to 

data 
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Were the 

parameters 

appropriate?  

Some parameters 

were chosen from the 

literature 2004 to 2010 

and some by the 

authors. Prevalence 

on admission to the 

LTCF was too low. No 

sensitivity analysis. 

Antibiotic prescription 

was not considered 

Parameters were 

chosen from literature 

1999-2010 (some 

could be out-dated). 

LTCF size was 

unrealistic. Prevalence 

on admission to the 

LTCF was too low. 

Univariate sensitivity 

analysis. Antibiotic 

prescription was not 

considered 

Parameters based on 

data published 2007-

2011 (above). 

Univariate sensitivity 

analysis only on 

adherence to 

intervention. Antibiotic 

prescription was not 

considered 
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What makes a good mathematical model for the evaluation of 

interventions? 

A practical guide in the form of checklist that can be used by infection control 

specialists and policy makers for the appraisal of mathematical models of AMR 

in LTCFs is presented in Table 3-4. Many desirable criteria were identified, 

however, not all of them were considered essential to guide policy making. They 

were divided accordingly into low, medium and high criteria. 

In mathematical modelling studies for the evaluation of interventions where a 

high level of certainty is required from clinicians or policy makers, all high 

importance criteria should be met. Defining the LTCF setting clearly was 

considered a high importance criterion due to the extensive diversity between 

LTCFs in case-mix, size and the care provided.152 Findings from one setting 

may, therefore, not be applicable to other types of LTCFs. To avoid this 

confusion, it was considered important to clearly outline the characteristics of 

the LTCF studied. Modelling the flow of patients between hospital and LTCFs 

was also considered to be of high importance. This is because the prevalence 

of colonisation may be different in these two settings. In this scenario, the flow 

of patients between hospitals and LTCFs could highly influence the prevalence 

of colonisation in the LTCF (and in the hospital), and infection control policies 

that target these flows could be very effective in decreasing the prevalence of 

colonisation. Following the same reasoning, it was also considered highly 

important to test whether the prevalence of colonisation in hospitals and the 

community was different, and if so, account for this in different prevalence of 

colonisation on admission to the LTCF from these two settings. The prevalence 

of colonisation on admission to the LTCF from the community also should be 

based on LTCF data or data for older people population. This is to avoid 

underestimating the prevalence of colonisation on admission to the LTCF, 

which could be higher in this population. Another important criterion was the 

transparency in describing the methodology, including the assumptions 

underlying the interventions, and the sources of the model parameters. This 

was considered essential in order to evaluate their quality. Stochasticity was 

also deemed highly important in LTCFs, as these are generally small institutions 

where chance events become important. Finally, sensitivity analyses were 
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considered essential for models of sufficient quality to test policy, as they 

provide an estimate of uncertainty in the model outputs. 

Parameterisation using data and model fitting is preferable; however, data may 

not available for this purpose. In absence of these data, parameters may be 

sufficiently informed using estimates from current high quality studies which are 

relevant to the model setting, provided a full sensitivity analysis is conducted to 

test the robustness of the model to these parameters (a high importance 

criterion). Country specific data for LTCF size, structure and movement would 

best inform differences between LTCFs in different countries. In absence of this 

data, a clear description of these parameters (a high importance criterion) may 

help avoid the extrapolation of findings from LTCFs that are very different to the 

English setting. Antibiotic prescription is also considered desirable, as it is an 

important driver of AMR; however, data available to inform this are scarce. 

Ideally, the outputs of the study should permit the comparison between studies; 

therefore, numerical reporting was considered preferable, albeit not essential.  

The transmission in hospital is likely to impact the prevalence of colonisation on 

admission to the LTCF. Both processes are dynamic, therefore, modelling both 

the transmission in hospital and LTCFs would be best practice. However, 

parameterising both hospital and LTCF transmission would require multiple data 

sources, which are rarely available. In their absence, numerous assumptions 

based on little evidence would have to be made, which would undermine the 

robustness of the conclusions drawn from the model. In absence of this data, 

parameterising the admission to the LTCF from hospital appropriately (a high 

importance criterion) may be sufficient. Validation is also considered best 

practice; however, secondary datasets in this setting are rare. Finally, when 

possible, novel organism-intervention combinations should be studied to 

expand the existing knowledge in this field.   
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Table 3-4. Checklist for the critical appraisal of mathematical models of AMR bacteria in 

LTCFs. Ideally all high importance criteria should be addressed in a high quality model to permit 

the evaluation of interventions, generate and test hypotheses, and explore long term scenarios 

of AMR transmission and control in LTCFs. For the evaluation of interventions where a high 

level of certainty is required from clinicians or policy makers, all high importance criteria should 

be present in models. In both cases, medium and low importance criteria increase the quality of 

the model. 

Themes of appraisal Importance Checklist questions 

Setting and 

methodology 

  

 High Is the LTCF setting clearly defined? 

 High Is the flow of patients between hospitals 

and LTCFs modelled? 

 High Have sensitivity analyses been 

performed? 

 High Is the methodology employed fully 

described in publication including the 

assumptions underlying the 

interventions? 

 High Has stochasticity been addressed in the 

model? 

 Medium Has the model been fit to data? 

 Medium Have formal fitting techniques (e.g. least 

square criterion, maximum likelihood 

estimation, Markov Chain Monte Carlo) 

been used to fit the model to data? 

 Low Is hospital transmission included? 

 Low Have models been validated using an 

auxiliary dataset (if this is available)? 

Parameters   

 High Is the source of the model parameters 

described? 

 High Is the prevalence of colonisation on 

admission to the LTCF from the 

community based on data specific to 

LTCFs or, in its absence, to the elderly 

population? 
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 High If the prevalence of colonisation in 

hospitals is different to that in the 

community, is the prevalence on 

admission to the LTCF from hospitals 

different to that from the community? 

 Medium Are any parameters based on data rather 

than the literature? 

 Medium If any parameters are based on data, are 

the data relevant to the setting? 

 Medium Have transmission parameters 

appropriate to each setting (e. g. 

healthcare facility, bacteria) been 

employed? OR has model fitting been 

used to estimate transmission parameters 

from available data? OR if none are 

available, has a full sensitivity analysis 

been conducted? 

 Medium If any parameters are based on data, are 

these recent data? 

 Medium Is antibiotic prescription included in the 

model? 

 Medium Has country-specific data been used to 

describe institution size, facility structure 

and patient movement? 

Interventions 

 

  

 Medium Have numeric results of the outcome of 

interventions been made available to 

permit comparison across studies? 

 Low Is the model exploring organism-

intervention combinations that are novel 

(i.e. have not previously been evaluated 

in the LTCF context)? 
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Discussion 

Dynamic mathematical models of AMR bacteria have been used extensively to 

evaluate the impact of infection control interventions in the hospital setting and 

have helped shape current infection control policy in hospitals. 86,87 Antibiotic 

resistance is common in LTCFs66 and interventions for the control and 

prevention of AMR infections are being studied.180–184 In addition, LTCFs and 

hospitals are tightly linked due to frail residents of LTCFs being frequently 

admitted to hospital.9 These transfers could play an important role in the 

transmission of AMR bacteria in hospital (and vice-versa). Mathematical 

modelling has the potential to provide insight into the dynamics of AMR 

infections in LTCFs and the interventions that may be useful to control them. 

Robust models that will guide policymaking in this area are needed to this 

purpose. 

It is challenging to parameterise mathematical models of AMR transmission in 

the LTCF setting. Firstly, these facilities vary considerably in their patient 

populations, number of beds, and in the type of care they provide.152 As such, 

data gathered in one LTCF may not be representative of another.  

In addition, there is little data available for fitting and validation purposes. The 

surveillance systems that have been established in hospitals are not in place in 

LTCFs. In England, LTCF residents are seen either by GPs or in hospital. 

Diagnoses and prescriptions made by GPs may be captured by surveillance 

systems such as The Health Improvement Network (THIN) and the Clinical 

Practice Research Datalink (CPRD). Hospitalisation data (treatment, diagnosis) 

are recorded in the Hospital Episode Statistics (HES) database. Susceptibility 

data from laboratories concerning pathogens extracted from samples obtained 

from LTCF residents by GPs or in hospitals are collected centrally by AmSurv. 

LTCF characteristics such as bed numbers and services provided are 

separately gathered by the Care Quality Commission (CQC). Currently, there is 

no unified database where the infection journey of patients residing in LTCFs 

can be analysed. This hinders the calculation of incidence and prevalence of 

colonisation and infection by AMR bacteria, the rate of antibiotic treatment, and 

the duration of treatment in LTCFs. Patient movement between hospital and 
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LTCFs is also difficult to parameterise. Most of the data quantifying these 

parameters are available from small scale studies which may not be 

representative of the national or regional picture.  

Other parameters such as the antibiotic treatment and resistance in the 

community are more readily available as these can be captured by single data 

sources. 

In addition to the problems specific to the LTCF setting, there are general 

problems with parameterising models of AMR bacteria. Firstly, their rapidly 

changing epidemiology results in parameters quickly becoming outdated. 

Secondly, there is a plethora of organism-antibiotic combinations to be studied 

and each of these will require different parameters to be estimated. Thirdly, the 

interactions between these organisms are poorly understood and may be 

relevant to many of the processes surrounding transmission, including the 

duration of colonisation, the progression of colonisation to infection and the rate 

of transmission. Finally, the interactions between antibiotic prescribing and AMR 

are complex and difficult to simplify in a way that still yields valuable insights. 

This often requires making numerous assumptions, the validity of which can be 

disputed. 

The models assessed above are not considered robust enough to test policy; 

therefore, there is room for improvement in the mathematical modelling of 

interventions against MRSA in LTCFs through mathematical modelling. Since 

this review was conducted, several other publications developed models to this 

aim. Lee et al. (2016) expanded the same model explored in this chapter to 

study the impact of ICU screening for MRSA, contact precautions for MRSA 

carriers and decolonisation for all ICU patients, on the transmission of 

Staphylococcus aureus (MRSA and MSSA). 139 The authors stated fitting 

transmission rates in LTCFs to the target prevalence found in the literature; 

however, they did not describe the methods they used to achieve this. The 

effectiveness of contact precautions and decolonisation was varied in a 

univariate sensitivity analysis. No further model fitting nor sensitivity analyses 

were described. Another study assessed the impact of antibiotic use in the 
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previous 3 months on the epidemic potential of MRSA USA-300 and MRSA 

non-USA-300. However, the authors did not model the reduction of antibiotic 

use as an intervention but rather compared the epidemic potential with and 

without previous antibiotic use.138 According to the checklist proposed above, 

these two models would, therefore, also not be considered appropriate for use 

in policy-making. 

The prevalence of MRSA has been decreasing over the recent years in most 

countries of the EU/EEA.171 In contrast, resistant percentages in gram-negative 

bacteria are now high and increasing and gram-negative bacteria are the most 

frequent cause of bloodstream infections (BSIs) in Europe.171 Therefore, it is 

increasingly becoming important to model interventions against AMR gram-

negative bacteria in LTCFs. 

Since this review was conducted, Lee et al. developed a stochastic IBM of 

carbapenem-resistant Enterobacteriaceae transmission132. The authors used 

their existing stochastic IBM model of facilities in Orange County (California, 

USA) including LTCFs and hospitals 116,139. They assessed the impact of active 

surveillance for CRE when patients arrived from another hospital or LTCF and 

contact precautions/isolation in two scenarios: (a) when a facility acted in 

isolation when it had reached a certain threshold number of CRE cases and (b) 

in a scenario of coordinated regional infection and control when CRE cases 

were observed in a certain threshold number of hospitals. The authors tested 

the sensitivity of their results to assumptions made about the intervention. They 

also calibrated their transmission coefficients to reach a target 25% prevalence 

in LTCFs; however, the target itself and the methods used to achieve this were 

not described further. No formal fitting or sensitivity analyses were described. 

Talaminos et al. (2016) coded a model of ESBL and non-ESBL producing E. 

coli ST131 in a population consisting of households, hospitals, nursing homes 

and the general population. 134 They assessed the impact of two theoretical 

interventions, one that would reduce the acquisition rate by 10%, and one that 

would reduce the exposure to fluoroquinolones and cephalosporins from 5% to 

0%. The authors built both stochastic (hospitals and nursing homes) and 
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deterministic (households and general population) processes into their 

compartmental model. They fit the mean probability of colonisation for each 

compartment of the model to clinical data collected using the least squares 

method. They carried out multivariate sensitivity analysis of the dominant 

parameters and univariate sensitivity analysis of the remaining parameters. The 

authors validated their model, although they did not mention what data was 

used for this. 

Toth et al. (2017) developed a stochastic IBM of carbapenem-resistant 

Enterobacteriaceae transmission set in the community, LTCFs, long-term acute 

care hospitals (LTACHs) and acute care hospitals. 133 The authors assessed 

the impact of active surveillance and enhanced isolation in LTACHs. The 

authors fit the transmission rate and the clinical detection rate to data; however, 

their methods were not explained. The sensitivity of model outputs to starting 

interventions at different time points and to different assumptions regarding 

discharge from LTACHs was explored. 

All three of these studies132–134 modelled the flow of patients between hospital 

and LTCFs and performed some form of sensitivity analysis. Talaminos et al. 

(2016) 134 explored the uncertainty in their model in a more consistent way. 

They also fit two of their parameters to data formally and validated their model. 

Therefore, methodologically, this was the best model; however, the 

interventions assessed were theoretical. A 0% exposure to fluoroquinolones 

and cephalosporins is deemed extremely difficult to implement. The 10% 

reduction in acquisition rate could be achieved by result of an intervention. 

Further work would be needed to establish which intervention would produce 

this reduction and whether it would produce it consistently. 

Future studies should aim to model the transmission of gram-negative bacteria 

in LTCFs using robust methodology. The checklist above has been developed 

to facilitate this task; however, further work is needed for its validation. Further 

research is also needed to gather the data necessary to parameterise these 

models. Chapter 4 describes the data obtained from linking AmSurv, an English 

AMR surveillance tool, to the CQC database of registered LTCFs in the West 
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Midlands, in the aim of parameterising a transmission model of E. coli 

resistance to trimethoprim in LTCFs (presented in Chapter 7).   
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Conclusions 

Three dynamic mathematical models assessing interventions against AMR 

bacterial infections in LTCFs were identified through a systematic review of the 

literature and were critically reviewed in this chapter. All three of these models 

simulated the transmission of MRSA. These models were not considered robust 

enough to test policy. The first study, by Barnes et al.127, aimed to evaluate the 

impact of screening and decolonisation on the equilibrium prevalence of MRSA 

in the LTCF. The authors did not address stochasticity, did not formally fit their 

model to data nor, in absence of this, perform a sensitivity analysis. This study 

also based the prevalence of MRSA on admission on the population prevalence 

of MRSA in the USA. By the authors’ own admission, this was an “introductory 

model” on the subject.127 The second study, by Chamchod and Ruan114, 

addressed screening and decolonisation, hand hygiene, and increasing the staff 

to patient ratio. Chamchod and Ruan114 did not model the transfer of patients 

between LTCFs and hospitals and based the prevalence of MRSA on 

admission on the population prevalence of MRSA in the USA. They did not 

formally fit to data, but carried out univariate sensitivity analyses. In addition, the 

authors also chose an unrealistically large LTCF size. The third model, 

developed by Lee et al.116, sought to assess the impact of contact precautions 

for different sub-groups of LTCF residents on the number of acquisitions 

adverted within six months. The authors developed a mathematical model with 

a very complete model structure, explicitly described their assumptions, and 

considered different levels of adherence to their intervention; however, they did 

not formally fit their model nor test the robustness of their parameter estimates 

through sensitivity analyses for anything other than the intervention adherence. 

Antibiotic treatment was also not considered in any of the models.  

A checklist was developed for the evaluation of mathematical models of 

interventions against antimicrobial resistant bacteria in LTCFs by clinicians or 

policy makers. When a high level of certainty is required, for example, for policy-

making, the following minimum criteria should be met: 

1. The LTCF setting should clearly defined. 

2. The flow of patients between hospital and LTCFs should be modelled. 
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3. If the prevalence of colonisation in hospitals and the community is 

different, this should be accounted for in different prevalence of 

colonisation on admission to the LTCF from these two settings.  

4. The prevalence of colonisation on admission to the LTCF from the 

community should be based on LTCF data or data for the elderly 

population. 

5. There should be transparency in describing the methodology, including 

the assumptions underlying the interventions, and the sources of the 

model parameters.  

6. Stochasticity should be considered. 

7. Sensitivity analyses should be carried out to test the robustness of the 

model outputs to the parameters.  



 

85 

 

Chapter 4  AMR in LTCFs: linking the AmSurv 

dataset to the CQC dataset. 

Aims 

1. To introduce the datasets used for the analysis in subsequent chapters. 

2. To describe the cleaning and linkage methods used. 

3. To describe the main characteristics of the clean dataset. 

4. To outline the key strengths and limitations of the dataset. 

Introduction 

This chapter will describe the characteristics of the dataset used to study the 

epidemiology of antibiotic resistance in urinary tract E. coli and Klebsiella from 

residents of LTCFs for older people and adults aged over 70 living in the 

community. Subsequent chapters will describe the results of the analysis of the 

dataset.  

The previous chapter outlined the problems with parameterising mathematical 

models of AMR bacteria in LTCFs. One particular concern was the lack of data 

available for fitting and validation purposes. One important data source required 

is the incidence of infection by AMR bacteria in LTCFs. This chapter described 

how this need was addressed through the linkage of antibiotic susceptibility 

data with LTCF data. 

Chapter 1 introduced the importance of the problem of AMR in Gram-negative 

bacteria, and the reasons why it is of particular concern in LTCFs. Despite the 

many risk factors for AMR infections present in LTCFs, data on AMR is not 

routinely collected from LTCFs. Therefore, the extent of any problem is 

unknown and there is a lack of coordinated action to address the issue. The 

importance of UTIs is also explained in Chapter 1. UTIs are commonly sampled 

in the LTCF population; therefore, routinely collected urine microbiology 

samples provide an available means to study AMR in Gram-negative urinary 

bacteria. E. coli and Klebsiella, which frequently cause UTIs, were selected for 

analysis because they have recently been highlighted as critical priority 

pathogens for research and development of new antibiotics by the World Health 
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Organization and have also been highlighted as bacteria to monitor for 

resistance in the five year AMR strategy for the UK (2013-2018).30,31 In addition, 

the incidence of BSIs caused by both of these organisms has been increasing 

in England. 35,42,43,185 

AmSurv is an AMR surveillance tool established by the Health Protection 

Agency (now Public Health England) in 2009. It collects antibiotic susceptibility 

testing results from routine microbiology samples sent to participating diagnostic 

laboratories in England from both hospitals and GPs.186 Since December 2012, 

all laboratories in the West Midlands report to AmSurv, making data from this 

region the most complete longitudinal source of AMR surveillance information in 

England, with more than 95% of laboratories currently participating. The West 

Midlands Region (England) comprises a population of 700,000 individuals over 

the age of 70.4 Linking the AmSurv West Midlands susceptibility dataset to the 

registry of LTCFs in England enables the study of the epidemiology of antibiotic 

resistance in urinary tract E. coli and Klebsiella from residents of LTCFs. 

Figure 4-1 illustrates the complexity of the AmSurv database. Specimens can 

be collected from any individual in the population independently of whether they 

reside in LTCFs. Specimens can be collected in a GP practice or in a hospital. 

One patient may have one or more specimens taken. The same patient may 

have a specimen taken at their GP practice and another in hospital, which may 

then be sent to different laboratories for antibiotic susceptibility testing. In these 

laboratories, one patient specimen may culture one or several organisms, which 

are then tested for susceptibility against a panel of antibiotics. Antibiotic panels 

for the same organism vary between laboratories. Figure 4-2 defines some 

terms used throughout this chapter. 
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Figure 4-1. Flow diagram showing the complexity of the AmSurv dataset. The black characters are those presenting with symptoms that require a 

sample to be taken. LTCF, long-term care facility; S, sample; GP, general practitioner; Ab, antibiotic; S, susceptible; NS, non-susceptible.  
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Figure 4-2. Definition of specimens, specimen sites, samples and tests.  

Specimens: the sample of bodily fluid/material being collected 

(blood/urine/swab, etc.) 

Specimen sites: the body location from which specimens are 

collected (e.g. blood/upper gastrointestinal tract/urine and kidneys) 

Samples: a unique combination of organism, specimen site, patient, 

date, laboratory (i.e. one organism from a particular body site 

collected from one patient on a particular date and tested in one 

laboratory) 

Tests: antibiotic tests carried out on the samples 
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Methods 

Data extraction from AmSurv 

All antibiotic susceptibility results from all specimens collected from individuals 

over 70 years of age reported from the 15 microbiology laboratories in the West 

Midlands to AmSurv from 01/04/2010 to 31/03/2014 were extracted from the 

server. 

Data linkage of the AmSurv and CQC datasets to determine LTCF 

residence 

To determine which antibiotic susceptibility tests in the AmSurv dataset were 

from individuals that resided in LTCFs; the tests were linked with the Care 

Quality Commission registry of LTCFs. The Care Quality Commission, the 

national regulator of health and social care in England, holds a publicly 

available registry of LTCFs in England.152 Only LTCFs in the West Midlands 

region classified as “care homes” for elderly residents and recorded as active in 

the register from 2011/2012 (797 LTCFs) were included. Care homes, as 

defined by the Care Quality Commission, “offer accommodation and personal 

care for people who may not be able to live independently”.187 Care homes with 

24-hour medical care from qualified nursing staff are referred to as nursing 

LTCFs and care homes without this service as residential LTCFs. LTCF status 

(nursing or residential), bed numbers for the entire LTCF, and LTCF postcodes 

were extracted from this registry. 

Individuals’ full postcodes in the AmSurv database, collected on the request 

form for microbiological investigation, were matched against the full postcodes 

of LTCFs in the Care Quality Commission registry as of April 2014. Samples 

from individuals residing in a postcode that contained a LTCF (LTCF-pc) are 

subsequently referred to as LTCF samples and those with a postcode that did 

not (non-LTCF-pc) are referred to as non-LTCF samples.  

Postcodes may cover several buildings; therefore, LTCF postcodes may also 

include some elderly people who are not LTCF residents. Patient postcodes in 

AmSurv were matched to the postcodes in a dataset obtained from open data 
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held by the ONS that described the number of households per postcodes 188. 

Postcodes containing only communal establishments (CE-pc) in the West 

Midlands were identified.  

Cleaning of the overall dataset 

All cleaning was carried out in R 3·1.189 Figure 4-3 depicts the data cleaning 

process of an example bacterium-antibiotic combination (Klebsiella samples 

tested against trimethoprim).  

The first step involved eliminating spaces in the patient ID, NHS number, 

postcodes and AmSurv sender code fields. Tests with patient postcodes in 

incorrect format (172,999 tests), rows with “unknown” patient IDs (12 tests) and 

duplicated tests incorrectly generated in the data linkage from matching to 

LTCFs in the same LTCF postcode but with different names (36,330 tests) were 

eliminated. 
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Figure 4-3. Flow diagram showing the data cleaning process of an example bacterium-

antibiotic combination: Klebsiella samples tested against Trim (trimethoprim). 

Patient IDs were a composite of NHS number and laboratory codes 

automatically created by AmSurv. Blank patient IDs were replaced with NHS 

numbers. Unique combinations of patient ID, laboratory, date, specimen site 

and organism with more than one postcode were eliminated (753 tests). Each 

sample was associated with a unique sample ID. Sample IDs were created with 

unique combinations of patient ID, laboratory, date, body site where the sample 

was taken, bacterium, and patient postcode. The number of samples per 

laboratory year is described in Table 4-1. Tests from laboratory years where 
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laboratories were just beginning to report were also eliminated (184 tests, 15 

samples). The overall dataset comprised 4,862,357 antibiotic tests (96% of the 

full extract). 

Table 4-1. Number of samples per year submitted to AmSurv by laboratories in the West 

Midlands. The numbers in bold depict samples eliminated during the data cleaning process. 

Laboratory 571200 closed during years 3 and 4. Laboratory 610710 received fewer samples as 

it did not receive community samples. Laboratory 591250 did not receive any samples in year 1. 

Laboratory ID 
N samples 

year 1 

N samples 

year 2 

N samples 

year 3 

N samples 

year 4 

Total N 

samples  

(all years) 

571200 963 733 0 0 1696 

573255 3992 4081 4487 4617 17177 

579070 1833 11858 14818 16244 44753 

587635 12026 9341 16613 17321 55301 

591250 0 2030 2741 2887 7658 

597840 1152 6973 6583 6606 21314 

597955 12580 14061 12167 15065 53873 

610660 4586 4252 6391 7194 22423 

610710 71 62 79 69 281 

610735 12080 11904 12128 12630 48742 

610740 7791 7762 8004 8055 31612 

611985 0 15 5968 14008 19991 

612480 4571 5935 5899 7387 23792 

618530 1 3681 3556 6169 13407 

619000 0 1417 6177 6455 14049 

 

Test results were grouped by susceptibility, where resistant tests were those 

where the bacterium was described by the laboratories as intermediately 

resistant or fully resistant to the antibiotic.  
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Microbiology 

All the NHS clinical microbiology laboratories in the West Midland undertake 

UKAS external accreditation to verify competencies and assure conformity to 

standard methods.190 Laboratory information systems are configured to only 

send significant bacteriuria to PHE and PHE, through the national Standard 

Methods for Investigation for urine specimens, which recommends specific cut-

offs for clinical laboratory processing.191  

These laboratories perform antibiotic susceptibility testing using a variety of 

methods: EUCAST (The European Committee on Antimicrobial Susceptibility 

Testing), BSAC (The British Society for Antimicrobial Chemotherapy) and CLSI 

(Clinical Laboratory and Standards Institute); with a mix of automated 

susceptibility testing (e.g. VITEK, Phoenix) and manual laboratory methods 

(e.g. disc and gradient strip MIC testing (E-test)). All laboratories contributing to 

this dataset participate in the UK National External Quality Assurance Scheme 

(NEQAS). Clinical laboratories most commonly use EUCAST breakpoints, and 

until recently BSAC methodology, but where EUCAST breakpoints are 

unavailable for key antibiotics, laboratories use alternative published 

breakpoints such as the National Committee for Clinical Laboratory Standards 

(NCCLS), and are asked to report their methods to NEQAS when reporting 

specific organism antibiotic susceptibility results. Specifically in the West 

Midlands, in 2012, out of 15 laboratories, seven laboratories used BSAC disc 

diffusion, four used Vitek 2, three used breakpoint methods and one used a 

combination of Vitek 2 and BSAC disc diffusion (depending on if tests were 

performed during normal working hours) to test antibiotic susceptibility.192 

Seven of the eight laboratories using the BSAC method reported using the 

latest breakpoints during the study period. The remaining laboratory used an 

earlier version (version 10). Vitek 2 software uses EUCAST v1.1 (2010) 

breakpoints. During the study, two laboratories switched from using the BSAC 

method to a breakpoint technique.  

The CLSI breakpoints for ceftazidime (one of the four 3GC tested) changed in 

2010 and this change was implemented in automated systems between 2012 

and 2013. In 2012, no laboratories in the West Midlands reported using CLSI 
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breakpoints for this antibiotic. The methods used may have changed from 2012 

to 2014, which is a limitation of the percentage of 3GC reported. However, in 

our dataset, ceftazidime resistance constituted a fraction of what is reported as 

third-generation cephalosporin resistance (33% of 3GCs tests for Klebsiella and 

19% for E. coli) and there was no stepwise increase nor decrease in the 

percentage of urinary E. coli and Klebsiella resistant to cefazidime in any of the 

West Midlands laboratories. In addition, across all laboratories providing 

services to non-teaching hospitals in the region, 50% of urine samples come 

from the community with LTCFs sending samples to their closest laboratory 

rather than having a specific managed contract with one laboratory within the 

region. Bacteria that were either fully resistant or intermediately resistant to a 

particular antibiotic were considered resistant. 

Cleaning of the organism-antibiotic combinations 

Of the overall dataset, 249,567 tests were carried out on urine samples (from 

urine or kidney body sites). National guidelines from Public Health England 

state that urine specimens in older people (>65 years) should only be sent for 

culture if two or more signs of infection are present. Therefore, all urine samples 

were assumed to be submitted due to clinical need and, therefore, were 

indicative of a suspected UTI.49,50 The dataset did not contain sufficient clinical 

information to identify urine samples from catheters or distinguish between UTIs 

and asymptomatic bacteriuria, common in the elderly population, and, in 

particular, amongst those residing in LTCFs.193  

The tests carried out on urine samples were further subdivided by bacterium-

antibiotic combinations. Following the Department of Health’s Five Year 

Antimicrobial Resistance Strategy recommendations31 and expert opinion, E. 

coli and Klebsiella that were tested against key antibiotics were selected for 

analysis (see Table 4-2 and Table 4-3). The resistance of Klebsiella and E. coli 

urine samples to key antibiotic treatments in the community (trimethoprim and 

nitrofurantoin) and markers for important resistance profiles (3GCs (ceftazidime, 

cefpodoxime, cefotaxime, or ceftriaxone), ciprofloxacin, and carbapenems 

(imipenem or meropenem)) were included for full analysis. Trimethoprim and 

nitrofurantoin are recommended as first-line treatments for UTI;194 therefore, 
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resistance to these agents can result in treatment failure, hospitalisation, and 

the subsequent use of antibiotics such as ciprofloxacin or 3GCs that should be 

reserved for the treatment of more serious infections. Although they were not 

included in the drug-bug combinations highlighted by the Chief Medical 

Officer31, the reduction of inappropriate antibiotic prescribing for UTIs in primary 

care is in fact one of the targets of the Quality Premium Scheme developed by 

NHS England for reducing gram-negative BSI44. This involves reducing the 

trimethoprim: nitrofurantoin prescribing ratio by 10% and reducing the number 

of trimethoprim prescriptions in patients aged 70 or older by 10% from 

2015/2016 to 2017/2018.44 

Table 4-2. Panel of antibiotic tests selected for E. coli. 1GC refers to first-generation 

cephalosporins, 2GC refers to second-generation cephalosporins, 3GC refers to third-

generation cephalosporins. 

Final antibiotic groups 
Samples tested to any of the 

subcategory antibiotics (N) 

Samples tested to any of the 

subcategory antibiotics (%) 

Trimethoprim 171434 99.98 

Nitrofurantoin 171130 99.80 

3GC 148607 86.66 

Co-amoxiclav 146833 85.63 

1GC 141020 82.24 

Amoxicillin/Ampicillin 138718 80.90 

Ciprofloxacin 129206 75.35 

Gentamicin 114707 66.89 

Imipenem/Meropenem 69980 40.81 

Piperacillin/Tazobactam 50857 29.66 

2GC 57068 33.28 

Temocillin 47023 27.42 
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Table 4-3. Panel of antibiotic tests selected for Klebsiella. 1GC refers to first-generation 

cephalosporins, 2GC refers to second-generation cephalosporins, 3GC refers to third-

generation cephalosporins. 

Final antibiotic groups 
Samples tested to any of the 

subcategory antibiotics (N) 

Samples tested to any of the 

subcategory antibiotics (%) 

Trimethoprim 19267 99.96 

1GC 16151 83.80 

Ciprofloxacin 15950 82.75 

Co-amoxiclav 15895 82.47 

Gentamicin 15292 79.34 

Nitrofurantoin 14052 72.91 

3GC 13739 71.28 

Imipenem/Meropenem 10624 55.12 

Piperacillin/Tazobactam 9401 48.78 

2GC 8488 44.04 

Temocillin 6845 35.51 

 

The percentage of samples that were tested against a particular antibiotic was 

calculated for each year in each laboratory in the West Midlands. Laboratory 

years in which fewer than 80% of samples were tested against a particular 

antibiotic were excluded from the analysis. This was in order to avoid biases 

surrounding rarely tested antibiotics (for example, temocillin). The final number 

of laboratories included for each bacterium-antibiotic combination are described 

below in Table 4-4. 
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Table 4-4. Number of laboratories included after cleaning per bacterium-antibiotic 

combination. 1GC refers to first-generation cephalosporins, 2GC refers to second-generation 

cephalosporins, 3GC refers to third-generation cephalosporins. 

Organism Antibiotic Laboratories included (N) 

Klebsiella Trimethoprim 15 

 
Nitrofurantoin 14 

 
3GC 12 

 
Co-amoxiclav 14 

 
1GC 13 

 
Ciprofloxacin 11 

 
Gentamicin 12 

 
Imipenem/Meropenem 9 

 
Piperacillin/Tazobactam 9 

 
2GC 7 

 
Temocillin 5 

E. coli Trimethoprim 15 

 
Nitrofurantoin 15 

 
3GC 13 

 
Co-amoxiclav 13 

 
1GC 14 

 
Amoxicillin/Ampicillin 13 

 
Ciprofloxacin 9 

 
Gentamicin 11 

 
Imipenem/Meropenem 6 

 
Piperacillin/Tazobactam 5 

 
2GC 9 

 
Temocillin 4 

 

Samples of the same bacterium-antibiotic combination from the same individual 

within a 28 day period were considered to be the same episode of infection. For 
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each bacterium-antibiotic combination, tests were de-duplicated to one per 

patient per infection period (28 day period) and the most resistant test from 

each individual was chosen from each infection period. When there was more 

than one resistant result from tests carried out on different dates, the first test 

date was selected.  

Figure 4-3 shows the cleaning of the example bacterium-antibiotic combination 

Klebsiella-trimethoprim. In this example, more than 80% of samples were tested 

against trimethoprim in all laboratory years; therefore, no tests were eliminated. 

1,450 Klebsiella tested against trimethoprim were considered duplicates and 

were eliminated. 
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Description of the overall dataset 

There were 15 diagnostic laboratories in the West Midlands region testing 

routine microbiological samples, all of which reported to AmSurv during the 

study period (01/04/2010-31/03/2014). The overall dataset comprised 376,089 

samples from 218,251 patients over 70 years of age. There were 8.6% of 

samples were from individuals residing in 750 LTCF-pc. Prior to de-duplication 

per infection period, the three most common tests were for E. coli (41.8%), 

Staphylococcus (28.7%) and Klebsiella (5.7%). Fifty seven percent of all tests 

were carried out on urine specimens. As shown in Figure 4-4, most E. coli and 

Klebsiella samples (91% and 85%, respectively) were urine samples (from urine 

or kidney body sites). 52% of samples were submitted by GPs and 48% by 

hospitals. 
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Figure 4-4. Distribution of samples per specimen site. Upper GIT refers to upper gastro-

intestinal tract. The “other” specimen site category includes specimen sites labelled as bones 

and joints, brain and cerebral, cardiac, faeces and lower gut, fluids, genital, lower respiratory 

tract, tips and lines, tissue, upper respiratory tract/mouth/ear, unassigned class, and unknown 

class  

Description of the urine dataset 

There were 144,738 individuals over 70 years of age who had at least one 

positive urine specimen reported to the AmSurv database from any of the 15 

diagnostic microbiology laboratories in the West Midlands region. 9.1% of 

samples were from individuals residing in 741 different LTCF-pc. 62% of 

samples were submitted to laboratories by GPs, whilst 38% were submitted by 

hospitals. As shown in Figure 4-5, the most commonly reported bacterium in the 

dataset was E. coli (57.2% samples). Klebsiella spp. accounted for 6.2% of the 

samples (of which 65% were K. pneumoniae, 19% K. oxytoca, and 15% other 

Klebsiella of undefined species). 
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Figure 4-5. Distribution of urine samples by organism.  

Description of urinary tract E. coli and Klebsiella  

There were 171,475 urine E. coli samples and 19,279 urine Klebsiella samples 

(10% and 7%, respectively) from patients residing in LTCF-pc. The number of 

samples received per laboratory over the four years of the study is depicted in 

Figure 4-6 below. 
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Figure 4-6. Total number of samples per laboratory over the four years of the study. 

Laboratory 571200 closed during years 3 and 4. Laboratory 610710 received fewer samples as 

it did not receive community samples. Laboratory 591250 did not receive any samples in year 1. 

The size of the LTCFs that were matched to urine samples reported to AmSurv 

and the size of LTCFs in the Care Quality Commission registry overall (matched 

and unmatched) was similar (see Table 4-5 below).  

Table 4-5. Number of beds in LTCFs in the Care Quality commission dataset compared to 

those that were matched to urine specimens in the AmSurv dataset. 

  

Care Quality 

Commission 

LTCFs 

AmSurv LTCFs 

Mean number of beds in LTCFs 34.47 36.66 

Median number of beds in LTCFs 31 33 

Range beds in LTCFs 1-171 1-214 

% LTCFs under 20 beds 18 (146/797) 16.2 (120/741) 

% LTCFs under 10 beds 4 (31/797) 2.16 (16/741) 
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The number of samples per patient, the age and the percentage of samples 

sent by GPs (vs. hospitals) did not vary greatly across different bacterium-

antibiotic combinations (see Table 4-6 and Table 4-7). The percentage of 

samples from individuals residing in LTCF-pc varied from 5-10%. The number 

of samples per bed is shown in Table 4-8. 
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Table 4-6. Main characteristics of each bacterium-antibiotic combination. 1GC refers to first-generation cephalosporins, 2GC refers to second-generation 

cephalosporins, 3GC refers to third-generation cephalosporins. 

Organism Antibiotic N samples/ 

tests 

N patients  N samples per patient (mean, 

median, min, max) 

Patient age  

(mean, median, min, max) 

N postcodes 

Klebsiella Trimethoprim  
17844 13245 1.35 1 1 16 81.23 81 70 106 10458 

  Nitrofurantoin 
12159 9002 1.35 1 1 16 81.31 81 70 105 7300 

  3GC 
11593 8777 1.32 1 1 13 81.12 81 70 106 7059 

  Co-amoxiclav 
14360 10755 1.34 1 1 16 81.25 81 70 106 8500 

  1GC 
14436 10844 1.33 1 1 16 81.26 81 70 106 8625 

  Ciprofloxacin 
13738 10262 1.34 1 1 16 81.18 81 70 106 8138 

  Gentamicin 
13003 9787 1.33 1 1 16 81.13 81 70 106 7852 

  Imipenem/ 

Meropenem 8397 6368 1.32 1 1 12 81.09 81 70 106 5089 

  Piperacillin/ 

Tazobactam 7542 5795 1.3 1 1 11 81.12 81 70 103 4685 

  2GC 
7384 5657 1.31 1 1 12 81.07 81 70 106 4528 

  Temocillin 
6314 4820 1.31 1 1 12 81 81 70 106 3806 

E. coli Trimethoprim  
158764 96340 1.65 1 1 27 81.15 81 70 113 47742 
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Organism Antibiotic N samples/ 

tests 

N patients  N samples per patient (mean, 

median, min, max) 

Patient age  

(mean, median, min, max) 

N postcodes 

  Nitrofurantoin 
158501 96211 1.65 1 1 27 81.15 81 70 113 47705 

 E. coli 3GC 
134957 82146 1.64 1 1 27 81.2 81 70 113 41967 

  Co-amoxiclav 
128842 79307 1.62 1 1 27 81.14 81 70 113 39472 

  1GC 
126190 78984 1.6 1 1 27 81.15 81 70 113 40200 

  Amoxicillin/ 

Ampicillin 126897 80365 1.58 1 1 27 81.13 81 70 113 40854 

  Ciprofloxacin 
111220 66540 1.67 1 1 27 81.06 81 70 113 32813 

  Gentamicin 
99410 63876 1.56 1 1 27 81.07 81 70 113 33754 

  Imipenem/ 

Meropenem 50718 33240 1.53 1 1 27 80.94 80 70 113 17110 

  Piperacillin/ 

Tazobactam 35648 24912 1.43 1 1 15 80.91 80 70 113 14211 

  2GC 
51386 33637 1.53 1 1 27 81.12 81 70 113 17981 

  Temocillin 
43348 28147 1.54 1 1 26 81 80 70 113 14155 
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Table 4-7. LTCF characteristics of each bacterium-antibiotic combination. 

Organism Antibiotic N LTCFs % samples/tests from 

LTCFs 

% samples sent 

from GPs  (vs. 

hospitals) 

% LTCF samples 

sent from GPs (vs. 

hospitals) 

% non-LTCF 

samples sent from 

GPs (vs. hospitals) 

Klebsiella Trimethoprim  383 7 63.8 77.1 62.8 

  Nitrofurantoin 285 8 64.3 77.7 63.2 

  3GC 257 7 61.6 74.3 60.7 

  Co-amoxiclav 315 7 63.9 76.3 63 

  1GC 335 7 64 76.1 63.1 

  Ciprofloxacin 285 7 62.4 75.2 61.5 

  Gentamicin 269 6 62.5 75.1 61.6 

  Imipenem/ 

Meropenem 

170 6 60.8 70.6 60.2 

  Piperacillin/ 

Tazobactam 

163 6 59.8 69.7 59.2 

  2GC 150 6 61.6 71.8 60.9 

  Temocillin 111 5 62.6 73.7 62 

E. coli Trimethoprim  715 10 67.3 75.2 66.4 

  Nitrofurantoin 715 10 67.3 75.3 66.4 

  3GC 673 10 67.3 74.9 66.4 
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Organism Antibiotic N LTCFs % samples/tests from 

LTCFs 

% samples sent 

from GPs  (vs. 

hospitals) 

% LTCF samples 

sent from GPs (vs. 

hospitals) 

% non-LTCF 

samples sent from 

GPs (vs. hospitals) 

  Co-amoxiclav 626 10 67.2 75.1 66.3 

E. coli 1GC 670 10 67 75.7 66 

  Amoxicillin/ 

Ampicillin 

645 10 68.2 76.1 67.4 

  Ciprofloxacin 464 9 66.3 74.2 65.5 

  Gentamicin 548 9 66.9 72.7 66.3 

  Imipenem/ 

Meropenem 

273 8 66.8 72 66.4 

  Piperacillin/ 

Tazobactam 

237 8 66 70.9 65.6 

  2GC 382 9 66.8 73 66.2 

  Temocillin 185 8 67.9 73.7 67.4 
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Table 4-8. Number of samples per bed in LTCFs 

Organism Antibiotic N LTCFs Number of samples per bed in LTCFs (mean, median, min, max) 

Klebsiella Trimethoprim  383 
0.1 0.06 0.01 2 

  Nitrofurantoin 285 
0.1 0.06 0.01 2 

  3GC 257 
0.09 0.05 0.01 0.88 

  Co-amoxiclav 315 
0.1 0.06 0.01 2 

  1GC 335 
0.09 0.06 0.01 2 

  Ciprofloxacin 285 
0.09 0.06 0.01 0.88 

  Gentamicin 269 
0.09 0.06 0.01 0.88 

  Imipenem/Meropenem 170 
0.09 0.05 0.01 0.88 

  Piperacillin/Tazobactam 163 
0.08 0.05 0.01 0.88 

  2GC 150 
0.09 0.05 0.01 0.88 

  Temocillin 111 
0.09 0.05 0.01 0.88 

E. coli Trimethoprim  715 
0.68 0.48 0.02 7.33 

  Nitrofurantoin 715 
0.68 0.48 0.02 7.33 

  3GC 673 
0.61 0.38 0.01 7.33 

  Co-amoxiclav 626 
0.64 0.43 0.01 7.33 

  1GC 670 
0.59 0.36 0.02 7.33 
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Organism Antibiotic N LTCFs Number of samples per bed in LTCFs (mean, median, min, max) 

  Amoxicillin/Ampicillin 645 
0.6 0.4 0.02 7.33 

 E. coli Ciprofloxacin 464 
0.68 0.5 0.01 6 

  Gentamicin 548 
0.48 0.3 0.01 6 

  Imipenem/Meropenem 273 
0.48 0.25 0.01 6 

  Piperacillin/Tazobactam 237 
0.39 0.25 0.01 6 

  2GC 382 
0.37 0.18 0.01 6 

  Temocillin 185 
0.59 0.35 0.01 6 
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The distribution of Klebsiella species per antibiotic tested is described in Table 

4-9. 

Table 4-9. Distribution of Klebsiella samples tested by species for each antibiotic 

selected. 1GC refers to first-generation cephalosporins, 2GC refers to second-generation 

cephalosporins, 3GC refers to third-generation cephalosporins. 

Organism Antibiotic % K. 

pneumoniae 

% K. 

oxytoca 

% other Klebsiella 

spp. 

Klebsiella Trimethoprim  64.2 18.8 14 

  Nitrofurantoin 58.5 18.6 20 

  3GC 70 19.5 7.1 

  Co-amoxiclav 66.4 18.7 12.4 

  1GC 64.1 18.6 14.8 

  Ciprofloxacin 62.1 17 17.8 

  Gentamicin 64.1 17 15.9 

  Imipenem/Meropenem 76.4 19.5 1.1 

  Piperacillin/Tazobactam 76.3 19.8 1 

  2GC 76.4 19.4 1.1 

  Temocillin 76.8 19.2 1.2 
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Table 4-10 shows the distribution of 1GCs, 2GCs, 3GCs, imipenem/meropenem 

tested against E. coli and Klebsiella and amoxicillin/ampicillin tested against E. 

coli. 

Table 4-10. Distribution of antibiotics tested against E. coli and Klebsiella where the 

precise antibiotic was not specified. 1GC refers to first-generation cephalosporins, 2GC 

refers to second-generation cephalosporins, 3GC refers to third-generation cephalosporins. 

Organism Antibiotic Antibiotics tested 

Klebsiella 1GC Cephalexin (99.9%), Cephalothin (0.08%)  

 3GC Cefpodoxime (35.3%), Ceftazidime (32.8%), 

Cefotaxime (31.8%), Ceftriaxone (0.02%)  

  2GC Cefuroxime (100%) 

  Imipenem/Meropenem Meropenem (98.6%), Imipenem (1.4%) 

E. coli 1GC Cephalexin (99.96%), Cephalothin (0.04%) 

 2GC Cefuroxime (100%) 

  3GC Cefpodoxime (62.8%), Ceftazidime (18.7%), 

Cefotaxime (18.5%), Ceftriaxone (0.007%) 

  Imipenem/Meropenem Meropenem (99.99%), Imipenem (0.006%) 

  Amoxicillin/Ampicillin Amoxicillin (38.4%), Ampicillin (33%), 

Ampicillin/amoxicillin (28.5%)  

 

Table 4-11 describes the characteristics of E. coli and Klebsiella in LTCF 

samples and non-LTCF samples. LTCF samples were more frequently reported 

from very elderly age groups (>85) than non-LTCF samples. Overall, most 

samples were from female residents. This difference in gender was greater for 

LTCF samples than for non-LTCF samples. Slightly more LTCF samples were 

from residential LTCFs than nursing LTCFs. The number of samples increased 

during the study period. LTCF samples (and non-LTCF samples) comprised 

samples both sent by GPs and hospitals (e.g. during a LTCF resident’s hospital 

stay). LTCF samples were more frequently sent by GPs (versus hospitals) than 

non-LTCF samples. 
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Table 4-11. Characteristics of urine E. coli and Klebsiella positive samples.  

  LTCF  

E. coli  

samples 

(N=17,022)  

N(%) 

Non-LTCF  

E. coli 

samples 

(N=154,453) 

N(%) 

LTCF 

Klebsiella 

samples 

(N=1,510)  

N(%) 

Non-LTCF 

Klebsiella 

samples 

(N=21,262)  

N(%) 

Age 

Age 70-74 807  

(4.7%) 

34,984 

(22.7%) 

91  

(6.0%) 

4,621  

(21.7%) 

Age 75-80  2,038  

(12.0%) 

45,300 

(29.3%) 

222  

(14.7%) 

6,445  

(30.3%) 

Age 81-85 3,573  

(21.0%) 

35,178 

(22.8%) 

308  

(20.4%) 

5,034  

(23.7%) 

Age >85 10,604  

(62.3%) 

38,991 

(25.2%) 

889  

(58.9%) 

5,162  

(24.3%) 

Gender 

Female 14,406  

(85.0%) 

124,547 

(80.7%) 

1,080  

(71.8%) 

13,150  

(61.9%) 

Male  2,545  

(15.0%) 

29,753 

(19.3%) 

425  

(28.2%) 

8,094  

(38.1%) 

LTCF 

type 

Residential  10,139  

(59.6%) 

N/A 823  

(54.5%) 

N/A 

Nursing  6,883  

(40.4%) 

N/A 687  

(45.5%) 

N/A 

Year of 

study 

Year 1  2,541  

(14.9%) 

25,220 

(16.3%) 

247  

(16.4%) 

3,615  

(17.0%) 

Year 2  3,958  

(23.3%) 

33,396 

(21.6%) 

337 ( 

22.3%) 

4,926  

(23.2%) 

Year 3  4,911  

(28.8%) 

43,784 

(28.4%) 

414  

(27.4%) 

6,007  

(28.3%) 

Year 4  5,612  

(33.0%) 

52,053 

(33.7%) 

512  

(33.9%) 

6,714  

(31.6%) 

Sender 

GP  12,571  

(74.1%) 

99,727 

(64.9%) 

1,033  

(68.5%) 

11,369  

(53.5%) 

Hospital  4,396  

(25.9%) 

54,011 

(35.1%) 

475  

(31.5%) 

9,872  

(46.5%) 

 

In order to assess the quality of LTCF matching by postcode, the household 

size per postcode using data from the Office for National Statistics (ONS) that 
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described the number of households per postcodes was analysed. Of the ONS 

postcodes that matched a LTCF in our dataset, the number of households in the 

postcode ranged from 0 to 91 (mean=19.2, median=16) (see Figure 4-7). Zero 

household postcodes were those classed by the ONS as “communal 

establishment only”. They are used in the subsequent chapter (Chapter 5) as a 

sensitivity analysis for inferring LTCF residence from patient postcodes. 

 

Figure 4-7. Distribution of household size of LTCF postcodes that matched ONS 

postcodes. Zero household postcodes were those that contained only communal 

establishments.  
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Discussion 

AmSurv is a complex surveillance dataset comprising susceptibility tests carried 

out on specimens sent to participating laboratories in England. The subset of 

AmSurv analysed in this thesis includes only specimens taken from individuals 

aged 70 or older residing, and sent to laboratories, in the West Midlands. Most 

E. coli and Klebsiella samples (91% and 85%, respectively) were urine samples 

(from urine or kidney body sites). Conversely, of all urine samples, the most 

commonly reported bacterium was E. coli (57.2% samples, N=171,475), and 

Klebsiella accounted for 6.2% of samples (N=19,279).  

The size of LTCFs for older people in the West Midlands registered in the CQC 

dataset varied greatly, ranging from 1 to 171 beds (mean=34.47 beds). These 

comprised both nursing and residential LTCFs.  

The initial descriptive analysis of the AmSurv dataset revealed differences in 

age, sex, and sender (GP vs. hospital) when comparing LTCF to non-LTCF 

samples. Most samples were taken from females, which is in line with the 

literature which suggests that females are at a higher risk of developing UTIs36.  

In addition, a higher proportion of the female population over 65 years of age 

resides in LTCFs (4.2% in 2011) compared to males (1.9% in 2011).195 This 

also explains that the difference in gender was greater for LTCF samples than 

for non-LTCF samples. LTCF samples were more frequently reported from very 

elderly age groups (>85) than non-LTCF samples. This could be due to a higher 

proportion of the eldest population being female, and a higher proportion of the 

eldest population living in LTCFs.195 

LTCF samples (and non-LTCF samples) comprised samples both sent by GPs 

and hospitals (e.g. during a LTCF resident’s hospital stay). LTCF samples were 

more frequently sent by GPs (versus hospitals) than non-LTCF samples. In 

addition, the number of samples increased during the study period, which was 

only to a small extent reflective of the increase in the 70+ population in the West 

Midlands during that period. Crudely, LTCF E. coli samples increased by 

120.9%, non-LTCF E. coli samples increased by 106.4%, LTCF Klebsiella 

samples increased by 107.3%, and non-LTCF Klebsiella samples increased by 
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85.7% from the first year of the study (2010/2011) to the last year of the study 

(2013/2014). In contrast, the 70+ population in the West Midlands increased by 

8.2% from 2010 to 2014. 

This increase is analysed in more detail in Chapter 6. The differences in age, 

sex, year of study and sender were taken into account when determining 

differences in AMR for samples from LTCF/non-LTCF residents (Chapter 5).  

The major strengths of this dataset are, firstly, that since 2012, all 15 

laboratories in the West Midlands report to AmSurv, making data from this 

region the most complete source of AMR data and providing insight into the 

burden and temporal changes of AMR within a defined population. Secondly, 

matching patient postcodes to LTCF postcodes registered by the national 

regulator of health and social care in England has allowed the development of 

unprecedented knowledge of AMR in this setting over four years. Thirdly, the 

AmSurv surveillance system collects routine diagnostic samples from both 

community and hospital settings, permitting a fuller understanding of AMR in the 

population than other surveillance systems such as the mandatory surveillance 

for BSIs.  

There were, however, a number of limitations associated with using a large 

surveillance dataset. Firstly, the dataset did not contain sufficient clinical 

information to identify urine samples from catheters or distinguish between UTIs 

and asymptomatic bacteriuria, common in the elderly population in particular 

amongst those residing in LTCFs.193 However, clinical guidelines emphasise 

that only urinary samples from patients with a clinically suspected UTI, and 

either a risk factor for resistance or a history of UTIs should be sent for 

laboratory testing, and that catheter samples should not be sent.196,197 This 

dataset only included urine specimens positive for bacterial growth. Separately, 

there is evidence for variation in the rate of submission of community samples 

from GPs to laboratories.198 This is an unquantified potential confounder; 

however, this variation should be less pronounced in older populations, as 

English national guidance advocates sampling all patients over 65 years old 
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with two or more signs of UTI.199 Sampling may be biased towards those failing 

to respond to treatment, which could increase the apparent risk of resistance.  

Another limitation is that the threshold to diagnose UTIs might be lower in 

LTCFs as staff might notice UTI symptoms earlier than would otherwise be 

detected in individuals living in their own homes. Also, cognitive impairment was 

not recorded. Therefore, the analysis could not take into account differences in 

this condition in the two populations, which may lower the diagnosis threshold 

due to the inability of patients to verbalise symptoms. A recent report by the 

Alzheimer’s society showed that the prevalence of dementia was 73% in 

nursing home residents and 57.9% in residential homes.200 In the CQC dataset 

used for matching by postcode to the AmSurv dataset, 64.7% (516/797) LTCFs 

were classified as “Dementia service user band”, indicating they provided care 

to patients suffering with dementia. These difficulties in diagnosing UTIs could 

lead to more samples being sent. 

The study also is limited by the in vitro measurement of resistance, which does 

not always equate to clinical failure. It should also be noted that different 

breakpoints for ceftazidime (one of the four 3GC tested) and co-amoxiclav may 

have been used during the time period. This is described in more detail in the 

subsequent chapter.  

In addition, susceptibility to carbapenems were only tested routinely in very few 

laboratories, giving a less precise estimate of resistance for the bacteria 

causing these infections (nine laboratories were included in the analysis of 

Klebsiella resistance to imipenem/meropenem and six in the analysis of E. coli 

resistance to imipenem/meropenem). A recent study found that 

carbapenemase-producing Enterobacteriaceae increased in the West Midlands 

from 2009 to 2014.201 

A 28 day infection period was used to de-duplicate repeat specimens taken for 

the same infection. This was to prevent repeated samples from the same UTI 

period to be incorrectly interpreted as recurrences, whilst still capturing true UTI 
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recurrences. The 28 day estimate was based on expert opinion and could also 

be subject to error.  

The prevalence of resistance to rarely tested antibiotics is likely to be high and 

not representative of the real prevalence of resistance, as these tests are likely 

to be carried out after treatment failure. In order to avoid this bias, the laboratory 

years in which less than 80% of samples were tested against a particular 

antibiotic were excluded from the analysis. This was also informed by expert 

opinion and subject to error. 

We inferred LTCF residence from patient postcodes. While the methodology 

presented has been employed previously in other studies 9,69 , it does introduce 

a risk of bias. Whilst those living in non-LTCF postcodes are highly unlikely to 

be LTCF residents, a proportion of those living in LTCF postcodes will live in the 

community in neighbouring households. This means that the prevalence of 

resistance for LTCFs is likely to be slightly underestimated. To address this, as 

described in the subsequent chapter, a sensitivity analysis was carried out 

using the more specific postcodes that contained only communal 

establishments (the 64 postcodes that contained zero households in the first bar 

of Figure 4-7).  

The CLSI breakpoints for ceftazidime (one of the four 3GC tested) changed in 

2010 and this change was implemented in automated systems between 2012 

and 2013, which could have influenced the trend in antibiotic resistance for 

3GCs in this study. However, this did not appear to be the case. This is 

discussed in more detail in the methods section. In addition, some laboratories 

used the systemic rather than UTI breakpoint guidelines for co-amoxiclav, which 

resulted in an increase in the percentage of resistant samples between mid-

2011 and early 2012.  
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Conclusions 

This is the first study to link the West Midlands AmSurv dataset to the CQC 

register of LTCFs in England. The subset of AmSurv analysed included all 

antibiotic tests carried out in laboratories in the West Midlands on routinely 

collected microbiological specimens taken from individuals aged 70 or older by 

GPs or in hospitals from April 2010 to March 2014, providing susceptibility data 

from a population of 700,000 individuals over the age of 70. Of all urine 

samples, the most commonly reported bacterium was E. coli (57.2% samples, 

N=171,475), and Klebsiella accounted for 6.2% of samples (N=19,279). LTCF 

samples were more frequently reported from very elderly age groups (>85), 

from females, and were more frequently sent by GPs (versus hospitals) than 

non-LTCF samples. The number of samples reported also increased during the 

study period. There are a number of limitations of this dataset, such as a lack of 

clinical information available from patients from which samples were taken (for 

example, symptoms, catheterisation, and cognitive impairment were not 

recorded). LTCF residence was also inferred from patient postcode, which will 

have over-estimated the number of individuals assumed to reside in LTCFs. In 

addition, sampling may be biased towards those failing to respond to treatment, 

which could increase the apparent risk of resistance. However, this dataset also 

is the first to provide insight into the burden and temporal changes of AMR in 

LTCFs in England within a large population.  
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Chapter 5  Impact of LTCF residence on the 

antibiotic resistance of urinary tract E. coli and 

Klebsiella 

Published in the Journal of Antimicrobial Chemotherapy.2  

Aim 

To compare the frequency of antibiotic resistance in urinary tract bacteria from 

residents of LTCFs for older people and adults aged over 70 or older living in 

the community.  

Introduction 

As explained in Chapter 1, the AMR of urinary tract bacteria is thought to be an 

important problem in the LTCF setting. Due to their frailty and frequent co-

morbidities, LTCF residents are at increased risk of infection and hospitalisation 

compared to elderly individuals living in their own homes.7–10 In addition, LTCFs 

provide opportunities for the transmission of infectious diseases through the 

sharing of objects and spaces. Infection control in these facilities is also 

challenging due to the poor coordination of medical care.62 Due to the frequency 

of infection in LTCF residents, these individuals may be frequently exposed to 

antibiotics, which may select for antibiotic resistant strains. UTIs are common in 

older people, particularly in those residing in LTCFs, where they are the joint 

most common type of infection together with RTI. UTIs are frequently caused by 

Gram-negative bacteria such as E. coli and Klebsiella. AMR E. coli and 

Klebsiella have been identified as organisms of particular public health concern 

by the WHO and the Chief Medical Officer for England.30,31  

In spite of this, AMR infections are not routinely surveyed in LTCFs. Little is 

known about the antibiotic susceptibility of bacterial isolates from LTCF 

residents in England due to the difficulty in identifying these individuals in 

healthcare data in general and in AMR data in particular. This chapter aims to 

compare the frequency of antibiotic resistance in urinary tract bacteria from 

residents of LTCFs for older people and elderly adults living in the community.  
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As highlighted in Chapter 1, only one study analysed the prevalence of carriage 

of antibiotic resistant Gram-negative bacteria in LTCFs in England. This study 

found a high prevalence of carriage of ESBL-producing E. coli in a LTCF of 105 

beds in Cambridgeshire during 2014.67 Other studies set in other countries have 

also found a high prevalence of colonisation with AMR Gram-negative bacteria 

in LTCFs. 70–74  

In addition, several small studies have aimed to compare the prevalence of 

AMR in urinary isolates in individuals residing in LTCFs and in older people 

living in their own homes in Ireland (2132 urine isolates), Norway (3786 urine 

isolates), Australia (4262 urine isolates) and Scotland (45 isolates), using either 

GP or hospital data, but not both.75–78 This comparison has not been made 

using both types of samples, in a large population, nor in England, where 

resistance patterns in LTCFs could be different. 

Chapter 4 outlined the characteristics of the West Midlands AmSurv dataset 

that was linked to the CQC dataset to address this problem. LTCF samples 

were more commonly reported from older age groups and females, and more 

often sent by GPs (vs. hospitals) compared to non-LTCF samples. In addition, 

the number of E. coli and Klebsiella samples sent to AmSurv appeared to 

increase by year of the study. These variables were, therefore, included as co-

variates when comparing AMR in LTCF and non-LTCF samples.  
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Methods 

The dataset used for analysis in this chapter is introduced in Chapter 4. The 

West Midlands AmSurv dataset, which included all antibiotic tests carried out in 

laboratories in the West Midlands on routinely collected microbiological 

specimens taken from individuals aged 70 or older by GPs or in hospitals from 

April 2010 to March 2014, was linked to the CQC register of LTCFs in England 

in order to determine if patients from which the samples were taken were LTCF 

residents. Urine samples positive for E. coli and Klebsiella were selected for 

subsequent analysis in this chapter. 

Crude rate comparisons 

Positive urinary tract bacterial cultures with E. coli and Klebsiella reported to 

AmSurv were used as a surrogate for E. coli and Klebsiella UTI, as urinary tract 

specimens should only be sent to the microbiology laboratory when there is a 

clinical suspicion of a UTI.49,50 E. coli and Klebsiella samples were grouped as 

these were the most common Gram-negative bacteria with similar antibiotic 

treatment. Samples containing Proteus species were not included as these 

bacteria are known to be intrinsically resistant to nitrofurantoin.202 The rates of 

E. coli and Klebsiella UTI in LTCF-pc and in non-LTCF-pc were calculated as 

follows: 

𝐸. 𝑐𝑜𝑙𝑖 and 𝐾𝑙𝑒𝑏𝑠𝑖𝑒𝑙𝑙𝑎 UTI rate in LTCF − pc =

  N 𝐸.𝑐𝑜𝑙𝑖 and 𝐾𝑙𝑒𝑏𝑠𝑖𝑒𝑙𝑙𝑎 UTI in LTCF−pc  per year in those aged 70+in the West Midlands∗

N beds in LTCFs  per year^
  

𝐸. 𝑐𝑜𝑙𝑖 and 𝐾𝑙𝑒𝑏𝑠𝑖𝑒𝑙𝑙𝑎 UTI rate in non − LTCF − pc =

N 𝐸.𝑐𝑜𝑙𝑖 and 𝐾𝑙𝑒𝑏𝑠𝑖𝑒𝑙𝑙𝑎 UTI in non−LTCF−pc  per year in those aged 70+in the West Midlands∗

N population aged  70+ in the West Midlands per year∗∗−N beds in LTCFs  per year^
  

*Calculated for the year 2013/2014, de-duplicated to one sample per person per 28-

day period 

^Obtained from the national regulator of health and social care in England (Care 

Quality Commission) from April 2014 as described above.152 

**Obtained from the population ONS estimate of mid-2014.4 
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The number of beds in each LTCF was used as an indicator of the number of 

person years in each LTCF, assuming full bed occupancy. Similarly, mid-year 

population estimates were used as an estimate of the number of person years 

in the population. 

The denominator for the UTI rate in non-LTCF postcodes was calculated by 

subtracting the number of LTCF residents (using the number of beds in LTCFs 

per year as a proxy of the number of people in LTCFs) from the number of 

residents in the West Midlands that were aged 70+ (as per ONS data). This 

approximately equated to the number of 70+ individuals in the population that 

did not live in a LTCF. 

The rates of UTI caused by resistant E. coli and Klebsiella were calculated 

using the same approach. Confidence intervals were calculated using the 

function epitab in the R package epitools which used normal approximation.203 

Postcodes may cover several buildings; therefore, LTCF postcodes may also 

include some elderly people who are not LTCF residents. In the sensitivity 

analysis, the rates of E. coli and Klebsiella UTI in LTCFs were estimated using 

only data from LTCF postcodes that were classified by the ONS as “communal 

establishment only” postcodes (LTCF CE-pc) (see Chapter 4).  

Comparison of resistance levels in culture confirmed samples 

Logistic regression models coded in the rms package in R were used to 

calculate the odds of resistance for bacteria in LTCF samples compared to non-

LTCF samples.204 Further analyses compared nursing and residential LTCFs. 

Age group (70-74, 75-80, 81-85, and >85), sex, and sender (GP versus 

hospital) were included in the model as categorical covariates because they 

were shown to differ in LTCF samples compared to non-LTCF samples (see 

Chapter 4), and are plausible risk factors of antibiotic resistance in urinary tract 

bacteria. In Chapter 4, it was also noted that the number of samples increased 

each year of study. The year of the study was, therefore, also included as a 

categorical covariate in the model (2010/2011, 2011/2012, 2012/2013, and 

2013/2014). 
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Both univariable and multivariable analyses were undertaken. No interactions 

between the model variables improved model fit, assessed using the Akaike 

information criterion (AIC); therefore, they were not included in the final model 

(see Table 5-1 and Table 5-2). The non-independence of samples in the same 

postcode (and, therefore, in the same LTCF) was accounted for by adjusting the 

standard errors using a clustering term in the robcov function. 205 

The robcov function of the rms package computes the Huber robust covariance 

matrix estimator with an adjustment for clustering: 

𝐻𝑐 = 𝐼−1(𝑏)[∑{(∑ 𝑈𝑖𝑗)(∑ 𝑈𝑖𝑗)′}]𝐼−1(𝑏),

𝑛𝑖

𝑗=1

𝑛𝑖

𝑗=1

𝑐

𝑖=1

 

Where c is the number of clusters, 𝑛𝑖 is the number of observations in the 𝑖th 

cluster, 𝑈𝑖𝑗 is the contribution of the 𝑗th observation within the 𝑖th cluster to the 

score vector and 𝐼(𝑏) is the observed information matrix, computed in the same 

way as without the clusters.205 



 

 

1
2

4
 

Table 5-1. Multivariable model fit with interactions. The largest interaction seen was between age and sender when examining the odds of E. coli 

resistance to ciprofloxacin, which decreased the AIC from 92,338.01 to 92,278.54 (0.064%). In these models LTCF residence was considered as binary 

(LTCF samples vs. non-LTCF samples).  

 

Organism 

Antibiotic Age * 

LTCF 

AIC 

Sex * 

LTCF 

AIC 

Sender * 

LTCF 

AIC 

Year * 

LTCF 

AIC 

Sex * 

Age AIC 

Sex * 

Sender 

AIC 

Sex * 

Year AIC 

Age * 

Sender 

AIC 

Age * 

Year 

AIC 

Sender * 

Year AIC 

E. coli Ciprofloxacin 92358.2 92355.7 92334.5 92366 92372.1 92369.2 92370.2 92308.4 92372.4 92371.2 

Carbapenems
^
 241.1 237.1 237.1 241.1 237.6 237 237.7 232.3 242.2 239.2 

Nitrofurantoin 52229.2 52222.4 52218.8 52234.3 52231 52228.7 52233.3 52224.3 52232.7 52235.9 

3GCs
~
 62596.6 62593.3 62596.3 62601.5 62593.4 62579.6 62596.1 62578.4 62601.9 62598.5 

Trimethoprim 207364 207363.6 207370.4 207356 207347.4 207326.7 207375.2 207354.4 207374 207378.1 

Klebsiella Ciprofloxacin 7512.1 7506.9 7509.6 7511.1 7511.6 7509 7500.8 7507.4 7517.1 7508.6 

Carbapenems
^ 

210.8 206.3 208.5 210.2 207.7 208.2 210.2 211.5 212.4 209.8 

Nitrofurantoin 15492 15484.51 15485.2 15484.6 15490.5 15485.8 15486.5 15491.4 15479 15490.1 

3GCs
~
 5901.3 5896.9 5897.2 5897.8 5898.3 5896.8 5891.1 5899.8 5897 5899.3 

Trimethoprim 20435 20443 20438.1 20446.4 20433 20441.3 20440 20443.5 20452.4 20442.7 

* Interaction between the terms 

^
 Imipenem or Meropenem 

~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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Table 5-2. Comparing the multivariable model fit with and without interactions. The final column shows the difference between the AIC (Akaike 

information criterion) from the multivariable model without interactions and the model with the lowest AIC for that bacterium-antibiotic combination. In these 

models LTCF residence was considered as binary (LTCF samples vs. non-LTCF samples). 

Organism Antibiotic Normal AIC Min AIC with interactions Normal AIC -Min AIC 

E. coli Ciprofloxacin 92368.2 92308.4 59.8 

Carbapenems
^
 235.1 232.3 2.8 

Nitrofurantoin 52230.6 52218.8 11.8 

3GCs
~
 62597.5 62578.4 19.1 

Trimethoprim 207375.9 207326.7 49.3 

Klebsiella Ciprofloxacin 7507.9 7500.8 7.1 

Carbapenems
^ 

207.3 206.3 1.1 

Nitrofurantoin 15486.2 15479 7.1 

3GCs
~
 5895.9 5891.1 4.8 

Trimethoprim 20441.4 20433 8.4 

* Interaction between the terms 

^
 Imipenem or Meropenem 

~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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Rate of E. coli and Klebsiella UTI caused by AMR bacteria in 

LTCF and non-LTCF samples 

The rate of laboratory confirmed E. coli and Klebsiella UTI was 20.6 per 100 

person years in LTCF residents and 7.8 per 100 person years in community 

dwelling older adults; giving a rate ratio (RR) of 2.66 (95% CI=2.58-2.73) (see 

Table 5-3). In the sensitivity analysis, the rate of E. coli and Klebsiella UTI in the 

LTCFs located in CE-pc was similar (21.5 per 100 person years) giving a similar 

RR of 2.77 (95% CI=2.57-2.98) (see Table 5-4). 

Table 5-3. Rate of E. coli and Klebsiella UTI and E. coli and Klebsiella UTI caused by 

antibiotic-resistant bacteria for LTCF and non-LTCF residents per 100 person years. 

 LTCF 

rate 

non-LTCF 

rate 

rate 

ratio 

95% CI 

UTI^ 20.6 7.8 2.7 2.6-2.7 

UTI^ caused by bacteria resistant to 

trimethoprim 

12.7 2.9 4.4 4.3-4.6 

UTI^ caused by bacteria resistant to 

nitrofurantoin 

1.7 0.4 4.4 4.0-4.8 

UTI^ caused by bacteria resistant to 

ciprofloxacin^ 

3.3 0.6 5.2 4.8-5.6 

UTI^ caused by bacteria resistant to 

third-generation cephalosporins~ 

1.8 0.4 4.5 4.1-4.9 

^
 Urinary tract E. coli and Klebsiella reported to AmSurv.  

~
 Third-generation cephalosporins. 3GC resistance was defined as resistance to ceftazidime, 

cefpodoxime, cefotaxime, or ceftriaxone. 
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Table 5-4. Sensitivity analysis for the rate of E. coli and Klebsiella UTI and E. coli and 

Klebsiella UTI caused by antibiotic-resistant bacteria per 100 person years for LTCF and 

non-LTCF residents. The LTCF rate was calculated using only data from LTCF postcodes that 

were classified by the ONS as “communal establishment only” postcodes (LTCF CE-pc). 

 LTCF 

rate 

non-LTCF 

rate 

Rate ratio 95% CI 

UTI^ 21.5 7.8 2.77 2.57-2.98 

UTI^ caused by bacteria resistant to 

trimethoprim 

12.8 2.9 4.44 4.04-4.89 

UTI^ caused by bacteria resistant to 

nitrofurantoin 

1.9 0.4 4.82 3.77-6.16 

UTI^ caused by bacteria resistant to 

ciprofloxacin^ 

5.0 0.6 7.88 6.76-9.19 

UTI^ caused by bacteria resistant to 

3GCs~ 

1.7 0.4 4.09 3.14-5.33 

^
Urinary tract E. coli and Klebsiella reported to AmSurv. 

~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to 

ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

 

The largest difference in the rate of E. coli and Klebsiella UTI caused by 

resistant bacteria between LTCF and non-LTCF samples was seen for 

ciprofloxacin (RR=5.18, 95% CI=4.82-5.57). Large differences were also seen 

for trimethoprim resistance (RR=4.41, 95% CI=4.25-4.57), nitrofurantoin 

(RR=4.38, 95% CI=3.98-4.83) and third-generation cephalosporins (RR=4.49, 

95% CI=4.08-4.94).  

The sensitivity analysis yielded very similar findings (see Table 5-4). In the 

sensitivity analysis, LTCF residents had a higher rate of E. coli and Klebsiella 

UTI caused by bacteria that were resistant to ciprofloxacin (RR=7.88, 95% 

CI=6.76-9.19). 
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Prevalence of AMR and odds ratio of AMR 

The prevalence of antibiotic resistance was higher in bacteria from LTCF 

samples than in non-LTCF samples for all bacterium-antibiotic combinations 

(Table 5-5 and Table 5-6). E. coli resistance to trimethoprim was 60% versus 

37% (adjusted odds ratios (aORs)=2.36, 95% CI=2.21-2.53); nitrofurantoin 7% 

versus 4% (aOR=1.74, 95% CI=1.53-1.97); ciprofloxacin 29% versus 14% 

(aOR=2.42, 95% CI=2.17-2.69); and 3GCs 10% versus 6% (aOR=1.89, 95% 

CI=1.64-2.17). The prevalence of Klebsiella resistant to: trimethoprim was 41% 

versus 26% (aOR=1.89, 95% CI=1.6-2.24); nitrofurantoin 41% versus 34% 

(aOR=1.31, 95% CI=1.09-1.59); ciprofloxacin 10% versus 8% (aOR=1.54, 95% 

CI=1.13-2.1); and 3GCs 8% versus 7% (aOR=1.24, 95% CI=0.85-1.83). Further 

results of the univariate and multivariate results are shown in Appendix Chapter 

5. 
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Table 5-5 Prevalence of antibiotic resistance in LTCF, non-LTCF, residential LTCF, and nursing LTCF samples. 

Organism Antibiotic % resistance  

overall 

n/N(%) 

% resistance  

LTCF samples 

n/N(%) 

% resistance  

Res LTCF samples 

n/N(%) 

% resistance  

Ns LTCF samples 

n/N(%) 

% resistance  

non-LTCF samples 

n/N(%) 

E. coli Trimethoprim 61879/158764  9513/15914  5491/9438  4022/6476  52366/142850 

 (39.0%) (59.8%) (58.2%) (62.1%) (36.7%) 

Nitrofurantoin 6322/158501  1059/15889  571/9425  488/6464  5263/14261 

 (4.0%) (6.7%) (6.1%) (7.6%) 2 (3.7%) 

Ciprofloxacin 16937/111220  3075/10564  1625/6100  1450/4464  13862/100656  

 (15.2%) (29.1%) (26.6%) (32.5%) (13.8%) 

3GCs
~
 8581/134957  1412/13482  791/8084  621/5398  7169/121475  

  (6.4%) (10.5%) (9.8%) (11.5%) (5.9%) 

Klebsiella 

  

  

  

Trimethoprim 4759/17844  513/1257  282/707  231/550  4246/16587  

 (26.7%) (40.8%) (39.9%) (42.0%) (25.6%) 

Nitrofurantoin 4232/12159  377/916  213/517  164/399  3855/11243  

 (34.8%) (41.2%) (41.2%) (41.1%) (34.3%) 

Ciprofloxacin 1105/13738  95/918  48/510  47/408  1010/12820  

 (8.0%) (10.4%) (9.4%) (11.5%) (7.9%) 

3GCs
~
 846/11593  60/754  29/430  31/324  786/10839  

  (7.3%) (8.0%) (6.7%) (9.6%) (7.3%) 

~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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Table 5-6. Unadjusted and adjusted odds ratio of antibiotic resistance in bacteria from 

LTCF samples compared to non-LTCF samples. 

Organism Antibiotic uOR 

LTCF
#
 

Adjusted 

95%CI uOR 

LTCF  

aOR 

LTCF
^
 

Adjusted 95% 

CI aOR LTCF  

E. coli Trimethoprim 2.56 2.4 - 2.7 2.4 2.2 - 2.5 

Nitrofurantoin 1.86 1.6 - 2.1 1.7 1.5 - 2.0 

Ciprofloxacin 2.57 2.3 - 2.9 2.4 2.2 - 2.7 

3GCs
 ~

 1.86 1.6 - 2.1 1.9 1.6 - 2.2 

Klebsiella Trimethoprim 2.01 1.7 - 2.4 1.9 1.6 - 2.2 

Nitrofurantoin 1.34 1.1 - 1.6 1.3 1.1 - 1.6 

Ciprofloxacin 1.36 1.0 - 1.9 1.5 1.1 - 2.1 

3GCs
~
 1.1 0.8 - 1.6 1.2 0.9 - 1.8 

#
uOR LTCF is the unadjusted odds ratio (univariable analysis) of antibiotic resistance in bacteria 

from LTCF samples compared to non-LTCF samples with 95% CIs adjusted for clustering at the 

postcode level 

^
aOR LTCF is the adjusted OR, adjusted for age group, sex, year of study, and sender as 

categorical covariates of antibiotic resistance in bacteria from LTCF samples compared to non-

LTCF samples with 95% CIs adjusted for clustering at the postcode level. Interactions were not 

included in the model as they did not improve model fit (see Table 5-1). 

~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to 

ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

 

After accounting for LTCF residence, age, sender, and year of study, sex was a 

significant contributor to antibiotic resistance across multiple bacteria-antibiotic 

combinations. E. coli isolated from samples sent from males had significantly 

higher odds of nitrofurantoin, ciprofloxacin, and 3GC resistance than females 

(adjusted odds ratio (aOR) 1.48, 95% CI 1.36-1.61; aOR 1.69, 95% CI 1.58-

1.81; aOR 1.47, 95% CI 1.35-1.6; respectively). Klebsiella from male samples 

had significantly higher odds of ciprofloxacin and 3GC resistance than females 

(aOR 1.34, 95% CI 1.11-1.62; aOR 1.42, 95% CI 1.15-1.75; respectively). 

After accounting for LTCF residence, sex, sender, and year of study, age only 

contributed significantly to antibiotic resistance in a small number of bacterium-

antibiotic groups. The odds of E. coli resistance to trimethoprim, nitrofurantoin, 

and ciprofloxacin were higher in those over 85 years of age than in those aged 
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70-74 (aOR 1.28, 95% CI 1.22-1.34; aOR 1.34, 95% CI 1.19-1.51; aOR 1.35, 

95% 1.24-1.47).  

The odds of antibiotic resistance were higher in bacteria sent from hospitals 

than in samples sent from GPs with the exception of the odds of Klebsiella 

resistance to nitrofurantoin, which was lower in samples sent from hospitals 

than in those sent by GPs (aOR 0.85, 95% CI 0.78-0.93). The odds of E. coli 

resistant to ciprofloxacin and 3GCs were higher in samples sent from hospitals 

than in samples sent by GPs (aOR 1.11, 95% CI 1.06-1.16; aOR 1.36, 95% CI 

1.29-1.45). The odds of Klebsiella resistant to ciprofloxacin and 3GCs were also 

significantly higher in samples from hospital (aOR 1.45, 95% CI 1.25-1.69; aOR 

1.83, 95% CI 1.54-2.17). 

Bacteria isolated from individuals residing in LTCFs with nursing support had 

higher levels of resistance to most antibiotics than those isolated from 

individuals living in residential LTCFs (see Table 5-5 and Table 5-7). Levels of 

antibiotic resistance were also higher in urinary tract bacteria from LTCF 

residents (obtained both from GPs and hospitals) than from hospitals (including 

samples from residents of LTCF-pc and non-LTCF-pc) (Table 5-8). The 

prevalence of E. coli resistant to trimethoprim, nitrofurantoin, ciprofloxacin and 

3GCs was higher in LTCF samples than in samples sent from hospitals (60% 

versus 40%, 7% versus 4%, 29% versus 16%, and 11% versus 8%). The 

prevalence of Klebsiella resistant to trimethoprim and nitrofurantoin was also 

higher in LTCFs (41% versus 27% and 41% versus 32) but ciprofloxacin 

resistance was similar (10% versus 10%) and 3GCs resistance was higher in 

hospitals (8% versus 10%).  
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Table 5-7. Unadjusted and adjusted odds ratio of antibiotic resistance in bacteria from residential LTCF samples compared to non-LTCF samples 

and from nursing LTCF samples compared to non-LTCF samples. 

Organism Antibiotic uOR 

residentia

l LTCF
#
 

Adjusted 

95%CI uOR 

residential 

LTCF  

aOR 

residential 

LTCF
^
 

Adjusted 95% 

CI aOR 

residential 

LTCF  

uOR 

nursing 

LTCF
##

 

Adjusted 

95%CI uOR 

nursing LTCF  

aOR 

nursing 

LTCF
^^

 

Adjusted 95% 

CI aOR 

nursing LTCF  

E. coli Trimethoprim 2.39 2.2 - 2.61 2.2 2.02 - 2.4 2.82 2.55 - 3.13 2.63 2.37 - 2.92 

Nitrofurantoin 1.68 1.43 - 1.99 1.59 1.35 - 1.87 2.12 1.78 - 2.53 1.95 1.64 - 2.33 

Ciprofloxacin 2.28 2 - 2.59 2.17 1.9 - 2.47 3.01 2.58 - 3.51 2.78 2.38 - 3.24 

3GCs
~
 1.73 1.45 - 2.06 1.76 1.47 - 2.1 2.07 1.69 - 2.55 2.09 1.7 - 2.56 

Klebsiella Trimethoprim 1.94 1.52 - 2.46 1.82 1.43 - 2.31 2.11 1.7 - 2.62 1.98 1.59 - 2.46 

Nitrofurantoin 1.35 1.05 - 1.72 1.31 1.02 - 1.68 1.33 1.02 - 1.75 1.31 1 - 1.73 

Ciprofloxacin 1.21 0.79 - 1.87 1.41 0.9 - 2.19 1.56 1.03 - 2.37 1.7 1.13 - 2.56 

3GCs
~
 0.9 0.57 - 1.41 1.06 0.67 - 1.68 1.37 0.75 - 2.49 1.47 0.81 - 2.67 

#
uOR residential LTCF is the unadjusted odds ratio (univariable analysis) of antibiotic resistance in bacteria from residential LTCF samples compared to non-

LTCF samples, with 95% confidence intervals adjusted for clustering at the postcode level 
##

uOR nursing LTCF is the unadjusted odds ratio (univariable analysis) of antibiotic resistance in bacteria from nursing LTCF samples compared to non-LTCF 
samples, with 95% confidence intervals adjusted for clustering at the postcode level 
^
aOR residential LTCF is the adjusted OR, adjusted for age group, sex, year of study, and sender as categorical covariates of antibiotic resistance in bacteria 

from residential LTCF samples compared to non-LTCF samples, with 95% confidence intervals adjusted for clustering at the postcode level. Interactions were 
not included in the model as they did not improve model fit (see Table 5-1). 
^^

aOR nursing LTCF is the adjusted OR, adjusted for age group, sex, year of study, and sender as categorical covariates of antibiotic resistance in bacteria 
from nursing LTCF samples compared to non-LTCF samples, with 95% confidence intervals adjusted for clustering at the postcode level. Interactions were 
not included in the model as they did not improve model fit (see Table 5-1). 
~
 3GCs, third-generation cephalosporins. 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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Table 5-8. Prevalence of antibiotic resistance in urinary tract bacteria present in LTCF samples, in non-LTCF samples, in samples sent by GPs, and 

in samples sent from hospitals. Samples sent by GPs and from hospitals included both LTCF and non-LTCF samples, and vice-versa. 

Organism Antibiotic % resistance 

samples overall 

n/N(%) 

% resistance 

LTCF sample 

n/N(%) 

% resistance non-

LTCF samples 

n/N(%) 

% resistance GP 

samples n/N(%) 

% resistance 

hospital samples 

n/N(%) 

E. coli 

 

 

 

Trimethoprim 61879/158764 

(38.98%) 

9513/15914 

(59.78%) 

52366/142850 

(36.66%) 

41338/106779 

(38.71%) 

20243/51258 

(39.49%) 

Nitrofurantoin 6322/158501 

(3.99%) 

1059/15889 

(6.66%) 

5263/142612 

(3.69%) 

4184/106645 

(3.92%) 

2111/51130 

(4.13%) 

Ciprofloxacin 16937/111220 

(15.23%) 

3075/10564 

(29.11%) 

13862/100656 

(13.77%) 

10852/73720 

(14.72%) 

6085/37500 

(16.23%) 

Third-generation 

cephalosporins
~
 

8581/134957 

(6.36%) 

1412/13482 

(10.47%) 

7169/121475 

(5.9%) 

5187/90769 

(5.71%) 

3325/43466 

(7.65%) 

Klebsiella 

 

 

 

Trimethoprim 4759/17844 

(26.67%) 

513/1257 

(40.81%) 

4246/16587 

(25.6%) 

3019/11379 

(26.53%) 

1721/6445 (26.7%) 

Nitrofurantoin 4232/12159 

(34.81%) 

377/916 (41.16%) 3855/11243 

(34.29%) 

2821/7822 

(36.06%) 

1402/4317 

(32.48%) 

Ciprofloxacin 1105/13738 

(8.04%) 

95/918 (10.35%) 1010/12820 

(7.88%) 

591/8579 (6.89%) 497/5139 (9.67%) 

Third-generation 
cephalosporins

~
 

846/11593 (7.3%) 60/754 (7.96%) 786/10839 (7.25%) 398/7137 (5.58%) 439/4436  
(9.9%) 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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There were differences in resistance to trimethoprim, nitrofurantoin, 

ciprofloxacin, and 3GCs over the study period for bacteria from LTCF samples 

and non-LTCF samples. These patterns are plotted in Figure 5-1. Resistance to 

other antibiotics are plotted in Figure 5-2 and Figure 5-3. 
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Figure 5-1. Percentage of Klebsiella and E. coli samples resistant to trimethoprim, 
nitrofurantoin, third-generation cephalosporins, and ciprofloxacin. The black line 

represents LTCF samples and the grey line represents non-LTCF samples. Yearly point 

estimates are presented with 95% binomial CIs. 3GC resistance was defined as resistance to 

ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 
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Figure 5-2 Percentage of Klebsiella and E. coli samples resistant to 
imipenem/meropenem, temocillin, and gentamicin. The black line represents LTCF samples 

and the grey line represents non-LTCF samples. Yearly point estimates are presented with 95% 

binomial confidence intervals. *The carbapenems included in this analysis were imipenem and 

meropenem. 
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Figure 5-3. Percentage of Klebsiella and E. coli samples resistant to 
piperacillin/tazobactam, first-generation cephalosporins (1GC), second-generation 
cephalosporins (2GC), and co-amoxiclav

+
. The black and grey lines represent LTCF samples 

and non-LTCF samples (respectively). Yearly point estimates are presented with 95% binomial 

confidence intervals. 
+
Note that some laboratories used the systemic rather than UTI breakpoint 
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guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples 

between mid-2011 and early 2012.  
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Discussion 

Summary of main findings 

Elderly residents of LTCFs are more than twice as likely as community dwelling 

adults of similar age to have a laboratory confirmed E. coli or Klebsiella UTI. 

UTIs are most commonly caused by E. coli. In LTCF residents, 60% of samples 

that grew E. coli were resistant to trimethoprim, 29% to ciprofloxacin, 10% to 

3GC, and 7% to nitrofurantoin; 41% of samples that grew Klebsiella were 

resistant to trimethoprim, 41% to nitrofurantoin, 10% to ciprofloxacin, and 8% to 

3GCs. LTCF residents were more than four times more likely than community 

dwelling older people to develop a laboratory confirmed E. coli or Klebsiella UTI 

caused by resistant bacteria. The increased risk of antibiotic resistance 

amongst bacteria causing culture confirmed E. coli and Klebsiella UTIs in older 

people residing in LTCFs is seen across different antibiotic classes.  

Strengths 

The linkage of the West Midlands AmSurv dataset, which included samples 

sent by both GPs and hospitals from a large population, with the CQC registry 

of LTCFs in England through patient postcode enabled unprecedented insight 

into the patterns of AMR in Gram-negative bacteria in LTCFs in England. The 

differences in resistance patterns between residential and nursing LTCFs were 

also analysed. 

A multivariable regression model was developed to determine the odds of 

antibiotic resistance in LTCF and non-LTCF settings. This model accounted for 

variation in antibiotic resistance due to key risk factors (for example, samples 

being sent from hospitals versus from GPs), and the odds were adjusted for 

clustering at the postcode level. Interactions between the regression terms were 

also explored, although none were found to improve the model fit.  

In addition, the sensitivity of the model findings to inferring LTCF residence from 

patient postcodes (explained in Chapter 4 in more detail) was explored by 

limiting the analysis to LTCFs in postcodes classed by the ONS as “communal 

establishment only”. The sensitivity analysis yielded very similar findings to the 
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main analysis, indicating the robustness of this methodology in the comparative 

analysis of resistance. 

Limitations 

Bias 

The first limitations that could have biased these results are not knowing 

whether samples were from catheter or mid-stream urines and the fact that 

symptoms are not recorded in AmSurv. English national guidelines state that 

urine samples from catheterised patients should only be sent for susceptibility 

testing in the presence of systemic infection symptoms; and that samples from 

elderly individuals should only be sent in the presence of two or more signs of 

infection.49 Therefore, the underlying presumption is that patients had samples 

sent appropriately. Bacteriuria is very common in older people, particularly in 

patients with indwelling catheters; therefore, if, despite the guidelines, some 

samples from these patients are sent for testing, the burden of UTI is likely to 

have been over-estimated. Asymptomatic bacteriuria is more prevalent amongst 

individuals residing in LTCFs than in those living in their own homes47 (perhaps 

due to increased detection); therefore, the RR of laboratory confirmed E. coli 

and Klebsiella UTI in LTCF residents compared to community dwelling older 

adults could be lower than this analysis suggests. 

Another limitation that could lead to bias is that the threshold to diagnose UTIs 

could be lower for LTCF residents than non-LTCF residents because their 

health is more frequently surveyed by staff and cognitive impairment could be 

more prevalent, which may make patients unable to verbalise symptoms. This 

would result in a greater number of samples overall being submitted for testing 

from LTCF residents compared to their community counterparts; which would 

result in an underestimation of the prevalence of resistance in LTCF residents.  

Sampling may also be biased towards those failing to respond to treatment. 

This would lead to overestimating the prevalence of resistance in both 

populations206; however, it is unclear why this bias would be greater in LTCF 

samples.  



 

141 

 

Inferring LTCF residence from patient postcodes means that a proportion of 

those living in LTCF postcodes will live in the community in neighbouring 

households. This will tend to bias odds ratios toward the null hypothesis, 

potentially leading to underestimates of the impact of LTCF residence on 

antibiotic resistance. However, LTCF UTI rates were similar when using the 

more specific postcodes that contained only communal establishments, 

suggesting that this bias was minimal. In addition, this methodology has 

previously been employed in other studies.9,69  

Laboratory years in which fewer than 80% of samples were tested against a 

particular antibiotic were excluded. This resulted in the exclusion of 1 laboratory 

for Klebsiella tested against nitrofurantoin, 3 for Klebsiella and 2 for E. coli 

tested against 3Gs, and 4 for Klebsiella and 6 for E. coli tested against 

ciprofloxacin from the 15 laboratories in the West Midlands. The analysis of 

antibiotic resistance may not be representative of the catchment areas of the 

laboratories excluded, which could have biased findings if these areas had 

lower or higher rates of antibiotic resistant UTI than those included. 

Confounding 

Antibiotic prescribing and clinical need are likely to be higher in the LTCF 

population and may be drivers of the patterns of resistance observed. However, 

no data was available to inform this. 

The change in breakpoints for ceftazidime (one of the four 3GC tested) is 

deemed unlikely to have confounded the analysis of 3GC resistance. This is 

discussed in more detail in Chapter 4. The observed increase in the prevalence 

of resistance to co-amoxiclav between mid-2011 and early 2012 was an artefact 

caused by some laboratories using the systemic rather than UTI breakpoint 

guidelines for this antibiotic.  

General 

Urinary tract samples reported to AmSurv with confirmed culture results for E. 

coli and Klebsiella accounted for 63% of urinary tract bacteria samples. Caution 
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must also therefore be applied before extrapolating these results to UTIs 

caused by other bacterial species. In addition, resistance was measured in vitro, 

which does not always equate to clinical failure.  

Finally, resistance to pivmecillinam and fosfomycin was not reported in this 

chapter. Pivmecillinam is recommended in the national guidelines if the first-line 

treatment for UTI is deemed unsuitable or if renal function is decreased (GFR is 

lower than 45mls/min). Fosfomycin is recommended in cases where there is a 

high risk of resistance. However, resistance to these antibiotics is not tested 

routinely. The most recent ESPAUR report reported that only 35% and 29% of 

isolates in England were tested against mecillinam and fosfomycin, 

respectively. 40 

Implications for clinical practice and policy 

Our findings suggest that in older people a large proportion of E. coli and 

Klebsiella UTIs will not respond to trimethoprim treatment, and that this problem 

is heightened in LTCFs, where the prevalence of resistance is even higher. 39% 

of UTIs caused by E. coli and 27% of UTIs caused by Klebsiella (60% and 41%, 

respectively, in LTCFs) were resistant to trimethoprim. Resistance to 

trimethoprim is of particular concern because it may result in treatment failure, 

hospitalisation, and the subsequent use of antibiotics such as ciprofloxacin or 

3GCs that should be reserved for the treatment of more serious infections. One 

explanation for these high levels of resistance could be the high consumption of 

trimethoprim in England. In 2014, national primary care prescribing guidelines 

have switched from recommending trimethoprim as first-line treatment for UTI to 

recommending nitrofurantoin (unless there is a low risk for resistance to 

trimethoprim, in which case trimethoprim is also recommended).50 In line with 

these recommendations, trimethoprim prescription has decreased during 2014-

2015; however, trimethoprim treatment and resistance remain high. 

Trimethoprim is still the most commonly prescribed antibiotic in the community 

for UTI. In 2015, 0.17 items were prescribed per 1000 population per day 

compared to 0.11 for nitrofurantoin.35 Resistance to trimethoprim increased 

during the study period (2010/2011-2013/2014), faster for LTCF samples (E. 

coli from 53% to 63% and Klebsiella from 34% to 43%) than for non-LTCF 
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samples (E. coli from 35% to 38% and Klebsiella from 22% to 29%). These 

increases could partly be explained by trimethoprim consumption increasing in 

England by 4.2% between 2010 and 2013.207  

The prevalence of resistance of E. coli and Klebsiella against nitrofurantoin was 

high for Klebsiella (35%) but much lower for E. coli (4%). This suggests 

nitrofurantoin might still remain very effective in treating UTIs caused by E. coli 

in older people, particularly in women, where the aOR of acquiring a UTI 

caused by nitrofurantoin-resistant E. coli are lower. Nitrofurantoin comprised 

3.8% of all antibiotics consumed in England in 2013 in the community and was 

the second most frequently prescribed antibiotic agent of those recommended 

in empiric guidelines for lower UTI (20.8%).207 In the West Midlands, the 

consumption of nitrofurantoin increased by 66% from 2010 to 2014.43 As 

nitrofurantoin consumption continues to increase, resistance to this antibiotic, 

particularly in Klebsiella, may rise. The low resistance in E. coli in spite of the 

selective pressure exerted by the increased consumption of this antibiotic may 

be explained by a high fitness cost of resistance to nitrofurantoin in these 

bacteria.208,209 However, E. coli might develop mechanisms to compensate for 

this, for example through second-site mutations that may increase fitness.210 It 

is therefore, important to continue to monitor nitrofurantoin resistance in both E. 

coli and Klebsiella in the future.  

Ciprofloxacin is a broad-spectrum antibiotic that can be used to treat infections 

caused by both Gram-negative and Gram-positive bacteria. Resistance to 

ciprofloxacin is of particular concern because it is often carried alongside 

resistance to beta-lactams, notably methicillin-resistance in Staphylococci.211–214 

Ciprofloxacin usage, therefore, selects for methicillin-resistance in 

Staphylococcus aureus. Neisseria gonorrhoeae also rapidly acquire resistance 

to ciprofloxacin, which is worrying given that resistance has emerged to all 

antibiotic classes that are used for treatment of gonorrhea.40 In addition, 

fluoroquinolone usage has also been linked to the incidence to C. difficile 

infections.215 In the primary care national guidelines, ciprofloxacin treatment is 

now only recommended for UTIs with acute prostatitis or acute pyelonephritis, 

or as second-line prophylaxis for recurrent UTIs.50 It is also recommended for 
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lower respiratory tract infections under the premise of proven resistance to other 

antibiotics, and for epididymitis. Ciprofloxacin use has been declining in 

England since 2007.40,215 From 2012 to 2016, quinolone usage (81% of which 

are ciprofloxacin prescriptions) declined by 5.8%.40 In this context, the 

prevalence of resistance to ciprofloxacin in E. coli (15%), albeit stable, is 

concerning, in particular in LTCF samples (29%). The levels of resistance to 

ciprofloxacin in Klebsiella were lower (8% in non-LTCF samples and 10% in 

LTCF samples), although they increased from 2010/2011 to 2013/2014, faster 

for LTCF samples (from 6% to 14%) than for non-LTCF samples (7% to 10%). 

The drivers of this increasing prevalence of resistance, given the decrease 

observed in prescribing, warrants further study. The high levels of resistance in 

urinary E. coli isolated from LTCF residents once again highlight the benefit of 

nitrofurantoin treatment for UTI caused by E. coli in this population. 

3GCs are antibiotics that are almost exclusively administered in hospitals for the 

treatment of severe infections. 3GCs are not recommended in the empiric 

treatment of UTIs but are needed to treat more severe infections such as 

bacterial meningitis.194,207 The levels of resistance to 3GC in E. coli and 

Klebsiella were low (6%, and 7%, respectively). Similarly to ciprofloxacin 

resistance, the prevalence of E. coli resistant to 3GCs remained stable during 

the study period, whilst the prevalence of Klebsiella resistant to 3GC increased 

steadily (faster for LTCF samples, 3% to 12%, than for non-LTCF samples, 6% 

to 9%). This increase might be explained by the 21% increase in consumption 

of 3GCs during the study period.43 This emphasises the need to ensure that 

3GCs are prescribed only when it is strictly necessary. 

Importantly, resistance to 3GC and ciprofloxacin do not only result in treatment 

failures but in the prescription of “last resort” antibiotics such as carbapenems 

that should be reserved for the treatment of severe infections in hospitals.28 In 

the present study, the prevalence of resistance in urinary tract bacteria to 

carbapenems in the over 70s was similarly low in both Klebsiella and E. coli 

(0.2% and 0.02%, respectively) to what has been reported in the literature 

between 2010 and 2013 in the overall West Midlands population;192 which 

prevented any formal statistical analysis but is reassuring. 
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Future work 

Our findings highlight the very high levels of AMR bacteria in LTCF residents 

compared to their community counterparts and even to hospital patients; 

showing the importance of improving infection prevention and control; reducing 

antibiotic usage in LTCFs through antibiotic stewardship programmes; and the 

need for LTCF specific surveillance that can guide empiric treatment. There is 

also a need to understand if trimethoprim resistance is reversible through 

antimicrobial stewardship interventions, as evidence from the literature is 

conflicting208,216, and how the mechanisms for the selection of resistances differ 

between species of urinary bacteria. In order to understand the causes of the 

high levels of antibiotic resistance observed in LTCFs, more information about 

antibiotic prescription, recent hospitalisations, and transmission of resistant 

bacteria is required. It is equally important that interventions are developed to 

reduce the risk of transmission of AMR bacteria between LTCF residents. The 

findings from this chapter were published in the Journal of Antimicrobial 

Chemotherapy.2  
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Conclusions 

This was the first study to estimate the burden of antibiotic resistance in urinary 

E. coli and Klebsiella in England in a large number of LTCFs. It is also the first 

study to include both hospital and GP samples when comparing the frequency 

of antibiotic resistance in urinary tract bacteria from residents of LTCFs for older 

people and older people living in the community. Residents of LTCFs for older 

people had more than double the rate of E. coli and Klebsiella UTI and more 

than four times the rate of E. coli and Klebsiella UTI caused by antibiotic-

resistant bacteria compared to those living in the community. The odds of 

resistance of E. coli and Klebsiella to trimethoprim, nitrofurantoin, ciprofloxacin 

and 3GCs were significantly higher in LTCF samples than non-LTCF samples, 

after adjusting for age, sex, sender (GP vs. hospital) and the year of the study. 

The prevalence of E. coli resistant to trimethoprim, nitrofurantoin, ciprofloxacin 

and 3GCs was higher in LTCF samples (obtained both from GPs and hospitals) 

than in samples sent from hospitals (including samples from residents of LTCF-

pc and non-LTCF-pc). The prevalence of Klebsiella resistant to trimethoprim 

and nitrofurantoin was also higher in LTCFs but ciprofloxacin resistance was 

similar and 3GCs resistance was higher in hospitals. Together, these findings 

suggest that LTCFs are important reservoirs of urinary AMR bacteria, and that 

interventions to prevent and control these are warranted in this setting. A large 

proportion of E. coli and Klebsiella UTIs in older people living in LTCFs (60% 

and 41%, respectively) and a high proportion of those living in their own homes 

(37% and 26%, respectively) will not respond to trimethoprim treatment, which 

is the most commonly prescribed antibiotic for lower UTI. However, the 

prevalence of resistance of E. coli and Klebsiella against nitrofurantoin, another 

very commonly prescribed first-line antibiotic treatment for UTI, although high 

for Klebsiella (35%), was much lower for E. coli (4%). This suggests that 

nitrofurantoin might still remain very effective in treating UTIs caused by E. coli 

in older people. The prevalence of resistance of E. coli against ciprofloxacin, a 

second line treatment for UTI was very high in LTCFs (29% versus 14%), which 

is concerning given the high frequency of carriage of this resistance alongside 

resistance to beta-lactams such as methicillin. Resistance to 3GCs and 

carbapenems was low, which is reassuring. However, the prevalence of 
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Klebsiella resistant to 3GC increased steadily (faster for LTCF samples, 3% to 

12%, than for non-LTCF samples, 6% to 9%), which highlights the need for 

antibiotic stewardship interventions targeting the use of this antibiotic. More 

information about antibiotic prescription, recent hospitalisations, and 

transmission of resistant bacteria is required to understand the drivers of the 

high levels of AMR observed in LTCFs.  
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Chapter 6  Seasonality of UTIs in the United 

Kingdom in different age groups: longitudinal analysis 

of THIN data 

Accepted for publication in Epidemiology and Infection.1  

Aim 

To explore the seasonality and trends of UTI in the UK 

Introduction 

As highlighted in Chapter 1, UTIs are a common cause of BSI and the second 

most common cause for antibiotic prescribing in primary care, which is an 

important driver of antibiotic resistance. Chapter 5 found a high prevalence of 

antibiotic resistant E. coli and Klebsiella UTI in LTCF residents, reiterating the 

importance of improving our understanding of the dynamics of these infections. 

In addition, in view of developing a mathematical model of trimethoprim 

resistant E. coli (Chapter 7), it was important to determine whether these 

infections were seasonal. 

Understanding the seasonality dynamics of UTI may provide a valuable insight 

into the determinants of infection, which can help clinicians and infection control 

specialists understand the risk factors for these infections and ultimately 

improve their prevention. Any seasonality should also be accounted for in the 

evaluation of interventions against UTI, as decreases in incidence due to 

seasonality could be misinterpreted as decreases caused by the intervention. 

Seasonality is also important when interpreting surveillance datasets and 

antibiotic prescription datasets, as increases in incidence or prescriptions could 

be misinterpreted as outbreaks or inappropriately high prescribing.  

Whilst some bacterial infections seem to exhibit a winter seasonal pattern in 

temperate climates, such as bacterial meningitis217,218, other infections such as 

Campylobacter and Salmonella infections are more common during the 

warmest months of the year219,220. Dehydration has been suggested to increase 

the risk of UTI, by causing lower rates of urine flow and voiding frequency, 

which may delay bacterial eradication from the urinary tract221.  Due to 
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increases in temperature during summer time, which can make individuals 

prone to dehydration, UTIs could be expected to peak in summer. These 

changes could be particularly marked in the elderly population, who are prone 

to dehydration60. However, drinking more water in summer could also cause 

dehydration to be less common this period. Sexual activity is also a known risk 

factor for UTI and may also influence UTI dynamics36.  

Evidence regarding the seasonality of UTIs from the literature is conflicting 

(Table 6-1). One study showed UTI incidence was higher in the winter222, 1 in 

autumn223, and others in summer224–228. Additional studies suggested 

seasonality varied by causative organism229,230 and by whether patients were 

seen by general practitioners (GPs) or in hospital231. These differences may be 

partly caused by the use of inadequate methodology (for example, comparing 

incidence without any formal statistical analysis222,227,230,232), the assessment of 

seasonality in different geographical areas (for example, in Norway223 vs. in 

Greece225), different species (for example, Escherichia coli and Staphylococcus 

saprophyticus230), and different case-mix (for example, in children222,227,232 vs. in 

all ages223,226,228,230,233, in the community223–225,227,229,230,232 vs. in hospital222,228 

or in females224,229,231,233 vs. both sexes222,223,225–228,230,232).  

Initially, the seasonality of UTI was investigated using the West Midlands 

AmSurv data described in Chapter 4 (see Appendix Chapter 6 PART A). The 

lack of seasonality found in these data drove the assessment of seasonality of 

UTI using other sources. In the first instance, the monthly GP prescriptions 

available per region from the Health & Social Care Information Centre 

website234 were analysed; however, this data is only available for all ages. 

Trimethoprim and nitrofurantoin prescriptions in this dataset were found to be 

seasonal, with a clear autumnal peak (see Appendix Chapter 6 PART A). Many 

confounders such as age and sampling hindered the interpretation of these 

differences. In order to investigate the origin of this discrepancy, the UTI 

consultations and antibiotic prescriptions by GPs in the UK over 2008-2015 for 

different age groups were extracted from a nationally representative database 

of electronic health records from primary care, The Health Improvement 
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Network (THIN). The seasonality of UTI was investigated using this data and is 

presented subsequently in this chapter. 
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Table 6-1. Studies that analysed the seasonality of UTI 

Author Year Country Community/ 

hospital 

Organism Sex Age Seasonality Methods 

Stansfeld
222

 1966 England Hospital All All 0-12 In cases >1 year age, 96 in winter 

and 58 in summer (significant at 

1% level) 

Unknown 

Anderson
224

 1983 Canada Community All Females 15 or 

older 

August peak Edward's test for 

cyclic variation 

Pead et al.
229

 1985 England Community All Females 15-25 S. saprophyticus UTI peak in mid-

September. Coliform (all Gram-

negative bacilli other than Proteus 

spp. and Pseudomonas spp.) UTI 

peak in mid-March 

Chi-squared test 

Vorland et al.
223

 1985 Norway Community E. coli All All Higher incidence from September 

to December (10.2 per 1,000 

inhabitants) than from January to 

April (8.6 per 1000 inhabitants) or 

May to August (6.2 per 1,000 

inhabitants), but non-significant. 

Chi-squared test 
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Author Year Country Community/ 

hospital 

Organism Sex Age Seasonality Methods 

Ferry et al.
230

 1987 Sweden Community All All All No seasonality in E. coli UTI but 

August peak in S. saprophyticus 

UTIs 

Comparing 

incidence 

Stamm et al.
233

 1991 USA Outpatient 

recurrence 

clinic 

All Females All Decrease in incidence November 

to February 

Wilcoxon's 

signed-rank test 

Kwok et al.
232

 2006 Netherlands Community All All 0-18 Decrease in the summer months 

mainly in children 0-12 

Comparing 

incidence rates 

Falagas et al.
225

 2009 Greece Community 

(house call 

visits) 

All All All UTIs correlate with higher 

temperatures and decreased 

relative humidity 

Spearman's 

rank correlation 

Eriksson et 

al.
231

 

2013 Sweden Community and 

hospital 

E. coli, K. 

pneumoniae 

and P. mirabilis 

aggregated and 

S. saprophyticus  

Females 15-29 In GP samples, both peak in 

September, in hospital samples, 

both peak in August. Stronger 

seasonality in S. saprophyticus. 

Chi-squared test 
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Author Year Country Community/ 

hospital 

Organism Sex Age Seasonality Methods 

Rossignol et 

al.
226

 

2013 France, 

Germany, 

USA, China 

Italy, Brazil 

and Australia 

Community 

(online) 

All All All Increases of 8-19% in search 

trends for UTI-related terms in 

summer in France, Germany, USA, 

China and Italy, and peaks in the 

southern hemisphere austral 

summer in Brazil and Australia 

Google trends 

analysis, Mann-

Whitney test 

Yolbas et al.
227

 2013 Turkey Community All All 1 

month- 

15 

years 

More UTIs in summer (53/150) 

than overall in winter (46/150), 

spring (35/150) or autumn (16/150) 

but difference in seasonality by sex 

Comparing 

incidence 

Melamed et 

al.
228

 

2014 USA Hospital All All All Summer peak Lomb-Scargle 

periodograms in 

de-trended data 
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Methods 

THIN is a validated database of primary care consultation data covering over 

3.7 million active patients which are demographically representative of the 

UK.235–237 The dataset contains individual pseudonymised patient ID, 

prescription details, consultation date and time, reason for consultation 

(recorded through diagnostic code), patient registration details and patient 

clinical and demographic information. 

In order to obtain the monthly rate of de-duplicated UTI consultations, 

nitrofurantoin prescriptions and trimethoprim prescriptions by age and sex, for 

2008-2015, diagnostic codes were extracted (listed in Appendix Chapter 6 

PART B), Patient ID, trimethoprim and nitrofurantoin prescriptions (derived from 

the prescribing information in THIN), country, date of UTI 

consultation/prescription, date of registration at GP, date of de-registration at 

GP, patient age, patient sex, and patients registered on the 1st of July (mid-

year) each year for 2008-2015 at each of the GP practices present in THIN 

during the whole duration of the study (for this, practice ID was required). UTI 

consultations and nitrofurantoin and trimethoprim prescriptions from UK 

practices meeting acceptable standard for research (as suggested by the THIN 

Data Guide for Researchers) were de-duplicated to one per patient per 30-day 

period in order to approximate episodes of infection (one nitrofurantoin or 

trimethoprim prescription during the 30-day period) and subsequently 

aggregated by age group, sex and moth of the study. The denominator 

population was the number of patients (of the corresponding age group and 

sex) registered at each of the GP practices on the 1st of July (mid-year) each 

year of the study.  

Reasoning for analysing both GP consultations and antibiotic 

prescriptions 

Consultation codes in THIN are known to be poorly recorded238,239.  However, 

all prescriptions made by GP practices reporting to THIN are automatically 

included in the database and do not suffer from this reporting bias. Hence, the 

analysis of UTI consultations was repeated for trimethoprim and nitrofurantoin 
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prescriptions. Both trimethoprim and nitrofurantoin are almost exclusively 

prescribed for UTIs and account for the majority of antibiotics used for UTIs in 

primary care.  

Only the rate of UTI consultations (and not antibiotic prescriptions) was used to 

assess the trend in UTIs over time, because nitrofurantoin and trimethoprim 

prescriptions for UTI as a proportion of all antibiotic prescriptions increased over 

the study period (Figure 6-1). Although coding for UTI consultations by GPs was 

poor, it remained stable over the study period (the percentage of trimethoprim 

and nitrofurantoin prescriptions that had a UTI consultation coded on the same 

day fluctuated between 35-41% during the study period), enabling the study of 

trend over time (Figure 6-2). 
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Figure 6-1. Percentage of monthly UTI consultation coded with any antibiotic prescription 

on the same day for which that antibiotic was trimethoprim or nitrofurantoin, by age 

group. 
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Figure 6-2. Percentage of monthly trimethoprim and nitrofurantoin prescriptions that had 

a UTI consultation coded on the same day for those aged under 85 and 85 or over. 

Nitrofurantoin and trimethoprim are almost exclusively prescribed for UTI; therefore this can be 

interpreted as a proxy for coding of UTI consultation.  
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Statistical methods 

Separate negative binomial models were fit to the rate of UTI consultations and 

trimethoprim and nitrofurantoin prescriptions in order to assess trend and 

seasonality. Negative binomial models were best suited to model the rates of 

consultations and prescriptions due to the overdispersion in the data. These 

were repeated by age group (14-17, 18-24, 25-45, 46-69, 70-84, 85+) and by 

sex. All models included a trend term modelled as a quadratic function of time. 

This term explained the trend observed better than a linear term, as measured 

by the AIC. A seasonality term was then added. The dispersion parameter was 

fixed at the estimate derived for the seasonal model, which was more complex. 

This enabled the comparison of the fit of the models with and without the 

seasonality term using the AIC and the percentage of deviance explained by the 

model. In addition, a correlogram was plotted to explore the correlations 

between the residuals of the model and the lagged values of the residuals for 

lags 1-12 (over the course of a year).  

The negative binomial model including seasonality can be defined by the 

following equation:  

log(λ𝑡) = a + 𝑡𝑟𝑒𝑛𝑑𝑡 + 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑡 + log (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡) 

Where, 𝑡 was the month of the study; λ𝑡 was the number of consultations and 

prescriptions at month 𝑡; a was the intercept; 𝑡𝑟𝑒𝑛𝑑𝑡 was a quadratic term 

defined as 𝑡𝑟𝑒𝑛𝑑𝑡 = a + b𝑡 + c𝑡2, used to account for the decreasing trend 

observed in the rates; 𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑡 was a seasonality term defined as 

𝑠𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑖𝑡𝑦𝑡 = cos (
2Π𝑡

12
) + sin (

2Π𝑡

12
); and log (𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑡) was an offset used to 

model the rates of consultations and prescriptions instead of the counts. 

Adding an autoregressive term at lag of 1 month in the regression to test for 

local statistical dependence or autocorrelation was also explored, as it is 

common for infection time series data; however, it did not significantly improve 

the fit of the models.  
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All the analysis was carried out in R version 3.3.0240 using the glm.nb function in 

the MASS package241 to obtain the theta (the dispersion parameter) of the full 

model. Subsequently the glm function (stats package) was used to fit the model 

with the fixed theta.  

Sensitivity analysis 

In order to assess coding reliability for UTI consultations in THIN, the 

percentage of monthly trimethoprim and nitrofurantoin prescriptions that had a 

UTI consultation coded on the same day was calculated. These appeared to 

follow a cyclical pattern during the year; therefore, in order to account for any 

seasonality in coding, the monthly UTI consultations were scaled for each age 

group by dividing by a scaling factor. This scaling factor was the percentage of 

UTIs coded in each month (as described above) divided by the maximum 

percentage coded over the study period for that age group. As a sensitivity 

analysis, the seasonality was also assessed in these scaled UTIs. We also 

repeated the analysis for England. 
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Results 

UTI consultations and trimethoprim and nitrofurantoin prescriptions 

Between 1 January 2008 and 31 December 2015, there were 992,803 de-

duplicated UTI consultations and 1719416 de-duplicated trimethoprim and 

nitrofurantoin prescriptions reported to THIN. The mean monthly rate of UTI 

consultations and trimethoprim and nitrofurantoin prescriptions per 100,000 

population for all age groups and by sex is shown in Table 6-2. Both measures 

increased steeply with age, particularly in males. 
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Table 6-2. Descriptive table of the rates of UTI consultations and trimethoprim and nitrofurantoin prescriptions by age group and sex. These were 

de-duplicated to 1 per patient per 30-day period in order to approximate episodes of infection (1 nitrofurantoin or trimethoprim prescription during the 30-day 

period). 

Age 

groups 

Percentage of 

UTI 

consultations 

Mean 

monthly rate 

of UTI 

consultations 

per 100,000 

population 

Mean monthly 

rate of UTI 

consultations 

in females per 

100,000 

population 

Mean monthly 

rate of UTI 

consultations 

in males per 

100,000 

population 

Percentage of 

trimethoprim 

and 

nitrofurantoin 

prescriptions 

Mean monthly 

rate of 

trimethoprim 

and 

nitrofurantoin 

prescriptions 

per 100,000 

population 

Mean monthly 

rate of 

trimethoprim 

and 

nitrofurantoin 

prescriptions in 

females per 

100,000 

population 

Mean monthly 

rate of 

trimethoprim 

and 

nitrofurantoin 

prescriptions in 

males per 

100,000 

population 

0-13 6.3 144.3 232.0 51.5 6.0 238.3 360.3 123.7 

14-17 2.6 195.4 377.4 19.4 2.4 302.1 581.9 55.4 

18-24 10.1 394.0 736.7 25.8 7.9 529.4 1002.0 67.8 

25-45 23.6 257.5 452.6 37.1 20.4 385.5 679.6 83.2 

46-69 28.7 313.1 508.1 93.9 30.5 573.5 941.6 207.2 

70-84 20.0 617.2 830.6 305.1 22.5 1200.2 1663.7 643.5 

85+ 8.7 738.1 845.3 471.2 10.3 1489.5 1793.6 958.3 
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Trend 

Although coding for UTI consultations by GPs was poor, it remained stable over 

the study period (the percentage of trimethoprim and nitrofurantoin prescriptions 

that had a UTI consultation coded on the same day fluctuated between 35-41% 

during the study period), enabling the study of trend over time (Figure 6-3).  

With the exception of males aged 70-84, the rate of UTI consultations for both 

males and females of all age groups decreased during the study period, as 

shown by the greatly improved AIC when adding a linear trend term to the 

model (see Figure 6-3, Table 6-3 and Table 6-4). This decrease was particularly 

pronounced for females aged 85 or older. The trend in the UK was very similar 

to the trend in England (Figure 6-4). 



 

163 

 

 

Figure 6-3. Monthly UTI consultations coded by GPs per 100,000 person years in the UK 

by age group and sex. The central red lines represent the fitted trend predictions from the 

seasonal regression model. This was a negative binomial polynomial regression model of 

degree two with the number of patients registered at each of the GP practices on the 1
st
 of July 

(mid-year) each year of the study as offset. The UTI consultations were de-duplicated to one 

per 30-day period.  The y axes differ between panels. 
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Table 6-3. Akaike information criteria (AIC) for the models of UTI consultations in the UK 

including a seasonal component with no trend term, a linear trend term and a quadratic 

trend term, by sex and age group. *In order to calculate the AIC, the dispersion parameter 

(theta) was fixed at the estimate derived for the most complex model (the seasonal model with a 

quadratic trend term). The trend term was given by t + t2 and the seasonality term by 

cos (
2Π𝑡

12
) + sin (

2Π𝑡

12
), where t was the month of the study (1 to 96). 

Sex Age group AIC of the 

regression model 

with no trend term* 

AIC of the 

regression 

model with a 

linear trend term 

(𝑡)* 

AIC of the 

regression model 

with a quadratic 

trend term (𝑡 + 𝑡2) 

All UTIs 14-17 1131.302 936.8906 925.5975 

All UTIs 18-24 1375.33 1119.663 1083.569 

All UTIs 25-45 1330.703 1249.725 1234.055 

All UTIs 46-69 1281.198 1244.596 1231.499 

All UTIs 70-84 1193.373 1181.468 1168.383 

All UTIs 85+ 1298.537 1054.343 1036.552 

Female UTIs 14-17 1170.251 930.8574 917.3008 

Female UTIs 18-24 1360.837 1117.974 1078.937 

Female UTIs 25-45 1327.862 1237.177 1221.477 

Female UTIs 46-69 1262.241 1218.761 1205.818 

Female UTIs 70-84 1143.959 1134.796 1123.924 

Female UTIs 85+ 1241.139 1015.206 1001.247 

Male UTIs 14-17 582.4998 568.1808 570.5024 

Male UTIs 18-24 678.9267 624.9811 627.5591 

Male UTIs 25-45 918.8692 802.7613 797.7937 

Male UTIs 46-69 930.2015 922.5998 920.3444 

Male UTIs 70-84 929.6153 931.4508 920.3366 

Male UTIs 85+ 861.6667 830.0555 819.1208 
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Table 6-4. Coefficients and 95% confidence intervals (CI) of the models of UTI consultations in the UK by sex and age group. The trend term was 

given by t + t2 and the seasonality term by cos (
2Π𝑡

12
) + sin (

2Π𝑡

12
), where t was the month of the study (1 to 96). The confidence intervals were calculated using 

the confint function in R. 

Sex ages 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  

(95% CI) 

𝑡  

(95% CI) 

𝑡2  

(95% CI) 

cos (
2Π𝑡

12
)  

(95% CI) 

sin (
2Π𝑡

12
)  

(95% CI) 

All UTIs 14-17 -6.08  

(-6.15, -0.00268) 

0.000415  

(-6.15, -0.00268) 

-6.2e-05  

(-6.15, -0.00268) 

0.0994  

(-6.15, -0.00268) 

-0.154  

(-6.15, -0.00268) 

All UTIs 18-24 -5.46  

(-5.49, 0.00013) 

0.00193  

(-5.49, 0.00013) 

-5.85e-05  

(-5.49, 0.00013) 

0.0241  

(-5.49, 0.00013) 

-0.1  

(-5.49, 0.00013) 

All UTIs 25-45 -5.93  

(-5.97, 4.64e-05) 

0.00173  

(-5.97, 4.64e-05) 

-3.83e-05  

(-5.97, 4.64e-05) 

0.0205  

(-5.97, 4.64e-05) 

-0.0818  

(-5.97, 4.64e-05) 

All UTIs 46-69 -5.76  

(-5.79, 0.000349) 

0.00172  

(-5.79, 0.000349) 

-2.9e-05  

(-5.79, 0.000349) 

0.0102  

(-5.79, 0.000349) 

-0.0763  

(-5.79, 0.000349) 

All UTIs 70-84 -5.1  

(-5.13, 0.000806) 

0.00222  

(-5.13, 0.000806) 

-2.98e-05  

(-5.13, 0.000806) 

-0.00302  

(-5.13, 0.000806) 

-0.0524  

(-5.13, 0.000806) 

All UTIs 85+ -5.1  

(-5.13, 0.000806) 

0.00222  

(-5.13, 0.000806) 

-2.98e-05  

(-5.13, 0.000806) 

-0.00302  

(-5.13, 0.000806) 

-0.0524  

(-5.13, 0.000806) 

Female UTIs 14-17 -5.4  

(-5.47, -0.0029) 

0.000229  

(-5.47, -0.0029) 

-6.72e-05  

(-5.47, -0.0029) 

0.101  

(-5.47, -0.0029) 

-0.167  

(-5.47, -0.0029) 

Female UTIs 18-24 -4.84  

(-4.87, 0.000431) 

0.00225  

(-4.87, 0.000431) 

-6.12e-05  

(-4.87, 0.000431) 

0.0236  

(-4.87, 0.000431) 

-0.101  

(-4.87, 0.000431) 

Female UTIs 25-45 -5.36  

(-5.4, -6.22e-05) 

0.00164  

(-5.4, -6.22e-05) 

-3.87e-05  

(-5.4, -6.22e-05) 

0.0201  

(-5.4, -6.22e-05) 

-0.0852  

(-5.4, -6.22e-05) 
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Sex ages 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡  

(95% CI) 

𝑡  

(95% CI) 

𝑡2  

(95% CI) 

cos (
2Π𝑡

12
)  

(95% CI) 

sin (
2Π𝑡

12
)  

(95% CI) 

Female UTIs 46-69 -5.27  

(-5.3, 0.000253) 

0.00168  

(-5.3, 0.000253) 

-2.98e-05  

(-5.3, 0.000253) 

0.0114  

(-5.3, 0.000253) 

-0.0812  

(-5.3, 0.000253) 

Female UTIs 70-84 -4.81  

(-4.84, 0.000701) 

0.00216  

(-4.84, 0.000701) 

-2.85e-05  

(-4.84, 0.000701) 

-0.00206  

(-4.84, 0.000701) 

-0.0564  

(-4.84, 0.000701) 

Female UTIs 85+ -4.81  

(-4.84, 0.000701) 

0.00216  

(-4.84, 0.000701) 

-2.85e-05  

(-4.84, 0.000701) 

-0.00206  

(-4.84, 0.000701) 

-0.0564  

(-4.84, 0.000701) 

Male UTIs 14-17 -8.43  

(-8.61, -0.00787) 

0.00113  

(-8.61, -0.00787) 

-6.03e-05  

(-8.61, -0.00787) 

0.0924  

(-8.61, -0.00787) 

0.0412  

(-8.61, -0.00787) 

Male UTIs 18-24 -8.08  

(-8.19, -0.00684) 

-0.00185  

(-8.19, -0.00684) 

-3.08e-05  

(-8.19, -0.00684) 

0.0383  

(-8.19, -0.00684) 

-0.0673  

(-8.19, -0.00684) 

Male UTIs 25-45 -7.8  

(-7.85, -0.00216) 

0.000213  

(-7.85, -0.00216) 

-3.67e-05  

(-7.85, -0.00216) 

0.028  

(-7.85, -0.00216) 

-0.0499  

(-7.85, -0.00216) 

Male UTIs 46-69 -6.97  

(-7.01, -0.000274) 

0.0015  

(-7.01, -0.000274) 

-2.24e-05  

(-7.01, -0.000274) 

0.00462  

(-7.01, -0.000274) 

-0.0508  

(-7.01, -0.000274) 

Male UTIs 70-84 -5.84  

(-5.88, 0.00151) 

0.00323 

(-5.88, 0.00151) 

-3.39e-05  

(-5.88, 0.00151) 

-0.0071  

(-5.88, 0.00151) 

-0.036  

(-5.88, 0.00151) 

Male UTIs 85+ -5.84  

(-5.88, 0.00151) 

0.00323 

(-5.88, 0.00151) 

-3.39e-05  

(-5.88, 0.00151) 

-0.0071  

(-5.88, 0.00151) 

-0.036  

(-5.88, 0.00151) 
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Figure 6-4. Monthly UTI consultations coded by GPs per 100,000 person years in England 
and in the UK by age group. The central red lines represent the fitted predictions of the 
negative binomial polynomial regression model of degree two with the number of patients 
registered at each of the GP practices on the 1

st
 of July (mid-year) each year of the study as 

offset. The central blue lines represent the fitted predictions of the same model but with a 
seasonal component included. The shaded areas represent the 95% confidence intervals for 
their respective models. These were calculated using the standard errors from the predict 
function, which calculates the confidence intervals around the mean. The UTI consultations 
were de-duplicated to one per 30-day period. The y axes differ between panels. 
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Seasonality by age 

Adding a seasonal component to the negative binomial regression greatly 

improved the model fit to the data for ages 14-17, 18-24, 25-45 and 46-69, as 

measured by the AIC and the percentage of deviance explained by the model 

(see Table 6-5), showing UTI consultations in these age groups follow a cyclic 

yearly pattern. For ages 70-84, there was also a notable improvement in model 

fit; however, in those aged 85 or older, the improvement was minimal (73.62% 

of the deviance explained by the seasonal model, 72.91% by the non-seasonal 

model). In younger ages there is no overlap between the 95% CIs of the models 

with and without seasonality during the September to November period for most 

years (Figure 6-5), which meant the difference was statistically significant.  

Table 6-5. Akaike information criteria (AIC) and the percentage deviance explained by the 

models of UTI consultations in the UK including a seasonal component and models that 

did not by age group. 

Age group AIC seasonal 

model 

AIC non-

seasonal model* 

% deviance 

explained by the 

seasonal model 

% deviance 

explained by the 

non-seasonal 

model 

14-17 925.60 1063.98 77.46 43.25 

18-24 1083.57 1210.22 80.65 53.94 

25-45 1234.05 1329.14 66.19 30.61 

46-69 1231.50 1353.64 64.17 16.43 

70-84 1168.38 1218.51 46.24 14.95 

85+ 1036.55 1033.14 73.62 72.91 

*In order to calculate the AIC and percentage deviance explained for the non-seasonal model, 
the dispersion parameter (theta) was fixed at the estimate derived for the seasonal model. 

The correlograms in Figure 6-5 show the autocorrelation functions for the 

residuals of the regression models without seasonality at lags of 0-12 months. 

For ages 14-17, 18-24, 25-45 and 46-69, the correlograms show oscillatory 

patterns consistent with seasonality. This pattern is less pronounced in the 70-

84 year olds and disappears in those aged 85+. With 1 exception (January 

2014), the month of the year with the highest number of UTI consultations in 
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those aged under 85 every year from 2008 to 2015 were between September 

and November (Table 6-6).  

 

Figure 6-5. Seasonality in UTI consultations coded in the UK per 100,000 person years by 

age. The left panels show the rate of UTI consultations by age group. The central red lines 

represent the fitted predictions of the negative binomial polynomial regression model of degree 

2 with the number of patients registered at each of the GP practices on the 1
st
 of July (mid-year) 

each year of the study as offset. The central blue lines represent the fitted predictions of the 

same model but with a seasonal component included. The shaded areas represent the 95% 

confidence intervals for their respective models. These were calculated using the standard 

errors from the predict function, which calculates the confidence intervals around the mean. The 

right panels show the correlograms for the residuals of the regression models without 

seasonality at lags of 0-12 months for each age group. The September to November period is 

shaded in grey. The UTI consultations were de-duplicated to 1 per 30-day period. The y axes 

differ between panels. 
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Table 6-6. Month of the year with the highest number of UTI consultations or trimethoprim and nitrofurantoin prescriptions by age group. In 

brackets, the rate of UTI consultations or trimethoprim and nitrofurantoin prescriptions per 100,000 person years for that month. 

Date Trimethoprim and 

nitrofurantoin 

prescriptions in the 

UK <85 

Trimethoprim and 

nitrofurantoin 

prescriptions in the 

UK 85+ 

UTI consultations in 

the UK <85 

UTI consultations in 

the UK 85+ 

UTI consultations in 

England <85 

UTI consultations in 

England 85+ 

2008 Oct (515.08) Jan (1886.24) Sep (352.52) Jan (922.37) Sep (355.56) Jan (826.19) 

2009 Sep (535.13) Oct (1622.4) Sep (350.65) Jan (881.78) Sep (352.6) Jan (817.95) 

2010 Sep (554.32) Mar (1612.09) Sep (344.01) Jul (838.79) Sep (339.61) Jul (764.2) 

2011 Nov (587.15) Mar (1653.98) Sep (342.48) Aug (814) Sep (345.05) Nov (742.15) 

2012 Oct (621.67) Jan (1799.42) Oct (349.52) Jan (817.35) Oct (345.29) Jan (740.61) 

2013 Oct (622.2) Jan (1768.77) Oct (349.18) Jan (809.73) Oct (340.93) Oct (741.06) 

2014 Oct (597.12) Jan (1687.91) Jan (325.01) Jan (756.34) Oct (317.27) Jan (645.86) 

2015 Sep (556.59) Jan (1517.94) Sep (293.28) Jan (692.45) Sep (282.98) Jan (611.35) 
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The same seasonal pattern was observed for the scaled monthly UTI 

consultations (Figure 6-6 and Table 6-7), for trimethoprim and nitrofurantoin 

prescriptions (Figure 6-7), when restricting the analysis to England (Figure 6-8), 

and when analysing the seasonality of urine samples submitted to the AmSurv 

database186 in the West Midlands (Appendix Chapter 6 PART A).  

 

Figure 6-6. Scaled monthly UTI consultations coded per 100,000 person years in the UK 

by age group. The UTI consultations were de-duplicated to one per 30-day period. The red 

lines represent the fitted predictions of the negative binomial polynomial regression model of 

degree two with the number of patients registered at each of the GP practices on the 1
st
 of July 

(mid-year) each year of the study as offset. The blue lines represent the fitted predictions of the 

same model but with a seasonal component included. No confidence intervals are presented as 

these were scaled predictions. The monthly UTI consultations were scaled for each age group 

by dividing by a scaling factor. This scaling factor was the percentage of UTIs coded in each 

month (the percentage of monthly trimethoprim and nitrofurantoin prescriptions that had a UTI 

consultation coded on the same day) divided by the maximum percentage coded over the study 

period for that age group. The right panels show the correlograms for the residuals of the 

regression models without seasonality at lags of 0-12 months for each age group. The y axes 

differ between panels.  
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Table 6-7. Akaike information criteria (AIC) for models of the scaled UTI consultations in 

the UK which included a seasonal component and models that did not by age group. *In 

order to calculate the AIC for the non-seasonal model, the dispersion parameter (theta) was 

fixed at the estimate derived for the seasonal model. 

Age group AIC seasonal 

model 

AIC non-

seasonal model* 

% deviance 

explained by the 

seasonal model 

% deviance 

explained by the 

non-seasonal 

model 

14-17 960.78 1041.58 72.21 46.84 

18-24 1096.01 1196.45 77.92 53.5 

25-45 1242.65 1293.55 54.06 26.85 

46-69 1254.36 1309.21 48.88 16.55 

70-84 1196.56 1217.86 28.74 8.51 

85+ 1108.25 1103.92 44.43 43.47 
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Figure 6-7. Monthly nitrofurantoin and trimethoprim prescriptions administered by GPs 

per 100,000 person years in the UK by age group. The nitrofurantoin and trimethoprim 

prescriptions were de-duplicated to one per 30-day period. The central red lines represent the 

fitted predictions of the negative binomial polynomial regression model of degree two with the 

number of patients registered at each of the GP practices on the 1
st
 of July (mid-year) each year 

of the study as offset. The central blue lines represent the fitted predictions of the same model 

but with a seasonal component included. The shaded areas represent the 95% confidence 

intervals for their respective models. These were calculated using the standard errors from the 

predict function, which calculates the confidence intervals around the mean. The right panels 

show the correlograms for the residuals of the regression models without seasonality at lags of 

0-12 months for each age group. The y axes differ between panels. 
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Figure 6-8. Monthly UTI consultations coded per 100,000 person years in England by age 

group. The UTI consultations were de-duplicated to one per 30-day period. The central red 

lines represent the fitted predictions of the negative binomial polynomial regression model of 

degree two with the number of patients registered at each of the GP practices on the 1
st
 of July 

(mid-year) each year of the study as offset. The central blue lines represent the fitted 

predictions of the same model but with a seasonal component included. The shaded areas 

represent the 95% confidence intervals for their respective models. These were calculated 

using the standard errors from the predict function, which calculates the confidence intervals 

around the mean. The right panels show the correlograms for the residuals of the regression 

models without seasonality at lags of 0-12 months for each age group. The y axes differ 

between panels. 
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Seasonality by sex 

Figure 6-9 shows the seasonality of the rate of UTI consultations by sex and 

large groupings of age for which seasonality varies (<85 and 85+). UTIs in 

males followed a similar pattern to females; however, they were rare, which 

reduced statistical power to detect seasonality. Including a seasonal component 

into the regression model of the younger age group improved the model fit (the 

AIC decreased from 1092.5 to 1066.3 and the percentage deviance explained 

by the model more than doubled from 12.9 to 34.8). There was also an 

oscillatory pattern visible in the correlogram, although few correlations were 

significant. This contrasted with a clear lack of oscillatory shape in the 

correlogram for UTI consultations in males aged 85 and older and a lack of 

improvement in model fit when adding a seasonal term (the AIC increased from 

816.5 to 819.1 and the percentage deviance explained by the model only 

increased very slightly from 32.9 to 35.3). This is similar to what is observed for 

trimethoprim and nitrofurantoin prescriptions (Figure 6-10). 
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Figure 6-9. Seasonality in UTI consultations coded in the UK per 100,000 person years by 

age group and sex. The left panels show the rate of UTI consultations by age group and sex. 

The central red lines represent the fitted predictions of the negative binomial polynomial 

regression model of degree 2 with the number of patients registered at each of the GP practices 

on the 1
st
 of July (mid-year) each year of the study as offset. The central blue lines represent 

the fitted predictions of the same model but with a seasonal component included. The shaded 

areas represent the 95% confidence intervals for their respective models. These were 

calculated using the standard errors from the predict function, which calculates the confidence 

intervals around the mean. The right panels show the correlograms for the residuals of the 

regression models without seasonality at lags of 0-12 months for each age group. The 

September to November period is shaded in grey. The UTI consultations were de-duplicated to 

1 per 30-day period. The y axes differ between panels. 

  



 

177 

 

 

Figure 6-10. Monthly nitrofurantoin and trimethoprim prescriptions administered by GPs 

to males per 100,000 person years in the UK by age group. The nitrofurantoin and 

trimethoprim prescriptions were de-duplicated to one per 30-day period. The central red lines 

represent the fitted predictions of the negative binomial polynomial regression model of degree 

two with the number of patients registered at each of the GP practices on the 1
st
 of July (mid-

year) each year of the study as offset. The central blue lines represent the fitted predictions of 

the same model but with a seasonal component included. The shaded areas represent the 95% 

confidence intervals for their respective models. These were calculated using the standard 

errors from the predict function, which calculates the confidence intervals around the mean. The 

right panels show the correlograms for the residuals of the regression models without 

seasonality at lags of 0-12 months for each age group. The AIC of the model in those aged 

under 85 decreases (from 1262.5 to 1237.4) by including seasonality in older people, but 

remains similar in those aged 85+ (928.0 in the model without seasonality and 932.9 in the 

model with seasonality). The y axes differ between panels. 
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Discussion 

Summary 

There was a September to November peak in UTI consultations and in 

trimethoprim and nitrofurantoin prescriptions for UTI in those aged 14-69 in the 

UK; however, this seasonality gradually disappeared with age and was not 

apparent in those aged 85 or older. Similar patterns were observed for males 

and females, although male UTIs were rare, which reduced statistical power.  

Mechanism 

The exact mechanism surrounding the seasonality of UTI consultations 

observed is likely to be complex, involving interactions between real UTI 

incidence, healthcare seeking behaviour, access to care and severity. A full 

analysis of the mechanisms underlying the autumnal seasonality observed in 

younger age groups is beyond the scope of this study and warrants further 

research. However, these could be influenced by sexual behaviour patterns, as 

recent sexual intercourse is an important risk factor for UTI in young women242. 

Given that the seasonal peak was not in high summer, when one might expect 

more dehydration, the influence of dehydration and temperature on UTI 

incidence in younger age groups remains unclear. 

Risk factors for UTI in older people include recurrent UTIs, incontinence, 

catheter use, disruptions to the normal vaginal flora, diabetes mellitus, prostatic 

hypertrophy (in men), and cognitive impairment or other comorbidities that may 

impede adequate self-hygiene47. These risk factors are less likely to be 

influenced by seasonal variation. UTIs in the very old can be considered a 

symptom of general frailty and poor care, such as consistent dehydration 

throughout the year, poor hygiene or inadequate catheter care. Our findings do 

not suggest a different seasonality in men and women; therefore, it is unlikely 

that the lack of seasonality detected in the very old is driven by the increase in 

the proportion of UTIs that are in males in this age group.  

The decrease in GP consultations for UTI contrasts with the steady increase in 

admissions to hospital for UTIs in England (which did not include A&E 
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attendances)10,34. While these are not truly comparable datasets, this difference 

between the GP and hospital data could indicate an increase in severity of UTIs 

or treatment failure due to antibiotic resistance, which means UTIs could more 

frequently warrant hospitalisation. Increases in hospital admissions for UTI 

could also denote shortfalls in the management of UTI in the community, for 

example in social care and community nursing5, as well as correct antibiotic 

treatment in primary care, which are important in preventing admissions to 

hospital. Antibiotic prescriptions were not used to assess the trend in UTIs over 

time, because nitrofurantoin and trimethoprim prescriptions for UTI as a 

proportion of all antibiotic prescriptions increased over the study period. 

Findings in context 

Many studies that addressed seasonality in the literature simply reported 

differences in incidence222,227,230,232. One of the studies set in the UK reported a 

peak in S. saprophyticus UTI in mid-September and a peak in all Gram-negative 

bacilli other than Proteus spp. and Pseudomonas spp. (aggregated) in 

March229. Gram-negative bacteria comprise the majority of the organisms that 

cause UTI; therefore, their findings are not in agreement with ours. That study 

assessed the seasonality of urine specimens from 1978-1983 and the 

epidemiology and sampling of UTIs could have changed greatly since then. The 

other study from the UK found a higher number of UTIs during the winter 

months in children seen in hospital in Durham222. As only adults in this study 

were studied and the authors did not report their methods, a comparison is not 

possible.  

The seasonality of UTIs has been studied in other countries; however, the 

findings from these studies are also conflicting (Table 6-1). Two studies 

reported autumnal peaks in incidence223,231. However, neither employed 

appropriate methods to assess seasonality. Eriksson et al. (2012) only reported 

the monthly total of samples received for 1 year and Vorland et al. (1985) 

studied seasonality in large aggregated time periods, which resulted in loss of 

information.  
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In England, the seasonality of E. coli BSIs varied by region243. As the urinary 

tract has been reported to be a primary source of infection for bloodstream 

infections, the seasonality of UTIs could also vary by region.  

Strengths and limitations 

This study is the first to formally assess the trend and seasonality of UTI 

consultations in the UK. This was a large study carried out in THIN, which is a 

validated database of primary care consultation data covering over 3.7 million 

active patients which are demographically representative of the UK235–237. It was 

carried out over a period of 8 years (January 2008 to December 2015), which 

should help minimize the bias of detecting patterns that only occurred 

sporadically. In addition, the UTI consultations analysis was repeated for 

trimethoprim and nitrofurantoin prescriptions, which confirmed these findings. 

The percentage of trimethoprim or nitrofurantoin prescriptions that had a UTI 

consultation coded on the same day (a proxy for UTI consultation coding) was 

low; however, it remained relatively stable during the study period, at between 

35-41%. As this study focused on patients with UTIs that presented to primary 

care, these conclusions may not extend to complicated UTIs seen in hospital, 

nor to UTIs that resolved with over-the-counter medication such as alkalinising 

agents and didn’t warrant a GP visit. In addition, although the analysis of 

seasonality in trimethoprim and nitrofurantoin prescriptions was used as a 

sensitivity analysis, there are also limitations in using these antibiotics as a 

proxy for UTI consultation as they do not make up the entirety of prescriptions 

for UTIs in secondary care.  

Two alterations could have also been made to the model. Firstly, seasonality 

could have been modelled using alternative shapes. For example, a harmonic 

could have been added; however, although this model may have fit the data 

better, it would not change the findings of the study. Secondly, an alternative to 

separately modelling each age group and sex would be to combine these in a 

model and use interaction terms to estimate age-specific parameters of trend 

and seasonality.  
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Finally, care must be taken when extrapolating these findings beyond the UK 

setting, where the range of temperatures throughout the year is relatively small. 

Clinical implications 

Our findings highlight that UTI prevention in older people should warrant 

attention throughout the year, as UTIs in this population are common year 

round and can be regarded as a symptom of general frailty. We also provide 

helpful information for the interpretation of the results of interventions and 

surveillance reports. For example, a decrease in UTI incidence in spring could 

be due to the effectiveness of a trialled intervention against UTIs, the seasonal 

pattern in UTIs, which yearly decrease during this period, or a combination of 

both, and their effect should be disentangled in order to correctly interpret the 

intervention effectiveness. Oppositely, an increase in incidence or antibiotic 

prescription during the autumn should be interpreted in the context of the yearly 

peak observed during this time.  

Further research  

Further research should focus on the prevention of UTI in older people, as this 

was the population with the highest burden of UTI. This study did not identify an 

impact of season on the incidence of UTI in this population; therefore, further 

research on the impact of patient and clinical factors is needed to identify areas 

that could be targeted for quality improvement. In addition, understanding the 

causes of the peak in UTI incidence during the autumn in those aged 14-69 

could then help select strategies for their avoidance and treatment. It would also 

be interesting to determine the susceptibility of samples taken during GP UTI 

consultations. This would help give more precise estimates of the prevalence of 

resistance, as the proportion of UTIs sampled would be recorded, and identify 

the comorbidity and prescribing practices associated with antibiotic resistance, 

which would help target interventions appropriately. However, there is no 

routinely collected dataset in England that captures both GP consultations and 

susceptibility data. 

The contrast between the decrease in GP consultations for UTI in this analysis 

and the steady increase in admissions to hospital for UTIs in England (which did 



 

182 

 

not include A&E attendances)10,34 also warrants further study. The Clinical 

Practice Research Datalink (CPRD) database, which is a similar dataset to 

THIN, comprising GP consultation data from practices representative of the UK, 

has been linked to the Hospital Episode Statistics (HES) database. This dataset 

may be useful to track the most commonly occurring UTI pathways in older 

people and identify the main adverse outcomes resulting from UTI (e.g. 

recurrent UTI, hospital admission, progression to blood stream infection). The 

association between antibiotic prescribing practice and UTI progression to 

adverse outcomes could also be quantified using these data. This will be 

important in order to improve the community management of UTIs and prevent 

unnecessary admissions to hospital in the future.  

LTCF residence is poorly recorded in GP and hospital records. Identifying LTCF 

residents within the CPRD-HES database would enable the comparison of 

these patient pathways for LTCF residents and older people living in the 

community. In addition, this would provide the first large source of data of 

antibiotic prescribing data for this population in England. 
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Conclusions 

This study is the first to formally assess the trend and seasonality of UTI 

consultations in the UK. This was a large study comprising UTI consultations 

from January 2008 to December 2015. Two distinct age-dependent patterns of 

seasonality were found in the UK. UTI consultations in those aged 14-69 

peaked from September to November. This seasonality gradually disappeared 

with age and was not apparent in those aged 85 or older. Similar patterns were 

observed for males and females, although male UTIs were rare. This analysis 

was repeated for trimethoprim and nitrofurantoin prescriptions, in England, 

confirming these findings. These results suggest that, unlike in those ages 14-

69, UTIs in older people are not associated with seasonal factors, suggesting 

that UTI prevention in this population should warrant attention throughout the 

year. In addition, the autumnal peak observed in those aged 14-69 provides 

helpful information for the interpretation of the results of interventions and 

surveillance reports. Further research should focus on the prevention of UTI in 

older people, and on understanding the causes of the peak in UTI incidence 

during the autumn in those aged 14-69. In addition, GP data provides exciting 

opportunities for linkage with hospital, susceptibility and LTCF data, which could 

yield interesting insights into the pathways of UTI progression in older people. 

Insight from these studies could help identify key factors that could be targeted 

to prevent hospitalisations. 
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Chapter 7  Mathematical modelling of the 

transmission of E. coli resistant trimethoprim in the 

LTCF 

Aims  

1. To develop a mathematical model which describes the movement of 

patients in and out of a LTCF and describes the transmission dynamics 

of trimethoprim resistance 

2. To parameterise this model using the best available data and literature 

sources. 

3. To carry out sensitivity analyses on this parameter set. 

Introduction 

In Chapter 5, it was shown that LTCF residents were more than four times more 

likely than community dwelling older people to develop a laboratory confirmed 

E. coli UTI caused by resistant bacteria; and that 60% of E. coli from urine 

specimens taken from LTCF residents were resistant to trimethoprim. These 

figures highlight the need for understanding the dynamics of trimethoprim 

resistance in this setting. 

Resistance to first-line treatments for UTI such as trimethoprim and 

nitrofurantoin can result in treatment failure, hospitalisation, and the subsequent 

use of antibiotics such as ciprofloxacin or 3GCs that should be reserved for the 

treatment of more serious infections. The reduction of inappropriate antibiotic 

prescribing for UTIs in primary care is precisely one of the targets of the Quality 

Premium Scheme developed by NHS England for reducing gram-negative 

BSIs.244 As explained in Chapter 5, in 2014, national primary care prescribing 

guidelines have switched from recommending trimethoprim as first-line 

treatment for UTI to recommending nitrofurantoin (unless there is a low risk for 

resistance to trimethoprim, in which case trimethoprim is also recommended).50 

Although in line with these recommendations, trimethoprim prescription has 

decreased during 2014-2015; trimethoprim is still the most commonly 

prescribed antibiotic in the community for UTI.35 In addition, 86% of CCGs in 
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England found that 25% of their community urine specimens were resistant to 

trimethoprim.  

As described in Chapters 2 and 3, dynamic mathematical models are important 

tools in epidemiology and public health which have been used to understand 

the epidemiology of infectious diseases, including AMR infections, to target 

interventions appropriately and to evaluate their health and economic impact.82–

85 Although infectious disease transmission has been modelled extensively in 

the hospital setting, few mathematical models have characterised the spread of 

infectious diseases in the LTCF setting (27 studies). Only three studies have 

modelled the transmission of AMR Gram-negative bacteria in LTCFs (two of 

carbapenem-resistant Enterobacteriaceae 132,133 and one of E. coli ST131134).  

This is an important gap in the literature for multiple reasons. Firstly, 

understanding the dynamics of AMR Gram-negative bacteria in LTCFs is vital. 

Gram-negative bacteria are now the most common cause of hospital-acquired 

infection in England, Wales, and Northern Ireland, including very severe 

infections such as BSIs28. As shown in Chapter 5, AMR Gram-negative bacteria 

are of particular concern in the LTCF setting, where the prevalence of UTI 

caused by AMR bacteria is higher than in hospitals and the rate of acquiring a 

UTI caused by E. coli and Klebsiella resistant to antibiotics is more than four 

times this rate in the remaining community. Understanding the epidemiology of 

infections caused by AMR E. coli is particularly important, as these bacteria are 

ubiquitous in the human gut.  

Secondly, the dynamics of infections caused by AMR E. coli are poorly 

understood through regression models, as shown in Chapter 6, where a 

negative binomial model including a seasonality component was fit to E. coli 

UTI incidence data and was unable to account for all the residual variance 

observed in the data. A dynamic mathematical model should help elucidate the 

additional variance in the data that has not been accounted for in the negative 

binomial regression. 
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Thirdly, mathematical models can incorporate patient movement dynamics 

between different institutions such as between LTCFs and hospitals, which may 

be important for the spread of AMR. 

The three studies that modelled the transmission of AMR Gram-negative 

bacteria in LTCFs published since the initial review focused on infections 

caused by particularly pathogenic Gram-negative bacteria, such as E. coli 

ST131, or bacteria resistant to third-line antibiotics such as carbapenems. 

These may not be representative of most Gram-negative bacteria transmitted in 

LTCFs. As shown in Chapter 5, in the LTCF setting, the most prevalent 

resistance in UTIs caused by E. coli was the resistance to trimethoprim. 

Antibiotic treatment increases the risk of colonisation and subsequent infection 

by resistant bacteria, and therefore, is an important factor to capture when 

modelling the transmission of AMR bacteria.28 One of these three studies 

explored the effect of antibiotic treatment (fluoroquinolones and cephalosporins) 

on resistance. However, no study to date has explored the dynamics of the 

transmission of trimethoprim resistant E. coli in the LTCF setting.  

The incidence of urinary E. coli resistant to trimethoprim used for model fitting 

was derived from the West Midlands AmSurv dataset (described in Chapters 4 

and 5). Consequently, the model was set in the West Midlands and all other 

parameters were, when possible, adjusted to represent the dynamics of 

transmission of E. coli resistant to trimethoprim in LTCFs within this region.  
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Methods 

Modelling approach 

Modelling the dynamics of trimethoprim resistant E. coli in a LTCF involved a 

number of processes. First, a compartmental stochastic dynamic transmission 

model was developed. This was then parameterised with data from a variety of 

sources. CQC registry data, microbiology samples from hospitals and GPs, and 

electronic health records were used. Where suitable data was not available, 

parameters were informed by the literature. Where possible, data from the West 

Midlands were used. As there were no suitable transmission parameters in the 

literature, the model was fit to incidence data, adjusted for case reporting, using 

maximum likelihood estimation.  

The baseline scenario involved fitting the model to incidence data from a LTCF 

in the highest incidence quartile to determine the values of the transmission 

parameters. All remaining parameters were kept at their most plausible values, 

as estimated from data or the literature. 

Sensitivity analyses were then carried out to test the influence of varying the 

model parameters within plausible ranges to the model outputs. This included 

varying the LTCF selected for model fitting. 

In addition, three scenarios were simulated: one in which the transmission rate 

was varied, one in which the proportion of residents discharged to the LTCF 

from hospital (vs. the community) was varied, and one in which the rate of 

trimethoprim prescription was increased. 

Model structure and description 

A compartmental stochastic dynamic transmission model was developed to 

simulate the transmission of trimethoprim-resistant E. coli in a LTCF in the West 

Midlands and the movement of patients in and out of the LTCF.  

All patients were assumed to be colonised with E. coli. This is because E. coli, 

although also sometimes a pathogen, is a common constituent of the healthy 

gut microbiota.12,245 Therefore, this model assumed no uncolonised individuals 
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were present in the LTCF. Due to the lack of data available to parameterise a 

mathematical model of co-colonisation with sensitive and resistant bacteria, a 

simple model was developed in which individuals could either be dominantly 

colonised with E. coli susceptible to trimethoprim or dominantly colonised with 

E. coli resistant to trimethoprim. In this model structure, those colonised with E. 

coli sensitive to trimethoprim are equivalent to ‘susceptible’ individuals in a 

traditional SIS model. Only the transmission of E. coli resistant to trimethoprim, 

which displaced the ‘normal’ E. coli gut flora (E. coli sensitive to trimethoprim), 

was simulated. It was assumed that residents, if untreated with trimethoprim, 

reverted to being colonised by E. coli sensitive bacteria at rate 𝛾.  

LTCF residents could be either treated with trimethoprim or not. Treatment with 

other antibiotics was not modelled. LTCF residents were divided into four 

compartments according to whether they were colonised with E. coli sensitive to 

trimethoprim or resistant to trimethoprim, and whether they were being treated 

with trimethoprim or not. 

Individuals could leave the LTCF by either dying or being hospitalised, and 

could either enter the LTCF directly from hospital or from the community. 

Transfer between LTCFs and discharges of LTCF residents to the community 

were not accounted for because they were considered to be comparatively rare 

events.  

This model can be subdivided in three distinct types of processes: transmission, 

treatment and movement of patients in and out of the LTCF. A schematic of the 

compartmental model can be found in Figure 7-1. 

In the LTCF, patients were divided into four compartments according to whether 

they were being treated with trimethoprim (𝑇, treated) or not (𝑈, untreated) and 

whether they were colonised with E. coli sensitive to trimethoprim (𝑈𝑠 and 𝑇𝑠) or 

resistant to trimethoprim (𝑈𝑟 and 𝑇𝑟). The size of the LTCF, 𝑁, was the sum of 

the number of individuals in compartments 𝑈𝑠, 𝑈𝑟, 𝑇𝑠 and 𝑇𝑟. This was kept 

constant through the study. 



 

189 

 

Individuals left the LTCF by either dying (D) or by going to hospital (H). 

Individuals were not assumed to re-enter the community. Individuals could 

either enter the LTCF directly from hospital or from the community. 

 

Figure 7-1. Model structure. In purple (C), the community; in blue (Us, Ur, Ts, and Tr), the 

LTCF; in orange (H), the hospital; and in green (D), the dead. 𝑈𝑠 were individuals untreated with 

trimethoprim colonised with E. coli susceptible to trimethoprim, 𝑈𝑟  were individuals untreated 

with trimethoprim colonised with E. coli resistant to trimethoprim, 𝑇𝑠 were individuals treated with 

trimethoprim colonised with E. coli susceptible to trimethoprim, and 𝑇𝑟  were individuals treated 

with trimethoprim colonised with E. coli resistant to trimethoprim. 𝑁 was the total population of 

the LTCF (𝑈𝑠 + 𝑈𝑟 + 𝑇𝑠 + 𝑇𝑟). 𝛽 was the rate of transmission of resistance to untreated 

individuals in the LTCF, 𝛽’ was the rate of transmission of resistance to treated individuals in the 
LTCF, 𝛾 was the rate of recovery from colonisation by E. coli resistant to trimethoprim in the 

LTCF, 𝛼𝑝 was the rate of trimethoprim treatment in the LTCF, 𝛾𝑝 was 1/average duration of 

trimethoprim treatment in the LTCF, 𝑚 was the rate of exit or entrance into the LTCF (the rate of 
deaths from the LTCF + hospitalisations from the LTCF, or  the rate of admissions to the LTCF 
from hospital and the community), ℎ𝑙 was the proportion of admissions to the LTCF from 

hospital (vs. community), and 𝑙ℎ was the proportion of residents who leave the LTCF and go to 
hospital (vs. die). 𝑥1, 𝑥2,  𝑥3, and 𝑥4 were the proportions of 𝑈𝑠, 𝑈𝑟, 𝑇𝑠 and 𝑇𝑟 (respectively) out 

of the total population discharged to the LTCF from hospital (𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 = 1). 𝑦1, 𝑦2,  𝑦3, 

and 𝑦4 were the proportions of 𝑈𝑠, 𝑈𝑟, 𝑇𝑠 and 𝑇𝑟 (respectively) out of the total population 

admitted to the LTCF from the community (𝑦1 + 𝑦2 + 𝑦3 + 𝑦4 = 1). 
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Model equations 

 

In red, the equation terms relating to transmission; in blue, the equation terms 

relating to antibiotic treatment; in green the equation terms relating to 

movement in and out of the LTCF. This model was coded and simulated using 

the pomp package in R.246,247 

Assumptions 

General 

1. All individuals are colonised with E. coli. 

2. There is dominance of a single strain of E. coli in a colonised individual, 

and this strain is either resistant or susceptible to trimethoprim. This 

binary process means that: 

a. Between strain competition is not modelled, and 

b. Colonisation with other bacteria is assumed to not affect the 

colonisation with E. coli. 

3. The time between events is exponential. 

4. The model is run per 0.1 day and the reporting period is weekly. 

5. The proportion of individuals predominantly colonised with E. coli 

resistant to trimethoprim (vs. susceptible) is the same as the proportion 

of individuals presenting with a UTI caused by E. coli resistant to 

trimethoprim (vs. susceptible). 
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6. A separate analysis of the seasonality of uncomplicated UTIs (described 

in Chapter 6) found that UTIs in older people were not seasonal; 

therefore, seasonality was not included in this model. 

Transmission 

7. Only person-to-person transmission is considered. The rate of acquiring 

dominance by an E. coli strain resistant to trimethoprim through 

endogenous factors (for example, spontaneous mutation) is not modelled 

explicitly, as these were considered comparatively rare events and data 

was not available to parameterise this.  

8. Transmission of E. coli resistant to trimethoprim is only modelled 

between LTCF residents (including, implicitly, via healthcare workers). 

The transmission of resistance from the remaining population, including 

from healthcare workers and visitors, was not modelled.  

9. Transmission is frequency dependent (vs. density dependent). This 

means that the contact rate between individuals does not depend on the 

population density. 

10. Patients mix homogenously within the LTCF. This is a simplifying 

assumption but unlikely to be true, as there may be little mixing between 

floors of a LTCF and some highly dependent residents may leave their 

rooms infrequently compared to other more mobile residents. 

11. Control measures in place for colonised individuals are not modelled 

explicitly. 

Treatment 

12. Colonisation with E. coli resistant to trimethoprim cannot be lost during 

trimethoprim treatment. The fitness cost is assumed smaller than the 

selection pressure for the duration of treatment. 

13. Co-selection is assumed not to take place; meaning the effect of other 

antibiotic treatment is minimal in acquiring trimethoprim resistance. 

14. All individuals independently of their carriage status were exposed to 

antibiotic treatment at the same rate. 
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15. Both individuals treated and untreated who are predominantly colonised 

by E. coli resistant to trimethoprim (𝑇𝑟 and 𝑈𝑟, respectively) are able to 

transmit resistant E. coli to individuals treated and untreated who are 

predominantly colonised by E. coli sensitive to trimethoprim (𝑇𝑠 and 𝑈𝑠, 

respectively). 

16. Treated individuals who are predominantly colonised by E. coli resistant 

to trimethoprim (𝑇𝑟) and untreated individuals who are predominantly 

colonised by E. coli resistant to trimethoprim 𝑈𝑟 are able to transmit 

resistance at the same rate.  

17. During the acquisition of resistance by treated individuals predominantly 

colonised by E. coli sensitive to trimethoprim (𝑇𝑠), the transmission rate 

is higher than during the acquisition of resistance by untreated 

individuals predominantly colonised by E. coli sensitive to trimethoprim 

(𝑈𝑠), by a factor of 𝑡𝑟. A successful transmission in the treatment 

scenario is benefited by the removal of other competing bacteria 

susceptible to trimethoprim.  

18. Endogenous acquisition of resistance by treated individuals 

predominantly colonised by E. coli sensitive to trimethoprim (𝑇𝑠) within 

one individual is not explicitly simulated. 

LTCF 

19. In the baseline scenario, the LTCF simulated was selected from the 

LTCFs in the quartile with the highest incidence of urine E. coli samples 

sent to AmSurv, which were resistant to trimethoprim per bed day. This 

was to ensure that sufficient samples were present to enable model 

fitting and to ensure that transmission (if present at all in the LTCF 

setting) was detected. LTCFs from the other three quartiles of incidence 

were simulated in sensitivity analyses. 

20. Full bed occupancy in LTCFs. Therefore, the size of the LTCF was kept 

constant during the study. 

21. Being colonised with E. coli resistant to trimethoprim does not impact the 

length of stay. 



 

193 

 

22. Individuals can be admitted to the LTCF either from hospital or from the 

community, and can be discharged from the LTCF to be hospitalised or 

due to death. Residents cannot transfer between LTCFs. 

23. Transfers from the LTCF to hospital and deaths (respectively) are equally 

probable for residents colonised E. coli sensitive and resistant to 

trimethoprim. 

24. The proportion of individuals admitted to the LTCF treated (vs. untreated) 

and colonised with E. coli resistant (vs. sensitive) to trimethoprim from 

hospital and from the community depend on the proportion of individuals 

within these categories in hospital and the community (respectively). 

Many of these assumptions were simplifications that were driven by a lack of 

data available to inform a more complex model. The validity of these 

assumptions is considered further in the discussion. 

Data 

The model was parameterised using four sources of data: susceptibility data 

from urinary E. coli samples submitted to AmSurv in the West Midlands (linked 

to CQC data, as described in Chapter 4), CQC data on LTCF characteristics, a 

point-prevalence survey of antimicrobial use in acute care hospitals in 

England40, THIN data on trimethoprim prescribing, as well as values from the 

literature.  

The first source of data was the publicly available registry of LTCFs in England 

held by the CQC.152 Only LTCFs in the West Midlands region classified as “care 

homes” for elderly residents and recorded as active in the register from 

2011/2012 (797 LTCFs) were selected for analysis. LTCFs in this registry were 

classified according to the number of beds in each facility and nursing status 

(nursing LTCFs were LTCFs with 24-hour medical care from qualified nursing 

staff and residential LTCFs were those without this service). The length of stay 

in LTCFs (used to parameterise 𝑚), the rate of hospital admission of LTCF 

patients (used to parameterise 𝑙ℎ), and the rate of discharge of hospitalised 

patients to LTCFs (used to parameterise ℎ𝑙) were all derived from studies which 

estimated these parameters by LTCF nursing status. The CQC dataset was 
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used to scale the parameters from the literature to represent the distribution of 

nursing LTCFs registered in the West Midlands.9,248,249 

The second source of data used for parameterisation was the AmSurv dataset, 

which was linked to CQC data and is described in detail in Chapter 4. Briefly, 

AmSurv is an AMR surveillance tool established by the Health Protection 

Agency (now Public Health England) in 2009 which collects antibiotic 

susceptibility testing results from routine microbiology samples sent to 

participating diagnostic laboratories in England from both hospitals and GPs.186 

Since December 2012, all laboratories in the West Midlands report to AmSurv, 

making data from this region the most complete longitudinal source of AMR 

surveillance information in England, with more than 95% of laboratories 

currently participating. Following national guidelines from Public Health 

England, all urine samples were assumed to be submitted due to clinical need 

and, therefore, were indicative of a suspected UTI.196 The AmSurv dataset used 

for parameterisation in this chapter includes the trimethoprim susceptibility 

results from all urine specimens collected from individuals aged 70 or older, 

which were reported from the 15 microbiology laboratories in the West Midlands 

to AmSurv from 01/04/2010 to 31/03/2014. The AmSurv dataset was linked to 

CQC data to determine which antibiotic susceptibility tests in the AmSurv 

dataset were from individuals that resided in LTCFs. This combined dataset 

was used to derive (1) the weekly incidence of UTIs caused by E. coli resistant 

to trimethoprim for each LTCF, which was used to fit the model; (2) the number 

of beds in each LTCF selected for model fitting; (3) the proportion of individuals 

colonised by E. coli resistant to trimethoprim (vs. susceptible to trimethoprim) in 

the community, calculated from samples submitted by GPs from individuals 

residing outside of LTCFs (used to parameterise 𝑝𝑟𝑐); and (4) the proportion of 

individuals colonised by E. coli resistant to trimethoprim (vs. susceptible to 

trimethoprim) in hospitals, calculated from samples submitted by hospitals from 

individuals residing outside of LTCFs (used to parameterise 𝑝𝑟𝑐). 

A point-prevalence survey of antimicrobial use in acute hospitals in England 

performed in 2016 was used to parameterise the proportion of patients treated 

with trimethoprim in hospitals.40 A personalised extract of the West Midlands 
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hospital data was extracted for the purposes of this model. Only three NHS 

Trusts from the West Midlands were included in this dataset. This point-

prevalence survey was carried out in patients of all ages. 

Finally, data from THIN (described in more detail in Chapter 6) was used to 

derive the proportion of registered days in which individuals aged 70 or over in 

the community in the West Midlands were exposed to trimethoprim (𝑝𝑡𝑐). Only 

data from April 2010 to March 2014 was analysed in order to match the AmSurv 

study period. The rate of trimethoprim prescription in the community was also 

calculated from THIN prescription data from this period and scaled using values 

from the literature to derive the rate of trimethoprim treatment in the LTCF (𝛼𝑝). 

Finally, THIN was also used to calculate the duration of trimethoprim treatment 

(used to derive 𝛾𝑝). THIN is a validated database of primary care consultation 

data covering over 3.7 million active patients which are demographically 

representative of the UK235–237.  

Parameter sources and values 

A summary of the parameter sources and values is presented in Table 7-1. 

Parameters relating to the movement in and out of the LTCF were derived from 

the literature and were adjusted using CQC data to match the characteristics of 

the LTCFs in the dataset used for model fitting.152 Parameters relating to 

antibiotic resistance and the incidence data used to fit the model were derived 

from AmSurv data. Parameters relating to treatment were estimated from the 

hospital point-prevalence survey and THIN data (scaled by values from the 

literature when appropriate). Finally, parameters relating to transmission were 

both derived from the literature and were estimated by fitting the model to 

AmSurv data.  
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Table 7-1. Parameters in the model 

Parameter Source type Value 

𝛽 Rate of transmission of 

resistance to untreated 

individuals in the LTCF 

Estimated 0.0062 per person 

per day 

𝛽′ Rate of transmission of 

resistance to treated individuals 

in the LTCF 

Estimated 1.5 per person per 

day 

𝛾 Rate of recovery from 

colonisation by E. coli resistant 

to trimethoprim in the LTCF or 

1/average duration of 

colonisation with E. coli resistant 

to trimethoprim in the LTCF 

Literature
250–254

 

 

0.0035 per person 

per day (sensitivity 

analysis 0.0025-

0.0055)  

αp Rate of trimethoprim treatment in 

the LTCF 

Unpublished data from 

THIN scaled using 

literature. 
69

 

0.001 per person per 

day (varied in 

sensitivity analyses)  

𝛾p 1/average duration of 

trimethoprim treatment in the 

LTCF 

Unpublished data from 

THIN and the national 

guidelines
50

 

0.2 (sensitivity 

analysis 0.16-0.3, 3-

6 days duration) 

𝑚 Entry/exit rate into/out of the 

LTCF or 1/average LOS in LTCF 

Literature
248

 adjusted using 

CQC data. 

0.002 per person per 

day 

𝑙ℎ Proportion of residents who 

leave the LTCF that go to 

hospital (vs. die) 

Literature
9,249

 adjusted 

using CQC data. 

0.8 (sensitivity 

analysis 0.77-0.9) 

ℎ𝑙 Proportion of admissions to the 

LTCF from hospital (vs. 

community) 

Literature
248

 adjusted using 

CQC data. 

0.6057 (sensitivity 

analysis 0.4057) 

𝑝𝑟𝑐 Proportion of residents admitted 

to the LTCF from the community 

colonised with E. coli resistant to 

trimethoprim (𝑈𝑟 + 𝑇𝑟)/𝑁 

Unpublished data from 

AmSurv) 

0.3602 (fitted linear 

regression model in 

sensitivity analysis) 

𝑝𝑡𝑐 Proportion of residents admitted 

to the LTCF from the community 

on trimethoprim treatment (𝑇𝑠 + 

𝑇𝑟)/𝑁 

Unpublished data from 

THIN 

0.0049 (fitted linear 

regression model in 

sensitivity analysis) 

𝑝𝑡ℎ Proportion of treated (𝑇𝑠 + 𝑇𝑟)/𝑁 

discharged to the LTCF from 

hospital 

Data from a point-

prevalence survey in 

hospitals.
40

 

0.0248 (sensitivity 

analysis 0.017-

0.032) 

𝑝𝑟ℎ Proportion of residents 

discharged to the LTCF from 

hospital colonised with E. coli 

resistant to trimethoprim (𝑈𝑟 + 

𝑇𝑟)/𝑁 

Unpublished data from 

AmSurv) 

0.3792 (fitted linear 

regression model in 

sensitivity analysis) 

𝑟ℎ𝑜 Probability of a patient colonised 

with a resistant E. coli 

developing a UTI for which a 

sample is taken and the results 

are reported to AmSurv 

Estimated 

 

0.55 
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Parameters describing the movement in/out of LTCFs 

Parameters in this section relate to the movement of patients in and out of the 

LTCF. 𝑚 describes the rate of entering or exiting the LTCF (which were 

assumed to be the same), 𝑙ℎ and ℎ𝑙 describe the proportion of residents 

admitted to hospital from the LTCF (vs. dying) and discharged to the LTCF from 

hospital (vs. the community), respectively. 𝑝𝑡ℎ, 𝑝𝑡𝑐, 𝑝𝑟ℎ and 𝑝𝑡ℎ describe the 

proportion of individuals treated (vs. untreated) and colonised by E. coli 

resistant to trimethoprim (vs. susceptible) in the community and in hospital. 

Together, these parameters define the flow in and out of the LTCF for each of 

the four types of individuals in this compartmental model (𝑈𝑠, 𝑈𝑟, 𝑇𝑠 and 𝑇𝑟). 

 𝒎: rate of entry or exit into the LTCF- i.e. rate of (deaths from the LTCF + 

hospitalisations from the LTCF) or  rate of (admissions to the LTCF from 

hospital + admissions to the LTCF from the community) 

The length of stay in LTCFs was obtained from the literature, and, in the 

absence of specific data for the West Midlands population, it was scaled to 

represent the LTCFs registered in the West Midlands. Using CQC data 

(described above), values taken from Steventon et al.248 were scaled as follows: 

Steventon et al. estimated the number of days spent in permanent LTCFs 

(544.5 days), and in nursing LTCFs (283 days) using data from three local 

authorities in England (a seaside town, a rural area and a London suburb). In 

the West Midlands CQC dataset, 35.38% of LTCFs were nursing LTCFs and 

64.62% were residential LTCFs. Therefore, the estimated length of stay overall 

was (544.5 * 0.6462) + (283 * 0.3538) = 451.98. 𝑚, and the birth or death rate 

into the LTCF was, therefore, 1/451.98=0.002 per person per day. 

 𝒍𝒉: the proportion of residents who leave the LTCF that go to hospital 

(vs. die) 

The proportion of residents who leave the LTCF and go to hospital (vs. die), 𝑙ℎ, 

was estimated using published values for the rate of hospitalisation of LTCF 
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residents, scaled to represent the LTCFs registered in the West Midlands using 

CQC data (described above), and in combination with parameter 𝑚.   

𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑇𝐶𝐹 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠 = 𝑙ℎ × 𝑚. Therefore,  

𝑙ℎ =
𝑅𝑎𝑡𝑒 𝑜𝑓 ℎ𝑜𝑠𝑝𝑖𝑡𝑎𝑙𝑖𝑠𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝐿𝑇𝐶𝐹 𝑟𝑒𝑠𝑖𝑑𝑒𝑛𝑡𝑠

𝑚
.  

The rate of hospital admission of LTCF residents aged 75 or older estimated by 

Sherlaw-Johnson et al.249 was 0.45 per available bed per year for nursing 

homes and 0.62 per available bed per year for residential homes. In the West 

Midlands CQC dataset, 35.38% of LTCFs were nursing LTCFs and 64.62% 

were residential LTCFs. Therefore, the estimated rate of hospitalisation per day 

was ((0.62 * 0.6462) + (0.45 * 0.3538))/365 = 0.00153. Substituting this value in 

the equation above, 

𝑙ℎ =
0.00153

0.002
= 0.767. 

The Quality Watch study by Smith et al.9 reported 246,031 admission episodes 

to hospital for 374,191 maximum potential service users in a year. Therefore, 

the estimated rate of hospitalisation per day was 246,031/374,191/365=0.0018. 

Substituting this value in the equation above, 

𝑙ℎ =
0.0018

0.002
= 0.9. 

In absence of better estimates that would apply specifically to the LTCFs 

studied in the West Midlands, 𝑙ℎ was set at a value between that of these two 

studies (0.8), and the range of these values (0.77-0.9) was explored in 

sensitivity analyses.  

 𝒉𝒍: the proportion of admissions to the LTCF from hospital (vs. 

community) 

 ℎ𝑙 was derived from published values from the literature, scaled to represent 

the LTCFs registered in the West Midlands using CQC data (described above). 
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Steventon et al. 2012248 reported that 55.9% permanent admissions to 

residential care were preceded by emergency admissions (45.1%) and elective 

admissions (10.8%) to hospital during the 3 months prior to admission, and that 

69.1% admissions to nursing homes were preceded by emergency admissions 

(56.7%) and elective admissions (12.4%) to hospital during the 3 months prior 

to admission. In the West Midlands CQC dataset, 35.38% of LTCFs were 

nursing LTCFs and 64.62% were residential LTCFs. Using these data, the 

values obtained from Steventon et al. 2012248 were scaled to derive the 

estimated proportion of admissions to the LTCF from hospital (vs. community) 

as follows: (55.9* 0.6462) + (69.1 * 0.3538) = 60.57%. This was likely to be an 

overestimate because not all patients that visited hospital within the previous 3 

months will have been directly discharged to the LTCF from hospital. Therefore, 

the value of ℎ𝑙 was decreased by 20% in a sensitivity analysis. 

 𝒑𝒕𝒉: the proportion of treated (𝑇𝑠 + 𝑇𝑟)/𝑁 discharged to the LTCF from 

hospital 

𝑝𝑡ℎ was derived from a point prevalence study of hospitals in England carried 

out in patients of all ages (described above). Two West Midlands NHS trusts 

were included in this survey: the Burton Hospitals NHS foundation trust, in 

which 3.23% patients were being treated with trimethoprim, and The Royal 

Wolverhampton NHS Trust, in which 1.73% of patients were being treated with 

trimethoprim. The mean between these two NHS trusts, (3.23+1.73)/2=2.48% 

was taken as the estimate for 𝑝𝑡ℎ. The range of values between these two 

trusts (1.73-3.23%) was considered in the sensitivity analyses. 

 𝒑𝒓𝒉: the proportion of residents discharged from the hospital to the LTCF 

colonised with E. coli resistant to trimethoprim (vs. susceptible): (𝑈𝑟 + 

𝑇𝑟)/𝑁  

𝑝𝑟ℎ was obtained from West Midlands AmSurv data (described above). Over 

the study period 37.92% of urine E. coli samples sent by hospitals from 

individuals aged 70 or older that did not reside in a LTCF postcode were 

resistant to trimethoprim. This proportion of individuals with a resistant E. coli 
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urine sample submitted to AmSurv (vs. susceptible) was assumed to be the 

same as the proportion of individuals predominantly colonised with E. coli 

resistant to trimethoprim (vs. susceptible).  

Trimethoprim resistance increased during the study period. Therefore, in a 

sensitivity analysis, a linear regression was fit to the weekly AmSurv data and 

𝑝𝑟ℎ was modelled as the function for this linear regression:  

𝑝𝑟ℎ = 0.3424633 +  (0.0003089331 ∗ (week of the study)).  
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Figure 7-2. Percentage of urinary E. coli samples resistant to trimethoprim submitted to 

AmSurv by hospitals in the West Midlands from individuals aged 70 and over.  April 2010 

to March 2014. 

 𝒙𝟏, 𝒙𝟐, 𝒙𝟑, 𝒙𝟒: the proportion of admissions to the LTCF from hospital into 

the 𝑈𝑠, 𝑈𝑟, 𝑇𝑠 and 𝑇𝑟 compartments (respectively) 

𝑥1+ 𝑥2+ 𝑥3+ 𝑥4=1 
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𝑥1: the proportion of 𝑈𝑠/𝑁 discharged to the LTCF from hospital  

= (1 − 𝑝𝑟ℎ) × (1 − 𝑝𝑡ℎ) 

𝑥2: the proportion of 𝑈𝑟/𝑁 discharged to the LTCF from hospital  

= 𝑝𝑟ℎ × (1 − 𝑝𝑡ℎ) 

𝑥3: the proportion of 𝑇𝑠/𝑁 discharged to the LTCF from hospital  

= (1 − 𝑝𝑟ℎ) × 𝑝𝑡ℎ 

𝑥4: the proportion of 𝑇𝑟/𝑁 discharged to the LTCF from hospital  

= 𝑝𝑟ℎ × 𝑝𝑡ℎ 

 𝒑𝒓𝒄: the proportion of residents admitted to the LTCF from the 

community colonised with E. coli resistant to trimethoprim (𝑈𝑟 + 𝑇𝑟)/𝑁 

𝑝𝑟𝑐 was obtained from West Midlands AmSurv data (described above). Over 

the study period 36.66% of urine samples sent by GPs from individuals aged 70 

or older residing in postcodes that did not contain LTCFs were resistant to 

trimethoprim (vs. sensitive). This proportion of individuals with a resistant E. coli 

urine sample submitted to AmSurv (vs. susceptible) was assumed to be the 

same as the proportion of individuals predominantly colonised with E. coli 

resistant to trimethoprim (vs. susceptible). 

Trimethoprim resistance increased during the study period. Therefore, in a 

sensitivity analysis, a linear regression was fit to the weekly data and 𝑝𝑟𝑐 was 

modelled as the function for this linear regression:  

𝑝𝑟𝑐 = 0.3350485 +  (0.0002101702 ∗ (week of the study)).  
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Figure 7-3. Percentage of urinary E. coli samples resistant to trimethoprim submitted to 

AmSurv by GPs in the West Midlands from individuals aged 70 and over.  April 2010 to 

March 2014. 

 𝒑𝒕𝒄 

The proportion of residents admitted to the LTCF from the community on 

trimethoprim treatment (𝑇𝑠 + 𝑇𝑟)/𝑁, 𝑝𝑡𝑐, was derived from West Midlands THIN 

data (described above). The proportion of the registered days in which 

individuals aged 70 or older in the West Midlands were exposed to trimethoprim 

was calculated per month of the study (April 2010 to March 2014). The mean 
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proportion was 0.49% over the study period; however, it increased linearly 

during this time (see Figure 7-4). Therefore, in a sensitivity analysis, a linear 

regression was fit to the THIN data and 𝑝𝑡𝑐 was modelled as the function for 

this linear regression:  

𝑝𝑡𝑐 = 0.004195201 +  (6.732339e − 06 ∗ (week of the study)).  

 

Figure 7-4. Proportion of individuals aged 70 or older in the community in the West 

Midlands treated with trimethoprim.  THIN data, April 2010 to March 2014. 

 𝒚𝟏, 𝒚𝟐, 𝒚𝟑, 𝒚𝟒: the proportion of admissions to the LTCF from the 

community that arrive into the 𝑼𝒔, 𝑼𝒓, 𝑻𝒔 and 𝑻𝒓 compartments 

(respectively) 



 

205 

 

𝑦1+ 𝑦2+ 𝑦3+ 𝑦4=1 

𝑦1: proportion 𝑈𝑠 admitted to the LTCF from the community = (1 − 𝑝𝑟𝑐) ×

(1 − 𝑝𝑡𝑐) 

𝑦2: proportion 𝑈𝑟 admitted to the LTCF from the community = 𝑝𝑟𝑐 × (1 − 𝑝𝑡𝑐) 

𝑦3: proportion 𝑇𝑠 admitted to the LTCF from the community= (1 − 𝑝𝑟𝑐) × 𝑝𝑡𝑐 

𝑦4: proportion 𝑇𝑟 admitted to the LTCF from the community= 𝑝𝑟𝑐 × 𝑝𝑡𝑐 
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Treatment 

Parameters in this section relate to the treatment of patients with trimethoprim. 

αp describes the rate of trimethoprim treatment in the LTCF and 𝛾p describes the 

rate of stopping trimethoprim treatment. 

 𝛂p: rate of trimethoprim treatment in the LTCF 

The rate of trimethoprim treatment in the LTCF, αp, was derived from West 

Midlands THIN data (described above) for individuals aged 70 for the 

community overall (including LTCF and non-LTCF residents). These values 

were then scaled to represent treatment in the LTCF by using estimates from 

the literature69. Sundvall et al. 69 showed that in Hampshire in those aged 75 

and older, without adjustment, antibiotic prescription for UTIs in LTCFs was 

0.69/0.24=2.875 times higher in LTCF residents than in elderly individuals that 

lived in their own homes. The mean monthly rate of trimethoprim prescription in 

the West Midlands from April 2010 to March 2014 per 100,000 population was 

calculated from THIN (=1172.889). Therefore, the rate of trimethoprim 

prescription in the overall community per person per day, αp, was 

1172.889/100,000/30= 0.0003909629. Since 4% of the population >65 lives in 

LTCFs9 (and, therefore, 96% do not), this can be written as two equations: 

0.00039 = (0.96 × x) + (0.04 × y) 

y = 2.875 × x , 

where x  is the rate of trimethoprim prescription in individuals that did not reside 

in LTCFs and y is the rate of trimethoprim prescription in LTCF residents. 

Solving these equations gives y = 0.001.  

As shown in Figure 7-5 the rate of trimethoprim prescription in older people 

West Midlands community overall remained stable during the study period. It 

was therefore modelled as a constant. 
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Figure 7-5. Rate of trimethoprim prescription in the West Midlands in individuals aged 70 

and over.  THIN data, April 2010 to March 2014. 

 𝜸p:1/average duration of trimethoprim treatment in the LTCF 

The trimethoprim prescription guidelines recommend 3 days of treatment for 

women and 7 days for men.50 In THIN, in those aged 70 or over registered in 

practices in the West Midlands from January 2010 to December 2014, the 

median duration of trimethoprim treatment was 5 days. Therefore, 𝛾p, or 1/the 

average duration of trimethoprim treatment in the LTCF, was set at 1/5=0.2 per 

person per day. A sensitivity analysis explored durations of treatment from 3 to 

6 days. (𝛾p =0.16 to 0.3).  
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Transmission 

Parameters in this section relate to transmission of trimethoprim-resistant E. coli 

in the LTCF. 𝛽 and 𝛽’ describe the rate of transmission of resistance in 

untreated and treated individuals (respectively) in the LTCF, and 𝛾 describes 

the rate of recovery from colonisation by E. coli resistant to trimethoprim in the 

LTCF. 

 𝜷 and 𝜷’: the rate of transmission of resistance in untreated and treated 

individuals (respectively) in the LTCF. 

To our knowledge, the transmission rate of trimethoprim resistant E. coli has not 

been reported to date. In the literature, the transmission of E. coli resistant to 

expanded-spectrum cephalosporins in ICUs in various locations across Europe 

was estimated at 0.0078 (95%CIs=0.0029-0.016).255 Haverkate et al. estimated 

the transmission rate of KPC-producing bacteria in LTACHs at 0.014 

(95%CIs=0.0071-0.026).256 Toth et al. assumed the transmission rate of CRE in 

LTCFs to be 0.1 in a low transmission scenario and 0.14 in a high transmission 

scenario.133 Lee et al. modelled the transmission of CRE in LTCFs using a 

transmission parameter of 0.000057895 (range 0-0.00053513). 132 Talaminos et 

al. modelled the transmission of E. coli ST131 in LTCFs using a transmission 

parameter of 0.00008 for colonisation with E. coli ST131 that did not produce 

ESBLs and 0.00003 for colonisation by ESBL-producing E. coli ST131. 

Haverkate et al. (2017) estimated the within-household transmission rate of 

ESBL-producing Enterobacteriaceae (67% E. coli) at 0.0053 per person per 

day.257 Due to the wide range of transmission parameters in the literature and 

the lack of studies that specifically reported the transmission of trimethoprim 

resistant E. coli in LTCFs, 𝛽 and 𝛽’ were estimated (procedure described 

below).  

 𝜸: rate of recovery from colonisation by E. coli resistant to trimethoprim in 

the LTCF, or 1/average duration of colonisation with E. coli resistant to 

trimethoprim in the LTCF 
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The duration of colonisation with E. coli resistant to trimethoprim in LTCF 

residents was not specifically assessed in the literature. Ismail et al. 2016252 

reported a mean duration of carriage of ciprofloxacin-resistant E. coli in nursing 

home residents of 6 months. Birgand et al. 2013250 reported a median duration 

of colonisation after hospital discharge for ESBL-E of 6.6 months. Haverkate et 

al. 2015253 calculated a mean duration of colonisation for E. coli OXA-48 of 225 

days (7.5 months). Titelman et al. 2014251 showed that colonisation with E. coli 

was still apparent 12 months after infection in 64% (n=9), and 40% (n=14) of 

those carrying E. coli ST131 or other STs, respectively (p=0.12). Overdevest et 

al.254 showed that in a Dutch LTCF with high rectal colonisation rate, the half-life 

of ESBL-ST131 E. coli carriage was 13 months. We assumed a duration of 

colonisation of 9.5 months and carried out a sensitivity analysis in which this 

was varied between 6 and 13 months. Therefore, 𝛾, the rate of recovery from 

colonisation by E. coli resistant to trimethoprim in the LTCF, was 
1

365

12
×9.5 days

=

0.0035 per person per day (sensitivity analysis from 

1

((
365

12
)×13)𝑑𝑎𝑦𝑠

= 0.0025 to 
1

((
365

12
)×6)𝑑𝑎𝑦𝑠

= 0.0055). 
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Initial values  

The distribution of individuals in compartments 𝑈𝑠, 𝑈𝑟, 𝑇𝑠, 𝑇𝑟 at time point zero, 

with which the model was initiated, was calculated as follows: 

𝑈𝑠𝑡0 = 𝐿𝑇𝐶𝐹 𝑠𝑖𝑧𝑒 × (1 − 𝑝𝑟𝑙) × (1 − 𝑝𝑡𝑙) 

𝑈𝑟𝑡0 = 𝐿𝑇𝐶𝐹 𝑠𝑖𝑧𝑒 × 𝑝𝑟𝑙 × (1 − 𝑝𝑡𝑙) 

𝑇𝑠𝑡0 = 𝐿𝑇𝐶𝐹 𝑠𝑖𝑧𝑒 × (1 − 𝑝𝑟𝑙) × 𝑝𝑡𝑙 

𝑇𝑠𝑡0 = 𝐿𝑇𝐶𝐹 𝑠𝑖𝑧𝑒 × 𝑝𝑟𝑙 × 𝑝𝑡𝑙 

where 𝑝𝑟𝑙 was the proportion of individuals initially colonised by E. coli resistant 

to trimethoprim in the LTCF, and 𝑝𝑡𝑙 was the proportion of individuals initially 

treated with trimethoprim in the LTCF. These figures were then rounded to give 

whole numbers of individuals. 

𝑝𝑟𝑙 was derived from the proportion of urine E. coli samples sent to AmSurv that 

were resistant to trimethoprim. This proportion increased during the study 

period as can be seen in Figure 7-6 below. 
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Figure 7-6. Percentage of urinary E. coli samples resistant to trimethoprim in the West 

Midlands in individuals aged 70 and over residing in LTCFs.  April 2010 to March 2014. 

The proportion of individuals colonised by E. coli resistant to trimethoprim in the 

LTCF in the first week of the study (51.75%) was calculated by fitting a linear 

regression to the weekly West Midlands AmSurv data (described above):  

𝑝𝑟𝑙 = 0.5168852 +  (0.0006532183 × (week of the study))= 0.5168852 +

 0.0006532183 = 0.5175 
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The proportion of individuals with a resistant E. coli urine sample submitted to 

AmSurv (vs. susceptible) was assumed to be the same as the proportion of 

individuals predominantly colonised with E. coli resistant to trimethoprim (vs. 

susceptible). 

𝑝𝑡𝑙 was informed by data from the HALT-2 study, which found that 2.69% 

(11/409) of English residents in the 16 LTCFs surveyed were being treated with 

trimethoprim/sulphonamides on the survey day63. According to THIN data 

(described above), 97% of trimethoprim/sulphonamides prescriptions to patients 

of all ages in England (2013-2015) were trimethoprim prescriptions.  

LTCF size is described in the incidence section below. 
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Reporting: how does the incidence derived from the model relate to the 

incidence in the data? 

The mathematical model presented describes the transmission of trimethoprim 

resistance amongst individuals colonised with E. coli. The incidence derived 

from the model (𝐼𝑛𝑐) is, therefore, the cumulative number of individuals 

colonised with E. coli resistant to trimethoprim per week. However, the 

susceptibility data available for AmSurv captures UTIs reported to AmSurv. 

Therefore, in order to calculate the observations predicted by the model at each 

time point (𝑜𝑏𝑠), 𝐼𝑛𝑐 was multiplied by 𝑟ℎ𝑜. By multiplying by 𝑟ℎ𝑜, 𝐼𝑛𝑐 is 

adjusted to the level of cases reported. 

𝑜𝑏𝑠 = 𝐼𝑛𝑐 × 𝑟ℎ𝑜 

 𝒓𝒉𝒐: the proportion of colonised patients with a resistant E. coli who 

develop a UTI for which a sample is taken and the results are reported to 

AmSurv. 

Calculating 𝑟ℎ𝑜 would require knowledge of the proportion of individuals 

colonised with E. coli resistant to trimethoprim who go on to develop a UTI and 

the proportion of UTIs in individuals in LTCFs in the West Midlands that are 

then sampled and therefore reported to AmSurv. As these parameters were 

unknown, 𝑟ℎ𝑜 had to be estimated (procedure described below). 
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Incidence data and model fitting procedure: estimating 𝜷, 𝜷′ and 𝒓𝒉𝒐  

Processing of incidence data to allow model fitting 

To estimate the transmission parameters (𝛽, 𝛽′) and 𝑟ℎ𝑜, the incidence of 

colonisation with E. coli resistant to trimethoprim in the model (𝐼𝑛𝑐) was fitted to 

the incidence of urinary E. coli samples resistant to trimethoprim from a LTCF in 

the AmSurv dataset. 

The incidence of colonisation with E. coli resistant to trimethoprim in the model 

(𝐼𝑛𝑐) was the cumulative number of individuals that became dominantly 

colonised by E. coli resistant to trimethoprim (𝑈𝑟 and 𝑇𝑟) in the simulated LTCF 

in each week of the study. This model incidence included both individuals 

entering the LTCF from hospital or from the community already colonised by E. 

coli resistant to trimethoprim, and individuals acquiring this colonisation through 

transmission within the LTCF.  

The incidence of urinary E. coli samples resistant to trimethoprim from a LTCF 

in the AmSurv dataset was the cumulative number of urine samples from 

residents of a LTCF submitted to AmSurv in each week of the study that grew 

E. coli resistant to trimethoprim. The choice of LTCF is described below. 

Assuming that the national guidelines were followed appropriately and urine 

samples were only sent for susceptibility testing for patients with UTIs, the 

incidence of urinary E. coli samples resistant to trimethoprim should capture the 

incidence of UTIs caused by E. coli resistant to trimethoprim. 

The majority of people are colonised with E. coli without developing a UTI. Only 

a proportion of colonised individuals will develop a UTI, and a proportion of 

these will have a urine sample submitted for susceptibility testing. Therefore, 

the model incidence could not directly be fit to the incidence in the data. To 

account for this, the parameter 𝑟ℎ𝑜 was created, which is the ‘case 

development and ascertainment proportion’. We multiplied 𝐼𝑛𝑐 (the incidence in 

the model) by 𝑟ℎ𝑜 in order to adjust 𝐼𝑛𝑐 to the level of cases reported in the 

AmSurv dataset.  
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Processing of incidence data to allow model fitting 

The West Midlands AmSurv dataset (described above) included incidence data 

from 715 different LTCFs. This section describes the process of selecting the 

appropriate LTCF for model fitting. Four LTCFs were selected for model fitting 

(one for the baseline scenario and three for the sensitivity analyses).  

As shown in Chapter 4, the median number of beds in LTCFs submitting at 

least one E. coli urine sample to AmSurv (N=715) was 33 (mean=36.9, range 1-

214). 114 LTCFs were smaller than 20 beds, which were considered difficult to 

fit in isolation. Therefore, LTCFs smaller than 20 beds (N=114/715) were 

excluded. LTCFs submitting less than 10 urine samples per year to AmSurv 

growing E. coli resistant to trimethoprim (557/715) were also excluded as it was 

considered that transmission would be unlikely to occur in these facilities.  

The LTCFs remaining (N=44) were sub-divided by quartiles according to the 

number of urine E. coli samples sent to AmSurv which were resistant to 

trimethoprim per bed per day (see Figure 7-7 below).  

Figure 7-8 shows the number of beds in each of the 44 remaining LTCFs in the 

Amsurv dataset by incidence quartile. LTCFs with higher incidence had a lower 

mean number of beds. The weekly incidence of trimethoprim resistant E. coli 

samples submitted to AmSurv from each LTCF per bed day by incidence 

quartile is plotted in the Appendix Chapter 7.  

One LTCF was selected from each of these quartiles for model fitting. The 

incidence of trimethoprim resistant urine E. coli samples submitted to AmSurv 

for each of the four selected LTCFs is shown in Figure 7-9 below.  

In the baseline scenario, the model was fit to incidence data from a LTCF in the 

highest incidence quartile. This was to ensure that sufficient samples were 

present to enable model fitting and to ensure that transmission (if present at all 

in the LTCF setting) was detected. This was a LTCF of 30 beds. The LTCF size 

in this baseline scenario was therefore set to 30 beds. The prevalence of 

resistance in the LTCF selected for the baseline scenario was 74%, as derived 
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by dividing the urine samples growing E. coli resistant to trimethoprim sent to 

AmSurv by this facility by the total urine samples growing E. coli sent to AmSurv 

by this facility. The other three selected LTCFs were simulated in sensitivity 

analyses (one of 39 beds, one of 57 and another of 83).  

 

Figure 7-7 The number of urine E. coli samples resistant to trimethoprim submitted to 
AmSurv per bed day, by LTCF.  Quartiles are denoted by the horizontal dotted lines. LTCFs 
within each quartile are coloured the same. LTCFs below 20 beds (N=114/715) and LTCFs 
submitting less than 10 urine samples to AmSurv growing E. coli resistant to trimethoprim 

(557/715) were excluded. 
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Figure 7-8. Number of beds per LTCF.  LTCFs are subdivided by colour in quartiles according 

to the number of urine E. coli samples resistant to trimethoprim they sent to AmSurv. In dark 

red, LTCFs in the quartile with the highest incidence; in red, LTCFs in the quartile with the 

second highest incidence; in orange, LTCFs in the quartile with the second lowest incidence; in 

yellow, LTCFs in the quartile with the lowest incidence. The dashed lines represent the mean 

number of beds for the LTCFs in each incidence quartile (from high to low incidence: 27.1, 42.2, 

57.8, 92.8). LTCFs below 20 beds (N=114/715) and LTCFs submitting less than 10 urine 

samples to AmSurv growing E. coli resistant to trimethoprim (557/715) were excluded. 
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Figure 7-9. The weekly incidence of urine E. coli samples resistant to trimethoprim 

submitted to AmSurv for each of the LTCFs that were selected for simulation.  The LTCF 

selected for the baseline simulation scenario (30 beds) is highlighted in grey.  
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Model fitting: estimating 𝛽, 𝛽′ and 𝑟ℎ𝑜  

𝛽, the rate of transmission of E. coli resistant to trimethoprim to untreated 

individuals in the LTCF, 𝛽′, the rate of transmission of E. coli resistant to 

trimethoprim in individuals treated with trimethoprim in the LTCF, and 𝑟ℎ𝑜, the 

proportion of patients colonised with a resistant E. coli who develop a UTI for 

which a sample is taken and the results are reported to AmSurv, were unknown 

and, therefore, had to be estimated through fitting the model to the incidence 

data described in the section above. 𝛽′ was expressed as the product of 𝛽 and 

𝑡𝑟:  

𝛽′ = 𝛽 ∗ 𝑡𝑟  

where 𝑡𝑟 > 1. Therefore, 𝛽′ was assumed to be greater than 𝛽. 

𝛽, 𝑡𝑟 and 𝑟ℎ𝑜 were fit to the incidence of urinary tract E. coli resistant to 

trimethoprim in the LTCF selected for the baseline scenario (described above) 

by maximum likelihood estimation using the function traj.match in the pomp 

package246,247. This function uses the deterministic version of the model for 

model fitting. It calls the optim function in R (using Nelder-Mead optimisation 

method) to maximise the likelihood of the data given the model trajectory, which 

is defined by a function that evaluates the probability density of point 

observations of the model incidence following a Poisson probability distribution 

with mean 𝑟ℎ𝑜 × 𝐼𝑛𝑐, as defined by the following line of C code:  

lik = dpois(obs, rho * Inc, give_log); 

The model fitting was carried out in three stages. 

First, the values of 𝛽 and 𝑟ℎ𝑜 were estimated for different values of 𝑡𝑟 (see 

Table 7-2 below), with all remaining parameters kept as per the baseline 

scenario described above (see values in Table 7-1). The starting value of 𝛽 was 

taken from published literature and set at 0.0053.257 The starting value of 𝑟ℎ𝑜 

was not available in published literature, and so was estimated as 0.7333 

through the following assumption: number of tests per resident, per year. As the 
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length of stay in LTCFs was on average 451.98 days (calculated as described 

above for the 𝑚 parameter), all patients were assumed to remain in the LTCF 

for at least a year. The LTCF simulated in the baseline scenario had 22 urine E. 

coli samples reported to AmSurv in 2013/2014 and 30 beds; therefore, the 

starting value for 𝑟ℎ𝑜 was 𝑟ℎ𝑜 =
22

30
= 0.7333. The cumulative number of cases 

predicted (𝐼𝑛𝑐 × 𝑟ℎ𝑜) over the study period, the prevalence of resistance 

predicted overall (for treated and untreated) and the prevalence of resistance in 

treated individuals compared to untreated individuals were derived from the 

deterministic model at equilibrium.  
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Table 7-2. Estimating 𝜷 and 𝒓𝒉𝒐 for different values of 𝒕𝒓. 

𝑡𝑟 
(fixed) 

Estimated 
𝛽 (per 
person per 
day) 

Estimated 𝑟ℎ𝑜  𝐼𝑛𝑐 × 𝑟ℎ𝑜 
predicted by 
the model (vs. 
65 in data) 

Prevalence 
of resistance 
predicted by 
the model at 
equilibrium 

(
𝑈𝑟+𝑇𝑟

𝑁
) (%) 

Prevalence of 
resistance in 
treated individuals 
compared to 
untreated 
individuals: 

(
𝑇𝑟

𝑇𝑟+𝑇𝑠
)/(

𝑈𝑟

𝑈𝑟+𝑈𝑠
) at 

equilibrium 

1 0.0083 0.53 65.2 51.4 1 

1.5 0.0083 0.53 65.3 51.5 1 

2 0.0082 0.53 64.9 51.1 1 

10 0.0079 0.53 64.7 51 1.2 

50 0.0071 0.54 64.9 50.3 1.5 

70 0.0068 0.54 64.1 49.7 1.5 

100 0.0066 0.55 65.1 49.6 1.6 

140 0.0063 0.56 65.4 48.9 1.7 

180 0.0061 0.56 64.8 48.5 1.8 

200 0.006 0.56 64.5 48.2 1.8 

210 0.006 0.56 64.6 48.3 1.8 

220 0.0059 0.57 65.2 48 1.8 
230 0.0059 0.57 65.3 48 1.8 

250 0.0058 0.57 64.9 47.7 1.9 

300 0.0057 0.57 64.6 47.6 1.9 

350 0.0056 0.58 65.5 47.3 1.9 

400 0.0055 0.58 65.1 47.1 1.9 

500 0.0053 0.59 65.3 46.5 2 

 

As shown in Table 7-2, as the value of 𝑡𝑟 was increased from 1 to 500, 𝛽 

decreased from 0.0083 to 0.0053 and 𝑟ℎ𝑜 increased from 0.53 to 0.59. The 

cumulative number of cases predicted by the model (𝐼𝑛𝑐 ×  𝑟ℎ𝑜) over the study 

period agreed closely with the data (65), implying a reasonable model fit to the 

data. The prevalence of resistance at equilibrium predicted by the model, 

however, was lower for all cases explored (51.5%-46.5%) than that estimated 

from AmSurv data for the LTCF selected (74%).  

As described above, 𝑡𝑟 =
𝛽

𝛽′
. Increasing 𝑡𝑟, therefore, increased the prevalence 

of resistance in treated individuals compared to untreated individuals in the 

model. For values of 𝑡𝑟 between 250 and 400, the prevalence of resistance in 

treated individuals compared to untreated individuals was 1.9. This was similar 
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to the relative risk of resistance in treated individuals compared to untreated 

individuals observed in the literature (1.88).258 Therefore, a value of 𝑡𝑟 between 

250 and 400 was considered reasonable. 𝑟ℎ𝑜 was estimated at between 0.53 

and 0.59. 

Second, 𝑡𝑟 and 𝑟ℎ𝑜 were estimated for different values of 𝛽 in order to explore if 

fixing 𝛽 would condition and change the values of 𝑟ℎ𝑜 and 𝑡𝑟 that best fit the 

model (see Table 7-3). Having found more realistic values for these parameters 

to initiate the model fitting, the starting value for 𝑡𝑟 was increased to 250 and 

the starting value for 𝑟ℎ𝑜 was decreased to 0.6.  
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Table 7-3. Estimating 𝒓𝒉𝒐 and 𝒕𝒓 for different values of 𝜷.  Note that 𝛽 and 𝛽′ are now estimated per person per 1/10 day. 

𝛽 (fixed)  

(per person per 

1/10 day) 

Estimated 𝑟ℎ𝑜  Estimated 𝑡𝑟 𝛽′ = 𝛽 ∗ 𝑡𝑟  

(per person per 

1/10 day) 

𝐼𝑛𝑐 × 𝑟ℎ𝑜 

predicted by the 

model  

(vs. 65 in data) 

Prevalence of 

resistance 

predicted by the 

model at 

equilibrium (%) 

Prevalence of 

resistance in 

treated individuals 

compared to 

untreated 

individuals: 

(
𝑇𝑟

𝑇𝑟+𝑇𝑠
)/(

𝑈𝑟

𝑈𝑟+𝑈𝑠
) at 

equilibrium 

0.0002 0.8 16287940 3257.588    

0.0003 0.72 148806 44.6418    

0.0004 0.64 115238 46.0952    

0.0005 0.59 11049 5.5245 65.3 46.5 2.2 

0.0006 0.56 282.2 0.16932 65.2 48.8 1.8 

0.00065 0.55 134.6 0.08749 65.3 49.8 1.7 

0.0007 0.54 69.7 0.04879 65.3 50.6 1.5 

0.0008 0.52 19.8 0.01584 65.3 52.5 1.3 

0.0009 0.5 0.09 0.000081 64.8 54.1 1 
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𝛽 was increased from 0.0002 per person per 1/10 day (0.002 per day) to 0.0009 

per 1/10 day (0.009 per day). For values of 𝛽 smaller or equal to 0.0004 per 

person per 1/10 day (0.004 per day), the fitting algorithm estimated values of 𝑡𝑟 

that, although produced a similar cumulative number of cases as observed in 

the data; implied that 𝛽′ = 𝛽 × 𝑡𝑟 ≥ 46.1 per person per 1/10 day (4.61 per 

person per day), which was not considered biologically plausible as this would 

imply 𝑅0 = 𝛽 × 𝛾−1 × 𝑁 = 4.61 × (9.5 ∗
365

12
) × 30 = 39962.94 and there were 

only 30 individuals in the LTCF. Therefore, these values were not presented in 

Table 7-3. As 𝛽 increased, the prevalence of resistance predicted by the model 

also increased, becoming closer to that estimated from AmSurv data (74%). 

However, increasing 𝛽 also resulted in a progressive decrease in 𝑡𝑟, which, in 

turn, decreased the prevalence of resistance in treated individuals compared to 

untreated individuals, lowering it below the estimates reported in the literature 

(1.88).257 When 𝛽 was fixed at 0.0009 per 1/10 day (0.009 per day), the relative 

risk of resistance was equal to 1.  

Third, the value of 𝑡𝑟 and 𝑟ℎ𝑜 and 𝛽 were estimated with starting values of 250, 

0.55 and 0.0008 per person per 1/10 day (0.008 per day), respectively.  𝑡𝑟 was 

set to 250 because it was the lowest value of 𝑡𝑟 at which a relative risk of 

resistance in treated individuals compared to untreated individuals of 1.9 was 

achieved. 𝛽 was set to a value that resulted in the highest prevalence of 

resistance for which the relative risk of resistance in treated individuals 

compared to untreated individuals was greater than 1. 𝑟ℎ𝑜 was set at 0.55 as a 

compromise between 0.52 (estimated for 𝛽=0.0008 per person per 1/10 day 

(0.008 per day)) and 0.58 (estimated for 𝑡𝑟=250). 

The combination of 𝑡𝑟, 𝑟ℎ𝑜 and 𝛽 that best fit the data was 𝑡𝑟=250, 𝑟ℎ𝑜=0.55 

and 𝛽=0.00062 per person per 1/10 day (0.0062 per day), giving 𝛽′=0.155 per 

person per 1/10 day (1.55 per day). These values were subsequently used in 

the baseline scenario.  

In the sensitivity analysis, the model was fit to incidence data from three 

different LTCFs. The LTCF size was modified accordingly. In this secondary 
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model fitting process, 𝑡𝑟 and 𝑟ℎ𝑜 were kept constant and only 𝛽 was estimated. 

The starting values for this estimation were 𝑡𝑟=250, 𝑟ℎ𝑜=0.55 and 𝛽=0.00062, 

the fitted values for the baseline scenario. The maximum likelihood estimation 

optimisation method was changed to “SANN”, as this method was better suited 

to estimating one parameter value than the Nelder-Mead optimisation algorithm. 
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Sensitivity analyses 

Several sensitivity analyses were carried out to test the sensitivity of the model 

output to the choice of parameter set. Firstly, 𝑝𝑡𝑐, 𝑝𝑟𝑐 and 𝑝𝑟ℎ, which are fixed 

at the mean for the study period in the baseline scenario, were increased 

linearly with an intercept and slope defined by the regression models fit to the 

prescription and antibiotic resistance data for this period (described in the 

parameterisation section above). 𝛾, 𝛾𝑝, 𝑙ℎ, and 𝑝𝑡ℎ were varied according to 

plausible ranges (also described in the parameterisation section). The model 

was additionally fit to data from three different LTCFs with lower incidence and 

higher number of beds.  

Scenarios 

Four transmission scenarios were explored: (1) where the transmission rate 

was halved, (𝛽=0.0031 per person per day); (2) where the transmission rate 

was increased by 20% (𝛽=0.0074 per person per day), (3) where the 

transmission rate was doubled (𝛽=0.0124 per person per day); and (4) where 

the rate of transmission of resistance to treated individuals was equal to the rate 

of transmission of resistance to untreated individuals (𝛽= 𝛽′=0.0062 per person 

per day). Two movement scenarios were considered where ℎ𝑙 were increased 

and decreased by 20%. Three treatment scenarios were explored where 𝛼𝑝 

was increased by 20% (to 0.0012), 50% (to 0.0015) and one scenario in which 

𝛼𝑝 was increased by 5.5 fold (to 0.0055). The effect of decreasing the rate of 

trimethoprim treatment was not modelled after a Swedish study demonstrated 

little evidence for reversibility of trimethoprim resistance after a drastic reduction 

in trimethoprim use.208 

Modelling output 

The following output was derived from 1,000 simulations of the stochastic 

model:  

 The number of UTIs caused by E. coli resistant to trimethoprim in the 

LTCF in the last four weeks of the study as predicted by the model 

(median, mean, and 95th percentile for 1,000 simulations)  
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 The number of individuals discharged to hospital from the LTCF 

colonised by E. coli resistant to trimethoprim in the LTCF in the last four 

weeks of the study as predicted by the model (median, mean, and 95th 

percentile for 1,000 simulations)  

 The number of individuals discharged to the LTCF from hospital 

colonised by E. coli resistant to trimethoprim in the LTCF in the last four 

weeks of the study as predicted by the model (median, mean, and 95th 

percentile for 1,000 simulations)  

 The percentage of individuals in the LTCF colonised by E. coli resistant 

to trimethoprim (vs. sensitive to trimethoprim) in the last year of the study 

(median, mean, and 95th percentile for 1,000 simulations) 

 The percentage of individuals in the LTCF treated with trimethoprim (vs. 

untreated) in the last year of the study (median, mean, and 95th 

percentile for 1,000 simulations) 

 The percentage of individuals colonised by E. coli resistant to 

trimethoprim (vs. sensitive to trimethoprim) admitted to hospital from the 

LTCF in the last year of the study (median, mean, and 95th percentile for 

1,000 simulations) 

 The percentage of individuals colonised by E. coli resistant to 

trimethoprim (vs. sensitive to trimethoprim) discharged to the LTCF from 

hospital in the last year of the study (median, mean, and 95th percentile 

for 1,000 simulations) 

 The relative importance of importation from hospital, transmission and 

prescription in increasing the proportion of individuals colonised with E. 

coli resistant to trimethoprim (vs. susceptible to trimethoprim) in the 

LTCF 

 

These same outputs were derived for the baseline scenario, for the 

sensitivity analysis and for the scenarios. 
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Results 

The deterministic model output was consistent with the median stochastic 

model output over 1,000 runs. 

Baseline scenario 

The median LTCF size was kept constant at 30 beds during the study period 

(see Figure 7-10).  
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Figure 7-10. Total LTCF population size by week of the study period.  N was the total 
number of residents in the LTCF. In light and dark pink, the 95

th
 and 50

th
 percentile of 1,000 

stochastic runs (respectively). The solid and dotted dark red lines represent the mean and 
median of the 1,000 stochastic runs (respectively). 

The number of entries and exits to each of the LTCF compartments are shown 

in Appendix Chapter 7. The exit rates from the LTCF were constant over time. 

Therefore, the number of individuals exiting each compartment depended on 

the number of individuals in each compartment at that time. The entry rates 

were also constant over time. 

In the stochastic model, over the last year of the study, the median proportion of 

individuals discharged to the LTCF from hospital colonised by E. coli resistant to 

trimethoprim was 37.5% (95th percentile=13.33%-66.67%, mean=38.39%). The 
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median proportion of individuals admitted to hospital from the LTCF colonised 

by E. coli resistant to trimethoprim over 1,000 runs was 48.28% (95th 

percentile=25%-71.43%, mean=48.15%).  

In the last four weeks of the study, the stochastic model predicted a median of 

one patient colonised by E. coli resistant to trimethoprim being discharged to 

the LTCF from hospital (95th percentile= 0-3, mean=0.91) and a median of one 

patient colonised by E. coli resistant to trimethoprim being admitted to hospital 

from the LTCF (95th percentile= 0-3, mean=1.35). 

Figure 7-11 shows the number of individuals in the LTCF in compartments 𝑈𝑠, 

𝑈𝑟, 𝑇𝑠 and 𝑇𝑟 in the model over the study period (four years) for 1,000 

stochastic model runs, against the deterministic output (black line). The 50th and 

90th percentiles of the stochastic runs and their mean and median are plotted in 

Figure 7-12. There was a similar number of untreated individuals colonised with 

E. coli sensitive to trimethoprim and resistant to trimethoprim. The number of 

treated individuals was much lower. Over the last year of the study, the median 

prevalence of resistant colonisation amongst those untreated for 1,000 

stochastic runs was 47.79% (95th percentiles=31.05%-61.08%, mean=47.30%). 

The median prevalence of resistance in treated residents was 90% (95th 

percentiles=50%-100%, mean=86.2%). Overall, the median prevalence of 

resistance over the last year of the study was 48.02% (95th percentiles=31.24%-

61.24%, mean=47.51%). 
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Figure 7-11. Distribution of individuals between the four compartments of the model 

during the study period.  𝑼𝒔 were individuals untreated with trimethoprim colonised with E. 

coli susceptible to trimethoprim, 𝑼𝒓  were individuals untreated with trimethoprim colonised with 

E. coli resistant to trimethoprim, 𝑻𝒔 were individuals treated with trimethoprim colonised with E. 

coli susceptible to trimethoprim and 𝑻𝒓  were individuals treated with trimethoprim colonised 

with E. coli resistant to trimethoprim. The coloured lines represent the output of 1,000 stochastic 

simulations. The black line represents the output from the deterministic model. 
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Figure 7-12. Distribution of individuals between the four compartments of the model by 

week of the study period. 𝑼𝒔 were individuals untreated with trimethoprim colonised with E. 

coli susceptible to trimethoprim, 𝑼𝒓  were individuals untreated with trimethoprim colonised with 

E. coli resistant to trimethoprim, 𝑻𝒔 were individuals treated with trimethoprim colonised with E. 

coli susceptible to trimethoprim and 𝑻𝒓  were individuals treated with trimethoprim colonised 

with E. coli resistant to trimethoprim. In light and dark pink, the 95
th
 and 50

th
 percentile of 1,000 

stochastic runs (respectively). The solid and dotted dark red lines represent the mean and 

median of the 1,000 stochastic runs (respectively). The median, 95
th
 and 50

th
 percentile of 1,000 

stochastic runs (respectively) for the 𝑻𝒔 compartment are equal to zero. 

Figure 7-13 shows the weekly incidence of UTIs caused by E. coli resistant to 

trimethoprim in the LTCF reported in AmSurv (black points) compared to that 

predicted by the model. The median number of UTIs caused by E. coli resistant 

to trimethoprim in the LTCF for 1,000 runs of the stochastic model over the 

study period was zero (dotted dark red line, 95th percentiles= 0-2).  
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In the last four weeks of the study, the stochastic model predicted a median of 

one UTI caused by E. coli resistant to trimethoprim (95th percentiles= 0-4, 

mean=1.31). Over the study period, there were 65 UTIs caused by E. coli 

resistant to trimethoprim in the LTCF in the data. The stochastic model 

predicted a mean of 63.5 and a median of 63 (95th percentile=38-95) over the 

1,000 simulations. 

 

Figure 7-13. Weekly incidence of UTIs caused by E. coli resistant to trimethoprim in the 

data compared to the model.  The black dots represent the incidence in the AmSurv West 

Midlands dataset for the LTCF selected for model fitting. The solid and dotted dark red lines 

represent the mean and median of the 1,000 stochastic runs (respectively).In light pink, the 95
th
 

percentile of 1,000 stochastic runs (the 50
th
 percentile is not shown as both its limits were equal 

to zero).   
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Sensitivity analysis 

Table 7-4 below shows the number of UTIs caused by E. coli resistant to 

trimethoprim in the LTCF, the number of individuals colonised by E. coli 

resistant to trimethoprim that were admitted to hospital from the LTCF and 

discharged to the LTCF from hospital, the percentage of individuals in the LTCF 

colonised by E. coli resistant to trimethoprim (vs. sensitive to trimethoprim), the 

percentage of individuals in the LTCF treated with trimethoprim (vs. untreated), 

and the percentage of individuals colonised by E. coli resistant to trimethoprim 

(vs. sensitive to trimethoprim) admitted to hospital from the LTCF and 

discharged to the LTCF from hospital in the baseline scenario and in several 

sensitivity analyses. These included increasing 𝑝𝑡𝑐, 𝑝𝑟𝑐 and 𝑝𝑟ℎ linearly with an 

intercept and slope defined by the regression models fit to the prescription and 

antibiotic resistance data for this period, as well as varying 𝛾, 𝛾𝑝, 𝑙ℎ, and 𝑝𝑡ℎ 

according to plausible ranges (described in the parameterisation section).  

The deterministic model output in the baseline scenario compared to when 𝑝𝑟𝑐, 

𝑝𝑡𝑐, and 𝑝𝑟ℎ increase linearly (as derived from the data and explained in the 

parameterisation section above) is shown in Figure 7-14.  

The model was additionally fit to data from three different LTCFs with lower 

incidence and higher number of beds (see Table 7-5). 
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Table 7-4. Sensitivity analysis part 1. 

 Baseline 

scenario 

𝑝𝑟𝑐, 𝑝𝑡𝑐, 

and 𝑝𝑟ℎ 

increase 

linearly 

𝛾=0.0025 𝛾=0.0055 𝛾𝑝=0.

16 

𝛾𝑝=0.3 𝑙ℎ=0.77 𝑙ℎ=0.9 𝑝𝑡ℎ=0.017 𝑝𝑡ℎ=0.032 

N UTIs caused by E. coli resistant 

to trimethoprim in the LTCF in the 

last month of the study* (median, 

mean, and 95
th
 percentile for 1,000 

simulations)  

1, 1.31, 

0-4 

1, 1.18, 

0-4 

1, 1.2, 0-4 1, 1.17, 0-

4 

1, 

1.27, 

0-4 

1, 

1.22, 

0-4 

1, 1.17, 

0-4 

1, 1.16, 

0-4 

1, 1.26, 0-4 1, 1.2, 0-4 

N individuals admitted to hospital 

from the LTCF colonised by E. coli 

resistant to trimethoprim in the last 

month of the study* (median, mean, 

and 95
th
 percentile for 1,000 

simulations) 

1, 1.35, 

0-3 

1, 1.36, 

0-3 

1, 1.36, 0-

4 

1, 1.39, 0-

4 

1, 

1.36, 

0-4 

1, 

1.28, 

0-4 

1, 1.28, 

0-4 

1, 1.53, 

0-4 

1, 1.3, 0-4 1, 1.32, 0-3 

N individuals discharged to the 

LTCF from hospital colonised by E. 

coli resistant to trimethoprim in the 

last month of the study* (median, 

mean, and 95
th
 percentile for 1,000 

simulations) 

1, 0.91, 

0-3 

0, 0.95, 

0-4 

1, 1.03, 0-

4 

1, 1.01, 0-

4 

1, 

1.01, 

0-4 

1, 

0.98, 

0-3 

0, 0.98, 

0-4 

1, 0.99, 

0-3 

1, 0.98, 0-4 1, 0.92, 0-3 

Percentage of individuals in the 

LTCF colonised by E. coli resistant 

to trimethoprim (vs. sensitive to 

trimethoprim) in the last year of the 

study (median, mean, and 95
th
 

percentile for 1,000 simulations) 

48.02, 

47.51, 

31.24-

61.24 

48.51, 

48.01, 

32.54-

62.54 

57.25, 

56.69, 

42.39-

70.13 

34.25, 

33.7, 

18.08-

47.60  

48.22

, 

48.09

, 

32.3-

62.54 

47.94, 

47.17, 

31.84-

60.9 

49.02, 

48.49, 

33.84-

62.17 

47.97, 

47.79, 

32.91-

61.89 

48.24, 

47.77, 

32.68-62.16 

48.21, 

48.13, 

32.47-62.44 
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 Baseline 

scenario 

𝑝𝑟𝑐, 𝑝𝑡𝑐, 

and 𝑝𝑟ℎ 

increase 

linearly 

𝛾=0.0025 𝛾=0.0055 𝛾𝑝=0.

16 

𝛾𝑝=0.3 𝑙ℎ=0.77 𝑙ℎ=0.9 𝑝𝑡ℎ=0.017 𝑝𝑡ℎ=0.032 

Percentage of individuals in the 

LTCF treated with trimethoprim (vs. 

untreated) in the last year of the 

study (median, mean, and 95
th
 

percentile for 1,000 simulations) 

0.49, 

0.52, 

0.12-

0.96 

0.49, 

0.52, 

0.17-

0.94 

0.5, 0.52, 

0.19-0.91 

0.49, 0.51, 

0.14-0.94 

0.6, 

0.63, 

0.21-

1.16 

0.32, 

0.34, 

0.09-

0.65 

0.49, 

0.51, 

0.18-

0.93 

0.49, 

0.52, 

0.17-

0.95 

0.49, 0.52, 

0.17-0.95 

0.48, 0.51, 

0.18-0.94 

Percentage of individuals colonised 

by E. coli resistant to trimethoprim 

(vs. sensitive to trimethoprim) 

admitted to hospital from the LTCF 

in the last year of the study 

(median, mean, and 95
th
 percentile 

for 1,000 simulations) 

48.28, 

48.15, 

25-71.43  

47.62, 

48.22, 

27.27-70 

57.14, 

57.39, 

33.33-80 

33.33, 

33.04, 

11.99-

54.55 

47.62

, 

47.81

, 

26.67

-70 

47.62, 

47.47, 

25-70 

50, 

48.46, 

23.77-

71.43 

48, 

47.98, 

26.67-

70 

50, 48.17, 

25-68.77 

50, 48.06, 

23.51-70.59 

Percentage of individuals colonised 

by E. coli resistant to trimethoprim 

(vs. sensitive to trimethoprim) 

discharged to the LTCF from 

hospital in the last year of the study 

(median, mean, and 95
th
 percentile 

for 1,000 simulations) 

37.5, 

38.39, 

13.33-

66.67 

40, 

40.23, 

16.67-

66.67 

36.84, 

37.23,14.2

4-62.5 

37.5, 

38.07, 

16.67-62.5 

37.5, 

37.59

, 

13.33

-62.5 

36.84, 

37.15,

11.11-

63.67 

37.5, 

37.42, 

12.43-

61.54 

37.5, 

36.95, 

14.29-

62.5 

37.5, 37.63 

13.29-64.29 

36.84, 

37.15, 12.5-

62.5 

* Four weeks, as the data was weekly. The last 4 weeks of the study were selected for analysis as this was representative of the equilibrium state. 
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Figure 7-14. Outputs from the deterministic model in which 𝒑𝒓𝒄, 𝒑𝒕𝒄, and 𝒑𝒓𝒉 were fixed 

at the mean (in red) compared to the scenario in which they were made to increase 

linearly in agreement with the data (in blue). 𝑼𝒔 were individuals untreated with trimethoprim 

colonised with E. coli susceptible to trimethoprim, 𝑼𝒓  were individuals untreated with 

trimethoprim colonised with E. coli resistant to trimethoprim, 𝑻𝒔 were individuals treated with 

trimethoprim colonised with E. coli susceptible to trimethoprim and 𝑻𝒓  were individuals treated 

with trimethoprim colonised with E. coli resistant to trimethoprim.  
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Table 7-5. Sensitivity analysis part 2. 

 Baseline scenario (LTCF 

with 30 beds, incidence of 

trimethoprim resistant 

urinary E. coli=0.0015 per 

bed day, 𝛽=0.0062 per 

person per day 

LTCF with 39 beds, 

incidence of trimethoprim 

resistant urinary E. 

coli=0.00088 per bed day, 

𝛽=0.0024 per person per 

day 

LTCF with 57 beds, 

incidence of trimethoprim 

resistant urinary E. coli= 

0.00075 per bed day, 

𝛽=0.0016 per person per 

day 

LTCF with 83 beds, 

incidence of trimethoprim 

resistant urinary E. coli= 

0.00045 per bed day, 

𝛽=0.000052 per person 

per day 

N UTIs caused by E. coli resistant 

to trimethoprim in the LTCF in the 

last month of the study* (median, 

mean, and 95
th
 percentile for 

1,000 simulations)  

1, 1.31, 0-4 1, 1.01, 0-4 1, 1.08, 0-4 0, 0.92, 0-4 

N individuals admitted to hospital 

from the LTCF colonised by E. coli 

resistant to trimethoprim in the last 

month of the study* (median, 

mean, and 95
th
 percentile for 

1,000 simulations) 

1, 1.35, 0-3 2, 1.78, 0-5 2, 2.49, 0-5 3, 3.63, 1-7 

N individuals discharged to the 

LTCF from hospital colonised by 

E. coli resistant to trimethoprim in 

the last month of the study* 

(median, mean, and 95
th
 

percentile for 1,000 simulations) 

1, 0.91, 0-3 1, 1.38, 0-5 1, 1.86, 0-5 2, 2.67, 0-6 

Percentage of individuals in the 

LTCF colonised by E. coli 

resistant to trimethoprim (vs. 

sensitive to trimethoprim) in the 

last year of the study (median, 

mean, and 95
th
 percentile for 

1,000 simulations) 

48.02, 47.51, 31.24-61.24 27.79, 27.97, 16.17-39.62 23.19, 23.20, 14.18-32.18 13.75, 13.82, 8.79-18.75 
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 Baseline scenario (LTCF 

with 30 beds, incidence of 

trimethoprim resistant 

urinary E. coli=0.0015 per 

bed day, 𝛽=0.0062 per 

person per day 

LTCF with 39 beds, 

incidence of trimethoprim 

resistant urinary E. 

coli=0.00088 per bed day, 

𝛽=0.0024 per person per 

day 

LTCF with 57 beds, 

incidence of trimethoprim 

resistant urinary E. coli= 

0.00075 per bed day, 

𝛽=0.0016 per person per 

day 

LTCF with 83 beds, 

incidence of trimethoprim 

resistant urinary E. coli= 

0.00045 per bed day, 

𝛽=0.000052 per person 

per day 

Percentage of individuals in the 

LTCF treated with trimethoprim 

(vs. untreated) in the last year of 

the study (median, mean, and 95
th
 

percentile for 1,000 simulations) 

0.49, 0.52, 0.12-0.96 0.49, 0.51, 0.23-0.86 0.49, 0.51, 0.26-0.81 0.50, 0.51, 0.3-0.75 

Percentage of individuals 

colonised by E. coli resistant to 

trimethoprim (vs. sensitive to 

trimethoprim) admitted to hospital 

from the LTCF in the last year of 

the study (median, mean, and 95
th
 

percentile for 1,000 simulations) 

48.28, 48.15, 25-71.43  28.57, 28.35, 11.09-45.83 23.08, 23.12, 9.99-36.67 13.6, 13.8, 5.99-22.22 

Percentage of individuals 

colonised by E. coli resistant to 

trimethoprim (vs. sensitive to 

trimethoprim) discharged to the 

LTCF from hospital in the last year 

of the study (median, mean, and 

95
th
 percentile for 1,000 

simulations) 

37.5, 38.39, 13.33-66.67 37.5, 37.95, 18.18-60 38.24, 38.18, 22.22-55.56 37.5, 37.76, 24.13-51.72 

* Four weeks, as the data was weekly. The last 4 weeks of the study were selected for analysis as this was representative of the 

equilibrium  
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Scenario analysis 

Table 7-6 compares the output of 1,000 stochastic runs of the model in the 

baseline scenario; in two scenarios assuming different proportion of patients 

entering the LTCF from hospital (vs. from the community); in three different 

transmission scenarios; and in four scenarios in which the rate of treatment was 

progressively increased.  

The impact of increasing the proportion of admissions from hospital (ℎ𝑙) by 

20%, increasing the rate of treatment (𝛼𝑝) by 20% and increasing the rate of 

transmission (𝛽) by 20% on the percentage of individuals in the LTCF colonised 

by E. coli resistant to trimethoprim (vs. sensitive to trimethoprim) in the last year 

of the study was compared. Note that only increases of 20% in the rates of 

treatment and transmission are strictly comparable, as the admissions from 

hospitals are a proportion. Increasing the transmission rate resulted in a median 

5.42% (mean 5.32%) percentage increase in the number of individuals in the 

LTCF colonised by E. coli resistant to trimethoprim. Increasing ℎ𝑙 and 𝛼𝑝 

resulted in lower increases in resistance (median increases of 0.77% and 

1.54%, respectively, and mean increases of 0.83% and 1.91%, respectively). 
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Table 7-6. Movement, transmission and treatment scenarios. 

 Baseline 
scenario 

ℎ𝑙=0.4057 
(20% 
reduction) 

ℎ𝑙=0.8057 
(20% 
increase) 

𝛽=0.0031 
(halved) 

𝛽=0.0074 
(20% 
increase) 

𝛽=0.0124 
(doubled) 

𝛽′= 𝛽=0.0062 

(𝑡𝑟 =1) 

𝛼𝑝=0.0012 

(20% 
increase) 

𝛼𝑝=0.0015 

(50% 
increase) 

𝛼𝑝=0.0055 

(5.5 fold 
increase) 

N UTIs caused by 
E. coli resistant to 
trimethoprim in the 
LTCF in the last 
month of the 
study* (median, 
mean, and 95

th
 

percentile for 
1,000 simulations)  

1, 1.31, 
0-4 

1, 1.19, 0-
4 

1, 1.24, 0-
4 

0, 0.79, 
0-3 

1, 1.37, 
0-4 

1, 1.63, 
0-5 

1, 1.01, 0-4 1, 1.24, 0-4 1, 1.3, 0-4 1, 1.68, 0-5 

N individuals 
admitted to 
hospital from the 
LTCF colonised by 
E. coli resistant to 
trimethoprim in the 
last month of the 
study* (median, 
mean, and 95

th
 

percentile for 
1,000 simulations) 

1, 1.35, 
0-3 

1, 1.36, 0-
3 

1, 1.35, 0-
4 

1, 1.32, 
0-4 

1, 1.33, 
0-4 

1, 1.31, 
0-4 

1, 1.37, 0-4 1, 1.3, 0-3 1, 1.4, 0-4 1, 1.32, 0-3 

N individuals 
discharged to the 
LTCF from hospital 
colonised by E. 
coli resistant to 
trimethoprim in the 
last month of the 
study* (median, 
mean, and 95

th
 

percentile for 
1,000 simulations) 

1, 0.91, 
0-3 

0, 0.65, 0-
3 

1, 1.24, 0-
4 

1, 0.98, 
0-4 

1, 1, 0-4 1, 1, 0-4 1, 0.98, 0-4 1, 0.98, 0-3 1, 1.09, 0-4 1, 0.97, 0-3 
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 Baseline 
scenario 

ℎ𝑙=0.4057 
(20% 
reduction) 

ℎ𝑙=0.8057 
(20% 
increase) 

𝛽=0.0031 
(halved) 

𝛽=0.0074 
(20% 
increase) 

𝛽=0.0124 
(doubled) 

𝛽′= 𝛽=0.0062 

(𝑡𝑟 =1) 

𝛼𝑝=0.0012 

(20% 
increase) 

𝛼𝑝=0.0015 

(50% 
increase) 

𝛼𝑝=0.0055 

(5.5 fold 
increase) 

Percentage of 
individuals in the 
LTCF colonised by 
E. coli resistant to 
trimethoprim (vs. 
sensitive to 
trimethoprim) in 
the last year of the 
study (median, 
mean, and 95

th
 

percentile for 
1,000 simulations) 

48.02, 
47.51, 
31.24-
61.24 

48.29, 
48.17, 
33.25-
62.28 

48.79, 
48.34, 
34.42-
61.92 

31.76, 
31.21, 
15.39-
45.7 

53.44, 
52.83, 
37.82-
66.18 

67.85, 
67.45, 
56.47-
77.62 

39, 38.61, 
21.78-53.93 

49.56, 
49.42, 
34.14-63.35  

51.5, 51.14, 
36.12-64.41 

67.21, 
66.94, 
56.95-
76.09 

Percentage of 
individuals in the 
LTCF treated with 
trimethoprim (vs. 
untreated) in the 
last year of the 
study (median, 
mean, and 95

th
 

percentile for 
1,000 simulations) 

0.49, 
0.52, 
0.12-
0.96 

0.47, 0.51, 
0.18-0.99 

0.49, 0.52, 
0.17-0.96 

0.48, 
0.51, 
0.16-0.95 

0.48, 
0.51, 
0.17-0.96 

0.47, 0.5, 
0.17-0.93 

0.48, 0.5, 
0.16-0.93 

0.58, 0.6, 
0.22-1.07 

0.72, 0.75, 
0.33-1.28 

2.62, 2.66, 
1.84-3.6 
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 Baseline 
scenario 

ℎ𝑙=0.4057 
(20% 
reduction) 

ℎ𝑙=0.8057 
(20% 
increase) 

𝛽=0.0031 
(halved) 

𝛽=0.0074 
(20% 
increase) 

𝛽=0.0124 
(doubled) 

𝛽′= 𝛽=0.0062 

(𝑡𝑟 =1) 

𝛼𝑝=0.0012 

(20% 
increase) 

𝛼𝑝=0.0015 

(50% 
increase) 

𝛼𝑝=0.0055 

(5.5 fold 
increase) 

Percentage of 
individuals 
colonised by E. 
coli resistant to 
trimethoprim (vs. 
sensitive to 
trimethoprim) 
admitted to 
hospital from the 
LTCF in the last 
year of the study 
(median, mean, 
and 95

th
 percentile 

for 1,000 
simulations) 

48.28, 
48.15, 
25-71.43  

48, 48.1, 
25-70.63 

47.37, 
47.84, 25-
70 

31.14, 
31.65, 
9.5-54.55 

53.85, 
53.09, 
28.57-75 

66.67, 
67.2, 
46.67-
87.5 

38.46, 38.7, 
16.67-61.56 

50, 49.1, 
25-71.43 

50, 51.19, 
27.27-73.33 

68, 67.36, 
46.64-87.5 

Percentage of 
individuals 
colonised by E. 
coli resistant to 
trimethoprim (vs. 
sensitive to 
trimethoprim) 
discharged to the 
LTCF from hospital 
in the last year of 
the study (median, 
mean, and 95

th
 

percentile for 
1,000 simulations) 

37.5, 
38.39, 
13.33-
66.67 

37.5, 
37.13, 0-
66.67 

37.5, 
37.97, 
16.67-60 

38.1, 
37.96, 
12.5-62.5 

37.5, 
37.63, 
12.5-
63.64 

37.5, 
37.46, 
14.29-
63.64 

37.5, 37.33, 
13.62-60.9 

38.68, 
38.54, 12.5-
62.5 

36.36, 
36.87, 
13.29-61.54 

36.36, 
36.88, 
12.5-63.64 

* Four weeks, as the data was weekly. The last 4 weeks of the study were selected for analysis as this was representative of the 

equilibrium state 
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Discussion 

Baseline scenario findings: incidence and prevalence of resistance 

In the baseline scenario, a median of one UTI caused by E. coli resistant to 

trimethoprim was predicted to be reported during the last month of the study 

from a 30-bed LTCF over 1,000 stochastic runs (95th percentile range=0-4, 

mean=1.31 for the LTCF, or 0.04 per resident). The model predicted that even 

in scenarios where the prevalence of resistant colonisation neared 70% in the 

LTCF, the number of UTIs caused by E. coli resistant to trimethoprim reported 

would remain at a mean of 1.6-1.7 per month (0.05-0.06 per resident per 

month). This was in agreement with the dataset used for model fitting (range=0-

8, 0.06 per resident per month). The total number of UTIs caused by E. coli 

resistant to trimethoprim in the LTCF over the study period was also similar in 

the data (65) and in the model (mean over 1,000 simulations=63.5, median=63, 

95th percentile=38-95). The LTCF selected for model fitting in the baseline 

scenario had a higher incidence of trimethoprim resistant E. coli urine samples 

submitted to AmSurv than the mean observed for all LTCF residents surveyed 

in the West Midlands AmSurv dataset (from Chapter 5), which was 0.011 per 

resident per month. It should be noted that the incidence predicted by the model 

and the incidence in the West Midlands AmSurv dataset reflected the number of 

sampled and reported urinary E. coli resistant to trimethoprim, and that the 

number of residents developing UTIs caused by E. coli resistant to trimethoprim 

may be higher (as these are not always sampled and reported).  

The median prevalence of colonisation with E. coli resistant to trimethoprim (vs. 

susceptible to trimethoprim) in the baseline scenario was predicted to be 

48.02% (95th percentile range=31.24-61.24). This was lower than the 

prevalence of resistance in urinary E. coli samples reported to AmSurv from 

residents of this same LTCF (77.3%), calculated as the number of E. coli 

urinary samples resistant to trimethoprim divided by the total number of E. coli 

urine samples sent from residents in this facility. However, the prevalence of 

colonisation with E. coli resistant to trimethoprim in this simulated LTCF was still 

higher than that calculated for West Midlands AmSurv samples sent from 

elderly patients in hospitals (mean over 2010-2014=37.92%), which were used 
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to parameterise 𝑝𝑟ℎ (the proportion of individuals colonised by E. coli resistant 

to trimethoprim discharged from hospital to the LTCF). Since it was additionally 

assumed that transfers from the LTCF to hospital were equally probable for 

residents colonised by E. coli sensitive and resistant to trimethoprim (both at 

rate 𝑚), and the rate of patient transfer from the LTCF to hospital was higher 

(𝑁 × 𝑚 × 𝑙ℎ = 30 × 0.002 × 0.8) than the rate of patient transfer from the 

hospital to the LTCF (𝑁 × 𝑚 × ℎ𝑙 = 30 × 0.002 × 0.6057), this meant there was 

a net transfer of individuals colonised with E. coli resistant to trimethoprim 

towards the hospital. 

During the process of selecting the LTCF for model fitting, it transpired that 

larger LTCFs had a lower incidence of urinary E. coli resistant to trimethoprim 

per bed day than smaller LTCFs. This requires further study. LTCFs were sub-

divided by quartiles according to the number of urine E. coli samples sent to 

AmSurv which were resistant to trimethoprim per bed per day. One LTCF was 

selected from each of these quartiles. The LTCF selected from the highest 

incidence quartile was used to fit the model in the baseline scenario and the 

remaining three LTCFs from the lower incidence quartiles were used to fit the 

model in sensitivity analyses. The prevalence of resistant colonisation was 

lower in the three LTCFs selected for sensitivity analyses. This was to be 

expected as the incidence of urine E. coli samples in these facilities was lower 

and the transmission parameter was estimated by fitting the model to this 

incidence data (all remaining parameters were kept the same). In all three 

LTCFs in the sensitivity analyses, the prevalence of resistant colonisation was 

lower in the LTCF than in the hospital, therefore, contrasting with the baseline 

scenario, there was a net transfer of individuals colonised with trimethoprim 

resistant E. coli from the hospital to the LTCF. The median prevalence of 

resistance in the LTCF selected amongst those in the lowest incidence quartile 

was 13.75% (8.79%-18.75%). LTCFs submitting fewer than 10 urinary E. coli 

samples resistant to trimethoprim to AmSurv per year were excluded from this 

analysis. Therefore, the prevalence of resistance in some LTCFs may be even 

lower.  
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Movement in and out of the LTCF 

Increasing 𝑝𝑟𝑐 (the proportion of residents admitted to the LTCF from the 

community colonised with E. coli resistant to trimethoprim), 𝑝𝑡𝑐 (the proportion 

of residents admitted to the LTCF from the community on trimethoprim 

treatment) and 𝑝𝑟ℎ (the proportion of residents discharged to the LTCF from 

hospital colonised with E. coli resistant to trimethoprim) resulted in similar model 

outputs than when these proportions were fixed at the mean for the study period 

(as in the baseline scenario).  

The model outputs were also robust to varying 𝑙ℎ, the proportion of residents 

who leave the LTCF that go to hospital (vs. die), between 0.77 and 0.9, to 

reflect different hospital admission rates for LTCF residents reported in the 

literature9,249; and to varying 𝑝𝑡ℎ, the proportion of admissions to the LTCF from 

hospital (vs. community),  between 0.0173 and 0.0323, in line with the range of 

prevalence of trimethoprim treatment found in different hospitals in the West 

Midlands in the point-prevalence survey data.40 Increasing and decreasing 

ℎ𝑙 (the proportion of patients entering the LTCF from hospital (vs. the 

community)) by 20% increased and decreased the mean monthly number of 

individuals colonised by E. coli resistant to trimethoprim discharged to the LTCF 

from hospital from 0.91 to 1.24 and 0.65, respectively. However, this change did 

not alter the prevalence of resistant colonisation in the LTCF. This indicates 

that, in a LTCF similar to that used for model fitting in the baseline scenario, the 

prevalence of resistant colonisation would still be high even when fewer patients 

were admitted to the LTCF from hospital. For example, in a situation where 

hospitals were encouraged to discharge patients to the community with 

supported care in their own homes. The prevalence of trimethoprim resistant 

colonisation was higher in the LTCF than in hospital. This would, however, be 

different for other types of antibiotic resistance which are more prevalent in 

hospital.  

Treatment 

The proportion of LTCF residents treated with trimethoprim at equilibrium was 

lower than that reported in other studies (median=0.49%, mean=0.52%, 95th 
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percentile range=0.12%-0.96%). In HALT-2, 2.69% (11/409) of residents 

surveyed in 16 English LTCFs were being treated with trimethoprim or 

sulphonamides on the day of the study.63 In Ireland, a point-prevalence survey 

carried out in 2011259 showed 1.717% of residents being treated with 

trimethoprim on the survey day. Varying the duration of trimethoprim treatment 

between 3 and 6 days moderately decreased and increased (respectively) the 

proportion of residents treated with trimethoprim (increase of 0.11% and 

decrease of 0.18% in the median); however, this did not affect the prevalence of 

resistance in the LTCF. Only the scenario in which the treatment rate (𝛼𝑝) was 

increased by 5.5 fold (to 0.0055 per person per day) was able to approximate 

(median=2.62%) the proportion of residents treated with trimethoprim found in 

HALT-2.63 This high treatment rate resulted in an increase in the prevalence of 

resistance from a median of 48.02% to a median of 67.21%, which was closer 

to that observed in AmSurv for this LTCF (77.3%). In this scenario, the mean 

monthly number of UTIs reported caused by E. coli resistant to trimethoprim 

predicted by the model also increased, from 1.31 to 1.68. The monthly number 

of UTIs reported caused by E. coli resistant to trimethoprim was not altered by 

smaller increases in 𝛼𝑝. 

Transmission 

Doubling the transmission rate also resulted in a similar increase in the median 

prevalence of resistance in the LTCF (from 48.02% to 67.85%) and a similar 

increase in the mean monthly number of predicted UTIs reported caused by E. 

coli resistant to trimethoprim (from 1.31 to 1.63). Changes in the monthly 

number of UTIs reported caused by E. coli resistant to trimethoprim were not 

evident for smaller increases in transmission (20%). However, a 20% increase 

in the transmission rate still increased the median prevalence of resistance in 

the LTCF from 48.02% to 53.44%. Similarly, varying the duration of colonisation 

between 6 and 13 months altered the prevalence of resistance in the LTCF but 

didn’t result in a significant difference in the number of UTIs reported caused by 

E. coli resistant to trimethoprim predicted by the model. Increasing the duration 

of colonisation to 13 months (instead of 9.5 as per the baseline scenario) 

increased the median prevalence of resistant colonisation in the LTCF by 
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9.23%. Decreasing the duration of colonisation to 6 months caused a 13.77% 

decrease. Setting the transmission rate in treated individuals equal to the 

transmission rate in untreated individuals reduced the median prevalence of 

resistance in the LTCF to 39%. The mean number of predicted UTIs reported 

caused by E. coli resistant to trimethoprim per month dropped slightly from 1.31 

to 1.01.  

What are the main drivers of trimethoprim resistance and what does this 

mean? 

Of the scenarios explored, only doubling the transmission and increasing the 

rate of trimethoprim prescription by 5.5 fold per person per day caused a visible 

increase in the number of monthly UTIs reported caused by E. coli resistant to 

trimethoprim. However, the monthly number of predicted UTIs reported caused 

by E. coli resistant to trimethoprim was low, complicating the comparison of this 

output between different scenarios. The mean number of predicted UTIs 

reported caused by E. coli resistant to trimethoprim over 1,000 simulations had 

to be used for comparison, as the median in every scenario was equal to either 

0 or 1, which was uninformative. Transmission appeared to be the most 

important driver of the prevalence of resistant colonisation in the LTCF. The 

transmission rate was doubled to yield a prevalence of resistance nearing 70%. 

In comparison, the treatment rate had to be increased by 5.5 fold to achieve the 

same prevalence of resistance. In addition, when increasing the transmission 

rate, the treatment rate and the proportion of admissions to the LTCF from 

hospital (vs. from the community) by 20%, the 20% increase in transmission 

resulted in the highest change in the prevalence of resistance within the LTCF. 

These findings were based on the model at equilibrium; therefore, increasing 

the time horizon of the model would have not changed these results. However, 

parameters will change over time; thus, the model outputs are reflective of the 

current model parameterisation and of the structure and assumptions made. 

The high levels of resistance to trimethoprim already present in this population 

mean that the number of transmission events will be higher under the same 

transmission rate than in a scenario where the prevalence of resistance is low 

(as there are more individuals dominantly colonised by E. coli resistant to 
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trimethoprim in the population), provided that there are still sufficient individuals 

dominantly colonised with E. coli susceptible to trimethoprim. It is worth noting, 

therefore, that these conclusions might change in a scenario with low 

prevalence of resistance and the main driver of the prevalence of resistance for 

other organism-antibiotic combinations such as E. coli resistant to nitrofurantoin 

may be different. 

The relative importance of importation from hospital, transmission, and 

prescription in increasing the prevalence of resistant colonisation, coupled with 

the high levels of resistance to trimethoprim in the LTCF compared to hospitals 

and the community in the baseline scenario, suggest that interventions that 

target transmission such as hand washing, contact precautions and isolation 

would be more effective in reducing colonisation by resistant strains in LTCFs 

than interventions that target importations of resistance from hospitals or the 

community (for example, screening on admission to the LTCF). Importations 

from hospital could become more important in LTCFs where the prevalence of 

resistance is low (for example, the LTCFs in the sensitivity analysis). In these 

facilities, the prevalence of resistance was lower than that estimated from 

AmSurv data for hospitals (38%) and the community overall (36%), which 

seems implausible. 

The difference between the prevalence of trimethoprim resistance predicted 

from the model (in the baseline scenario 48.02%) and the prevalence of 

resistance predicted by the AmSurv dataset (for the baseline scenario LTCF 

77.3%) could be explained by a number of alternatives: (1) transmission is 

approximately double than in the baseline scenario, (2) the duration of 

treatment is substantially longer than 6 days, (3) antibiotic prescription is 5.5 

fold higher than in the baseline scenario, (4) the duration of colonisation is much 

longer than 13 months, (5) there is a bias for antibiotic susceptibility testing of 

resistant strains, or (6) a combination of all these factors. 

Strengths 

This was the first study to model the dynamics of trimethoprim resistant Gram-

negative bacteria in LTCFs. The model was informed by data from AmSurv 
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linked to CQC data, THIN data, a point-prevalence survey conducted in 

hospitals, and various studies from the literature. A range of parameter values 

was explored and the model was formally fit to four separate LTCFs with 

different number of beds and prevalence rates. All the high importance criteria 

for good quality mathematical models of AMR bacteria in LTCFs identified in 

Chapter 3 were met.  

In addition, the datasets used to parameterise this model were well matched. 

Although some parameters were obtained from the literature and were not 

specific to the West Midlands, these were adjusted using CQC data to match 

the proportion of nursing LTCFs in the West Midlands. Moreover, the same 

susceptibility data from the West Midlands AmSurv dataset was used for model 

fitting, and informed the proportion of individuals entering the LTCF colonised 

with E. coli resistant to trimethoprim from hospital and from the community, 

which were specifically derived for individuals aged 70 or older. The 

trimethoprim prescription information from THIN was also obtained for the same 

period (April 2010 to March 2014) and for the same population (individuals aged 

70 or older in the West Midlands). The trimethoprim prescription point-

prevalence data from hospitals was also restricted to hospitals in the West 

Midlands.  

Limitations of the assumptions 

The LTCF was assumed to be at full bed occupancy during the duration of the 

study, which simplified the model. This may not have been the case; however, 

no data was available to inform this. In addition, recent reports have highlighted 

the shortage of available beds in care homes in the UK, making this scenario 

not completely implausible.260,261 Residents were also assumed not to transfer 

between LTCFs. Van den Dool et al. (2016)140 similarly did not model transfers 

between LTCFs as these were considered negligible. Residents were also 

assumed not to return to the community.  

Dominance of a single strain in a colonised individual was assumed and 

competition between strains was not modelled as there was not sufficient data 
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available on multi-strain colonisation and infection to parameterise a model 

structure which would allow for co-colonisation. 

In this model the rate of acquiring dominance by an E. coli strain resistant to 

trimethoprim was dependent on the number of individuals colonised with E. coli 

resistant to trimethoprim in the LTCF (and the number of individuals colonised 

with E. coli susceptible to trimethoprim). This model did not explicitly simulate 

neither the acquisition of dominant colonisation by E. coli resistant to 

trimethoprim through endogenous factors such as spontaneous mutation, which 

is assumed to be comparatively rare, nor the transfer of mobile genetic 

elements between bacteria within an individual. Endogenous acquisition of 

resistance was also not explicitly modelled during trimethoprim treatment. 

Therefore, the model did not explicitly account for the possibility that, in an 

individual colonised both by strains of E. coli resistant and susceptible to 

trimethoprim, but in which the susceptible strains dominate; trimethoprim 

treatment might confer a selective advantage for resistant strains, which may 

result in E. coli resistant to trimethoprim dominating within this individual. 

However, the rate of acquisition of resistance endogenously and through 

transmission are grouped into parameter 𝛽 (under no treatment) and 𝛽′ (under 

treatment). 𝛽′ = 𝑡𝑟 × 𝛽; therefore, 𝑡𝑟 is the magnitude by which the rate of 

acquisition of resistance is greater under treatment. 𝑡𝑟 will capture this selection 

of resistance under treatment within an individual as well as the increased 

susceptibility of individuals dominantly colonised by E. coli susceptible to 

trimethoprim to transmission of resistance from other individuals. The limitation 

of this approach is that 𝛽 and 𝛽′ are dependent on the number of people 

colonised with resistant bacteria in the LTCF (and susceptible to acquiring 

dominant resistant colonisation). Whilst this is accurate for the transmission of 

resistance from one individual to another, the endogenous acquisition of 

resistance does not depend on the number of people colonised with resistant 

bacteria in the LTCF. In order to parameterise this endogenous transmission, a 

separate parameter would need to be created; however, data to this effect is 

lacking. The endogenous acquisition of dominant colonisation by E. coli 

resistant to trimethoprim has been shown to be comparatively rare with respect 

to exogenous transmission (dominant colonisation by E. coli resistant to 
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trimethoprim acquired through person-person transmission) for KPC-producing 

bacteria and for E. coli resistant to expanded-spectrum cephalosporins. 

Haverkate et al.256 estimated endogenous acquisition of KPC-producing 

bacteria in LTACH at 0.0026 per person per day (95%CI=0.0015–0.0043), 

compared to exogenous transmission at 0.014 (95%CIs=0.0071-0.026).256 

Gurieva et al. also found a lower endogenous acquisition of E. coli resistant to 

expanded-spectrum cephalosporins (0.0024, 95%CI=0.0013-0.0039 compared 

to 0.0078, 95%CI=0.0029-0.016, respectively).255 These studies estimated 

endogenous acquisition of resistance through an algorithm developed by 

Bootsma et al.262 which requires extensively detailed data on the patient 

trajectory and screening results.  

Transmission of resistance was only modelled between residents and included 

transmission through direct contact or via healthcare workers. The transmission 

of resistance from the remaining population, including from healthcare workers 

and visitors, was not modelled. This was due to the lack of available data to 

parameterise these modes of transmission.  

Only trimethoprim treatment was modelled. However, trimethoprim resistance 

has been correlated with a number of antibiotic resistances, including ampicillin 

and amoxicillin.263,264 Co-selection of trimethoprim resistance by 

ampicillin/amoxicillin treatment has been shown to be an important predictor of 

geographical variation in trimethoprim resistance in urinary samples263 and 

ampicillin and trimethoprim resistance genes are often linked on the same 

mobile genetic elements264–266. Given that amoxicillin and ampicillin are 

commonly prescribed antibiotics in primary care in England267, these antibiotics 

may be an important driver of trimethoprim resistance.  

Limitations of the parameterisation 

The evidence from the literature used to parameterise the rate of exit and entry 

to the LTCF (𝑚) and the proportion of residents leaving the LTCF to be 

hospitalised (vs. dying) (𝑙ℎ) was scaled to represent the distribution of nursing 

LTCFs in the West Midlands using CQC data; however, it was not specific to 

LTCFs in the West Midlands. The proportion of residents entering the LTCF 
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from hospital (vs. from the community) (ℎ𝑙), which was also taken from the 

literature and scaled using CQC data in the same way, was also not specific to 

the West Midlands. In addition, it was likely to be an overestimate because not 

all patients that visited hospital within the previous 3 months would have directly 

been discharged to the LTCF from hospital. Therefore, the prevalence of 

resistance and the proportion of individuals treated in some individuals in this 

population may have been more similar to the community than to hospital. This 

was explored in sensitivity analyses.  

When parameterising 𝑝𝑟𝑐 and 𝑝𝑟ℎ, the proportion of individuals colonised with 

E. coli resistant to trimethoprim was assumed to be the same as the proportion 

of individuals for which a urinary E. coli sample resistant to trimethoprim was 

reported to AmSurv. However, sampling could be biased towards resistance 

due to treatment failure. This would imply that the proportion of individuals 

admitted to the LTCF from the community and from hospital colonised with E. 

coli resistant to trimethoprim could be over-estimated in the model. In addition, 

the assumption that the prevalence of resistance is similar in carriage and 

infection may not be correct. A study characterising the E. coli faecal flora in 

patients with UTI compared to healthy individuals who had never had a UTI 

found that isolates from UTI patients were more frequently associated with 

multidrug resistance compared to healthy individuals.268 However, this was a 

small-scale study (50 patients and 53 controls) set in Denmark in all ages which 

did not specifically study trimethoprim resistance and is subject to many 

possible confounders; therefore, further work is needed to test this assumption. 

The proportion of treated individuals in hospitals, 𝑝𝑡ℎ, was derived from a point-

prevalence survey carried out in hospital in all ages. Only the two NHS trusts 

(five hospitals) in the West Midlands were selected to inform 𝑝𝑡ℎ. There is, 

therefore, a need for point-prevalence surveys that capture antibiotic treatment 

stratified by age for a more representative number of hospitals in the West 

Midlands. In addition, patients were not followed through their hospital journey 

and return to the LTCF, and transmission was not modelled within the hospital 

setting. Due to this lack of history in the model structure, the model was unable 

to fully capture the “revolving door” syndrome. 
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The rate of trimethoprim treatment in the community was derived from THIN 

data for individuals aged 70 and older attending GP practices in the West 

Midlands, adjusted using findings from a study carried out in Hampshire in 

individuals aged 75 and older. In this study antibiotic prescribing for UTIs was 

2.9 times higher in LTCFs than in the community.69 This study was set in 

Hampshire, in which LTCFs could be different to those in the West Midlands. In 

addition, the difference between prescribing in the community and in the LTCF 

could vary by antibiotic used to treat UTI. Another limitation of this 

parameterisation was that it did not address that the rate of antibiotic treatment 

will be different in different LTCFs. The LTCF selected for model fitting in the 

baseline scenario was amongst the LTCFs in the highest quartile of incidence of 

urinary E. coli resistant to trimethoprim; therefore, it stands that this LTCF could 

also have had a higher trimethoprim treatment rate than average. 

Consequently, the treatment rate for the baseline scenario could have been 

underestimated. The lack of linked susceptibility and prescribing data also 

prevented the analysis of the patient journey through treatment and resistance. 

There were no data available in the literature to inform the transmission of 

trimethoprim resistant E. coli in the LTCF, therefore, the transmission 

parameters in this model had to be estimated by fitting the model to incidence 

data. As such, the value of 𝛽 was dependent on the LTCF selected for model 

fitting. This was shown in the sensitivity analyses, in which the estimates for 𝛽 

were smaller than the one derived for the baseline scenario when fitting to the 

LTCFs with lower incidence.  

The baseline scenario transmission parameters were estimated by fitting the 

model to a LTCF with a high incidence of UTIs caused by E. coli resistant to 

trimethoprim per year reported to AmSurv. This was to ensure that sufficient 

samples were present to enable model fitting and to ensure that transmission (if 

present at all in the LTCF setting) was detected. This restricted the 

interpretation of the findings from the baseline scenario to facilities with a high 

incidence. The LTCF selected for model fitting was varied in sensitivity analyses 

to account for this. However, only three LTCFs amongst those with 20 beds or 

more and submitting 10 or more urine samples per year to AmSurv growing E. 
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coli resistant to trimethoprim were selected for model fitting in sensitivity 

analyses; therefore, the full spectrum of incidence in these facilities was not 

explored. It should be noted, therefore, that the conclusions drawn may be 

different for LTCFs smaller than 20 beds or LTCFs submitting fewer than 10 

urine samples per year to AmSurv growing E. coli resistant to trimethoprim. 

It would also be preferable to fit to the incidence of colonisation by E. coli 

resistant to trimethoprim in the LTCF as this is closer to what was estimated in 

the model; however, this data was not available. As a result, the 𝑟ℎ𝑜 parameter 

was created and grouped the proportion of residents colonised with E. coli 

resistant to trimethoprim that would develop a UTI, and the proportion of these 

UTIs that would be reported to AmSurv.  

Maximum likelihood estimation is a formal model fitting procedure that takes a 

frequentist approach, estimating the set of parameters that are most likely given 

the data observed. Several other methods have been developed for model 

fitting in pomp, for example particle Markov-Chain Monte Carlo. This method 

takes a Bayesian approach, taking into account the prior knowledge about the 

distribution of each of the parameters estimated (the priors). One of the 

limitations of using maximum likelihood estimation is that the uncertainty around 

the parameter values estimated cannot be obtained. Maximum likelihood 

estimation also potentially ignores the volume of parameter space where the 

model fits the data well. This is a problem if the likelihood is “flat”, meaning that 

a large number of parameters give estimations consistent with the observed 

data, and less of a problem if the likelihood has a strong “peak”. Hence, 

maximum likelihood estimation can give a false sense of accuracy whilst 

selecting a more or less random value from a vast region of the parameter 

space which is more or less equally consistent with the data. 

The duration of colonisation with E. coli resistant to trimethoprim has not been 

reported in the literature. Therefore, the range of values for this parameter (6-13 

months) was obtained from the literature for E. coli resistant to other antibiotics. 

The duration of colonisation with E. coli resistant to trimethoprim could 
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potentially be longer since this resistance may not have a high fitness cost 

associated with it.208   

Future work 

A simple expansion of this mathematical model would involve parameterising 

the model to reflect the transmission of E. coli resistant to nitrofurantoin. These 

dynamics could then be compared to those of trimethoprim resistance. This 

would be particularly relevant to current English national policy, as the national 

guidelines recently recommended a switch from trimethoprim treatment to 

nitrofurantoin and nitrofurantoin prescriptions in England have been increasing 

accordingly.35 

The model could also be fit to all the data available from all LTCFs or to a 

distribution of the incidence observed in all LTCFs using more complex 

methods such as particle Markov-Chain Monte Carlo, which would strengthen 

the robustness of the estimated parameters for transmission. 

However, in general, the transmission of E. coli resistant to trimethoprim is 

poorly understood. A better understanding and quantification of transmission 

parameters is needed. Endogenous and exogenous acquisition of dominant 

carriage by E. coli resistant to trimethoprim could be derived by using the 

algorithm developed by Bootsma et al. (2007)262 which requires extensively 

detailed data on the day of admission, day of discharge, day at which sample is 

taken, culture results and colonisation at admission, which has not been 

collected in England to date and was not within the remit of this PhD. With this 

information, transmission would ideally be modelled as four parameters: 

endogenous acquisition of resistance under treatment and under no treatment, 

and exogenous acquisition of resistance under treatment and under no 

treatment. Exogenous acquisition of resistance could also be informed by whole 

genome sequencing studies. This would avoid this parameter having to be 

estimated entirely through model fitting. In addition, the relationship between the 

rate of transmission of trimethoprim resistance in treated individuals compared 

to untreated individuals deserves further study. 
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Should incidence data of colonisation by E. coli resistant to trimethoprim in the 

LTCF become available, it would be preferable to fit the model to these data 

instead of to the incidence of urinary E. coli samples resistant to trimethoprim 

reported to AmSurv, as the model reproduces the dynamics of colonisation and 

not of infection. This would then eliminate the need for the 𝑟ℎ𝑜 parameter. 

Alternatively, 𝑟ℎ𝑜 could be better understood through the quantification of the 

relationship between an individual being colonised with E. coli developing a UTI 

and this UTI being reported to AmSurv.  

Another extension of the model could involve simulating the transmission of 

resistance in the hospital. This could help understand how the dynamics of 

transmission of trimethoprim resistance in these two types of institutions are 

linked. Additional data specific to the hospital would be needed to parameterise 

this type of model.  

Other extensions of this model would involve relaxing some of the assumptions 

made. In particular, a co-colonisation model would be interesting albeit currently 

very difficult to parameterise.  

The conflicting evidence on the reversibility of trimethoprim resistance observed 

in the literature208,216 suggests that the impact of antibiotic stewardship would be 

best studied through this type of model that accounts for competition between 

strains and co-selection, as the effect of decreasing the rate of treatment on 

resistance is likely complex and fitness cost and selection dynamics are likely to 

be important.  
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Conclusions 

This was the first study to model the dynamics of trimethoprim resistant Gram-

negative bacteria in LTCFs. A median of one UTI caused by E. coli resistant to 

trimethoprim was predicted to be reported monthly from a 30-bed LTCF (over 

1,000 stochastic runs mean=1.31, 95th percentile range=0-4). The model 

predicted that even in scenarios where the prevalence of resistant colonisation 

neared 70% in the LTCF, the number of UTIs caused by E. coli resistant to 

trimethoprim would remain at 1.6-1.7 per month. The number of residents in 

LTCFs developing UTIs caused by E. coli resistant to trimethoprim is likely to be 

higher, as not all UTIs are sampled. In a LTCF with a high incidence of urinary 

E. coli resistant to trimethoprim reported to AmSurv, transmission appeared to 

be the most important driver of the prevalence of resistant colonisation in the 

LTCF. Therefore, in this type of LTCF where the prevalence of trimethoprim 

resistance is higher than that in hospitals and the community, interventions that 

target transmission such as hand washing, contact precautions and isolation 

would be more effective in reducing colonisation by resistant strains than 

interventions that target importations of resistance from hospitals or the 

community (for example, screening on admission to the LTCF) or antibiotic 

stewardship. These considerations are reflective of the current model 

parameterisation and of the structure and assumptions made. The main driver 

of the prevalence of resistance for other organism-antibiotic combinations such 

as E. coli resistant to nitrofurantoin may be different. A better understanding and 

quantification of the endogenous and exogenous acquisition of resistance; as 

well as antibiotic prescription data specific to the LTCF setting are needed to 

parameterise more informative models of AMR bacteria in the LTCF in the 

future. 
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Chapter 8  Discussion 

Summary of findings 

The objective of this thesis was to improve the current understanding of the 

epidemiology of antibiotic resistant Gram-negative bacteria in LTCFs. The focus 

was particularly set on bacteria causing UTIs. 

Prior to this thesis, the burden of AMR in Gram-negative bacteria in LTCFs in 

England was unknown. This is an important gap in the literature due to the 

public health importance of these organisms.19,28–31 It is also essential 

information to guide interventions aiming to tackle infections caused by AMR 

Gram-negative bacteria in LTCFs, such as antibiotic stewardship, or changes in 

the primary care prescribing guidelines. In addition, by February 2016, no 

mathematical models had simulated the transmission of Gram-negative bacteria 

in LTCFs, and only three had done so by the time of submission of this thesis. 

The latter simulated the transmission of carbapenem-resistant 

Enterobacteriaceae and E. coli ST131. No mathematical models to date have 

studied the transmission of E. coli resistant to more commonly prescribed 

antibiotics, such as trimethoprim. Mathematical models may provide helpful 

insights into the dynamics of colonisation and infection by these bacteria, and 

the effectiveness of potential interventions against them in LTCFs. Another gap 

in the literature was that the seasonality of UTIs in England had not been 

studied rigorously. These infections are a frequent cause of BSIs and antibiotic 

treatment, and an improved understanding of their dynamics may aid their 

prevention.  

The systematic review presented in Chapter 2 highlighted the paucity of 

mathematical models published in the literature simulating the transmission of 

infectious diseases (27 papers). In February 2016, when the original literature 

search was conducted, no studies had modelled the transmission of Gram-

negative bacteria in LTCFs. Since this review, however, three papers have 

described the transmission of Gram-negative bacteria: two of carbapenem-

resistant Enterobacteriaceae132,133 and one of E. coli ST131134. These studies 

begin to address the gap in the type of organisms modelled in this setting; 
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however, carbapenem-resistant Enterobacteriaceae are not currently a common 

cause of infections in LTCFs. In Chapter 5, the prevalence of resistance in 

urinary tract bacteria to carbapenems in the over 70s was found to be low in 

both Klebsiella and E. coli (0.2% and 0.02%, respectively). E. coli ST131 are 

highly virulent bacteria that have been associated with resistance to 3GCs, 

fluoroquinolones and aminoglycosides. 269–272 They are a common cause of 

UTIs and BSIs in England. Only two studies modelled the effect of antibiotic 

treatment on resistance in the LTCF. One study investigated the effect of 

reducing the exposure to fluoroquinolones and cephalosporins in the population 

colonised by E. coli ST131 from 5% to 0%134. A further study assessed the 

impact of antibiotic use in the previous 3 months on the epidemic potential of 

MRSA USA-300 and MRSA non-USA-300.138 Antibiotic treatment increases the 

risk of colonisation and subsequent infection by resistant bacteria, and 

therefore, is an important factor to capture when modelling the transmission of 

AMR bacteria.28,273 

In Chapter 3, the models of interventions against AMR bacteria in LTCFs were 

critically evaluated. At the time of review, these were three models of MRSA 

transmission that were not considered robust enough to test policy. A checklist 

was developed for epidemiologists and policy makers to distinguish good quality 

models of AMR in LTCFs as this field begins to expand.  

Chapter 4 described the West Midlands AmSurv dataset, an AMR surveillance 

data comprising the antibiotic susceptibility tests carried out in the West 

Midlands on routinely collected microbiological specimens from individuals aged 

70 or older sent by both GPs and hospitals. This dataset was linked to the CQC 

register of LTCFs in England to determine which samples were taken from 

individuals residing in LTCFs. This linked dataset was used to inform the 

prevalence of resistance in individuals entering the LTCF from hospital and the 

community and estimate the transmission parameters in the mathematical 

model described in Chapter 7. 

Chapter 5 highlighted the burden of AMR in LTCFs, showing that residents of 

LTCFs had more than four times the rate of E. coli and Klebsiella UTI caused by 
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antibiotic-resistant bacteria compared to those living in the community. The 

odds of resistance of E. coli and Klebsiella to trimethoprim, nitrofurantoin, 

ciprofloxacin and 3GCs were significantly higher in LTCF samples than non-

LTCF samples, after adjusting for age, sex, sender (GP vs. hospital) and the 

year of the study. In addition, 39% of UTIs caused by E. coli and 27% of UTIs 

caused by Klebsiella (60% and 41%, respectively, in LTCFs) were found to be 

resistant to trimethoprim, the most prescribed antibiotic for UTI.35 

In Chapter 6, the seasonality of consultations for uncomplicated UTIs was 

explored, as evidence from the literature on this subject was conflicting and had 

not been rigorously assessed in the UK. A September to November peak in UTI 

consultation incidence was observed for ages 14-69. This seasonality 

progressively faded in older age groups and no seasonality was found in 

individuals aged 85 and over, in whom UTIs were most common. 

Finally, in Chapter 7, a stochastic compartmental mathematical model was 

developed to simulate the transmission of trimethoprim resistant E. coli in 

LTCFs. In a LTCF amongst those in the highest quartile of incidence of urinary 

E. coli resistant to trimethoprim reported to AmSurv, there was a net transfer of 

individuals colonised with E. coli resistant to trimethoprim towards the hospital. 

Transmission appeared to be the most important driver of the prevalence of 

resistant colonisation in this LTCF. 

Implications for clinical practice and public health policy 

The implications of this work for clinical practice are the following: 

Firstly, this work contributes towards improving our understanding of the 

dynamics of UTI (Chapter 6). Due to increases in temperature during the 

summer, which can make individuals prone to dehydration, UTIs could be 

expected to peak during this time. These changes could be particularly 

pronounced in the elderly population, as aging is a risk factor for water 

homeostasis impairments.274 Older people are also more prone to dehydration 

due to inadequate water intake caused by impairments in the mechanisms 

controlling thirst, and this risk is potentiated in patients with dementia. 275,276 
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However, GP consultations for UTI in older people in the UK were not found to 

be seasonal. This contrasts with the autumnal peak observed for individuals 

aged 14 to 69. Seasonal differences could be less important in older people due 

to mobility issues, which frequently confine them to indoor environments. Older 

people could then be equally prone to dehydration throughout the year. Other 

risk factors associated with UTI in older people are high postvoid residual urine 

and urinary retention, catheter use, urinary incontinence, as well as co-

morbidities such as stroke and dementia, which may cause symptoms such as 

bladder and bowel incontinence.47 As UTIs in older people are common year 

round, UTI prevention in this population should warrant attention throughout the 

year.  

The autumnal peak in UTI consultation incidence in younger age groups could 

also be helpful in interpreting the results of interventions and surveillance 

reports. For example, if an intervention study were to show a decrease in UTI 

incidence in spring, this could be due to the effectiveness of a trialled 

intervention against UTIs, the seasonal pattern in UTIs, which yearly decrease 

during this period, or a combination of both, and their effect should be 

disentangled in order to correctly interpret the intervention effectiveness. 

Conversely, an increase in the incidence of UTI or antibiotic prescription during 

the autumn should be interpreted in the context of the yearly UTI peak observed 

during this time.  

Secondly, the burden of AMR in urinary tract bacteria in English LTCFs was 

investigated (Chapter 5). UTIs caused by AMR E. coli and Klebsiella were 

shown to be more common in this population than in older people residing in 

their own homes, even after adjusting for confounders. The very high levels of 

AMR bacteria in LTCF residents compared to their community counterparts and 

even to hospital patients highlight that LTCFs should be a focus of antibiotic 

stewardship and infection prevention and control interventions aiming to prevent 

the spread of AMR bacteria. In order to target these interventions appropriately, 

there is a need for a better understanding of the causes of these high levels of 

AMR in LTCFs. Transmission of resistant organisms, antibiotic prescribing and 

high transfer rates between LTCFs and hospitals are key drivers of AMR in 
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LTCFs62; however, their relative importance is unknown for many organism-

antibiotic combinations.  

The high burden of AMR in English LTCFs also suggests that surveillance of 

AMR and antimicrobial prescribing in these facilities is warranted. The routine 

linkage of LTCF and susceptibility data could help LTCF staff become aware of 

the prevalence of AMR in their LTCF. If, additionally, prescribing data could be 

linked to these data, this would give LTCF staff a complete picture of the 

problem of AMR and prescribing in their LTCF, which has been identified as a 

key barrier to successful antimicrobial stewardship interventions in LTCFs.277,278 

Currently, information governance issues make the linkage of susceptibility and 

prescribing data challenging. However, the first pilot study exploring the linkage 

of the NHS Business Services Authority electronic records for antibiotic 

dispensing to Public Health England laboratory surveillance antibiotic 

susceptibility data over three months is currently under way, which suggests 

progress in this area.279 This work should be a priority for AMR research in 

England. In LTCFs this linked data could also help infection prevention and 

control personnel identify the organism-antibiotic combinations of particular 

concern in order to target interventions to their control appropriately. In addition, 

at a CCG, regional, and national level, this information may help increase the 

awareness of the problem of AMR in LTCFs, which may facilitate future funding 

of interventions. It could also inform guidelines on antibiotic prescribing practice 

specifically for this setting. Finally, this information could help hospitals screen 

patients for organism-antibiotic combinations of particular concern in LTCFs 

from which they frequently receive admissions. Patients screening positive 

could be isolated and contact precautions for these individuals could be 

implemented. 

Findings from this thesis also support the recent switch in the national primary 

care treatment guidelines for UTI from recommending trimethoprim to 

nitrofurantoin, as trimethoprim was shown to be ineffective to treat a large 

proportion of the UTIs in LTCF residents due to the high prevalence of 

resistance. Trimethoprim resistance in bacteria causing UTIs can result in 

treatment failure, hospitalisation, and the subsequent use of antibiotics such as 
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ciprofloxacin or 3GCs that should be reserved for the treatment of more serious 

infections. Ciprofloxacin usage, in turn, selects for ciprofloxacin resistance, 

which is often carried alongside resistance to beta-lactams, notably methicillin-

resistance in Staphylococci.211–214 Fluoroquinolone usage (mainly ciprofloxacin 

in England) has also been linked to the incidence to C. difficile infections.215 

Antibiotic-resistant Gram-negative bacteria are currently organisms of high 

public health importance19,28–31 and interventions to prevent their spread are 

being trialled in hospitals.142–145 As highlighted in Chapter 5, LTCFs are also an 

important reservoir of antibiotic-resistant Gram-negative bacteria. In LTCFs, 

most studies have focused on the prevention of infections and on antimicrobial 

stewardship173,280–283. The systematic review of the literature (Chapter 2) 

showed that an increasing number of studies modelling the transmission of 

infectious diseases in LTCFs are being published. Therefore, the conclusions of 

mathematical models that simulate the transmission of Gram-negative bacteria 

in LTCFs could be important for policy making. Modelling the transmission of 

AMR in LTCFs is different to in hospitals, as LTCFs vary greatly in their 

characteristics such as their size, the services they provide to residents (e.g. 

nursing care and dementia care), the staff to patient ratio, and the acuity of 

patients. LTCFs also have strong links with other facilities such as hospitals and 

they are generally small institutions (mean=34.5 beds, median=31 beds, see 

Chapter 4). These models are also difficult to parameterise due to the paucity of 

data available. To this aim, a checklist was developed to guide policy makers in 

assessing the quality of such models.  

The output from the mathematical model developed to simulate the 

transmission of E. coli resistant to trimethoprim in the LTCF (in Chapter 7) 

suggested that in LTCFs with high prevalence, there was a net output of 

individuals colonised with E. coli resistant to trimethoprim from the LTCF to 

hospital. The transfers between LTCFs and hospitals were frequent. These 

findings suggest that LTCFs with a high prevalence of resistant colonisation 

could contribute towards the prevalence of resistance in hospitals. As 

mentioned above, better surveillance in LTCFs could permit hospitals to 

implement screening strategies targeting individuals being transferred from 
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particular LTCFs with high prevalence of resistance. In addition, enhanced 

support for LTCF residents may prevent avoidable hospital admissions. An 

intervention designed by the Health Foundation in partnership with NHS 

England, as part of the NHS Five year forward view New Care Models 

programme in the Principia vanguard site saw a 28% reduction in potentially 

avoidable admissions to hospital.284 This intervention included the alignment of 

LTCFs with general practices and the encouragement of residents to change to 

these general practices through advocacy; rapid review and comprehensive 

geriatric assessments upon residents’ admission to the LTCF; weekly or 

fortnightly visits by named GPs; increased detection of dementia; improvement 

of nursing support through peer-to-peer support, training in infection prevention 

and control, and involvement in GP resident review rounds; as well as a 

programme to engage care home managers. 284 

Finally, using currently available parameter sources, the transmission of E. coli 

resistant to trimethoprim was shown to have a greater impact on the prevalence 

of E. coli resistant to trimethoprim in the LTCF than trimethoprim treatment, at 

least in LTCFs with a high incidence of trimethoprim-resistant urinary E. coli 

submitted to AmSurv. This suggests that reducing transmission may be key to 

diminishing the prevalence of carriage of trimethoprim-resistant E. coli in LTCF. 

In addition, reducing trimethoprim prescription might not greatly reduce the 

prevalence of resistance, although the evidence from the literature on this 

subject is scarce and conflicting.208,216 Transmission events could be reduced 

by limiting the opportunities for transmission. In practice, limiting the 

opportunities for transmission in LTCFs may be challenging, as these are 

residents homes. High standards of environmental cleaning, patient hygiene 

and care, as well as hand hygiene interventions may be viable options. 

However, evidence on their effectiveness from the literature is limited. 

Multimodal interventions and national campaigns have been shown to be able 

to improve hand hygiene in LTCFs effectively.285–289 However, these 

interventions carried out in Norway, USA, and China depend greatly on 

behavioural and cultural elements and may not be effective in LTCFs in 

England. Transmission of E. coli resistant to trimethoprim in the LTCF could 

also be reduced by decreasing the number of individuals colonised with E. coli 
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resistant to trimethoprim already present in the LTCF. This would involve 

measures such as intestinal decolonisation with colistin.290 However, this may 

cause more harm than good as colistin is a “last-resort” antibiotic treatment and 

increasing its use might contribute to the spread and development of colistin 

resistance. Faecal microbiota transplantation that have been effective to treat 

Clostridium difficile infection291,292 are being trialled and could be effective for 

the treatment of persistent colonisation with resistant Gram-negative bacteria.  

However, evidence for this is yet anecdotal.293,294 Finally, the transmission of E. 

coli resistant to trimethoprim in the LTCF could also be decreased by reducing 

the susceptibility of individuals colonised with E. coli susceptible to trimethoprim 

to dominance by a resistant strain. However, no current therapies are available 

that decrease the susceptibility to resistant colonisation. It is worth highlighting 

that another way to counter the prevalence of E. coli resistant to trimethoprim in 

the LTCF is to prevent UTIs in the first place, which is discussed in the future 

work section below. It is also important to note that transmission might not be 

the main driver of the prevalence of resistance for other organism-antibiotic 

combinations such as E. coli resistant to nitrofurantoin.  

Strengths 

The first strength of this thesis was the West Midlands AmSurv dataset for 

those aged 70 or older, which was linked to CQC data. The AmSurv 

surveillance system captures the susceptibility results from all routine 

microbiology samples sent by hospitals and GPs to reporting laboratories for 

testing. The West Midlands was the first region in England to have all 

laboratories reporting to AmSurv. Therefore, this is the most complete source of 

AMR data within a defined population. This data was linked for the first time to 

the CQC registry of LTCFs. This enabled the formal comparison of AMR in 

LTCF residents to that in older people living in the community combining 

hospital and GP surveillance data (Chapter 5). Other studies were too small to 

yield statistically robust conclusions for several resistances, did not include GP 

or hospital samples, or did not carry out a formal statistical comparison. 

75,76,78,295–297 This was also the first large scale study to quantify the burden of 
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AMR in English LTCFs. In England, resistance levels and the LTCFs 

themselves could be different to LTCFs in other countries.  

Another key strength of this work was the eight year UTI consultation, 

trimethoprim prescription and nitrofurantoin prescription data extracted from 

THIN. THIN is a validated database of primary care consultation data covering 

over 3.7 million active patients which are demographically representative of the 

UK235–237. All three sources of data (UTI consultations, trimethoprim 

prescriptions and nitrofurantoin prescriptions) were used to study the trend and 

seasonality of UTI consultation, which had not formally been assessed to date 

in the UK (Chapter 6). The confirmation of our findings through these three 

sources of data strengthened the analysis. This analysis included fitting a 

negative binomial regression model to the data in which seasonality was 

modelled as cos(x)+sin(x) term. The correlations between the residuals of the 

model and the lagged values of the residuals for lags 1 to 12 months were also 

explored. This approach can be used to model the seasonality of UTIs or other 

infections in other countries. 

Finally, this was the first study to model the transmission of trimethoprim 

resistant E. coli in LTCFs (Chapter 7). The model developed included 

trimethoprim treatment and the transfer of residents to and from hospital, as 

well as admissions from the community. Most parameters were informed by 

data from the same population (individuals aged 70 or older in the West 

Midlands) and over the same period (April 2010 to March 2014). When 

estimates were taken from the literature, these were adjusted to reflect the 

distribution of nursing LTCFs in the West Midlands. The transmission 

parameters were estimated through formal model fitting to incidence data from 

AmSurv by maximum likelihood estimation. Sensitivity analyses were carried 

out to determine the robustness of model outputs. This model provides an initial 

framework that may be expanded upon to examine the role of different 

resistances in the LTCF. 
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Limitations 

One limitation of this thesis is the lack of antibiotic prescription data in the LTCF 

setting. Although antibiotic prescription data for the community overall is 

available from databases such as THIN and CPRD, this has not yet been linked 

to CQC LTCF data.  

In order to parameterise the treatment rate in the mathematical model (Chapter 

7), antibiotic prescription data from THIN was adjusted using a study that found 

that antibiotic prescribing for UTIs was 2.9 times higher in LTCFs than in the 

community.69 However, this approach did not address the fact that different 

LTCFs will have different treatment rates. There could be a correlation between 

the incidence of urinary E. coli resistant to trimethoprim reported to AmSurv 

from a LTCF and the rate of trimethoprim prescription in the same facility. 

Antibiotic treatment could also help explain the higher levels of AMR observed 

in LTCFs in the West Midlands AmSurv data, and could have been included as 

an explanatory variable in the logistic regression (Chapter 5). This would have 

enabled the study of the effect of prescription on the risk of resistance. The 

effect of co-selection of resistance from different antibiotics could have also 

been explored. These findings, in turn, would have been beneficial to inform the 

mathematical model (Chapter 7). 

Other important limitations of this work are those related to consultation and 

sampling. Prescription and UTI consultation data captured by THIN are limited 

by biases surrounding the frequency of consultation. The data also only include 

electronic health records from GP practices. Therefore, these data are only 

representative of treatment and consultation for uncomplicated UTIs. 

Consequently, the patterns in seasonality observed for UTI consultations 

(Chapter 6) cannot be extrapolated to all UTIs. AmSurv data includes both GP 

and hospital data but is limited by biases surrounding both consultation and 

sampling. Two conditions are required for a sample to be sent to a laboratory 

for testing, (1) a consultation (2) a urine sample is sent for testing. Sampling 

may be biased towards those failing to respond to treatment, which could 

increase the apparent risk of resistance. This is a limitation that applies both to 

the analysis of the burden of AMR in LTCFs (Chapter 5), and to the modelling 
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study (Chapter 7), in which the prevalence of resistant carriage in hospital and 

in the community were parameterised using these estimates. In addition, due to 

the unavailability of incidence data of colonisation by E. coli resistant to 

trimethoprim in LTCFs, the incidence of colonisation with E. coli resistant to 

trimethoprim in the model was fit to the incidence of urinary E. coli samples 

resistant to trimethoprim from a LTCF in the AmSurv dataset. To this aim, 

parameter 𝑟ℎ𝑜 was created, which was the ‘case development and 

ascertainment proportion’. This parameter aimed to capture both the proportion 

of individuals colonised with E. coli resistant to trimethoprim who develop a UTI 

and the proportion of these who consult a physician and have a urinary sample 

sent for susceptibility testing. This was a crude method that did not capture the 

dynamics of consultation and sampling (as well as UTI development), which are 

likely to be complex and interact with trimethoprim treatment.  

In addition, the difference in acquisition of dominant colonisation by E. coli 

resistant to trimethoprim under trimethoprim treatment and under no treatment 

is poorly understood. In the mathematical model developed (Chapter 7), this is 

assumed to occur through the transmission of trimethoprim resistance from 

individuals colonised with E. coli resistant to trimethoprim in the LTCF. As such, 

it depends on the number of these individuals present in the population and the 

number of individuals colonised with E. coli susceptible to trimethoprim (
𝛽∗𝑈𝑠∗𝑈𝑟

𝑁
). 

Under trimethoprim treatment, it is assumed that (1) the colonisation with E. coli 

resistant to trimethoprim cannot be lost and (2) the rate of transmission 𝛽 is 

greater than in the untreated scenario by a factor of 𝑡𝑟. 𝑡𝑟 was adjusted so that 

the prevalence of resistance in treated individuals was approximately that 

reported in the literature.257 However, data is needed to inform this parameter. 

In addition, part of the increase in transmission captured by 𝑡𝑟 during treatment 

is likely driven by the selection of resistance in an individual. This endogenous 

acquisition of dominant colonisation by E. coli resistant to trimethoprim may not 

be dependent on the number of individuals colonised with E. coli resistant to 

trimethoprim in the LTCF and the number of individuals colonised with E. coli 

susceptible to trimethoprim but may be driven by other factors such as fitness 

cost and selection pressure.  
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Finally, the mathematical model developed simplified many processes, mainly 

due to the lack of available data to inform them. For example, it assumed the 

dominance of a single strain in a colonised individual. However, competition 

between strains is known to be an important element in driving the resistance 

patterns observed in the population.298 The effect of other antibiotic treatment 

such as ampicillin/amoxicillin on trimethoprim resistance was also not included 

in the model, although it has been shown to be an important predictor of 

geographical variation in trimethoprim resistance in urinary samples263 and 

ampicillin and trimethoprim resistance genes are often linked on the same 

mobile genetic elements264–266. The model fitting process by maximum 

likelihood estimation could also be improved, using, for example, the particle 

Markov-Chain Monte Carlo method, which is implemented in pomp and takes a 

Bayesian approach to model fitting. 

Further work 

Further work is required to validate the checklist developed to assess the quality 

of mathematical models simulating transmission in the LTCF setting.  

Prevention of UTIs could help avoid antibiotic treatment in the first place, which 

would help prevent antibiotic resistance. In older people residing in LTCFs, 

where these infections are most common, it is known that catheter use, co-

morbidities such as stroke and dementia associated with bowel and bladder 

incontinence, bladder incontinence and impaired self-care are significant risk 

factors for UTI.47 Effective interventions targeting good quality of care, involving 

appropriate hygiene, fluid intake and catheter care are therefore required and 

important. Various vaccines for UTI are currently being developed that target 

virulence determinants essential for attachment and disease.299 A vaccine 

targeting FimH, which mediates the adherence to the gut epithelium, is currently 

in Phase I clinical trials and has been shown not to alter the gut microbiota.299–

301 Although currently far from licensure, a vaccine could provide an excellent 

option for reducing UTIs without impacting the ecosystem of the gut and, 

therefore, reduce antibiotic prescribing and antibiotic resistance.302 Cranberry 

extracts and probiotics also show potential in the prevention of UTI, although 

they are not yet deemed effective.303–305 In addition, further work is needed to 
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understand the causes of the autumn seasonality of UTI observed for ages 14 

to 69 so as to enable more targeted prevention programmes. 

Several expansions of the mathematical model would enable more robust 

conclusions to be drawn. As mentioned above, antibiotic prescription data 

specific to LTCFs would improve the parameterisation of the treatment rate in 

the model. Co-selection could also be simulated. In addition, LTCFs vary 

substantially in their size and the services they provide. Therefore, antibiotic 

treatment and the flow of patients in and out of the LTCF may also differ 

between facilities, and, therefore, different types of LTCFs may warrant different 

infection control recommendations. Antibiotic treatment data specific to each 

LTCF and detailed information on the flow of patients in and out of the LTCF 

would enable the characterisation of different categories of LTCFs. The 

mathematical model could then be parameterised for these distinct LTCF types. 

Another approach would be to develop an individual-based network model of 

LTCF and hospitals in a local patch area. In addition, whole genome 

sequencing could help quantify the acquisition of dominant resistance by 

endogenous and exogenous mechanisms and, therefore, help parameterise 

transmission in the LTCF setting. The model developed could then be fit to 

colonisation incidence data.  

Another simple expansion of the model would be to parameterise it to reflect the 

transmission of E. coli resistant to nitrofurantoin. Although urinary E. coli 

resistance to nitrofurantoin is still low (7% in LTCFs for 2010-2015, see Chapter 

5), the change in guidelines recommending nitrofurantoin treatment instead of 

trimethoprim for UTI may change this.306 The dynamics of resistance to 

trimethoprim and nitrofurantoin could then be compared and the conditions for a 

high prevalence of E. coli resistant to nitrofurantoin in the LTCF could then be 

predicted. 

Another area requiring further study is the effect of antibiotic stewardship 

interventions on trimethoprim resistance. The reversal of antibiotic resistance is 

not a straightforward process.307,308 The outcome of antibiotic stewardship 

interventions is most frequently antibiotic prescription and the final effect on 
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resistance is not often studied. Further work is needed to understand if 

resistance to trimethoprim can be reversed by antibiotic stewardship, as 

evidence from the literature is conflicting.208,216 The outcome of such studies 

may depend on whether other antibiotics with which trimethoprim has a strong 

co-selection are being prescribed during the intervention309 and may also need 

long time frames to see an effect.  

Finally, more research is needed to understand how E. coli strains resistant and 

sensitive to trimethoprim interact; how dominance of E. coli resistant to 

trimethoprim is achieved and, ultimately, how this is influenced by the 

interaction with different bacterial species. Bacteria do not grow in isolation and, 

therefore, other bacteria surrounding it may play an important role in the 

acquisition or suppression of resistance.   
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Conclusions 

This thesis served to (1) review the literature of dynamic transmission modelling 

of infectious diseases in LTCFs; (2) establish a checklist for policy makers to 

review the quality of mathematical models of interventions against AMR 

bacteria in LTCFs; (3) link antibiotic susceptibility data covering a large 

population to the LTCF registry and highlight the burden of AMR in LTCFs; (4) 

rigorously address the seasonality of consultations for uncomplicated UTIs; and 

(5) develop the first mathematical model to quantify the transmission of E. coli 

resistant to trimethoprim in the LTCF setting. The lack of antibiotic prescription 

data for LTCFs is an important limitation of this work. The availability of this 

data, together with an improved knowledge about the acquisition of dominant 

colonisation by AMR bacteria, could enable a better understanding of the 

drivers of AMR in the LTCF setting.  
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Appendix 

Appendix Chapter 2 

Search terms used in the literature review by database: 

Medline (only) 

model$.ti,ab.  

model?ing.ti,ab.  

framework$.ti,ab.  

 

long-term care.ti,ab. 

long term care.ti,ab. 

residential facilit$.ti,ab 

residential home$.ti,ab. 

residential care.ti,ab. 

nursing home$.ti,ab. 

old age home$.ti,ab. 

old-age home$.ti,ab. 

 

mathematic$.ti,ab. 

compartment$.ti,ab. 

stochastic.ti,ab. 
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transmiss$.ti,ab. 

epidemi$.ti,ab. 

individual-based.ti,ab. 

population-based.ti,ab. 

dynamic.ti,ab. 

comput$.ti,ab. 

reproduction number.ti,ab. 

simulation.ti,ab. 

markov chain$.ti,ab. 
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Appendix Chapter 3 

Dates, settings and methodologies 

These three models were built within the last five years (2011, 2012 and 2013). 

Lee et al.116 based their estimates on current sources, using data published 

from 2007-2011. Length of stay was the only parameter based on data 

published before 2010. Barnes et al.127, however, based their parameter 

estimates on literature from 2004 to 2010 and Chamchod and Ruan114 from 

1999 to 2010.  

Chamchod and Ruan’s model 114 was set within a LTCF; however, the 

nationality of the setting was not stated. Barnes et al.127 modelled patient 

movement between hospitals and LTCFs in the USA. Lee et al 116 additionally 

included the non-LTFC community into their model. They made a distinction 

between those discharged for a short period of time (less than 30 days) and 

those discharged into the community for longer (patients who were not 

readmitted). Their model represented Orange County, California (USA). 

Barnes et al.127 built a compartmental deterministic model, Lee et al.116 an 

individual-based stochastic model and Camchod and Ruan114 built two 

compartmental models: one stochastic and one deterministic. None of these 

models were formally fit to data or validated. Barnes et al.127 did not carry out a 

sensitivity analysis. Chamchod and Ruan114 and Lee et al.116 carried out 

univariate sensitivity analyses, varying key parameters one at a time and noting 

the effect of these changes on model outcomes. 

Model structure 

a. Patient flow 

The three models varied in the complexity of their institutional structures: 

Chamchod and Ruan114 modelled transmission of MRSA within a LTCF only 

with patients mixing homogenously within it. Barnes et al.127 and Lee et al.116 

modelled patient flow between two types of facility: LTCFs and hospitals (see 

Figure 3).  
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Barnes et al.127 modelled each LFCF and hospital as agents in a network of 

facilities (Figure 3a). Links between each pair of facilities in the network were 

assigned a specific weight, which, together with the facility size, determined the 

probability of transfer between the facilities. Various network configurations with 

different weights associated to the links were compared. In their model, patients 

at each facility type were admitted and discharged at the same rate (μ). Barnes 

et al.127 did not define any finer grain compartments within each LTCF and 

hospital, therefore, patients were assumed to mix homogeneously within 

facilities.  

Lee et al. 116 also included movement between the facilities and the community 

(Figure 3b). The authors modelled bidirectional patient flow between the 100 

inpatient facilities present in Orange County (71 LTCFs and 29 hospitals) as 

well as discharge into the community (permanent or temporary, where patients 

were readmitted within a year of discharge). Their IBM used a 2007 California 

mandatory hospital dataset where patients were tracked between facilities to 

inform hospitalisation and rehospitalisation and data from 2006-2008 surveys to 

inform transfers between hospitals and LTCFs. Patient flow was also 

determined by the number of licensed beds, the average daily census and the 

length of stay in LTCFs obtained from a national long-term care dataset. Length 

of stay distributions for ICU and non-ICU patients in each hospital were used to 

inform transfers from hospitals. MRSA carriers had longer lengths of stay. LTCF 

residents with a length of stay of two or more weeks were assigned a daily 

probability of being transferred to a hospital for a short stay during which their 

LTCF bed was kept free. The authors assumed each hospital comprised 20-bed 

general hospital wards, 12-bed intensive care units and 10-bed long-term acute 

care facilities. Each LTCF contained one ‘ward’ within which patients mixed 

homogenously.  

b. MRSA transmission 

A schematic of the transmission structures of the models can be found in Figure 

4. Each model considered two basic individual states; colonised with MRSA or 

uncolonised with MRSA. Infection was not considered in any model.  
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In Barnes et al.’s model127 (see Figure 4a), individuals could transition between 

three states: U (uncolonised), P (persistently colonised) and T (transiently 

colonised). U individuals could become P or T and vice-versa through 

transmission and recovery, but they could not transition between P and T states 

of colonisation. Transition from P to U was slower than from T to U. The 

proportion of transferred patients in each disease state was established 

according to the proportions of U, P and T in the facility they were transferred 

from.  

Chamchod and Ruan114 modelled MRSA transmission between residents, 

between healthcare workers and between healthcare workers and residents as 

distinct processes (see Figure 4b). The disease states in residents were U 

(uncolonised) and C (colonised). The disease states in healthcare workers were 

H (uncontaminated) and Hc (contaminated). Patients and residents could 

transition between the uncolonised (U) and colonised (C) states through 

transmission and recovery. No distinction was made between the P and T 

colonisation states. Colonised and uncolonised residents had different 

probabilities of admission (λ and 1-λ, respectively) and discharge (γc and γu, 

respectively). Transmission rates were different between residents (βr), from 

healthcare workers to residents (βh) and from residents to healthcare workers 

(αh). Colonisation of an uncolonised resident depended on both βr and βh whilst 

contamination of an uncontaminated healthcare worker depended on αh. 

Decolonisation rates in residents (ω) differed from decontamination rates in 

healthcare workers (μ). 

Lee et al.’s IBM116 distinguished two patient states: S (susceptible) and I 

(infectious) (see Figure 4c) which were analogous to uncolonised and 

colonised. As the authors were analysing the impact of contact precautions on 

transmission, they differentiated between residents in a scenario where contact 

precautions were in use (Sp and Ip) and residents in a scenario where they were 

not (Sφ and Iφ).  The number of new cases of MRSA per unit per day was 

calculated using the equation described below:  

βSφIφ+β(1-θ)SpIφ+β(1-θ)SφIp+β(1-θ)2SpIp  
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where p= precautions, φ= no precautions, θ=efficacy of contact precautions.  

Parameters used 

The LTCF sizes chosen varied greatly between the three models, ranging from 

100 127 to 2000 beds 114. The research groups also chose different ways of 

quantifying transmission. Barnes et al.127 and Chamchod and Ruan114 reported 

transmission rates as the effective contact (resulting in transmission) rate 

averaged per day whilst Lee et al.116 quantified the rate of transmission per 

person per day, explaining why their figures are not of the same magnitude. In 

addition, Chamchod and Ruan114 broke down their overall transmission rate into 

resident-resident, healthcare worker-resident and resident-healthcare worker 

transmission rates. Resident-resident transmission was assumed to be eight 

times lower than the other transmission types. Their overall transmission rate 

was a combination of these three rates. Barnes et al.127 used three different 

rates that were in a similar range than those provided by Chamchod and 

Ruan114. Barnes et al.127 and Lee et al.116 both used transmission rates for 

hospitals that were much higher than those for LTCFs. Barnes et al.127 and 

Chamchod and Ruan114 assumed the same proportion of patients admitted 

colonised by MRSA (10%).  Lee et al.116, however, reported the prevalence of 

colonisation within the hospitals (6.1%) and LTCFs (26.1%) which was much 

higher than the overall prevalence of all patients that enter the facility from the 

general population. Lee et al.116 did not report their assumed duration of 

colonisation. Camchod and Ruan114 supposed a duration of colonisation similar 

to that of persistently colonised individuals in Barnes et al.’s model127. Barnes et 

al.127 reported recovery rates for persistently and transiently colonised 

individuals of 0.02 and 0.2 respectively that equate to 5 and 50 days of 

colonisation. These estimates were decided by the authors. Chamchod and 

Ruan114 chose a middle estimate from the average decolonisation time range 

published by Kajita et al. (2007)310, which were themselves based on expert 

opinion. Neither of the duration of colonisation estimates were taken from 

literature based on data. 

Interventions 
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Barnes et al. 127 assessed the impact of three screening and decolonisation 

interventions: decolonisation on admission (no screening); screening by 

conventional culture on admission and subsequent decolonisation of positive 

residents and screening by PCR on admission and subsequent decolonisation 

of positive residents. These interventions reduced the prevalence of MRSA by 

moving patients from a colonised state (for Barnes et al.127, both P and T) to a 

susceptible state (uncolonised) where they cannot transmit disease after a 

duration of 10-13 days (depending on the type of screening carried out). Barnes 

et al.127 found that all three interventions yielded the same approximate results 

because facility transfers were frequent, which meant screening at admission 

was also frequent. Decolonisation decreased equilibrium prevalence in LTCFs 

by 0.0287-0.1203 and in hospitals by 0.0029-0.0232 (depending on initial 

institution equilibrium MRSA prevalence). It was assumed that, on average, it 

would take two cycles of five-day treatments for patients to be successfully 

decolonised (10 days). 

Chamchod and Ruan114 considered the theoretical impact of reducing different 

importation and transmission parameters on MRSA prevalence.  Chamchod 

and Ruan114 reported that, increasing the recovery rate by more than 0.05 

resulted in the elimination of MRSA under equilibrium.  

Chamchod and Ruan114 considered the impact of hand hygiene on MRSA 

prevalence. Hand hygiene measures that target residents aim to decrease the 

transmission of MRSA from C to U and H (βr and αh). Implementing improved 

hand hygiene decreases the probability of colonisation per contact of for 

residents (pr) and the probability of contamination per contact for healthcare 

workers (qh). The average number of contacts between residents (a) and the 

average number of required contacts from healthcare workers by residents (b) 

remains the same. Hand hygiene measures that target healthcare workers aim 

to alter the transmission of MRSA from Hc to U (βh) by decreasing the 

probability of colonisation via contacts of healthcare workers (qr) without altering 

the average number of required contacts from healthcare workers by residents 

(b).  The authors found that when the average duration of colonisation was 

reduced below 250 days for residents or below 0.15 hours for healthcare 
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workers, the probability of invasion resulting from the introduction of a 

contaminated healthcare worker/ a contaminated resident was eliminated114. 

Chamchod and Ruan modelled the impact of increasing the staff to patient ratio 

to reduce the contact rate. Assuming that the average number of contacts a 

resident requires by a healthcare worker (b) is a constant and is distributed 

amongst the number of healthcare workers, reducing the resident to staff ratio 

(Nr/Nh) diminishes the frequency at which a particular healthcare worker 

contacts a resident (b/Nh). Lower Nr/Nh reduces the frequency of contacts 

between U and Hc and between C and H. When resident to staff ratio was 

reduced below 6.5, the probability of invasion  resulting from the introduction of 

a contaminated healthcare worker/ a contaminated resident was eliminated114. 

Lee et al.116 compared the effect of contact precautions in LTCFs for residents 

with clinically apparent MRSA infections and for all MRSA carriers. Both 

interventions reduced the probability of transmission. The first intervention 

replaced Iφ individuals in the population with Ip. The second intervention 

replaced individuals in Sφ with Sp in a similar fashion. In their model, contact 

precautions in residents with clinically apparent MRSA did not significantly 

decrease MRSA prevalence and the number of MRSA acquisitions averted in 

Orange County was minimal, even after five years and assuming 75% 

adherence. However, when contact precautions were taken in all MRSA 

carriers, a substantial number of MRSA acquisitions were adverted. Assuming 

50% adherence, 171 acquisitions of MRSA were projected to be adverted within 

six months and 4,876 within five years. Even in situations where adherence was 

lower (25%), 81 acquisitions were to be adverted after six months and 2,442 

after 5 years. With high adherence (75%), 7,291 acquisitions were to be 

adverted after five years116. 
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Appendix Chapter 5 

Table A- 1. Univariable logistic regression results- odds of resistance in bacteria from LTCF samples (vs. non-LTCF samples), residential LTCF 

samples (vs. non-LTCF samples), and nursing LTCFs samples (vs. non-LTCF samples) for all bacterium-antibiotic combinations.  Confidence 

intervals are adjusted for clustering at the postcode level. 

Organism Antibiotic N  N  OR  Adjusted 
95% CI 
LTCF 

OR  Adjusted 
95% CI 
Residential 
LTCF 

OR  Adjusted 
95% CI  

Samples NS Samples LTCF Residenti
al LTCF 

Nursing 
LTCF 

Nursing 
LTCF 

E. coli Amoxicillin/Ampicillin 125958 70128 2.4 2.24 - 2.58 2.21 2.03 - 2.4 2.75 2.43 - 3.11 

Ciprofloxacin 111053 16900 2.57 2.32 - 2.85 2.28 2 - 2.59 3.01 2.58 - 3.51 

Co-amoxiclav
+
 127910 26621 1.74 1.57 - 1.93 1.69 1.48 - 1.93 1.81 1.54 - 2.12 

First-generation 
cephalosporins 

125254 10839 1.74 1.55 - 1.96 1.53 1.32 - 1.78 2.07 1.73 - 2.48 

Gentamicin 98512 6630 1.7 1.48 - 1.94 1.52 1.27 - 1.82 1.96 1.63 - 2.37 

Carbapenems
*
 50641 12 NA NA NA NA NA NA 

Nitrofurantoin 157556 6277 1.86 1.64 - 2.11 1.68 1.43 - 1.99 2.12 1.78 - 2.53 

Piperacillin/ 
Tazobactam 

35600 4756 1.93 1.68 - 2.22 1.79 1.5 - 2.13 2.21 1.77 - 2.77 

Second-generation 
cephalosporins 

51307 9483 1.98 1.68 - 2.33 1.88 1.54 - 2.29 2.13 1.62 - 2.79 

Temocillin 43273 1549 1.31 0.93 - 1.85 1.37 0.9 - 2.1 1.21 0.69 - 2.11 

Third-generation 
cephalosporins

~
 

134105 8507 1.86 1.63 - 2.14 1.73 1.45 - 2.06 2.07 1.69 - 2.55 

Trimethoprim 157818 61469 2.56 2.39 - 2.74 2.39 2.2 - 2.61 2.82 2.55 - 3.13 

Klebsiella Ciprofloxacin 13698 1087 1.36 1 - 1.85 1.21 0.79 - 1.87 1.56 1.03 - 2.37 

Co-amoxiclav
+
 14317 2181 1.53 1.22 - 1.91 1.36 1.01 - 1.82 1.75 1.26 - 2.43 

First-generation 
cephalosporins 

14393 1824 1.33 1.04 - 1.71 1.15 0.82 - 1.62 1.56 1.09 - 2.23 

Gentamicin 12963 655 1.16 0.76 - 1.76 0.79 0.45 - 1.38 1.64 0.92 - 2.92 



 

 

3
2

5
 

Organism Antibiotic N  N  OR  Adjusted 
95% CI 
LTCF 

OR  Adjusted 
95% CI 
Residential 
LTCF 

OR  Adjusted 
95% CI  

Samples NS Samples LTCF Residenti
al LTCF 

Nursing 
LTCF 

Nursing 
LTCF 

Carbapenems
*
 8364 13 1.33 0.17 - 

10.55 
2.28 0.29 - 17.84 0.01 0 - 0.02 

Nitrofurantoin 12125 4219 1.34 1.11 - 1.61 1.35 1.05 - 1.72 1.33 1.02 - 1.75 

Piperacillin/ 
Tazobactam 

7513 1215 1.55 1.1 - 2.19 1.5 0.93 - 2.41 1.63 1 - 2.65 

Second-generation 
cephalosporins 

7372 1218 1.29 0.91 - 1.83 1.37 0.85 - 2.19 1.19 0.73 - 1.95 

Temocillin 6302 85 0.63 0.15 - 2.62 1.13 0.29 - 4.43 0 0 - 0 

Third-generation 
cephalosporins

~
 

11561 837 1.1 0.75 - 1.62 0.9 0.57 - 1.41 1.37 0.75 - 2.49 

Trimethoprim 17801 4737 2.01 1.7 - 2.38 1.94 1.52 - 2.46 2.11 1.7 - 2.62 

Imipenem or Meropenem. Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis.  
~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant 

samples between mid-2011 and early 2012. 
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Table A- 2. Univariable logistic regression results- odds of resistance in bacteria from male samples (vs. females) for all bacterium-antibiotic 
combinations.  Confidence intervals are adjusted for clustering at the postcode level. 

Organism Antibiotic N Samples N NS Samples OR Male Adjusted 95% CI Male 

E. coli Amoxicillin/Ampicillin 125958 70128 1.18 1.14 - 1.23 

Ciprofloxacin 111053 16900 1.62 1.52 - 1.73 

Co-amoxiclav
+
 127910 26621 1.33 1.27 - 1.39 

First-generation cephalosporins 125254 10839 1.47 1.37 - 1.58 

Gentamicin 98512 6630 1.55 1.42 - 1.7 

Carbapenems
*
 50641 12 NA NA 

Nitrofurantoin 157556 6277 1.43 1.31 - 1.56 

Piperacillin/Tazobactam 35600 4756 1.46 1.33 - 1.61 

Second-generation cephalosporins 51307 9483 1.4 1.29 - 1.51 

Temocillin 43273 1549 1.39 1.2 - 1.61 

Third-generation cephalosporins
~
 134105 8507 1.47 1.35 - 1.6 

Trimethoprim 157818 61469 1.03 0.99 - 1.07 

Klebsiella Ciprofloxacin 13698 1087 1.38 1.14 - 1.66 

Co-amoxiclav
+
 14317 2181 1.24 1.1 - 1.41 

First-generation cephalosporins 14393 1824 1.4 1.23 - 1.61 

Gentamicin 12963 655 1.47 1.17 - 1.86 

Carbapenems
*
 8364 13 NA NA 

Nitrofurantoin 12125 4219 0.87 0.79 - 0.96 

Piperacillin/Tazobactam 7513 1215 1.39 1.19 - 1.64 

Second-generation cephalosporins 7372 1218 1.41 1.18 - 1.67 

Temocillin 6302 85 1.72 1.03 - 2.86 

Third-generation cephalosporins
~
 11561 837 1.49 1.2 - 1.84 

Trimethoprim 17801 4737 0.94 0.85 - 1.03 
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*
 Imipenem or Meropenem. Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+
 Note that some laboratories used systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the % resistant samples between mid-2011 and early 2012.  
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Table A- 3. Univariable logistic regression results- odds of resistance in bacteria from samples from those aged 75 to 80 (vs. 70-74), 81-85 (vs. 70-
74), and over 85 (vs.70-74) for all bacterium-antibiotic combinations. Confidence intervals are adjusted for clustering at the postcode level. 

Organism Antibiotic N Samples N NS 
Samples 

OR 75-80 Adjusted 
95% CI 75-
80 

OR 81-85 Adjusted 
95% CI 81-
85 

OR >85 Adjusted 
95% CI >85  

E. coli Amoxicillin/Ampicillin 125958 70128 1 0.96 - 1.04 1.09 1.04 - 1.14 1.35 1.29 - 1.42 

Ciprofloxacin 111053 16900 1.06 0.98 - 1.15 1.2 1.1 - 1.3 1.6 1.47 - 1.74 

Co-amoxiclav
+
 127910 26621 1.02 0.96 - 1.07 1.11 1.05 - 1.18 1.35 1.27 - 1.43 

First-generation 
cephalosporins 

125254 10839 1.02 0.93 - 1.11 1.18 1.08 - 1.29 1.31 1.2 - 1.43 

Gentamicin 98512 6630 1.02 0.91 - 1.13 1.08 0.96 - 1.21 1.27 1.14 - 1.42 

Carbapenems
*
 50641 12 NA NA NA NA NA NA 

Nitrofurantoin 157556 6277 1.07 0.95 - 1.21 1.29 1.14 - 1.45 1.49 1.33 - 1.67 

Piperacillin/Tazobactam 35600 4756 0.96 0.85 - 1.08 1.04 0.92 - 1.17 1.34 1.19 - 1.5 

Second-generation 
cephalosporins 

51307 9483 1.06 0.96 - 1.16 1.29 1.17 - 1.43 1.51 1.36 - 1.67 

Temocillin 43273 1549 1.03 0.85 - 1.25 1.3 1.06 - 1.58 1.13 0.93 - 1.38 

Third-generation 
cephalosporins

~
 

134105 8507 0.98 0.88 - 1.08 1.11 1 - 1.23 1.26 1.13 - 1.4 

Trimethoprim 157818 61469 1.03 0.98 - 1.07 1.17 1.12 - 1.22 1.51 1.45 - 1.58 

Klebsiella Ciprofloxacin 13698 1087 0.78 0.61 - 0.99 0.94 0.72 - 1.22 0.81 0.64 - 1.04 

Co-amoxiclav
+
 14317 2181 0.99 0.83 - 1.17 1.16 0.97 - 1.39 1.19 1 - 1.42 

First-generation 
cephalosporins 

14393 1824 0.94 0.78 - 1.13 1.07 0.88 - 1.3 1.08 0.9 - 1.3 

Gentamicin 12963 655 0.92 0.65 - 1.29 1.31 0.92 - 1.87 1.11 0.8 - 1.55 

Carbapenems
*
 8364 13 NA NA NA NA NA NA 

Nitrofurantoin 12125 4219 1.02 0.9 - 1.16 1.02 0.88 - 1.17 1.03 0.91 - 1.18 

Piperacillin/Tazobactam 7513 1215 0.86 0.68 - 1.09 1.02 0.8 - 1.3 1.06 0.84 - 1.33 

Second-generation 7372 1218 0.94 0.74 - 1.19 1.01 0.79 - 1.3 1.07 0.84 - 1.36 
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Organism Antibiotic N Samples N NS 
Samples 

OR 75-80 Adjusted 
95% CI 75-
80 

OR 81-85 Adjusted 
95% CI 81-
85 

OR >85 Adjusted 
95% CI >85  

cephalosporins 

Temocillin 6302 85 1.08 0.52 - 2.27 0.66 0.3 - 1.45 0.74 0.33 - 1.65 

Third-generation 
cephalosporins

~
 

11561 837 0.91 0.69 - 1.22 1.09 0.8 - 1.5 0.96 0.72 - 1.28 

Trimethoprim 17801 4737 0.93 0.82 - 1.06 1.1 0.96 - 1.26 1.29 1.13 - 1.46 
*
 Imipenem or Meropenem. Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012. 

  



 

 

3
3

0
 

Table A- 4. Univariable logistic regression results- odds of resistance in bacteria from samples taken in hospital (vs. from GPs) for all bacterium-
antibiotic combinations.  Confidence intervals are adjusted for clustering at the postcode level. 

Organism Antibiotic N Samples N NS Samples OR Hospital Adjusted 95% CI Hospital 

E. coli Amoxicillin/Ampicillin 125958 70128 1.17 1.13 - 1.2 

Ciprofloxacin 111053 16900 1.12 1.07 - 1.18 

Co-amoxiclav
+
 127910 26621 1.36 1.31 - 1.41 

First-generation cephalosporins 125254 10839 1.34 1.27 - 1.41 

Gentamicin 98512 6630 1.43 1.35 - 1.53 

Carbapenems
*
 50641 12 NA NA 

Nitrofurantoin 157556 6277 1.06 0.99 - 1.13 

Piperacillin/Tazobactam 35600 4756 1.32 1.23 - 1.43 

Second-generation cephalosporins 51307 9483 1.45 1.37 - 1.54 

Temocillin 43273 1549 1.41 1.24 - 1.59 

Third-generation cephalosporins
~
 134105 8507 1.37 1.29 - 1.45 

Trimethoprim 157818 61469 1.03 1.01 - 1.06 

Klebsiella Ciprofloxacin 13698 1087 1.45 1.24 - 1.68 

Co-amoxiclav
+
 14317 2181 1.53 1.38 - 1.7 

First-generation cephalosporins 14393 1824 1.55 1.39 - 1.74 

Gentamicin 12963 655 2.08 1.72 - 2.51 

Carbapenems
*
 8364 13 NA NA 

Nitrofurantoin 12125 4219 0.85 0.78 - 0.93 

Piperacillin/Tazobactam 7513 1215 1.58 1.37 - 1.81 

Second-generation cephalosporins 7372 1218 1.54 1.33 - 1.79 

Temocillin 6302 85 1.64 1.02 - 2.65 

Third-generation cephalosporins
~
 11561 837 1.86 1.56 - 2.21 

Trimethoprim 17801 4737 1.01 0.93 - 1.09 



 

 

3
3

1
 

*
 Imipenem or Meropenem. Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis.

~
 3GC resistance was defined as resistance to 

ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone.
+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the 

percentage of resistant samples between mid-2011 and early 2012. 
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Table A- 5. Univariable logistic regression results- odds of resistance in bacteria from samples from the second year of the study (vs. the first 
year), the third year of the study (vs. the first year), and the fourth year of the study (vs. the first year) for all bacterium-antibiotic combinations.  
Confidence intervals are adjusted for clustering at the postcode level. 

Organism Antibiotic N 
Samples 

N NS 
Samples 

OR 
Y2 

Adjusted 95% CI 
Y2 

OR 
Y3 

Adjusted 95% CI 
Y3 

OR 
Y4 

Adjusted 95% CI 
Y4 

E. coli Amoxicillin/Ampicillin 125958 70128 1.01 0.97 - 1.06 1.07 1.03 - 1.12 1.09 1.05 - 1.14 

Ciprofloxacin 111053 16900 0.96 0.91 - 1.03 0.93 0.87 - 0.99 0.9 0.85 - 0.97 

Co-amoxiclav
+
 127910 26621 0.9 0.86 - 0.95 0.71 0.67 - 0.74 0.71 0.67 - 0.75 

First-generation 
cephalosporins 

125254 10839 0.89 0.82 - 0.96 0.9 0.83 - 0.97 0.96 0.89 - 1.04 

Gentamicin 98512 6630 0.93 0.84 - 1.02 0.98 0.88 - 1.08 1.02 0.92 - 1.12 

Carbapenems
*
 50641 12 NA NA NA NA NA NA 

Nitrofurantoin 157556 6277 0.84 0.76 - 0.92 0.78 0.71 - 0.86 0.87 0.79 - 0.95 

Piperacillin/Tazobactam 35600 4756 0.66 0.56 - 0.77 0.88 0.8 - 0.97 0.9 0.82 - 1 

Second-generation 
cephalosporins 

51307 9483 1.08 1 - 1.17 1.04 0.96 - 1.13 1.09 1 - 1.18 

Temocillin 43273 1549 2.29 1.79 - 2.92 4.95 3.94 - 6.22 4.15 3.28 - 5.24 

Third-generation 
cephalosporins

~
 

134105 8507 1.01 0.92 - 1.1 1.04 0.95 - 1.14 1.1 1 - 1.2 

Trimethoprim 157818 61469 1.06 1.02 - 1.1 1.15 1.1 - 1.19 1.19 1.14 - 1.24 

Klebsiella Ciprofloxacin 13698 1087 0.95 0.73 - 1.24 1.18 0.91 - 1.54 1.46 1.14 - 1.87 

Co-amoxiclav
+
 14317 2181 1.11 0.94 - 1.33 1.04 0.87 - 1.24 1.31 1.11 - 1.55 

First-generation 
cephalosporins 

14393 1824 1.06 0.87 - 1.3 1.17 0.96 - 1.43 1.25 1.03 - 1.52 

Gentamicin 12963 655 0.76 0.51 - 1.15 1.26 0.86 - 1.84 1.86 1.29 - 2.67 

Carbapenems
*
 8364 13 NA NA NA NA NA NA 

Nitrofurantoin 12125 4219 0.89 0.79 - 1 0.56 0.5 - 0.63 0.61 0.55 - 0.69 

Piperacillin/Tazobactam 7513 1215 0.85 0.66 - 1.09 1.69 1.36 - 2.09 2.1 1.71 - 2.59 

Second-generation 7372 1218 0.95 0.75 - 1.2 1.17 0.93 - 1.46 1.07 0.86 - 1.34 



 

 

3
3

3
 

Organism Antibiotic N 
Samples 

N NS 
Samples 

OR 
Y2 

Adjusted 95% CI 
Y2 

OR 
Y3 

Adjusted 95% CI 
Y3 

OR 
Y4 

Adjusted 95% CI 
Y4 

cephalosporins 

Temocillin 6302 85 2.28 0.68 - 7.59 2.62 0.81 - 8.5 3.03 0.95 - 9.71 

Third-generation 
cephalosporins

~
 

11561 837 1.16 0.85 - 1.58 1.25 0.93 - 1.69 1.67 1.26 - 2.22 

Trimethoprim 17801 4737 1.22 1.07 - 1.38 1.18 1.04 - 1.34 1.42 1.25 - 1.6 
*
 Imipenem or Meropenem. Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012. 
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Table A- 6. Multivariable logistic regression results for all bacterium-antibiotic combinations with LTCF residence included as a binary variable 
(LTCF samples vs. non-LTCF samples) PART A.  95% confidence intervals (aCI) are adjusted for clustering at the postcode level. Interactions were not 
included in the model as they did not improve model fit.* 

Organism Antibiotic OR LTCF 95% aCI LTCF OR Male 95% aCI Male 

E. coli 
 

Amoxicillin/ Ampicillin 2.33 2.16 - 2.5 1.2 1.15 - 1.25 

Ciprofloxacin 2.42 2.17 - 2.69 1.69 1.58 - 1.81 

Co-amoxiclav
+
 1.71 1.55 - 1.9 1.35 1.28 - 1.41 

First-generation cephalosporins 1.75 1.55 - 1.98 1.47 1.37 - 1.59 

Gentamicin 1.69 1.47 - 1.94 1.53 1.4 - 1.68 

Nitrofurantoin 1.74 1.53 - 1.97 1.48 1.36 - 1.61 

Piperacillin/ Tazobactam 1.87 1.62 - 2.17 1.47 1.33 - 1.62 

Second-generation cephalosporins 1.89 1.61 - 2.23 1.38 1.28 - 1.5 

Temocillin 1.39 0.98 - 1.96 1.32 1.14 - 1.53 

Third-generation cephalosporins
~
 1.89 1.64 - 2.17 1.47 1.35 - 1.6 

Trimethoprim 2.36 2.21 - 2.53 1.06 1.02 - 1.11 

Klebsiella 
 

Ciprofloxacin 1.54 1.13 - 2.1 1.34 1.11 - 1.62 

Co-amoxiclav
+
 1.59 1.27 - 1.99 1.23 1.08 - 1.39 

First-generation cephalosporinss 1.42 1.1 - 1.83 1.38 1.2 - 1.58 

Gentamicin 1.29 0.84 - 1.96 1.4 1.1 - 1.77 

Nitrofurantoin 1.31 1.09 - 1.59 0.9 0.81 - 0.99 

Piperacillin/ Tazobactam 1.63 1.14 - 2.32 1.34 1.14 - 1.58 

Second-generation cephalosporinss 1.36 0.95 - 1.94 1.39 1.17 - 1.65 

Temocillin 0.77 0.19 - 3.11 1.58 0.94 - 2.66 

Third-generation cephalosporins
~
 1.24 0.85 - 1.83 1.42 1.15 - 1.75 

Trimethoprim 1.89 1.6 - 2.24 0.97 0.88 - 1.06 
*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012.   
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Table A- 7. Multivariable logistic regression results for all bacterium-antibiotic combinations with LTCF residence included as a binary variable 
(LTCF samples vs. non-LTCF samples) PART B.  95% confidence intervals (aCI) are adjusted for clustering at the postcode level. Interactions were not 
included in the model as they did not improve model fit.* 

Organism Antibiotic OR 75-80 95% aCI 75-80 OR 81-85 95% aCI 81-85 OR over 85 95% aCI over 85 

E. coli Amoxicillin/ Ampicillin 0.98 0.94 - 1.02 1.02 0.97 - 1.06 1.15 1.1 - 1.21 

 Ciprofloxacin 1.04 0.96 - 1.13 1.11 1.02 - 1.21 1.35 1.24 - 1.47 

 Co-amoxiclav
+
 0.99 0.94 - 1.04 1.04 0.99 - 1.1 1.19 1.12 - 1.26 

 First-generation cephalosporins 0.99 0.91 - 1.08 1.11 1.01 - 1.21 1.15 1.05 - 1.26 

 Gentamicin 0.99 0.89 - 1.11 1.01 0.9 - 1.13 1.13 1.01 - 1.27 

 Nitrofurantoin 1.06 0.94 - 1.19 1.23 1.09 - 1.39 1.34 1.19 - 1.51 

 Piperacillin/ Tazobactam 0.94 0.83 - 1.05 0.97 0.86 - 1.1 1.18 1.05 - 1.33 

 Second-generation cephalosporins 1.04 0.94 - 1.14 1.2 1.09 - 1.33 1.31 1.18 - 1.46 

 Temocillin 1.03 0.85 - 1.25 1.24 1.01 - 1.51 1.07 0.87 - 1.31 

 Third-generation cephalosporins
~
 0.95 0.86 - 1.05 1.02 0.92 - 1.14 1.08 0.97 - 1.21 

 Trimethoprim 1.01 0.96 - 1.05 1.09 1.04 - 1.14 1.28 1.22 - 1.34 

Klebsiella Ciprofloxacin 0.76 0.6 - 0.97 0.9 0.69 - 1.18 0.76 0.59 - 0.97 

 Co-amoxiclav
+
 0.97 0.81 - 1.15 1.12 0.93 - 1.35 1.11 0.93 - 1.32 

 First-generation cephalosporinss 0.92 0.76 - 1.11 1.04 0.86 - 1.27 1.04 0.86 - 1.25 

 Gentamicin 0.89 0.63 - 1.27 1.26 0.89 - 1.8 1.05 0.75 - 1.46 

 Nitrofurantoin 1.01 0.89 - 1.15 1.01 0.88 - 1.16 1 0.87 - 1.14 

 Piperacillin/ Tazobactam 0.84 0.66 - 1.07 0.98 0.77 - 1.26 0.99 0.78 - 1.25 

 Second-generation cephalosporinss 0.93 0.73 - 1.18 0.99 0.77 - 1.28 1.05 0.83 - 1.34 

 Temocillin 1.08 0.51 - 2.27 0.65 0.3 - 1.43 0.78 0.35 - 1.73 

 Third-generation cephalosporins
~
 0.89 0.66 - 1.2 1.06 0.77 - 1.45 0.91 0.68 - 1.22 
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Organism Antibiotic OR 75-80 95% aCI 75-80 OR 81-85 95% aCI 81-85 OR over 85 95% aCI over 85 

 Trimethoprim 0.92 0.81 - 1.05 1.07 0.93 - 1.22 1.16 1.03 - 1.32 
*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, 

cefotaxime, or ceftriaxone. 
+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples 

between mid-2011 and early 2012. 
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 Table A- 8. Multivariable logistic regression results for all bacterium-antibiotic combinations with LTCF residence included as a binary variable 

(LTCF samples vs. non-LTCF samples) PART C.  95% confidence intervals (aCI) are adjusted for clustering at the postcode level. OR H are the odds of 

resistance for bacteria from samples from hospitals compared to that of those from GPs. Interactions were not included in the model as they did not improve 

model fit.* 

Organism Antibiotic OR H 95% aCI H OR Y2 95% aCI Y2 OR Y3 95% aCI Y3 OR Y4 95% aCI Y4 

E. coli 
Amoxicillin/ 
Ampicillin 

1.18 1.14 - 1.21 1 0.96 - 1.05 1.07 1.02 - 1.11 1.09 1.05 - 1.14 

 
Ciprofloxacin 1.11 1.06 - 1.16 0.95 0.9 - 1.01 0.92 0.86 - 0.98 0.9 0.84 - 0.96 

 
Co-amoxiclav

+
 1.34 1.3 - 1.39 0.89 0.85 - 0.94 0.7 0.66 - 0.74 0.71 0.67 - 0.74 

 
First-generation 
cephalosporins 

1.33 1.26 - 1.4 0.88 0.81 - 0.95 0.9 0.83 - 0.97 0.96 0.89 - 1.04 

 
Gentamicin 1.4 1.31 - 1.49 0.92 0.83 - 1.02 0.97 0.88 - 1.07 1.01 0.92 - 1.12 

  Nitrofurantoin 1.03 0.97 - 1.1 0.82 0.75 - 0.9 0.77 0.7 - 0.85 0.86 0.78 - 0.94 

  
Piperacillin/ 
Tazobactam 

1.3 1.21 - 1.41 0.64 0.55 - 0.75 0.88 0.8 - 0.97 0.92 0.83 - 1.02 

  
Second-
generation 
cephalosporins 

1.43 1.35 - 1.51 1.07 0.99 - 1.16 1.03 0.95 - 1.12 1.1 1.01 - 1.19 

  Temocillin 1.41 1.25 - 1.59 2.29 1.79 - 2.93 4.97 3.96 - 6.25 4.21 3.34 - 5.32 

  
Third-generation 
cephalosporins

~
 

1.36 1.28 - 1.44 1 0.91 - 1.09 1.03 0.94 - 1.13 1.09 1 - 1.2 

  Trimethoprim 1.05 1.02 - 1.08 1.05 1.01 - 1.09 1.14 1.09 - 1.18 1.19 1.14 - 1.24 

Klebsiella Ciprofloxacin 1.45 1.25 - 1.69 0.96 0.73 - 1.25 1.19 0.91 - 1.55 1.47 1.15 - 1.89 
  Co-amoxiclav

+
 1.54 1.39 - 1.71 1.13 0.95 - 1.35 1.05 0.88 - 1.25 1.31 1.11 - 1.56 

  
First-generation 
cephalosporins 

1.54 1.37 - 1.73 1.07 0.88 - 1.31 1.18 0.96 - 1.44 1.26 1.03 - 1.53 

  Gentamicin 2.06 1.71 - 2.48 0.77 0.51 - 1.17 1.28 0.87 - 1.87 1.91 1.33 - 2.75 
  Nitrofurantoin 0.85 0.78 - 0.93 0.88 0.78 - 0.99 0.56 0.49 - 0.63 0.61 0.54 - 0.68 

  
Piperacillin/ 
Tazobactam 

1.62 1.41 - 1.86 0.83 0.64 - 1.07 1.69 1.36 - 2.09 2.1 1.7 - 2.6 

  
Second-
generation 

1.51 1.31 - 1.76 0.94 0.74 - 1.19 1.16 0.93 - 1.45 1.07 0.85 - 1.34 
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Organism Antibiotic OR H 95% aCI H OR Y2 95% aCI Y2 OR Y3 95% aCI Y3 OR Y4 95% aCI Y4 

cephalosporins 
  Temocillin 1.61 1 - 2.6 2.26 0.67 - 7.62 2.62 0.8 - 8.55 3.04 0.95 - 9.76 

  
Third-generation 
cephalosporins

~
 

1.83 1.54 - 2.18 1.15 0.85 - 1.57 1.24 0.92 - 1.68 1.68 1.26 - 2.23 

  Trimethoprim 1.04 0.96 - 1.13 1.22 1.08 - 1.39 1.19 1.04 - 1.35 1.41 1.25 - 1.6 
*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012. 
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Table A- 9. Multivariable logistic regression results for all bacterium-antibiotic combinations where the odds of resistance of bacteria from 

residential (Res) and nursing (Ns) LTCF samples are each compared to that of non-LTCF samples PART A.  95% confidence intervals (aCI) are 

adjusted for clustering at the postcode level. OR H is the odds of resistance for bacteria from samples from hospitals compared to that of samples from GPs. 

Interactions were not included in the model as they did not improve model fit.
 * 

Organism Antibiotic OR Res LTCF aCI Res LTCF OR Ns LTCF aCI Ns LTCF OR Male aCI Male 

E. coli 

Amoxicillin/ Ampicillin 2.13 1.95 - 2.32 2.67 2.36 - 3.02 1.2 1.15 - 1.25 
Ciprofloxacin 2.17 1.9 - 2.47 2.78 2.38 - 3.24 1.68 1.58 - 1.8 
Co-amoxiclav

+
 1.68 1.47 - 1.91 1.76 1.51 - 2.06 1.34 1.28 - 1.41 

First-generation cephalosporins 1.54 1.33 - 1.8 2.05 1.71 - 2.46 1.47 1.36 - 1.58 
Gentamicin 1.52 1.27 - 1.83 1.93 1.6 - 2.34 1.52 1.39 - 1.67 
Nitrofurantoin 1.59 1.35 - 1.87 1.95 1.64 - 2.33 1.47 1.35 - 1.6 
Piperacillin/ Tazobactam 1.76 1.47 - 2.11 2.09 1.66 - 2.63 1.46 1.33 - 1.62 
Second-generation cephalosporins 1.82 1.48 - 2.22 2.01 1.55 - 2.61 1.38 1.27 - 1.49 
Temocillin 1.43 0.94 - 2.18 1.32 0.76 - 2.28 1.32 1.14 - 1.53 
Third-generation cephalosporins

~
 1.76 1.47 - 2.1 2.09 1.7 - 2.56 1.47 1.35 - 1.6 

Trimethoprim 2.2 2.02 - 2.4 2.63 2.37 - 2.92 1.06 1.02 - 1.1 

Klebsiella 

Ciprofloxacin 1.41 0.9 - 2.19 1.7 1.13 - 2.56 1.34 1.11 - 1.62 
Co-amoxiclav

+
 1.42 1.06 - 1.92 1.81 1.3 - 2.51 1.22 1.08 - 1.39 

First-generation cephalosporins 1.24 0.88 - 1.76 1.64 1.15 - 2.34 1.38 1.2 - 1.58 
Gentamicin 0.91 0.52 - 1.62 1.72 0.97 - 3.05 1.39 1.1 - 1.76 
Nitrofurantoin 1.31 1.02 - 1.68 1.31 1 - 1.73 0.9 0.81 - 0.99 
Piperacillin/ Tazobactam 1.65 1.02 - 2.68 1.6 0.99 - 2.59 1.34 1.14 - 1.58 
Second-generation cephalosporins 1.49 0.92 - 2.4 1.21 0.74 - 1.97 1.39 1.17 - 1.65 

Temocillin 1.5 0.4 - 5.65 0 0 - 0 1.6 0.95 - 2.68 

Third-generation cephalosporins
~
 1.06 0.67 - 1.68 1.47 0.81 - 2.67 1.42 1.15 - 1.75 

Trimethoprim 1.82 1.43 - 2.31 1.98 1.59 - 2.46 0.97 0.88 - 1.06 

 
*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012. 
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Table A- 10. Multivariable logistic regression results for all bacterium-antibiotic combinations where the odds of resistance of bacteria from 

residential (Res) and nursing (Ns) LTCF samples are each compared to that of non-LTCF samples PART B.  95% confidence intervals (aCI) are 

adjusted for clustering at the postcode level. OR H is the odds of resistance for bacteria from samples from hospitals compared to that of samples from GPs. 

Interactions were not included in the model as they did not improve model fit.
 *
 

Organism Antibiotic OR 75-80 aCI 75-80 OR 81-85 aCI 81-85 OR over 85  aCI over 85 

E. coli Amoxicillin/ Ampicillin 0.98 0.94 - 1.02 1.02 0.97 - 1.06 1.16 1.1 - 1.21 

 Ciprofloxacin 1.04 0.96 - 1.13 1.11 1.02 - 1.21 1.35 1.24 - 1.47 

 Co-amoxiclav
+
 0.99 0.94 - 1.04 1.04 0.99 - 1.1 1.19 1.12 - 1.26 

 First-generation cephalosporins 0.99 0.91 - 1.08 1.11 1.01 - 1.21 1.15 1.05 - 1.26 

 Gentamicin 0.99 0.89 - 1.11 1.01 0.9 - 1.13 1.13 1.01 - 1.27 

 Nitrofurantoin 1.06 0.94 - 1.19 1.23 1.09 - 1.39 1.34 1.2 - 1.51 

 Piperacillin/ Tazobactam 0.94 0.83 - 1.05 0.97 0.86 - 1.1 1.18 1.05 - 1.33 

 Second-generation cephalosporins 1.04 0.94 - 1.14 1.2 1.09 - 1.33 1.31 1.19 - 1.46 

 Temocillin 1.03 0.85 - 1.25 1.24 1.01 - 1.51 1.07 0.87 - 1.3 

 Third-generation cephalosporins
~
 0.95 0.86 - 1.05 1.02 0.92 - 1.14 1.08 0.97 - 1.21 

 Trimethoprim 1.01 0.96 - 1.05 1.09 1.05 - 1.14 1.28 1.22 - 1.34 

Klebsiella Ciprofloxacin 0.76 0.6 - 0.97 0.9 0.69 - 1.17 0.76 0.59 - 0.97 

 Co-amoxiclav
+
 0.97 0.81 - 1.16 1.12 0.93 - 1.34 1.11 0.93 - 1.32 

 First-generation cephalosporins 0.92 0.76 - 1.11 1.04 0.85 - 1.27 1.04 0.86 - 1.26 

 Gentamicin 0.89 0.63 - 1.27 1.26 0.89 - 1.8 1.05 0.75 - 1.46 

 Nitrofurantoin 1.01 0.89 - 1.15 1.01 0.88 - 1.16 1 0.87 - 1.14 

 Piperacillin/ Tazobactam 0.84 0.66 - 1.07 0.98 0.77 - 1.25 0.99 0.78 - 1.25 

 Second-generation cephalosporins 0.93 0.73 - 1.18 0.99 0.77 - 1.28 1.05 0.83 - 1.34 

 Temocillin 1.08 0.51 - 2.29 0.65 0.3 - 1.43 0.77 0.35 - 1.71 
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Organism Antibiotic OR 75-80 aCI 75-80 OR 81-85 aCI 81-85 OR over 85  aCI over 85 

 Third-generation cephalosporins
~
 0.89 0.66 - 1.19 1.06 0.77 - 1.45 0.92 0.69 - 1.22 

 Trimethoprim 0.92 0.81 - 1.05 1.07 0.93 - 1.22 1.16 1.03 - 1.32 

*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant samples between mid-2011 and early 

2012. 
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Table A- 11. Multivariable logistic regression results for all bacterium-antibiotic combinations where the odds of resistance of bacteria from 

residential (Res) and nursing (Ns) LTCF samples are each compared to that of non-LTCF samples PART C.  95% confidence intervals (aCI) are 

adjusted for clustering at the postcode level. OR H is the odds of resistance for bacteria from samples from hospitals compared to that of samples from GPs. 

Interactions were not included in the model as they did not improve model fit.
 * 

Organism Antibiotic OR H aCI H OR Y2 aCI Y2 OR Y3 aCI Y3 OR Y4 aCI Y4 

E. coli Amoxicillin/ 

Ampicillin 

1.18 1.15 - 1.21 1 0.96 - 1.05 1.07 1.02 - 1.11 1.09 1.05 - 1.14 

 Ciprofloxacin 1.11 1.06 - 1.16 0.95 0.89 - 1.01 0.92 0.86 - 0.98 0.9 0.84 - 0.96 

 Co-amoxiclav
+
 1.34 1.3 - 1.39 0.89 0.85 - 0.94 0.7 0.66 - 0.74 0.71 0.67 - 0.74 

 
First-generation 

cephalosporins 

1.33 1.26 - 1.4 0.88 0.81 - 0.95 0.9 0.83 - 0.97 0.97 0.9 - 1.04 

 Gentamicin 1.4 1.31 - 1.5 0.92 0.83 - 1.02 0.97 0.88 - 1.07 1.02 0.92 - 1.12 

 Nitrofurantoin 1.04 0.97 - 1.1 0.82 0.75 - 0.9 0.77 0.7 - 0.85 0.86 0.78 - 0.94 

 
Piperacillin/ 

Tazobactam 

1.3 1.21 - 1.41 0.64 0.55 - 0.75 0.88 0.8 - 0.97 0.92 0.83 - 1.02 

 
Second-generation 

cephalosporins 

1.43 1.34 - 1.51 1.07 0.99 - 1.16 1.03 0.95 - 1.12 1.1 1.01 - 1.19 

 Temocillin 1.41 1.25 - 1.59 2.29 1.79 - 2.92 4.97 3.96 - 6.25 4.21 3.33 - 5.32 

 
Third-generation 

cephalosporins
~
 

1.36 1.29 - 1.45 1 0.91 - 1.09 1.03 0.94 - 1.13 1.1 1 - 1.2 

 Trimethoprim 1.05 1.02 - 1.08 1.05 1.01 - 1.09 1.14 1.09 - 1.18 1.19 1.14 - 1.24 

Klebsiella Ciprofloxacin 1.45 1.25 - 1.69 0.96 0.73 - 1.25 1.19 0.91 - 1.55 1.47 1.14 - 1.89 

 Co-amoxiclav
+
 1.54 1.39 - 1.71 1.13 0.95 - 1.35 1.05 0.88 - 1.25 1.31 1.11 - 1.56 

 First-generation 1.54 1.37 - 1.73 1.07 0.88 - 1.31 1.18 0.96 - 1.44 1.26 1.03 - 1.53 
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Organism Antibiotic OR H aCI H OR Y2 aCI Y2 OR Y3 aCI Y3 OR Y4 aCI Y4 

cephalosporins 

 Gentamicin 2.05 1.7 - 2.48 0.77 0.51 - 1.17 1.28 0.87 - 1.87 1.91 1.33 - 2.74 

 Nitrofurantoin 0.85 0.78 - 0.93 0.88 0.78 - 0.99 0.56 0.49 - 0.63 0.61 0.54 - 0.68 

 
Piperacillin/ 

Tazobactam 

1.62 1.41 - 1.86 0.83 0.64 - 1.07 1.69 1.36 - 2.09 2.11 1.7 - 2.6 

 
Second-generation 

cephalosporins 

1.52 1.31 - 1.76 0.94 0.74 - 1.19 1.16 0.93 - 1.45 1.07 0.85 - 1.34 

 Temocillin 1.63 1.01 - 2.64 2.26 0.67 - 7.63 2.62 0.8 - 8.55 3.05 0.95 - 9.8 

 
Third-generation 

cephalosporins
~
 

1.83 1.54 - 2.17 1.16 0.85 - 1.57 1.24 0.92 - 1.68 1.68 1.26 - 2.23 

 Trimethoprim 1.04 0.96 - 1.13 1.22 1.08 - 1.39 1.19 1.04 - 1.35 1.41 1.25 - 1.6 

*
Resistance to carbapenems was very low in both Klebsiella and E. coli which prevented any formal statistical analysis. 

~
 3GC resistance was defined as resistance to ceftazidime, cefpodoxime, cefotaxime, or ceftriaxone. 

+ 
Note that some laboratories used the systemic rather than UTI breakpoint guidelines for co-amoxiclav resulting in an increase in the percentage of resistant 

samples between mid-2011 and early 2012. 
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Appendix Chapter 6 PART A 

Trends and seasonality of UTIs caused by E. coli and Klebsiella 

in older people and GP trimethoprim and nitrofurantoin 

prescriptions in all ages. 

Methods 

The data sources employed in this analysis were: 

1. The susceptibility tests for E. coli and Klebsiella urinary samples from 

patients aged 70+ sent to AmSurv from April 2010 to March 2014. These 

included samples sent both by GPs and hospitals. 

2. The Office for National Statistics yearly all ages and 70+ population 

estimates for the West Midlands. 4 

3. The monthly GP trimethoprim and nitrofurantoin prescriptions for UTIs in 

all ages in the West Midlands from August 2010 to March 2014 from the 

Health & Social Care Information Centre.234  

Urine/kidney samples that grew E. coli and Klebsiella from older people 

submitted to AmSurv from laboratories in the West Midlands from 2010 to 2014 

(data source 1) were cleaned as described in Chapter 4. They were then 

aggregated by month of the study and are referred to subsequently as the 

monthly E. coli and Klebsiella UTIs.  

The same methodology was employed to describe the trend and (if present) the 

seasonality of E. coli and Klebsiella UTIs and of trimethoprim and nitrofurantoin 

prescriptions. A negative binomial regression model, a type of regression used 

to model over-dispersed count outcome variables, was used, as the data were 

highly over-dispersed.  

As the all ages and 70+ population in the West Midlands increased during the 

study period (see Figure A- 1), an offset was incorporated into the regression. 

This offset accounted for this increase in the population in the regression model. 

The offset was a logged vector that contained the all ages (for the all ages 

prescription dataset) or the 70+ (all other datasets) West Midlands population in 
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each of the months in the UTI dataset. These were obtained from yearly ONS 

estimates of the West Midlands 70+ population which were repeated for the 

months in each year 4.  

 

Figure A- 1. West Midlands yearly 70+ and all ages population. 

The counts were de-trended by fitting a polynomial regression model of degree 

two to the time series: 

𝑓(𝑥) = 𝑎 + 𝑏𝑥 + 𝑐𝑥2 

This allowed a better approximation to the data than achieved through a 

polynomial regression of degree one: 

𝑓(𝑥) = 𝑎 + 𝑏𝑥 

The negative binomial regression was coded in R using the glm.nb function in 

the MASS R package: 

glm.nb(data~ times+I(times^2)+ offset(log(pop))) 
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where “times” was an integer 1:48 (as our data covered 48 months).  

Seasonality was assessed, firstly, graphically by plotting the negative binomial 

model with and without seasonality. The model with seasonality included an 

additional term: 

𝑓(𝑥) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
) 

This regression was also coded in R using the glm.nb function in the MASS 

package: 

c<-cos(2*pi*times/12) 

s<-sin(2*pi*times/12) 

glm.nb(data~ times+I(times^2)+ offset(log(pop.48))+c+s) 

Secondly, a correlogram (or auto-correlation plot) was plotted to explore the 

correlations between the residuals of the model and the lagged values of the 

residuals for lags 1-12 (over the course of a year). The residuals are the 

difference between the estimated model values and the observed data. The 

residual values of the regression that modelled trend were the remaining 

variations in the data after trend was accounted for. The correlogram was used 

to investigate if these residual values were correlated in time. For example, a 

significantly positive correlation at a lag at one month would signify that, after 

accounting for trend, the residual values for one month were significantly 

correlated to the residual values for the next month.  

The autocorrelation function (ACF) confidence intervals were calculated as 

follows: 

±
𝑖

√𝑁
 

where 𝑖 = 𝑞𝑛𝑜𝑟𝑚(
1+𝑐𝑖

2
), and 𝑁 = 48. 
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qnorm is the normal quantile R function, ci is the confidence interval (which was 

set to 0.95), and N is the number of months used to calculate the ACF (48 in 

this case). Therefore:  

±
𝑖

√𝑁
=

1.96

√48
= 0.28 

The trends and seasonality of E. coli and Klebsiella UTIs were assessed for 

LTCF samples and non-LTCF samples, for E. coli and Klebsiella susceptible 

and resistant to trimethoprim as these could potentially be different. The E. coli 

and Klebsiella UTIs that were sent by GPs (vs. hospitals) were also analysed 

separately.  
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Trend in E. coli and Klebsiella UTI (in those aged 70 and over) 

Negative binomial regression models with second degree polynomials were fit 

to the monthly UTIs caused by E. coli and Klebsiella in older people in the West 

Midlands during the study period in LTCFs and outside of LTCFs. The offset for 

these regressions was the elderly West Midlands population.  

As can be seen in Figure A- 2, UTIs caused by E. coli and Klebsiella in older 

people increased in the West Midlands during the study period in LTCFs and 

outside of LTCFs. A similar increase was seen for UTIs caused by E. coli and 

Klebsiella susceptible and resistant to trimethoprim (see Figure A- 3 and Figure 

A- 4). In all cases, UTIs appeared to rapidly increase until early 2013. The rate 

of UTIs caused by E. coli in LTCFs and UTIs caused by Klebsiella outside of 

LTCFs very visibly stabilised from this moment and even dropped slightly in the 

last few months of the study. This tapering off, although present, was less 

apparent for UTIs caused by E. coli outside of LTCFs and UTIs caused by 

Klebsiella in LTCFs. 
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Figure A- 2. Monthly rate of UTIs caused by E. coli and Klebsiella in older people residing 

in and outside of long-term care facilities in the West Midlands from April 2010 to March 

2014.  In red, the fitted predictions of the negative binomial polynomial regression model of 

degree two with offset. 
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Figure A- 3. Monthly rate of UTIs caused by E. coli and Klebsiella that were susceptible to 

trimethoprim in older people residing in and outside of long-term care facilities in the 

West Midlands.  In red, the fitted predictions of the negative binomial polynomial regression 

model of degree two with offset. 
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Figure A- 4. Monthly rate of UTIs caused by E. coli and Klebsiella that were resistant to 

trimethoprim in older people residing in and outside of long-term care facilities in the 

West Midlands.  In red, the fitted predictions of the negative binomial polynomial regression 

model of degree two with offset. 

The rate of UTIs increased by an average of: 

 𝑦 = 0.00021 ∗ 1.056𝑚𝑜𝑛𝑡ℎ ∗ 0.9993𝑚𝑜𝑛𝑡ℎ2
∗ 100,000 per 100,000 

individuals in the population for E. coli UTIs in LTCFs 

 𝑦 = 0.0023 ∗ 1.034𝑚𝑜𝑛𝑡ℎ ∗ 0.9997𝑚𝑜𝑛𝑡ℎ2
∗ 100,000 per 100,000 individuals 

in the population for E. coli UTIs not in LTCFs 

 𝑦 = 0.00002 ∗ 1.027𝑚𝑜𝑛𝑡ℎ ∗ 0.9998𝑚𝑜𝑛𝑡ℎ2
∗ 100,000 per 100,000 

individuals in the population for Klebsiella UTIs in LTCFs 

 𝑦 = 0.00029 ∗ 1.035𝑚𝑜𝑛𝑡ℎ ∗ 0.9996𝑚𝑜𝑛𝑡ℎ2
∗ 100,000 per 100,000 

individuals in the population for Klebsiella UTIs in LTCFs 
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For example, this meant than in the first month of the study (April 2010), there 

were:  

0.00021 ∗ 1.0561 ∗ 0.999312
∗ 100,000 = 22.16 UTIs caused by E. coli in LTCFs 

per 100,000 individuals in the population (~22.29 in Table A- 12, as fewer 

decimals are reported above than are estimated in the model). The numeric 

solutions for eight time points are described in Table A- 12 below. 



 

 

3
5

3
 

Table A- 12. UTIs caused by E. coli and Klebsiella in LTCF residents and in older people living in their own homes per 100,000 elderly individuals 

living in the West Midlands.  Fitted values from the negative binomial regression model. 

 April  

2010 

September 

2010 

March 

2011 

September 

2011 

March 

2012 

September 

2012 

March 

2013 

September 

2013 

March 

2014 

UTIs caused by E. coli in 

LTCFs per 100,000 pop 22.29 28.52 36.66 44.89 52.33 58.11 61.46 61.9 59.37 

UTIs caused by E. coli outside 

LTCFs per 100,000 pop 241.21 282.06 333.93 387.27 439.94 489.57 533.67 569.86 596.06 

UTIs caused by Klebsiella in 

LTCFs per 100,000 pop 2.32 2.64 3.03 3.44 3.84 4.23 4.59 4.92 5.19 

UTIs caused by Klebsiella 

outside LTCFs per 100,000 

pop 30.51 35.67 41.91 47.85 53.1 57.25 59.99 61.08 60.43 
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Seasonality in E. coli UTI (in those aged 70 and over) 

There was no seasonal pattern observed in UTIs caused by E. coli in older 

people, neither in LTCF residents nor in patients that did not reside in LTCFs 

(see Figure A- 5 and Figure A- 6). Adding a f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
) wave to 

the regression model worsened the model fit for E. coli UTIs (from an AIC of 

495.9 to 499.5 for LTCF residents, and from an AIC of 689.6 to 693.1 for those 

not residing in LTCFs). Graphically, the fit to the rates of E. coli UTI were very 

similar for the two models. The correlograms in Figure A- 6 show the 

autocorrelation functions for the residuals of the regression models without 

seasonality in E. coli UTIs from LTCFs and outside LTCFs (respectively) at lags 

of 0-12 months. Neither had an oscillatory shape consistent with seasonality. 

There was a borderline significant negative correlation at 11 months for UTIs 

caused by E. coli in LTCFs with no plausible biological explanation.  

There was also a lack of clear seasonality in UTIs caused by E. coli susceptible 

and resistant to trimethoprim (Figure A- 7 and Figure A- 8).  
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Figure A- 5. Seasonality in the monthly rate of UTIs caused by E. coli in elderly patients 
residing in and outside of long-term care facilities in the West Midlands from April 2010 
to March 2014.  In red, the fitted predictions of the negative binomial polynomial regression 
model of degree two with offset. In blue, the fitted predictions of the negative binomial 
polynomial regression model of degree two with offset and a seasonality component 

f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
). 

 

 

Figure A- 6. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regression without seasonality fit to the monthly UTIs caused by E. 
coli in elderly patients residing in LTCFs and outside LTCFs in the West Midlands.  The 

95% confidence intervals are marked with dashed horizontal blue lines.  
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Figure A- 7. Seasonality in the monthly rate of UTIs caused by E. coli susceptible and 
resistant to trimethoprim in elderly patients residing in and outside of long-term care 
facilities in the West Midlands.  In red, the fitted predictions of the negative binomial 

polynomial regression model of degree two with offset. In blue, the fitted predictions of the 

negative binomial polynomial regression model of degree two with offset and a seasonality 

component 𝐟(𝐱) = 𝐜𝐨𝐬 (
𝟐𝜫𝒙

𝟏𝟐
) + 𝐬𝐢𝐧 (

𝟐𝜫𝒙

𝟏𝟐
). 
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Figure A- 8. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regressions without seasonality fit to the monthly UTIs caused by E. 
coli sensitive (top plots) and sensitive (bottom plots) to trimethoprim in elderly patients 
residing in LTCFs (left plots) and outside of LTCFs (right plots) in the West Midlands.  
The 95% confidence intervals are marked with dashed horizontal blue lines. 

Seasonality in Klebsiella UTI (in those aged 70 and over) 

The number of UTIs caused by Klebsiella was lower than the number of UTIs 

caused by E. coli, and particularly low in the LTCF population, which increased 

stochasticity and hindered the analysis of seasonality. 

There was no clear seasonal pattern observed in UTIs caused by Klebsiella in 

older people; neither in LTCF residents nor in patients that did not reside in 

LTCFs (see Figure A- 9 and Figure A- 10). Adding a f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
) 
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wave to the regression model only improved the model fit very slightly for 

Klebsiella UTIs in LTCF residents (from an AIC of 326.3 to 323.5) and slightly 

worsened the fit for individuals that resided outside of LTCFs (from an AIC of 

516.1 to 517.3). Figure A- 10 shows the correlograms for Klebsiella UTIs at lags 

of 0-12 months. The was a visible oscillation with a significant positive 

correlation at one month, a borderline significant negative correlation at four 

months and a significant negative correlation at five months for UTIs caused by 

Klebsiella outside LTCFs. The correlogram for UTIs caused by Klebsiella in 

LTCFs had a similar shape but none of the lags were significantly correlated. 

This could be due to the number of UTIs caused by Klebsiella in LTCFs being 

much smaller than outside LTCFs, thereby reducing statistical power.  
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Figure A- 9. Seasonality in the monthly rate of UTIs caused by Klebsiella in elderly 
patients residing in and outside of long-term care facilities in the West Midlands from 
April 2010 to March 2014.  In red, the fitted predictions of the negative binomial polynomial 

regression model of degree two with offset. In blue, the fitted predictions of the negative 

binomial polynomial regression model of degree two with offset and a seasonality component 

f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
). 

 

Figure A- 10. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regression without seasonality fit to the monthly UTIs caused by 
Klebsiella in elderly patients residing in LTCFs and outside LTCFs in the West Midlands.  
The 95% confidence intervals are marked with dashed horizontal blue lines. 
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Similar trends were observed in UTIs caused by Klebsiella that were 

susceptible and resistant to trimethoprim (see Figure A- 11 and Figure A- 12). A 

very similar oscillatory pattern was seen in the correlogram for UTIs caused by 

Klebsiella that were susceptible or resistant to trimethoprim outside LTCF 

residents and, to a lesser extent, in UTIs caused by Klebsiella that were 

susceptible to trimethoprim in LTCFs. There was no clear pattern in the 

correlogram for UTIs caused by Klebsiella that were resistant to trimethoprim in 

LTCFs.  
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Figure A- 11. Seasonality in the monthly rate of UTIs caused by Klebsiella susceptible 

and resistant to trimethoprim in elderly patients residing in and outside of long-term care 

facilities in the West Midlands. 
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Figure A- 12. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regressions without seasonality fit to the monthly UTIs caused by 
Klebsiella sensitive (top plots) and sensitive (bottom plots) to trimethoprim in elderly 
patients residing in LTCFs (left plots) and outside of LTCFs (right plots) in the West 
Midlands.  The 95% confidence intervals are marked with dashed horizontal blue lines. 

Similar patterns were observed when excluding the samples submitted by 

hospitals and focusing exclusively on the samples submitted by GPs (Figure A- 

13, Figure A- 14 and Figure A- 15).  
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Figure A- 13. Monthly rate of UTIs caused by E. coli and Klebsiella in older people 
residing in and outside of long-term care facilities in the West Midlands reported by GPs.  
In red, the fitted predictions of the negative binomial polynomial regression model of degree two 

with offset. 
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Figure A- 14. Seasonality in the monthly rate of UTIs caused by E. coli and Klebsiella in 
elderly patients residing in and outside of long-term care facilities in the West Midlands 
reported by GPs.  In red, the fitted predictions of the negative binomial polynomial regression 

model of degree two with offset. In blue, the fitted predictions of the negative binomial 

polynomial regression model of degree two with offset and a seasonality component 

f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
). 
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Figure A- 15. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regressions without seasonality fit to the monthly UTIs caused by E. 
coli (top plots) and Klebsiella (bottom plots) in elderly patients residing in LTCFs (left 
plots) and outside of LTCFs (right plots) in the West Midlands reported by GPs.  The 95% 

confidence intervals are marked with dashed horizontal blue lines. 

The monthly rate of UTIs caused by both E. coli and Klebsiella in older people 

in the West Midlands increased during the study period. There was no evidence 

for seasonality in E. coli UTIs; however, seasonality in UTIs caused by 

Klebsiella cannot be discarded due to the low monthly counts of these infections 

in the study population. 
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However, this could be due to biases in reporting. To this aim, these patterns 

were explored in a different dataset, the monthly trimethoprim and nitrofurantoin 

prescriptions in the West Midlands, which was only available for all ages. 

Trend in trimethoprim and nitrofurantoin prescriptions (all ages) 

A negative binomial model with offset and a second degree polynomial was fit 

to the monthly GP trimethoprim and nitrofurantoin prescriptions for all ages in 

the West Midlands, which were available for 44/48 months of this study. The 

offset in this regression was the all ages West Midlands population. Figure A- 

16 (below) shows that the rate of trimethoprim and nitrofurantoin prescriptions in 

the West Midlands increased by an average of: 

𝑦 = 0.0059 ∗ 1.0084𝑚𝑜𝑛𝑡ℎ ∗ 0.9999𝑚𝑜𝑛𝑡ℎ2
∗ 100,000 per 100,000 individuals in 

the population.  

This was determined using the equation of the regression model.  

For example, this meant than in the first month of the study where prescription 

data was reported (August 2010), there were:  

𝑦 = 0.0059 ∗ 1.00841 ∗ 0.999912
∗ 100,000 = 594.9 trimethoprim and 

nitrofurantoin prescriptions per 100,000 individuals in the population (~598.8, as 

fewer decimals are reported above than are estimated in the model). 
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Figure A- 16. Increasing trend in the monthly rate of GP trimethoprim and nitrofurantoin 
prescriptions for all ages in the West Midlands from August 2010 to March 2014.  In red, 

the fitted predictions of the negative binomial polynomial regression model of degree two with 

offset. 

Seasonality of trimethoprim and nitrofurantoin prescriptions (all ages) 

Adding a f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
) wave to the polynomial improved the fit of 

the regression model to the trimethoprim and nitrofurantoin prescription rates 

from an AIC of 808.8 to 781.1 (see Figure A- 17). The models with and without 

this seasonality term were significantly different as their confidence intervals did 

not overlap. Four waves were apparent with peaks in the autumn. Figure A- 18a 

and Figure A- 18b show the autocorrelation functions for the residuals of the 

regression models without and with seasonality (respectively) at lags of 0-12 

months. The correlogram in Figure A- 18a had an oscillatory shape consistent 

with seasonality. There was a borderline significant positive correlation at a lag 

of two months and a strongly significant positive correlation at a lag of 12 

months. There were also borderline significant negative correlations at four and 

six months and a significant negative correlation at five and seven months. After 

adding the seasonal term to the regression, the correlogram of the residual 

counts lost its oscillatory shape. There was a significant negative correlation at 

a lag of one month indicating large fluctuations and a borderline significant 

positive correlation at 12 months.  
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Figure A- 17. Seasonality in the monthly rate of GP trimethoprim and nitrofurantoin 
prescriptions for all ages in the West Midlands from August 2010 to March 2014. In red, 
the fitted predictions of the negative binomial polynomial regression model of degree 
two with offset.  In blue the fitted predictions of the negative binomial polynomial regression 

model of degree two with offset and a seasonality component f(x) = cos (
2𝛱𝑥

12
) + sin (

2𝛱𝑥

12
) . 

 

 

Figure A- 18. The autocorrelation function (ACF) for lags 0-12 of the residuals of the 
negative binomial regression without (5a) and with (5b) seasonality fit to the monthly GP 
trimethoprim and nitrofurantoin prescriptions for all ages in the West Midlands.  The 95% 

confidence intervals are marked with dashed horizontal blue lines. 
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Discussion 

AmSurv findings 

The analysis of the AmSurv surveillance data showed that the rate of UTIs 

caused by E. coli and Klebsiella in older people living in the West Midlands 

increased dramatically from April 2010 to March 2014. The most rapid increase 

was seen in the rate of UTIs caused by E. coli in LTCFs, which tripled during 

the study period. The slowest increase was seen in the rate of UTIs caused by 

Klebsiella outside LTCFs, which doubled during the study. UTIs caused by E. 

coli and Klebsiella increased sharply from 2010 to 2013; however, in the last 

year of the study, UTIs increased at a much slower rate or even decreased 

slightly. UTIs caused by E. coli in LTCFs per 100,000 elderly in the West 

Midlands decreased from 61.46 in March 2013 to 59.37 in March 2014.  

Whilst there is a clear lack of seasonality in UTIs caused by E. coli in older 

people during the study period, the oscillatory pattern observed for Klebsiella 

UTIs could be consistent with seasonality or with transmission. As, in addition, 

the monthly counts of Klebsiella UTI are low in this population, which decreased 

statistical power; the seasonality of Klebsiella UTIs cannot be discarded. The 

positive correlations at a lag of one month for Klebsiella UTIs in AmSurv are 

consistent with infectious disease transmission 311. These correlations are not 

apparent in the correlograms for E. coli UTI, in agreement with the literature, 

which suggests that E. coli is less readily transmissible than Klebsiella. 255 This 

could be due to E. coli being ubiquitously present in the human gut whilst 

Klebsiella is not as often present. 

The same trend and seasonality pattern was observed for UTIs caused by E. 

coli and Klebsiella that were resistant and susceptible to trimethoprim and for 

those UTIs that were reported only by GPs (vs. hospitals). 

HSCIC findings 
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The Health & Social Care Information Centre all-ages GP trimethoprim and 

nitrofurantoin prescriptions in the West Midlands also increased during the 

study period, albeit at a slower rate.  

These prescriptions were very markedly seasonal with yearly autumn peaks. 

Adding a seasonality component to the model significantly improved the model 

fit and the correlogram of the residuals of the negative binomial model that did 

not include seasonality showed an oscillatory shape consistent with seasonality 

which was not present in the model that included a seasonality component. 

There were no positive correlations at a lag of one month for trimethoprim and 

nitrofurantoin prescriptions. 

Comparison between the two datasets and possible explanations 

The increase in both datasets suggests there is a real increase in the rate of 

UTIs in older people in the West Midlands that was not driven by sampling. The 

clear autumn seasonality observed in the GP trimethoprim and nitrofurantoin 

prescriptions for all ages in the HSCIC dataset contrasts with the lack of clear 

seasonality in the UTIs caused by E. coli and (to a lesser extent) Klebsiella in 

older people in the AmSurv dataset. This suggests that: 

1) UTIs are not seasonal in older people but are seasonal in the overall 

population, or 

2) UTIs in older people are seasonal but the reporting of UTIs in AmSurv is 

not seasonal, or 

3) UTIs caused by E. coli (76% of all urine samples reported in this age 

group) are not seasonal; however, UTIs caused by other bacteria (e.g. 

Proteus) are seasonal, or 

4) Trimethoprim and nitrofurantoin are used to treat other infections which 

peak in the autumn, or 

5) There is a seasonal pattern in the reporting of UTIs to AmSurv with a 

trough in autumn, or 

6) A combination of the above 
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The first hypothesis would indicate that there are different dynamics of infection 

in the elderly population compared to younger age groups. Waning immunity in 

older people could make them more susceptible to these infections throughout 

the year. Older people are also less mobile and may not exhibit major lifestyle 

changes during the summer months. This contrasts with the younger age 

groups, which could exhibit greater behavioural changes according to the 

season (e.g. university and school terms). 

The second hypothesis could be explained by a combination of seasonality in 

the less severe infections (treated by first-line antibiotics such as trimethoprim 

and nitrofurantoin), which are not sampled as frequently and therefore not 

registered in the AmSurv database, and a lack of seasonality in more severe 

infections (treated with more severe antibiotics such as ciprofloxacin or 3GCs), 

which would be reported to AmSurv. 

The third hypothesis implies that UTIs caused by other organisms (e.g. UTIs 

caused by Proteus) are strongly seasonal. This hypothesis is not supported by 

the existing knowledge of UTIs and by the fact that most UTIs treated with 

trimethoprim and nitrofurantoin are caused by E. coli. 

The fourth hypothesis is improbable because, although trimethoprim 

prescription is also indicated for acute and chronic bronchitis and pneumocystis 

pneumonia312, which are known to be seasonal, these are conditions that 

usually peak in the winter months.313 In addition, trimethoprim is primarily 

prescribed for UTI. Nitrofurantoin is not indicated for other infections. 

Finally, the AmSurv dataset included only urines that were reported to 

laboratories for antibiotic susceptibility testing. However, other authors have 

proposed that large differences in reporting during the seasons are unlikely 224.  

The two most plausible explanations are, therefore, the first two hypotheses. 
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Conclusion 

Understanding the differences in seasonality observed requires the analysis of 

primary care electronic health records such as The Health Improvement 

Network (THIN) or the Clinical Practice Research Datalink (CPRD). 
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Appendix Chapter 6 PART B 

Read codes for UTI 

'K190300', 'K190400', '1AG..00', 'K190311', 'K190.11', '14D7.00', 'L166z11', 

'L166800', 'K190.00', 'K190500', 'K190z00', 'K190000', 'K190100', 'K190200', 

'K190600', 'K190X00', 'Q40y100', '1J4..00', '46U3.00', '4617.00', 'K190011', 

'L166600', 

'K15..00', 'K150.00', 'K15z.00', 'K152000', 'K154.00', 'K154000', 'K154300', 

'K154400', 'K154600', 'K154800', 'K154z00', 'K15y.00', 'K15y200', 'K15y300', 

'K15yz00', 'A32y300', 'K153.11', 'K151.00', 'K152y00', 'K152.00', 'K152z00', 

'K155.00', '14D4.00', 

'L166.11', 'L166500', 'K101.00', 'K101000', 'K101100', 'K101200', 'K101300', 

'K101400', 'K101500', 'K101z00', 'K106.00', 'K100.00', 'K100000', 'K100100', 

'K100200', 'K100300', 'K100400', 'K100500', 'K100600', 'K100z00', 'K10y000', 

'A160200', 'K104.00',  

'K10..00', 'K102.00', 'K102000', 'K102100', 'K102200', 'K102z00', 'K103.00', 

'K105.00', 'K10y.00', 'K10y000', 'K10y100', 'K10y200', 'K10y300', 'K10y400', 

'K10yz00','K10z.00', 'K10..11'. 
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Appendix Chapter 7 

The weekly incidence of resistant urine E. coli samples submitted to AmSurv for 

each LTCF by incidence quartile is shown in Figure A- 19, Figure A- 20, Figure 

A- 21 and Figure A- 22. 
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Figure A- 19. The weekly incidence of resistant urine E. coli samples submitted to 
AmSurv for each of the LTCFs in the highest incidence quartile.  The LTCF selected for 

simulation is highlighted in grey. 
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Figure A- 20. The weekly incidence of resistant urine E. coli samples submitted to 
AmSurv for each of the LTCFs in the second highest incidence quartile.  The LTCF 

selected for simulation is highlighted in grey. 
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Figure A- 21. The weekly incidence of resistant urine E. coli samples submitted to 
AmSurv for each of the LTCFs in the second lowest incidence quartile.  The LTCF 

selected for simulation is highlighted in grey. 
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Figure A- 22. The weekly incidence of resistant urine E. coli samples submitted to 
AmSurv for each of the LTCFs in the lowest incidence quartile.  The LTCF selected for 

simulation is highlighted in grey. 
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The number of entries and exits to each of the LTCF compartments are shown 

in Figure A- 23, Figure A- 24, Figure A- 25 and Figure A- 26. The deterministic 

model predicted every week 0.17 individuals were discharged from the 30-bed 

LTCF to hospital colonised by E. coli resistant to trimethoprim. Of all individuals 

discharged from the LTCF to hospital, 49.52% were colonised with resistant 

strains (vs. susceptible strains). Every week, 0.096 individuals were admitted 

into the LTCF from hospital. Of all individuals admitted into the LTCF from 

hospital, 37.92% were colonised with resistant strains (vs. susceptible strains).  

The median number of patients colonised by E. coli resistant to trimethoprim 

admitted to hospital to the LTCF and discharged to the LTCF from hospital 

weekly in the stochastic model were both zero (95th percentiles= 0-2 or 0-1 for 

both, depending on the week of the study). The mean number of admissions 

per week to the LTCF from hospital ranged from 0.19 to 0.31 and the mean 

number of discharges from the LTCF to hospital ranged from 0.29 to 0.39).  
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Figure A- 23. Number of deaths from each of the four compartments of the model by 

week of the study period.   𝑈𝑠 were individuals untreated with trimethoprim colonised with E. 

coli susceptible to trimethoprim, 𝑈𝑟  were individuals untreated with trimethoprim colonised with 

E. coli resistant to trimethoprim, 𝑇𝑠 were individuals treated with trimethoprim colonised with E. 

coli susceptible to trimethoprim and 𝑇𝑟  were individuals treated with trimethoprim colonised with 

E. coli resistant to trimethoprim. The coloured lines represent the output of 1,000 stochastic 

simulations. The black line represents the output from the deterministic model. 
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Figure A- 24. Number of individuals discharged from the LTCF to hospital from each of 

the four compartments in the model by week of the study period.   𝑈𝑠 were individuals 

untreated with trimethoprim colonised with E. coli susceptible to trimethoprim, 𝑈𝑟  were 

individuals untreated with trimethoprim colonised with E. coli resistant to trimethoprim, 𝑇𝑠 were 

individuals treated with trimethoprim colonised with E. coli susceptible to trimethoprim and 𝑇𝑟  

were individuals treated with trimethoprim colonised with E. coli resistant to trimethoprim. The 

coloured lines represent the output of 1,000 stochastic simulations. The black line represents 

the output from the deterministic model. 
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Figure A- 25. Number of individuals admitted to the LTCF from the community into each 

of the four model compartments by week of the study period.   𝑈𝑠 were individuals 

untreated with trimethoprim colonised with E. coli susceptible to trimethoprim, 𝑈𝑟  were 

individuals untreated with trimethoprim colonised with E. coli resistant to trimethoprim, 𝑇𝑠 were 

individuals treated with trimethoprim colonised with E. coli susceptible to trimethoprim and 𝑇𝑟  

were individuals treated with trimethoprim colonised with E. coli resistant to trimethoprim. The 

coloured lines represent the output of 1,000 stochastic simulations. The black line represents 

the output from the deterministic model. 
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Figure A- 26. Number of individuals admitted to the LTCF from hosital into each of the 

four model compartments by week of the study period.   𝑈𝑠 were individuals untreated with 

trimethoprim colonised with E. coli susceptible to trimethoprim, 𝑈𝑟  were individuals untreated 

with trimethoprim colonised with E. coli resistant to trimethoprim, 𝑇𝑠 were individuals treated with 

trimethoprim colonised with E. coli susceptible to trimethoprim and 𝑇𝑟  were individuals treated 

with trimethoprim colonised with E. coli resistant to trimethoprim. The coloured lines represent 

the output of 1,000 stochastic simulations. The black line represents the output from the 

deterministic model. 

 


