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Abstract

Diffusion-weighted MRI (DW-MRI) is a powerful, non-invasive imaging tech-

nique that allows us to infer the structure of biological tissue. It is particularly

well suited to the brain, and is used by clinicians and researchers studying its

structure in health and disease. High quality data is required to accurately

characterise tissue structure with DW-MRI. Obtaining such data requires the

careful optimisation of the image acquisition and processing pipeline, in order

to maximise image quality and minimise artefacts.

This thesis extends an existing MRI simulator to create a simulation sys-

tem capable of producing realistic DW-MR data, with artefacts, and applies

it to improve the acquisition and processing of such data. The simulator is

applied in three main ways. Firstly, a novel framework for evaluating post-

processing techniques is proposed and applied to assess commonly used strate-

gies for the correction of motion, eddy-current and susceptibility artefacts.

Secondly, it is used to explore the often overlooked susceptibility-movement

interaction. It is demonstrated that this adversely impacts analysis of DW-

MRI data, and a simple modification to the acquisition scheme is suggested to

mitigate its impact. Finally, the simulation is applied to develop a new tool to

perform automatic quality control. Simulated data is used to train a classifier

to detect movement artefacts in data, with performance approaching that of

a classifier trained on real data whilst requiring much less manually-labelled

training data.

It is hoped that both the findings in this thesis and the simulation tool

itself will benefit the DW-MRI community. To this end, the tool is made freely
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available online to aid the development and validation of methods for acquiring

and processing DW-MRI data.
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Chapter 1

Introduction

1.1 Motivation

Humans have long sought to understand the functioning of the brain, in both

health and disease. The earliest known published study of the brain dates

back to Egypt in 1700BC. It records a number of surgical investigations of the

damaged brain and describes how these injuries affected patients’ abilities to

walk, talk and see. In the 1890s Santiago Ramón y Cajal laid the foundations

for modern neuroscience, enabling us to provide mechanistic explanations for

the ancient Egyptians’ observations. He used staining to produce intricate

drawings of cells in the brain and proposed the neuron doctrine: the theory

that the nervous system is made up of discrete individual cells. These neurons

form the building blocks of the nervous system; information is transmitted

along their axons (white matter) and processed by their cell bodies (mostly

concentrated in regions referred to as grey matter). Understanding the struc-

ture and organisation of neurons and supporting cells provides insight into the

brain’s function.

Historically, our understanding of the structural organisation of the brain

has been furthered by invasive procedures such as tracer studies and analysis

of post-mortem tissue samples. Recently, diffusion-weighted magnetic reso-

nance imaging (DW-MRI) has emerged as our best candidate for non-invasively

studying the brain’s building blocks. The technique measures the patterns of



18 Chapter 1. Introduction

water diffusion in biological tissue; since tissue restricts diffusion and shapes

these patterns the measurements can be used to infer tissue structure. The

technique is well suited to probing the structure of tissue over the order of

a micrometre,1 the relevant length-scale for exploring neurons. DW-MRI can

provide information about the location, orientation and integrity of these cells;

estimates of brain connectivity can be obtained by tracking white-matter fibres

using information about their local orientation.

High-quality data is required to accurately characterise microstructure

with DW-MRI. Some features of high-quality data include sufficient spatial

resolution for the study being performed, sufficiently detailed measurements

of the diffusion patterns, and an absence of image artefacts. Obtaining such

data relies on the careful optimisation of the acquisition, given constraints such

as available scan-time, whilst minimising artefacts, followed by the considered

choice of processing pipelines that are designed to further remove any resid-

ual artefacts and ready the data for analysis. The choices at both stages are

numerous and the process of MR image acquisition is sophisticated, meaning

issues in both acquisition and processing can be difficult to predict, or even

detect; it can also be challenging to understand the cause of problems that

do arise. This problem is becoming more pronounced as recent advances in

scanner technology and data acquisition provide data of unprecedented spatial

and angular resolution. These datasets offer the potential for very rich char-

acterisations of microstructure, but their acquisition presents new challenges

and they require increasingly sophisticated processing strategies.

It is important that we are able to fully understand and carefully test data

acquisition and processing pipelines, so that we may maximise data quality and

understand, detect and correct problems. One of the most powerful tools for

the careful testing and validation of a system is simulation. A simulator could

enable us to better understand problems that arise in DW-MR datasets, as

well as support the testing and development of methods for dealing with these

11 micrometre (1 µm) is one millionth of a metre. For reference, the width of a human
hair ranges from 10-200 µm.
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problems. Whilst some simulators exist in DW-MR, there are none that model

the physics of MR acquisition and produce DW-MR images of the brain with

sufficient realism to enable the testing and development of these methods.

1.2 Problem statement
There is a need for a DW-MRI simulator that is sufficiently realistic to assist

the testing and development of methods for the acquisition and processing of

DW-MR datasets.

1.3 Project aims and scope
The aims of this thesis are twofold:

1. To develop a DW-MR simulator that is sufficiently realistic to enable the

testing and development of acquisition and processing strategies.

2. To apply the simulator to improve DW-MR acquisition and processing.

There are a huge number of elements of the real-world scanning process that

can be incorporated into a simulator, governing its degree of ‘realism’. In this

thesis the choice of features implemented (aim 1) was governed by the degree

to which they are useful for assessing and validating acquisition and processing

techniques (aim 2).

1.4 Thesis overview and contributions
Most of the contributions in this PhD have occurred as developments to the

simulator (meeting aim 1) accompanied by an application of the simulator

(meeting aim 2) that required this development. As a result the thesis is best

served by a chronological account of the work carried out during this PhD.

In chapter 2, I summarise the relevant background theory of MRI and

DW-MRI, and undertake a critical analysis of the work to date in developing

simulators for DW-MR.

Chapters 3 and 4 outline work that enables assessment of methods for deal-

ing with two of the most commonly encountered problems in DW-MR: subject
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motion and eddy-currents. Chapter 3 describes the simulator development

necessary to achieve this. I discuss the decision to produce the DW-MR simu-

lator by extending the open-source POSSUM fMRI simulator, a key strength

of which is its ability to simulate subject movement. I describe the imple-

mentation of two features to enable assessment of motion and eddy-current

techniques. The first is realistic DW-MR contrast — particularly important

because the complex contrast in DW-MR datasets is one of the reasons their

processing is so challenging. The second is the presence of eddy-current arte-

facts. This chapter also proposes a novel method for evaluation of image

processing techniques; motivated by limitations found in existing methods in

the literature. It involves the comparison of displacement fields produced by

processing techniques to the ground-truth fields produced by the simulator. In

chapter 4, the simulation framework is applied to assessing processing tech-

niques for correcting motion and eddy-currents. Data with high sensitisation

to diffusion (summarised by the b-value) is simulated, because such data is

being acquired with increasing frequency. The study finds that many of the

most frequently used processing methods are unable to deal with such data. It

also shows that some of the techniques for evaluating methods that are used

in the literature can give misleading results, demonstrating the strength of the

evaluation framework proposed in chapter 3.

Chapters 5 and 6 give an account of work done to investigate the sus-

ceptibility artefact in diffusion MRI. One of the limitations of the framework

is its inability to simulate the spin-echo pulse sequence, which is vital if the

susceptibility artefact is to be simulated faithfully. Chapter 5 describes the

implementation of spin-echo in POSSUM, and its validation. In chapter 6 I

compare the three classes of processing technique used to assess the susceptibil-

ity artefact. I further apply the framework to explore the interaction between

susceptibility and movement, something that is rarely addressed during image

acquisition and processing, and difficult to study without simulation. I demon-

strate this interaction affects analysis of DW-MR data, suggesting the need for
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further methods development in this area, and suggest a simple adaptation to

acquisition that could help mitigate the artefact.

In chapter 7 I demonstrate the application of the simulator to the de-

velopment of new tools. A classifier is built to identify movement artefacts

in DW-MR data. Rather than train the classifier on real data, which re-

quires time-consuming manual labelling of a training set, it is trained on sim-

ulated data which comes ‘ready-labelled’. I demonstrate the performance on

this simulation-trained classifier is close to that of a classifier trained on real

data, and suggest the simulator could be useful in other scenarios where ma-

chine learning can provide good results but training data is expensive or time-

consuming to acquire.





Chapter 2

Background

The aim of my work is to develop and apply a simulation system for DW-MR,

capable of producing realistic datasets along with their artefacts. This section

will give a concise introduction to the relevant background in MRI (Section

2.1), and its extension to DW-MR (Section 2.2), with a view to understanding

the artefacts that occur in DW-MR (Section 2.3). Finally I review existing

simulation systems (Section 2.4), focusing on the current state-of-the-art and

a discussion of its limitations.

2.1 Magnetic resonance imaging
In this section we provide a discussion of the main steps involved in the forma-

tion of an MR image. MRI is a non-invasive imaging technique that combines

the nuclear magnetic resonance (NMR) phenomena first observed by Bloch and

Purcell in 1946 [1, 2] and spatial encoding principles developed by Lauterbur in

1973 [3]. MR images are formed by recording the radiofrequency (RF) signal

produced by a sample while a sequence of magnetic fields and RF pulses are

applied across it. We begin with a classical view of protons in a magnetic field

(Section 2.1.1), then discuss how the magnetization of these protons is manipu-

lated by applied RF pulses in order to produce a signal (Section 2.1.2). We then

discuss how this signal is encoded with spatial information then transformed

to produce an image (Section 2.1.3). Finally we discuss some practicalities

of image formation and the different types of contrast that may be achieved
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(Section 2.1.4).

2.1.1 Protons in a magnetic field

The nuclear magnetic moment, ~µ, is a property of nuclei related to the spin
~J , or angular momentum, of their protons and neutrons. Whilst these prop-

erties arise from a quantum mechanical treatment of the nuclei, we deal with

the collective behaviour of large numbers of nuclei and so the principles we

will discuss can be accurately described using a classical model. In MRI we

are generally concerned with the manipulation and detection of the magnetic

moments of hydrogen nuclei (single protons).

The magnetic moment is a vector quantity and thus needs to be specified

by both its magnitude and direction. The magnitude is fixed, and can be

determined from the relation

~µ= γ ~J (2.1)

where γ is the gyromagnetic ratio, a physical constant that depends on the

nucleus. Under normal conditions the direction of ~µ is completely random

and a population of hydrogen nuclei has no net magnetic moment. In MRI

we create a net moment through the application of an external magnetic field,
~B0, which we will define, according to convention, as pointing along the z-axis.

This field causes the the z-component of ~µ to take on a fixed magnitude and

align either parallel or anti-parallel with ẑ [4]. The transverse (xy) components

of each nuclei’s magnetic moment experience a torque from the external field.

The torque causes this component to precess about the z-axis with a frequency

given by the Larmor equation:

~ω0 = γ ~B0 (2.2)

where γ is 42.58 MHz T−1 for hydrogen. The net magnetic moment of this
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sample is the vector sum of the n individual moments:

~M =
n∑
i=1

~µi (2.3)

The transverse components of each nuclei’s magnetic moment precess at the

same frequency but with random initial phase, so the net transverse compo-

nent of ~M is zero. These parallel and anti-parallel states differ in energy,

causing slightly more nuclei to occupy the lower energy parallel state than

anti-parallel.1 This means ~M has a non-zero value that points fully along

the positive z-axis. From herein we discuss MR signal formation in terms of

manipulation and detection of this net magnetization.

2.1.2 Detection of the magnetization

The formation of a non-zero ~M is not sufficient to form a detectable signal.
~M must be tipped into a transverse plane in order to set it into precession. It

is this precessing magnetization that, according to Faraday’s law, will induce

electric currents in nearby coils, which constitutes the signal that we measure.

The tipping of ~M is achieved by the application of a magnetic field os-

cillating in the RF range, known as an RF pulse.2 The RF pulse takes the

following form:

~B1(t) =Be
1(t)

[
cos

(
ωrf t

)
~i− sin

(
ωrf t

)
~j
]

(2.4)

where Be
1 is known as the envelope function, and ωrf is the oscillation fre-

quency. Be
1 is typically much smaller than B0, on the order of µT.

The action of the pulse can be understood using the Bloch equations [5],

which describe the temporal behaviour of magnetisation in an applied external
1The difference in population of the two states is related to their energy difference.

This can be calculated using the Boltzman relationship and yields the expression for the

net magnetisation for a sample of protons: γ2h̄2B0n

4KT where h̄ is Planck’s constant, K is
Boltzmann’s constant and T is the temperature of the sample.

2As we will soon see, these pulses need to have frequencies close to the Larmor frequency
in order to manipulate ~M . MR magnets tend to be in the range 1.5-13 T, which places ω0
in the range 60-550 MHz, which corresponds to radio frequencies.
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field. Here we write them in an MRI specific form:

d ~M

dt
= γ ~M × ~B−Mx~i+My~j

T2
−

(
Mz−M0

z

)
~k

T1
(2.5)

where T1 and T2 are relaxation constants arising from spin-lattice and spin-spin

interactions respectively, and M0
z is the value of Mz at thermal equilibrium.

During excitation the relaxation terms can be neglected as the RF pulse du-

ration is much less than T1 and T2: typical RF pulses are on the order of

1 ms, whilst T1 ∼1000 ms and T2 ∼100 ms for biological tissue [6]. The Bloch

equation can then be rewritten in a rotating frame of reference [7, Chapter 3.2]:

∂ ~Mrot
dt

= γ ~Mrot× ~Beff (2.6)

where ~Beff is the effective magnetic field experienced in this frame. If the

frame is rotating at the Larmor frequency, ω0, and the RF field is applied with

ωrf = ω0 , then we find ~Beff =Be
1 (t)~i. The solution to this gives:

Mx = 0 (2.7)

My =M0
z sin

(∫ t

0
γBe

1 (t)dt
)

(2.8)

Mz =M0
z cos

(∫ t

0
γBe

1 (t)dt
)

(2.9)

That is, in the rotating frame the magnetization precesses about the x-axis.

By controlling the form of B1 and the time it is applied for, we can control the

angle of this rotation. Often we select these to achieve a 90° flip. In the lab

frame, this flip is observed as a spiralling descent — see Fig 2.1.

2.1.3 Spatial encoding

After the RF pulse, ~M is precessing in a transverse plane, or ‘excited’, pro-

ducing a measurable signal in the RF receive coils. In order to proceed from

NMR to MRI, we need to spatially localise this signal to produce an image.
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(a) Rotating frame (b) Lab frame

Figure 2.1: Motion of ~M during an 90° pulse in the rotating and lab frames.

This is typically done in a two-step process: the selective excitation of a 2D

slab of protons, known as a slice, followed by the spatial encoding of the signal

within that slice.

Slice selection is achieved by applying a magnetic field gradient, ~G, during

the RF pulse. In MRI, gradients are magnetic fields with a z-component3 that

varies linearly along the direction of ~G. This causes the precessing frequency

of the sample to vary spatially:

ω (~r) = γ
(
B0 + ~G ·~r

)
(2.10)

If we assume that ~G varies along z, the sample’s Larmor frequency varies as

ω(z). If we could apply an RF pulse that only contained frequencies in the

interval ω(z0± δz), we only excite protons in a slice of thickness 2δz, centred

about z0. This can be achieved by applying an RF pulse with an envelope

function equal to a sinc function with appropriately chosen parameters; the

frequency content of such a function, obtained from its Fourier transform, has

the shape of a boxcar with uniform amplitude over the desired range, leading

to the equal excitation of all protons in this frequency range.4

3The gradient field must also contain components in the x- and y-directions, in order to
satisfy Gauss’ law for magnetism, ∇·B = 0. However these are small compared to B0 and
can usually be ignored.

4To create an RF pulse with an envelope function with the exact form of a sinc would take
infinite time. In practice, more complicated envelope functions designed to give reasonable
approximations to the boxcar with shorter RF pulses are used, with the result that the
excitation profile is not uniform across the slice.
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It is now necessary to spatially encode the signal produced by the excited

protons in this slice so that we may form an image. Conceptually, it is easiest

to think in terms of a net transverse magnetization within a small volume

element at each location ~r in the slice:

~Mxy (~r) =
∫
~µxy (~r)d3~r (2.11)

From equation 2.10, we see that we can induce spatially varying phase in ~Mxy:

φ(~r, t) =
∫
−γ

(
B0 + ~G ·~r

)
dt (2.12)

where the minus sign accounts for the fact that the precession occurs in a

clockwise direction. The signal we measure in our receiver coil is proportional

to the sum of the contributions of the magnetisation at each location which we

can express as an integral [7, Section 3.4]. Adopting a complex representation

for ~Mxy we have:

S(t) =
∫
Mxy(~r)exp

(
−iγ

(
B0t+

∫
~G ·~rdt

))
d~r (2.13)

where we have neglected relaxation terms and assumed a homogeneous recep-

tion field over the sample. If we define the reciprocal space vector:

~k = γ
∫
~Gdt (2.14)

then we can rewrite Equation 2.13, leaving out the constant phase shift induced

by the main field B0, to find a Fourier relationship between the magnetization

and the measured signal

S(~k) =
∫
Mxy(~r)exp

(
−i~k ·~r

)
d~r (2.15)

We can now see that if we record our signal in ‘k-space’, we can obtain Mxy
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RF

Slice (z)

Phase (y)

Frequency (x)

Signal

(a)

K
FE

K
PE

(b)

Figure 2.2: The gradient-echo pulse sequence. After excitation, the phase- and
frequency-encoding gradients are used to navigate to the start of the k-space line,
then frequency encoding and signal readout begins. Fig (a) shows the pulse se-
quence diagram and (b) shows the corresponding trajectory through k-space for the
acquisition of two successive lines.

from a Fourier inversion of this signal:

Mxy(~r) = F−1
(
S(~k)

)
(2.16)

Imaging now becomes a matter of using carefully controlled sequences of ap-

plied RF pulses and gradients to sample S(~k).

A simple method of sampling k-space involves acquiring data one line at a

time. Two gradients are used, called frequency encoding (GFE) and phase en-

coding (GPE), which are chosen here to lie along the x and y axes respectively.

GPE is applied for a time τ then GFE is applied continuously for a time t whilst

the signal is recorded at periodic intervals. This process is repeated for each

line, and illustrated graphically in Fig 2.2. This type of sequence is called a

gradient-echo. The traversal to the far left of k-space in Figure 2.2 corresponds

to a gradient-induced dephasing of the spins, and the subsequent movement

towards the right in k-space is a gradient-induced rephasing, such that the

spins are maximally rephased (and thus the signal is largest) at KFE = 0, the

point known as the echo. The signal is given by
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S(kFE,kPE) =
∫∫

Mxy (x,y) · exp(−ixkFE) · exp(−iykPE)dxdy (2.17)

with kFE = γ
∫
GFE dt and kPE = γ

∫
GPE dτ . The two orthogonal components

of the transverse magnetisation are usually detected in quadrature and repre-

sented as a magnitude and a phase image.

2.1.4 Image formation and contrast

We have seen that the formation of an image of Mxy involves the Fourier

transform of a signal acquired in k-space. Until now we have implicitly as-

sumed our k-space signal is continuous and extends to infinity, but in practice

digitising the signal requires that we sample it discretely, and time require-

ments constrain the extent of the sampled k-space region. We can understand

the effect of this sampling by considering the Fourier transform of an infinite

signal multiplied by two functions; a comb-function to represent the discrete

sampling and a boxcar that represents truncation. Working in one-dimension

to simplify notation, we have:

M̂xy(x) = F−1 (S(kx)C(kx)B(kx)) (2.18)

where M̂xy is the discrete approximation of the continuous function, Mxy, the

comb-function is defined as:

C(kx) =
∞∑

n=−∞
δ(n∆k) (2.19)

where δ is the Dirac delta function and the boxcar:

B(kx) =


1 |kx| ≤K/2

0 |kx|>K/2
(2.20)

Using the convolution theorem and substituting for Eq 2.16, we find that:



2.1. Magnetic resonance imaging 31

M̂xy(x) =Mxy(x)∗F−1 (C(kx))∗F−1 (B(kx))) (2.21)

That is, our image is the convolution of a perfect, continuous image and the

Fourier inversions of the comb and boxcar functions. The Fourier transform

of a comb with spacing ∆k is itself a comb with spacing L = 1/∆k and the

transform of the boxcar is K sinc(πKx). Fig 2.3 depicts the combined effect

of these two convolutions on the reconstructed image, M̂xy(x).

Discrete, finite sampling can introduce two artefacts into the final image.

Consider the size of the object being imaged along a given dimension, W . If

this is larger than the period of repeat caused by finite sampling, L, multiple

copies of the image will overlap in the final image, known as aliasing. The

condition for this not to occur in the image is known as the Nyquist criterion:

L >W or ∆k < 1
W

(2.22)

and places a lower bound on the sampling frequency in k-space. The second

artefact is the blurring introduced by the finite sampling. As K decreases

(corresponding to sampling less of the high frequency components on the edges

of k-space) the sinc function broadens and the image resolution is decreased.

Until now we have focused on forming an image of Mxy. In practice, Mxy

is a function of proton density and the relaxation constants T1 and T2. By

using different sequences of RF pulses and gradients, it is possible to sensitise

Mxy to produce various image contrasts. This versatility is a key advantage

of MRI when compared to other imaging technologies, such as CT. We can

understand how signal contrast may be influenced by deriving the signal in

a single voxel for the case of the gradient-echo sequence discussed earlier and

shown in Fig 2.2. Rewriting the Bloch equations (Eq. 2.5) in transverse and
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L

W

M̂xy(x)

L

Mxy(x)

L

Figure 2.3: Image formation in the case of discrete, finite sampling. The actual
image, Mxy is convolved with a sampling function to produce periodic repeats of
the image. Further convolution with a sinc function leads to blurring. One of the
image repeats is selected to produce the reconstructed image, M̂xy.
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longitudinal form:

dMxy

dt
=−Mxy

T ∗2
(2.23)

dMz

dt
=−M

0
z −Mz

T1
(2.24)

where we have expressed the equations a frame rotating at the Larmor fre-

quency, and replaced T2 by T ∗2 . T ∗2 is an adjusted relaxation constant related

to T2 by the expression 1/T ∗2 = 1/T2 + 1/T ′2, where T ′2 accounts for dephasing

caused by field inhomogeneities and accelerates the rate of transverse signal

decay. These equations have the solutions:

Mxy(t) =Mxy(0)e−t/T
∗
2 (2.25)

Mz(t) =M0
z

(
1− e−t/T1

)
+Mz(0)e−t/T1 (2.26)

where Mz(0) and Mxy(0) are the initial conditions and M0
z is the magnetisation

at equilibrium. After the first 90° RF of the gradient-echo sequence, we have

Mz(0) = 0, Mxy(0) = M0
z . If the spacing between RF pulses is TR then just

before the second RF pulse the magnetisation is:

Mxy(t= TR) =M0
z e
−TR/T

∗
2 (2.27)

Mz(t= TR) =M0
z

(
1− e−TR/T1

)
(2.28)

Assuming that TR � T ∗2 so that the transverse magnetisation has decayed

completely before the next RF pulse is applied, we can solve Eqs 2.25 and 2.26

with new initial conditions Mz(0) = 0, Mxy(0) =M0
z

(
1− e−TR/T1

)
to find the

signal at 2TR, just before the third RF pulse:

Mxy(t= 2TR) =M0
z

(
1− e−TR/T1

)
e−TR/T

∗
2 (2.29)

Mz(t= 2TR) =M0
z

(
1− e−TR/T1

)
(2.30)

A pattern emerges: after the initial RF excitation, every subsequent RF pulse
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leads to a total available transverse magnetisation of M0
z

(
1− e−TR/T1

)
. In the

gradient-echo experiment the signal peak for each line occurs as the centre of

k-space is crossed at t= TE , and at this point we have:

Mxy(t= TE) =M0
z

(
1− e−TR/T1

)
e−TE/T

∗
2 (2.31)

Finally, noting that the magnetisation at equilibrium, M0
z is proportional to

the proton density ρ we have:

Mxy(t= TE)∝ ρ
(
1− e−TR/T1

)
e−TE/T

∗
2 (2.32)

We can now see that though careful choice of pulse-sequence timings TR and

TE we can sensitise the available signal to different underlying tissue features.

For large values of TR, (1−e−TR/T1)→ 1 and we lose sensitivity to differences

in T1 values, and for small values of TE we have e−TE/T
∗
2 → 1 and sensitivity to

T2 differences is lost. Images with long TR and long TE are commonly referred

to as T2-weighted, and images with short TE and short TR are known as T1-

weighted. Image contrast is always influenced by ρ, but sensitivity to density

can be maximised with large values of TR and small values of TE . Fig 2.4

displays how these parameters influence images of the brain.

2.2 Diffusion MRI

We have seen how images in MRI are formed through the excitation of signal

and its ensuing spatial localisation, and further explored how careful choices of

the pulse sequences can produce images sensitive to contrast in ρ, T1 and T2.

In this section we describe how the MR acquisition process can be extended

to produce contrast that depends on the local diffusion of water molecules,

once again with an view towards understanding the artefacts that arise in this

technique. We begin with a discussion of the phenomenon of diffusion (Sec-

tion 2.2.1), then discuss how MRI can be used to measure diffusion (2.2.2).

Finally we touch on models used to infer microstructure from these measure-
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Figure 2.4: Image contrast as a function of TR and TE. The top-right image would
be referred to as T1-weighted, and the bottom left T2-weighted. Figure reproduced
with permission from Elsevier.

ments in Section 2.2.3.

2.2.1 Diffusion

Diffusion is the transport of mass without requiring bulk motion, thus differen-

tiating it from other forms of mass transport such as convection and advection.

We can derive the diffusion equation by taking a phenomenological approach

first used by Fick, though it is also possible to arrive at the same result by

taking a microscopic view of diffusion, as Einstein did in 1905 [8].

We start with Fick’s first law, which relates the flux of a substance, ~J , to

its concentration, φ. In the biological systems we typically study with diffusion

MRI we consider self-diffusion, that is the diffusion of water in water. Thus

the concept of concentration becomes poorly defined, and we replace it with

P (~r0, ~r1, t)5, the probability that a particle will move from position ~r0 to ~r1 at

5It isn’t obvious we can replace concentration with this quantity. See [9] for an explana-
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time t. Fick’s law is thus given by:

~J =−D∇P (2.33)

where D is the diffusion coefficient, a property of the diffusing particles, the

substance they are in, and the temperature. We can progress further by im-

posing conservation of mass, assuming there are no sinks or sources of our

substance in the region we are considering:

∇· ~J + ∂P

∂t
= 0 (2.34)

Combining the two yields the diffusion equation:

∂P

∂t
=∇· (D∇P ) (2.35)

We can solve this equation for a given set of boundary conditions and initial

conditions to find P (~r0, ~r1, t), which characterises diffusion for our system. It

is important to understand this equation does not model the behaviour of any

single particle. Our system is comprised of many particles undergoing random

walks, and P (~r0, ~r1, t) describes the net behaviour of this ensemble of particles.

The diffusion of molecules is influenced by their environment. For example

in the brain the diffusion of water within a long, cylindrical axon is impeded

perpendicular to the axon’s main axis, and much freer along this axis — this

is illustrated in Fig 2.5. This means local structure influences the diffusion

propagator, P . Moseley et. al. were the first to demonstrate it is possible to

measure this anisotropy in the nervous system using MRI [10, 11]. The aim of

DW-MR is to acquire a series of images that allow us make inferences about

the local structure.

tion.
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Figure 2.5: Diffusion in a cylindrical geometry. Figure A shows a distribution of
spins inside a cylinder at a time t0, from three different views. Figure B shows the
trajectory of a single spin from t0 to a time t1. The particle is freer to diffuse along
the axis of the cylinder (here z) than it is perpendicular to the axis (the x−y plane),
which will be reflected in the diffusion propagator P.

2.2.2 Measuring diffusion with MRI

To illustrate the extension of MRI to measuring diffusion we need to introduce

three new concepts. We will first cover diffusion preparation gradients and

the spin-echo (SE), which combine to form one of the most popular diffusion

encoding sequences, the pulsed-gradient spin-echo (PGSE) [12]. We then dis-

cuss a fast imaging technique, echo-planar imaging (EPI), which is crucial for

DW-MR.

2.2.2.1 Diffusion preparation
The MR signal can be sensitised to reflect the diffusion of its constituent

protons by the application of a set of two or more gradients. As we have seen

in Section 2.1.3, if we apply a gradient in a given direction for a time period

δ, we introduce a phase shift into each spin:

φ=
∫ δ

0
γ
(
B0 + ~G ·~r(t)

)
dt (2.36)

If, at time ∆, we apply a second gradient along the same direction and length

as the first but with the opposite sign then the total phase of each spin is:
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b=0 b=1300 b=1700 b=3500b=300

Figure 2.6: Variation in contrast with b-value, for a fixed direction of diffusion-
weighting. Units are s mm−2. Intensities scales of each image have been individually
adjusted; it is contrast rather than absolute intensity that is relevant here.

φ= γ

(∫ δ

0
~G ·~r(t)−

∫ ∆+δ

∆
~G ·~r(t)

)
dt (2.37)

If the spin moves parallel to the direction of the applied gradients in this time

then it will end up with a non-zero phase. A population of spins diffusing

along the direction of the gradients will end up with a distribution of phases.

This causes a reduction in ~Mxy in a local region, and if this is done after

an excitation pulse (commonly chosen to be 90° in DW-MR) but before the

imaging is performed it will cause a reduction in the measured signal from

this region. The more that spins are free to diffuse along the direction of the

gradient, the broader the distribution of spins and the greater the reduction

in measured signal. Stejskal showed that in the case of free diffusion, the MR

signal S can be expressed as:

S = S0e
−D(γδ| ~G|)2

(∆−δ/3) (2.38)

where D is the diffusion coefficient along the direction ~G, S0 is the MR signal

when no diffusion gradients are applied and the b-value b= γ2δ2|~G|2 (∆− δ/3)

summarises the strength of diffusion weighting — increasing this quantity in-

creases the amount of signal attenuation. Figure 2.6 shows how image contrast

is affected by the b-value.
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2.2.2.2 Spin-echo
The use of a spin-echo enables us to measure more of the available signal,

increasing our signal-to-noise ratio (SNR). We have seen that the transverse

MR signal decays exponentially as a result of two factors, one intrinsic to a

tissue type and caused by random processes on the molecular level, T2, and

an additional factor caused by field distortions and inhomogeneities, T ′2. A

spin-echo allows us to correct for this additional factor, producing more signal.

This is particularly important in DW-MR because the diffusion preparation

gradients increase the amount of time between excitation and the recording of

the signal, TE .

The spin-echo consists of an 180° RF pulse applied in the transverse plane

at time TE/2, which inverts the phase of each spin. Spins in regions of positive

field distortion, which have accrued extra phase as a result of these distortions,

will now make up this extra phase between times TE/2 and TE , so that by

time TE there will be no phase differences between spins caused by constant

field distortions. This will maximise the net magnetization available for mea-

surement. We are able to recover signal lost due to T ′2 effects because they

remain constant in time and thus the amount of rephasing after the 180° pulse

equals the amount of dephasing beforehand; T2 effects are not recoverable in

the same way because the inhomogeneities they are caused by do not stay fixed

in time.

In PGSE, the typical DW-MR measurement, the spin-echo is applied be-

tween the two diffusion preparation gradients (Fig 2.7). Note that the use of

a spin-echo also means that the second diffusion gradient must now have the

same sign as the first.

2.2.2.3 EPI
Together, diffusion preparation and spin echo provide an appropriately sensi-

tised signal with sufficient SNR. However the method for recording this signal

outlined in 2.1.3, based on a line-by-line acquisition of k-space, is slow because

an RF excitation is required for every single line in the slice. In DW-MR we
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δ
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90° RF pulse 180° RF pulse
TE

Figure 2.7: Schematic of the Stejskal-Tanner pulse sequence

typically acquire a number of volumes, and a faster imaging method is needed

to prevent subject movement corrupting the images.

In single-shot EPI the k-space for a single slice is fully traversed in a

single excitation [13], greatly increasing the speed of acquisition. After a line

is acquired with a FE gradient, a PE gradient is ‘blipped’ to increment the

phase of the sample, and then the next line is acquired using a FE gradient

of reversed polarity, see Fig 2.8. This is repeated until the full slice has been

acquired. Multi-shot variants exist in which different portions of k-space are

sampled across several excitations, then combined to produce the total k-

space. As with the line-by-line readout, 3D volumes are produced by exciting

and acquiring successive 2D slices and stacking them.

2.2.3 Models of diffusion

Once a series of measurements of local diffusion have been performed, it is

desirable to make inferences about the microstructure that gave rise to this

pattern of diffusion. Historically one of the most popular models has been the

diffusion tensor (DT) model [14]; due it its simplicity and ability to capture

anisotropic diffusion.

D =


Dxx Dxy Dxz

Dxy Dyy Dyz

Dxz Dyz Dzz

 (2.39)
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Figure 2.8: A single-shot EPI scheme. Lines are acquired sequentially without
returning to the origin of k-space between each, a much faster process than line
by line acquisition. (a) pulse sequence and (b) corresponding trajectory through
k-space shown.

Dxx, Dyy and Dzz represent diffusivity along three orthogonal axes, and the

off-diagonal components represent correlations between displacements along

these orthogonal axes. The signal from the DT model can be written:

S = S0e
−bĜTDĜ (2.40)

The diffusion tensor contains six unique elements, meaning that seven unique

measurements are needed to estimate both D and S0.

The DT is able to approximate the signal arising from brain tissue at suf-

ficiently low b-values. For example, in the case of a bundle of parallel axons we

would see high diffusivity along the bundle’s axis and reduced diffusivity par-

allel to it. The diffusion tensor would reflect this structure with Dzz >Dxx,Dyy

(assuming the bundle’s axis lies along z). Metrics such as fractional anisotropy

(FA) [15], mean diffusivity (MD), and radial diffusivity (RD) may be calcu-

lated and can provide insights into the underlying microstructure. The tensor’s

principal eigenvector describes the direction of maximum diffusivity and can

be used to perform tractography [16].

Despite its uses, the DT has some limitations. It is predicated on the as-
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sumption of Gaussian, or free, diffusion [17]; whilst it performs well for moder-

ate b-values it does not describe data well for higher b-values [18]. Furthermore

the DT cannot model more complex microstructural features such as crossing

white-matter fibres or dispersion within fibre bundles. These limitations have

led to the development of a number of more sophisticated models. Broadly,

these models can be divided into two classes: signal and compartment models.

Signal models aim to capture the main characteristics of the signal with a

limited number of parameters, without necessarily requiring these parameters

have a direct biological interpretation. The DT is arguably a signal model;

another example of a signal model is diffusion kurtosis imaging (DKI), which

relaxes the DT’s assumption of Gaussian diffusion by expanding the signal in

terms of a cumulant expansion [19]. Some signal models directly try to recon-

struct the underlying of white matter fibres that generated the signal, known

as the fibre orientation distribution function (fODF). Spherical convolution

[20] and its more robust successor, constrained spherical deconvolution [21]

are popular examples of this.

Compartment models try to geometrically model the microstructure of

biological tissue with the aim of having an easily interpretable set of parame-

ters that directly relate to microstructural features of interest. They typically

aim to model the three main compartments in biological brain tissue, intra-

and extra-cellular space, and the cerebrospinal fluid (CSF), and can be rep-

resented as a taxonomy with different geometric models being used for each

compartment [22]. Models such as CHARMED [23] and the ball-and-stick [24]

focus on estimating neurite density. AxCaliber [25] and ActiveAx [26] aim to

estimate the diameter of axons. The ball-and-rackets model [27] and NODDI

[28] are attempts to measure the dispersion of a set of neurites. Models such as

VERDICT [29] aim to model tumour cells to provide clinically useful markers

of disease.

A commonality between these more advanced models is that they require

richer characterisations of the diffusion signal than the DT. They tend to
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require higher angular resolution and multiple b-values; these b-values are typ-

ically higher (up to b=3000 s mm−2). These richer acquisitions typically take

more time and are more demanding for the scanners, increasing the prevalence

and severity of image artefacts.

2.3 Image artefacts
We have seen how images are acquired in MRI and how the process can be

extended to produce images that are sensitive to local microstructure. The

process is susceptible to a number of artefacts that can compromise the quality

of these measurements. In this section we discuss the main set of artefacts

that occur in DW-MRI. This list is not intended to be exhaustive as MR

scanners are extremely complex and the number of things that can go wrong is

extremely large; rather this aims to cover the set of artefacts that are frequently

encountered in DW-MR images and that, ideally, a realistic DW-MR simulator

should be able to reproduce. General references for these artefacts are [30–34].

• Motion

Patient movement in the scanner is inevitable. If the movement occurs

between the acquisition of successive volumes then the imaged object

will be offset by a rigid transformation. In reality, patients often move

during the acquisition of a single volume. As the volume is acquired as a

(typically interleaved) stack of slices, this can cause these slices to incor-

rectly stack, leading to misalignment that cannot be straightforwardly

corrected by a rigid transformation. This can also lead to portions of the

brain being missed in an image volume, e.g. translation of the head along

the negative slice-select axis between acquisition of slices can lead to some

slices never being excited. The opposite may also happen: transforma-

tion along the positive slice-select axis can lead to slices being acquired

twice. In this case, the slice is re-excited before the expected TR, lead-

ing to the availability of less transverse magnetisation (as discussed in

Section 2.1.4) and thus the production of less signal than expected; this
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is referred to as the spin-history artefact. In addition to rigid movement

of the head, non-rigid motion occurs due to the pulsation of the brain as

a result of the cardiac cycle, particularly in regions near the ventricles

(cavities filled with CSF) [35]. In addition to physical displacement of

the measured signal, both rigid and non-rigid movement can lead to a

loss of signal, or dropout.

• Signal dropouts

Signal dropouts are losses of signal from a slice, caused by rotational

movement of the head during the diffusion preparation gradients [36],

localised movements due to cardiac pulsation, or even vibration of the

scanner [37]. This movement means the second diffusion gradient only

partially rephases the sample which causes a large, linear phase shift

across the sample. This leads to a translation of the k-space image which

is often large enough to translate its centre outside of the FOV, leading

to very little signal in the resultant image. The dropout can occur for

a whole slice if caused by bulk movement of the head, or just part of a

slice if the source of motion is localised.

• Eddy currents

Eddy currents are produced in conducting components of the scanner

by the switching of the magnetic gradients, as described by Faraday’s

law of induction. These currents in turn lead to undesired, time-varying

magnetic fields which add to the imaging gradients and interfere with the

spatial encoding of the image. The fields are usually small but the fast-

switching gradients used for diffusion sensitisation tend to have longer

time periods between the switching on and off of the gradients. This

means the induced eddy-currents do not cancel out as much, producing

larger fields which leads to more significant artefacts. Such fields, and

other undesired magnetic fields in MRI, are sometimes referred to as

off-resonance fields because they cause spins to precess at a frequency
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different from that expected from a perfect B0 and a set of linear imaging

gradients.

Disruption to imaging gradients is particularly problematic when the

EPI sequence is used for spatial localisation. To understand why, we

can first consider the gradient in the FE direction. Typically, when a

frequency-encoding gradient is applied protons that are separated by

1 mm along the FE axis have a difference in frequency of 500-1000 Hz.

A typical gradient inhomogeneity caused by an eddy-current will induce

a frequency different of ∼100 Hz mm−1 [34]. Since these protons are

spatially localised according to their frequency, this inhomogeneity could

cause an apparent shift in location between the protons of 0.1-0.2 mm;

this is considered negligible in MRI. We can think of the protons in the

PE direction as being separated by an effective frequency, too, equal to

the difference in the amount their phase changes with each EPI ‘blip’

divided by the time between blips. The amount that the phase may

change per blip is constrained: in order to be able to distinguish between

protons at the top and bottom of the PE axis, the phase change across

the sample must be less than 2π. This constraint means that for a typical

scan protons 1 mm apart have an effective frequency difference of ∼10 Hz,

and so the eddy-current inhomogeneity will cause signal displacements

of 10 mm along the phase-encode axis, which is much more significant.

To a first order approximation the EC-induced fields are linear gradients

along the x−, y− and z− axes. When superposed on the spatial encoding

gradients, these gradient lead to skews, scaling and translations of the

image along the PE axis. In reality the induced fields are non-linear

and thus cause non-linear distortion [38]. Furthermore these currents

temporally decay; if this happens significantly over the course of a slice

acquisition this can lead to blurring of the resultant images [39].

• Susceptibility



46 Chapter 2. Background

Materials have different responses to being placed in magnetic fields. The

magnetisation of an object ~M can be related to the applied field, ~B by

a scalar quantity called the material’s susceptibility, χ:

~M = χ~B (2.41)

The magnetisation ~M in turn produces its own additional magnetic field,

which sums with the applied field to create a total field. When two ob-

jects with different susceptibilities are placed in a magnetic field the re-

sultant field around the boundary is complicated and non-homogeneous.

Air and tissue have different susceptibilities, so these fields are created

around the sinuses and ear canals when a head is placed in the scanner.

These fields affect the acquired image in three ways. Firstly, tissue can

be incorrectly excited by the slice-select gradient, causing it to appear in

the wrong slice. Secondly, the frequency alterations cause geometric dis-

tortions along the PE axis. These differ from eddy-current distortions in

that the inhomogeneities and thus the distortions are spatially localised,

rather than varying slowly across the image. Finally, if the field varies

significantly compared to the length-scale of a voxel, local dephasing of

the transverse magnetization can occur. This causes signal loss in GE

sequences, but in SE sequences the spins are rephased and signal loss

does not occur. The susceptibility field can change over time, for exam-

ple due to changes in the shape of the chest cavity during respiration, or

due to rotation of the head about an axis that is not parallel to B0 [40].

• Noise

The noise in the complex MR signal is normally distributed and we typ-

ically take the magnitude of these complex images. For a single coil this

causes the noise to have a Rice distribution [41], but in general when

signal is combined from multiple coils the data has a noncentral-χ distri-

bution [42]. Both of these distributions lead to a bias in the expectation
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of the signal value compared to the real value. In diffusion MRI high

diffusivity is reflected by low signal in an image; this bias can increase

the measured signal for high diffusivity leading to this diffusivity to be

underestimated, which can cause a reduction in measured anisotropy

[43].

• Gibbs ringing

As we have seen in Section 2.1.4, k-space is truncated in practice. Higher

values of k-space describe higher frequency components and without

these the Fourier series cannot accurately represent high-frequency im-

age components such as sharp boundaries. This leads to a series of light

and dark lines parallel to this boundary, representing the overshoot and

undershoot from the truncated Fourier reconstruction.

• Ghosting

The Nyquist artefact, or ghosting, is caused by mismatches between al-

ternately acquired lines of k-space in the EPI sequence. The centre of

each line is an echo caused by the rephasing action of the FE gradient.

Because alternate lines are acquired when traversing opposite directions

of k-space, any small delay introduced into an echo will cause offsets be-

tween the echoes in odd and even lines. These delays can be caused by

eddy-currents, gradient coil heating, inaccurate timing of the sampling

relative to the applied gradients, and patient motion. For a single-shot

EPI sequence the offset causes displacements of intensity by half of the

field-of-view (FOV) in the PE direction of the reconstructed image, which

are known as ghosts.

• RF artefacts

In Section 2.1.2 we saw that the flip-angle was controlled by the magni-

tude of the applied RF field, Be
1 and the time it was applied for. Non-

uniformity in Be
1(t) across the brain causes non-uniform flip angles that

reduce the available transverse magnetization, Mxy, and thus signal in
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certain areas, leading to bright and dark patches in the resulting images.

This problem is exacerbated at high field imaging (e.g. B0=7 T) because

the shorter RF wavelengths needed to achieve the relevant Larmor fre-

quency are more similar to the size of the head which increases wave

interference. Similarly, inhomogeneities in the RF receive coil’s sensi-

tivity profiles cause spatially varying signal in the resultant image, often

noticeable as darker patches in regions of the brain. Coil sensitivity tends

to be highest around the edges of the brain, so these darker patches tend

to occur in the middle. Another potential artefact is caused by bursts of

RF noise, which lead to high intensity spikes in k-space. These manifest

themselves as stripes across the image, with frequency and orientation

determined by the location in k-space that the noise was recorded.

• Chemical shift

The resonant frequency of nuclei is affected by their local molecular envi-

ronment. For example, fat protons are shielded from external magnetic

fields by their surrounding electrons, causing them to precess at a slightly

lower frequency than protons in water. This causes the fat signal to be

spatially shifted along the PE axis in EPI acquisitions.

2.4 Simulation systems

2.4.1 MRI
The field of MR simulation is extremely large and well developed. Every

simulator is a simplification of the physical environment, and the choices and

assumptions made in designing a simulator are typically motivated by the

intended application of the system. For example, one sub-field focuses on RF

simulation to assist the design of pulses with more desirable properties, such

as sharper spatial profiles and decreased power deposition [44–46]. Another

example is NMR simulation, which tends to focus on detailed modelling of

quantum mechanical effects, such as spin-coupling, which are important for

generating realistic chemical spectra [47, 48]. In this survey we focus our
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attention on systems that aim to simulate the MR acquisition process and

produce realistic, full-brain MR images, along with the artefacts that are often

present in these images.

The simplest tools for MR simulation use equations that relate parameters

such as T1, T2 to spatial signal intensity [49, 50]. By applying these equations

to an input that describes the spatial variation of these parameters in the brain,

an output MR image may be produced. Whilst computationally very efficient,

this approach fails to model the process of image acquisition, involving the

recording of a signal in k-space that is subsequently Fourier transformed to

produce a spatial image, which is vital if realistic images and their artefacts

are to be simulated.

An early method that made use of k-space signals was the ‘k-space for-

malism’ [51]. It involved Fourier transforming a high-resolution map of tissue

type and proton density to produce a k-space signal, then simulating the ac-

quisition for a given pulse sequence by selecting the relevant elements from this

dense k-space signal. Relaxation parameters and simple artefacts such as eddy

currents are taken into account during the k-space selection. This method is

fast but precludes the inclusion of more complex artefacts, such as movement

of the object during the acquisition of a slice.

Another popular method for simulation analytically relates properties of

an input object to the imaged signal. Early work [52, 53] focused on find-

ing a closed-form expression for the k-space signal generated from ellipsoids

such as those in the famous Shepp-Logan phantom [54]. Guerquin et al [55]

extended this work by finding the analytical relationship between piecewise

polynomial functions and their k-space signal, while Ngo [56] developed an ex-

pression for arbitrary polyhedra, both of which enable the simulation of more

realistic phantoms. The analytical method allows for very realistic representa-

tions of scanner objects, but they don’t directly model the physics of the MR

acquisition process, i.e. the application of gradients to manipulate magnetic

moments, which prevents the inclusion of a number of artefacts such as move-
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ment and spin-history effects. In order to realistically model such artefacts a

simulator must solve the Bloch equations.

The simplest Bloch-based simulators solve the equations once for each

tissue type — white matter (WM), gray matter (GM) and cerebrospinal fluid

(CSF) — and combine the resultant signals in each voxel using proportions de-

termined by a tissue template, as seen in the extremely popular BrainWeb tool

[57, 58]. This method is fast because the equations need only be solved once

per tissue type. However, the method means each spin experiences the same

magnetic field history which prevents artefacts such as B0 inhomogeneities

being modelled.

Methods that solve the Bloch equations over a grid with spatially vary-

ing values of ρ, T1 and T2, representing the object being imaged, allow for

the most realistic simulations. A key challenge with such approaches is that

a large number of spins per voxel must be simulated to accurately capture

effects such as intra-voxel dephasing or spin-echoes [59]. Early examples of

this by [60, 61] used only a few spins per voxel, preventing the simulation

of dephasing effects. Olsson [62] addressed this by using a model-based ap-

proach to correctly account for dephasing amongst a limited number of spins,

enabling the modelling of T ∗2 dephasing effects. These approaches are all 1D

or 2D; the SIMRI project [63] extended simulations to 3D. SIMRI only simu-

lates a few isochromats per voxel, and implements the model based-approach

to dephasing similar to Olsson and also proposes a model based-approach to

handle spin-echoes, essentially by modifying the magnitude of the magnetisa-

tion vector as dictated by the spin-echo. SIMRI enables reproduction of many

of the artefacts discussed in Section 2.3, including ECs, susceptibility, Gibbs

ringing, ghosting and chemical shift. SIMRI requires a susceptibility-induced

off-resonance field to be specified — Yoder proposed a method to calculate

realistic susceptibility-induced fields from a known input object and incor-

porate these into simulations [64]. A notable feature lacking from all these

Bloch-based simulators is support for complex motion. The POSSUM simu-
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lator allows for this, providing support for arbitrary movement of the object

throughout the acquisition of an image [65]. Like Yoder, POSSUM can calcu-

late susceptibility-fields from the input object, but it further extends this to

account for the changing of the susceptibility-induced field with object move-

ment, as well as being able to account for time-varying off-resonance fields,

such as those caused by the patient breathing [66].

These solvers are computationally expensive, and recently emphasis has

been placed on parallelised implementations that enable the simulation of

many spins per voxel. This means a model-based approach for T2 dephasing

and spin-echo rephasing is no longer required. The computational speed-ups

also enable the addressing of another weakness of all the previously mentioned

frameworks: the reliance of analytically-derived descriptions for the actions

of RF pulses on isochromats. The JEMRIS simulator [67] enables the Bloch

equations to be solved numerically for arbitrary RF pulses for which analytical

solutions may not exist; as well as providing support for multi-coil transmis-

sion and reception. MRISIMUL offers similar features to JEMRIS but allows

for GPU computations that can offer speedups of up to two orders of mag-

nitude compared with code executed on a CPU [68]. MRiLab [69, 70] also

relies on GPUs to accelerate computation, and provides support for modelling

protons residing in different compartments within a voxel and exchanging be-

tween these compartments, enabling the simulation of MR techniques such as

magnetisation transfer [71].

2.4.2 Diffusion MRI

There has been substantial work on the simulation of diffusion MR signals

inside a single voxel, without the need for spatial encoding. These approaches

vary in flexibility. The simplest generate this signal using a model that as-

sumes a particular underlying microstructure and pulse sequence (most often

PGSE) [72–74]. Approaches such as Callaghan’s matrix formulation [75] en-

able DW-MR signal to be generated for simple geometries but more complex

pulse sequences [76]. The most flexible use a Monte-Carlo approach to simu-
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late the diffusion of particles within a single voxel, for arbitrary microstructural

environments and pulse sequence [77–79].

Work on simulation of full-brain images with diffusion contrast is much

more limited. The simplest methods simply assign a single value of diffusion-

weighting contrast to each of the three tissue types, then combines these signals

using probabilistic segmentations to form an image [80, 81]. Not only do these

methods fails to represent the complexity of the diffusion signal, which cannot

be simplified to a single intensity per tissue type, but they do not simulate

the process of MR acquisition. Some work has combined this simple model of

diffusion contrast with a simulation of the full process of MR acquisition [82].

Much of the recent work in DW-MR simulation has focused on providing

data that can help assess tractography algorithms [83]. Leemans [84] provided

a mathematical description of the diffusion signal by combing a physical de-

scription of the spatial extent of a WM bundle with the DT model. Close

provided a tool to generate random structures of densely packed fibre bundles,

using the DT model to simulate the signal from these bundles [85]. The Phan-

tomas software tool used the CHARMED model [23] to generate WM signal

and incorporated MR relaxation parameters [86]; [87] developed a similar sim-

ulator but used multiple DTs to model crossing fibres. All these tractography

tools produce the signal directly in image space. The FiberFox simulator is

able to produce full-brain images based on an input tractogram [88] and is

able to simulate the process of image acquisition in k-space, though it is sim-

ple when compared to the MRI simulations discussed in Section 2.4.1: it does

not simulate the process of RF excitation and slice-selection, and is unable to

model the movement of the object during image acquisition. FiberFox uses a

zeppelin model of diffusion in the WM (a DT with the two eigenvalues per-

pendicular to the principal diffusion direction constrained to be equal) and an

isotropic tensor to model the rest of the tissue. The D-BRAIN phantom uses

similar k-space acquisition, but extends the diffusion model to contain two

different isotropic tensors to model both the GM and CSF [89].
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These models rely on an underlying description of WM structures to gen-

erate the signal, which means they are unable to produce full-brain images

that realistically model the signal in the GM and CSF. Work by Du has used

Monte-Carlo methods [90] to produce simulations with realistic full-brain con-

trast, but does not faithfully model the physics of MR acquisition. [91] tries

to bridge this gap by providing both realistic diffusion-contrast from a Monte-

Carlo simulation coupled by a modelling of the MR acquisition process, but the

computation time required to simulate full-brain volumes with this approach

is prohibitive.

2.4.3 Critical analysis
In order to be suitable for the testing of acquisition and post-processing tech-

niques, a DW-MR simulator must be able to reproduce the artefacts detailed

in Section 2.3, as these are the problems that these techniques typically try to

address. Furthermore, it must be able to produce realistic DW-MR contrast,

as it is the large variations in contrast across DW-MR datasets that can make

their processing so challenging. Whilst DW-MR simulation systems exist, none

are able to produce realistic enough datasets, complete with artefacts, to be

used for these purposes. Specifically, existing systems all exhibit at least one

of the following limitations:

1. The failure to model the physics of DW-MR image acquisition

MR acquisition involves the application of a sequence of magnetic fields

across a sample, producing a signal in ‘frequency space’ that is then

transformed to generate an image of the sample. Many of the artefacts

found in MRI are introduced during acquisition and/or transformation,

and failing to faithfully model this process can preclude the realistic

simulation of many artefacts.

2. The failure to produce realistic diffusion-weighted contrast.

The large variations in contrast between volumes in a DW-MR dataset

are part of the reason that correcting artefacts can be so challenging,
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and so these variations must be captured if we are to fairly assess post-

processing techniques. Furthermore, some post-processing techniques

use models of diffusion contrast to form the basis of their correction

[92, 93] and so the use of a particular model to simulate the diffusion

contrast could cause some circularity that would bias their assessment.

3. The inability to produce full-brain images

Many of the existing simulation systems for DW-MR produce data for

just the brain’s WM [88], for the purposes of evaluating WM tracking

methods, or even just in a single voxel [77], for validating models of diffu-

sion. In order to be useful for testing correction techniques, a simulator

needs to be able to produce full brain images.
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A simulation system for

diffusion-weighted MRI

3.1 Overview
This chapter introduces a simulator designed to address the limitations of

existing frameworks discussed in Section 2.4.3. It is able to produce realistic

full-brain contrast and models the physics of MR acquisition, enabling many of

the artefacts discussed in Section 2.3 to be simulated. A novel framework for

evaluating post-processing techniques is also introduced, with a view towards

applying the framework to assessing techniques for correcting motion and eddy-

current artefacts in Chapter 4.

3.1.1 Research dissemination

An early prototype of the simulation framework was presented at IPMI. The

framework was extended, addressing several limitations of this prototype, and

published in NeuroImage. Code for the simulator has been made available at

https://github.com/marksgraham/DW-POSSUM.

• A simulation framework for quantitative validation of artefact correction

in diffusion MRI. MS Graham, I Drobnjak, H Zhang. In International

Conference on Information Processing in Medical Imaging, volume 9123

of Lecture Notes in Computer Science, pages 638-649, 2015.

https://github.com/marksgraham/DW-POSSUM
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• Realistic simulation of artefacts in diffusion MRI for validating post-

processing correction techniques. MS Graham, I Drobnjak, H Zhang. In

NeuroImage 125, 1079-1094, 2016.

3.2 Introduction
As we have seen in Section 2.3, DW-MR data can include a large number of

artefacts. Techniques for dealing with these artefacts can broadly be divided

into those implemented at acquisition time [94–96], involving either some modi-

fication to the acquisition process or the collection of supplementary data, and

post-processing methods implemented after acquisition time [97, 98]. Post-

processing techniques are very popular, as they have several advantages: they

can be applied retrospectively to already acquired data, a user can revert to

the original data if the technique does not work as hoped, and they don’t

require additional scan-time, which is often expensive.

The literature contains a vast body of post-processing techniques and soft-

ware packages for correcting artefacts in DW-MRI [96, 98, 99]. Ideally their

corrections would be validated by comparison to the ground truth, i.e. a map of

the spatial deformations caused by the artefacts, but these cannot be obtained

for real data. As a result the literature relies on either qualitative visual assess-

ments of image alignment [100, 101], or quantitative assessments of surrogate

measures of alignment, such as tract length [102], fractional anisotropy (FA)

values [103] or reduced residuals from fits to microstructural models [92, 104].

The lack of an objective ground truth means existing techniques cannot be

systematically assessed, preventing end-users from making an informed choice.

The development of new methods is also hindered, as any improvements over

existing ones are difficult to demonstrate.

A simulation framework is able to provide a direct, quantitative way of

assessing post-processing techniques. Such a framework must have two key

features. Firstly, it must be able to produce realistic DW-MR data, along

with artefacts. It is particularly important that the simulated data contains
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a realistic representation of diffusion contrast, because it is the large contrast

variations with a DW-MR dataset that makes it uniquely difficult to process.

This is because many processing techniques rely on registration, which makes

use of image similarity. Images acquired with very different b-values do not

look similar at all, making registration challenging. Secondly, the simulation

framework must provide a quantitative means of assessing the success of a

post-processing algorithm. As post-processing algorithms try to estimate a

displacement field to resample the data from distorted to undistorted space,

the most direct way of assessing a technique is to assess the errors in the

predicted displacement field. Section 3.3 describes the development of a sim-

ulation framework that possesses both of these key features.

3.3 Methods
In this section we describe our simulation framework for producing realistic

DW-MR images along with the displacement fields that map them into undis-

torted space. Section 3.3.1 provides an overview of the framework. Details of

the implementation of the framework follow in 3.3.2, 3.3.3, and 3.3.4, where

we describe how we produce both the DWIs, how artefacts are incorporated

and how the ground truth displacement fields are generated.

3.3.1 Framework overview

As seen in the discussion of simulation systems in Sections 2.4.1, MRI sim-

ulators exist which are able to faithfully model MR physics, producing the

artefacts that arise during data acquisition, but none exist which also produce

DW-MR contrast. In Section 2.4.2 we saw the available DW-MR simulators

tend to have simplified MR physics and do not provide realistic, full-brain dif-

fusion contrast. We have addressed these issues by combining a fully-featured

MR simulator with a model-free representation of diffusion obtained directly

from a real dataset.

Figure 3.1 presents a conceptual overview of how an MR simulator may

be adapted to provide realistic diffusion contrast. The framework takes four
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main inputs. The first is a geometric object that specifies the proton density

and location of WM, GM and CSF along with their T1 and T2 values. The

second is a representation of diffusion-weighting. The third is a pulsed-gradient

spin-echo (PGSE) sequence, detailing RF pulses and gradients. The first two

inputs are combined with diffusion parameters extracted from the third (di-

rection and magnitude of diffusion weighting) to produce a geometric object

with its proton density reduced by a diffusion attenuation factor - this is how

diffusion-weighting is introduced into the simulated DWIs. The attenuation

factor is defined as Ab
(
b̂
)

=Sb
(
b̂
)
/S0, the ratio between the diffusion-weighted

signal
(
Sb
(
b̂
))

and the signal without diffusion weighting (S0) in a given voxel,

defined for a b-value, b, and direction of diffusion weighting, b̂. The attenua-

tion factor is a dimensionless quantity that takes values between 0 and 1. The

PGSE sequence is converted to a standard echo-planar imaging (EPI) sequence

for simulation, so the diffusion attenuation is introduced solely through the in-

put object. The fourth input is any details that will lead to the simulation

of artefacts, such as motion parameters. The effects of eddy currents arising

from the diffusion gradients are included in the EPI sequence that is passed

to the simulator.

The framework creates two outputs. The first is a DWI. The MR sim-

ulator takes the attenuated object, pulse sequence and details pertaining to

artefacts, and solves Bloch’s and Maxwell’s equations at each point in the

object, summing the resultant signal in order to generate the k-space measure-

ments. This is Fourier transformed to produce the output DWI. The second

output is a displacement field that describes the mapping of this DWI from a

distorted to undistorted space.

3.3.2 Producing DWIs

We chose to use POSSUM to provide the core MR simulation [66, 105]. POS-

SUM has a number of features that make it ideal for use here. As discussed in

Section 2.4.1, its a fully featured MR simulator that solves the Bloch equations

for an isochromat at each voxel in the input object over a 3D grid, enabling
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S(t) =
RRR

M(x, y)dxdy

Bloch + Maxwell’s equations
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Figure 3.1: The pipeline for simulating DWIs. Details of DWI, image artefact and
displacement field generation are in Sections 3.3.2, 3.3.3, and 3.3.4.
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it to realistically model many of the sources of artefacts in MRI. A key ad-

vantage POSSUM has over other advanced simulators discussed is its strong

support for modelling motion artefacts, including motion during read-out peri-

ods. It also has the ability to model the susceptibility-movement interactions,

a feature not offered by any other simulator. POSSUM is designed for the

simulation of MRI/fMRI data, so a number of extensions were made to enable

DW-MRI simulations. These include the introduction of diffusion weighting

and the inclusion of spin-echo contrast.

The input object and representation of diffusion weighted used for simu-

lation were generated from data from a single subject of the WU-Minn Human

Connectome Project (HCP) dataset [106]. This data was chosen because of its

extremely high quality, providing high-resolution structural images and diffu-

sion data, enabling the generation of high-quality inputs. A full-brain segmen-

tation was used as POSSUM’s geometric object input, created with T1- and

T2-weighted images from the HCP subject using FSL’s FAST [107]. The repre-

sentation of diffusion weighting was achieved using a voxel-wise spherical har-

monic (SH) fit to the subject’s diffusion data [108]. An order n= 8 fit was used

to fully capture the angular information available in these datasets [109], with

constraints placed on the coefficients to ensure the signal is real and exhibits

antipodal symmetry. Separate fits were performed on the b=1000 s/mm2 and

b=2000 s/mm2 shells. These SH fits can be viewed as an interpolation function

in q-space, enabling us to predict the diffusion-weighting at each voxel along

any gradient direction, b̂. In general, the fit to the b=1000 s/mm2 shell was

used to predict signal attenuation for simulated DWIs with b=1000 s/mm2, and

the b=2000 s/mm2 fit to predict attenuation for simulations at b=2000 s/mm2.

For some experiments it is desirable to simulate weighting with b <

1000 s/mm2. A mono-exponential assumption was used to predict the signal

attenuation in these cases. Along the direction b̂, the attenuation for a value

b= s, As(b̂) can be obtained from the predicted attenuation at b=1000 s/mm2,
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Tissue T1/ms T2/ms ρ

Grey matter 1331 75 0.86
White matter 832 70 0.77

CSF 3700 500 1

Table 3.1: Tissue parameters used for the DW-MR simulations. Proton density ρ
is in arbitrary units.

A1000(b̂):

As
(
b̂
)

= exp
(

s

1000 ln
(
A1000(b̂)

))
(3.1)

The prediction of diffusion-weighting at this new value assumes Gaussian dif-

fusion, this assumption is reasonable in practice for b < 1000 s/mm2 [110].

POSSUM simulates gradient-echo EPI sequences, and is not able to sim-

ulate the spin-echo typically used in DW-MR. To enable the production of

images with T2 contrast, we used a GE EPI sequence and replace the default

tissue-specific T2* values with their corresponding T2 values: 75 ms and 70 ms

in the GM and WM, respectively. These values were obtained by adjusting the

average estimates from the literature [6] until our simulations best matched

the contrast seen in a real dataset. The full set of tissue parameters used are

shown in Table 3.1. The inability of POSSUM to simulate spin-echo sequences

is addressed in Chapter 5.

3.3.3 Incorporating artefacts

The framework is able to reproduce many of the key DW-MR artefacts that are

discussed in Section 2.3. Motion, noise, Gibbs ringing, ghosting, and chemical

shift artefacts have all been demonstrated in POSSUM [105], and can be readily

included in our simulations. One limitation of the movement model is that it

describes the rigid motion of the whole input object, and so non-rigid effects

such as pulsatile movement cannot be simulated.

One key artefact that we have added to the framework is eddy-currents.

Eddy-induced gradients were added to the EPI pulse sequence using the spa-

tially linear model in [82], by superposing a sum of decaying exponentials on



62 Chapter 3. A simulation system for diffusion-weighted MRI

each gradient field. In this model, the eddy-currents are assumed to only arise

from the gradients that provide diffusion weighting. The EC-induced gradi-

ents act along the same direction as the diffusion gradient. Mathematically,

the EC-induced gradient along each axis (GE
x ,GE

y ,GE
z ) is described by:

GE
x,y,z =

∑
i

±εGdiff
x,y,z exp[−(t− ti)/τ ] (3.2)

where ti corresponds to the time each diffusion gradient is turned on or off

(determined by the pulse width δ and diffusion time ∆, obtained from the input

PGSE sequence), τ is the decay time, Gdiff
x,y,z is the strength of the diffusion-

weighted gradient along x, y or z, ε is a constant determining the relationship

between the strength of eddy and diffusion gradients and a + or - is selected

depending on whether the gradient is being turned on or off.

We performed simulations with a maximum value of Gdiff = 40 mT m−1,

and selected ε = 0.009 and τ=100 ms to represent typical values found in a

clinical scanner [111].

Whilst POSSUM supports the susceptibility artefact, the lack of a spin-

echo pulse sequences means the artefact causes both geometric distortion and

signal loss, rather than just geometric distortion. This limitation is addressed

in Chapter 5. The framework does not support signal dropouts — this is

addressed in Chapter 7.

3.3.4 Ground truth displacement fields

The framework generates the ground truth displacement field for each DWI,

detailing its mapping from distorted to undistorted space, as comparison of

predicted and ground truth spatial displacement fields is the most direct way

to evaluate post-processing methods that aim to estimate a corrective displace-

ment field. Here we describe how we obtain the combined displacement field

that corrects for off-resonance and motion artefacts in our simulations. In the

following we calculate them for eddy-currents and inter-volume rigid motion

artefacts, with a view towards the assessment of EC and motion correction
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schemes in the next chapter, but the equations shown can be extended to

other off-resonance artefacts straightforwardly.

The EC displacement field can be calculated from a knowledge of the

off-resonance frequency that the EC give rise to. In the presence of any off-

resonance conditions, the spin frequency can be written:

ω(r, t) = ω0 +f(r, t) (3.3)

where ω0 is the system frequency and f(r, t) is the off-resonance term, that

may vary with spatial location r and time t. When the off-resonance term is

time-invariant, i.e. f(r, t) = f(r), we can express the voxel displacement field

caused by these off-resonance effects, ψO, as [112]:

ψO(r) = tsNf(r)p̂ (3.4)

where ts is the echo spacing (in seconds), N is the number of phase-encode

lines, p̂ is a dimensionless vector pointing in the phase-encoding direction,

f(r) is defined in Hz.

In the case of linear EC gradients assumed in our simulations, we can

express the off-resonance term:

f(r,t) = γGE(t) · r (3.5)

where GE =
(
GEx ,G

E
y ,G

E
z

)
and γ is the gyromagnetic ratio. These gradients

are time-varying according to Eq. 3.2. We evaluate this off-resonance term

at the centre of k-space, t = TE , as this dominates the gross structure of the

image:

f(r) = γGE(TE) · r (3.6)

We can now combine Eqs. 3.4 and 3.6 to find the displacement field:

ψO(r) = γtsN
(
GE(TE) · r

)
p̂ (3.7)
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The motion displacement field, ψM (r) is straightforwardly obtained from the

rigid transformation R:

ψM (r) = Rr− r (3.8)

We can obtain the total displacement field, ψT (r), from a composition of the

two fields:

ψT (r) =ψO ◦ψM (r) (3.9)

The ground truth displacement field gives us our mapping from undistorted to

distorted space. An artefact correction method predicts a displacement field,

ψP (r), that attempts to map a volume from distorted to undistorted space.

We define the error field, ψE(r), as the displacement field that describes the

mapping of each voxel in undistorted space into corrected space:

ψE(r) =ψP ◦ψT (r) (3.10)

A zero error displacement field indicates perfect correction has been achieved.

In this work we make use of these error fields to quantitatively assess the

effectiveness of artefact correction schemes.

3.4 Simulator demonstration
In this section we assess the ability of our framework to produce DW-MR data

containing realistic contrast and demonstrate the inclusion of EC artefacts in

the framework.

3.4.1 Image contrast
We first assess how well the simulated images capture the most important char-

acteristics of real images. POSSUM has been shown to provide realistic MR

simulation without diffusion weighting [66, 105], so here we focus on assessing

the simulation of diffusion weighting. In the case of DW-MR the key charac-

teristic is the variation in contrast as the strength and direction of diffusion
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weighting changes. To test this we compared a real and simulated dataset with

identical parameters: a 3T scanner with three shells, b=300/700/2000 s/mm2,

TR/TE = 7500/109 ms, voxel size 2.5 mm isotropic. Figure 3.2a compares the

changes in contrast with varying b-value. Figure 3.2b compares changes in

contrast with varying direction of b-vector.

The results demonstrate that our simulation framework is able to capture

both the increased attenuation with b-value and the variation in contrast with

varying b-vector that are present in real data. Note that the real data and

the data used to generate the input object for simulation were obtained from

different subjects, so the slices are not perfectly matched, which may account

for some of the differences in the appearance of WM tracts and the differences

in the overall shape of the brain.

We also compare our simulations with the current state-of-the-art in

model-based approaches for simulating DW-MR data, the FiberFox simula-

tor in Figure 3.3. As discussed in Section 2.4.2, FiberFox uses a zeppelin to

model diffusion in the WM and isotropic tensors to model signal in the GM

and CSF.

3.4.2 Eddy-current artefacts

Finally we show that we are able to reproduce EC distortions seen in real

data. For the case of linear ECs, EC-induced gradients along the x-, y- and z-

axes should lead to shears, scaling and translations in the images respectively

(assuming here that y is the PE direction and z is slice-select). In our model, an

applied diffusion gradient in a given direction gives rise to linear EC gradients

in the same direction, so we expect to see pure shears, scaling and translation

in the three examples in Fig 3.4, which we do.

3.5 Discussion
We have presented a framework that allows for the simulation of full-brain

DW-MR datasets with artefacts, along with their corresponding ground truth

displacement fields, providing an objective and quantitative means of assessing
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Figure 3.3: Comparison of our simulated data to state-of-the-art. Fiberfox data
taken from the 2015 ISMRM tractography challenge.

post-processing techniques. Our framework combines two elements necessary

for the simulation of realistic full-brain DWIs. Firstly, our simulated images

are able to provide a realistic representation of the contrast differences found

across DW-MR datasets. We achieve this using a model-free approach that

obtains the signal from real data. Previous simulations have used a single

representative mean diffusivity or diffusion tensor for each tissue type to pro-

vide diffusion-weighting [80, 82], which leads to vastly oversimplified contrast,

or have used underlying WM structures to generate the signal [85, 86, 88],

preventing realistic contrast from being achieved in non-WM regions of the

brain. The second element is the modelling of the MR acquisition process.

Without simulating the full image generation process certain artefacts cannot

be introduced.

We chose to use POSSUM as the core MR simulator. Whilst POSSUM is
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Di↵erence Displacement
field

Simulation

Figure 3.4: Demonstration of DWIs simulated with EC artefacts. Left column
are DWIs simulated at b=2000 s/mm2, with gradients pointing along the x-, y- and
z-axes. Middle column shows difference images between these DWIs and their coun-
terparts simulated without EC distortion. Right column shows displacement fields,
representing the transformations from undistorted to distorted space. Displacement
fields downsampled for clarity.
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a powerful tool, some limitations must be acknowledged. Simulations assume

a single coil with uniform sensitivity. This means we cannot currently model

transmit and receive bias fields, and the noise does not spatially vary across

the brain. This also means that parallel imaging techniques such as SENSE

[113] or GRAPPA [114] cannot be implemented. POSSUM solves the Bloch

equations over a 3D grid for one isochromat at each voxel in the input object.

This is not dense enough to enable ‘true’ modelling of the T2 dephasing: in the

simulations used here, the input grid had resolution 1× 1× 0.5mm, and the

output simulations were 2.5 mm isotropic. This means POSSUM uses a model-

based approach to model this dephasing, trading a small amount of realism for

decreased computation time. POSSUM also assumes instantaneous RF pulses,

allowing the effect of the pulse to be modelled as a rotation around a specified

axis; a slice profile can be specified, which controls the excitation angles across

the slice. Fully solving the Bloch equation’s over the excitation period would

allow for more detailed modelling of the RF pulses

Using a real dataset to determine the signal attenuation allows us to

achieve more realistic contrast throughout the brain than is currently pos-

sible with model-based techniques, but this approach has two limitations. The

spherical harmonic approach means we can only predict attenuation for b-

values we already have data for — in our HCP dataset this is b=1000, 2000

and 3000 s/mm2. Whilst we were able to predict attenuation at b <1000 s/mm2

using data from the b= 1000 s/mm2 shell and a mono-exponential assumption,

this is only appropriate at low b-values and could not be used to predict at-

tenuation at higher b-values. Employing an approach such as MAP-MRI [115]

could allow us to simulate datasets over a wider range of b-values. Furthermore

we used a single value of T1 and T2 for each tissue type, whilst they have been

shown to vary spatially across the brain [6]. Failure to model this will account

for the lack of subtlety in the contrast compared to real data, noticeable in e.g.

the comparison at b=700 s/mm2 in Fig 3.2a. Further work could incorporate

spatial maps that will allow for variations within tissue types
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Furthermore, any artefacts such as ghosting, ringing and noise that are

present in the input data will be projected into our simulations. We tried to

minimise this effect by using data from the HCP, which is acquired using be-

spoke scanners and sequences, then carefully processed to produce high quality

data. We also visually inspected the dataset to check for the presence of arte-

facts. We believe that artefacts that were not detected by these checks will

have minimal impact on the experiments performed.

3.6 Conclusions
I introduced a simulator designed to address the limitations of existing frame-

works discussed in Section 2.4.3. It is able to produce realistic full-brain con-

trast and models the physics of MR acquisition, enabling many of the artefacts

discussed in Section 2.3 to be simulated. I also introduced a novel framework

for evaluating post-processing techniques, with a view towards applying the

framework to assessing techniques for correcting motion and eddy-current arte-

facts in the next chapter.



Chapter 4

Application I: assessing motion

and eddy-current correction

techniques

4.1 Overview
In this chapter we apply the simulation framework to assessing popular post-

processing techniques for correcting motion and eddy-current artefacts. We

find that one of the most popular post-processing techniques performs poorly,

highlighting the usefulness of being able to directly and quantitatively evaluate

techniques. We investigate the performance of the best performing technique

as a function of the acquisition protocol (number and distribution of diffusion

directions), in order to make practical recommendations for its use.

4.1.1 Research dissemination

These results have been published in NeuroImage, and an extension to them

presented at ISMRM.

• Realistic simulation of artefacts in diffusion MRI for validating post-

processing correction techniques. MS Graham, I Drobnjak, H Zhang. In

NeuroImage 125, 1079-1094, 2016.

• Quantitative evaluation of eddy-current and motion correction tech-
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niques for diffusion-weighted MRI. MS Graham, I Drobnjak, H Zhang.

In, Proceedings of the International Society for Magnetic Resonance in

Medicine, 2016.

4.2 Introduction
Eddy current and motion artefacts are nearly always present in DW-MR data.

Eddy currents vary according to the diffusion gradient, which causes each ac-

quired volume to contain different distortions. Motion leads to misalignment

between (and within) volumes. Both of these artefacts lead to violation of the

assumption that a given image voxel corresponds to the same spatial location

across the dataset, and undermines subsequent analysis of the data. The grow-

ing trend towards acquiring richer datasets, with increased angular-resolution

and higher b-values is increasing the severity of these artefacts, by increasing

scan time, which makes it more likely the patient will move, and increasing

the strength of the diffusion gradients, which increases the severity of the eddy

currents.

Some acquisition-time techniques can reduce these artefacts. For exam-

ple, prospective motion correction can detect head movement and realign the

imaging gradients in real time in order to acquire the correct slice [116], and

eddy-currents can be mitigated using adjusted sequences such as the twice-

refocused spin-echo (TRSE) [94]. However prospective motion correction isn’t

available on all scanners, and the TRSE is a longer sequence than PGSE and

requires TE to be increased, which can affect SNR. As discussed in the previous

section, in practice post-processing techniques are very popular, as they have

several advantages: they can be applied retrospectively to already acquired

data, a user can revert to the original data if the technique does not work as

hoped, and they don’t require additional scan-time, which is often expensive.

However these techniques are difficult to evaluate; as a result the literature

relies on either qualitative visual assessments of image alignment [100, 101],

or quantitative assessments of surrogate measures of alignment, such as tract
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length [102], fractional anisotropy (FA) values [103] or reduced residuals from

fits to microstructural models [92, 104]. The lack of a suitable, quantitative

evaluation makes it difficult to understand which techniques should be used.

In this chapter, we apply the simulation framework introduced in Chap-

ter 3 to compare two of the most commonly used post-processing techniques

for correcting EC and motion artefacts. FSL’s eddy correct represents what

until recently has been standard practice, the registration of each DW-MR

volume to a b= 0 volume, whilst eddy is a newer tool that registers each vol-

ume to a model-free prediction of how it should look in undistorted space [38].

We then turn the framework to a more thorough investigation of the most

promising of these techniques, eddy. We investigate how eddy’s performance

depends on the data acquisition: both the number of directions acquired, and

the choice of full-shell vs half-shell protocols, in order to make practical rec-

ommendations for its use. Finally we look at the impact of correction quality

by examining microstructure fits to real and simulated data.

4.3 Experiments and Results
We firstly undertake a comparison of two artefact correction methods,

eddy correct and eddy (Section 4.3.1), before evaluating the performance

of eddy as a function of the quality of the dataset (Section 4.3.2). Finally we

assess the impact of correction by fitting models of microstructure to real and

simulated data (Section 4.3.3).

4.3.1 Comparison of correction methods

In this section we compare the quality of correction obtained from two post-

processing techniques. The first is FSL’s eddy correct, which performs an

affine (12 degrees-of-freedom) registration of each volume in a dataset to a

b=0 image in order to simultaneously correct for motion and EC distortions.

We also test a more sophisticated method, FSL’s eddy, which registers each

volume to a model-free prediction of how it should look in undistorted space

[38]. Firstly we compare them quantitatively using our simulation framework,
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and then we compare them qualitatively on a real dataset to demonstrate that

our findings in simulation are present in real data.

The simulated dataset consists of two shells, b=700/2000 s/mm2, 32/64 di-

rections with 12 b=0 images, TR/TE = 7500/109 ms, 72×86×55 with isotropic

voxel size 2.5 mm. All simulations were performed at 3 T. K-space was ac-

quired with a readout bandwidth of 100 kHz, using a linear-ordered, cartesian

sampling trajectory with full coverage. We used a matrix size of 72×86, which

was chosen along with the image voxel size (2.5 mm isotropic) to strike a bal-

ance between minimising computation time and ensuring full-brain coverage.

K-space was apodized using a Hamming window, and no zero-filling was per-

formed. Diffusion directions were distributed isotropically on the sphere. EC

gradients were added to the pulse sequence according to the model in Sec-

tion 3.3.3. One dataset was simulated with just EC artefacts, and one was

created with both EC and motion artefacts. In this dataset, a translation

along each axis was selected for each volume randomly from the range -5 to

5 mm, in addition to a rotation about each axis taken from the range -5 to

5°. Ground truth displacement fields were obtained for each volume as de-

scribed in Section 3.3.4. Normally distributed noise N
(
µ,σ2

)
with µ= 0 and

a spatially constant σ was added to the real and imaginary channels of the

signal, so that the magnitude images contained Rician noise. Two different

values of σ were selected to produce two datasets, one with SNR=10 and one

with SNR=20. The SNR was defined as A/σmeasured, where A was the mean

signal value in the b= 0 images across a region of interest (ROI) delineated in

the WM (the centrum semiovale), and σmeasured was obtained by taking the

standard deviation of the signal in a large region of the image background,

drawn to exclude any brain voxels.

The simulated datasets were corrected using eddy correct and eddy.

Default settings were used for eddy correct: correlation ratio as the similarity

measure and trilinear interpolation. Default settings were mostly used for

eddy: 1000 voxels for estimating the Gaussian Process hyperparameter, spline
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interpolation, quadratic first-level modelling of the EC, and no second-level

modelling. However we used 10 iterations rather than the default 5, because we

sometimes found 5 was not sufficient to ensure convergence. We also performed

correction using eddy correct with normalised mutual information (NMI) as a

cost function, to test the claim that it is more robust than other cost-functions

[117]. Results for correction of the datasets with EC artefacts are shown in

Fig. 4.1a, and that dataset with both EC and motion artefacts are in Fig. 4.1b.

Figure 4.2 shows how these displacement field errors are spatially distributed

across the brain.

The real dataset was acquired on a Siemens PET-MR 3T with similar

parameters to the simulated dataset: two shells, b=700/2000 s/mm2, 32/64

directions with 4/8 b=0 images, TR/TE = 7500/103 ms, isotropic voxels of

size 2.5 mm. The only differences were the dimensions, here 96×96×55, and

the TE (103 ms here vs 109 ms in the simulations). The SNR of the data was

25, measured on the b=0 images in an ROI in the centrum semiovale. This

dataset was also corrected using eddy correct and eddy with the default

settings. Figure 4.3 shows the results.

Figure 4.1 demonstrates that eddy correct is unable to correct the data

well, even for DWIs acquired with b=700 s/mm2, whilst eddy is able to pro-

vide good correction across the dataset. Volumes corrected with eddy correct

have average errors of one voxel at b=700 s/mm2, rising to 1.5 voxels at

b=1000 s/mm2. This seems to be caused by the increasing contrast differ-

ences between the DWI and b=0 volumes as b-value is increased, which makes

direct registration progressively worse. These findings are in agreement with

previous work [80] which found that DWIs can only be successfully corrected

by registration to b=0 for b ≤ 300s/mm2. By contrast, eddy is able to cor-

rect with errors of less than 0.2 voxels across the dataset at SNR=20, and 0.5

voxels at SNR=10. The spatial distribution of errors in Figure 4.2 show that

eddy correct consistently over-scales the data. This is likely caused by the

attenuation of the CSF rim around the brain in DWIs. This makes the DWIs
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look smaller then the b=0 images, which causes registration to enlarge them.

Interestingly, Fig 4.1 shows that at SNR=10 eddy provides better correction

for the dataset with EC and motion than the dataset with EC and no motion.

For the dataset with no motion, eddy was not able to detect the EC artefacts,

and essentially left the data uncorrected, whilst for the dataset with motion

eddy was able to accurately estimate both the motion and EC artefacts. At

SNR=20 eddy was able to estimate the correct parameters for the dataset

with EC and no motion. Thus it seems that the combination of low SNR

and no motion artefacts caused eddy’s optimisation process to fail. We found

that both methods showed little sensitivity to noise for SNR> 20: results on

a dataset with SNR=30 (not shown) were very similar to those found on the

SNR=20 data.

The results for real data corroborate with our findings for simulation. Fig-

ure 4.3 demonstrates an over-scaling of data corrected by eddy correct, no-

ticeable at b=700 s/mm2 and extremely clear at b=2000 s/mm2. The datasets

corrected by eddy are much better aligned with the b=0 outlines. This figure

also serves to highlight the difficulty in the application of qualitative methods

to the assessment of artefact correction: the results are sensitive to exactly

how the outline is drawn on the b=0, which involves a subjective judgement

of how much of the CSF to exclude as the b-value varies.

4.3.2 Evaluation of eddy

We investigated the dependence of eddy’s performance on the quality of the

dataset being corrected, both by varying the number of DW directions and

by comparing the recommended full-shell acquisition scheme to a half-shell

scheme. Eddy makes use of information from ‘similar’ volumes in order to

create a registration target for each volume in the dataset, and so, unlike

eddy correct, its ability to correct each volume is dependent on the full

dataset. Thus it is recommended that datasets have a sufficient number of

diffusion directions and are sampled on the full-sphere (or alternatively, with

a blip-up blip-down acquisition). However there is no information available on
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Figure 4.1: Mean error in displacement field across the brain. The first 12 volumes
are b=0, the next 32 are b=700s/mm2 and the remaining 64 b=2000s/mm2.
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Figure 4.2: Spatial errors in displacement field, in voxels (each 2.5 mm isotropic),
shown across one slice of the brain. The errors are a mean across all of the volumes
with the same b-value. Results shown for eddy correct were obtained using the
default cost function.



4.3. Experiments and Results 79

 

b=700 b=2000

b=0

Original

Eddy correct

Eddy

Figure 4.3: Correction errors on real data. Anterior portion of the brain in an axial
slice is shown, corresponding to the yellow region on the inset image. An outline
was drawn around the undistorted b=0 image, then superposed on a DWI. The
boundaries of an undistorted DWI should align with this outline. Different outlines
were drawn on the b=0 for use on the b=700 and b=2000 volumes, to account for
the different amounts of CSF attenuation present.

the minimum number of diffusion directions required for effective correction,

or on the performance penalty incurred when correcting data acquired on the

half-sphere.

To test eddy’s dependence on the number of DW directions, a num-

ber of datasets were simulated to represent common diffusion tensor imaging

(DTI) and high angular resolution (HARDI) acquisition protocols. Single-

shell datasets with 16, 32, 48 and 64 diffusion directions were generated

at both b=1000 s/mm2 and b=2000 s/mm2, with one b=0 image for every 8

DWIs. Multi-shell datasets were made by combining the single-shell acquisi-

tions, to create sets with 16/16, 16/32, 32/32, 32/64 and 64/64 directions in

the b=1000 s/mm2 and b=2000 s/mm2 shells respectively. Diffusion directions

were obtained from a minimisation of electrostatic energy as implemented in

Camino [118, 119], and optimised on the full-sphere. Each dataset had TR/TE

= 7500/109ms, 72×86×55 with isotropic voxel size 2.5 mm, and Rician noise
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was added to produce datasets with both SNR=10 and 20. EC and motion

artefacts were added in the manner described in Section 4.3.1. Each dataset

was corrected using eddy with the same settings described in Section 4.3.1.

The results are reported in Fig. 4.4.

To test eddy’s ability to cope with half-shell datasets, half-sphere sam-

pling schemes were obtained from the full-sphere schemes mentioned previ-

ously, by negating each b-vector with a z-component less than 0. Datasets

were generated from these schemes with the same acquisition parameters as

their full shell counterparts. Rician noise was added to each dataset to create

an SNR of 20. Each dataset was corrected three times using eddy: the first

using the default settings as described in Section 4.3.1, and the second and

third times using linear and quadratic models that relate the parameters that

define the EC distortion field to the applied b-vector (the default places no

constraints on the relationship between these parameters and the b-vector).

The results are shown in Fig 4.5.

The results indicate that eddy is able to provide good correction

down to 16 diffusion directions at SNR = 20, at both b=1000 s/mm2 and

b=2000 s/mm2. At SNR=10 good correction is achieved for the b=1000 s/mm2

datasets, but eddy struggles to correct the b=2000 s/mm2 single-shell datasets.

The addition of more information might improve correction at low SNR -results

for the combined 64/64 dataset are better than the 64 direction dataset at

b=2000 s/mm2.

Results also indicate that, whilst full-shell sampling is optimal, it is still

possible to obtain good correction on datasets acquired on the half-sphere.

For most datasets the correction could be marginally improved by enforcing

linear second-level modelling of the EC artefacts, which is to be expected as

our simulations use a linear EC model.

4.3.3 Impact of correction on microstructure estimation

In this section we investigate the impact of artefact correction on the estima-

tion of microstructural features from diffusion data. Firstly we fit two models,
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(c) Multi-shell, b=1000 s/mm2 and 2000 s/mm2

Figure 4.4: Errors in the displacement fields in datasets corrected with eddy, as
the number of directions in the acquisition is varied. Each data point is a mean over
the voxels in the brain for a volume, boxplots show the distribution of these means
across the dataset.
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Figure 4.5: Errors in the displacement fields in datasets corrected with eddy for
full-shell and half-shell acquisitions. Each data point is a mean over the voxels in
the brain for a volume, boxplots show the distribution of these means across the
dataset. The model refers to the relationship between the applied b−vector and the
parameters that determine the EC field. All datasets have SNR=20.
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the diffusion tensor (DT) and NODDI, to simulated datasets before and after

correction. The advantage of simulations is that we can compare the results to

a ‘ground truth’ obtained by fitting these models to a dataset simulated with-

out artefacts. Secondly we fit these models to a real dataset to demonstrate

consistency with our findings on simulation. Finally, we examine the use of

fitting residuals as a surrogate marker of improved correction.

The simulated dataset was the same as the one used in Section 4.3.1:

two shells with b=700/2000 s/mm2, 32/64 directions and isotropic voxel size

2.5 mm. We fit the DT to the b=700 s/mm2 shell of five datasets: the ground

truth, both with and without noise, one distorted with motion and EC arte-

facts, and this distorted dataset corrected by eddy and eddy correct. All

datasets had SNR=20. We changed the interpolation used by eddy correct

to spline, to match that used by eddy. FSL’s DTIFIT was used to fit the ten-

sor. We fit NODDI to both shells of each of these datasets, using the NODDI

Matlab Toolbox. Figure 4.6 shows the resulting FA and sum-squared error

(SSE) of the model prediction’s residual maps, and Fig. 4.7 shows the NODDI

parameter maps.

The real dataset was the same used in Section 4.3.1: two shells,

b=700/2000 s/mm2, 32/64 directions with isotropic size 2.5 mm. We fit the

DT to the b=700 s/mm2 shell of the original data, and the data after correc-

tion by eddy and eddy correct. We fit NODDI to the multi-shell dataset.

Figure 4.8 show the resulting parameter and residual maps.

The results from simulation in Figs 4.6 and 4.7 demonstrate the impact

of these post-processing techniques on estimating microstructure. Whilst FA

maps in Fig 4.6 are hard to distinguish, the difference maps in Fig 4.6b are

more informative. They show anatomical structure in the data corrected by

eddy correct which is not apparent in the data corrected by eddy. The

NODDI maps in Fig 4.7a show a smoothing of the parameters when data is

corrected with eddy correct, particularly noticeable in the orientation disper-

sion index (ODI). There is overestimation of the intra-cellular volume fraction
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(VIC) in the dataset corrected by eddy correct, particularly in GM regions,

and an underestimation of the isotropic volume fraction (VISO) around the

edges of the brain, likely caused by the overscaling of the DWIs. The differ-

ence maps in Fig 4.7b make these problems more clear. There is noticeable

structure in the difference maps for eddy correct. By contrast, the parame-

ter maps estimated from data corrected by eddy are much more similar to the

ground truth maps.

Whilst there is no GT available for the fits to real data, the parameter

maps show features consistent with those found on simulation. Compared to

the data corrected by eddy, the dataset corrected by eddy correct shows a

loss of sharpness in some of the FA structures in Fig 4.8a. There is also an

overestimation of the VIC and underestimation of VISO relative to the results

from eddy, indicated on the figure. The general smoothing of the ODI map is

also noticeable.

The results allow us to investigate the effectiveness of using fitting resid-

uals as a surrogate marker of image alignment. Both corrected datasets show

lower residuals than the original data. Residuals from the two correction meth-

ods appear similar, and are best compared using difference images, shown in

Fig 4.9. Despite results from Section 4.3.1 showing that eddy provides better

correction, eddy correct gives lower residuals from DT fits in a rim around

the brain, in both real and simulated data. There are also some regions in

the middle of the brain where eddy correct shows lower residuals from DT

fits. We speculate this is caused by the smoothing that results from the over-

scaling of the DWIs, which makes the signal easier to fit to. It seems that the

smoothing from interpolation also has an effect: in Fig 4.7a the residuals from

the corrected datasets are lower than those in the GT + noise data.

Figure 4.9 shows that residuals from NODDI fits are lower for data cor-

rected with eddy than data corrected with eddy correct. The increased resid-

uals for data corrected by eddy correct seem to be due to the multi-shell na-

ture of the data. Results in Section 4.3.1 show that eddy correct overscales
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Figure 4.6: FA maps resulting from fits to ground truth data (i.e. data simulated
with no distortions), ground truth data with added noise, data distorted with both
EC + motion, and distorted data corrected by eddy and eddy correct. SNR=20
for all noisy data.

DWIs by increasing amounts with increasing b-values, so this internal misalign-

ment in the dataset is likely the reason that NODDI fits data corrected using

eddy correct badly. These results indicate that reduced residuals from model

fits can be indicative of increased image alignment, but can also be confounded

by other factors, such as image smoothing and expansion into background re-

gions, that mean these measures need to be interpreted carefully.

4.4 Discussion

The simulation framework allowed us to quantitatively compare a widely used

technique for correcting EC and motion artefacts in DWI, eddy correct, and

its recently proposed alternative, eddy. We were able to provide quantitative



86 Chapter 4. Application 1: assessing motion and EC correction

Distorted Eddy

VIC

VISO

Eddy correct

0

1

0

1

0

1

1

Ground truth

ODI

0

Ground truth
+ noise

Ground truth
+ noise

0

1

0

1

0

1

0

1

SSE

(a) NODDI parameter and signal residual maps. Residuals are the sum-squared
difference between actual and predicted signal.

Distorted Eddy

VIC

VISO

Eddy correct

0

1

0

1

0.8

-0.8

0.8

-0.8

0

1

0.8

-0.8

ODI

Ground truth
+ noise

Ground truth
+ noise

(b) Difference in NODDI parameters compared to ground truth estimates.

Figure 4.7: NODDI parameters resulting from fits to ground truth data (i.e. data
simulated with no distortions), ground truth data with added noise, data distorted
with both EC + motion, and distorted data corrected by eddy and eddy correct.
SNR=20 for all noisy data. Parameters are: VIC - intracellular volume fraction, ODI
- orientation dispersion index, VISO - isotropic volume fraction.
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Figure 4.8: Parameter maps resulting from fits to real data.
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Figure 4.9: Difference in residuals from eddy and eddy correct: SSEeddy -
SSEeddy correct, meaning positive values indicate voxels where data corrected using
eddy correct had lower residuals.

evidence that eddy correct systematically overscales DWIs, which corrobo-

rates with findings in the literature [120]. We also demonstrated that eddy

is able to provide significantly better correction. These findings corroborate

with a previous study [121], which applied the two methods to real datasets

and assessed them using a combination of visual inspection and comparison of

FA values.

An important question is whether other, similar correction techniques ex-

hibit the tendency of eddy correct to overscale the data. In an extension to

the results already shown in this chapter, we investigated this for two other cor-

rection techniques: ACID performs a constrained 9 degrees-of-freedom (DOF)

registration to a b = 0 image [122] and ExploreDTI registers to b=0 in order

to optimise the parameters of an EC and motion specific model [117]. We ap-

plied these techniques to the motion and EC dataset described in Section 4.3.1.

Figures 4.10 and 4.11 show the error fields for these new methods, along with

those of eddy correct and eddy. These other methods perform better than



4.4. Discussion 89

Volume
0 20 40 60 80 100 120

M
ea

n 
er

ro
r i

n 
di

sp
la

ce
m

en
t f

ie
ld

 / 
vo

xe
ls

 

0

0.5

1

1.5
Eddy_correct, SNR=20
Eddy, SNR=20
ExploreDTI, SNR=20
ACID, SNR=20
Eddy_correct, SNR=40
Eddy, SNR=40
ExploreDTI, SNR=40
ACID, SNR=40

Figure 4.10: Mean error field over the brain, evaluated for each volume. Volumes
are arranged by b-value so that the first 12 are b=0, next 32 are b=700 and final 64
are b=2000.

eddy correct, likely because they use more constrained methods for register-

ing each DWI to the b = 0 image, but are still outperformed by eddy, which

avoids registration to b= 0.

We were able to investigate the quality of dataset needed to ensure good

correction with eddy. For data with SNR=20, good correction can be obtained

on as few as 16 directions, though denser sampling is needed for data with

lower SNR, such as b=2000 s/mm2 data at SNR=10. We also demonstrated

that, whilst a full-sphere acquisition scheme is ideal, it is still possible to

achieve good correction on half-sphere datasets. These findings are useful

for retrospective studies where full-shell acquisition has not been considered.

The datasets simulated contained particularly severe artefacts, including large,

random movements between each volume and large EC distortions, so these

findings could be considered to be an upper-bound on the error that can be

expected when correcting DW datasets. However, our findings indicate that

the performance of eddy is robust to the severity of artefact, as supported

by the similar corrections achieved for a dataset with just EC artefacts and
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Figure 4.11: Spatial plots of the mean error field over every volume at a given b-
value for SNR=20, shown for one axial slice. Errors are in voxels (2.5 mm isotropic).
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a dataset with both EC and severe motion in Fig 4.1. It may be that the

severity of these artefacts explains why we found more than the recommended

5 iterations were necessary to achieve good correction with eddy.

These results are important in the context of techniques that use DW-

MR data. Data is most commonly acquired at b=1000 s/mm2, and our results

indicate we can expect errors of more than 1 voxel in such images if they

are corrected using registration to b=0. These are enough to cause anatomical

misalignment in regions of partial volume, such as the boundaries between GM

and CSF which will compromise any information on microstructure obtained

from such data, as demonstrated by the FA maps in Fig 4.6. Figure 4.7 shows

this effect is even more severe for data acquired at b= 2000 s/mm2, which is

becoming more common with the increasing popularity of HARDI techniques.

In this work a linear EC model was used, which causes simple scalings,

shearings and translations of each DWI. This has been found to be inadequate

for describing the EC fields in some scanners. Rather they are better described

by a second or third order polynomial [117]. We also modelled motion as

occurring instantaneously between the acquisition of volumes, enabling it to

be modelled as a simple rigid-body deformation. This matches the assumption

that most post-processing techniques make when trying to correct the data,

but in practice motion can occur at any point in the acquisition. Future work

could assess the impact that both higher-order ECs and movement throughout

the acquisition have on attempted correction. We also assumed that only EC

and movement artefacts were present in the data. Perfect fat saturation was

assumed - the framework is currently unable to simulate this, as the input

object used does not contain information about fat. Other artefacts that can

be included in the simulations (e.g. ghosting, RF spikes) were excluded to

allow us to focus solely on EC and motion artefacts, but they can be included

in future work to see how their presence affects EC/motion correction.

We use comparison of displacement fields in order to assess the effective-

ness of correction techniques. This directly measures the desired outcome of
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such techniques, i.e. the mapping of all images into an undistorted space. We

contrast this with some of the quantitative surrogate metrics that have been

used to assess techniques, such as FA values in WM tracts [121], the length

of tracts obtained from tractography [102] or the size of the residuals from

a model-based fit to the data [92, 104]. These methods are often the best

available when testing correction on real datasets where a GT is not available,

but they are indirect metrics: increased image alignment is only one of many

factors that can affect them. For example, the results indicate that residuals

from a DT fit can be lowered by smoothing of the data due to over-scaling of

the DWIs. Current methods only attempt to correct for geometric distortions,

so we predicted geometric displacement fields for assessment. Future methods

may also try to correct for non-geometric effects such as the blurring due to

decay of ECs, and our framework can be extended to provide GT estimates

of how these may be corrected, which could assist both the development and

testing of such methods.

4.5 Conclusions
I applied the simulation framework to assessing popular post-processing tech-

niques for correcting motion and eddy-current artefacts. I was able to quanti-

tatively demonstrate that eddy correct performs poorly, which is significant

because it is frequently used by the community. The results also demonstrated

that eddy performs well, and I was able to investigate the type of acquisition

required to enable eddy to correct datasets, in order to make practical rec-

ommendations for its use. This work highlights the importance of careful

evaluation of acquisition and processing pipelines, and demonstrates how the

simulation framework can aid such evaluation.



Chapter 5

Simulating the spin-echo

5.1 Overview
In this section we extend the simulator to address one of its key limitations

discussed in Chapter 3, the inability to simulate spin-echo pulse sequences.

5.1.1 Research dissemination
This work described here is published in PLOS ONE. The implementation of

spin-echo in POSSUM will be available in the next release of the FSL toolbox.

• Quantitative assessment of the susceptibility artefact and its interaction

with motion in diffusion MRI. MS Graham, I Drobnjak, M Jenkinson, H

Zhang. In PLOS ONE 12 (10), e0185647

5.2 Introduction
One of the key limitations of the simulation framework is its inability to sim-

ulate spin-echo (SE) pulse sequences. Whilst it has been possible to simulate

the contrast found in spin-echo images by using a GE-EPI sequence and re-

placing T ∗2 with T2 values, the lack of a SE means the simulator is not able to

faithfully model the effects of a susceptibility field in DW-MR data. This is

because the susceptibility-induced field causes both geometric distortions and

signal loss in GE-EPI data, whilst in SE-EPI data it only causes geometric

distortions. In this chapter we describe work to implement SE simulation in

POSSUM.
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Tissue T1/ms T ∗2 /ms T2/ms ρ

Grey matter 1331 51 75 0.86
White matter 832 44 70 0.77

CSF 3700 500 500 1

Table 5.1: Tissue parameters used in the spin-echo version of POSSUM. Proton
density ρ is in arbitrary units.

5.3 Methods
We first detail our implementation of the spin-echo within POSSUM, and then

discuss how our SE version of POSSUM is incorporated into the simulation

framework.

5.3.1 Implementation of spin-echo in POSSUM

The implementation required several changes to POSSUM — an overview of

how POSSUM works is shown in Fig 5.1 with all the changes made highlighted

in red. Two of the changes are straightforward. Firstly, T2 values for each tissue

type are now passed to the simulator, along with the T1 and T ∗2 values passed

in the previous version — the full set of tissue parameters used is shown in

Table 5.1. Secondly, new functionality for generating pulse-sequences with a

spin-echo is included.

The main change is the modelling of the action of the spin-echo on the

magnetisation. A spin-echo consists of an 180° RF pulse that rotates the

magnetisation of each spin about an axis in the transverse plane, inverting

the magnetisation’s phase. Ideally the modelling of spin-echo would simply

involve modelling the RF action on each of these spins. However, POSSUM

represents the dense collection of spins in a voxel as a single isochromat. This

means we must take a model-based approach to implementing the spin-echo,

similar to that described in [63], to simulate the effects of the spin-echo on

each isochromat.

The 180° RF pulse affects both the magnitude and phase of the isochro-

mat. After excitation, the isochromat’s magnitude is reduced by the dephasing

of its spins. The spin-echo reverses any loss of magnetisation that is caused by
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Figure 5.1: Flowchart describing the POSSUM simulator. Changes made in order
to implement spin-echo in red. These changes are: addition of a 180 pulse to the
input pulse sequence, inclusion of T2 tissue values as an input with the geometric
object and modelling of the effects of the 180 pulse on the magnetisation in the main
MR simulation phase.

dephasing which is time-invariant, i.e. that from T
′
2 effects and susceptibility-

induced gradients. The overall phase of the isochromat is altered by any mag-

netic fields that change the frequency of its precession: this is caused by both

intended fields (e.g. the applied imaging gradients) and undesired fields (e.g.

those induced by eddy-currents and susceptibility). The spin-echo reverses

any phase accumulated by the isochromat between excitation and the 180°

RF, leading to the cancellation of any additional phase accrual caused by un-

desired, time-invariant fields at the echo time.
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In the original POSSUM, T ∗2 values were supplied for each tissue type,

and the relaxation of the transverse magnetisation was calculated according

to:

m(t) =m(0)exp
(
− t

T ∗2

)
(5.1)

where t is the time since excitation of the isochromat. Using the relation

1/T ∗2 = 1/T2 + 1/T ′2, this may be rewritten:

m(t) =m(0)exp
(
− t

T2

)
exp

(
− t

T
′
2

)
(5.2)

To handle the effects of the spin-echo on T
′
2-induced magnetisation loss the

magnetisation calculation is replaced with:

m(t) =m(0)exp
(
− t

T2

)
exp

(
−|t2−RFdist|

T
′
2

)
(5.3)

where t2 is the time since the last RF pulse and RFdist is the time between

the 90 and 180 pulses (0 if no spin-echo pulse has occurred). The effect of

the |t2−RFdist| term can be understood by examining its behaviour in three

regimes: before the spin-echo, after the spin-echo and after the echo itself:

|t2−RFdist|=



t t < TE/2

TE− t TE/2< t < TE

t−TE TE < t

(5.4)

This formulation is such that rephasing of T ′2 begins at t = TE/2 and is

complete (|t2−RFdist| = 0) at t = TE ; dephasing continues after this point.

For a gradient echo sequence, t2−RFdist = t for all values of t and we observe

the expected T ∗2 decay.

The second factor leading to loss of longitudinal magnetisation is gradient-

induced dephasing across the voxel. POSSUM handles this by evaluating an

analytical function of the time-integral of these gradients [105]. The effects of

the spin-echo here are modelled by reversing the sign of integrals at the 180 RF
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pulse; effectively causing a cancelling of their contribution at the spin-echo.

The effects of the spin-echo on the isochromat’s phase are accounted for

straightforwardly, by reversing any phase accumulated when the 180° RF oc-

curs.

5.3.2 Incorporation of POSSUM into the DW-MR

framework

The overall framework for simulating DW-MR data, incorporating the SE-

enabled version of POSSUM, is demonstrated in Figure 5.2. The figure shows

that susceptibility-induced fields are now included as an input, a SE-EPI se-

quence is passed to the simulator rather than a GE-EPI sequence and T2 values

are also passed to the simulator.

The output displacement fields now also account for the geometric dis-

tortions caused by susceptibility-induced off-resonance fields. These are calcu-

lated according to [112]:

ψ (r) = tsNf(r)p̂ (5.5)

where ψ (r) is the field of spatial displacements in each DWI that result from

off-resonance fields (in voxels), defined at each location in the image r, ts is

the echo spacing (in seconds), N is the number of phase-encode lines, f(r) is

the susceptibility-induced off-resonance field (in Hz), and p̂ is a dimensionless

unit-vector that points along the phase-encode direction. The term tsN is also

known as the readout time, and is the reciprocal of the bandwidth per pixel

in the PE direction. The bandwidth per pixel is equal to the number of Hz in

the off-resonance field that leads to a one-voxel displacement of signal along

the PE direction. f(r) now includes effects from susceptibility-induced fields,

in addition to the eddy-current gradients discussed in Chapter 3.
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Figure 5.2: The new framework for simulating DW-MR data. Note susceptibility-
induced fields are now included as an input, a SE-EPI sequence is passed to the
simulator rather than a GE-EPI sequence and T2 values are also passed to the
simulator.

5.4 Validation
As discussed in the previous section, one of the main ways a spin-echo affects

the magnetisation is by recovering signal lost to T ′2 dephasing. We first exam-

ined this for the simple FID experiment, where signal is excited and followed

by a spin-echo at time TE/2, because an analytical solution for the signal in

this situation is known. Figure 5.3 shows the agreement between theory and

simulation for three spin-echo FID experiments performed on a homogeneous

sample. This demonstrates that T ′2 dephasing is being correctly reversed by
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Figure 5.3: Comparison of simulation with theory for a spin-echo free-induction
decay experiment, with varying values of TE and T ∗

2 . Spin-echo occurs at TE/2. T2
fixed at 75 ms.

the spin-echo in the simulations. Figure 5.4 demonstrates this qualitatively

for the simulation of a full brain, by comparing GE and SE simulations over a

whole brain slice; the increased signal in the GM and WM is evident.
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Figure 5.4: Comparison between GE-EPI and SE-EPI images simulated in POS-
SUM, shown on the same arbitrary intensity scale.

The second source of signal loss that the spin-echo is able to recover is

that caused by gradient-induced dephasing across the voxel. To demonstrate

the effects of this, we performed simulations both with and without a B0

inhomogeneity field that varied linearly across the field of view, so that it had

a constant gradient. We modified the simulator to prevent B0 fields causing

spatial offsets in image space, so that the effect of the gradient could be studied
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in isolation. Figure 5.5 shows that this gradient causes signal loss for the GE-

EPI sequence, but the SE-EPI sequence completely reverses this signal loss,

causing the resultant image to be indistinguishable from the image produced

in the case where no B0 gradient exists. Figure 5.6 compares GE and SE

sequences with spatial offsets re-enabled, and with a realistic B0 inhomogeneity

map. The figure shows spatial offsets similar to those expected in real data

(the correctness of the spatial offsets simulated by POSSUM has already been

extensively validated in [105]), as well as signal loss in the GE image that is

not present in the SE image, as expected.

No b0 
gradient

GE SE

b0 gradient

No B0 
gradient

B0 
gradient

Figure 5.5: Simulations both with and without a linear B0 gradient across the
FOV; which should cause signal reduction the GE-EPI sequences but not SE-EPI.

5.5 Discussion
We have presented an extension of POSSUM that enables the simulation of

spin-echo pulse sequences. The work enables us to incorporate the suscepti-

bility artefact into the DW-MR simulation framework, which is important as
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Gradient-echo Spin-echo 

Figure 5.6: Comparison between GE-EPI and SE-EPI images simulated in POS-
SUM in the presence of a susceptibility-induced field. Both images are displayed
with the same maximum intensity. All acquisition parameters matched. Compared
to the SE image, the GE image has less signal (due to T ∗

2 decay) and dropout in
regions of large susceptibility induced-fields. A different slice to that in Figure 5.5
has been chosen here to highlight the effects of the realistic B0 field.

this artefact is always present in acquired data.

There are some limitations to the work presented here. The need to

explicitly model the effects of a spin-echo on a single isochromat, rather than

a dense group of spins, places some limitations on the type of sequences that

can be simulated. For example, the model we implemented here would not be

suitable for a pulse sequence with multiple 180 pulses within a single excitation,

such as RARE [123]. The model would need to be modified in order to be made

suitable for new pulse sequences. We also modelled the actions of a perfect 180

degree pulse. Imperfect pulses can lead to artefacts such as the line artefact

that are typically dealt with by gradient crushers around the pulse [4, pp.

807–809]. Our assumption of perfect pulses mean that these crushers were not

required.





Chapter 6

Application II: investigating the

susceptibility artefact

6.1 Overview
In this chapter, we use our simulation framework to assess the three most

commonly used post-processing methods for correcting the susceptibility arte-

fact. We also investigate the interaction between susceptibility and movement,

which is not accounted for by any of the commonly used methods, and show

that it adversely impacts analysis of DW-MR data. We suggest its impact can

be reduced by a simple adjustment of the acquisition, but that this could also

be a valuable area for future methods development.

6.1.1 Research dissemination
This work described here is published in PLOS ONE.

• Quantitative assessment of the susceptibility artefact and its interaction

with motion in diffusion MRI. MS Graham, I Drobnjak, M Jenkinson, H

Zhang. In PLOS ONE 12 (10), e0185647

The datasets simulated with movement-susceptibility interaction have also

been used to validate a novel method for correcting this artefact, but this

work is not discussed in this chapter:

• Susceptibility-induced distortion that varies due to motion: Correction
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in diffusion MR without acquiring additional data, JLR Andersson, MS

Graham, I Drobnjak, H Zhang, J Campbell. In NeuroImage, In press.

6.2 Introduction
DW-MR data is confounded by the presence of the susceptibility artefact,

caused by an off-resonance field induced by differences in magnetic suscepti-

bility at the air-tissue interface. When images are acquired with the spin-echo

(SE) echo-planar imaging (EPI) sequence typically used in DW-MRI [124] this

field causes geometric distortions in the data. If the subject remains static

during acquisition these geometric distortions will be the same for each vol-

ume, resulting in diffusion datasets that are internally consistent (every volume

contains the same distortions) but not anatomically faithful (the volumes do

not match the subject’s true anatomy). This has been shown to preclude ac-

curate alignment to anatomically faithful structural data [125], a step that is

often necessary for localising fine structures in the diffusion data, and to also

introduce bias into results obtained from tractography [126–128]. We refer

to this situation as the static susceptibility case. If the subject moves during

acquisition the susceptibility field itself changes [40], altering the geometric

distortions in the data, meaning that even after rigid realignment to correct

for motion the diffusion datasets are both geometrically distorted and inter-

nally inconsistent (DW-MR volumes are misaligned relative to each other). In

this case even analysis of the data that is not dependent on anatomical faith-

fulness, such as voxelwise fits to the data, will suffer from increased variability.

We refer to this movement-induced change to the susceptibility field as the

dynamic portion of the susceptibility artefact.

Recent trends in DW-MR are making it increasingly important that we

have robust, well validated techniques for correcting this artefact. In the recent

past, it has been common to reduce the impact of the susceptibility artefact at

scan-time, by using in-plane parallel imaging techniques to reduce the number

of phase-encoding (PE) steps. However, recently a number of high-profile
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studies such as the Human Connectome Project (HCP), HCP lifespan and the

UK Biobank have chosen to forego the use of these techniques in favour of

SMS methods [129, 130], citing instabilities in reconstruction when the two

are employed together [131, 132]. As these acquisition choices filter down to

more ‘everyday‘ studies there will be a concurrent increase in the severity of

the susceptibility artefact. Furthermore, there is a trend, partly facilitated

by the ability to image faster, towards acquiring datasets in more ‘difficult’

populations such as in the developing HCP [133]. These populations tend

to move more in the scanner, further exacerbating problems caused by the

interaction between susceptibility and motion.

There are a number of techniques available for correcting the susceptibility

artefact. Correction is usually undertaken using post-processing strategies that

may require the collection of some additional data. Broadly, these techniques

can be divided into three types. The first involves registration of the data to

a geometrically correct structural image [134–141]. The second type estimates

a map of the B0 inhomogeneities from acquired gradient-echo scans, and uses

this along with some information about the diffusion acquisition protocol to

correct for the distortions [95, 142–145]. The third estimates the underlying

distortions using additional EPI data that is acquired with different phase-

encoding (PE) and thus contains different distortions [96, 146–151]. This last

class of technique offers the additional opportunity to accurately recover lost

signal information if the full dataset has been acquired with reversed phase-

encoding.

There are two classes of correction technique that rely on specialised pulse

sequences not currently available on most scanners. Multi-reference approaches

[112, 152, 153] are similar to fieldmap-based methods in that they involve the

acquisition of additional reference scans to measure the geometric distortions in

the data and correct in post-processing. Scan-time correction schemes estimate

the fieldmap in real-time and correct it using gradient shims [154, 155]. These

techniques are less commonly used and not examined in this chapter.
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The majority of post-processing techniques assume a single susceptibility-

induced field for the diffusion data and it is difficult to assess the impact

of this assumption on the analysis of diffusion data. The problem has been

investigated in the context of fMRI [95, 125], and a number of post-processing

techniques suggested for its correction [156, 157] but they cannot be used to

correct DW-MR data. This is because these methods either assume the off-

resonance field can be measured from the phase [157], which is not true for

diffusion data where the weighting can alter the phase, or because they assume

all undistorted images in a time-series should have the same shape [156], which

is not true if the images have different diffusion-weighting, which can alter the

apparent location of the brain’s outer surface.

It is important that we have available careful comparisons of susceptibility

correction strategies, so that we are able to select the best for our processing

pipelines. It is also vital that we are aware of the impact that their inability

to correct for the dynamic portion of the artefact has on data analysis. To

date, there are no systematic comparisons of existing methods for susceptibility

correction and their limitations. A key reason for this is the difficulty in

evaluating correction techniques. When validating on real data, the lack of

any ground truth means evaluations are typically indirect [136, 150, 158] or

qualitative [95, 96, 148]. Furthermore evaluations are often confounded by

features in the data that are not of interest, such as other artefacts. Simulation

can provide a ground-truth that enables direct, quantitative evaluation, and

further allows for the careful design of experiments that enable the direct

testing of the artefact of interest, without confounds.

In this work, we use simulation to undertake a comparison of the three

classes of technique used for correction of the susceptibility artefact, and fur-

ther characterise the impact of their inability to correct for the dynamic por-

tion of the artefact. Our analysis directly measures the important outcomes

for correction strategies: the ability to correctly estimate the underlying dis-

placement field for correction, and the ability to recover information lost from
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regions of signal compression. We also use the simulation framework to eval-

uate one of the most commonly used surrogate metrics for assessing suscepti-

bility correction, the comparison of corrected datasets acquired with AP and

LR phase-encoding, and use this surrogate to extend our comparison to real

data. Finally, we quantify the increased variability in diffusion metrics caused

by the dynamic susceptibility artefact.

6.3 Methods
The aim of this work is to assess the performance and limitations of exist-

ing methods for correcting the susceptibility artefact. Not only does the

susceptibility-induced field produce geometric distortions in the data, but when

the head rotates around an axis non-parallel to that of the main B0 field, the

susceptibility-induced field is altered and the artefact cannot be fully corrected

using a field estimated before the head moved [40]. Whilst work has charac-

terised [125] and attempted to correct [156, 157] this effect in fMRI, we are

not aware of any available post-processing methods that address the issue in

DW-MR. As a result we divide out analysis into three parts: in the first two,

we compare existing methods for susceptibility correction on data with the

susceptibility artefact but no head movement, using both simulated and real

data. In the third, we characterise the impact of neglecting the movement-

susceptibility interaction on the analysis on DW-MR data, using simulated

data. In the following we describe the experiment design for each component

of the assessment.

6.3.1 Assessment of existing techniques using simulated

data

In this section we describe the comparison of existing methods for susceptibil-

ity correction on data with the susceptibility artefact but no head movement.

In DW-MR the susceptibility artefact leads to geometric distortions of the data

along the PE direction. The non-linear nature of these distortions mean they

can cause redistribution of the signal which appears as either a compression
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or stretch. In regions of compression some information is lost, and additional

information is required in order to recover the true signal. An ideal suscepti-

bility correction method will both correctly estimate the underlying geometric

distortions and the true original signal.

There are three main classes of post-processing technique used for cor-

recting the susceptibility artefact. Registration based (RB) techniques non-

linearly register the distorted data to a non-distorted structural target, often

a T2-weighted image due to its similar contrast to the b=0 volume. Fieldmap

based (FMB) techniques estimate the off-resonance field from a series of images

with different echo times, and then use this field to predict the underlying dis-

placement field needed to correct for geometric distortions. Both RB and FMB

techniques provide only a first-order correction of the signal changes, achieved

by modulating the corrected image by the Jacobian of the local displacement

field. Multiple phase-encoding based techniques (MPB) use multiple images

acquired with different phase-encoding directions, and thus with different dis-

tortions, in order to estimate the underlying field needed to correct the data.

If only a single DWI is acquired with multiple PE directions, the technique

enables just the estimation of the field used to correct the dataset and employs

the same first-order correction of signal intensity that is possible using RB and

FMB techniques. If the full dataset is additionally acquired with multiple PE,

these methods offer the added potential to recover the information lost from

regions of signal compression, because these regions will instead be expanded

in the reversed PE dataset. We refer to this special case of the MPB technique

as full multiple phase-encoding based (MPB/F).

In order to assess these techniques, we simulated DW-MR datasets with

susceptibility distortions, along with a T2-weighted structural image, field-

mapping scans, and an additional DW-MR dataset with a reversed PE direc-

tion to enable application of the RB, FMB and MPB techniques, respectively.

We designed the DW-MR datasets to contain levels of distortion similar to

that found in recent high-end studies, such as the HCP [106] and UK Biobank,
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which forego the use of in-plane acceleration techniques (IPAT) in favour of

SMS techniques, in order to characterise the ability of these techniques to cor-

rect data in the ‘worst case’ scenario. The DW-MR data, shown in Fig 6.1,

was simulated with 32 volumes b=1000 s/mm2 and 4 b=0 volumes. We used

a matrix size of 90×106, which was chosen along with the image voxel size

(2 mm isotropic) and number of slices (68) to strike a balance between min-

imising computation time and ensuring full-brain coverage. The echo spacing

was 1 ms, and no IPAT was used, leading to a PE bandwidth per pixel of

9.5 Hz, similar to values for data from the HCP project (9) and the HCP lifes-

pan data acquired on a 3T Prisma scanner (10.4). Partial fourier was not used

as POSSUM is currently unable to simulate it — this does not affect the level

of susceptibility distortion in the data [159], but meant our TE of 109 ms is

slightly higher than typical. K-space was apodized using a Hamming window,

and no zero-filling was performed. Data was acquired with both posterior-

anterior (PA) and anterior-posterior (AP) PE directions. Gaussian noise was

added to the real and imaginary channels of the k-space data at two different

levels, to produce datasets containing Rician noise with an average whole-

brain SNRs of 40 and 20, as determined on the b=0 volume (as described in

Chapter 4) — these represent the upper and lower bounds of SNR that we

expect on modern scanners. Five realisations of each noise level were simu-

lated, as well as a noise-free dataset. No other artefacts (e.g. eddy-currents,

motion and concomitant fields) were included in the simulations. We also

simulated a ground-truth set of DWIs, acquired with the same acquisition pa-

rameters but no input susceptibility field. The structural T2 was simulated

with 1 mm isotropic resolution, dimensions 180×212×136 using a conventional

spin-echo sequence with TE=110 ms, TR=2200 ms and a flip-angle of 90°. The

field-mapping acquisition emulated the standard field-mapping scan found on

a Siemens scanner, and involved the simulation of two gradient-echo images

with the same voxel dimension and matrix size as the DW-MR scans, using a

TR=700 ms, flip-angle of 60° and TE values of 4.92 ms and 7.38 ms. Noise was
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added to these scans using the same standard deviation used in the DW-MR

data, to simulate the same level of thermal noise in all datasets.

In this paper we tested a representative correction technique from each

of the three classes. For the RB method we used the reg f3d command from

NiftyReg (Git commit bf926) [160], which uses a cubic b-spline deformation

model. The first b=0 volume was registered to the T2-weighted structural,

and the estimated transform applied to each DWI. We used default settings

for the registration but constrained the deformation field along the PE axis,

emulating standard practice for susceptibility correction [134, 136, 161], and

after experimentation set the bending energy term to 0.01. For the FMB

methods we used the following steps: 1) mask the first magnitude GE image;

2) erode the mask by one voxel; 3) estimate the fieldmap for all voxels inside

the mask using FSL’s PRELUDE (version 5.0.9) [162]; 4) apply the fieldmap

to each DWI using FUGUE [163], smoothing the fieldmap using a 3D Gaus-

sian kernel with sigma equal to 1 voxel (2 mm) as recommended in [125] and

applying Jacobian modulation. For the MPB and MPB/F methods we used

FSL’s TOPUP (version 5.0.9) [96], using the default supplied configuration

file. For the MPB/F case we changed the resampling from least-squares re-

sampling (LSR) to Jacobian, after noticing that LSR introduced some slight

‘ringing’ artefacts into our corrected data. TOPUP combines each PE pair

by averaging them after Jacobian modulation. After correction each dataset

was transformed into the same space by rigidly registering its b=0 image to

the noise-free, ground truth b=0 image using a 6 degrees-of-freedom (DOF)

transform with NiftyReg’s reg aladin tool and then applying the estimated

transform to each volume in the dataset.

The evaluation strategy is divided into three parts. Firstly, we assess the

ability of each method to recover the correct underlying displacement field,

and thus produce anatomically faithful data, by comparing each method’s

estimated field to the ground truth field obtained using Equation 5.5. Secondly,

we assess the ability of each method to recover the correct intensity at each
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voxel by computing difference maps between the corrected and ground truth

images. Finally we investigate the impact of correction quality on subsequent

analysis by comparing diffusion tensor (DT) fits in both corrected datasets and

‘ground truth’ datasets, simulated free of artefacts.

In addition to the experiments described, we investigated a surrogate met-

ric for correction quality that is often used to assess performance on real data:

the comparison of corrected datasets that have been acquired with both AP

and LR phase-encoding [136, 150]. The expectation is that the greater the

correction quality, the greater the similarity between the corrected datasets.

We aimed to evaluate whether this is a suitable surrogate for the most direct

measure of correction quality, i.e. the displacement field error. To enable this

experiment we simulated additional DW-MR data with LR and RL phase-

encoding. These datasets were correcting using the same methods described

above, and then compared to the corrected datasets acquired with AP and PA

phase-encoding.

6.3.2 Assessment of existing techniques using real data

In this section we extend our evaluation of existing techniques to real data. To

enable this evaluation we used the surrogate metric described in the previous

section, the comparison of corrected datasets with both AP and LR phase-

encoding. We used ten subjects from the developing HCP project [164]. We

selected this dataset because it provides DW-MR data acquired with four

PE directions: AP, PA, LR and RL, fieldmaps and structural data, enabling

correction using all the methods used in this paper and evaluation using the

surrogate metric. The data was acquired on a 3T Philips Achieva, consisting

of a spherically optimized set of directions on 4 shells (b0: 20, b400: 64,

b1000: 88, b2600: 128) split into four PE subsets. It was acquired using

an acceleration of MB 4, SENSE factor 1.2 and partial fourier 0.86, TR/TE

3800/90 ms. The acquired resolution is 1.5x1.5 mm, 3 mm slices with 1.5 mm

overlap, reconstructed to give data of resolution 1.17x1.17x1.5 mm. The T2-

weighted image had TR/TE 12000/156 ms with a reconstructed resolution of
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Figure 6.1: Simulated DWIs. Pairs of coloured arrows point to corresponding pairs
of compression and expansion in the blip-up and blip-down images. The ‘streaking’
visible in the fieldmap is caused by the linear extrapolation to ensure a continuous
field at the edge of the brain. The bounding box visible around the fieldmap is
caused by its resampling into the space of POSSUM’s input object; this is not a
problem for the simulation as the fieldmap is smooth and defined over all brain
voxels in input object. Some Gibbs ringing is visible in the sagittal views of the
distorted data — this is induced by sharp boundaries in regions of signal pile-up.
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0.8 mm3. AP and LR datasets were corrected separately using the correction

methods as described previously. Corrected b=0 images were rigidly registered

to a T2-weighted image using a 6 degrees-of-freedom (DOF) transform with

NiftyReg’s reg aladin tool and the similarity between AP and LR corrected

images assessed.

6.3.3 Assessment of the susceptibility-movement inter-

action
In this section we describe the experiments performed to characterise the im-

pact of the interaction between the susceptibility field and head motion. This

is an effect that none of the commonly used post-processing correction strate-

gies currently account for in DW-MR. To investigate the impact of this on

analysis of data, we compare state-of-the-art correction on datasets simulated

with and without a dynamic susceptibility field.

DW-MR data was simulated with the same parameters as in the previ-

ous section, using a full AP and PA acquisition totalling 72 volumes. A key

difference to the previous section’s simulations is that here we calculated the

field from an air-tissue segmentation of POSSUM’s input object using a per-

turbation method as described in [165]. This method takes as input a spatial

map of susceptibility values throughout the brain, obtained from a tissue-air

segmentation, and obtains a first-order solution to Maxwell’s equations by con-

sidering the tissue susceptibility to be equal to the susceptibility of air plus a

perturbation. The method is physically motivated, providing realistic fields,

and provides a set of basis-functions that enable POSSUM to calculate how the

susceptibility-induced field changes as the head moves. Movement was simu-

lated during the data acquisition, using motion parameters measured from a

healthy patient during an MRI exam, to emulate a scan with a normal level of

motion. Movement was simulated to occur between the acquisition of volumes.

A second dataset was simulated with the same set of parameters but the level

of motion scaled up by a factor of three, to emulate a situation where a patient

moves a lot. For all the simulations, the translation parameters were set to 0
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as, on the assumption that the main field is entirely uniform, translations do

not contribute to the dynamic susceptibility effect and their inclusion would

require the imaging FOV to be increased, which would increase computation

time. We also create an additional set of simulations to control for the effects of

image interpolation on our correction. These control datasets were simulated

assuming the static case where the susceptibility field remains unchanged as

the head moves — this situation matches the assumptions of existing suscep-

tibility correction techniques. All datasets were simulated without noise.

Each dataset was corrected to mimic ‘state-of-the-art’ correction, in which

motion and the static portion of the susceptibility field are corrected for.

Ground truth displacement fields for each volume were created from the mo-

tion parameters and the static portion of the field, both of which are known

inputs to the simulation, and applied. Two sets of correction were performed:

in the first, only the AP dataset was corrected, and in the second, joint correc-

tion of the AP and PA dataset was carried out to enable correction in regions

of compression (this involves separate correction of the AP and PA images

using Jacobian modulation to account for compression/stretching, followed by

an averaging of the two resultant images). The impact of residual distortions

caused by the dynamic portion of the susceptibility field was demonstrated

using errors in displacement fields, and the impact of the dynamic field on

subsequent analysis was measured by characterising the errors in estimated

FA values in corrected data.

6.4 Results

6.4.1 Assessment of techniques with simulated data

Figure 6.2 shows the errors in the displacement fields estimated by the three

methods across a representative slice of the brain (the MPB and MPB/F meth-

ods use the same displacement field, estimated from just the b=0 images with

reversed PE). Full results for the five noise realisations are shown in Table 6.1a.

It is immediately clear that the RB method is unable to accurately estimate
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Figure 6.2: Displacement field errors. Error in displacement fields estimated by
the three methods, assessed by subtraction from the ground truth field. One axial
slice shown.

the underlying displacement field, whilst the FMB and MPB methods show

better performance. The FMB method shows some errors in brain voxels that

contain partial volume with air, around the edges of the brain, and these er-

rors are introduced into brain voxels when the estimated fieldmap is smoothed.

When the edge voxels are excluded using an eroded brain mask, the mean ab-

solute errors per voxel reduce more for the FMB method than other methods

(Table 6.1b). The FMB’s difficulty estimating the field in edge voxels is ex-

acerbated as the noise level increases, whilst the MPB method is relatively

unaffected by noise.

The impact that the displacement field estimation has on the corrected

data is demonstrated in Fig 6.3, which shows the b=0 images after correction,
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Table 6.1: Error tables.

Registration Fieldmap Multiple PE
SNR ∞ 0.24 0.051 0.032
SNR 40 0.263 ± 0.011 0.071 ± 0.003 0.032 ± 0.000
SNR 20 0.272 ± 0.013 0.087 ± 0.002 0.036 ± 0.000

(a) Mean of absolute errors in displacement field across the brain. Values shown
are the mean across the five noise realisations, and errors are the standard deviation
of the mean value for each noise realisation. Note that the multiple phase-encode
results cover both MPB and MPB/F methods.

Registration Fieldmap Multiple PE
SNR ∞ 0.24 0.024 0.029
SNR 40 0.249 ± 0.010 0.035 ± 0.001 0.029 ± 0.000
SNR 20 0.251 ± 0.012 0.048 ± 0.002 0.033 ± 0.000

(b) The same metrics in Table 6.1a but calculated over an eroded brain mask. Values
shown are the mean across the five noise realisations, and errors are the standard
deviation of the mean value for each noise realisation.

GT + noise RB FMB MPB MPB/F
SNR ∞ b=0 0.00 2.41 1.36 0.73 0.59

DWI 0.00 0.70 0.20 0.13 0.09
SNR 40 b=0 0.23 ± 0.00 2.55 ± 0.04 1.71 ± 0.04 0.78 ± 0.00 0.62 ± 0.00

DWI 0.23 ± 0.00 0.75 ± 0.01 0.35 ± 0.01 0.27 ± 0.00 0.19 ± 0.00
SNR 20 b=0 0.70 ± 0.00 2.81 ± 0.03 2.09 ± 0.02 1.05 ± 0.00 0.80 ± 0.00

DWI 0.70 ± 0.00 1.00 ± 0.00 0.69 ± 0.00 0.68 ± 0.00 0.49 ± 0.00
(c) Absolute errors in image intensity, averaged across the brain for all b=0 and
DWI volumes. Values shown are the mean across the five noise realisations, and
errors are the standard deviation of the mean value for each noise realisation. Units
are arbitrary signal units.

GT + noise RB FMB MPB MPB/F
SNR ∞ FA 0.000 0.017 0.014 0.010 0.008

MD / 10−3 mm2 s−1 0.000 0.077 0.073 0.048 0.040
V1 / degrees 0.000 3.602 1.693 1.008 0.687

SNR 40 FA 0.016 0.027 0.021 0.020 0.014
MD / 10−3 mm2 s−1 0.022 0.087 0.090 0.055 0.046
V1 / degrees 3.787 6.418 3.773 3.825 2.704

SNR 20 FA 0.051 0.053 0.044 0.049 0.033
MD / 10−3 mm2 s−1 0.078 0.134 0.122 0.096 0.078
V1 / degrees 11.580 11.775 9.872 10.931 7.744

(d) Errors in diffusion metrics (FA, MD and the principle diffusion direction V1),
averaged across the brain. Values shown are the mean across the five noise realisa-
tions. V1 errors were only calculated in voxels with a ground-truth FA >0.2. Errors
(calculated as the standard deviation of the mean value for each noise realisation)
not shown as they were all 0 to 3 decimal places.
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along with error maps obtained by subtraction from the ground truth images.

These results are shown in full in Table 6.1c. The effects of the RB method’s

poor estimation are clear in these results. The effect of the FMB method’s

poor displacement field estimates in edge voxels is apparent here. Both the

MPB and MPB/F methods show better results. The figure demonstrates a

region of higher error in the FMB and MPB methods, due to their inability

to recover the correct signal from a region of compression, where the MPB/F

does better, due to its ability to resample from the corresponding expanded

region in the reversed PE image. There is some slight ringing noticeable in

the error maps, particularly for the MPB and MPB/F methods. This is Gibbs

ringing present in the ground-truth b=0 images, caused by the strong CSF

rim. The corrected images have much reduced ringing because they have been

smoothed by interpolation, so the ringing is visible upon subtraction. The

ringing appears less visible for RB and FMB methods because it is obscured

by larger errors caused by poorer correction.

Table 6.1c demonstrates an additional advantage of the MPB/F method:

the SNR boost obtained for each corrected image by resampling from two

images, in effect averaging over the noise. It causes the mean errors for the

DW volumes to be lower than the errors in the noisy ground-truth images. The

results entangle two effects: the ability to recover information from regions of

compression, and an SNR boost from having twice as much data. These can

be disentangled by examining the SNR infinite case in Table 6.1c, where the

improvements from the MPB/F are solely due to improved signal recovery in

regions of compression.

Fig 6.4 show FA maps estimated from the corrected datasets for one slice

of the brain, as well as their errors, with full results for FA, MD and the

principal diffusion direction (V1) shown in Table 6.1d. The downstream effect

of information loss from areas of compression is appreciable in both the FMB

and MPB maps, as is the ability of the MPB/F method to mitigate these

errors. The SNR boost provided by the MPB/F method is visible in the figure,
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Figure 6.3: Errors in image intensity. b=0 images after correction by each method,
along with the ground truth images shown both with and without noise. Intensity
images shown for the infinite SNR case. Error maps are obtained by subtraction
from the noise-free ground truth image. Units are arbitrary signal units. Red arrows
highlight a region of signal compression that can only be corrected by the MPB/F
method. Note the MPB/F method uses twice as much data as the other methods,
increasing its effective SNR.
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which shows some regions have lower error than the noisy ground truth maps,

and is also clear from the tabulated results. The results in Table 6.1d also

demonstrate that the amount of smoothing introduced by a method can affect

results. For noisy data the errors for corrected datasets are sometimes smaller

than the error for the ‘ground truth + noise’ datasets, which reflects the noise-

reducing effects of the local smoothing introduced upon correction. This effect

is particularly strong for the FMB method, likely due to the smoothing of the

estimated fieldmap during processing, causing it to produce smaller average

errors for FA and V1 than the MPB method, despite MPB estimating the

underlying displacement field more accurately. Dividing the errors according

to the size of the underlying distortion (Table 6.2) confirms that it is the

smoothing that causes this; FMB tends to outperform MPB in areas of low

distortion where errors are mostly controlled by the amount of noise, whilst

MPB outperforms FMB in regions of large distortion where estimation of the

correct underlying displacement field is important.

To investigate the suitability of AP-LR differences as a surrogate metric

we plot the corrected AP and LR b=0 images, and their differences, for a

representative slice in Figure 6.5. The whole-brain mean of the intensity dif-

ference for b=0 volumes was computed for every correction method, for each

of the five noise realisations at each SNR — results are shown in Table 6.3a.

The results show the largest errors for the RB method with MPB and MPB/F

performing the best, consistent with previous results. A two-sample t-test

without assuming equal variance was performed between these values for each

pair of correction methods; all differences were significant at the p<0.001 level.

These results demonstrate that the surrogate metric shows the same ordering

of correction ability as more direct metrics, such as error in displacement field,

indicating that it can be a useful metric. However, it should be noted that the

metric does not give the same contrast between methods as displacement field

error. Errors in displacement fields show large differences between the RB

and FMB methods, and a much smaller difference between FMB and MPB
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Figure 6.4: Errors in FA metrics. FA maps estimated from corrected and ground
truth images, along with error maps obtained by subtraction from the noise-free
ground truth estimate. FA map shown for SNR infinite case. Red arrows show
regions of high error caused by signal pileup that could not be corrected by the
RB and MPB methods, despite estimation of the correct displacement field. The
MPB/F method is able to reduce errors in these regions. Note the MPB/F method
uses twice as much data as the other methods, increasing its effective SNR.
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GT + noise RB FMB MPB MPB/F
SNR ∞ FA 0.000 0.049 0.024 0.019 0.016

MD / 10−3 mm2 s−1 0.000 0.077 0.073 0.048 0.040
V1 / degrees 0.000 3.602 1.693 1.008 0.687

SNR 40 FA 0.015 0.054 0.031 0.026 0.020
MD / 10−3 mm2 s−1 0.015 0.154 0.110 0.078 0.072
V1 / degrees 4.185 20.363 5.495 5.201 3.564

SNR 20 FA 0.049 0.083 0.054 0.052 0.036
MD / 10−3 mm2 s−1 0.056 0.193 0.129 0.103 0.087
V1 / degrees 12.470 21.283 11.352 11.865 9.057

(a) Large distortion. Errors in diffusion metrics averaged across all brain voxels
with >6 mm geometric distortion.

GT + noise RB FMB MPB MPB/F
SNR ∞ FA 0.000 0.021 0.016 0.012 0.010

MD / 10−3 mm2 s−1 0.000 0.081 0.085 0.053 0.044
V1 / degrees 0.000 4.923 1.919 1.276 0.826

SNR 40 FA 0.016 0.029 0.023 0.020 0.015
MD / 10−3 mm2 s−1 0.021 0.092 0.105 0.059 0.049
V1 / degrees 3.892 7.783 3.918 3.970 2.833

SNR 20 FA 0.050 0.052 0.045 0.047 0.033
MD / 10−3 mm2 s−1 0.072 0.128 0.130 0.093 0.075
V1 / degrees 11.736 12.663 9.858 10.976 7.875

(b) Medium distortion. Errors in diffusion metrics averaged across all brain voxels
with >2 mm and <6 mm geometric distortion.

GT + noise RB FMB MPB MPB/F
SNR ∞ FA 0.000 0.013 0.013 0.009 0.007

MD / 10−3 mm2 s−1 0.000 0.070 0.066 0.043 0.036
V1 / degrees 0.000 2.299 1.470 0.762 0.558

SNR 40 FA 0.016 0.023 0.019 0.019 0.013
MD / 10−3 mm2 s−1 0.023 0.081 0.082 0.052 0.043
V1 / degrees 3.711 4.836 3.589 3.665 2.586

SNR 20 FA 0.052 0.050 0.043 0.049 0.033
MD / 10−3 mm2 s−1 0.083 0.132 0.118 0.097 0.078
V1 / degrees 11.448 10.716 9.777 10.846 7.593

(c) Small distortion. Errors in diffusion metrics averaged across all brain voxels
with <2 mm geometric distortion.

Table 6.2: As in Table 1C, errors for FA, MD and the principle diffusion direction
V1, but here divided into regions of interest based on the amount of distortion in
the data. Values shown are the mean across the five noise realisations. V1 errors
were only calculated in voxels with a ground-truth FA >0.2. Errors (calculated as
the standard deviation of the mean value for each noise realisation) not shown as
they were all 0 to 3 decimal places.
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Table 6.3: Surrogate metrics. Table shows whole-brain-mean intensity differences
between AP and LR corrected datasets (units are arbitrary signal units).

RB FMB MPB MPB/F
SNR 40 3.791 ± 0.044 2.818 ± 0.047 1.904 ± 0.100 1.498 ± 0.025
SNR 20 3.976 ± 0.026 3.230 ± 0.041 1.989 ± 0.022 1.688 ± 0.069

(a) Simulated data. Errors are the standard deviation of the means over the five
noise realisations. Metrics show statistically significant differences between all meth-
ods at the p<0.001 level.

RB FMB MPB MPB/F
6.463 ± 1.282 5.277 ± 1.278 3.579 ± 0.885 3.078 ± 0.965

(b) Real data. Errors are the standard deviation of the means over the ten subjects.
Metrics show statistically significant differences between all methods at the p<0.001
level.

methods. The surrogate metric loses this contrast, indicating a roughly simi-

lar improvement going from RB and FMB methods as FMB to MPB methods.

This is because there is not a simple relationship between displacement field

error and intensity error; the size of intensity error depends on both the size

and the location of the displacement error.

6.4.2 Assessment of techniques with real data

Figure 6.6 shows the differences between AP and LR correction for real data.

These results resemble findings in simulated data, indicating that RB methods

perform the worst and MPB/F best. Table 6.3b reports the whole-brain mean

of the intensity difference for b=0 volumes. A paired t-test was performed

between these intensity differences for each method, all differences were signif-

icant to p<0.001.

6.4.3 Interaction between susceptibility and movement

Fig 6.7a shows the rotation parameters used for the simulations. Fig 6.7b

shows the residual errors in the first four DWIs after correction for motion

and static susceptibility. We found that a 5° rotation about the y-axis caused

changes in the susceptibility field of up to 30 Hz, corresponding to distortions of
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Figure 6.5: AP-LR comparison on simulated data. Figure shows corrected AP
and LR b=0 images, and the intensity difference between them. SNR=40 dataset
shown.
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Figure 6.6: AP-LR comparison on real data. Figure shows corrected AP and LR
b=0 images, and the intensity difference between them.
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up to 6 mm for the acquisition protocol used. This is slightly smaller than the

field changes measured in real data — [40] found changes of 50 Hz for similar

rotations at 3 T — indicating our dynamic distortions are in a realistic range

but may slightly underestimate the true size of the effect. Our simulations show

a left-right asymmetry in dynamic displacement fields for rotations around y

(Fig 6.7b, Volume 4) and left-right symmetry for rotations around x (Fig 6.7b,

Volume 5) that matches observations made in real data [156].

Fig 6.8 shows the errors in FA for corrected data across an example slice.

Comparing data simulated with static and dynamic susceptibility fields, we

see increased errors in the data with dynamic effects. The differences in static

and dynamic errors across the full brain are shown in Fig 6.9. It is worth

noting that the errors for the data with static susceptibility fields are non-

zero, despite the data being noise free and corrected with the ground truth

fields. These errors are introduced by interpolation effects, and introduce

similar levels of error into both static and dynamic data, so it is the difference

in error between these two sets of data that reveals the errors introduced by the

dynamic susceptibility fields alone. The results show that the dynamic field

increases FA errors especially for the case of the subject with larger motion.

The effect of the dynamic field was slightly smaller for data corrected using

both AP and PA volumes than data corrected using only the AP set.

6.5 Discussion

In this paper we assessed the three main classes of technique used for correcting

the susceptibility artefact, and investigated the impact of their inability to

correct for the dynamic portion of the artefact. This work is particularly

timely given that recent trends in acquisitions could lead to increased severity

of the artefact, increasing the importance that the community has access to

careful evaluations of the correction techniques available to them and their

limitations. To enable our assessment, we extended an existing MR simulator

and incorporated it into a framework that simulates realistic DW-MR datasets.
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Figure 6.7: Susceptibility-movement interaction. A. The x- and y- rotation param-
eters used for the simulation of the first 36 volumes (z-rotations not shown because
they do not contribute to the dynamic susceptibility effect, translations were all 0).
The coloured vertical lines highlight the motion of the volumes depicted in plot B.
B. Top two rows show the errors in displacement field caused by the dynamic portion
of the susceptibility artefact, for volumes 2-5 of the acquisition — the motion these
volumes experienced is highlighted with colour in plot A. Bottom two rows show
the error in intensity of these volumes after they are corrected for motion and the
static portion of the susceptibility field, obtained by subtraction from ground truth
images.
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Figure 6.8: Errors introduced when failing to account for the susceptibility-
movement interaction. Absolute errors in FA shown over one slice, for datasets
corrected for motion and static susceptibility. Data in the static columns were sim-
ulated with only motion and static susceptibility artefacts, whilst the dynamic data
contained motion and dynamic susceptibility. ‘One PE correction’ indicates only
the AP data was used for correction, and ‘two PE correction’ indicates the AP and
PA data were both used — note these are different from MPB and MPB/F, which
are methods for both estimating and applying a displacement field, whilst in this
case known ground-truth displacement fields have been applied.

This enabled us to directly and quantitatively assess the desired features of

a susceptibility correction approach: the ability to both correct geometric

distortions and recover the signal distribution lost in regions of compression. It

further enabled us to carefully examine the impact that neglecting the dynamic

susceptibility field has on analysis of diffusion data.

Our results showed that registration of distorted data to a structural T2-

weighted volume was insufficient for fully correcting geometric distortions in

the data. However, it offers improvement over performing no correction at all,

and has the advantage that a structural volume is often acquired in a scan,

making it suitable for retrospective studies where data required for FMB or

MPB methods is not available (contrast inversion techniques may mean simi-

lar results can be obtained with a T1-weighted volume [141, 158]). FMB and
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One PE correction Two PE correction

Figure 6.9: Error distribution. Histogram of the difference in absolute FA er-
rors over the full brain, for datasets corrected for motion and static susceptibility:
|∆FAstatic|−|∆FAdynamic|, so the heavy tail for negative values indicate higher errors
for the dynamic case.

MPB techniques performed better, though the FMB method demonstrated

sensitivity to partial volume with air, particularly as the noise level increased.

This occurred despite following standard practice of only estimating the field

for voxels within an eroded mask, to exclude voxels with significant partial

volume, and smoothly extrapolating the estimated field outside the domain

of the mask. It has been reported that fitting a set of 3D discrete cosine

transformations can lead to improvement [125], but to our knowledge this is

not implemented in any available software packages. In addition to providing

better correction than the FMB technique, the MPB method has the addi-

tional advantage [147] of being able to correct for concomitant fields which

cause translations of slices far from the isocentre along the PE direction [166].

Concomitant fields cannot be measured by field-mapping scans and thus are

not corrected by them. However, it should be noted that this sensitivity to

concomitant fields is less of an issue for modern scanners with field strengths

of 3 T or above, as the effects of the fields scale with the inverse of the main

magnetic field strength, and in a well-tuned system they are corrected for on

the scanner itself [34].
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Whilst FMB and MPB techniques were both able to estimate the under-

lying displacement field well, neither of them are able to provide the correct

signal distribution in areas that have been compressed by the susceptibility

artefact. This is an inherent limitation, which our results showed can be ad-

dressed using MPB/F. The downside of MPB/F is that each DWI needs to

be acquired twice, doubling the acquisition time. Whether this is an accept-

able trade-off is likely to be influenced by several factors such as the available

acquisition time, desired analysis methods (e.g. compartment modelling, trac-

tography), and the brain regions to be studied. It is worth noting that the

MPB/F method increases SNR in the corrected images, so does not provide

any time penalty if repeats are already being acquired to boost SNR through

averaging. It should be noted that we used Jacobian modulation to correct for

compression/stretching in each volume before combination through averaging.

Whilst this still provides enhanced correction in regions of large distortion

when compared to the MPB method, a least-squares reconstruction of the two

images should be used for the best recovery of information lost in regions of

compression [96].

Surrogate metrics are often used to evaluate correction quality on real

data. Such metrics can sometimes be misleading; for example visual inspec-

tion of registration results, or use of similarity metrics, can be misleading

because differences between source and reference images can appear small de-

spite the underlying displacement field having been poorly estimated. In order

to extend our analysis to real data, we used the simulation framework to val-

idate one of the most promising surrogate metrics for correction quality, the

difference between AP and LR corrected datasets. Our simulations demon-

strate the metric can be a useful surrogate for the statistic of real interest —

error in the ground truth displacement field. However, the results showed that

the metric does not necessarily give the same contrast between methods as

errors in displacement field, and it is possible to conceive of a situation where

the metric gives a different ordering of correction quality than displacement
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field error (for example, a small displacement field error in a region with high

intensity-contrast). We suggest that any surrogate metric must be interpreted

cautiously, and ideally should be accompanied with supporting evidence from

simulated data where a ground-truth is available. It should be noted that the

real data used to demonstrate the surrogate metric is relatively unusual, hav-

ing been acquired in a postnatal cohort. This means the contrast differs to

the adult brain and a specialised acquisition protocol was used with overlap-

ping slices and interleaved b-values. For this reason the findings made will not

necessarily apply to adult data and should be interpreted with some caution.

Our findings are in agreement with the existing literature, which largely

made use of real data. [136] used real data to compare RB and FMB methods.

They found FMB methods outperformed RB methods in all regions affected by

susceptibility artefacts. Interestingly, they found RB methods outperformed

FMB in the superior few slices of the brain. This is likely because the data was

acquired at 1.5T and thus suffered from measurable concomitant field-induced

shifts in these slices, which FMB methods cannot correct for. [167] also used

surrogate metrics on real data and found that FMB outperformed RB methods.

[148] used real data to compare FMB and MPB/F techniques, finding MPB/F

methods to be superior. [168] used simulations to compare RB, FMB and

MPB/F (but not MPB) techniques. Whilst they used simpler simulations

and less direct metrics to assess correction efficiency, they observed the same

ordering of the technique’s effectiveness as we did. We are not aware of any

published comparisons of FMB and MPB methods, likely the most relevant

comparison for most researchers as they offer the potential for good correction

of geometric distortions with only slightly increased acquisition times.

We also investigated the impact of failing to correct for the dynamic por-

tion of the susceptibility field on the analysis of diffusion data. Our results

highlight that even if a subject moves a little the dynamic field increases the er-

rors in estimated diffusion metrics, but that the problem becomes much worse

for subjects that move ‘a lot’. This result is important in the context of pop-
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ulation studies, where a group that moves a lot (due to e.g. age, disease) is

compared to a healthy control group that is likely to move less. Interestingly,

we found correcting data using both AP and PA acquisitions did not further

increase the errors introduced by dynamic susceptibility, and in fact marginally

reduced them. We hypothesised an increase in error would occur because each

corrected volume was created by combining information from two differentially

distorted volumes, thus creating corrected data that was even more ‘wrong’

than data obtained simply resampling all the PA volumes. A potential ex-

planation for the result is that the motion trace we used is characterised by

small rotations for most volumes and occasional spikes of larger motion for

some. Thus, for each PA (or AP) image with a large dynamic susceptibility

component caused by large motion, its corresponding AP (or PA) volume is

likely to be much less distorted, and so producing a corrected volume from

the two leads to an averaging effect that serves to reduce the total amount of

distortion in the corrected data.

To our knowledge, none of the commonly used post-processing schemes

correct for the dynamic susceptibility artefact in DW-MR. There have been

attempts to deal with the problem using real-time auto-shimming [154, 155]

but these require non-standard pulse sequences and are only able to correct for

the linear terms of the dynamic field. Acquisition of a field-map for each volume

is also possible, at the expense of increased scan-time [169]. Registration of

every DW-MR volume to an undistorted structural target has been suggested

in the past [137], but is inappropriate given the differences in contrast between

diffusion-weighted and structural volumes, especially for modern acquisitions

which tend to make use of higher b-values with even more different contrast.

One potential method for mitigating the artefact, available to users of the

MPB/F method, would be to interleave the protocol such that the acquisition

of each blip-up volume is immediately followed by the acquisition of its blip-

down counterpart. The dynamic field could then be estimated for every pair

of DWIs, on the assumption that there was negligible motion between the
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pair of DWIs. This would have the added benefit of reducing the issue of

combining volumes with opposite PE direction which have different effective

diffusion sensitisation, which happens when movement occurs between them.

Our simulation assumed inter-volume movement, but in reality movement will

occur during the acquisition of volumes. Intra-volume movement correction

schemes do exist [170, 171], and would ideally be integrated into any technique

that corrected for the dynamic susceptibility artefact.

There are some limitations to the work. The simulations used an off-

resonance field estimated from a field-map as the input, which could introduce

some circularity that favours the FMB method. It seems that this wasn’t an

issue in this study, as FMB techniques were outperformed by MPB methods.

We also tested one available software implementation of each method; the large

number available meant it was not practical to evaluate more. For FMB and

MPB+MPB/F methods, we used the implementations most commonly used

by the research community. We note that there are MPB methods [151] and

MPB/F methods [150] that report better results than the method used in this

work, TOPUP, and a comparison of these promising techniques may be the

subject of future work. There are a number of available RB implementations,

with no single one of them being clearly more popular than the others, each

with a large number of parameters and settings that can be optimised, but we

do not believe the choice of specific implementation will change our conclusions.

This is because our experience with other RB methods (not shown), along with

other published work comparing different RB methods to the one we tested

[136, 168], support the conclusion that they are consistently outperformed by

FMB and MPB+MPB/F methods.

6.6 Conclusions

I used the simulation framework to assess the three most commonly used post-

processing methods for correcting the susceptibility artefact, producing practi-

cal advice on which work best. I also investigated the interaction between sus-
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ceptibility and movement, and suggest that in the case where reversed PE data

is acquired its impact can be reduced by a simple adjustment of the acquisition:

the rearrangement of the scans so that each blip-up scan is immediately fol-

lowed by its corresponding blip-down. A post-processing method that corrects

for the susceptibility-movement interaction has very recently been published

[172] — the simulation framework has been used to evaluate this method, and

ideally the data from this can be used as a benchmark for any future methods

that are developed.





Chapter 7

Application III: a tool for

automated quality control

7.1 Overview
In this chapter we demonstrate the potential for using the simulation frame-

work to develop new tools. We simulate ready-labelled data and use it to train

a classifier to detect severe movement artefacts, and compare its performance

to a classifier trained on manually-labelled real data.

7.1.1 Research dissemination
The work detailed here has been submitted to ISMRM.

• A supervised learning approach for diffusion MRI quality control with

minimal training data. MS Graham, I Drobnjak, H Zhang. Submitted to

ISMRM 2018

This chapter includes the extension of the framework to simulate signal

dropout artefacts, and the first demonstration of the framework’s ability to

simulate movement during the acquisition. Datasets simulated with both

these artefacts have been used to validate novel techniques for correcting sig-

nal dropout and intra-volume movement artefacts, though these works are not

discussed in this thesis.

• Incorporating outlier detection and replacement into a non-parametric
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framework for movement and distortion correction of diffusion MR im-

ages. JLR Andersson, MS Graham, E Zsoldos, SN Sotiropoulos. In

NeuroImage 141, 556-572, 2016.

• Towards a comprehensive framework for movement and distortion cor-

rection of diffusion MR images: Within volume movement. JLR Ander-

sson, MS Graham, I Drobnjak, H Zhang, N Filippini, M Bastiani. In

NeuroImage 152, 450-466, 2017.

7.2 Introduction
Quality control (QC) involves ensuring a dataset meets a certain set of stan-

dards before the dataset is given the clearance for inclusion in subsequent

analyses. In MRI there are a large number of potential artefacts that need to

be identified, to enable problematic images to either be excluded or accounted

for in further processing and analysis. The gold standard for identification of

these is visual inspection of the data.

There are a number of challenges with manual QC. For a typical study,

which may involve hundreds of subjects, the process can be extremely time-

consuming. This is especially true in diffusion MRI (DW-MR) where many

volumes might be acquired for every subject, and there are numerous artefacts

that each volume must be screened for. The current trend towards acquiring

increasingly large datasets means the time required for human QC is becom-

ing prohibitive. The HCP [173] acquired data for 1200 subjects with almost

300 DW-MR volumes per subject and the UK Biobank will eventually acquire

imaging data for 100,000 subjects with over 100 volumes per subject [132].

Manual QC is also subjective. Each rater has their own sensitivity and speci-

ficity which cannot be easily altered, meaning the data is either QCed by a

single rater, leading to a single standard but requiring large amounts of time,

or many raters look at the data, which requires less time but means variable

standards are applied across the dataset. These challenges have led to an

increased interest in automated methods for QC.
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Automated methods for QC fall into two classes. The first kind extracts

tailored features from the datasets and applies hand-tuned cutoffs to determine

whether each volume contains artefacts [174, 175]. The second kind are super-

vised learning approaches. These involve extracting features from the datasets

and then using a training set, obtained from manual QC of a proportion of the

data, to learn the mapping between these features and the classification of each

volume as passing or failing QC. Recently these approaches have used support

vector machines (SVMs), random forest classifiers [176] and ensembles of clas-

sifiers [177]. Whilst promising, both types of approach report performance

significantly below that of a human rater.

Recently, convolution neural networks (CNNs) have been demonstrated

to provide near-human levels of accuracy for identifying motion artefacts in

structural [178] and DW-MR data [179]. Unlike other supervised approaches,

CNNs learn features from the data during training, rather than requiring them

to be hand-crafted and supplied as input. CNNs tend to have many parame-

ters requiring optimisation — often in the millions — meaning they typically

require large, labelled datasets for training.

Obtaining training datasets in medical imaging can be challenging. The

acquisition of the data is time-consuming and expensive, and once acquired the

data can be subject to ethical considerations or anonymisation requirements

that prevent that data being shared freely. Labelling of such data is also

challenging. For the case of QC, labelling requires a human rater to manually

inspect each image volume and flag any that contain artefacts. The process

is subjective, and the accuracy of the trained classifier will depend on the

quality of the labelled dataset, so often a number of raters are used and their

classifications combined in order to get a more reliable ‘ground-truth’ for the

dataset. Furthermore, a tool trained on a specific set of training data may

not generalise well to datasets acquired with different protocols or hardware,

meaning new training datasets may need to be labelled for each new dataset.

One potential way to address these issues is to use simulated data. Sim-
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ulation could circumvent the need for human labelling by producing realistic

datasets, along with ground-truth labels, for training machine learning tools

on. In the case of QC, a simulator that was capable of producing datasets

containing artefacts, such as motion, could be used to produce a training set.

Little research has been done to investigate the feasibility of a simulation-based

approach to training supervised learning tools.

In this work, we aim to investigate the feasibility of a supervised-learning

approach to QC that uses simulated data. As a first step, we focus on the

problem of detecting intra-volume movement in DW-MR data. Intra-volume

movement refers to both signs of head movement and the signal dropout that

this gives rise to — see Fig 7.1. We focus on this artefact because they are often

not tackled in QC as checking every volume in a dataset can be extremely time-

consuming. Volumes containing this artefact typically need to be identified in

QC so that they can either be removed, or information about them can be

used as confounds in later statistical analysis [180]. Whilst post-processing

techniques have been proposed to correct for intra-volume movement, [171,

181, 182] it has been reported these fail for severe cases and an initial QC

needs to be performed to remove especially bad volumes before processing

[179]. We compare the performance of classifiers trained on real and simulated

data.

7.3 Methods
This section details the data, both real and simulated, used in this work and

describes the classifier that was trained on these data.

7.3.1 Data

7.3.1.1 Real
Ten subjects were taken from the developing Human Connectome Project [133]

(dHCP), which contains MRI data acquired in neonates. These were chosen

because neonatal scans tend to contain large amounts of movement. The data

was acquired on a 3T Philips Achieva, consisting of a spherically optimized set



7.3. Methods 139

Figure 7.1: Example of the intra-volume movement artefact. For interleaved ac-
quisitions, which are common in DW-MR, the movement causes jagged edges per-
pendicular to the EPI plane, here the coronal and sagittal views. This misplacement
of the signal is different to signal dropout, also caused by intra-volume movement,
which leads to loss of the signal — an example of dropout can be seen in one of the
most inferior slices of the coronal view in this subject.

of directions on 4 shells (b0: 20, b400: 64, b1000: 88, b2600: 128) split into four

subsets, each with a different phase-encoding (PE) direction. It was acquired

using a multiband acceleration dactor of 4, SENSE factor 1.2 and partial fourier

0.86, TR/TE 3800/90 ms. The data has resolution 1.17x1.17x1.5 mm, matrix

size 128×128, with 64 slices per volume.

For this study, the b=2600 s mm−2 volumes were removed as they con-

tained very little signal, which caused even manual QC to be challenging.

This left 172 volumes per subject. Manual QC was performed by visual in-

spection, with one rater assigning a label of either acceptable or unacceptable

to each volume. The rater classified the whole dataset twice, on two separate

occasions, to provide an estimate of intra-rater agreement.

7.3.1.2 Simulated

Simulated data was designed to be visually similar to the dHCP data. Data

was simulated using the same b-values and directions as the dHCP. Voxel size

and FOV were kept the same as previous simulations to minimise computation

time: 2.5 mm isotropic and 72×86×55 voxels. Seven subjects were simulated

using input objects derived from different subjects from the HCP. Neonatal
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Tissue T1/ms T2/ms ρ

Grey matter 2200 200 0.8
White matter 2850 250 0.8

CSF 3700 280 0.8

Table 7.1: Tissue parameters used for the simulations in this chapter. Proton
density ρ is in arbitrary units.

DW-MR images have different contrast to adult data, with much reduced con-

trast between GM, WM and CSF. MR parameter values were modified to

increase the visual similarity between simulated and real data — T1 parame-

ters were taken from [183], T2 parameters from [184] and then adjusted further

to maximise visual similarity with the dHCP datasets — the final set of pa-

rameters used are shown in Table 7.1.

Known motion was injected into both datasets during simulation. The

motion traces were designed to produce data with clear signs of intra-volume

movement, similar to those seen in the real data (Fig 7.1), in order to produce

a suitable training set for the classifier. This was achieved by synthesising

traces with large, sudden motion spikes, modelling a subject suddenly moving

their head. The traces describe the object’s translations along and rotations

about each of the three axes, with movement occurring between the acquisi-

tion of each slice. Algorithm 1 describes more precisely how the traces were

generated, and Figure 7.2 shows an example trace. Interleaved slice-ordering

was simulated, without multiband, so that these intra-volume movement spikes

produced the characteristic zig-zag edge pattern as seen in Figure 7.1. Signal

dropout was also simulated. In the dHCP data signal dropout is often, but not

always, present in volumes that show other signs of severe intra-volume move-

ment. To reflect this, dropout was added to a volume containing significant

motion with a probability of 70%. Dropout is applied by directly reducing the

signal of slices in k-space, rather than simulating the effect of the interaction

between movement and the diffusion gradients. This simpler approach still

produces realistic-looking dropout artefacts. The full details of how dropout
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Figure 7.2: Example simulated motion trace, shown over the time required to
acquire all 172 volumes in a dataset.

was added is described in Algorithm 2.

Labels were assigned to each volume using the following scheme. The

amount of intra-volume movement for each volume was calculated for each

of the three rotations and three translations. If all of the translations were

less than 1 mm and rotations less than 1°, the volume was given a label 0,

for acceptable. If any of the translations were greater than 1 mm and less

than 2.5 mm, or rotations greater than 1° and less than 2.5° the volume was

assigned 1, for moderate. If any translations were greater than 2.5 mm or

rotations greater than 2.5°, the volume was assigned a 2. It was observed that

inclusion of volumes with moderate movement (label 1) with the volumes with

severe movement (label 2) made it much more difficult to train the classifier.

These volumes included very subtle signs of motion that were challenging to

QC when visually inspected. By contrast, we found that most volumes if

the real data were much more straightforward to classify; it was usually very
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Algorithm 1 Synthesising movement traces for the simulated data
for Each volume to be simulated do

Set volume’s movement trace for Tx,Ty,Tz,Rx,Ry,Rz to 0
Draw number from random-number generator (RNG) between 0 and 1
if number ≤ 0.4 then

for Each movement trace Tx,Ty,Tz do
Draw number from RNG
if number ≤ 1/6 then

Generate Gaussian motion spike with height randomly selected
between 0 and 10 mm, standard deviation 0.2*repetition time (TR)

Add Gaussian motion spike to randomly selected location in
volume’s trace

end if
end for
for Each movement trace Rx,Ry,Rz do

Draw number from RNG
if number ≤ 1/6 then

Generate Gaussian motion spike with height randomly selected
between 0 and 10°, standard deviation 0.2*TR

Add Gaussian to randomly selected location in volume’s trace
end if

end for
end if

end for

Algorithm 2 Adding signal dropout to simulated data
for Each volume to be simulated do

if Volume’s motion trace has any translations ≥ 2.5 mm or rotations ≥
2.5° then

Draw number from RNG
if Number ≤ 0.70 then

for Every slice in volume do
Draw number from RNG
if Number ≤ 0.85 then

Draw number from RNG
Multiply signal in slice by number drawn

end if
end for

end if
end if

end for
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obvious whether or not they contained movement artefacts. For this reason

it was decided to remove the 108 volumes with moderate motion from the

simulated dataset. This left a total of 1096 volumes, 732 without movement

and 364 with.

7.3.2 Classifier

We based our classifier on a type of neural network called a convolutional

neural network. These networks have provided state-of-the-art performance in

computer vision tasks in recent years [185], making them sensible candidates

for the task of identifying motion-artefacts in scans. A drawback of such

networks is that they contain millions of parameters, and so they typically

require large amounts of training data and large amounts of computational

power to successfully train. To circumvent this we adopted a transfer learning

approach [186], which consists of taking a classifier trained to perform on a

certain task and re-training a small number of parameters using a small amount

of data to perform well on another, often similar, task.

Our transfer learning approach here is similar to that described in [179],

where they successfully trained a classifier on real data to detect motion arte-

facts. We used the pre-trained InceptionV3 network as the base network, which

has achieved state-of-the-art performance in the classification of natural im-

ages (i.e. photos taken on standard cameras of everyday objects such as dogs,

boats, cars) [187]. To finetune InceptionV3, the top layer of the network was

removed, and replaced with a fully connected layer with 16 neurons, followed

by a prediction layer with 2 neurons for the two classes in our problem (motion-

corrupted or normal). All parameters were fixed apart from those in the newly

added layers, vastly reducing the number of parameters required for training.

The classifier was trained by passing it sagittal slices through the brain

along with ground-truth labels. We trained two classifiers: one on real data,

and one on simulated data, using seven subjects for training as in [179]. Five

subjects were used for training, and two for validation. We chose to use three

sagittal slices from each volume at training time, though in principle using
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more might provide better results. One of the slices was taken from the central

plane of the volume and the other two from either side of this central plane,

towards the edges of the brain. For the real data, these side slices were 14

slices away from the middle slice on either side, for the simulated data, these

were 16 slices away, as the simulated brains were slightly larger.

For both classifiers, images were zero-padded along the shorter dimension

to make them square, resized to 299 by 299 pixels, and replicated three times

for the three channels of the network (a fixed requirement of the InceptionV3

network). Each image was scaled so that its intensity lay between -1 and 1.

Each classifier was trained for 30 epochs using the Adam optimizer with a

learning rate of 0.001 [188] and a cross entropy loss function. The classifiers

were implemented in Keras [189]. Training took less than 20 minutes on a

Titan X Pascal GPU.

Testing was performed on the three reserved dHCP subjects. To assign

a label to each volume, 30 saggital slices from the volume were extracted and

classified; if the mean of these 30 scores was greater than a certain threshold,

the volume was labelled as containing motion. For the real-trained classifier we

used the natural threshold of 0.5. Due to the shift from the simulated to real

domain, the threshold for the simulation-trained classifier had to be calibrated

using a single subject from the real training set. We experimented with two

methods for determining the optimal threshold from this subject. In the first,

the threshold that maximized the F1-score between the true and predicted

labels for this subject was chosen for use at test-time. The F1 score is defined

as:

F = 2∗ precision∗ recall
precision + recall (7.1)

with precision and recall defined as:

precision = TP
TP + FP (7.2)

recall = TP
TP + FN (7.3)
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where TP are true positives, TN true negatives, FP false positives and FN

false negatives. The rationale for this method was finding a threshold that

balanced precision and recall. In the second, the greatest threshold that gave

>95% recall for motion-corrupted volumes in this subject was chosen. The ra-

tionale for this method was that it may be preferable to ensure the majority of

corrupted volumes are found, even if this means rejecting some false positives.

7.4 Results

Simulated and real data is shown in Figure 7.3. Note that the saturated

appearance of the b=0 volumes is expected for neonatal MR due to the longer

tissue relaxation times. Both simulation-trained and real-trained classifiers

fit their validation sets well — the simulation-trained achieved 95% accuracy

on the simulated validation set, and the real-trained achieved 93% accuracy

on the real validation set, with accuracy defined as the fraction of correct

classifications (both true positives and true negatives).

We determined the optimal threshold for the simulation-trained classifier

using each of the seven real subjects in the training+validation set, in order

to get a sense for the extent to which the threshold depends on choice of

subject. Thresholds determined from the F1-score criterion were more tightly

clustered (from 0.86-0.97) then those determined from the sensitivity criterion

(0.71-0.96), indicating the F1 criterion is a more reliable way of determining a

threshold. We decided to use the F1 criterion thresholds for the test dataset.

Both classifiers were tested on the three held-back dHCP subjects. Fig-

ure 7.4 shows the precision-recall curve for the two classifiers. Whilst it was

decided to use the F1 criterion for the results, thresholds for the sensitivity

criterion are also plotted on this Figure to demonstrate the greater variance in

precision/recall scores this introduces. The real-trained classifier achieved pre-

cision and recall of 97% and 98% for classification of corrupted volumes, results

comparable to the state-of-the-art results reported in [179]. Intra-rater agree-

ment on the test set was 99%, showing this classifier approaches human level
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(a) Real data.

(b) Simulated data.

Figure 7.3: Real and simulated data. Red bounding boxes indicate the volume
was labelled as containing intra-volume movement.
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Figure 7.4: Precision-recall curve for both classifiers in the test set, consisting of
516 volumes. The threshold for the real-trained classifier of 0.5 is plotted on the
curve, as are the seven thresholds determined for both the F1- and sensitivity-based
criterions for the simulation-trained classifier.

performance. The simulation-trained classifier achieved precision and recall of

95% and 93% for the most common F1-determined threshold (0.94, occurred

in 3/7 subjects). If the lower range threshold was used (0.87) precision and

recall was 83% and 97%, and for the upper threshold (0.97) these values were

96% and 85%. Figure 7.5 shows results for both classifiers on some of the test

data. Figure 7.6 shows the mean classifier score for each volume in the test

set, along with the classification for each volume.

7.5 Discussion
In this work we compared the performance of a QC tool trained on simu-

lated data to that of a tool trained on real data. The real-trained classi-

fier achieved near-human performance, confirming the findings in [179]. The

simulation-trained classifier demonstrated performance approaching that of

the real-trained classifier. It was able to detect the majority of the motion

corrupted volumes in the test set, though it showed slightly reduced precision

and recall compared to the real-trained classifier.

The classifier presented here is a modified version of the one presented by
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Figure 7.5: Sample classifier results for images in the test-set. Green border
indicates a correct classification as containing motion, blue borders indicate false-
negatives and yellow borders are false-positives. Confusion matrices for classification
on all 516 volumes in the test set are shown below. Threshold of 0.94 used for the
sim-trained results.

Kelly et al [179]. It offers comparable performance when trained on real data

whilst offering a number of improvements. Firstly, ours involves training a

single neural network, compared to the 11 trained in [179]. Our classifier only

requires magnitude data, whilst the previous classifier uses both magnitude

and phase data, and we don’t need to distinguish between b-values for training.

Our final decision is made by a simple thresholding of the classifier outputs,

whilst [179] requires the additional training of a random forest classifier on the

CNN outputs.

We only trained our classifier to detect movement artefacts, but there
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Figure 7.6: Classifier scores for each volume in the test-set. The score is pro-
duced by averaging the classifier outputs for the 30 slices classified in each volume.
Threshold of 0.94 used for the simulation-trained plot.

are many more artefacts that would ideally be identified by the QC process,

and future work will look into extending the classifier. One advantage of

training using simulated data is that the training set can be designed to include

numerous examples of artefacts that might be very rare in practice (such as

RF spikes). Training to identify these rarer artefacts on real data may require

labelling a very large dataset in order to find sufficient training examples.

The real data used in this study was relatively unusual, being acquired in

a challenging postnatal cohort. Not only does the data has different contrast

and appearance to adult data, but a specialised acquisition was adopted in-

volving overlapping slices and interleaved b-values and phase-encode direction.

Furthermore there were much higher levels of movement in the dataset than

are usual, which is an advantage for the purposes of this work but could mean

classifiers would show higher false-positive rates on data with less movement.

In future work it would be interesting to explore the performance of classifiers

on more standard, adult datasets.

One potential source of error was the automatic threshold chosen to pro-

duce ground-truth labels for the simulated data. A volume with more than

2.5 mm translation or rotations greater than 2.5° was labelled as containing

intra-volume movement. If volumes with this level of movement looked sig-
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nificantly different to volumes in the real data that were manually labelled as

containing movement the simulation-trained classifier’s performance would be

affected. We investigated this by performing manual QC on two subjects from

the simulated dataset. Manual and automatic QC agreed for 95% of cases.

When they disagreed it was because the automatic threshold picked up on

slightly more subtle cases of movement. This could have led to a slightly more

sensitive classifier than the real-trained one, but this does not seem to have

been the case.

There is room for more investigation. It would be interesting to under-

stand how similar the real and simulated data need to be in order to obtain

good performance. Further work could determine how performance depends

on the amount of movement simulated, signal dropouts, image contrast and

choice of b-values and directions. This ties in to how well the trained classifiers

will generalise to new, unseen datasets — for example a dataset acquired on

adult subjects, or with a different protocol. We could also look at how much

training data is required for good performance; in this work we matched the

amount of simulated and real data used for training, but we could test whether

performance can be improved even further by using more simulated data for

training.

There are some drawbacks to the approach described in this chapter.

These centre around the difficulties inherent in training on one domain (simu-

lated data) and then classifying in a different domain (real data). This can be

seen in Figure 7.6. It shows that the simulation-trained classifier was good at

spotting artefacts, and assigned high scores to volumes containing movement,

but was much less sure for volumes that did not contain movement, producing

scores with a very large spread. This contrasts with the real-trained classifier,

which was able to assign high scores to volumes with movement and low scores

to volume without. This meant the simulation-trained classifier had a smaller

margin for error, which caused the occasional large mistake: in Figure 7.5,

it can be seen the simulation-trained classifier predicted a false-negative on a
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volume that quite clearly contained movement artefacts — the errors in the

real-trained classifier tend to be more straightforward ‘borderline cases’ that a

human might find difficult to classify. The shift in scores caused by the transfer

between domains also meant that the simulation-trained classifier still requires

some labelled, real-data for calibration. Whilst this is still a big reduction in

the amount of labelled data required when compared to the amount needed to

train the classifier, it would be ideal if none was required. Furthermore, the

choice of subject used for the calibration introduces variability into the final

performance of the classifier. These limitation can be addressed by including

recent research on domain adaptation in machine learning, getting a classifier

trained to perform well in domain A (e.g. simulated data) to perform well on

domain B (e.g. real data) without requiring any labelled data from domain

B. In [190], they encourage the classifier to learn features which are domain-

invariant by pitting it adversarially against a discriminator which attempts to

predict the domain the classifier is working in by examining the classifier’s ac-

tivations. In [191], a neural network is used to adapt simulated data to appear

more like real data; training on this adapted data gives performance equivalent

to training on real data. Future work will incorporate similar techniques to

bridge the simulation-trained and real-trained gap seen in our results.

7.6 Conclusion
I demonstrated that a QC classifier trained on simulated data can approach the

performance of one trained on real data. The simulation classifier still requires

a small amount of labelled real data for calibration, but this limitation will be

addressed in future work. The use of simulated data shows some promise for

machine-learning in medical image analysis where labelled training data can

be expensive or difficult to acquire.
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Conclusions

8.1 Summary

The aim of this thesis was to develop a DW-MRI simulator to assist the testing

and development of methods for the acquisition and processing of DW-MR

datasets.

In chapter 3 I developed the framework by combining the POSSUM MR

simulator with a realistic representation of diffusion weighting, taken from

real data. I demonstrated that this approach enables the simulation of much

more realistic data than was possible using existing DW-MR simulators. I also

described how to produce ground-truth displacement fields for data simulated

with artefacts that cause geometric distortions, and suggested it as a new,

more direct way of assessing post-processing algorithms that seek to predict

this ground-truth field.

In chapter 4 I applied this simulator to assess existing techniques for

correcting eddy-current and motion artefacts. The results showed that the

most commonly used technique, registration of each DWI to a b=0 image, can

give poor results, especially for higher b-value data which is being acquired with

increasing frequency. I showed that poor correction is difficult to detect using

either visual inspection of the data or assessment of model fits to corrected

data, two techniques that are commonly employed in the literature to assess

correction quality. By using the assessment of displacement fields I was able to
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demonstrate the effect clearly and quantitatively. The work also demonstrated

that a new correction tool, eddy, provided very good correction, and enabled

me to investigate the acquisition protocol required to obtain good correction

using the tool.

In chapter 5 I addressed one of the main limitations of the simulator:

its inability to simulate spin-echo pulse sequences. This prevents the realistic

simulation of susceptibility artefacts, which in practice are present in nearly

all acquired DW-MR datasets. This was used in chapter 6 to assess existing

techniques for correcting the susceptibility artefact. I also investigated the

interaction of the susceptibility artefact with head movement, an effect that

would be difficult to study without a simulator. I highlight that this can affect

analysis of DW-MR data and suggest a simple modification to the acquisition

protocol that could help mitigate this effect - the adjacent acquisition of blip-up

and blip-down pairs for each DWI.

In chapter 7 I demonstrated that the simulator can also be used to develop

new tools. It was used to train a classifier to detect movement artefacts in DW-

MR data. The classifier’s performance was close to that of one trained on real

data, but required significantly less manually labelled real data. An approach

such as this could have applications in other areas of medical image analysis

where machine learning techniques can offer good performance but labelled

training data is expensive or difficult to obtain.

8.2 Future directions

8.2.1 Simulator improvements

Ideally, simulated data would be seen as an integral part of the validation of

a processing pipeline, or the comparison of a newly proposed tool to the ex-

isting state-of-the-art. Whilst the simulator has been made available online,

the computation time required to generate a dataset presents a current bar-

rier to use. A single volume takes ∼24 hours to simulate on a single CPU

and so in practice a computer cluster is necessary to produce a full dataset.
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GPU acceleration of the code could provide orders of magnitude speed-up that

would allow complex datasets to be simulated on a single computer, and would

potentially assist the adoption of the simulator.

There are several features that could be implemented in the simulator.

Simulating a denser grid of spins — assisted by GPU acceleration — would

mean current model-based approaches to phenomena such as T ∗2 dephasing and

the spin-echo could be replaced with more faithful modelling of the physics.

This would enable the simulation of pulse sequences with multiple spin-echos,

as well as the reproduction of subtler effects such as imperfect spin-echo rephas-

ing. Modelling of multiple RF coils would enable parallel imaging [192] and

more recent advances such as simultaneous multislice techniques [193] to be

simulated. This would make the simulator more useful for helping to under-

stand the effect of more sophisticated image protocols on image quality, and

help better understand how this is affected by interaction with other artefacts,

such as movement. Finally, extending the simulator to numerically solve the

Bloch equations during the RF pulse would enable the testing of non-standard

RF pulses, which would combine usefully with multislice imaging techniques

which tend to use more complicated pulses.

8.2.2 Simulator object improvements

As discussed in Chapter 3.3, there are some potential limitations to the use of

the HCP dataset to produce simulator input objects, such as the possibility

of propagating artefacts present in the data into the simulations themselves.

This could be addressed by acquiring a bespoke dataset with an acquisition

carefully designed to minimise artefacts. This would also enable the acquisition

of a richer diffusion acquisition protocol, with higher b-values than present

in the HCP data, enabling the simulation of even higher b-value data than

presently possible. The limits to the b-values that can be simulated could

also be addressed by replacing the current spherical-harmonic approach with

a model that allows extrapolation to higher b-values, such as MAP-MRI [115].

An interesting avenue for future work might be to integrate a description
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of underlying microstructure into the input object. Diffusion contrast could be

generated using a model-based approach, or even a Monte-Carlo approach that

explicitly models the diffusion of the spins. The advantage of such methods

is that they provide a ground-truth for the underlying microstructure, which

make them better suited for assessing techniques that aim to reconstruct this

underlying microstructure, such as tractography. The Monte-Carlo approach

would also enable the simulation of artefacts caused by flow within blood

vessels.

It would be useful to have a simulator that was able to model non-rigid

movement, such as that caused by CSF pulsation. This could enable the simu-

lation of effects such as signal dropout localised to regions within a slice. This

could be achieved by moving from a voxel-based to a mesh-based description of

the input object, with tissue parameters specified at each vertex in the mesh.

The movement of each vertex in the mesh could be specified independently.

8.2.3 Further applications

There are numerous ways the framework can be used in future work. We

have seen in Chapter 7 that the simulator may be used to train a tool to

detect artefacts, but we can also imagine the extension to training tools to

correct these artefacts. In [194], a deep neural network was trained to predict

the deformation field that registered two MR images. The training data for

this was pairs of images registered by conventional means and a description

of the displacement field between them. The quality of the training data is

dependent on the quality of the initial registration; poor registration would

lead to a poorly trained network. The simulation framework could be used to

provide gold-standard training data, consisting of pairs of misaligned images

and the ground-truth displacement fields between them. If the simulator could

be adapted to simulate non-rigid movement then it could be used to accurately

train non-rigid registration tools.

Another challenge in MRI is the harmonisation of data acquired on dif-

ferent scanners and with different protocols. The ability to combine data from
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different scanners would much increase the statistical power and sensitivity of

studies. The simulation framework could be used to understand how differ-

ences between scanners and protocols affect the data , and be used to develop

either physics-based or machine-learning based tools to harmonise such data.
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