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ABSTRACT
Persuasion is an activity that involves one party (the persuader)
trying to induce another party (the persuadee) to believe or do
something. It is an important and multifaceted human facility both
in professional life (e.g., a doctor persuading a patient to give up
smoking) and everyday life (e.g., some friends persuading another
to join them in seeing a film). Recently, some proposals in the
field of computational models of argument have been made for
probabilistic models of what the persuadee knows about, or believes.
However, they cannot efficiently model uncertainty on the belief
of individuals and cannot represent populations. We propose to
use mixtures of beta distributions and apply them on real data
gathered by linguists. We show that we can represent the belief
and its uncertainty using beta mixtures and that we can predict the
evolution of this belief after an argument is given. We also present
examples of how to use the mixtures in practice to replace general
belief update functions.
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1 INTRODUCTION
Computational models of argument can potentially be used for
systems to persuade users to change their behaviour (e.g., to eat
less, to exercise more, to vote) [9]. A persuader (the proponent)
has a dialogue with a persuadee (the opponent or user) to make
her believe (or disbelieve) some combination of arguments (the
persuasion goal), e.g., to eat healthier food. Building upon Dung’s
abstract argumentation [3], a dialogue concerns an argument graph
G without self-attacks where Args(G) is the set of arguments in G,
and Attacks(G) is the set of attacks in G.

A persuasion dialogue is a sequence of moves. In this work, a
move consists in positing an argument or querying the user of her
belief in an argument A ∈ Args(G). By choosing appropriate argu-
ments to present to the user, the system may raise the user’s belief
in the persuasion goal. However, for the system, there is a problem
of how to communicate with the user and get her arguments. We
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assume – without loss of generality in this work – that the system
cannot understand arguments presented in natural language, given
the complexity of processing arguments in free text. Hence, the
interface with the user is restricted. One solution is for the system
to give a menu of arguments that the user might believe, and the
user presents agreement/disagreement in each argument by giving
it a score (as in a Likert scale [15]). This score is in the unit interval
and denotes the belief the user has in the argument.

Asking the user about which arguments she believes allows for
each move in the dialogue to be tailored to the user. However, a
user might be asked too many questions, which might cause her
to disengage. To address this, we can construct a user model that
contains information such as the belief that the user has in some
of the arguments. The system can then harness the user model to
choose its moves.

To represent and reason with belief in arguments, we can use
the epistemic approach to probabilistic argumentation [1, 13, 19].
Applying this approach to modelling persuadee’s beliefs in argu-
ments has produced methods for updating beliefs during a dia-
logue [10, 12], for efficient representation and reasoning with the
probabilistic user model [7], and for harnessing decision rules for
optimizing the choice of arguments based on the user model [8]. In
this work we consider that the user is not adversarial, meaning that
she is not trying to deceive the system nor is playing strategically.
This is the case in, for instance, a patient/doctor dialogue, where
the doctor is trying to persuade the patient to stop smoking and
the patient is not trying to prevent the doctor from doing so.

These developments offer a well-understood theoretical and com-
putationally viable framework for applications such as behaviour
change. However, the user model lacks any quantification of the
uncertainty associated with any statement of belief in an argu-
ment. Indeed, different users have different numerical represen-
tation when asked about their belief; or different reactions to the
way the queries are formulated depending, for instance, on their
personnality (see, e.g., [14, 18]). In a proposal to address this, a prob-
ability distribution over belief distributions was proposed [11], but
unfortunately, no methodology was given for how to construct the
probability distribution over belief distribution in a way that fairly
reflects the uncertainty. To address these shortcomings, we pro-
vide a new proposal for constructing user models that is based on
beta distributions. These distributions offer a well-established and
well-understood approach to quantifying uncertainty. Additionaly,
they allow for a principled way of representing subpopulations
of a population. This is particularly important for applications in
persuasion, where different subpopulations may have quite dif-
ferent beliefs in the arguments in a dialogue, and they may have
very different ways of updating in response to specific dialogue
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moves. In this case, easy-to-get or already gathered data (such as a
medical record for instance) can be leveraged to match a new user
with a particular subpopulation in order to use a more efficient
argumentation strategy.

We proceed as follows: we present a dataset gathering belief
values of individuals before and after an argument on a specific topic
is given to them; We review the definitions for probabilistic user
models; We review beta distributions and provide a methodology
for constructing a user model from data; We evaluate our methods
on the dataset; We show how a user model using beta mixtures can
be updated in response to specific moves in a dialogue; And we
finally conclude on the contributions of this paper.

2 PSYCHOLOGICAL DATA
To motivate and evaluate our framework, we use real data on par-
ticipants, gathered by linguists. We use the data provided by Lukin
et al. [16] 1. It contains the belief on five different topics, for 637 par-
ticipants (the persuadees), before and after a complex, expert-made,
monological argument is given to them. The topics are: “abortion”,
“climate change”, “death penalty”, “same sex marriage” and “illegal
immigration”. In our paper, we refer to the belief before (resp. after)
the argument is given as the initial (resp. posterior) belief. Note that
these monologues can be seen as being a single move in a dialogue:
the posit of an argument and the query of the belief. Additionaly,
usual dialogue moves are often less complex arguments, making the
monologues a more interesting choice for the sake of the analysis
of the belief. Traditional dialogues are only a sequence of single
moves. Their particularities will be discussed in Section 7.

The data also contains the value for each dimension of the
OCEAN model: “Opennness to experience”, “Conscientiousness”,
“Extraversion”, “Agreeableness” and “Neuroticism” [5]. This model
is widespread in the psychology literature as a representation of
the personality of an individual. The value of each dimension is as-
sessed using the “Ten Item Personality Inventory” (TIPI) [6] prior to
any interaction with the arguments. It consists in giving to partici-
pants two adjectives associated with each dimension of the OCEAN
model. For instance, “extraverted” and “reserved” are associated
with “Extraversion” while “anxious” and “calm” are associated with
“Neuroticism”. The participant is then asked to choose a value on a
7-point Likert scale meaning how much she agrees herself as being,
for instance, extraverted. The results are then compiled into a score
for each dimension. We refer to these scores as the OCEAN scores.

OCEAN scores set aside, Figure 1 shows the posterior belief given
the initial belief on the “abortion” topic. Interestingly, we can see
that a significant proportion of the participants do not change their
belief. Indeed, 198 out of 637 participants stay in a ±5% band around
their original belief. However, we can also see that the pairs (initial,
posterior) beliefs are not uniformly spread on the diagonal. Indeed,
the more extreme the initial belief is, the less likely it changes in
the posterior. Therefore, we will be able to analyse efficiently these
data, as we will see later.

In this paper, we only consider belief. Topics such as “abortion”
can leverage other factors such as preferences of the participants.
However, dealing with preferences is a whole domain by itself, out
of the scope of this paper. While the impact of the preferences on

1The dataset is available at https://nlds.soe.ucsc.edu/persuasion_persona

Figure 1: Belief before and after the “abortion” argument for
each participant

the belief is not obvious, they can still be taken into account in the
update function (see Section 7).

In addition to gathering the initial and posterior beliefs, an in-
teresting part of Lukin et al. work is about predicting the belief
change. Given the initial belief and the individuals’ OCEAN scores,
they aim at anticipating the effect of the argument on the belief of
each individual. They first start by dividing the values into three
“bins”: low values, medium values and high values, using rigid,
sharp bounds for each. They then use a Naive Bayes classifier to
predict, given the initial belief and the OCEAN scores, in which bin
the posterior belief is, i.e., after the argument has been given. They
reach a F1-score of 0.52 with this method.

In the next section we present a new framework to model the
belief (initial or posterior) of individuals in a more efficient and
comprehensive way than using a sharp value. The shortcomings
when using sharp values are also discussed in the following section.

3 PROBABILISTIC USER MODELS
In the general case, when dealing with argumentative dialogues,
each odd (resp. even) move in the dialogue is a persuader (resp.
persuadee) move. However, the persuadee moves are played with
respect to the arguments she believes in, in reaction to the persuader
positing an argument. Therefore, an efficient strategy needs to
take into account the possible subsets of arguments the persuadee
believes in. Indeed, an agent is unlikely to posit arguments she does
not have faith in. To that end, the persuader keeps and updates a
belief model of the persuadee and uses it in her decision process. We
use the epistemic approach to probabilistic argumentation [1, 13],
defining a model as a belief distribution over all possible subsets of
believed arguments.

Definition 3.1. A belief distribution B over all subsets X of
Args(G) is such that

∑
X ⊆Args(G) B(X ) = 1. The belief in an argu-

ment A is:

B(A) =
∑

X ⊆Args(G) s.t. A∈X
B(X ).
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For a belief distribution B and A ∈ Args(G), B(A) is the belief
that an agent has in A (i.e., the degree to which the agent believes
A is true). When B(A) > 0.5, the agent believes the argument to
some degree, whereas when B(A) ≤ 0.5, the agent disbelieves the
argument to some degree.

The persuader uses a belief distribution B as a belief model of the
persuadee and updates it at each stage of the dialogue. To update a
user model during a dialogue, a belief redistribution function takes
a belief distribution and returns a revised belief distribution.

In order to do that, we consider the notion of an update method
σ (Bi−1,D(i)) = Bi generating a belief distribution Bi from Bi−1
based on the move D(i) in dialogue D. If the move is a posit of
argument A, the belief in A should be modified. Likewise, if the
move is a query, the belief in the argument should be set to the
value given by the user.

However, if the update is applied on all possible subsets of ar-
guments, it may lead to a computationaly intractable problem. To
address this issue, we can for instance exploit the structure of the
argument graph G [7] or define the belief directly on the singleton
arguments. We choose the latter in this work.

Having a single belief value for each argument is a computation-
aly efficient way to model a user. However, we cannot represent
uncertainty on the belief. Although this is already addressed if the
number of possibilities is finite and discrete [11], this method can-
not account for continuous uncertainty. Moreover, different users
have a different interpretation of the same numerical value they
may give as an answer to a query or give different values depending
on the formulation of the query (see, e.g., [14, 18]). We thus need
to handle intervals rather than precise values.

Finally, this representation is fitted to a particular user. When
dealing with user experiments and real data (as the one present in
the previous section), we need to be able to represent populations.
Indeed, as discussed earlier, data are easily accessible and are thus
available to use. In this case, different personality profiles can be
extracted from the data and belief models associated with these
profiles.When dealingwith a new user, amore efficient initial model
can be associated with her, depending on the closest personality
profile. It can then be refined to suit this particular user.

4 BETA DISTRIBUTION AND MIXTURE
One of the many interpretations that can be given to a belief b on
an argumentA is the probability that argumentA is believed by the
user. In other words, b can be seen as the value of the parameter p
of a Bernoulli trial, the probability that the trial yields a successful
outcome. In our context, the outcome of this trial gives whether
argumentA is succesfully believed or not by the user. When p = 0.5,
the trial represents a coin flip with an unbiaised coin. In terms of
belief, it means the user has one chance over two to answer that
she believes the argument if asked.

In a real situation, when dealing with actual users, the value of
the parameter p cannot be given with certainty. In such a case, we
can use beta distributions to handle the uncertainty on p.

Definition 4.1. A beta distribution B(α , β) of parameters α and
β is a probability distribution on the parameter p of a Bernoulli
trial. The parameters α and β constrain the distribution. They can
be interpreted as: given α − 1 successes and β − 1 failures over

Figure 2: Examples of beta distributions with parameters
(α = 1, β = 10), (α = 5, β = 5), (α = 20, β = 1) (zoomed in
for visualization)

Figure 3: Initial belief of the population on the “abortion”
topic

n = α + β − 2 Bernoulli trials, what is the probability distribution
over all possible p.

By extension, in this work we use it as a probability distribution
on the belief in an argument.

Figure 2 shows three examples of beta distributions with param-
eters, from left to right, (α = 1, β = 10), (α = 5, β = 5), (α = 20, β =
1).

Using beta distributions allows us to address all the points pre-
sented in the previous section. The distribution can handle the
uncertainty on the belief (the distribution over the parameter p)
whether it comes from the lack of prior knowledge or from the
discrepancies in the cognitive evaluation of the belief. They are also
meant for representing populations, if we consider each belief as a
single Bernoulli trial. Interestingly, we can also use them to detect
subpopulations with homogeneous behaviours (i.e., similar belief).



The histogram in Figure 3 shows the initial belief of all the
participants before an argument on the “abortion” topic is given.
We see that a unimodal distribution (i.e., containing only one “bell”)
cannot accurately represent the data. Indeed, it is composed of
several high values (on the y-axis), separated by low values. For
this reason, we use a mixture of unimodal beta distributions in order
to create a multimodal distribution. Each unimodal distribution is
called a component, and all components are weighted and summed
as a linear combination.

Definition 4.2. A beta mixture is characterized by a triple ⟨α =
(α){1, ...,C } , β = (β){1, ...,C } , π = (π ){1, ...,C }⟩ whereC is the num-
ber of components, αc , βc and πc are respectively the parameters
α , β and the weight associated with component c ∈ {1, . . . ,C}.

Therefore, a mixtureM is calculated as follows:

M(α , β,π ) =
C∑
c=1

πc × B(αc , βc ).

By extension, the probability of a belief x ∈ X (also called a
sample when talking about a value in a dataset) under the mixture
M(α, β,π ) is:

M(x ;α , β ,π ) =
C∑
c=1

πc × B(x ;αc , βc )

with B(x ;αc , βc ) the function giving the probability that sample x
has been drawn from the beta distribution of parameters αc and βc .

Figure 2 also presents the mixture of the three components,
combined with a weights vector π = [0.4, 0.5, 0.1].

5 FITTING A MIXTURE TO DATA
In order to be able to fit a mixture to the data, we need to find,
given a number C of components, the parameters αc and βc for
each component c , as well as the weight πc to attribute it for the
combination. The objective is to find the parameters maximizing
the likelihood, i.e., the probability that the data have been generated
by a given mixture:

l(α , β,π ) =
n∏
i=1

M(xi ;α , β ,π )

with n the number of samples in the dataset X . However, for con-
venience, we maximize the log-likelihood on the completed data:

ll(α , β,π , z) =
n∑
i=1

C∑
c=1

zic × [lnπc + lnB(xi ;αc , βc )] (1)

where z : {1, . . . ,n} × {1, . . . ,C} → {0, 1} is a function completing
the data such that zic = 1 if sample xi belongs to component c , 0
otherwise.

To this end, we use an Expectation-Maximization (EM) algorithm.
EM algorithms are a class of methods operating as follows:

(1) We start with an initial (random or not) assignment of the
data to the different components, i.e., one possible function
z.

(2) Maximization: we calculate the parameters α ′ and β ′ maxi-
mizing the likelihood of this assignment (Equation 1).

(3) Expectation: we calculate, for each component, the proba-
bility for each sample that it belongs to this component. We
then calculate the new assignment maximizing this proba-
bility for each sample:

z′ic =

{ 1 iff c = argmax
c ′∈{1, ...,C }

B(xi ;α ′
c ′ , β

′
c ′)

0 otherwise.

The weights vector π ′ is calculated by taking the ratio of
samples assigned to each component.

(4) We iterate step 2 and 3 until convergence, i.e., until a stable
assignment is reached.

Intuitively, we can see that this method finds a local optimum
instead of a global one as it depends on the initial assignment. It
needs to be started several times with different initial assignments
or use some knowledge on the data to find the best initial set of
parameters.

Unfortunately, no analytic form exists for directly maximizing
the parameters of beta mixtures (step 2). It means that the max-
imization has to be performed numerically, which is a computa-
tionaly intensive process. However, we can approximate the beta
parameters using the method of moments. The objective is to ap-
proximate them with the parameters of normal distributions that
can be maximized easily using existing analytic forms for them.
If we define µ =

∑m
i=1 yi/m as the empirical mean of the samples

(y){1, ...,m } in the dataset X assigned to a given component and
V =

∑m
i=1 y

2
i /m − µ2 the variance, we can approximate the parame-

ters α and β of this component as follows:

α = µ

(
µ(1 − µ)

V
− 1

)
, β = (1 − µ)

(
µ(1 − µ)

V
− 1

)
.

Using the method of moments, we can use the analytical formu-
lae for normal distributions and subsequently calculate the beta
parameters. This calculation replaces the maximization of Equation
1 in Step 2 of the EM algorithm. This method has been indepen-
dently created and analyzed by Schröder and Rahmann [17].

The drawback of the method detailed in this section is the ne-
cessity to know the number of clusters a priori. One can run the
fitting with different numbers of clusters and take the maximum
likelihood but the complexity of the model has to be taken into
account. Indeed, a perfect mixture would be composed of as many
Dirac functions as there are different values in the sample set. We
propose to apply the Normalized Entropy Criterion (NEC) which is
a balance between the likelihood of the mixture and its complexity,
i.e., the number of components needed for a given set of samples
[2]. While the best mixture is the one fitting the best to the data,
the more components it contains, the longer it takes to compute.
The NEC criterion accounts for this by penalizing mixtures where
the components are overlapping too much and thus forces a small
number of components. To use it, the fitting procedure needs to
be run with different numbers of components. The best mixture is
eventually the one minimizing the NEC.

Definition 5.1. The NEC for a mixture with C components is as
follows:

NEC(C) = E(C)
L(C) − L(1)



with:

E(C) =
C∑
c=1

n∑
i=1

tic × ln tic and tic =
πcB(xi ;αc , βc )∑C

k=1 πkB(xi ;αk , βk )

C(C) =
C∑
c=1

n∑
i=1

tic ln(πcB(xi ;αc , βc )).

Finally, L(C) = C(C) + E(C). Moreover, by convention, E(1) = 0.

Therefore, for each number of components c1, . . . , cm to test,
once the mixture is fitted with this number of components, one can
calculate the NEC. The best number of components c∗ is such that

c∗ = argmin
c j ∈{c1, ...,cm }

NEC(c j ).

6 EXPERIMENTS
In this section we present the methodology to fit a mixture to
data. We applied it on the monologues provided by Lukin et al.
[16]. We show that we can be more precise and flexible in the
separation of the values than having low/medium/high bins with
rigid, predetermined bounds. We also apply more efficient learning
methods to predict the posterior belief intra and inter topics.

As explained in Section 2, the data are monologues, created by
experts of the domain. Conveniently, they allow us to study our
method on the equivalent of one step of a dialogue, while being
substantial enough to trigger a change of belief in only one step.
Moreover, dealing with dialogues requires the instantiation of ad-
ditional functions such as the update method, the reinstatement
function, etc. The choice of these methods and the methods them-
selves require a paper on their own. However, we discuss them and
provide some examples in Section 7.

Likewise, the focus of these experiments is more on the evolution
of the belief rather than on whether the users have actually been
persuaded or not. Indeed, persuasion is a combination of several
factors that need to be carefully studied in isolation.

6.1 Fitting a mixture
As a first experiment, we applied our method to fit a mixture to the
initial belief distribution on the “abortion” topic. We ran the method
with three different numbers of components for the mixture: three,
four and five. Figure 4 shows the individual distributions for the
components of each mixture. As we can see, the difference between
the 3-component and the 4-component mixtures are substantial.
The left-most component of the 3-component mixture has a bigger
area under the curve (and actually overestimate the probability
over this interval) than the one of the 4-component mixture. For
the 4 and 5-component mixtures, the four first components are
almost identical. However, we can see that the fifth component
of the 5-component mixture is almost always 0-valued except at
the extreme right of the interval. On one hand, it allows for the
fourth component to start later on the belief interval but, on the
other hand, it can be seen as a form of overfitting. This mixture will
thus be less efficient to represent new data not available during the
fitting process.

This visual analysis is corroborated by the calculation of the
NEC criterion. As a reminder, we aim at minimizing the value of

the criterion calculated for each mixture. In our case, the value
of the NEC criterion for the mixture with 3 components is 2.486.
It is −2.41 for 4 components and −1.47 for 5 components. There-
fore, the best mixture according to the NEC criterion is the one
with 4 components: the mixture that is not overfitted (unlike the
5-component) and that is not overestimating the probability (unlike
the 3-component). Figure 5 shows the initial belief for the whole
population, as well as the 4-component mixture calculated previ-
ously. The mixture is the linear combination of the distributions
shown in the middle graph of Figure 4, combined with the weight
vector learnt during the process.

The parameters for each component are as follows:
(1) α = 0.452, β = 14.986,π = 0.283
(2) α = 6.886, β = 24.417,π = 0.106
(3) α = 6.962, β = 4.674,π = 0.207
(4) α = 2.866, β = 0.254,π = 0.404
We have applied this method to the other topics and found that

the best mixtures have respectively 5, 5, 6 and 4 components for the
“climate change”, “death penalty”, “same sex marriage” and “illegal
immigration” topics. It means that the number of components is
application-dependent and the whole method has to be run for each
domain. On the other hand, it also means that the mixture is tightly
fitted to the domain (because of the difference in the number of
components) and thus represents it more efficiently than a more
general method.

6.2 Predicting the belief
Our second experiment consisted in finding the component an indi-
vidual’s posterior belief belongs to, depending on the initial belief
and the OCEAN scores of this individual. We used the machine
learning models available in the Scikit-learn Python library2 and
compared the F1-score associated with each of these models. We
present here the methodology we applied on four types of classifier:

(1) a gradient tree boosting classifier (the best performingmethod
in the library on this task),

(2) a naive Bayes classifier,
(3) a classifier choosing the most crowded component,
(4) a status quo classifier assuming the belief stays in the same

component.
The classifiers 3 and 4 are used as baselines.

The high-level idea of the gradient tree boosting [4] is to first
learn a simple decision tree on the data. It then takes all the samples
misclassified by the initial decision tree and learns a new decision
tree on these samples. This process is iterated until the desired
number of simple classifiers is reached. In our case, we use two
classifiers for each class (i.e., for each component in the mixture
representing for the posterior belief). Note that the purpose is not
to advocate for the gradient tree boosting but rather to show we
can achieve good performance using machine learning methods on
the data and our mixtures.

For all of the four methods listed previously we use a 10-fold
cross validation on the “abortion” data. In other words, the sample
set is divided in ten parts, one part is chosen as the test set while
learning on the nine others. Therefore, during the learning process

2http://scikit-learn.org



Figure 4: Individual component distributions for different mixtures on the “abortion” data

Figure 5: Belief on the “abortion” topic for the whole popu-
lation before the argument and a 4-component mixture

we give the initial belief and the OCEAN scores as input and the
component of the posterior belief as expected output for the indi-
viduals contained in the nine learning parts. Then, for the test part,
we give the initial belief and the OCEAN scores for the individuals
contained in the test part and compare the component predicted
with the actual component of the posterior belief. This procedure
is repeated nine additional times, taking a different part as test set.

In order to compare in a fair way with the method used by Lukin
et al., we also ran this procedure with the naive Bayes method
(instead of using the results from their paper). Indeed, their method-
ology and expected output were different. We report the average
F1-score on the 10-fold cross validation for each method in Table 1.
The difference between the gradient tree boosting and each of the
other methods is statistically significant with at least 99.8% confi-
dence using a Student paired t-test on the folds results. It means that
using the Gradient boosting method does improve the prediction
over the naive Bayes and the baselines. The purpose of the fourth
method is to show that even though a significant proportion of

Method 1 2 3 4

Avg. F1 0.72 0.58 0.26 0.64
Table 1: Average F1-score on the 10-fold cross validation for
each method

the population is not changing its belief, using machine learning
performs better than the status quo method.

The second part of this experiment consisted in performing a 5-
fold cross validation on all five topics in order to learn from four of
them to predict the fifth one. Using the gradient tree boosting with
four estimators for each component, we achieve an average F1-score
of 0.718. This result means that participants behave consistently
(but not identically) across topics given their personnality profile
and their initial belief.

As a conclusion to these experiments, we have shown that we
can fit a mixture to data in order to represent a population. We
can also use the mixture in order to learn, intra topic and inter
topic, how the belief evolves depending on the initial belief and the
psychological features of the individuals composing the population.
Using real data such as that provided by Lukin et al., a persuader
can use this method to select the best argument to give a particular
persuadee or to choose a subpopulation to tackle given a topic.
The inter topic learning has also shown that one can have a model
learning on a set of arguments and have an insight on the evolution
of the beliefs on a new argument before considering to use it in a
dialogue.

7 UPDATING THE MIXTURE
Once a mixture is fitted to the data, we can use it in place of the
former one-valued belief for an argument. For this, we need to
define the allowed moves and the belief update function associated
with each of them. In this paper, we define three moves: positing
an argument or its negation, reinstating a belief value on a de-
fended argument and querying the belief of an argument. Note
that they are just examples of instantiations of existing functions
on beta mixtures. Different methods can be defined for different
applications.



7.1 Posit
A posit consists in asserting an argument or its negation. The belief
in this argument is expected to change as a result of the posit,
increasingly or decreasingly.

Example 7.1. A refinement function [10] can be adapted to the
beta mixtures (and more particularly to their means and variances)
as follows:

µ ′c = µc × (1 − k) + k and V ′
c = Vc × (1 − k),∀c ∈ {1, . . . ,C}

when the argument is positively asserted and:

µ ′c = µc × (1 − k) and V ′
c = Vc × (1 − k),∀c ∈ {1, . . . ,C} (2)

when it is its negation, where C is the number of components, µc
(resp. Vc ) is the mean (resp. variance) of component c and k = 0.75
(resp. 1) in case of the ambivalent (resp. strict) method [10].

In other words, it means that when an argument (resp. its nega-
tion) is posited, the mean of each component of the mixture in-
creases (resp. decreases). However, the variance decreases in both
cases as we can consider that performing more moves reduces the
uncertainty.

Note that, most refinement functions can only be applied if no
attacker of the argument being updated is believed, i.e., has a belief
bigger than 0.5. This restriction can also be implemented using beta
mixtures.

Example 7.2. Let us define two arguments A and C such as C
attacks A. The current move to take into account is the posit of
A. Therefore, before updating A, we need to check whether C is
believed. LetM(α , β,π ) be the mixture representing the belief on
C . We say argument C is believed iff:∫ 1

x=b
M(x ;α , β,π ) > t

where b is the threshold for an argument to be considered believed
when using sharp beliefs (traditionally 0.5). Parameter t is a thresh-
old defining how conservative is the definition. For instance, t = 0.8
means that 80% of the mixture needs to be above b for the argument
to be believed. It corresponds to a very conservative definition of
the belief. In other words, it can mean that despite the uncertainty,
we are 80% sure that the belief if above 0.5. Alternatively, it can
also mean that 80% of the population believes argument C with a
degree superior to 0.5.

Concretely, using the mixture depicted in Figure 5, the value
with b = 0.5 is around 0.505. If t = 0.2 < 0.505, the argument is
considered believed. On the other hand, it is considered disbelieved
if t = 0.7 > 0.505.

Interestingly, we can also use a classifier using the method pre-
sented in the previous section to act as an update function. Indeed,
if only the component is needed instead of the actual one-valued
belief, when an argument is posited, we can give the current belief
and the psychological profile of the persuadee to the classifier in
charge of this argument. In realistic scenarii such data can be avail-
able. For instance, in a healthcare context, one can use medical data
on patient. In a more general application, social media interactions
can be used (see, for instance, [20] for a personality assessement
through Facebook interactions).

Note that the Gradient Tree Boosting method can also be used
as a regressor, meaning that it predicts a precise value instead of a
class. Applying it on the “abortion” data using our methodology
gives us an R2 score up to 0.75 (on an interval of (−∞, 1], where 1 is
reached with the perfect prediction for all samples) on some folds.

Therefore, using machine learning is an efficient way to define
update functions for the posits of arguments. However, in order
to be able to compare the result of the learning with the processes
defined in the psuchology literature, the machine learning model
needs to be carefully chosen. Indeed, the update function that is
learnt needs to be extractable out the model (unlike in neural net-
works for instance).

7.2 Reinstatement
The reinstatement move is in fact an indirect move. Indeed, no
agent can choose to trigger a reinstatement on purpose. Rather, it is
automatically triggered when a previously posited argument, that
has been attacked by a counterargument, is defended by the newly
posited argument. In this case, the agent chooses to perform a posit
move, and the reinstatement is applied as a subsequent step.

A reinstatement consists in increasing the belief in the defended
arguments. However, several choices have to be made before build-
ing a reinstatement function, for instance:

• Is the belief going back to the original value?
• Is reinstatement occuring when all attackers have been de-
feated or partially each time one is?

Example 7.3. The reinstatement function below is applied when
all attackers of an argument have been defeated. Therefore, it is
triggered just after the posit of the last defending argument.

The function is as follows:

µ ′c = (µc × (1 − k) + k) × γd/2 and V ′
c = Vc ,∀c ∈ {1, . . . ,C}

where C, µc ,Vc and k are previously defined and γ is a discount
factor and d is the distance to the last defender, i.e., the length of the
chain in the argument graph. In other words, this function means
that the reinstated value is a function of the distance to the last
defender.

Example 7.4. As another example, let us consider argument A
being attacked by argument C1. We denote µ0c , the mean of com-
ponent c in the mixture for the original belief. The belief in A is
updated using Equation 2 in Example 7.1. In the argument graph,
A is also attacked by arguments C2, . . . ,Cд . However, in this ap-
plication domain, the belief is only decreased with the first attack.
Moreover, it is partially increased for each attacker that is defeated,
back to its original value. The reinstatement function can be defined
as follows for each incremental raise of the belief:

µ ′c = µc +
−kµ0c
д

and V ′
c = Vc ,∀c ∈ {1, . . . ,C}.

We can see that if it is applied д times, one for each attacker, the
mean is reverted back to µ0c .

Note that this is a simple example only meant for illustration. It
needs to be refined if, for instance, only a subset of the attackers is
posited or if reinstatements and attacks can be interleaved.



Figure 6: Query with a binary value

7.3 Queries
In order to assess the current belief of the opponent in one particular
argument, the proponent can use a special move, a query, to ask
for this belief. Note that, although a brute forcing strategy such
as asking for the belief in all the arguments at each step can give
an accurate representation of the opponent, we need to take into
account that she can disengage from the dialogue at any point in
time. Therefore, we need to keep the dialogues short, efficient and
attractive, i.e., not boring nor repetitive.

We can consider two types of query with different expectations
on the answers:

(1) Numerical value in [0,1]: “How much do you believe...”
(2) Binary value ({“Yes”/“No”}): “Do you believe...”

7.3.1 Numerical value. When the user answers with a numer-
ical value representing her belief in the argument asked, we can
replace the beta mixture by this sharp value. However, as discussed
previously, different individuals have different representations of
the same value (e.g., [14]). Therefore, we may prefer to transform
the mixture in order to have only one component centered on
the value given by the user and with a small variance to account
for this slight discrepancy. Note that the value of this variance is
application-dependent. It depends notably on the amount of risk
we are willing to take or the discrepancy we are able to bear in a
given context.

7.3.2 Binary value. If the answer given by the user is only bi-
nary, we need to transform it back to a specific value or use a more
complex method.

In the first case, one possibility is to apply the method for nu-
merical values with pre-chosen ones, for instance, 0.8 when the
answer is “Yes”, 0.2 otherwise. It means that we fall back into the
previous discussion on numerical values, and the need to decide
for the “small variance”.

Another more interesting possibility is to mix the current mix-
ture with uniform distributions defined on half of the interval. For
instance, if the answer is “No”, the mixture is uniformly combined
with a uniform distribution defined on [0,0.5[. In this case, all belief
above or equal to 0.5 in the initial mixture is decreased to a density

of 0 and the density for all the belief below 0.5 is doubled. This
can be seen as a form of Bayesian updating with a term such as
P(belief < 0.5|answer = “No”) = 1.

Figure 6 shows an initial two-component mixture and the new
distribution if the user answers “No”.

8 CONCLUSIONS
In this paper, we have presented a systematic procedure to fit beta
mixtures to beliefs using real world data. This contribution allows
us to take into account the uncertainty in the belief in a more flex-
ible way. It is useful to consider uncertainty when dealing with
human. Indeed, even if we consider that they are not adversarial
in this paper, we cannot count on an exact and consistent numer-
ical representation when it comes to beliefs. Depending on the
situation, on the way the query is formulated, etc. there might be
discrepancies and inaccuracies that we are now able to handle.

We can also represent the belief on a full population and be
able to efficiently determine whether an argument is believed or
not by this population and what will be its impact on a group of
persuadees. We can also extract subpopulations in order to be able
to deal with unknown user more efficiently, by matching her with
the closest subpopulation and using this as a starting model in the
dialogue.

We showed how the mixtures can be used in argumentation to
define update functions with various moves: posits, reinstatements
and queries. It makes this framework a tool able to replace the
former use of sharp values when dealing, for instance, with strate-
gical argumentation (see, e.g., [8]). We have also demonstrated that
predictions on the evolution of the beliefs can be made on the mix-
tures. We can used previously acquired data to learn a prediction
model that can be used to predict and give insights on the impact
of arguments on a new user. Interestingly, it also works cross topic.
It means that, for instance, if we have data on the efficiency of a
previous strategy on a given topic, we can have a flavour of what
will be the efficiency of the same strategy on another one. While
the best machine learning model to use is still to be defined, the
results are very promising.
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