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The throughput of cell mechanical characterization has recently approached that of 

conventional flow cytometers. However, this very sensitive, label-free approach still 

lacks the specificity of molecular markers. Here we developed an approach that 

combines real-time 1D-imaging fluorescence and deformability cytometry in one 

instrument (RT-FDC), thus opening many new research avenues. We demonstrated its 

utility by using subcellular fluorescence localization to identify mitotic cells and test for 

mechanical changes in those cells in an RNA interference screen. 

Flow cytometry (FCM) is the gold standard for single-cell characterization in biological 

research and numerous clinical applications1. As cells flow through the cytometer, they are 

illuminated by lasers, and detectors collect emitted fluorescence and forward- and side-

scattered light1. The scattered light provides information about cell morphology in the 

absence of a molecular label. Recently, the assessment of cells’ mechanical properties has 

emerged as a means to obtain orthogonal information about the functional state of whole cells 

without labels. Importantly, cell mechanics is tightly regulated and serves as a quantitative 

readout for the state of the cytoskeleton2,3. A cell’s stiffness is influenced by its progression 

through the cell cycle4,5, differentiation5,6, and pathophysiological processes such as 

malignant transformation7,8 and immune-cell activation9–11. With the recent advent of several 

microfluidic techniques and their massive increase in throughput (~100–10,000 cells per 

second), mechanical phenotyping can now be performed at rates of conventional FCM5,12,13. 

Among many other applications, this opens up the possibility of large-scale screening for 

genes that regulate cell mechanics, which was previously limited by the low throughput (~10–

100 cells per hour) of techniques such as atomic force microscopy. 
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Label-free approaches provide quantitative information about cells but lack molecular 

specificity, which can be achieved in principle through the use of fluorescent probes1. The 

total amount of a certain fluorescent probe in a cell is what is usually quantified in standard 

FCM. More advanced variants of FCM, such as fluorescence pulse-shape analysis14 and slit-

scanning15, and the use of line-scan cameras16 and nonlinear optics17 can even provide the 1D 

and 2D intracellular distribution of fluorescence, respectively. The combination of the 

molecular specificity of such FCM analysis with mechanical phenotyping, which is very 

sensitive to changes in cell state, promises to open up entirely new possibilities for scientific 

exploration. 

Here we present RT-FDC, which combines 1D-resolved, fluorescence-based FCM 

with mechanical phenotyping for the continuous analysis of large cell populations (Fig. 1a). 

The principle of operation is based on real-time deformability cytometry (RT-DC)5. Up to 100 

cells per second are flowed through a microfluidic chip (Supplementary Fig. 1) and 

deformed without physical contact by hydrodynamic interactions in a constriction zone18,19 

(Fig. 1b). Stroboscopic high-speed bright-field microscopy with real-time image processing 

captures and evaluates the cell contour. Simultaneously, three diode lasers excite fluorescence 

in a light sheet perpendicular to the channel axis (Fig. 1a, Supplementary Fig. 2a–c), and 

avalanche photodiode detectors measure emitted fluorescence intensity in the region. We 

checked the synchronicity of the different fluorescence channels, using custom-made two-

color fluorescent agarose beads (Supplementary Fig. 2d). If an object is detected in the 

bright-field image, the custom algorithm extracts the cross-sectional area and deformation 

(Fig. 1b), which can be related to the object’s elastic modulus18,19, and analyzes the respective 

fluorescence signal for peak maximum, width, and area. We confirmed that fluorescence 

detection by RT-FDC is comparable to that of standard FCM with calibration beads 

(Supplementary Fig. 3). To test the utility of RT-FDC for biological and biomedical 

research, we assessed the mechanical properties of fluorescently labeled subpopulations of 

cells in a heterogeneous mixture without prior sorting. 

Surface marker labeling is the standard approach for identification of many different 

cell types, including hematopoietic stem and progenitor cells (HSPCs)5. Previous studies have 

shown that mechanical properties of HSPCs are linked to their circulation and migration 

abilities6,20—essential aspects of successful HSPC homing when the cells are used for 

transplantation after chemotherapy. To test whether cell mechanics can be used as a 

phenotypic marker for human CD34+ HSPCs, we measured the mechanical properties of cells 

from granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood. After 



classifying the cells into CD34+ and CD34– subpopulations on the basis of fluorescence 

intensity by RT-FDC (Fig. 1c), we obtained the mechanical fingerprint (deformation versus 

area; Fig. 1d,e), which showed that CD34+ cells had a mean size of 61.1 ± 1.3 µm2 and low 

deformation (0.02–0.05), corresponding to an elastic modulus of ~1 kPa; we confirmed these 

findings with cells from three different donors. For outliers in the CD34+ population there was 

no correlation between CD34 expression and deformation or projected area (Supplementary 

Fig. 4). Compared to the CD34+ fraction, CD34– cells were either smaller (lymphoid cells)5,11 

or larger (monocytes and granulocytes)5,11 and had a wider distribution in deformation. An 

exemplary multicolor analysis excluding T cells and monocytes and using specific lineage 

markers is shown in Supplementary Figure 5, and validates antibody-based identification of 

HSPCs. We also tested the potential for sorting cells by deformation and cell size, without 

relying on fluorescence. Assuming the fluorescence readout represented the ground truth, we 

found that classification by mechanical fingerprint (Fig. 1d) yielded sensitivity of 69.1% and 

specificity of 90.9% (Supplementary Table 1). The prevalence was 0.55%, as confirmed by 

FCM (Supplementary Fig. 6). Importantly, this would be sufficient to enrich for HSPCs in 

G-CSF mobilized blood on the basis of their morphological and mechanical phenotype alone. 

As a second test case, to demonstrate the applicability of RT-FDC with cell-permeant 

fluorescent dyes, we used RT-FDC to determine the mechanical properties of mature red 

blood cells (RBCs) compared with those of immature reticulocytes (Supplementary Fig. 7, 

Supplementary Table 2). Reticulocytes were slightly larger and less deformed compared 

with RBCs. 

In addition to detecting total fluorescence intensity, the setup also permits 1D 

fluorescence imaging. When cells in the channel pass through the light sheet (3-µm thickness; 

Supplementary Fig. 2a–c) at a constant speed, the temporal shape of the fluorescence peak 

provides a measure of the subcellular distribution of fluorophores in the channel direction 

(Supplementary Fig. 2a). This enables RT-FDC to provide spatial information about the 

localization of fluorescence signal within cells (Supplementary Fig. 8). We exploited this 

possibility to screen for changes in cell mechanics that accompany entry into mitosis in the 

Drosophila cell line Kc167. Mitotic cells, which represent ~5% of an asynchronous 

population of proliferating cells, were detected on the basis of nuclear envelope breakdown—

characterized by the entry of nuclear localization signal (NLS)–GFP into the cytoplasm, 

which equalized the GFP and tdTomato peak widths (Fig. 2a, Supplementary Fig. 9)—and 

their specific mechanical fingerprint was analyzed (Fig. 2b). This enabled us to use RNA 

interference in combination with RT-FDC to investigate the mechanical effects of 42 genes 



chosen for their function as regulators of the cortical actin cytoskeleton in mitotic cells. The 

detailed analysis pipeline and all screening results can be found in Supplementary Figures 

10 and 11, Supplementary Table 3, and the Supplementary Discussion. This screen 

identified a set of both known and novel genes involved in the regulation of mitotic cortical 

mechanics, revealing important roles for Rho GTPase-activating proteins in opposing the 

activity of the mitotic Rho guanine nucleotide-exchange factors (primarily Ect2/Pbl). Thus, 

RT-FDC makes it possible to screen for regulators of cell mechanics in small subpopulations 

of cells. Of note, the conventional, two-color FUCCI cell cycle probe also can be used with 

RT-FDC. However, only through the 1D fluorescence-localization capabilities of RT-FDC 

can G2- and M-phase cells be distinguished and mechanical differences between mitotic and 

interphase cells be identified (Supplementary Figs. 12 and 13). 

We were also able to identify intracellular structures smaller than the nucleus, such as 

separating chromatids during mitosis in cells carrying fluorescently labeled histone 2B (Fig. 

2c,d). In this way HeLa cells could be separated into metaphase and anaphase populations on 

the basis of the presence of single and double peaks of mCherry fluorescence signal, 

respectively. An important aspect for the detection of separated chromatids is the proper 

alignment of cells, which are elongated along the spindle axis, with the channel axis, which is 

ensured by the hydrodynamic forces acting on the elongated cells. 

The combination of the molecular specificity of fluorescent probes with the sensitivity 

of the measured cell mechanics as a functional readout in RT-FDC enables correlation of 

both, or gating for rare cells in large samples for mechanical analysis. In the future, the 

possibility to enrich for cells by using mechanics alone might aid or even replace the current 

label-based purification of cells, which might be particularly interesting for clinically relevant 

cells such as HSPCs. Our results further show that the technique is ideal for screening for 

regulators of cell mechanics. Screens focused on mechanical properties will benefit from the 

high throughput per sample (100 cells per second), as well as from the short time needed to 

complete one experiment (15 min), which allowed us to carry out more than 500 individual 

measurements in the presented screen for candidate genes involved in the regulation of cell 

mechanics during mitosis. Future investigations of mitotic cell mechanics could take into 

account information encoded in the fluorescence peak with greater detail, as demonstrated for 

H2B HeLa cells for resolution of meta-, ana-, and telophase. This aspect highlights the need 

for simultaneous fluorescence and mechanical readout: if cells had to be presorted before 

mechanical measurement by any given method, time-sensitive phases, such as mitosis, could 

not be resolved because of the experimental delay. Only simultaneous readout retrieves the 



full information at the single-cell level, going beyond the state of the art of what is achievable 

with FCM or deformability cytometry alone. 

METHODS 

Methods, including statements of data availability and any associated accession codes and 

references, are available in the online version of the paper. 

Note: Any Supplementary Information and Source Data files are available in the online 

version of the paper. 
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Figure 1 | Real-time fluorescence and deformability cytometry. (a) Experimental setup. Cells 

are pumped through a microfluidic channel and imaged by bright-field microscopy, while 

three lasers excite and avalanche photodiodes measure fluorescence. (b) In the narrow 

constriction zone, cells deform as a result of hydrodynamic interaction, and deformation is 



determined by image processing. Focused lasers excite fluorescence in the region marked in 

yellow (c–e) HSPCs were surface-labeled with anti-CD34 conjugated to allophycocyanin 

(APC). (c) Log histogram of CD34–APC fluorescence, and gate used for classification. (d) 

CD34+ cells form a homogeneous population. The color-coding corresponds to a linear 

density scale, as indicated by the key. The black outline around the cell cluster represents the 

gate used to calculate the confusion matrix. (e) The plot of deformation versus area for CD34– 

cells shows more spread than that for CD34+ cells. Experiments were repeated three times, 

with similar results each time. 

 

 

 

Figure 2 | 1D fluorescence imaging for identification of mitotic cells. (a) Nuclear envelope 

breakdown leads to equal peak widths for NLS–GFP and tdTomato. Mitotic cells along the 

diagonal can be gated by the red outline (Supplementary Fig. 9 Interphase cells are shown in 

gray, while mitotic cells are colored according to a linear density scale. (b) Deformation 

versus area of the mitotic subpopulation. Results in a,b are from one experiment 



representative of three repeated experiments. (c,d) Subcellular localization of H2B–mCherry 

in HeLa cells. Cells in (c) metaphase and (d) anaphase exhibited one or two fluorescence 

peaks corresponding to one metaphase plate (arrow in c) or two separated chromatids in the 

bright-field images (arrows in d), respectively. Experiments in c,d were performed five times 

independently, with similar results each time. a.u., arbitrary fluorescence units. 

 

 



ONLINE METHODS 

Experimental setup.  

Figure 1 shows the overall experimental setup used throughout this study. The microfluidic 

chip, synchronized pulsed LED illumination (AcCellerator L1; Zellmechanik Dresden), 

syringe pump (neMESYS; Cetoni), and bright-field imaging (MC1365; Mikrotron) were 

adapted from RT-DC as described previously5. Supplementary Figure 14 provides 

additional technical details about the excitation and emission light paths too small to see in 

Figure 1. For fluorescence excitation, three solid-state lasers (OBIS 488-nm LS 60 mW; 

OBIS 561-nm LS 50 mW; OBIS 640-nm LX 40 mW; Coherent Deutschland) in combination 

with adjustable mounted dichroic mirrors (561-594R, 473-491R, and 1064R; Semrock) create 

a combined beam. This aspect is particularly difficult to achieve and requires advanced optics 

skills; the use of a shearing interferometer is beneficial. The beam is expanded and collimated 

by two achromatic lenses (AC080-010-A-ML and AC254-040-A-ML; Thorlabs) and then 

focused to a sheet in the image plane of the microscope with a cylindrical lens (LJ1695RM-A; 

Thorlabs). The position and angle of this cylindrical lens have to be aligned carefully to focus 

the light sheet in the object plane of the objective. Alignment success can be checked best 

with a fluorescent sample, such as a text marker line on a thin microscope slide. Excitation 

light is coupled into the microscope (Axio Observer.Z1; Carl Zeiss Microscopy) through the 

modified backport for epifluorescence illumination. Below the 40× objective (EC Plan-

NEOFLUAR 40×/0.75-NA (numerical aperture); Carl Zeiss Microscopy), a QuadLine beam 

splitter (zt405/488/561/640rpc; Chroma Technology) reflects excitation light toward the 

specimen but transmits light emitted by the sample to the detector assembly. A second beam 

splitter (zt 473 RDCXT; Chroma Technology) separates light from the LED illumination with 

460 nm to the CMOS (complementary metal-oxide semiconductor) camera (MC1365; 

Mikrotron) for bright-field imaging, which has a quantum efficiency of about 30% in this 

spectral band and operates at frame rates up to 4 kHz for our application. Light of longer 

wavelengths is directed to an adjustable slit (VA100C/M; Thorlabs) that is in the image plane 

of the microscope and part of the confocal detector assembly. The collimated beam is 

separated into three fluorescence channels—FL-1 (FF555-Di03, FF03-525/50; Semrock), FL-

2 (zt 633 RDC, Chroma Technology Corp; FF01-593/46, Semrock), and FL3 (700/75 ET; 

Chroma Technology Corp)—and finally focused (LA1951-A-ML; Thorlabs) on the three 

avalanche photodiode detectors (MiniSM10035; SensL Corporate). 

The analog detector signals are digitized by a PCIe (peripheral component 

interconnect express) card (NI PCIe-6531; National Instruments Germany) at a sample rate of 



1 MHz (shared between channels) and stored in a circular buffer of 1,000,000 samples for 

real-time analysis. Because the trigger signal for image acquisition is derived from the same 

clock as the detector data acquisition, the image and fluorescence acquisition are 

synchronized. If an object is detected in an image, the corresponding part of the detector 

signal is fetched from the circular buffer and also analyzed. For image processing, we used 

the OpenCV 3.1 computer vision library (http://opencv.org) wherever possible. Image 

processing included the following steps: subtraction of a background image (rolling average 

of the last 100 camera images), threshold operation, finding contours in the binary image via a 

border-following algorithm21, determining particle cross-sectional area, deformation (1 

– circularity) and position of the contour. Additionally, the mean brightness of pixels inside 

the contour is determined along with the s.d. In case these parameters match the gates set 

before, the corresponding fluorescence detector signal is fetched from the circular buffer and 

analyzed for the maximum value, the peak width (full-width at half-maximum (FWHM)), the 

peak area, and the peak position. These parameters are stored together with results from 

image processing, an image of the cell, and the fluorescence peak on the disk of the computer 

for later analysis and are instantly plotted on the screen. 

For characterization of the aperture function (sensitivity as a function of position), 3-

µm fluorescent beads (BD FACSDiva CS&T Research Beads; Becton Dickinson) were 

embedded in 1% agarose gel (low gelling temperature A0701-100G; Sigma-Aldrich) on a 

microscope slide (Thickness 2; Glaswarenfabrik Karl Hecht) and moved through the detection 

volume on the automated microscope stage while the detector signals were recorded to obtain 

the combined fluorescence excitation and emission efficiency for a field of 30 × 60 µm as 

shown in Supplementary Figure 2b. Because the microscope slide was the same as that used 

for the microfluidic chips and the refractive index of 1% agarose gel is very close to that of 

water (n = 1.34), we assumed that the light sheet in the microfluidic channel and the bead test 

slide had very similar shapes. The resulting thickness of the light sheet (FWHM) along the 

channel axis is presented in Supplementary Figure 2c and was about 3 µm for all 

fluorescence channels. This is also the size of the fluorescent bead and thus highlights the 

capability of the device to detect localization of fluorophores in cell compartments such as the 

nucleus that have a size of about 5 µm. 

The dynamic range of the fluorescence detection system was tested with flow 

cytometer calibration beads (Spectral calibration PMMA beads; PolyAn; lot FP170601A). As 

expected, eight populations showed up in the histogram of the fluorescence peak heights 

(Supplementary Fig. 3), in agreement with reference measurements provided in the 

http://opencv.org/


manufacturer’s manual and our own measurements obtained on an LSR II flow cytometer 

(Becton Dickinson). Fluorescence peak width detection in different channels is compared in 

Supplementary Figure 2d, which shows data from two-color fluorescent agarose beads with 

heterogeneous sizes. These beads were produced from a mixture of two ultra-low-gelling-

point agarose solutions, one functionalized with Alexa Fluor 488, the other with Alexa Fluor 

633. For cross-linking we decreased the temperature below the gelling point, which resulted 

in stable beads that could be stored for weeks. The linear fit showed that the peak widths in 

the green and the red channels (FL-1 and FL-3) were proportional, with a slope close to 1 and 

a small offset of –0.1 µs, demonstrating that peak-width measurements can be compared 

across channels for investigations of fluorophore localization (Supplementary Fig. 2d). The 

particle speed in the flow for this measurement was about 0.4 m s–1, so the particle diameters 

ranged from 5 µm to 35 µm based on the fluorescence signal peak widths. All the setup 

characterization experiments consisted of three technical repeats. 

Experimental procedure. 

For all experiments, cells or micro-particles were suspended in phosphate-buffered saline 

without magnesium or calcium (PBS–) complemented with 0.5% or 0.6% (w/v) 

methylcellulose (Alfa Aesar) to slow down sedimentation during the experiment. The 

methylcellulose solution was calibrated with a falling-ball viscometer (Haake Typ C; Thermo 

Fisher Scientific) to a viscosity of 15.0 ± 0.8 mPas and 25 ± 0.6 mPas at 24 °C for 0.5% and 

0.6% methylcellulose, respectively. Prior to the experiments, the cell suspension was 

aspirated into PEEK tubing (Upchurch; Thermo Fisher Scientific) connected to a 1-mL plastic 

syringe (Becton Dickinson) at a flow rate of 1 µl s–1, avoiding high stress on the specimen. 

Then the tubing was connected to the microfluidic chip (Fig. 1b, Supplementary Fig. 1), 

where constant flow was generated by a combination of sheath and sample flow with a ratio 

of 3:1. After equilibration of the flow for 2 min, the measurement was started. The camera’s 

region of interest (256 × 96 pixels) was positioned at the end of the 300-µm-long channel 

region of the chip to ensure cell deformation had reached a steady state. Laser powers can be 

adjusted in the range of 1–60 mW to match the detector’s dynamic range in an optimal way. 

Because of the low spectral overlap between fluorophores used in our experiments, no 

compensation was applied to raw fluorescence data. Compensation procedures may, however, 

be performed according to standard methods. Depending on the cell concentration in the 

sample, measurements ran for one to a few minutes and yielded typically 2,000–100,000 

events at rates of up to 100 events per second. Higher throughput rates were not possible 

because multiple cells in the image might impede the correct assignment of fluorescence 



peaks to cells in the image data. Post-experimental data analysis was performed with the 

following programs: ShapeOut (Zellmechanik Dresden; 

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut) for plotting and gating, and 

OriginPro 9.0 (OriginLab Corporation) for more detailed data inspection, plotting, and fitting. 

Hematopoietic stem cell isolation and preparation. 

With approval for the study (EK221102004) from the ethics committee of the Technische 

Universität Dresden, we analyzed the apheresis product from G-CSF-mobilized peripheral 

blood from three healthy human donors, obtained with their informed consent in accordance 

with the guidelines of good practice and the Declaration of Helsinki. Before measurement by 

RT-FDC, HSPCs were stained for 30 min with anti-CD34–APC (555824; Becton Dickinson), 

then pelleted by centrifugation (200g, 5 min, 23 °C and resuspended in 0.6% methylcellulose 

solution. 

Reticulocyte and red blood cell preparation. 

With approval for the study (EK89032013) from the ethics committee of the Technische 

Universität Dresden, we obtained blood from three healthy donors with their informed 

consent in accordance with the guidelines of good practice and the Declaration of Helsinki. 

Capillary blood was collected by finger prick with a 21-gauge, 1.8-mm safety lancet 

(Sarstedt). For sample preparation, 2 µL of blood was diluted in 1 mL of 0.5% 

methylcellulose solution complemented with 2.5 µM syto13 nucleic acid stain (Thermo 

Fisher Scientific). We measured cells from three healthy donors after 5 min of incubation; 

measurements usually took 10 min. To validate the stability of mechanical phenotype and 

fluorescence staining in methylcellulose measurements, we used a 1-h time course with 

measurements every 10 min for all donors. To validate counting results, we collected blood 

from venipuncture with a 21-gauge needle (Multifly; Sarstedt) in EDTA (S-Monovette 1.4 

mL 9NC; Sarstedt) for measurements with RT-FDC and parallel full blood counts on a state-

of-the-art device (XE-5000; Sysmex Deutschland) at the Institute for Clinical Chemistry and 

Laboratory Medicine at the Carl Gustav Carus University Hospital, Technische Universität 

Dresden.  

Cell lines and culture. 

The stable H2B–mCherry HeLa cell line was kindly provided by the lab of Matthieu Piel 

(Institute Curie). All HeLa cells were grown in standard DMEM supplemented with 10% FBS 

and 2 mM L-glutamine. Transfection of HeLa cells was done with Effectene reagent 

(Quiagen) according to the manufacturer’s directions. We allowed cells to grow for 48 h after 

https://github.com/ZELLMECHANIK-DRESDEN/ShapeOut


transfection, and we removed dead cells by washing away loosely attached cells. Prior to RT-

FDC measurements, adherent cells were trypsinized, collected by centrifugation (200g, 5 min, 

23 °C and resuspended in 0.5% methylcellulose buffer. 

For mitotic synchronization of the H2B–mCherry HeLa line, cells were allowed to 

grow to 35% confluence and were then synchronized with 100 nM nocodazole for 5 h. 

Mitotic cells were collected by shake-off, and nocodazole was washed away. Cells were then 

allowed to progress through mitosis in full media for 15 min (metaphase cells) or 1 h 

(anaphase cells). 

Kc167 Drosophila cells were grown in M3 Shields and Sang medium supplemented 

with 10% FBS. For detection of mitotic cells, we engineered a stable Kc167 cell line that 

expresses tdTomato cytosolic protein and NLS(GFP)2(GST), a protein that stably localizes to 

the nucleus during interphase. At the entry to mitosis, the nuclear envelope breaks down and 

the nuclear GFP signal is redistributed to the cytoplasm, where it colocalizes with tdTomato. 

Analysis of fluorescence peak widths distinguished interphase cells (narrow GFP peak and 

broad tdTomato peak) from mitotic cells (both peaks of the same width; Fig. 2c). Owing to 

progression through mitosis and cytokinesis, cells in late mitotic stages have nonspherical 

shapes due to elongation and furrow constriction before division (anaphase and telophase of 

mitosis), which can bias the deformation readout of RT-FDC. To avoid this effect, we focused 

on prometaphase cells by synchronization with colchicine, a drug that inhibits formation of 

the mitotic spindle. Cells were synchronized with 4 µM colchicine for 5 h for enrichment of 

the mitotic cell fraction (Supplementary Fig. 9). RNA interference experiments were 

conducted as described22. The treatment with colchicine led to an increase in mitotic cell size; 

however, it did not affect the mechanical phenotype of mitotic cells (Supplementary Table 

4) and, as expected, it led to enrichment of the mitotic cell fraction (Supplementary Fig. 9). 

RNA interference screening. 

For each of the 42 candidate genes (Supplementary Table 5), RNA interference was 

performed with two nonoverlapping double-stranded RNA sequences. Data from three 

independent experiments performed on different days were collected for each RNA sequence 

and compared with data for negative controls acquired on the same day (Supplementary Fig. 

11). For evaluation of the measured elastic modulus values, a linear mixed model (LMM)23 

comparison was performed with the software ShapeOut (Zellmechanik Dresden), for which 

data for each gene (different days, different sequences) were pooled. We rejected the null 

model on the basis of a P value < 0.05 as a hit. Only if the effect was visible for both flow 



rates (0.04 and 0.06 µL s–1) was the gene considered to play a role in the regulation of mitotic 

cell mechanical properties. 

Statistical analysis. 

Statistical analysis was done via the LMM method integrated into ShapeOut. The method is 

described in detail in ref. 23. LMM evaluation was necessary to take into account random 

variations of the mean values between replicates caused by variables that are not controlled by 

the experimenter. We defined and fitted an LMM using the R package “lme4”24,25. To test the 

null hypothesis, we fitted a model with and without the fixed effect term and compared the 

two models by a likelihood test26. From the resulting likelihood ratio, one can compute the F-

value and P value by using Wilks theorem27.  

Code availability. 

The source code of ShapeOut, the program used to analyze and plot the RT-FDC data, is open 

source and can be found on GitHub (https://github.com/ZELLMECHANIK-

DRESDEN/ShapeOut). The source code for the custom C++ acquisition software is available 

from the corresponding author upon reasonable request. 

Life Sciences Reporting Summary. 

Further information on experimental design is available in the Life Sciences Reporting 

Summary. 

Data availability. 

The data that support the findings of this study, as well as general information and biological 

materials, are available from the corresponding author upon reasonable request. The raw RT-

FDC data are available as TDMS files that can be read, processed, and analyzed by ShapeOut. 

Polygon filters used to select the cell populations of interest are available upon request and 

are also compatible with the ShapeOut software. Source data for Figures 1 and 2 are available 

online. 
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