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ABSTRACT 

With the widespread use of new geospatial and information technologies, huge amounts 

of human dynamics data have been been collected with high spatio-temporal resolution, 

especially in urban areas. Applying data mining techniques to these datasets can reveal 

activity patterns of individuals in greater detail and finer scale. Urban areas are home to 

millions of individuals’ complex and dynamic activities and interactions. Given the 

exponential population growth and expansion of cities nowadays, understanding 

activity patterns of massive groups of people moving in the urban environment is 

therefore playing a more and more important role in the building of smarter cities.  

The study of human activity patterns seeks to determine how to describe how people 

keep different routines, and how people play out different roles and possess different 

preferences and inclinations to behave in certain ways. In this thesis, we introduce the 

concept of “the place you go, when you go and how long you stay is who you are”, 

expanding the focus from traditional physical locations to places by integrating the 

temporal attribute and semantic meaning of places into the analysis. This evolution is 

achieved by a new methodological framework that enables us to more realistically 

analyse large-scale mobility data with the awareness of the network representation of 

urban space and the dynamism of human activities. In this framework, advances of 

methodologies are made to improve the representation of individual activity profiles 

and a novel spatio-temporal clustering algorithm is designed to detect regions of 

interests. Following this stage, we also carry out the semantic enrichment of places and 

activity patterns based on state-of-the-art text mining techniques. The final phase of the 

framework brings in network-based transformations of the proposed methods in the 

framework to further enhance their space-time accuracy and applicability for activities 

occurring in urban areas. 

The framework integrating the spatial, temporal and semantic considerations is then 

implemented within a large-scale police movement dataset in Inner London, United 

Kingdom. The case study shows how the proposed framework enables a marked 

improvement in the aggregative analysis of semantic activity patterns from that offered 

by conventional approaches. 
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IMPACT STATEMENT 

The innovations in this thesis can be of beneficial use both inside and outside academia. The overall 

advantage of the framework developed in this thesis is that it provides a useful toolkit to automatically 

extract activity patterns from GPS data and make sense out of these GPS-based activity logs by analysing 

the staying behaviours in a semantic environment. 

Within the academia, the designed methodological framework firstly integrated spatial, temporal and 

semantic dimensions of activities into the analysis, which can provide more complete and realistic personal 

profiles for human behaviour study. Second, the ST-Net-DBSCAN algorithm developed in the research was 

the first attempt to fit spatio-temporal density-based clustering algorithm into urban street networks, which 

enabled the space-time hotspot detection with the awareness of the topology of streets. This improvement 

increased the spatial accuracy of space-time hotspot detection in urban context and enabled more detailed 

studies on urban dweller behaviours. Third, the semantic enrichment methods introduced in this thesis 

transformed the traditional spatial analysis approach of areas into a place-based approach. Apart from 

considering where the place locates, questions of what the place is and how the place semantically relates 

to different visitors was also taken into the analysis of human movement behaviours. Unlike traditional 

semantic enrichment methods that view the function of places as a constant attribute, this semantic 

enrichment module took temporal information such as opening hours of different facilities into account, 

which enabled the automatic detection of functional changes of places throughout the day and therefore 

better depict the highly dynamic nature of modern cities. 

In non-academical domain, the innovations in this thesis can contribute to professional practice, public 

policy design, and commercial applications. During the experimental stage of this research, we have 

coorperated with the London Metropolitan police. Using their officer movement data, the framework can 

detect and profile each officer’s preference in patrol movements and find outlier and abnormal behaviours 

in the behaviour profile clustering process, which provided the police with a quantified method for officer 

performance evaluation. With the wide-spread use of intelligent policing equipements, movement data of 

police officers have become more accessible worldwide. After proper adaptions, this framework can also be 

used to improve the professional practices of the police officers in other cities around the world. Moreover, 

this toolkit can be used to depict the time-varying semantic meaning of places for human activities so that 

urban planning authorities can be provided with well-rounded and high-temporal-resolution information 

of the changing hotspots in the city, which helps policy makers make faster and better informed decisions. 

It can also be applied to the emerging location-based social networks, bridging the gap between users’ 

online social features and their real-world activities to provide a more accurate and complete profile for the 

users. The implementation of the framework can aggregate users sharing similar semantic activity profiles 

and space-time preferences in activities, and facilitate smarter friend recommendations in the next-

generation social network applications. 

Impact of this research will be brought about through the publication of multiple journal articles and 

commercialised software products. 
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NOMENCLATURE 

API： Application Programming Interface 

APLS： Automatic Personnel Location System 

POI： Place of Interest 

GPS： Global Positioning System 

GIS： Geographic Information System 

UCL： University College London 

UK： United Kingdom of Great Britain and Northern Ireland 

Inner London：  City of London, and the London boroughs of Camden, Hackney, 

Hammersmith and Fulham, Islington, Kensington and Chelsea, Lambeth, Lewisham, 

Greenwich, Southwark, Tower Hamlets, Wandsworth, and Westminster 

GPS Point Update/Record:  A positioning capture by a GPS device containing the 

information of Northing and Easting coordinates of a moving object at a given point in 

time. 

GPS Sampling Rate:  A specific instant in time. GPS carrier phase measurements are 

made at a given frequency (e.g. every 30 seconds) 

 

 

  



17 
 

Chapter 1 

Introduction 

  



18 
 

1 INTRODUCTION 

Things that people do in space and time have long been a research topic in behavioural 

and socio-economic studies, with particular focus on the highly dynamic urban 

environment (Chapin, 1974; Cullen, 1972). The term "activity pattern" in this research is 

used to describe patterned ways in which groups of people carry out their daily activities. 

These activities are naturally linked to the places where they are undertaken and the 

times (e.g. time of day, day of week or year) at which they take place. By segregating 

communities or aggregating individuals into groups of people sharing similar activity 

patterns, many socio-economic and socio-demographic problems and their ties with 

individual behaviour preferences can be revealed (Chapin, 1974). Research into these 

patterns attempts to answer questions about the life styles, behaviours, routines and 

preferences of different groups of people. 

Early studies of human activity patterns were confined to traditional statistical and 

survey studies because of a lack of large scale activity data and the tools/measures to 

enable the tracking, logging, management and analysis of detailed lifecycles of 

individuals. Nowadays, thanks to the ubiquity of telecommunication and sensor 

technologies, such data are now available at decreasing cost in the form of GPS 

trajectories and mobile phone user data. Movements are continually recorded as 

trajectories, which are sequences of geo-located and time-stamped points, often with 

associated information (Kuijpers & Vaisman, 2007). GPS, mobile phone service and 

location-based app data are typical examples of these new datasets. They are often large 

and possess high spatial and temporal resolutions, which enable researchers to explore 

movement patterns in greater detail than before. 

Most current research trying to make use of this kind of data for behavioural analysis 

focuses on the spatial, temporal or semantic aspects in isolation (Andrienko et al., 2011; 

Kwan, 2004; Li, 2011; Timmermans et al., 2002). For instance, Li et al. (2008) uses space 

and place as a depiction of human activity patterns, while Wilson (2001; 2007) analyses 

human activities in time based on duration and time sequences. However, these studies 

neglect the fact that space, time and semantic contents play equally significant roles in 

the description of people's activities and therefore do not provide a complete indication 

of people's activity patterns. In reality, people carry out different activities at different 

places at different times of the day. The activity they are doing is not only indicated by 

where they are, but also how long they spend in the place and when they do it. This is 

also because time is a resource; how people allocate the length of their time resource on 

particular activities also varies (Szalai, 1966). Goodchild (2015) also argued that “Platial 

views offer new insights beyond traditional spatial perspectives as human activity is 

more aligned with place rather than geometric space”, which indicated the importance 
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of “what the place/activity is about” over the pure physical location in the activity and 

place related studies. In the light of this, the thesis aims to build on previous work that 

views the spatial and temporal domains in isolation, and establish a universal framework 

that enables a comprehensive analysis of space, time and semantic meaning in order to 

group people with similar behaviour patterns based upon trajectory data. The 

framework segregates individuals into subgroups based upon where (place), what 

(semantics), when and how long (duration) the activities are conducted for each 

individual.  

This chapter describes the general progress and limitations of activity pattern profiling 

and grouping in human dynamics research. We first discuss as a background the 

progress of related research and the motivation that inspires the carrying out of this 

work. Then, we summarise the aim and objectives according to the existing limitations 

and problems, which is followed by a description of the structure of the thesis describing 

the progressive process of the research idea and the logical relationship between 

different paradigms of methodological frameworks and the chapters of the thesis.  

 

1.1 PROGRESS IN ACTIVITY PATTERN AND HUMAN DYNAMICS STUDIES 

The term human dynamics is a concept derived from the realm of physics, which 

analyses the movements and flows of objects with the help of mathematic models, 

computation tools and physical laws. Physical dynamics focuses on both micro 

(individual) and macro (group) perspectives and specifically investigates the spatio-

temporal relationships of the observations and the patterns of changes of the observed 

movements. Human dynamics, on the other hand, takes the movements and activities 

of humans as research objects. It not only investigates the patterned features in activities, 

but also examines the semantic causes that give rise to the patterns. Many applications 

such as tourist activity study (Edwards et al., 2009), location-based social networks 

(Zheng, 2011) and urban planning rely on the analysing tools of human dynamics, and 

progress in these studies also in return facilitates the development of techniques and 

theories of activity patterns and human dynamics’ studies. Below is a general summary 

of the progress in these studies that can facilitate the construction of the proposed 

theories and framework of this thesis. 

 

1.1.1 Movement logging 

To collect the data of movements and activities, travel logs, recording where people 

travel to and what they do, are proposed and are used as one of the most crucial 

measures to obtain the critical information needed for pattern analysis. Travel logs 
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contain information about the space, time and demographics, as well as socioeconomic 

characteristics of individuals, so that the scheduling and purpose of daily activities can 

be reflected. Although traditional manual travel logging is labour intensive, it enables 

us to link the movements and stops of people with the physical environments they are 

in and look into the higher behaviour characters from the activities in space and time. 

Thanks to the increasingly ubiquitous application of mobile location-aware sensors and 

the progress of information and communication technology (ICT) during the past two 

decades, large-scale data collection of the ever-changing position of moving individuals, 

such as Global Positioning System (GPS) data, has become technically feasible and 

economically affordable. These changes have replaced the previous challenges of data 

scarcity and a lack of computational power with the unprecedentedly large movement 

of data that contain much more detail and higher spatial and temporal granularity than 

ever before via various sources, such as smartphone apps, e-commerce and public 

information infrastructures. More importantly, they transformed the focus of 

Geographic Information Science towards spatio-temporal and dynamic relationships of 

human behaviours and the environment. 

Individual movement data collected by mobile devices are commonly seen as simple 

spatio-temporal points (Spaccapietra et al., 2008). In other words, they are a set of points 

with geographic locations, times and sometimes a few other relevant attributes that are 

associated in the form (x, y, t) or (x, y, z, t), where x, y and z are spatial dimensions and 

t is the temporal dimension (Kuijpers, 2007). A trajectory is naturally formed when these 

points of an individual moving object are linked in chronological order. Trajectories can 

be generated by service providers (e.g. telecom companies, taxi companies, airline 

companies, etc.), social media services (e.g. Twitter, Flickr, Instagram, etc.), life-logging 

applications (e.g. Nike+ and Mytracks), government and nongovernmental 

organisations (e.g. maritime traffic management, aviation management, police force 

activity, etc.). Space and time behaviours in these datasets are originally logged for 

typical operational and management purposes, rather than knowledge extraction. 

Abundant information embedded in these datasets remains untouched and can be of 

great value for human dynamics research if handled properly with the emerging data 

mining approaches. 

 

1.1.2 Extracting region of interest and activities from movements 

Region of interest (ROI) has many synonymous names in activities studies, such as 

hotspot, interesting place and interesting region. This concept is widely used in travel 

pattern, crime study and epidemiology, in which the occurrence of events are 
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represented by point records in space and hotspots are significant aggregations of the 

point records. In human dynamics studies, the ROIs are the places attracting high 

volumes of people visits. With more and more location point data generated by modern 

sensors, such as GPS devices and mobile phone networks, ROIs where people gather and 

interact have been a hot research topic in geographical-related human behaviour 

research nowadays. They are usually detected by finding dense aggregations of stopping 

behaviours, information posted via telecommunication devices or check-ins with LBS 

applications. Traditional ROI detection methods only look for aggregations in planar 

space and thus generate Spatial ROIs that distribute on 2D Cartesian surfaces. The latest 

progress of the ROI detection method can be divided into two directions. One of them 

is to add temporal and non-spatial dimensions into the detection analysis via novel 

clustering or density calculation methods. This improvement allows researchers to not 

only detect ROIs in space but also find temporal aggregations and patterns in other non-

spatial attributes of events. The other direction is to develop the detection method into 

network-based versions. In these methods, the traditional Euclidean and planar 

representations of urban space and locations of places are replaced by the topology of 

interconnected road links and positions on the road segments. The ROIs can be detected 

in urban areas and realistically aligned with the street geometry through the network-

based ROI detection methods. 

 

1.1.3 Adding semantic meaning to places 

Activities and interactions taking place in virtual space are not independent from the 

activities and interactions in physical geographic space (Shaw & Yu, 2009). In fact, they 

usually influence and interact with each other. Although there has been a long tradition 

in activity studies to link the relational spaces or the physical environment with 

activities of people, it is the recent advancements in computing technology, collection 

of large-scale mobility data, and development of theories on social–spatial processes that 

has revolutionised the way in which we investigate social–spatial events. The corpus of 

human dynamics has recently been greatly expanded by automatically combining the 

raw movement trajectories and ROIs with data mining operations on the related 

contextual knowledges. This process is known as semantic enrichment. It can provide 

applications with meaningful knowledge about movement and introduce the semantic 

aspect into the traditional space-time analysis of human activities. 
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1.1.4 Aggregative analysis of activity patterns 

Aggregating (grouping) research objects to discover information in further detail, 

instead of regarding the objects as single entities, has long been a first step for many 

types of study, especially human behaviour studies. Aggregation study is important for 

a better understanding of human dynamics because people’s different movement 

patterns characterise their respective motivations and behavioural preferences. 

One of the earliest attempts to group people’s urban activities is Chapin’s (1974) 

aggregative model for the patterned forms of aggregates of individuals. Spatial aspect is 

a key factor of the activity in this study because space provides availability of physical 

access to functional facilities and services in the city and contributes to people’s 

motivation to act. Chapin simplified the model for explaining activity pattern by the 

“motivation generated by people and place → choice of activity → Action” framework 

sequence. However, being limited by the information gathering technology and the 

cross-discipline ability at Chapin’s time, the scale and approaches of his research is still 

based on statistics of predefined groups and manual surveys on committed volunteers. 

With the increasing usage of smart phones and LBS technology, a new trend emerged 

that used GPS and mobile devices to automatically log people movement history in 

greater detail. Zhong (2015) contends that users' intrinsic visiting preferences of 

semantic places reflect the personal “profile” of the online check-in software user.  

Similarly, Zhong proposed “you are where you go”. The idea is to use user’s check-ins of 

POIs to infer his/her demographic features and design a “location to profile” (L2P) 

framework to depict users’ activity patterns by bridging the gap between online and the 

physical world. In location-based social networks, Xiao (2014) depicts a person by 

his/her semantic location history (SLH). Clustering analysis based on the semantic 

similarity of the low-level activity and movement history of individuals can aggregate 

people sharing similar patterns. 

 

1.2 LIMITATIONS AND CHALLENGES 

As a result of the ongoing trend mentioned above, several research studies have emerged 

over the past decade aiming to generate activity patterns from space-time mobility 

information. Although different solutions have been proposed for problems of human 

dynamic analysis and aggregation of profiles, many of these studies still suffer from 

several limitations. These limitations are mainly related to the deficiency in harnessing 

the temporal aspect of data and the insufficient awareness of urban network structures 

during their method development. 
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Deficiencies in the usage of temporal data are twofold: namely, the lack of temporal 

consideration in activity patterns and the ignorance of time in semantic enrichment of 

places. Limitations of activity pattern analysis for the temporal aspect can be further 

broken down into three issues: namely they are failing to incorporate time and sequence 

of people’s place visiting behaviours, they are ignoring the time span of the detected 

interesting regions, and they do not account for the impact of the duration of stays on 

individual profiles. Limitations of time-sensitive semantic enrichment indicate that the 

semantic meaning of a place remains unchanged during the entire day in existing 

semantic enrichment studies. This static view of places fails to take the ubiquitous 

changes of activities and semantic meaning of places into account and is insufficient for 

the all-round description of highly dynamic urban places and activities. 

On the other hand, limitations related to network analysis include three issues. The first 

issue is using straight Euclidean distance in stop identification and the pre-processing 

stage. This often causes errors because the actual routes taken by the moving individuals 

are ignored and the distance is misrepresented. The second issue is that the ROI 

detection approaches in most existing researches are Cartesian-based and cannot 

accurately pinpoint the covered area. The ROI detection methods in these studies are 

based on spatial or spatio-temporal clustering techniques that are not suitable for the 

urban environment. The last issue is that there is no work that has achieved the space-

time semantic analysis and visualisation on a street segment level. 

To sum up, very few of existing studies perform the clustering in the spatio-temporal 

domain and there is an immense lack of using urban street networks for activity profiling 

in finer scales. Therefore, in this thesis we aim to address these limitations in order to 

enhance and standardise the urban ROI detection and activity profiling from GPS data. 

The next section describes this aim in more detail, setting out the list of objectives that 

would help achieve this aim. 

 

1.3 RESEARCH AIM AND OBJECTIVES 

The main aim of this research is to develop a methodological framework to 

automatically profile and aggregate people’s space-time activity patterns based on 

space-time human mobility data in an urban semantic environment. The challenge is to 

produce a paradigm that overcomes limitations listed in the previous section and bridge 

the gap between time, network space and semantic meaning information of people 

activities. The developed method must also be robust enough to work with no 

information but with large-scale raw GPS trajectories and public POI data that were 
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originally collected for operational and navigation purposes. In order to achieve this aim, 

a number of objectives must be met, defined as follows:  

• Objective 1: Review existing approaches and methodologies for activity pattern 

analysis based on mobility data from both geography and other disciplines. 

Summarise and critically assess the fundamental assumptions and experiment 

settings in these approaches. 

• Objective 2: Develop an ST2P (Space-Time to Profile) framework of multiple 

modules. Each module is designed to address part of the limitations listed in section 

1.2. 

• Objective 3: Design two paradigms, according to the structure of the framework in 

Objective 2, to incorporate the spatial, temporal and semantic information for 

activity profiling and aggregation in Cartesian space and urban networks. 

• Objective 4: Compare the performance of the two paradigms proposed in Objective 

3 and the existing mainstream approaches. Examine and demonstrate our 

framework’s suitability on real people’s large-scale movement trajectories in urban 

road networks from various aspects. 

 

1.4 GENERAL THESIS ORGANISATION 

The objectives of the thesis are fulfilled across nine chapters. As highlighted in this 

chapter, the thesis is dedicated to aggregate activity patterns from GPS-based human 

mobility data in cities. The method-related challenges and limitations described in 

subsection 1.2 can be further divided into five problems to be addressed across the 

development of the framework. The train of thought in the report is chronological. It 

records related studies that forge the ideas of research and proposes a path towards our 

newly proposed methodological framework before testing it via case studies. A summary 

of each chapter is provided accordingly in this section. Each of these chapters counts as 

a step in the train of thought, and possesses several subsections that describe a method 

or address the detailed research questions in their own respect. 

After the Introduction, Chapter 2 reviews the literature, in particular the current state-

of-the-art approaches and models for trajectory analysis, regions of interests (ROI) 

detection, semantic enrichment of places and the similarity definition and profiling of 

activity patterns. Chapter 2 describes these approaches along with a critical argument of 

benefits and defects of each listed method. Particularly, the gaps that are not yet filled 

by existing studies in each step are summarised in this part as well. 
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On the basis of the gaps summarised in Chapter 2, Chapter 3 lays out a hypothesis: 

“where (what place), when and how long you stay is who you are”, and presents our 

methodological framework to integrate the spatial, temporal and semantic aspects for 

profiling people’s urban activities. Lists of conceived methods to achieve the phasal goal 

of the framework modules are organised in 4 chronological modules: pre-processing, 

ST-ROI detection, semantic enrichment, profiling and aggregative analysis. The 

rationale for using the methods in each module of the framework is briefly explained, 

and the process of how certain methods bridge the gaps are depicted. The end of the 

chapter presents two paradigms, each of which are adapted to operate the general 

framework in Cartesian space and urban street networks respectively. The Euclidean 

paradigm achieves part of the research objectives and the network paradigm inspired by 

its predecessor fulfils all objectives. 

Chapter 4 describes the data-related issue of this research. It is divided into 3 sections. 

Section 4.1 is the general definition of the study area and section 4.2 describes the 

datasets that participate in the analysis as inputs to the proposed framework. Within 

section 4.2, section 4.2.1 provides the basic knowledge about the human mobility data 

in our case studies, while section 4.2.2 presents the environmental data including the 

POI information and the street networks describing the space for the movements and 

activities to take place. The basic characteristics of these datasets are briefly explored in 

section 4.2.3 before the general framework of methodology is introduced. Through this 

better understanding of data, it is hoped that an improved model of existing methods 

may be derived, designing a framework to evolve existing challenges with novel 

approaches will contribute to the improved understanding of activity patterns in city-

wide human dynamics. 

Chapter 5 describes the Euclidean paradigm, in which the adopted methods are 

organised to follow the flow of the general framework. The Euclidean paradigm is tested 

with the police patrol movement data in 3 central London boroughs and demonstrates 

its advantages over existing approaches. The first module of the paradigm is pre-

processing. A kernel-based scanning window slides through the time dimension of each 

trip to identify stop episodes. The ST-DBSCAN algorithm with parameterisation is used 

in the second module for dense aggregation detection of stay points in space and time. 

In the third module, the detected aggregations are defined as ST-ROIs, and their 

semantic meanings are explored by running a term frequency–inverse document 

frequency (TF-IDF) method on data of adjacent POIs and functional buildings. 

Specifically, we add opening time information of POIs to the semantic analysis of ST-

ROIs to make this process more accurate. This step is motivated by the following 

observations. Sometimes, only a part of the POIs are open in the time period of intensive 
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visits; therefore, the semantic meaning of the street segments is only contributed to by 

the opened POIs. On the other hand, as different POIs open at different times, the same 

set of streets can serve different purposes at different times of the day. For example, a 

shopping street can turn into a bar street when most stores are closed and the roadside 

bars start working at night. By annotating all the ST-ROIs with semantic information, 

an individual space-time profile can also be turned into a semantic profile to describe 

his/her time allocation with semantic knowledge. Lastly, the semantic profiles depicting 

the individuals’ time allocations on semantic ST-ROIs are aggregated by a hierarchical 

clustering method in the last method. A Euclidean paradigm enables the synergetic 

clustering analysis of space and time and brings a temporal dimension into the semantic 

profiling of people’s pattern of activity. The ubiquitous street structure in the city and 

the influence of buildings’ opening hours on semantics, however, are complete ignored 

by this paradigm. 

 

Aiming at the unfilled gaps of the Euclidean paradigm, Chapter 6 moves on for a more 

advanced network paradigm to analyse human mobility in finer scale. The central 

London boroughs with dense streets are chosen as a case study. We modified the ST-

DBSCAN algorithm and combined it with map-matching techniques to detect ST-ROIs 

based on human movements within the street networks. We proposed spatio-temporal 

line of interest (ST-LOI) as the novel definition of ST-ROIs under the network 

representation of urban space. This improvement enables us to better locate the stay 

points and interesting regions in street segments for detecting ST-LOIs (Spatio-

Temporal Lines of Interests) instead of the approximate areas generated by the 

Euclidean paradigm. Furthermore, we proposed a 3D wall map for better visualisation 

of the ST-LOIs. The space-time boundaries of ST-LOIs are also confined in street 

networks to more accurately associate the POIs with ST-LOIs spatially in the semantic 

enrichment process. 

In Chapter 7, the semantic enrichment module of the network paradigm adopts an LDA 

(Latent Dirichlet Allocation) topic modelling algorithm to further improve the 

adaptability and accuracy performance on large scale human dynamics datasets. The 

semantic ST-LOIs generated by TF-IDF and LDA are compared to show LDA’s ability to 

detect less significantly meaningful places and provide a detailed composition of the 

semantic meaning in each place without a priori hierarchical definition of POI/building 

categories. The experiment also shows that LDA’s stability rises as the sizes of the data 

and study area increase, indicating its better suitability to work with scaled up datasets. 

In Chapter 8, the proposed methods in the framework are validated and evaluated and 

the Euclidean paradigm and the network paradigm of the framework are compared. We 
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evaluate the methods in every module by their accuracy from spatial, temporal and 

semantic aspects to evaluate the performance of the two paradigms against conventional 

approaches on urban movement data. 

Finally, Chapter 9 summarises the significance of the major findings and the completed 

objectives. Current deficiencies are critically reviewed. Improvements to be performed 

in further studies are outlined to overcome the deficiencies and expand the finding to 

wider applications. In the end, the summaries in the chapter lead to the policy 

implications and the final conclusion of the work conducted in this thesis. 
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Chapter 2 

Literature Review 
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2 LITERATURE REVIEW 

Urban activity pattern analysis has been a popular research topic since the 1970s. 

Chapter 1 has demonstrated the importance of this research for many applications such 

as planning for facilities and linking virtual and material services. The first and foremost 

step in undertaking research in this area is to understand previous related works and 

theories, which can be of significant value as references and inspiration for the research. 

In this chapter, a comprehensive review of existing theories and conventional 

approaches to profiling and aggregating the activity patterns of urban individuals will 

be presented. 

In the first section, theories and general concepts of trajectory-based activity pattern 

studies are introduced. The review focuses on the modelling of movements and stops 

and several aspects of activity patterns. 

The second section reviews existing approaches for the detection of regions of interest 

(ROIs) (i.e. hotspots). This section will examine how algorithms have used different 

features of movement trajectories to detect ROIs, mostly in Cartesian space. Particular 

focus will be placed on the stop identification methods and the representation of urban 

space. 

The third section is the review of methods for the semantic enrichment of places. This 

section will detail how environmental information is used to annotate and explain the 

meaning of interest regions for human activities and how these approaches play a 

fundamental role in the complete description of activities. 

The fourth section focuses on the methods used for profiling and describing patterns in 

activities and trips. The similarity metrics used in preceding works for aggregative and 

grouping analysis are summarised and categorised. Advantages and deficiencies of 

various similarity metrics are critically reviewed to provide insight for the novel profiling 

method proposed in the following chapter. 

The fifth section outlines the alternative network analysis tools to evolve the research in 

Cartesian space into a network-based version of the work. One of these tools, map 

matching, improves the accuracy of raw trajectories in urban streets. Spatial querying 

algorithms are another type of tools to ensure the efficiency of neighbour searches and 

massive distance calculations in networks. These tools are ubiquitously used across 

various network analysis methods. 
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The sixth section discusses the visualisation techniques for the presentation of research 

results. The trade-offs and advantages of traditional and state-of-the-art space–time 

visualisation methods are reviewed in this section. 

The chapter will conclude with an assessment of the challenges and limitations of 

conventional approaches that this thesis is aimed to resolve. The implications of 

previous theories and models are summarised to provide insight and a foundation on 

which the proposed methodological framework will be built. 

 

2.1 GENERAL THEORIES AND FRAMEWORKS IN ACTIVITY PATTERN 

STUDIES  

Before Internet and mobile devices became part of everyday life, early studies of human 

activity patterns were confined to traditional statistical and survey studies involving 

tracking, logging, managing, and analysing of the massive and detailed life cycles of 

individuals. In early time-use and activity studies (Chapin, 1974; Cullen et al., 1972; Szalai, 

1966), it was of great difficulty to simultaneously analyse complex trip trajectories 

generated by human trips and activities in space and time. This is because these 

trajectories possess multiple interacting features including location, timing, duration, 

sequences, speed, and semantic type of activities. Modern ubiquitous 

telecommunication and sensor technologies make this simultaneous analysis possible. 

Large scale data collection of the movement trajectories of massive users, such as 

through GPS data, smart card data, and mobile phone user data, has become technically 

feasible and economically affordable. In particular, location-based services (LBS) has 

been a popular industry with the wide spread of the above-mentioned technologies in 

recent years. Some applications of LBS, such as Foursquare and Twitter geotagging, have 

penetrated into all aspects of daily life and provided a huge amount of data recording 

the “check-in” and place-visiting behaviours of millions of users. These data provide 

continuously updated “4W” information (Shaw et al., 2016): “who the person is, when 

s/he visited/stopped at a place, where the place is, and what the place/activity is about”. 

Thus, they capture the spatio–temporal and semantically meaningful snapshots of 

personal activity patterns and indicate “what the person is like”. The above features 

make this new type of dataset particularly suitable for the research of human dynamics. 

Harnessing the advantages, however, requires systematic and multi-disciplinary insights 

and efforts. 
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Figure 2.1 Individual and environmental factors influencing activity patterns by level 

 

By generalising the reviewed works (Ashish & Sheth, 2011; Yan & Chakraborty, 2014), the 

factor composition of individual activity patterns can be broken into three levels. Level 1 

is the basic physical level of activities. The personal characteristics and motivation 

features in this level determine the activities people are able or willing to undertake, 

while the spatial location and temporal availability of the activity-related place 

determine the opportunity to engage the activity. Combing the influences of individual 

preference and external/environmental opportunity in Level 2, the higher-level 

semantically patterned activities are developed. 

Corresponding to the three-level composition of patterned activities, most data-driven 

approaches (e.g. Parent, 2013; Renso, 2013; Zhang, 2016) commonly indicate that 

meaningful activity patterns can be extracted and understood from raw trajectory data 

through three general steps: geospatial process, semantic process, and knowledge 

discovery. As Figure 2.2 shows, the geospatial process detects activities in space and 

time and models the trajectories as place-visit histories, the semantic process explores 

the meaning of the places where the activities take place, and knowledge discovery finds 

patterns in the semantic trajectories or semantic location histories. General definitions 

and theories of these three steps are summarised in the following sections. 

 

https://www.amazon.co.uk/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Amit+P.+Sheth&search-alias=books-uk&field-author=Amit+P.+Sheth&sort=relevancerank
https://www.amazon.co.uk/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Dipanjan+Chakraborty&search-alias=books-uk&field-author=Dipanjan+Chakraborty&sort=relevancerank
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Figure 2.2 The three-step extraction of activity patterns 

 

2.1.1 Geospatial process 

In Level 1 of the activity factors presented in Figure 2.1, the individual person intends to 

fulfil meaningful goals by staying at a certain place for a certain period and travelling 

from place to place for multiple stays. This process can be visualised as continuous lines 

in a space–time cube (Andrienko et al., 2010) as demonstrated in Figure 2.3. When these 

continuous movements are recorded by on-body sensors, they are actually discretely 

recorded with certain sampling rates and positioning errors. Therefore, in data-driven 

approaches, each trip trajectory is discretely represented by a sequence of time-stamped 

location points, {( 𝑥0, 𝑦0, 𝑡0), (𝑥1, 𝑦1, 𝑡1), (𝑥2, 𝑦2, 𝑡2), . . . , (𝑥𝑁 , 𝑦𝑁 , 𝑡𝑁)}, where 𝑥𝑖, 𝑦𝑖 , 𝑡𝑖 ∈ 𝑅, 

𝑖 =  0, 1, 2, . . . , 𝑁 and 𝑡0 <  𝑡1 <  𝑡2  < . . . <  𝑡𝑁 . In the trajectory, 𝑥𝑖 , 𝑦𝑖  are the spatial 

coordinates of the moving object at the instant 𝑡𝑖, 𝑡0 marks the start of the trip, and 𝑡𝑁 

is the instant when the trip terminates. In accordance with Level 1, the essence of the 

geospatial process is the spatial and spatio-temporal analysis of personal trips for the 

extraction of non-semantic spatial knowledges from the raw trajectories. 

 



33 
 

 

Figure 2.3 Representation of trip trajectories in a space–time cube 

 

Both moving and stopping actions during the trip take finite amounts of time in order 

to achieve the trip purpose. Palma et al. (2009) separate trips into stop episodes, in 

which a person stops and visits a place, and move episodes, in which a person travels 

between places. The common assumption in activities pattern study is that patterned 

stops during movements in places indicate that a person is undertaking an activity 

(Kwan et al., 2004; Palma et al., 2008; Thierry et al., 2013; Zheng et al., 2009). Since these 

studies focus on patterns in activities instead of travelling patterns, the stop episodes in 

trip trajectories are of greater interest than the move episodes. Thus, many relevant 

works transform the trip trajectories into place-visit histories and the detection of 

regions of interest (Li et al., 2008; Xiao et al., 2010), and the occurrence of events and 

activities is an important step in these studies. 

Spatial aspect is not the only concern in the geospatial process; time plays an equally 

significant role because “the trajectory is by definition a spatio-temporal concept” 

(Spaccapietra, 2008). For this reason, concepts in time geography are often introduced 

into the activity study to explain people’s constraints and trade-offs when they have only 

a limited amount to time to spend on multiple activities in different places (Miller, 2005). 

The development of portable location sensors and digital communication technologies 

has further improved the volume and resolution of the temporal dimension of mobility 

data to a degree beyond the reach of traditional activity survey studies. These advances 
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present opportunities to discover temporal and spatio-temporal patterns of activities in 

addition to the purely spatial aspect of trips; however, they have also multiplied the 

complexity of data mining tasks (Zheng & Zhou, 2011). Approaches for detecting ROIs of 

human activity and events are reviewed in Section 2.2. 

As depicted in Figure 2.1, movement trajectories follow the geometry of the streets. 

Urban networks are another constraint of movements and activities in the city, since 

urban streets provide the space people navigate to access the places they intend to visit. 

A network-based spatial representation is necessary because most activities that involve 

public interests are located somewhere in the network. Transforming the raw 

trajectories into network-based trip routes (i.e. street segments passed by a moving 

individual in sequence) and switching from the Cartesian spatial representation to the 

network representation of space reveals different space–time patterns, which can carry 

different meaning from the patterns discovered based on unconstrained raw trajectories 

(Zheng & Zhou, 2011). People and objects moving in the city can be modelled as network 

time–geographic entities (Chen et al., 2016) by combining time geography and network 

analysis. The review of network analysis methods is detailed in Section 2.5 

 

2.1.2 Semantic process 

The semantic activity factors in Level 2 of Figure 2.1 show how the occurrence of an 

activity is triggered by the lower-level factors. The semantic process transforms the 

spatial and temporal factors in Level 1 into semantic activity attributes in Level 2. The 

term “semantics” means the “philosophical study of meaning”. Semantic study mainly 

investigates the relationship among words, phrases, signs, and symbols as well as their 

denotations. Extending this concept into geographic information science, the aim of the 

semantic process is to extract more meaningful information from the spatio-temporal 

data collected by the location sensor or from environment data depicting the external 

context in which the activity takes place. For example, after the semantic enrichment 

process with map data, a location with coordinates can be annotated as a place of tourist 

attraction or a commercial street. These annotations are also called “platial (i.e. 

belonging to a place) signatures” or “semantic meaning of places” in different works. The 

enrichment process turns the traditional ‘space-centred” mobility study into the 

“people-centred” activity study (Yan & Chakraborty, 2014) and provides the “platial” 

thinking beyond traditional spatial perspectives of human activity (Goodchild, 2015). 

Corresponding to the conceptual differences between a “location” and “place”, the 

geospatial analysis process and semantic analysis process are often used separately for 

https://www.amazon.co.uk/s/ref=dp_byline_sr_book_2?ie=UTF8&text=Dipanjan+Chakraborty&search-alias=books-uk&field-author=Dipanjan+Chakraborty&sort=relevancerank
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different research objectives. Nevertheless, there are strong conceptual overlaps 

between the methods used in the two processes (Luo & MacEachren, 2014). Other 

definitions of trajectories that combine physical and semantic features include the 

notion of lifelines or periods of life, which are associated with people’s stop locations at 

regular or irregular intervals (Yuan et al., 2004). Similarly, Thériault et al. (2002) use a 

spatio-temporal database model to handle multi-dimensional lifelines with temporal 

GIS. Their core contribution is to find spatial clusters of activity locations and use them 

to determine patterns in certain aspects of people’s lives, such as professional activities. 

The semantic patterns support the statistical and data mining analyses in the afterwards 

knowledge process. Related methods for semantic enrichment of places with external 

context data are outlined in Section 2.3. 

 

2.1.3 Knowledge discovery 

The knowledge-discovery process extracts high-level behavioural information from the 

semantic trajectories or place-visit histories. Statistical and data mining approaches can 

be used to find patterns in spatial, temporal, or semantic senses after the trajectories are 

described with corresponding features in previous processes. Early studies such as 

Axhausen and Gärling (1992) and Chapin (1974) could only use statistical methods to 

summarise the activity patterns of pre-defined social groups or communities. For the 

activity study in policing applications, some papers have looked at police presence in 

general and tested the influences on an overall statistical scale (e.g. Sherman, 1995; 

Ratcliffe & Taniguchi, 2011). Critically, however, the detailed process of foot patrol was 

not empirically studied with data that contain more detailed or contextual information.  

With the progress of data mining, clustering/unsupervised machine learning techniques 

are introduced into human dynamics studies. Some researchers have used data mining 

to extract non-semantic activity patterns or travel patterns purely based on the physical 

features of trajectories, such as spatial coordinates and speed (Ashbrook, 2003; 

Hariharan & Toyama, 2004; Liao, 2005). Other data mining studies of activity patterns 

are based on semantic location histories. 

Semantic location history (SLH) comprises a series of ROIs of various functional 

categories visited by a person in a trip in order, e.g. shopping malls → restaurants → 

cinemas. The semantic similarities of moving individuals can be measured by comparing 

their semantic location histories. For example, Zheng et al. (2009) extracted stay points 

from user trajectories and applied tree-based hierarchical graph (TBHG) clustering to 
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model the location histories of multiple users. Exploring patterns among trips and 

activities can also be based on other similarity indices regarding spatial and/or temporal 

dimensions, such as place-visit sequences. These similarity metrics for aggregative 

knowledge discovery are reviewed in Section 2.4. 

 

2.2 DETECTING REGIONS OF INTEREST 

Lew and McKercher (2006) suggested that uneven distribution of human dynamics in 

the space and time of cities is ubiquitous; most activities take place in more “popular” 

regions of a city, making human flow to some areas much more crowded and denser 

than to other places. Due to this tendency, three steps are normally executed for ROI 

detection: stop detection and determination (Andrienko & Andrienko, 2011), 

density-based aggregation (Zhou, 2004) and validation. Since validation requires 

external information and varies across cases, this section reviews the first two steps, stop 

detection and density-based aggregation. Points where people stay for a specified length 

of time are defined as stay points, and dense aggregations of these stay points as ROIs. 

In other words, an ROI is a place with a high-density gathering of stops or user visits. 

Most studies discuss spatial ROIs, while a few extend the concept into spatio-temporal 

ROIs by taking the time dimension into account. In this section, some of the existing 

techniques for identifying ROIs from trajectories collected with relatively high and 

regular sampling rates, especially GPS data, are reviewed. 

 

2.2.1 Trip segmentation and stop identification 

A generic and well-known paradigm for pre-processing raw GPS trajectories is to extract 

the location and time of the activities and events. For this purpose, stay points within 

trips need to be detected from trajectories, and they should be distinguished from the 

ends of trips. Therefore, stop identification often accompanies trip segmentation, which 

has been standardised for use separating different fragments of personal daily 

movements in mobility studies. As demonstrated in Figure 2.3, the trajectory of a 

sequence of consecutive GPS points is called a trip, and the moving individuals” 

movement records have been segmented into two trips. Time gaps longer than a defined 

time threshold divide the time-stamped points into different trips, and a person can 

launch multiple trips in a day. 
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Biljecki (2010) argues that most trips should be separated from each other because long 

stops such as staying at home at night or eight-hour working periods often reduce the 

continuity of location updates of location sensors. Hence, Biljecki (2010) applies an easy 

rule-based algorithm to segment different trips. Stopping time is the rule, and extremely 

long stops are considered indicative of the ends of trips. In his study, the stopping time 

threshold can be altered for different sampling rates or moving objects. Similar rule-

based trip segmentation methods are also used by Bolbol et al. (2012) and Zheng and 

Zhou (2011). 

As for the stop identification within the segmented trips, Figure 2.3 shows that every trip 

can be divided into “move episodes” and ‘stop episodes” with stop identification 

methods (Alvares et al., 2007, Spaccapietra et al., 2008), and semantic meaning or 

contextual information can be added to each episode. The “move episodes” are the parts 

of a trip in which the moving object continuously changes location, whereas the ‘stop 

episodes” are the parts of a trip in which the object stops moving for a while or slowly 

“wanders around” within a small and confined area as illustrated in Figure 2.4 (Palma, 

2008). ‘stay points” are the location updates recorded in the stop episodes, and most of 

the semantic analysis focuses on these (Parent et al., 2013; Ying et al., 2013; Zheng et al., 

2009). 

 

Figure 2.4 Stay points in a trip trajectory 

 

There are two main types of methods for stop identification: density-based and 

threshold-based. The former is based on calculating the density and number of point 

records within a confined space. The latter uses speed or distance threshold as the 

condition to differentiate stops from movements. Both types have flaws. 

In density-based methods, a stop can be detected by searching for enough nearby points 

only in the spatial domain, as exemplified by Ashbrook and Starner (2003). Thierry et al. 

(2013) proposed a spatial kernel density estimation (KDE) to create a smooth density 

value surface for each individual trip trajectory so that the identification process can be 

less sensitive to the large positioning errors in some records. However, this type of 



38 
 

method completely ignores time information and may misidentify a cluster of stay 

points at the same location but different times as a stop. Trip 1 in Figure 2.5 is a typical 

example showing a moving person who has visited a place already and then visits it again 

during his/her return trip. Spatial density-based methods will interpret the two stops at 

different times as a single stop by mistake. This method is, however, robust under noisy 

conditions; a few stay points with large location errors (e.g. Trip 2 in Figure 2.5) will not 

undermine its accuracy. Siła-Nowicka et al. (2016) avoided the misidentification of stops 

in returning trips in trip 1 of Figure 2.5 by adding a temporal sliding window to the KDE 

approach. However, their method only worked for trajectories with constant sampling 

rates because it simply counted the number of points in the time window to decide 

wether the points are stay points and ignored the duration of stays. 

 

Figure 2.5 Special cases in which conventional stop identification methods may make 

mistakes 

 

Another very common method is to find the point where a person stops moving, moves 

slower than the pre-defined speed threshold (e.g. less than 1 km per hour for 

pedestrians), or moves a very short distance from the previous record. These methods 

are called threshold-based stop identification. They look at the temporal sequence of 

recorded locations and use a set of decision rules based on distance and time to identify 

stay points. This type of method iteratively tests observations to determine whether they 

remain within a given “wandering around” distance of previous observations and checks 

whether the time between a point and the previous point exceeds a predefined stop 

duration. 

For movement datasets that possess relatively high spatial and temporal accuracy, such 

as GPS tracking data, one person’s movement speed can be estimated by dividing the 

spatial displacement between two consecutive updates by their time difference. This 

estimated speed is called median speed and can be associated with the point of the latter 

update (Bolbol et al., 2012; Lou et al., 2009). The calculation of median speed can be 

expressed as Equation 2.1. 
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𝑉1 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑝1,𝑝0)

𝑡1−𝑡0
    Equation 2.1 

 

where 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛(𝑡1)  is the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑝1, 𝑝0)  is the Euclidean distance between two 

consecutive updates, 𝑝0 and 𝑝1. 

The threshold-based methods are aware of the time differences of stops, so the stops in 

Trip 1 in Figure 2.5 can be accurately differentiated. Nevertheless, when this type of 

methods meets an erroneous stay point that is observed far from its actual location, the 

stay point will not be identified as a stay point because the estimated median speed will 

be large according to Equation 2.1. Some stay episodes will be identified as two stay 

episodes with the wrong staying time.  

Apart from the two types of mainstream stop identification methods, some researchers 

achieved stop identification with supervised machine learning methods. For example, 

Yang et al. (2014) used a support vector machine (SVM) to achieve high accuracy stop 

identification of vehicles in an urban scenario. This type of method takes advantage of 

state-of-the-art machine learning techniques; however, it is not practical because it 

requires carefully arranged model trainings of the SVM or other classifiers. In the 

training process, ground-truth data are required, and the training samples and manual 

truth data collection is expensive and laborious work. Furthermore, the well-trained 

classifier can only be used to identify the stops of the same group of vehicles in the same 

case study. Identifying stops of other vehicles or moving objects must be based on yet 

another ground-truth collection for new data. Since most mobility datasets do not 

include ground-truth information when collected (Biljecki, 2010), the supervised-

learning-based stop identification methods are not commonly used. 

 

2.2.2 Detecting regions of interest in Cartesian space 

Spatial ROIs are the ROIs generated when only spatial variables, such as longitude and 

latitude, are used to measure the distance and sparseness between stay points. Some 

researchers are simply looking at all stay points as ROIs (Zhong, 2014), while most 

studies choose density, quantity, or spatial closeness of points as the major indicator of 

ROIs (e.g. Ashbrook & Starner, 2003; Cao, 2010; Ester et al., 1996). Conventionally, as 

illustrated in Figure 2.6, ROIs are determined as the regions where there is a high-

density aggregation of stay points by multiple moving objects in space (Parent, 2013; 

Ying, 2013). Li et al. (2008), Palma et al. (2008), Cao et al. (2010), and Lee et al. (2013) all 

defined the place where multiple users stay as their common ROI. Zhao et al. (2011) used 
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minimum bounding boxes (MBB) to define the highly active region of moving objects’ 

trajectories for detecting ROIs. Yan et al. (2013) identified them using spatial bounding 

rectangles of the stop episodes or the centre of a group of aggregated stay points. Downs 

(2010) used kernel density estimation (KDE) to enable visual analysis of a home range 

or interesting places in animal group activities (Downs et al., 2011). Various clustering 

methods are also applied to extract the places where users frequently visit and stay over 

a certain period from trajectory data. Jain (2008) used a variation of k-means clustering.  

 

 

Figure 2.6 A region of interest that attracts multiple persons’ visits 

 

DBSCAN (Density Based Spatial Clustering of Applications with Noise) and its variants 

are the most common methods for ROI detection (Giannotti et al., 2008; Güting et al. 

2006; Karlis, 2009; Li et al., 2010; Palma et al., 2008; Parent, 2013). As exemplified in 

Figure 2.7, DBSCAN functions as follows: 

The inputs of basic DBSCAN include 𝐸𝑝𝑠  and 𝑀𝑖𝑛𝑃𝑡𝑠 , where 𝐸𝑝𝑠  is the 

neighbourhood searching radius of a selected point 𝑝 , 𝑀𝑖𝑛𝑃𝑡𝑠  is the minimum 

number of points within the neighbourhood to make 𝑝 a core point. If 𝑝 is a core point, 

and point 𝑞 is within the 𝐸𝑝𝑠 radius of 𝑝, then 𝑞 is defined as directly reachable 

from 𝑝. 𝑞 is reachable from p if there is a path 𝑝1, ..., 𝑝𝑛 with 𝑝1 = 𝑝 and 𝑝𝑛 = 𝑞, 

where each 𝑝𝑖+1 is directly reachable from 𝑝𝑖. 
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Figure 2.7 An example of DBSCAN clustering result when 𝑀𝑖𝑛𝑃𝑡𝑠 = 3 

 

• Step 1: An unlabelled point is picked. Count the number of points within 𝑀𝑖𝑛𝑃𝑡𝑠 

of this selected point. 

• Step 2: If the selected point is a core point, find all points reachable from the 

selected point and label these as a new cluster. 

• Step 3: If the selected point is not a core point, find another unlabelled point and 

start from step 1 again. 

• Step 4: Repeat the processes above until all points are label as points in clusters or 

noises. 

 

Li et al. (2008) introduced OPTICS (Ordering Points To Identify the Clustering 

Structure), a variation of DBSCAN to take advantage of both hierarchical clustering and 

density-based clustering to exempt the parameterisation process of conventional 

DBSCAN. The wide adoption of density-based clustering methods in ROI detection is 

due to its working mechanism enabling them to detect clusters of arbitrary shapes such 

as linear, concave, oval, etc. Furthermore, in contrast to other conventional clustering 

algorithms, such as K-means and hierarchical algorithms, density-based clustering 

methods can work without specifying the number of clusters a priori and avoid the 

“initiating problem” (Kriegel et al., 2001). DBSCAN also has the ability to process large 

databases with the help of spatial query trees (Ester, 1996; Ester, 1998; Zhou, 2000). For 

example, DCPGS-G (Shi et al., 2014) is a direct combination of basic DBSCAN and R-tree. 

R-tree speeds up the range query centred at 𝑝  with 𝐸𝑝𝑠  radius to determine the 

number of points reachable from 𝑝. 
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2.2.3 Detecting regions of interest in space and time 

Spatial location alone is not sufficient to depict the reality of interesting places because 

the meaning of the places and activities that occurred in the places are dependent not 

only on location, but also on time. For semantic and activity-related analysis, temporal 

information is of equal importance to location, because interesting places are not always 

active all day and their meanings vary over time. Therefore, some researchers (Chen et 

al., 2015; Kwan et al., 2004; Zheng & Zhou, 2011) argue that places and activities should 

be described with spatial-temporal ontology, and time-geography should be introduced 

into the traditional ROI studies. Ren and Kwan (2007) proposed the use of information 

cubes in spatio-temporal activity studies. The information cubes are attached to every 

stop in trips to contain non-distance-based information such as what activities an 

individual engaged in during the stops and where and when the person conducted these 

activities throughout a day. The spatial boundary of an information cube is, as its name 

suggests, rectangular (see Figure 2.8 (a)). Chen et al. (2015) used space–time path 

bundling methods to create cylinder-shaped space–time bundles of multiple trajectories 

to visually represent the common areas and time periods in which multiple meets and 

interacts in activities. The spatial boundary of a space–time path bundle is circular (see 

Figure 2.8 (b)). 

Apart from the information cubes and space–time path bundles, Shen and Cheng (2016) 

extended the idea of traditional spatial ROIs, taking the closeness in space and time 

dimensions into joint consideration. They introduced a similar concept called spatio-

temporal ROIs (ST-ROIs), i.e. ROIs that are defined with spatial locations and 

boundaries as well as start and perish times. In other words, an ST-ROI is a region of 

high-density clustering of stay points in space and time. The spatial boundary of an ST-

ROI is a polygon encircling the stay points in the ST-ROI. Demsar et al. (2015) also used 

space time kernel density to create the utilisation distribution (UD) surface from animal 

movement data and then use the peak areas of the UD surface as the so-called home 

range areas (i.e. the most important regions of interests) of the animals. 



43 
 

 

Figure 2.8 Representation of places and activities in a space–time cube: (a) information 

cubes; (b) space-time path bundles 

 

For the detection of the ST-ROIs, space-time path bundles, and entities with similar 

concepts, researchers select methods according to their research purposes. Most of these 

methods are improved and modified based on the methods used for spatial ROI 

detection by adding temporal operations to their algorithms. Loecher et al. (2009) used 

scan statistics to look for locations in time and space which are the most likely 

circular/elliptical/rectangular regions for users to visit subsequently. Webb (2008) 

applied a similar approach to identify the killing sites of wild wolves tracked by GPS. In 

addition to discovering areas with high point densities, scan statistics can provide the 

statistical significance of the generated places. The space-time extension of the 

conventional KDE method is also used for the same purpose. Demsar et al. (2015) 

propose a stacked space-time KDE, which adds time as a new dimension, and visualised 

the meaningful places of multiple types of moving objects in a space-time cube. The 

space-time trajectory data test by Demsar included pedestrians (McArdle et al., 2013; 

McArdle et al., 2014), wild animals (Demsar & van Loon, 2013), ships (Demsar et al., 2010), 

and the focuses of eyes on a screen (Demsar et al., 2015). 

Most DBSCAN variations are designed to aggregate point objects only in space, and they 

ignore the influence of time on the semantic meaning of ROIs. Some researchers also 

add space–time adaptions to the traditional density-based method to cater to their 

space–time activities studies. Palma et al. (2008) proposed the CB-SMoT algorithm by 

replacing the parameter 𝑀𝑖𝑛𝑃𝑡𝑠 in conventional DBSCAN with 𝑀𝑖𝑛𝑇𝑖𝑚𝑒, which is a 

staying time threshold. The difference of the maximum and minimum time value 𝑡 of 

the reachable points from point 𝑝 in space must be larger than 𝑀𝑖𝑛𝑇𝑖𝑚𝑒 to make this 

group of points a valid space–time cluster (i.e. ST-ROI). This algorithm used stay time 

https://risweb.st-andrews.ac.uk/portal/en/researchoutput/interpreting-pedestrian-behaviour-by-visualising-and-clustering-movement-data(7614070c-d657-4576-892b-9de1d4e7a755).html
https://risweb.st-andrews.ac.uk/portal/en/researchoutput/spacetime-density-of-trajectories-exploring-spatiotemporal-patterns-of-vessel-movement-in-helsinki-harbour(114128a9-d103-4bb6-b99f-6afbb7aa2189).html
https://risweb.st-andrews.ac.uk/portal/en/researchoutput/eyehand-coordination-during-visual-search-on-geographic-displays(1d9dfdfd-1154-4507-b367-e1fa73225cf5).html
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as an extra standard to detect ST-ROIs but ignored the number of stay points that 

indicates the visit intensity of places. It also ignored short term intensity visits and 

activities in places, so if an ST-ROI attracted a large number of visits in a period shorter 

than 𝑀𝑖𝑛𝑇𝑖𝑚𝑒, it was ignored. 

Unlike Palma et al. (2008), Birant and Kut (2007) directly introduced time as an 

independent dimension in their ST-DBSCAN algorithm. ST-DBSCAN is a variation 

specially developed to handle comprehensively point density in space and time (or other 

non-spatial dimensions). By counting reachable points within both 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑝𝑠 and 

𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐸𝑝𝑠, the ST-DBSCAN can detect point aggregations according to not only the 

spatial distance, but also the closeness in time. An object point existing in space and 

time must be simultaneously reachable according to the spatial maximum reachable 

distance and the temporal maximum reachable interval to be included in a spatio-

temporal cluster. In addition to the advantages of ST-DBSCAN inherited from DBSCAN, 

ST-DBSCAN has features of its own that make it even more effective for detecting ST-

ROIs. Shen and Cheng (2015) were the first to applied ST-DBSCAN on the stay points in 

human movement trajectories to detect spatio-temporal regions of interest (ST-ROIs). 

The generated ST-ROIs contain information about their spatial boundaries as well as 

their lifespans, revealing where ST-ROIs are, when they emerge, and when they perish. 

Zimmermann et al. (2009) designed a time-based OPTICS algorithm to cluster stay 

points, considering both spatial and temporal properties of a trajectory, and achieved 

similar results to ST-DBSCAN’s without a parameterisation process. 

 

2.2.4 Detecting regions of interest in spatial networks  

As contextual data for activity description can now be geocoded to street addresses, new 

analytical methods that can handle the analysis of activities and movements in network 

space are needed. On the other hand, most spatial clustering methods use Euclidean 

distance and ignore the urban context and road network within which most people 

move. These conventional clustering algorithms cannot correctly identify the true shape 

of spatial ROIs. Although DBSCAN is purported to be better than other clustering 

methods in detecting ROIs with arbitrary shapes, the ROIs detected by DBSCAN are still 

somewhat round-shaped and cannot fully represent the true coverage area in cities with 

dense streets because the GPS observations themselves have positioning errors and are 

distributed around the true location in nearly circular areas. Yan et al. (2011) argue that 

points, regions (or areas), and lines are all standard spatial data types in GIS and that 

activity study and semantic annotation of interesting places based on movements in 
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urban networks should be integrated with road structures. In their works, they have 

proposed the concept of Line of Interest (LOI) so that semantic meanings of places were 

studied on the street-segment level instead of the approximate areas. 

Yiu and Mamoulis (2004) are the first to attempt the adaptation of traditional spatial 

clustering algorithms to network analysis. In their work, they revised and tested three 

major types of algorithm (portioning based, density-based, and hierarchical clustering) 

to generate spatial clusters according to the network distances between points on a road 

network. To mitigate the increase in computation burdens brought by the network 

distance calculations, the spatial query algorithms are optimised accordingly. Through 

comparison, they concluded that the Network Eps-Link, a variation of a density-based 

clustering algorithm, is the most appropriate for clustering objects on a spatial network 

in terms of complexity and robustness with noises. However, their work focused solely 

on innovations of algorithms per se and was not used for ROI detection based on 

movement data or any other application.  

Zhang et al. (2016) also argues that links and segments in the road network enable 

movement analysis and interesting region detection on a finer scale than Euclidean 

approaches in highly dynamic cities. They took taxi trajectories in a Chinese city as a 

case study and used the map-matching technique to accurately associate the trajectories 

with the streets and conduct all subsequent movement analyses in street networks. The 

spatial representation of location records is also transformed from ( 𝑥, 𝑦, 𝑡)  to 

(𝑆𝑒𝑔𝑚𝑒𝑛𝑡_𝐼𝐷, 𝑃_𝑖𝑛_𝑠𝑒𝑔𝑚𝑒𝑛𝑡), where 𝑆𝑒𝑔𝑚𝑒𝑛𝑡_𝐼𝐷 is the street the point was snapped 

to and 𝑃_𝑖𝑛_𝑠𝑒𝑔𝑚𝑒𝑛𝑡  described the point’s location using the distance from the 

starting node of the segment to the position of the map-matched point on the segment. 

They applied a Latent Dirichlet Allocation (LDA) algorithm to calculate the significances 

of streets to the taxis’ pick-up and drop-off activities in their trips. Streets above a 

defined significance level were labelled as interesting places in the network and 

semantically analysed. This method enabled the LOI detection in streets but only 

focused on the starts and ends of trips. Stop episodes within the trips were all ignored. 

Buchin et al. (2009), Shine (2007), Oliver et al. (2010), Okabe et al. (2006), and Shi et al. 

(2014) also proposed network-based spatial clustering algorithms to detect hotspots and 

point-aggregation patterns in streets. These approaches can take into account graph 

properties such as edges, connectivity, and directionality while finding hotspots or ROIs, 

but none have made use of the temporal information or tested with large-scale 

movement data. 
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2.2.5 Summary 

In this section, some of the existing techniques to identify ROIs within a collection of 

space–time trajectories are reviewed and critiqued. The existing stay point detection 

methods are first summarised into density-based methods, threshold-based methods, 

and supervised machine learning methods as a general pre-processing step before ROI 

detection. Of these methods, supervised machine learning methods suffer from their 

poor versatility for general use. Density-based methods cannot distinguish stop episodes 

at different times in returning trips, while threshold-based methods are not robust with 

regard to large sporadic positioning errors. Strengths of these methods should be 

combined to overcome their weaknesses. 

As for the detection of ROIs, some visual studies applied KDE and its variations, while 

studies that required statistical significance or prediction capabilities applied scan 

statistics. Nevertheless, most researchers choose to use DBSCAN or develop their own 

ROI detection algorithms based on DBSCAN because of their advantages in detecting 

clusters of arbitrary shapes without knowing the cluster number, robustness to noises 

and outliers, and intuitively adjustable parameters.  

These conventional methods for detecting purely spatial ROIs are evolved into space–

time clustering methods to detect ST-ROIs, which takes the advantage of the theoretical 

advancement in time geography and space–time analytics. As there is no universal 

model to combine spatial and temporal expressions of ROIs, researchers from different 

backgrounds have proposed various methods to detect ST-ROIs to solve the different 

problems they have encountered in case studies. ST-DBSCAN and CB-SMoT, popular 

clustering approaches for ST-ROI detection, both inherited the advantages of DBSCAN 

and the ability to deal with large space–time datasets. For detecting LOIs in urban spatial 

networks, the distance metrics of conventional ROI detection methods are replaced with 

network distance. Some researchers have even added map matching as a pre-processing 

measure before LOI detection to increase spatial accuracy for urban environments. The 

characters of some classical ROI detection algorithms are summarised in Table 2.1. 

Table 2.1 Brief summary of classical ROI detection algorithms 

 DBSCAN DCPGS-G CB-SMoT ST-DBSCAN Network 

Eps-Link 

Overview Uses point 

density in 

space for 

clustering 

Grid-based 

spatial 

point 

density 

clustering 

Extension 

of 

DBSCAN 

with a stay 

Extension of 

DBSCAN to 

use both 

spatial and 

temporal 

Using 

network 

distance in 

spatial 

clustering 
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time 

condition 

attributes in 

clustering 

Running time O(𝑛2) O(𝑛2) O(𝑛2) O(𝑛2) O(𝑛2) 

Spatio-temporal No No Yes Yes No 

Network awareness No No No No Yes 

 

Problems 

Noise and 

information 

loss 

Yes Yes Yes Yes Yes 

Misidentifyi

ng ROIs in 

returning 

trips 

Yes Yes Yes No Yes 

 

To sum up, the existing ROI detection approaches have the following limitations: 

1. The partitioning-based and hierarchical clustering methods adapted for network 

analysis in many previous works (Yiu & Mamoulis, 2004) have been proven slow, 

ineffective, and over-sensitive to noise. 

2. Existing network-based clustering methods are purely spatial and are not designed 

for ST-LOI detection. The temporal dimension is totally ignored in those methods. 

3. Existing spatio-temporal clustering methods use Euclidean distance in space to 

determine reachable points and are not designed for LOI detection. Urban networks 

and true movement trajectories on streets are totally ignored in those methods. 

4. Existing network-based spatial clustering methods are applied and tested on 

synthesised point data (Yiu & Mamoulis, 2004), points representing independent 

issues such as crimes (Buchin et al., 2009), and starting and ending points of 

movements (Zhang et al., 2016). None of them are designed for the analysis of point 

data generated by consecutive movements. Among these methods, only a few 

(Zhang et al., 2016) have used map-matching techniques as a pre-processing step to 

guarantee that the points themselves are precisely located and the speed correctly 

calculated. None of the existing works have used map-matching and space–time 

clustering techniques in combination to generate highly accurate ST-LOIs. 

Further works may include the development of a spatio-temporal stop identification 

method to overcome existing limitations and a clustering algorithm that can detect 

dense aggregation of stay points in spatial networks and temporal domains. The space–

time clustering method should also work with map-matching algorithms for better 

accuracy. 
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2.3 SEMANTIC ENRICHMENT OF PLACES 

Identifying “hotspots” in raw trajectories is known as ROI detection, while inferring the 

meaning of a place or identified ROI for people’s activities with contextual knowledge is 

called semantic enrichment. Emerging semantic enrichment theories and 

methodologies, along with new date sources, have enabled the extraction of useful 

geospatial and semantic information from high-dimensional and heterogeneous 

datasets. Semantic enrichment provides semantic and “platial” (Jenkins et al., 2016) 

views beyond traditional spatial perspectives as human activities are more aligned with 

social places than purely geographic locations. 

Semantic enrichment is achieved by associating raw movement trajectories and ROIs 

with related contextual data describing nearby geographic objects and backgrounds, 

such as POIs, as suggested in Figure 2.9. Cao et al. (2010) and Li et al. (2008) have 

introduced models for semantic GPS movement trajectories. They define the trajectories 

as sequences of stops and movements from place to place with temporal and semantic 

labels in addition to geographic background. The boundary definition of semantic 

analysis and algorithms for semantic enrichment are reviewed in this section. 

 

 

Figure 2.9 The semantic enrichment of places 
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2.3.1 Space–time boundaries of places 

Since semantic enrichment methods use information about the geographic environment 

adjacent to places, “adjacency” must be defined. The social meaning assignment to 

places derived from social data can be problematic due to vague boundaries (Goodchild 

& Li, 2012). Thus, the boundary of a place or a ROI needs to be clarified so that the 

semantic enrichment process can be performed based on the geographic environment 

within a well-defined area. Many boundary definitions of places are proposed in 

semantic analysis. Yuan et al. (2012) cut and split their urban study area into multiple 

blocks with road links of the city and analysed the function of each divided block. They 

enriched the semantic meaning of these blocks with POI data. The spatial boundaries of 

the blocks are lines of roads which are actually existing spatial entities. Lew and 

McKercher (2006) used grids as basic spatial units. Yan et al. (2011) used bounding 

rectangles in semantic enrichment. The spatial boundaries of Ren and Kwan’s (2007) 

information cubes are rectangular areas, while Chen et al.’s (2015) space–time path 

bundles are circular. Jahnke et al. (2010) limited semantic enrichment inside the circular 

buffer zones of ending locations of trips. Monajemi (2013), Polisciuc et al. (2015), and 

Shen and Cheng (2017) used bounding convex hulls of stay point clusters to define the 

polygon areas of ROIs. 

Time geography has added time constraints to human activities, evolving hotspots from 

spatial entities to spatio-temporal entities (Shoval & Isaacson, 2009). Time span is added 

as the temporal constraint to a place because activities cannot last forever in the place, 

and different functions and meanings can be found in the same place at different times. 

This representation of semantic places embraces the spatio-temporal ontology of places 

and activities. For example, Both Chen et al.’s (2015) space–time path bundle and Shen 

and Cheng’s (2016) ST-ROI have temporal boundaries of activity places that can last 

several hours.  

 

2.3.2 Semantic enrichment based on contextual data 

Luo and MacEachren (2014) argue that the First Law of Geography can be extended from 

space to social and semantic concepts. By taking contextual environment as part of 

human dynamics, we can model the interactions between social and physical spaces in 

space and time with various granularity to discover the meaning of activities, thus 

bridging the gap between spatial movement analysis and social activities studies. A 

typical example of this approach is the idea of “How they move reveals what is happening” 
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proposed by Mazimpaka and Timpf (2017). To extract high-level activity information 

from raw trajectories with only geographic features, the semantic features of places 

along those trajectories should be enriched to explain the behaviours of the trip. After 

detecting ROIs or hotspots and determining their boundaries, the next step for activity 

study is to add semantic information to them. Semantic enrichment is a challenging task 

because of the irregularity of various contextual data sources. Generally speaking, 

contextual environmental data have two types: officially collected datasets and 

crowdsourced datasets. Officially collected contextual data include POI, land use, and 

building function registry data that are strictly collected by administrative or business 

organisations according to industry standards (Krüger et al., 2015). This type of data was 

originally used in user-centred navigation applications to answer questions such as 

“What is this place?” Crowdsourcing data include geo-tagged tweets, geo-tagged 

photographs, open-source map applications, and e-business transactions generated in 

location-based services. Some of the better-organised crowdsourcing data that are 

contributed, managed, and freely available are called volunteered geographic 

information (VGI) data (Haklay, 2010). Andrienko et al. (2013) semantically annotated 

places based on GPS, GSM (cell phone), and Twitter data. Krueger et al. (2015) associated 

Foursquare data with places to automatically extract activity information about the 

latter. Zhang et al. (2012) present another example of semantic enrichment in which 

information of nearby building functions was used. Yan et al. (2013) used well-defined 

land use data to annotate the meanings of places and road segments. Tardy et al. (2016), 

Jenkins et al. (2016), and Cai et al. (2016) analysed semantic places with VGI data, such 

as geo-tags of photos uploaded by social media users. POI data were the most widely 

used contextual data source for this purpose. Jahnke et al. (2010), Braun et al. (2010), 

Yuan et al. (2004), Niu et al. (2017), Siła-Nowicka et al. (2016) and Shen and Cheng (2016) 

used urban POI data to extract meaningful information about activities from ROIs. 

Krueger et al. (2013) also used POI for the same purpose, making a simple assumption 

that the meaning of a place is determined by the dominant type of POIs in the region. 

To transform the physical location records of individual trips into semantic activity 

histories meaningful to people and society, researchers (Palma, 2008) used the nascent 

concept of semantic trajectories, in which background geographic information is 

integrated with points in trajectory. In this new concept, a trajectory is observed as a 

sequence of visiting behaviours to various ROIs whose semantic meanings were 

semantically enriched. 

As to the annotation methods, Jahnke et al. (2010) manually annotated the semantic 

meaning of places where POIs are sparsely distributed. Jenkins et al. (2016) uses 

statistical significance to quantify semantics in Manhattan. Nishida (2014) uses 

supervised machine learning approaches to use labelled semantic places to predict the 
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unlabelled functional buildings a person was in. These methods add the meaning of 

buildings into movement trajectories and can be used to enrich semantic meanings of 

location histories. In accordance with Waldo Tobler’s (1970) First Law of Geography, 

which proclaims that “everything is related to everything else, but near things are more 

related than distant things”, POIs and buildings of identical functions are likely to 

aggregate in the same neighbourhood. Based on this phenomenon, Krüger et al. (2013) 

and Polisciuc et al. (2015) used the quantity of POIs in a place to explain its major 

semantic meanings in a simple manner. The semantic significance of one type of POI to 

the place it falls in can be expressed as Equation 2.2. 

 

SC𝐼,𝑗 = 𝑓𝐼,𝑗 =
𝑐𝑜𝑢𝑛𝑡𝐼,𝑗

∑ 𝑐𝑜𝑢𝑛𝑡𝑘,𝑗𝑘
     Equation 2.2 

 

where 𝑐𝑜𝑢𝑛𝑡𝐼,𝑗  is the number of category 𝐼  POIs in place 𝑗  and ∑ 𝑐𝑜𝑢𝑛𝑡𝑘,𝑗𝑘  is the 

sum of all categories of POIs. 𝑓𝐼,𝑗 is called the emergence frequency of a type of POI. 

Furthermore, Krüger et al. (2013) added the influence of distance between the POIs and 

the location of people’s activities into consideration as an improvement to his semantic 

enrichment approach and compared the suitability of the POI data provided by 

Foursquare, Facebook, and Google for semantic analysis. In their work, POIs closer to 

the individual’s locations are considered to influence more significantly the person’s 

activity than other POIs in the area. Damiani et al. (2011) also weighted POIs differently 

for protection of users’ privacy in sensitive stops. Since POIs near users’ locations may 

have different degrees of sensitivity according to their semantic meanings, lowering the 

significance of certain types of sensitive POIs can keep users’ sensitive behaviours from 

being compromised. For instance, stopping at normal restaurants is considered less 

sensitive than being in a hospital, so restaurants and hospitals should be given different 

weights. Notably, all land use and POI data used for semantic analysis in the works above 

are hierarchically classified into multiple categories and subcategories so that the 

sematic meaning can be summarised in different levels of details. 

Nevertheless, quantity and distance are not the only indicators of semantics, and the 

numbers of different categories of POIs are heavily biased. For example, convenience 

stores are far more densely distributed than airports in a city, and relying solely on 

absolute POI quantity will cause mistakes. This problem is similar to understanding the 

meaning of an article in which auxiliary words like “the” far outnumber the proper nouns 

that contribute significant meaning. Therefore, a few topic-modelling algorithms of text 

mining have been used in geographic semantic studies. Topic-modelling algorithms are 

adapted for semantic enrichment of places to find hidden information from the biased 
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quantities of different POIs. Topic-modelling algorithms can overcome the drawbacks 

of traditional statistical information retrieval methods and can annotate places 

automatically with massive POI datasets. Yuan et al. (2012) and Shen and Cheng (2017) 

have used term frequency-inverse document frequency (TF-IDF) algorithms to mitigate 

the semantic significance bias caused by the POI quantity bias. Zhang et al. (2016), Sizov 

(2010), Chon et al. (2012), and Yuan et al. (2012) used the more advanced Latent Dirichlet 

allocation (LDA) on POI date and crowdsourced data. Yuan et al. (2012) compared the 

performance of LDA and TF-IDF in their case study of Beijing and concluded that LDA 

is a more suitable method for semantic enrichment. 

Because of the highly dynamic nature of urban activities, the semantic meaning and the 

human perception of a place are constantly changing as places are refilled with new 

activities and different people over time (Batty et al., 1999). Therefore, temporal 

information is also used, in addition to spatial context, for semantic enrichment since 

most trajectories contain temporal records. Liao et al. (2006) proposed that different 

activities have different temporal durations and temporal patterns, which can be used 

to distinguish activities near multiple POIs. Andrienko et al. (2013) have suggested 

interpreting semantic meanings of places based on cyclic temporal patterns of visiting 

times. Reumers et al. (2013) designed a classification tree to identify semantic places 

which relies purely on temporal stop durations. 

 

2.4 SIMILARITY AND AGGREGATION OF ACTIVITY PROFILES 

As suggested by Chapin (1974), it is necessary to simplify and combine similar activity 

patterns into more general categories to explore activities and population aggregations. 

For knowledge-discovery purposes, many grouping and aggregative clustering methods 

are used to discover patterns in activities and movements. This section examines the 

literature that explains the various definitions of activity similarities and the 

methodology for aggregative clustering and grouping analysis. Exploring similarities 

among different individuals’ trips, where trip similarity can be defined regarding spatial, 

temporal, and/or semantic dimensions, and applying data mining methods to these 

similarities have potential to reveal patterned characteristics in activities and identify 

who the people are (Tsou, 2015). 

Before people are grouped, clustered, or classified with different activity patterns, the 

metrics of similarity or dissimilarity between them should be defined. The similarities 

of moving objects or trajectories represent a fairly new topic in spatio-temporal data 

mining. The metrics used to define similarity vary for different applications and research 
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purposes. Therefore, the features used for calculating similarity can range from physical 

ones, such as the speed and geometric shape of routes, to semantic ones, such as 

information regarding places visited or activities undertaken. Three major categories of 

activity similarity metrics are discussed in the rest of the section. 

 

2.4.1 Similarity metrics based on physical features 

Most of the traditional methods proposed seek similarities in the geometric shapes of 

trajectories based on a defined distance function. Generally, p-norm distances are used 

as a spatial similarity measure. The Euclidean distance between two location sequences 

is a special case of a p-norm when p=2. Many studies have extended and applied this 

metric (Agrawal, 1993; Goldin, 1995; Johnson, 1996; Kahveci, 2001; Keogh, 2001). In these 

studies, the dissimilarity of two sequences, < 𝑤1, 𝑤2, … , 𝑤𝑛 > and < 𝑤′1, 𝑤′2, … , 𝑤′𝑛 > 

is defined as 

 

𝐷(𝑐, 𝑐′) = √(𝑤1 − 𝑤′1)2 + ⋯ + (𝑤𝑛 − 𝑤′𝑛)2   Equation 2.3 

 

where 𝑤 is the coordinates of sequential updates, which can include longitude, latitude, 

time, and other user-defined variables. 

However, trajectories have not only time series, but also other information such as 

directional variables. For this reason, Yanagisawa (2003) modified the method to 

perform the similarity query based on the time interval between updates. Lin (2008) 

defined the one-way distance (OWD) to improve the precision and efficiency of shape-

based trajectory matching to find trajectories of similar shapes. Lee (2000) extended the 

Euclidean distance to define a distance metric between two series of minimum bounding 

rectangles (MBRs) encompassing two spatio-temporal sequences. This method achieved 

a very high efficiency and successfully dealt with sequences of different lengths. 

However, it is not reliable against noise and time shifting, which usually exist in real 

movement data. Cai (2004) used a similar dissimilarity definition as Lee (2000) and 

inherited similar defects. Ranacher and Tzavella (2014) and Demsar et al. (2015) reviewed 

multiple classical definitions of spatial and temporal distances to measure the similarity 

between trajectories including Euclidean distance, Minkowski distance, Haussdorff 

distance, earth mover's distance, relative direction and qualitative trajectory calculus. 

To summarise, shape-based approaches are sensitive to outliers and require some ideal 
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prerequisites (such as equal lengths of tracks and intervals between nodes) that are 

uncommon in real data. 

Studies have also focused on the movements of different objects by depicting their 

moving behaviours using other dynamic physical features including speed, acceleration, 

duration of movement, sinuosity, travelled path, displacement, direction, etc. (Qu, 1998). 

These techniques often aim to predict transportation modes and to distinguish objects 

with different moving features based on the previously learned sample features. 

Schüssler and Axhausen (2009) introduced a fuzzy-logic method based on speed and 

acceleration to distinguish five transportation modes: walking, cycling, car, bus, and rail. 

However, these methods do not satisfactorily cope with journeys with similar speed 

ranges. Dodge et al. (2009) extracted multiple movement parameters to describe 

movements, including speed and angle, to generate description profiles and analyse 

them comprehensively. In studies by Dodge et al. (2008), Giannotti and Pedreschi (2007) 

and Laube, et al. (2007), researchers introduced the parameters of a trajectory generated 

by a moving object, such as speed, acceleration, duration of movement, sinuosity, 

travelled path, displacement, and direction. These descriptors form fundamental 

building blocks for characterising the movement of an object, and they can be defined 

in an absolute sense (i.e. with respect to the external reference system) or in a relative 

sense. Bolbol et al. (2012) chose speed and acceleration as the descriptive features and 

tested their suitability with analysis of variance (ANOVA).  

The main idea of these methodologies is to use an algorithm that calculates the track 

similarity based on the profiles generated from the physical variables of movements to 

distinguish types of moving objects and aggregate similar movements. Almost all the 

methods proposed primarily considered motion details, and they do not promise the 

ability to cope with the behaviours and patterns of higher levels. Some of the above 

methods cannot perform well on data with close speed or angle ranges. Therefore, there 

is still a need for approaches that incorporate locational information and semantic 

meanings in the environment. 

 

2.4.2 Similarity metrics based on travelling sequences 

In terms of similarity based on the sequences of places visited in personal trips, it is 

assumed that users usually stop at places for specific objectives. Different social groups 

may have different preferences and habits that may lead to dissimilarities in their 

movement patterns and reactions to certain events (Chapin, 1974). Because trajectories 
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are generated by people moving from time to time, many methods that have been used 

for the analysis of time-series data with sequential attributes have also been used on 

movement trajectories in human activity studies.  

The most commonly used similarity metric is that which considers the sequences of the 

visited ROIs. Suppose Trajectories 1, 2, and 3 in Figure 2.8 (b) are generated by trips of 

three different persons and that the individuals in both Trajectory 2 and 3 included three 

ROIs in the sequence of ROI (A)→ROI (B)→ROI (C), while that of Trajectory 1 visits 

only visited ROI (B). As a result, users 2 and 3 are considered to be more alike than user 

1 in accordance with their sequential similarity. Based on this general idea, different 

methods, such as Longest Common Subsequence (LCS) (Dodge et al., 2009), Multiple 

Sequence Alignment (Kwan et al., 2014), Edit Distance (Chen et al., 2005), and trajectory 

clustering (Nara et al., 2011) have been used for measuring similarity in terms of 

sequence relationships.  

Little and Gu (2001) used path and speed curve changing in time as profiles to measure 

the dissimilarity between two trajectories using dynamic time warping (DTW), which is 

often used in matching wave forms. Vlachos (2004) used DTW on a rotation invariant 

to compare sequences of angle and arc-length pairs. However, DTW cannot match 

geometrically similar tracks with gaps during the trips because this method requires 

continuity along the warping path. Gaps, the sub-trajectories between similar sections 

of two trajectories, weaken DTW’s robustness to noises. Unlike weather, customer flows, 

or other ordinary spatial or temporal data, trajectory data are collected by devices with 

positioning errors and a higher probability of functional failures. This makes noises and 

outlier records especially common obstacles in trajectory analysis. Longest common 

subsequences (LCSs), which are robust to noise, were presented by Vlachos (Dodge, 

2009; Vlachos, 2002) to handle the defects of the above-mentioned approaches. Yet this 

method cannot accurately deal with sub-sequences of similar shapes with dissimilar 

gaps and different trip lengths. Bozkaya (1997) modified LCSs into an extended metric 

that measures similarity that can be used for clustering analysis. Edit distance on real 

sequence (EDR) (Chen et al., 2005) is a novel dissimilarity metric introduced to remedy 

the defects of LCSs. The trajectories are first normalised to remove the spatial shiftings 

of trajectories in different places. Edit distance (Ukkonen, 1983) was originally used in 

string and text matching in accordance with the minimum number of edit operations 

required to change one string to the other. This enables the EDR to tolerate the negative 

effects of time shifting gaps within sub-trajectories. Noises are also eliminated by 

quantifying the distance between each pair of elements in the two sequences being 

compared. 
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Many studies have used multiple sequence alignment methods, which are traditionally 

used in gene sequence analysis in bioinformatics, to match the sequences of GPS, Wi-Fi, 

and Bluetooth log-in movements (Delafontaine, 2012; Shoval, 2007; Shoval, 2009). 

Biochemists used to grapple with the problem of analysing protein and DNA sequences. 

Social scientists faced a similar challenge when studying sequences of events. Sankoff 

and Kruskal (1983) published a groundbreaking work in which they set forth a series of 

basic algorithms capable of efficiently analysing complete sequences. Their work, which 

formed the basis of most subsequent sequence analysis algorithms, was instrumental in 

the eventual breakthroughs made in DNA and protein analysis. It took about ten years 

before the sequence analysis methods used in the natural sciences were ported to the 

social sciences. Abbott (1995) used sequencing algorithms to analyse socioeconomic 

data in investigations of the progress of musicians’ career histories. Later, in the field of 

travel research, Bargeman et al. (2002) aligned information describing vacation patterns. 

Transport and time allocation research have benefited from work performed by Wilson 

(2001; 2006), Joh et al. (2002), and Joh et al. (2001; 2005) that aligned patterns of activity. 

There are generally two types of activity sequence analysis. The more commonly used 

product is utilised to generate groups based on their overall activity patterns. Programs 

using this kind of sequence analysis produce “trees”, which divide sequences 

taxonomically. The second type of sequence analysis, less frequently employed, is used 

to match and detect patterns of behaviour in some or all of the sequences scrutinised 

(Wilson, 1999). The first type of utilisation is more relevant to our research. Early studies 

(Wilson, 1999) of sequence alignments, including “Activity Settings, Sequencing, and 

Measurement of Time Allocation Patterns”, were based on software called ClustalG. 

ClustalG is a general version of the original biochemistry-oriented ClustalX program 

with an extended alphabet that enables it to cope with a wider range of more complex 

human activities using adjustable setting and parameters. Recently, with the increasing 

utilisation of sequence alignments in geoinformatics, ClustalXY (Shoval, 2009) was 

developed based on the Clustal software series to deal explicitly with the alignment of 

spatial data. This method allows for the alignment of activity regions for each participant 

in the research, as demonstrated in Figure 2.10, so that similar sequences can be found 

and grouped. For example, Person 1 and Person 4 in Figure 2.10 shares the same sequence 

and timing of movements and have the highest similarity between each other. In 

contrast, Person 3 never visits place B and C. Instead, he/she visited E twice while Person 

1 only visited E once before D. Therefore, Person 3 and Person 1 are considered relatively 

different. 
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Figure 2.10 Similarities and differences in ROI visiting sequences of people 

 

2.4.3 Similarity metrics based on semantic location histories 

All movements of people and animals are undertaken in geographic contexts which 

directly or indirectly influence these movements. The analysis reviewed in the last two 

sections for trajectory similarities have so far ignored the context, which severely limits 

their applicability. Similarity metrics based on semantic location histories are generated 

according to patterns of visits to semantic ROIs semantically enriched with contextual 

information that already exists in given databases. From a spatial point of view, the 

concept of “where you stop is who you are”, proposed by Spinsanti et al. (2010), posits 

that individuals’ activities are associated with semantic places. Zhong et al. (2015) 

proposed “you are where you go” with the similar idea. Progress has been made in 

defining movement patterns with series of semantic locations according to users’ travel 

sequences, which can be used to group users’ activity profiles (Li et al., 2008; Mckenzie, 

2014; Xiao et al., 2010). Xiang (2011) used the statistical summary of the port-visiting 

history of ships as a similarity metric to determine the similarity paths and association 

rules of ships. Buchin et al. (2012) proposed that context should be integrated into the 

similarity analysis of hurricane movement data. By taking into contextual information, 

they were able to distinguish hurricanes that were spatially close but influenced the 

surroundings differently. Li et al. (2008) presented a moving behaviour-modelling 

framework called a hierarchical-graph-based similarity measurement (HGSM), which 

takes both sequential and hierarchical properties into account. In this multi-layered 

framework with various scales in each layer, the similarity of two moving persons in a 

single layer is first formulated as Equation 2.4. 

 

𝑆𝑙 =
1

𝑁1∗𝑁2
∑ 2𝑚−1 ∑ (𝑘𝑖, 𝑘𝑖′)𝑚

𝑖=1
𝑛
𝑖=1    Equation 2.4 
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where 𝑁1 and 𝑁2 denote the number of different regions visited by the two individuals, 

respectively, and 𝑚 is the total number of places visited in each person’s trip. 

Next, this simple equation is extended to define the similarity across multiple layers: 

 

𝑆𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = ∑ 𝛽𝑙
𝐻
𝑙=1 𝑆𝑙    Equation 2.5 

 

where H is the total number of layers in the model, 𝛽𝑙 is equal to 2𝑙−1 and represents 

the weight attached to each layer (the lower the layer, the higher the resolution it has 

and the higher the weight is) (Doherty, 2006). 

Based on the pattern in which individuals stop at a series of semantically enriched places, 

various similarity metrics have been proposed that emphasise different features of the 

movements. Similarity of movement patterns was defined in earlier studies by 

commonly visited places. A typical expression of place-based similarity between 

“GeoLife2.0” Users 1 and 2, as proposed by Zheng et al. (2009), is calculated as follows: 

 

𝑆𝐼𝑀𝑢𝑠𝑒𝑟(1,2) =
∑

1

𝐹𝑝
𝑝∈𝑅𝑂𝐼𝑆1,2

√(∑
1

𝐹𝑝
𝑝∈𝑅𝑂𝐼𝑆1 )∗(∑

1

𝐹𝑝
𝑝∈𝑅𝑂𝐼𝑆2 )

      Equation 2.6 

 

Here, 𝑅𝑂𝐼𝑆1,2 is the set of places visited by both Users 1 and 2, while 𝑅𝑂𝐼𝑆1 and 𝑅𝑂𝐼𝑆2 

represent the sets of places visited by Users 1 and 2, respectively. 𝐹𝑝 is the popularity 

index of these places and is calculated according to the number of people that have been 

there. The popularity indices are used as the denominator in the weight attached to 

different places. Weighting places according to popularity decreased the similarity 

generated by the case of two users going to a common place that is visited by many other 

users. In such a case, the impact on the behavioural similarity of this place should be 

smaller than that of places that have been visited by Users 1 and 2, but which are not 

usually visited by other people.  

Other research also added temporal information into semantic profiling of activities. 

The concept of “what you are is when you are”, proposed by Ye et al. (2011), uses temporal 

activeness profiles to define the similarity between check-in activities in location-based 

social networks. Such temporal profiles have also been applied to quantify the 

description of human mobility and for behaviour similarity analysis (Andrienko et al., 

2015; Jankowski et al., 2010; Vazquez-Prokopec et al., 2013). The pioneering work of 

Chapin (1974) introduced the description of patterned activities by allocation of “time 

budget” and surveyed how people from different socio-economic backgrounds spend 
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their time in different places carrying out activities. The assumption is that the more 

time is spent in a place, the more important the place is for the moving person. A similar 

assumption is used in the studies of Zheng et al. (2011) and Shen and Cheng (2016). 

Following Chapin’s idea, Sideridis et al. (2015) used people’s dwelling time allocation on 

various types of semantic places to depict individual activity differences in a quantitative 

manner. Shen and Cheng (2016) defined these time allocations as individual space–time 

profiles, applying Jensen-Shannon Divergence (JSD) as the similarity metric to cluster 

people sharing similar profiles. Sizov (2010) also applied JSD to define similarity. Yan 

(2013) compared the stopping and moving time distribution of vehicle trajectories in 

different types of semantic places to show the behavioural differences of cars, buses, 

taxis, and trucks. 

 

2.4.4 Profiling and aggregative analysis 

Clustering methods are the most popular machine learning approaches for grouping 

similar objects. For real-world patterned activity of people, relatively few clustering 

methods have been used to obtain knowledge from moving trajectories, as these 

datasets are still quite new to researchers. However, the applications of clustering 

methods on Internet page browsing behaviours and other time-sequence data are well 

developed. This provides us inspiration for applying them to movement behaviours in 

the real world. 

Clustering algorithms with different rationales have been used to group time-sequence 

data. Nasraoui (2000) used fuzzy clustering to extract web users’ group profiles based 

on a series of online behaviours recorded in web log data. Ozer (2011) also used fuzzy 

clustering to identify homogenous groups of potential users possessing different 

attitudes, interests, and opinions about the service and computers so that companies 

can customize strategies for each group. Xie (2001) proposed a belief function for web 

user clustering, while Xu (2005) used k-means clustering to achieve a similar objective. 

Nanni (2006) used OPTICS clustering on the trajectories of moving objects, achieving 

superior stability and better segmentation of results than k-means and hierarchical 

methods. Sims (2009) used Jensen–Shannon divergence and hierarchical clustering 

(Ward et al., 1963) to match the gene sequences of animals and replace the traditionally 

used sequence alignment methods to achieve promising results. Shen and Cheng（2016）

extended this idea to the clustering of space–time activity profiles. Because hierarchical 

clustering uses similarity matrices as inputs, researchers can define their own distance 
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or similarity metrics to generate a similarity matrix for hierarchical clustering according 

to their research purposes. 

 

2.4.5 Summary 

The selection and definition of similarity serves the demand of a given research purpose. 

Studies seeking to identify similar routes usually use geometric shapes and geographical 

proximity as their similarity metrics, while studies trying to find sequential patterns in 

individual trips often use sequence or temporal closeness to calculate similarity. Studies 

focusing on user preferences in multiple trips, instead of one particular trip, consider 

dwelling time within commonly visited places and the semantic meaning of the places 

indicative of similarity of activity patterns.  

Review of various similarity metrics reveals that similarity based on physical features 

cannot be used to discover high-level activity and behavioural information. In sequence-

based activity similarity analysis, the time information of when events happen is lost. 

Moreover, because places need to be represented by characters in the alignment process, 

the time and spatial scales must be discretised, and the resolution of the discretisation 

becomes an inevitable problem in sequence alignments.  

As a given activity or visit to an activity location is theoretically linked to the exposure 

or accessibility and space–time budget at the previous or subsequent activity location as 

well as the meaning of the location (Thierry et al., 2013), defining similarity based on 

semantic location histories is the most appropriate method for aggregative analysis of 

activities.  

 

2.5 SPATIAL ANALYSIS TOOLKIT 

This section reviews the universal analytical tools used in most spatial and spatio-

temporal operations. They include map-matching, spatial-query, and geo-visualisation 

techniques. 

 



61 
 

2.5.1 Map matching 

Map matching is a fundamental pre-process solution for many trajectory-based 

applications, such as moving-object management, traffic-flow analysis, and driving 

directions. Map matching is the process of assigning every location observation point to 

its corresponding network segment in a given network on digital maps. Methods that 

use map matching apply it for smoothing GPS data, decreasing positional error and thus 

reducing distance and speed errors. Therefore, map matching is also advantageous as a 

for increasing the accuracy of modal classification and significant stop identification. 

There are basically two classes of map matching: local and global. Local methods usually 

measure orientation similarity or distance similarity to snap each movement point onto 

the most likely street edges segment by segment (Chawathe, 2007; Greenfeld, 2002), 

while global methods match the entire trajectory with the road network according to 

the proposed probability to match all the observations in one trajectory with all street 

segment candidates (Alt et al., 2003; Yin & Wolfson, 2004). However, most methods 

cannot avoid degradation of accuracy caused by low-sampling-rate GPS data, nor do 

they consider time an important indicator in identifying routes. Lou et al. (2009) devised 

the ST-matching algorithm that incorporates the advantages of global matching 

methods and can easily be localised to achieve high efficiency. Time and speed are also 

incorporated to account for the likelihood calculation of ST-matching, which improves 

the method’s performance on low-sampling-rate GPS observations. 

Most ROI detection and semantic enrichment methods are based on human movement 

in cities, where huge amounts of movement trajectories and POI/building function data 

are generated and collected. However, in the problem setting of these studies, no 

researchers have taken into account the influence of road network structures on the 

movement of humans, nor do they consider that the semantic meaning of a place can 

change with the time of day. In reality, urban canyon effects (Misra & Enge, 2006) usually 

cause larger position errors (i.e. displacements) in location data sets such as GPS data, 

and pedestrians and drivers navigate along streets rather than moving in a straight line 

to their destinations. Moreover, accessibility of most spatial objects in cities is 

constrained by spatial networks. Knowing the precise route that people have taken can 

provide more credible movement details than methods based purely on discrete raw 

location data. It is therefore realistic to define the distance between objects by their 

network distance rather than Euclidean distance and apply map matching before spatial 

operations in urban activity analysis. 
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2.5.2 Spatial query and spatial network query 

Speedy searches for points in space must be based on appropriate structural 

organisation and indexing methods of the stored point data. Massive neighbourhood 

and range searches in the space–time clustering process of our framework are in 

particular need of suitable indexing methods. Spatial query trees such as 

Quadtree (Samet, 1990), R-tree (Guttman, 1984) and K-d tree (Ooi, 1987) are the most 

common indexing techniques. Of these, the K-d tree is relatively easy to implement in 

memory. The K-d tree is a binary tree in which nodes are k-dimensional points and 

represent separating planes. The hyperplane binarily splits the data space. Points on the 

left side of the hyperplane are represented by the left branch from the current node and 

those on the right by the right branch. In our study, we apply the K-d tree indexing 

method for the spatial range query in our ST-network DBSCAN clustering. 

The network distance between two objects is defined by the distance of the shortest path 

from one object to the other over the network. Such distance acts as the spatial-

closeness indicator in the map-matching process of network-based spatial clustering 

algorithms. Nevertheless, replacing the commonly used Euclidean distance with 

network distance in clustering methods involves shortest-route computations, resulting 

in a much higher complexity and inconstant cost for computation. To alleviate this 

drawback, researchers have focused extensively on algorithms for fast network-distance 

calculation and spatial network query over decades. Dijkstra (Cormen et al., 2001) is the 

basic technique for shortest-path computation in a graph or network structure. Dijkstra 

starts the search from a source node and lists its adjacent nodes in a priority queue 

according to their distance from the source node. The rationale of this method inspired 

many subsequent heuristic shortest-path algorithms. A more efficient option for short-

path searches is the A* algorithm (Hart et al., 1968), which guides the query towards the 

destination with a heuristic function and demonstrates a 40–60% saving of 

computational cost in a medium-scale network (Fu et al., 2006) over the Dijkstra 

algorithm. Other classical search strategies in practical application include hierarchical 

search (Jing et al., 1996), search decomposition (Dillenburg & Nelson, 1995), etc.  

 

2.5.3 Visualisation analysis of activities 

Visualisation is an exploratory process of creating graphical representations of data to 

improve human understanding. Geo-visualisation, on the other hand, is a powerful tool 

for analysing large and complex activity and movement data with human visual abilities. 

http://www.sciencedirect.com/science/article/pii/S0169023X06000218#bib11
https://en.wikipedia.org/wiki/Binary_tree
file:///C:/Users/Administrator/AppData/Local/youdao/DictBeta/Application/7.0.0.2017/resultui/dict/result.html
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In early studies, 2D geo-visualisation methods were used to portray patterned human 

activities (Chapin, 1974). These methods provided purely spatial analytical 

environments and had difficulty expressing non-distance-based attributes of activities 

such as time, sequence, semantic meaning, and population. For example, location point 

updates recorded at different times will overlap in a 2D scatter map (Figure 2.11[a]), 

causing ambiguity and mass loss of information. With the advancement of time-

geography came the concept of space–time cubes or space–time aquariums. These 

developments indicate that GIS-based geo-visualisation has considerable potential for 

presenting the space–time analytical results for better and well-rounded understanding 

of activities without losing non-spatial information.  

 

 
Figure 2.11 (a) 2D scatter plot of regions of interest; (b) Space–time hotspots in space–

time cube 

 

Unlike methods which attempt to present data by reducing their dimensionality, 3D 

geo-visualisation can preserve the original data’s complexity to the extent that humans 

can still visually comprehend it. Kwan (2004) implemented 3D visualisation of space-

time paths in space-time cubes (Hägerstrand, 1970). Additionally, Ren and Kwan (2007) 

represented activities by adding information cubes (Figure 2.8 [a]) onto the space–time 

paths. Demsar and van Loon (2013) rendered KDE values as volumes in a space–time 

cube to depict home range and in-home duration of wild animals. Lukasczyk et al. (2015) 

visualised point-based hotspots in both spatial and temporal dimensions to keep track 

of the relationship between hotspots over time, as shown in Figure 2.11 (b). These 

methods enabled the visualisation of time-varying attributes; however, they lacked the 

ability to precisely present the data within the true spatial structure of activities 

happening in urban streets. 



64 
 

 

 
Figure 2.12 3D wall map visualising congested road links in space and time (Cheng et 

al., 2013) 

 

The combination of space–time visualisation and urban networks is achieved by a 

method called the 3D wall map. The 3D wall map is made by adding a time dimension 

into a 2D network link map (Becker et al., 1995). This method was first employed to 

demonstrate time-varying vehicle counts (ITO World Blog, 2009) on highway networks 

and travel time (Cheng et al., 2010) for vehicles to pass through multiple road links. The 

latest progress is to apply a 3D wall map for visualising kernel density interpolation 

values to show hotspots of traffic congestion on road links with congested time spans 

(Cheng et al., 2013). As described in Figure 2.12, the 3D wall map shows exactly which 

road links were congested, when the congestions happened, and how long they lasted. 

Tominski et al. (2012) were the first to display the physical attributes of movement 

trajectories with 3D wall maps. These maps generate far more complex and realistic 

representations of the urban data than conventional 3D visualisations with Cartesian 

spatial representations. 
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2.6 CHAPTER SUMMARY 

This chapter has sought to outline the origin of activity pattern studies in the urban 

realm and state-of-the-art research methods based on advancing GIS technology that 

serve the same purpose. It has focused on the techniques and theories used in the 

geospatial process, semantic process, and knowledge-discovery process of urban activity 

patterns analysis.  

The literature review was undertaken in five sections. The first section reviewed and 

summarised the overall framework of location-based activity pattern analysis. Theories 

proposed by previous researchers for the geospatial, semantic, and knowledge-discovery 

processes of the general framework were critically reviewed and summarised to provide 

insight for a new analytical methodological framework. The following three sections 

reviewed methods and approaches for each of the process in the framework. The second 

section examined the progress of ROI discovery methods in the geospatial analysis 

process in view of previous research. The review started from the common definition of 

activity stay points and extended the discussion from purely spatial ROI discovery to 

spatio-temporal and network-based ROI step by step. The third section described 

existing approaches of semantic processes and introduced topic-modelling algorithms 

into the semantic enrichment of places. The knowledge-discovery process is reviewed 

in Section 2.4 by summarising and comparing different similarity metrics of the features 

in trips and trajectories for profiling and aggregative analysis of activity patterns. Section 

2.5 reviewed the basic analytical toolkits necessary for the methods in all previous 

sections. 

The literature review has shown the variety of approaches proposed as the solutions for 

the three processes in the framework. Yet, in spite of the wide range of research of 

activity patterns based on location data, limitations and defects can still be found 

unresolved in existing studies. These defects can be summarised into the following five 

problems. 

• Problem 1. Spatio-Temporal stop identification: As demonstrated in Figure 2.5,  

conventional stop identification methods used spatial or temporal information only 

and cannot correctly identify stops in some very common cases. 

• Problem 2. Spatio-Temporal ROI detection in urban networks: There is no method 

to simultaneously discover ROI in time and spatial networks. Existing ROI 

detection algorithms are either network-based clustering methods that ignore time 

or space–time ROI detection methods that ignore the structure of street networks. 
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• Problem 3. Semantic enrichment of places: No existing semantic enrichment 

method regards the semantic meanings of places as time-varying features, which 

fails to reflect the highly dynamic nature of cities and urban activities. 

• Problem 4. Profiling of activity patterns: Through the use of multivariate clustering 

methods, complex activity patterns can be represented by the chosen similarity 

metric and organized into a relatively small number of homogenous groups. 

However, no existing approach has incorporated activity-time budget allocation, 

semantic meaning, and sequential factors in a single similarity metric for 

aggregative analysis. 

• Problem 5. Adaptation to urban networks: The entire framework needs to be 

practiced in an urban network environment to truly reflect the space where trips 

and activities take place. No previous research has focused on activities at this scale 

in its entire analytical processes. There is also no previous visualisation technique 

to present semantically ROI and results of activity studies in spatial network and 

time. 

The next chapter will introduce a methodological framework to incorporate the newly 

proposed methods and make improvements based on the current state of the theories 

and approaches in the literature reviewed. This process will describe the framework as 

well as the methods for solving the problems summarised in the literature review. 
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Chapter 3 

Methodological 

Framework  
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3 METHODOLOGICAL FRAMEWORK 

The literature review demonstrated that there exists a need for a reassessment of the 

way in which the people’s behaviour in the urban realm is represented within human 

dynamics models. In conducting this review, five areas of research were identified ‒  

namely stop identification, Spatial-Temporal ROI detection in urban networks, 

semantic enrichment of places, profiling of activity pattern, adaptation to urban network 

‒ to have been neglected within existing human dynamics pattern models, relative to 

the extent of reported research. These findings demonstrate a strong indication that 

current human dynamics models poorly capture the combined effect of space, time and 

semantics, as well as the true urban road network influencing people’s movement and 

activities. The review furthermore showed that no existing framework or approach 

completely describes the full extent of people’s behaviours in space and time, nor did 

they incorporate urban street networks in the semantic explanation of the activity 

patterns. Inspired by the ideas of related works, we model the relation between space, 

time, people and the activity patterns as shown in Figure 3.1, and use it as the theoretical 

basis of the semantic place analysis and activity profiling in our methodological 

framework. 

 

 

Figure 3.1 The three aspects of a compete activity profile 

 

This chapter is composed of five sections. An overall description of the 4-step framework 

is provided in the first section. This part demonstrates how the methods in each step 

address certain limitations highlighted in the previous (literature review) chapter. The 
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second section describes how this framework achieves the aim and objectives, specified 

at the beginning of the introduction chapter of this thesis, with four functional modules. 

The third and the fourth sections demonstrate how the ideas of the framework are 

implemented in detail by the two paradigms in Cartesian space and environment of 

urban street networks respectively. The final section of this chapter discusses the 

comparison, validation and discussion of results. 

 

3.1 FRAMEWORK DESCRIPTION 

The methodological framework introduced here will describe only the integration of the 

different modules of work contributing to this aim. The complete dataset, methodology 

and detailed algorithms employed during each module of the work will be further 

discussed across the four following chapters (Chapters 4, 5, 6 and 7) of the thesis. Among 

them, Chapter 5 and Chapter 6 both go through the four framework modules in 

chronological order. Chapter 5 describes a Cartesian model in which all analyses in the 

four modules will be put to practice under the condition that all spatial distances are 

defined by the straight line Euclidean distance. Chapter 6 goes further by establishing a 

network paradigm and proposing a series of methods to calculate all spatial distances 

along the urban street networks or the actual persons’ routes for all four modules. A 

more advanced text mining algorithm will be introduced in Chapter 7 to improve the 

framework’s semantic enrichment ability. 

For overcoming the five major problems highlighted in the literature review, the 

proposed framework should provide five corresponding solutions: 

• Solution 1: Space-time stop identification: Comprehensively using the spatial and 

temporal information to identify stops in the movement trajectories.  

• Solution 2: Spatio-temporal clustering: Proposing a clustering algorithm to detect 

region and time period of high density stay point aggregations.  

• Solution 3: Space-time semantic enrichment: Associating the meaning and function 

of the visited places to people’s activity patterns.   

• Solution 4: Profiling and grouping activity patterns: Quantifying the pattern 

differences between people’s movements and grouping similar patterns with respect 

to the semantic meaning of the activity.  

• Solution 5: Urban-network-friendly improvements: Adding spatial network analysis 

approaches to every step of the above four solutions and enabling the framework to 

generate more precise results with network awareness in the city. 
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For Solution 1 to Solution 4, we propose a four-module framework of methodology. 

Each of the four modules within the framework resolves an existing problem accordingly. 

These modules represent the core contributions of the thesis, contributing in ultimately 

advancing the state-of-the-art in activity pattern analysis. The flow path of the 

framework is as follows: 

• Module I (Pre-processing): Pre-processing trajectory data is a mandatory step to 

remove errors for various research purposes. It is crucial in creating simple and 

correct low-level representations of movements. In this module, we identify stay 

points and segment trips with a kernel-based temporal scanning window. The stop 

identification process is robust for a location dataset with sporadic positioning errors. 

Conventional threshold-based decision methods and density-based methods can be 

used to play the function of this module. However, they cannot make full use of the 

temporal dimension of the movement data and tend to misidentify stops when there 

are positioning errors within the trips. Hence, we present a kernel-based temporal 

scanning window to jointly use spatial and temporal information in stop 

identification. In further improvements, we will also use map-matching to match 

the movement points to appropriate road networks so that the framework can work 

better with movements in dense city streets. 

• Module II (ST-ROI Detection and Space-Time Profiling): Applying a point-based 

space-time clustering method on the stay points identified by Module I to detect 

Spatio-Temporal Region of Interest (ST-ROI). An ST-ROI is a region experiencing 

intensive visits of people with a time duration. Density-based clustering, kernel 

density estimation and their variations can be used to play the function of this 

module. Since a person’s time budget allocation of activities in a day is the major 

indicator of his/her activity pattern, we simplify a person’s daily activities as a space-

time profile showing how much time he/she has spent on the detected ST-ROIs. 

• Module III (Space-Time Semantic Enrichment): This module is designed to 

generate higher-level semantic abstractions from the low-level trajectory 

representation in the previous modules. Text mining methods are applied on POI 

data to relate the ST-ROIs detected in Module II with semantic/functional meanings 

that are of interest to the people. This process turns ST-ROIs into semantic ROIs. 

Statistic and topic modelling methods can be used to play the function of this 

module. By these methods, the semantic meaning of places can be attached to 

individuals’ space-time profiles in Module II and turn the space-time profiles into 

semantic profiles for aggregation analysis in Module IV. This module also makes use 

of the opening hours in the semantic enrichment process, taking the temporal 

changes of semantic meaning of places into account. 
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• Module IV (Semantic Profiling and Aggregation): Summarising an individual’s 

sematic movement pattern with a semantic profile represented by the time budget 

allocation on the semantic ROIs he/she visited. A similarity metric of profiles is 

defined and used in a hierarchical clustering method so that people with similar 

patterns can be aggregated. Several similarity metrics can be use as inputs to the 

clustering analysis method to play the function of this module. 

 

Methods and algorithms adopted in each functional module can be replaced by their 

equivalents for performance comparison. Table 3.1 shows the flow chart of the 

framework as well as the methods that can act as potential options to serve the purpose 

of each functional module.  

Table 3.1 Input, output and method options for constructing the modules in the 

methodological framework 

 
 

Solution 5 is achieved by realising the goals of Solution 1 to Solution 4 under the 

network representation of space. This requires fundamental transformations in all 

methods of the four modules and will be discussed further in the next section. 

 

3.2 THE TWO PARADIGMS 

To better illustrate the framework, we propose two paradigms to test the framework 

under different experimental settings. Both paradigms follow the 4-module workflow; 

however, they incarnate the framework with different combinations of approaches 

under different definitions of spatial distances. 

The four modules will firstly be tested in a series of controlled experiment settings 

assuming all spatial distances are Euclidean distances. We call this first attempt the 

Euclidean paradigm because all location points in this process are in Cartesian space, 

just like the points in existing conventional methods. Keeping the spatial distance 

metrics same as in existing methods allows us to focus on the advantages of jointly 
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analysing time and space over separating the spatial and temporal aspects in 

conventional activity studies. 

After that, a network paradigm is proposed to achieve Solution 5 and provide a more 

realistic toolkit for trajectory analysis and activity pattern study in an urban context. 

Although the network paradigm is also composed of the four modules, it further adapts 

the framework to the real environment of the urban street networks. Unlike the 

methods used in the Euclidean paradigm, distance measurements in all modules of the 

network paradigm are based on the movement routes along the road segments and 

street network distances. This improvement requires fundamental changes to all 

distance-related operations and algorithms in all modules so that they can be adapted 

to the road network structure and optimised for the consequent computation cost. In 

the network paradigm, individual behaviours in the cities can be better represented than 

in its conventional counterparts. 

In short, the Euclidean paradigm completes the contents from Solution 1 to Solution 

4, whereas the network paradigm makes further improvements to the Euclidean 

paradigm and resolves all listed problems and achieves Solution 5. 

 

3.3 THE CARTESIAN PARADIGM 

The workflow of modules and the combination of proposed methods of the Euclidean 

paradigm are shown in Figure 3.2. 

 

Figure 3.2 Work flow of the Euclidean paradigm 

 

3.3.1 Module I: Data Pre-processing 

The pre-processing module has three major functions: trip segmentation, stay point 

identification, and data cleaning. Each of the functions will be achieved by a solution 

listed below. 

 

Trip segmentation: 
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Trajectory/Trip segmentation is driven by data-dependent and application-related 

criteria. In our research, a trip refers to a continuous sequence of outdoor movements 

and stops by an individual person, starting from place A and ending in place B (A and B 

can be the same place). The purpose of trip segmentation is to break an individual 

person’s sequence of GPS records in a day into trips by respectively identifying gaps 

between them. If a person reaches all purposes of the current trip and stops all activities 

for very long hours, the trip ends. Since a person can make multiple trips in a day, the 

purpose of trip segmentation is to differentiate one trip from another. From this 

definition, trip segmentation can be easily achieved by ignoring inactive time periods 

and marking time periods with continuous location updates as one trip. This process 

enables us to differentiate a short term stop episode within a trip from the long gap 

between two separate trips. 

 

Stay point identification in Cartesian space: 

In the study of the movement of individual users, the basic assumption in many existing 

works is that people stop at a certain place to undertake various activities and then leave 

for the next place. Therefore, the stopping behaviour is of greater interest than the 

moving for the detection of interesting places and activities (Palma et al., 2009). 

Identifying stops in the trajectories is the first step in these researches (Alvares et al., 

2007; Zheng et al., 2009). As we have discussed in the literature review, the two 

conventional types of method (i.e. density-based and threshold based) are not accurate 

enough in stay point identification, especially when they are dealing with urban 

movement data with positioning errors. Hence, we propose a Kernel-based temporal 

scanning window to confine the kernel-based stop identification process in a temporal 

window. This method can mitigate the misidentification problem on sporadic 

positioning error data, leading to the elimination of the wandering effect that GPS 

inaccuracies result in. It can overcome the limitation of conventional stop identifying 

methods mentioned in Chapter 2, and its performance improvement can be seen in 

Chapter 8. 

 

Data cleaning: 

Constant and continuous misreport of locations and very short records are counted as 

GPS logging failures and are removed from the dataset. At the same time, sporadic 

positioning errors and temporary signal blockades are preserved and checked by the 

Kernel-based temporal scanning window as usual. A kernel with Euclidean spatial 

bandwidth will be used to interpolate and smooth the space between the points and 

calculate the density of points for identifying stops. A temporal scanning window will 

make sure that only temporally close points can participate in the kernel density 

calculation to avoid the limitation of methods that ignore temporal information. After 
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the interpolation, Points in the high kernel density area are labelled as stay points. 

Besides, if adjacent points logged before and after a noise/error point are identified as 

stay points, the error point will also be labelled as a part of the stop and counted in the 

dwelling/stopping time duration of the people. This improvement enables us to detect 

stops and stopping time more precisely to guarantee the quality of the input data of 

Module II. 

 

3.3.2 Module II: ST-ROI detection in time and Cartesian space 

As highlighted in Chapter 2, all existing ROI detection methods ignored the influence 

of time dimension on the ROIs. None of them see ROIs and the semantic meanings of 

ROIs as dynamic and ever-changing phenomena. Here we apply Birant and Kut’s ST-

DBSCAN algorithm to detect ROIs that attract high visit volumes within a certain time 

duration (i.e. ST-DBSCAN). This algorithm is chosen because of its unique ability to 

discover high-density clusters according to the spatial, non-spatial and temporal values 

of objects.  

The temporal, spatial and cluster size parameters of the algorithm can affect its cluster 

researching process and results (the point density and area coverage of the detected ST-

ROI). Therefore, a parameterisation stage is designed to make sure the algorithm serves 

the application of finding ST-ROIs. In the Euclidean paradigm, we primarily focus on 

Spatial-Temporal clustering and simplify the spatial distance measurement by using 

straight Euclidean distance and ignoring the urban streets. Each of the detected ST-ROIs 

has its spatial coverage and time span, which are important indicators of the ROI 

sematic enrichment process in Module III. In the Euclidean paradigm, the spatial 

coverage of an ST-ROI is defined by an extended bounding convex hull enclosing all stay 

points in the ST-ROI. 

Based on the idea of “where, when and how long you stay is who are” summarised in 

the literature review chapter, a person’s activity pattern can be described by the dwelling 

time allocation on the ST-ROIs he/she visits. This ST-ROI dwelling time allocation is 

defined as the space-time profile of a person and can be generated by summarising when 

the person arrived at and left the ST-ROIs. 

 

3.3.3 Module III: Semantic enrichment of ST-ROIs 

Here we expand the concept “where, when and how long you stay is who are” to “the 

place you go, when you go and how long you stay is who you are”, to emphasise the 

importance of ‘place’ in understanding human dynamics. We develop a semantic 
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enrichment method to integrate the semantic meanings of places into people’s activities 

by a TF-IDF topic modelling algorithm on categorised Points of Interest (POIs) in the 

coverage area of ST-ROIs. Besides, we also introduce the influence of POI opening hours 

into the topic model. Only POIs open within the time span of a ST-ROI can contribute 

semantic meaning to the ST-ROI. This method allows us to find the changes of a place’s 

semantic meaning at different times of the day. An individual’s profile is then built as a 

summary of the person’s dwelling time allocated in different semantic places. In the 

Euclidean paradigm, the distances between stay points and POIs are Euclidean. 

 

3.3.4 Module IV: Aggregative analysis of the semantic profiles 

Individual space-time profiles can be transformed into semantic profiles after the 

semantic enrichment of ST-ROIs in Module III. After that, the similarity/dissimilarity 

between the individual semantic profiles needs to be defined for the aggregative analysis 

in this module. Here, discrete Jensen-Shannon Divergence (JSD) (Lin, 1991) is used to 

measure the dissimilarity of the semantic profiles of two users. The advantages of JSD in 

quantifying profile differences and aggregative clustering analysis will be demonstrated 

in detail in Chapter 5. We generate a pairwise distance matrix containing the JSD 

between any two individuals. This matrix is input into the hierarchical clustering 

algorithm to group people sharing similar activity patterns. 

 

3.4 THE NETWORK PARADIGM 

The previous section described a Cartesian version of the methodological framework, in 

which all spatial distances are based on Euclidean measurements. This Euclidean 

paradigm is not sufficient for the completion of Solution 5 in section 3.1 because the 

Cartesian space misrepresents the true topological structure of city streets and the actual 

route of people moving in the cities. Countering the noted weaknesses of the methods 

in the Euclidean paradigm, specific focus will rest upon improving the framework’s 

adaptation to the analysis in urban networks. To this end, we propose a network 

paradigm with four network-friendly modules. The new work flow of the network 

paradigm is shown in Figure 3.3. 
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Figure 3.3 Work flow of the network paradigm 

 

3.4.1 Module I: Pre-processing for network-based movement analysis 

The pre-processing module in the network paradigm serves the purpose as Module I in 

the Euclidean paradigm. The trip segmentation and data cleaning process use the same 

simple rule-based methods as in Module I in the Euclidean paradigm. The difference is 

that a map-matching stage is added before all analysis to snap the sequences of points 

in individual trips onto the most probable street segments passed through by the person, 

so that the raw movement trajectories can be transformed into the routes of trips. To 

adapt the entire framework to the analysis of movement in the streets, all space and 

movement related methods and operations are based afterwards on those generated by 

the map-matching process in this module. We apply Lou et al.’s (2009) ST-matching 

algorithm as the map-matching algorithm because of its great performance on 

trajectories of low sampling rate.  

The kernel-based temporal scanning window is also used in the module for stay point 

identification. The improvement we make in this module is that the bandwidth of the 

spatial kernel for stop identification is measured by the network distance alone, the 

routes of the individuals turning the method into a network-based kernel density 

calculation. Points on the road sections with high kernel densities are labelled as map-

matched stay points. Like the Module I in the Euclidean paradigm, this stay point 

identification method is robust to sporadic errors and short-term signal losses. 

 

3.4.2 Module II: ST-LOI detection 

We ameliorate the ST-DBSCAN by replacing the Euclidean spatial metrics with network 

distance for the detection of ST-ROIs in the street networks. The ameliorated variation 

optimises the spatial query technique to mitigate the increase of computation burden 

brought by network distance calculation. We call this new variation ST-network-

DBSCAN and apply it on the map-matched stay points. Unlike the Euclidean paradigm, 

dense space-time point aggregations detected by ST-network-DBSCAN are all located 
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on the road segments’ line structure. We therefore call the ROIs detected in the network 

paradigm Spatial-Temporal Lines of Interests (ST-LOI) to distinguish them from ST-

ROIs detected in the Euclidean paradigm. To better explain and showcase the results of 

ST-network-DBSCAN, we propose a 3D wall-map method to visualise network-based 

data in space and time in a joint effort. 

 

3.4.3 Module III: Semantic enrichment of ST-LOIs 

To associate the POI information with the streets covered by ST-LOIs for semantic 

enrichment in street networks, each POI is snapped to the nearest segment or the 

segment sharing the POI’s registered street address. Opening hours of POIs are also 

counted in to measure their semantic contribution to the ST-LOIs in TF-IDF. 

In Chapter 7, the network paradigm is tested with a much bigger dataset in a larger study 

area and the TF-IDF is replaced by an LDA algorithm to achieve a better semantic 

enrichment outcome. The fundamental difference between these two methods is that 

TF-IDF is an algorithm based on term frequency, whereas LDA is based on probabilities. 

Moreover, TF-IDF generate semantic ROIs by reweighting the influence of existing 

semantic categories, whereas the LDA can generate a list of “top POIs” or “dominant 

POIs” of a group of interrelated POI types for the user to empirically summarise the 

meaning of the generated semantic category. The performances of TF-IDF and LDA are 

compared in Chapter 8. 

 

3.4.4 Module IV: Aggregative analysis of the semantic profiles 

ST-LOIs are transformed into semantic LOIs after Module III. People’s dwelling time 

allocation in ST-LOIs are also transformed into their semantic profiles. This module 

takes the semantic profiles as input and performs the same hierarchical clustering 

procedure as does Module IV of the Euclidean paradigm. 

 

3.5 ADDRESSING RESEARCH AIM AND OBJECTIVES 

This chapter has outlined the methodological framework that will be elaborated upon 

during the next three chapters of this thesis, moving towards the overall aim of 

advancing the research agenda with respect to aggregate urban human activity patterns 

in a quantified manner.  

In building towards this framework, it has become clear that although the review of 

literature provides some guidance with which to proceed, a great deal of work is required 
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for its completion. The limitations of conventional methods in the literature review 

chapter are summarised into five problems. For revolving these problems, our 

methodological framework has been divided into two paradigms, each of which consists 

of four modules. Modules I, II, III and IV in the Euclidean paradigm respectively achieve 

Solutions 1 to 4 for the first four problems in a Cartesian representation of space, 

whereas the Network paradigm provides Solution 5 for the last problem by bringing the 

scale of space-time analysing methods of the framework onto the streets.  

In constructing the framework modules outlined in this chapter, the aims and objectives 

highlighted in Chapter 1 will be accomplished. At this moment, we have achived 

Objective 1 (Chpater 2) and Objective 2 (Chapter 3). Chapters 5-7 will address Objective 

3. The validation of methods and the comparison between two paradigms and 

conventional methods will be specifically summarised in Chapter 8 to address Objective 

4. The final outcomes of this research will be reviewed in the conclusion chapter 

(Chapter 9). 
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4 KNOWING ABOUT THE DATA1 

The success of a data driven approach for activity pattern study depends heavily on the 

characteristics of the datasets. This chapter describes all the datasets we used as inputs 

in the framework. As highlighted in Chapter 1, our goal is to profile and aggregate 

people’s activity patterns by jointly considering the three aspects of people’s urban 

activities (i.e. individual space-time mobility, urban spatial structure, and the semantic 

meaning of places) and their changes in time. Each of the aspects can represented by a 

corresponding input dataset and used in the corresponding modules as demonstrated 

in Table 3.1. Three datasets therefore participate in our case studies and experiments. 

Among them, the GPS movement trajectories of London police officers are used as the 

space-time mobility dataset of people; the ITN (Integrated Transport Network) layer of 

London is used to represent the city’s street network structure; and the Ordnance Survey 

(OS) POI dataset contains the semantic meaning of buildings in the city. These three 

datasets as well as the case study area in which they are collected are described in 

sections 4.1 and 4.2. Section 4.3 is a brief exploration of the patterns in the data. The 

data’s characteristics and indications to the method options in the framework are 

summarised at the end of this chapter. 

 

4.1 CASE STUDY AREA 

This study takes place in London, UK. Greater London is made up of 32 boroughs (local 

authority districts), each of which is assigned a Borough Operational Command Unit 

(BOCU) of the Metropolitan Police. All BOCUs have police officers (regular and specials) 

who patrol and respond to emergencies. We specifically focus our study on the police 

activity of the 12 BOCUs corresponding to the 12 inner London boroughs (shown in 

Figure 4.1), statutorily defined by chapter 33 of the London Government Act 1963 (UK 

legislation, 1963), namely Camden, Greenwich, Hackney, Hammersmith and Fulham, 

Islington, Kensington and Chelsea, Lambeth, Lewisham, Southwark, Tower Hamlets, 

and Wandsworth and Westminster. Inner London is officially the wealthiest area in 

Europe according to the 2010 report of regional GDP per capita in the EU (European 

Commission, 2010). Its population density is more than double that of Outer London. 

The City of London, located in the centre of the map in Figure 4.1, is not included in the 

study area of this thesis because the law enforcement in this area is not administrated 

by the Metropolitan Police. 

 

                                                             
1 Part of this chapter was presented in: Shen, J. and Cheng, T., 2014. Group Behaviour 

Analysis of London Foot Patrol Police. 23rd GIS Research UK, Leeds, UK. 
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Figure 4.1 The study area of the thesis 

 

Considering the convenience of demonstration and sensitivity of the police data, we will 

not display the results of all the 12 BOCUs. Instead, we mainly use a study area covering 

Camden, Islington and Westminster as an example to show the working mechanism and 

results of our stop identification, ST-ROI detection semantic enrichment and activity 

profile aggregation. These three BOCUs are chosen because they cover most of central 

London and they are the boroughs with the busiest urban activities. However, some of 

the results of the experiment in all of the 12 Inner London boroughs will be used in 

Chapters 7 and 8 for validation and comparison purposes. 

 

4.2 DATASETS 

4.2.1 Movement data 

Human movement data is first and foremost a dataset to be processed by the framework. 

It contains the spatial locations as well as the time stamps of locations of the moving 

individual and represents one aspect of individuals’ activities.  

In our case study, we use the GPS data collected by the newly upgraded Automatic 

Personnel Location System (APLS) of the London Metropolitan Police. Two periods in 

the APLS dataset are specifically selected as our case studies. One of the periods is in 

Febuary 2012 containing the movements in only one borough. It was used in the early 

stage study of the research in this thesis for initial testing of the developed alrogithm. 

The other period of the APLS dataset is collected in August 2015. This dataset contains 
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police activities of all boroughs in London and was used for the full-fledged 

implementation and experiment of the Euclidean paradigm and the network paradigm. 

The terminals of the APLS are integrated into the portable radio sets of every police 

officer and stay connected as long as the officer is on duty outdoors, especially on 

missions and patrols and emergency responses. There were 17,983 officers working in 

the 32 BOCUs by the end of February 2015 according to the administrative report of the 

Metropolitan police service (Metropolitan Police, 2015). When working normally, the 

device generates GPS location records at a five-minute sampling rate. When the radio is 

powered off or blocked for some reason, the logging will be temporarily stopped. Under 

emergency situations, the location can be immediately updated when the officer pushes 

the emergency button on the radio set. Just like other equivalent location information 

systems, the APLS is originally designed for monitoring and dispatch applications in the 

policing operations. Operators and senior officers in an area control centre are able to 

see the latest updated location of every unit (including personnel and vehicles) and their 

working status on a base map. With this system, a dispatch operator is able to see who 

is the nearest officer to an incident or emergency call and whether he/she is available 

for mission dispatch. It should be noted that as the system was kept running for the past 

years, a huge amount of movement data was stored and became a valuable resource to 

analyse the activity pattern of officers and to evaluate their behaviours.  

As recommended by Transport for London (TFL) (2010), London’s public transportation 

authority, the preferred walking speed is 1.33 m/s in London’s urban area. According to 

our calculation, the average length of street segments in inner London ranges from zero 

to 130m across different boroughs. A patrol officer walking continuously at this speed 

can move 400m in-between two updates of APLS. This distance is three times the 

average length of segments in London. Lou et al. (2009) experimented their method with 

data of vehicles travelling at 40km/h with a 2min GPS sampling rate (equivalent to 1333m 

between contiguous records). Bolbol et al. (2012) experimented their method with data 

of vehicles travelling at 18.65m/s with a 1min GPS sampling rate (equivalent to 818m 

between contiguous records). Comparison to data used by other researchers suggests 

that the APLS data is a typical low sampling rate but is an acceptable dataset for 

analysing movements that consist mainly of pedestrian trajectories. The other indicator 

of quality for movement of a dataset is the level of positioning errors. EPE (estimated 

positional error) is most commonly used indicator for positioning error. It is estimated 

(not measured) to predict the accuracy of GPS data by a confidence level according to 

the the navigation message of signal quality. The EPE formulas are the proprietary of the 

GPS receiver producers, and are not publically released. However, the confidence level 

are specified for each product. For example, a 5m EPE means that we can have a 95% 

confidence that the true location of the GPS device is within 5m of the coordinates 
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reported by the device in the current update. The 95%-confidence EPE information of 

APLS is contained in the movement dataset (see Appendix A). The EPE distribution of 

APLS complies to a slightly skewed normal distribution (Figure 4.2)  N(20, σ2), where 

σ = 8. 

 

 

Figure 4.2 APLS’s EPE (estimated positional error) distribution (London, UK, August 

2015) 

 

The movement dataset we used in section 4.3, as well as in Chapters 5 and 6, is collected 

only in Camden in February 2012. We choose this special period because there was a 

major security incident in February and the framework was able to automatically detect 

and generalise the reaction pattern of the police officers without a priori knowledge. The 

extended case study in the framework is tested and demonstrated based on its 

performance on the movement dataset of 12 inner London boroughs in August 2015. This 

allow us to show the framework’s ability to deal with scaled-up datasets and guarantee 

better performance in Modules III and IV (i.e. semantic enrichment and profiling). 

Besides location and time stamps, the dataset also contains multiple columns including 

call sign, status and work type. The explanation of these columns is shown in Table 4.1. 

A call sign is an identification number for each officer. A given call sign can be used only 

by one officer and it cannot be changed until he/she leaves his/her present unit. Thus, 

it can be assumed that one call sign uniquely represents one police officer. The status 

records the current mission and availability of dispatch of an officer and needs to be 

manually updated by the officers through their portable terminals. Work type is the role 

of an officer. There are eight common types of officer. Each type of officer has their own 

focus of work, although different officer types may sometimes share similar missions. 

An anonymised example of an officer’s trip logged by the APLS can be found in Appendix 
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A. The homogeneity of professional backgound and diversity of assignment of 

responsibility provided us with a favourable dataset for behaviour study of people 

working in the same urban area. Methodologies developed from this movement dataset 

can be expected to work with similar data of individual movements of similar 

professional background. 

 

Table 4.1 Non-spatio-temporal information contained in the APLS dataset 

Column 

names 

Call sign Status Work type 

Explanation 

and Examples 

A serial 

identification 

number of 

each officer 

• On Patrol 

• Committed 

• Assigned to a 

Vehicle 

• Off Duty 

• On Watch 

• Deployable 

• Limited 

Availability 

• Rest/Refreshments 

• Foot Patrol Officer 

• Community Support 

Officer 

• Senior Officer 

• Special Constable 

• Foot Patrol – Plain Clothes 

• BOCU Management 

Officer 

• Detective Constable 

• Detective Sergeant 

 

 

4.2.2 POI data 

We acquire our POI data by combining the advantages of two POI data sources: 

Ordnance Survey POI dataset and Google Places dataset.  

The major advantage of the Ordnance Survey POI dataset is that its function 

classification is very well-organised and includes many detailed sub-categories of POIs. 

The official Ordnance Survey POI classification scheme has a hierarchical structure of 

three levels, with nine major categories as the topmost level and 52 sub-categories that 

can be further broken down into more than 600 detailed classes. On the contrary, 

Google Places POIs can only be divided into 95 classes without any hierarchical 

summaries. Another advantage of the Ordnance Survey POIs is that Ordnance Survey 

customers can either directly adopt the official classification scheme defined by the 

Ordnance Survey or make changes according to their own research purpose. 

Customisation of researcher’s own classification scheme by subsetting or merging POIs 

of different categories or sub-categories is encouraged (Ordnance Survey, 2016). We 

therefore made slight changes to the official classification scheme. By separating the 
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original “health and education” category into two independent categories and moving 

all “government and organisations” POIs out of “public infrastructure” to become a 

major category by themselves, a new 11-category classification scheme that fits our 

research purpose was generated (Table 4.2). Hence, we use the spatial information of 

Ordnance Survey POIs and a customised functional classification scheme to better 

preserve the semantic meanings of these POIs. 

 

Table 4.2 The reclassified POI categories based on the Ordnance Survey POI 

classification scheme 

Customised Classification Scheme 

 01 Accommodation, eating and drinking  

01  Accommodation  

02  Eating and drinking  

 

 02 Commercial services  

03  Construction services  

04  Consultancies  

07  Contract services  

05  Employment and career agencies  

06  Engineering services  

60  Hire services  

08  IT, advertising, marketing and media services  

09  Legal and financial  

10  Personal, consumer and other services  

11  Property and development services  

12  Recycling services  

13  Repair and servicing  

14  Research and design  

15  Transport, storage and delivery  

 

 03 Attractions  

58  Bodies of water  

16  Botanical and zoological  

17  Historical and cultural  

19  Landscape features  

18  Recreational  

20  Tourism  

 

 06 Public infrastructures  

34  Infrastructure and facilities  

 

 07 Manufacturing and production  

37  Consumer products  

38  Extractive industries  

39  Farming  

40  Foodstuffs  

41  Industrial features  

42  Industrial products  

 

 08 Retail  

46  Clothing and accessories  

47  Food, drink and multi-item retail  

48  Household, office, leisure and garden  

49  Motoring  

 

 09 Transport  

53  Air  

59  Bus transport  

57  Public transport, stations and infrastructure  

54  Road and rail  

55  Walking  

56  Water  

 

 10 Education 

27  Education support services  

31  Primary, secondary and tertiary education  
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 04 Sport and entertainment  

22  Gambling  

23  Outdoor pursuits  

21  Sport and entertainment support services  

24  Sports complex, gym 

25  Venues, stage and screen 

 

 05 Education and health  

26  Animal welfare  

28  Health practitioners and establishments  

29  Health support services  

32  Recreational and vocational education  

 

 11 Government and organisations  

33  Central and local Government 

 

Annotation: 

 

 XX Major category code 

xx Sub-category code 

 

The number of different categories of POIs is counted to provide a general idea of the 

nature of the distribution of POIs in inner London. Figure 4.3 shows that POIs of 

commercial service, together with retail and infrastructure, accounted for a lion’s share 

of total POIs, which is a common phenomenon in a metropolis like London. To use this 

unbalanced dataset for semantic enrichment, the weight of significance or semantic 

contribution of different POI categories will need to be quantified and reweighted. 

On the other hand, as summarised in the literature review chapter, conventional 

semantic enrichment methods see the functional topic as a constant attribute of a place 

that does not change with time, which often leads to the misrepresentation of the place’s 

semantic meaning. To avoid this misrepresentation, the opening/available hours of the 

POIs should be considered in the semantic enrichment module. Unfortunately, opening 

hours information is not collected into the Ordnance Survey POI dataset and my other 

conventional POI datasets. This disadvantage can be overcome by merging the Google 

Places dataset with the Ordnance Survey dataset, because POIs collected by Google 

contain very precise details of their opening hours. 
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Figure 4.3 The POI number of each major category in the study area 

 

The process of merging Ordnance Survey POIs and Google POIs is accomplished by a 

python-based web crawler programme that we developed. For every Ordnance Survey 

POI in the study area, the web crawler makes a spatial query through Google Places API 

to find the same POI in Google. If the Ordnance Survey POI’s name matches with the 

same POI in the Google Places dataset, the opening hours in Google will be passed on 

to the Ordnance Survey POI. 11% OS POIs do not have any matches in the Google places 

dataset. Moreover, 16% of the matched POIs did not include information of their 

opening hours. For these two types of POIs with incomplete imformation,  

hypothetical opening hours are attached to them to complement the temporal 

information of POIs and mitigate the bias caused by the imcomplete dataset. The 

hypothetical opening hours of each POI are determined according to the most popular 

opening and closing times of other POIs in its sub-category. For example, if a 

convenience store did not provide its opening hours in Google places and most of the 

other convenience stores open from 6:00 to 20:00, this convenience store with 

incomplete information will be estimated to be open from 6:00 to 20:00. 

By merging information of OS POIs with temporal information in Google places, we can 

take advantage of both datasets to support our space-time semantic enrichment module. 

An example of merged POI data that include both spatial and temporal information can 

be seen in Appendix B. The category of each POI in this dataset is represented by a 4-

digit serial code that shows the major category information with the first two digits and 

the sub-category information with the two last digits. For example, a primary school’s 

category code is 1031 according to Table 4.2, and it falls in the major category of 

“Education”. 
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4.2.3 Street network data 

We use the Ordnance Survey Integrated Transport Network (ITN) urban theme layer 

dataset (Ordnance Survey, 2015) as the representation of London street networks. This 

dataset is a newly upgraded version of the conventional ITN originally designed for 

pedestrian and cyclist navigation. It extends the functionality of the normal ITN by 

joining up additional and more detailed local segments, including man-made footpaths, 

subways, steps and footbridges in a structured edge-and-node network in all urban areas. 

This enables us to match walking trajectories with minor streets in the map-matching 

process. The topological structure of the ITN network is composed of street segments 

(edges) and their intersections (nodes). A edge is a line or curve segment connecting 

two nodes at its ends. ITN data contains the ID and location information of each node 

and the length, connectivity and speed limit of each segment. A street contains a 

sequence of edges, and the edges are given the name and address of the street. The 

simple ITN network structure in Figure 4.4 shows the relationship between nodes and 

edges. 

 

 

Figure 4.4 An example of ITN network structure 

 

4.3 EXPLORING BASIC PATTERNS OF THE DATA 

4.3.1 Spatial ROIs 

To acquire some preliminary knowledge about the police movement in inner London, 

we apply conventional and statistical methods in this section to explore the basic space-

time pattern in the data. We firstly explored the spatial ROIs for police activities by 
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applying a simple threshold-base stop identification proposed by Schönfelder et al. 

(2006) and Tsui and Shalaby (2006) on the police movement in Camden, February 2012. 

Euclidean distance is used as the spatial distance expression and points with speeds of 

less than 0.2 m/s for at least 10 minutes are identified as stay points.  

 

 

Figure 4.5 Average Euclidean speed in move episodes of APLS 

 

According to this speed threshold, the police officers spend 50.9% of their time stopping 

at certain locations (i.e. stop episodes) in the city and 49.1% of their time moving around 

(i.e. move episodes). In the move episodes, the officers have an average moving speed of 

1.874 m/s. Considering this speed is calculated with Euclidean distance and the actual 

distance covered by the trip from one place to another in the street network is always 

longer than the straight line Euclidean distance, the actual average moving speed of 

officers is slightly higher than 1.874 m/s. This figure is a little bit higher than a preferred 

walking speed suggested by TFL (2010), because in very rare cases officers catch a bus 

for travelling and watch the space from within the vehicle or go in a police car for 

emergency responses and travel as fast as 30 m/s during their patrols. 

OPTICS, a variation of basic DBSCAN that does not require predefined parametres, is 

then used to cluster these stay points in space. Unlike DBSCAN, the OPTICS algorithm 

linearly orders points of the movement dataset so that points which are spatially closest 

to each other become neighbors in the ordering. The distance that represents the 

density needed to be accepted for a cluster in order to have two adjacent points grouped 

into the same cluster is stored for each point. This process is inspired by the hierarchical 

clustering method and its results can be represented as a reachability plot shown in 

Figure 4.6. This reachability plot (a special kind of dendrogram) shows the ordering of 

the points as processed by OPTICS on the x-axis and the reachability distance on the y-

axis. Since points belonging to a dense cluster have a low reachability distance to their 

nearest neighbor, the clusters show up as valleys in the reachability plot. The deeper the 
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valley, the denser the cluster. In this way, the hierarchical structure of the clusters can 

be obtained easily. Visual inspection is needed to extract clusters from this plot, which 

is done manually by selecting a range on the x-axis after, by selecting a threshold on the 

y-axis. In Figure4.X the points identified as noises are coloured black and the points in 

ROIs are in other colours. As a result, 14 spatial ROIs (Figure 4.7) are discovered by this 

conventional method. 

 

 

Figure 4.6 reachability plot showing the OPTICS clustering results 

 

 

Figure 4.7 ROIs detected by conventional OPTICS in Camden APLS, February 2012 

 

From the conventional result, we observed aggregations of stay behaviours near police 

stations. This phenomenon is a common reflection of police daily routines and office 

time and therefore provides little information. To discover more semantically significant 

ROIs other than police officer activities, all GPS records within a 150 m radius of police 
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stations are removed before the ROI detection module in our framework in the following 

chapters. 

 

4.3.2 Statistical patterns of people’s visits to ROIs 

Because of the variation in police officers’ person preferences and work types, different 

patterns can be found in the officers’ movements and stops. Figure 4.8 shows the raw 

trajectories of two officers’ daily trips in Camden BOCU in February 2012. The 

trajectories of the two officers are given different colours and each continuous polyline 

represents a trip. The officers’ call signs have been anonymised as “102PO” and “619PO”, 

from which it can be seen that different officers often visit different places at different 

times of the day, although they sometimes visit the same areas. 

 

 

Figure 4.8 Visualisation of two officers’ (102PO and 619PO) raw movement trajectories 

(as polylines) in a space-time cube 

 

Figure 4.9 shows the total number of officers in patrol in every hour of February 2012. 

This visualisation is extracted from the APLS data. Officers keeping active updates in 

APLS within certain periods are considered as being on duty in such periods. The x-axis 

in the heat map represents the 24 hours of a day and the y-axis represents the 28 days in 

February 2012. We use the number of active officers as an indication of intensity of 

activities. The visualisation shows clear peaks of active intensity in the small hours at 

weekends and afternoons of weekdays. Additionally, there is a gap around 7:00 am to 

9:00 am every day that shows scarce patrol activities. This period marks the officers 

changing shifts and starting the work of another working day. 
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Figure 4.9 Heat map of hourly intensity of activities in Camden police patrol 

 

Figure 4.10 demonstrates a temporal comparison of the two anonymous officers’ 

activities in February 2012. The heat maps show both daily and weekly periodic patterns. 

It can be seen that “102PO” had far fewer days on duty in the study period, while “619PO” 

was active in most of the days. It also shows that “102PO” only worked in the afternoon, 

whereas “619PO” was active in the mornings of weekends. 

 

 

Figure 4.10 Heat map showing individual active intensity of two officers 

 

Apart from the pattern differences in working hours, officers also paid attention to 

different places. Figure 4.11 shows the allocation of two officers’ dwelling time in 

different ROIs over the month. Officer “102PO” always stays in ROI No.3 in working time, 

while officer “619PO” kept visiting multiple ROIs. This exploratory analysis shows a clear 

spatial aggregation of activities in ROIs and temporal patterns of individual officers’ 
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movements. To deepen the understanding of the urban people’s activity patterns, a more 

advanced framework that incorporates the analyses into temporal, spatial and semantic 

aspects of human dynamics is necessary. 

 

 

Figure 4.11 Heat map of dwelling time of officers "102PO" and "619PO" 

in different ROIs in February 2012 
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5 THE EUCLIDEAN PARADIGM2,3 

5.1 INTRODUCTION 

As first described in Chapter 3, our methodological framework consists of four modules 

to turn raw movement trajectories in the city into patterned activity groups in four steps. 

The modules are: space-time stay point identification, ST-ROI detection, semantic 

enrichment and aggregation of semantic profiles. This chapter describes in detail the 

methods used in the Euclidean paradigm of our frameworks.  

In the Euclidean paradigm, all spatial objects are assumed to be in Cartesian space and 

all space related algorithms use Euclidean distance in calculations. In the studies of 

individual activities, the basic assumption is that people stop at a certain place to 

undertake various activities and then leave for the next place. Therefore, the stop 

episodes in an individual trip trajectory are of greater interest than the move episodes 

for the detection of interesting places (Palma et al., 2009). The first step of the paradigm 

therefore is a stay point identification module featured by a kernel-based temporal 

scanning window that we defined. The outputs of Module I, i.e. the stay points, are used 

as inputs to the ST-ROI detection module to find regions that attract people’s high 

volume stopping behaviours in space and time. By doing this, the trajectories of an 

individual are simplified as a sequence of visited ST-ROIs by the person and information 

of the person’s arrival, leaving and dwelling time in each ST-ROI during the trip. The 

(non-semantic) space-time profile (i.e. individual time budget allocation of ST-ROIs) of 

every individual can also be generalised after Module II. Before going on to describe 

Modules III and IV, the (non-semantic) space-time profiles are hierarchically clustered 

as a preliminary study and the intermediate outcomes are discussed to show the 

necessity of semantic enrichment in the following modules. 

After the ST-ROIs are detected and the individual space-time profiles are generated, the 

semantic information of the POIs opening in the ST-ROIs are used to enrich the 

semantic meaning of the ST-ROIs in Module III. Specifically, the enrichment method 

uses the opening hours of the POIs to find the differences of semantic meaning of the 

same spatial region rather than look at the place’s semantic meaning as a constant 

attribute. In Module IV, we use the semantically enriched ST-ROIs to turn the individual 

space-time profiles into semantic profiles for depicting an individual’s activity pattern 

                                                             
2 Part of this chapter was presented in: Shen, J. and Cheng, T., 2016. A Framework for 
Identifying Activity Groups from Individual Space-time Profiles. International Journal of 
Geographical Information Science, 30 (9), 1785-1805. 
3 Part of this chapter was presented in: Shen, J. and Cheng, T., 2015. Clustering Analysis 
of London Police Foot Patrol Behaviour from Raw Trajectories. Proceedings of 
GeoComputation 2015. 
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and use JSD (Jensen–Shannon Divergence) to define the dissimilarity of profiles for 

aggregative analysis of the activity patterns. The detailed description of methods in 

sections 5.2 to 5.5 are organised according to the four modules mentioned above. 

Together, they perform as four steps to transform raw trajectories into high level 

aggregation of the activity patterns.  

We firstly apply the entire framework onto the 100 police officers’ movement data in one 

borough as the test case study to illustrate the detailed algorithms and outcomes of every 

module. After the outcomes of the single-borough test are discussed, an extended case 

study of police movements in the 12 (three) boroughs (Camden, Islington and 

Westminster) is designed to test the fully-fledged Euclidean paradigm. Compared with 

the single-borough case study in section 5.6, the extended case study show the 

framework’s potential to be scaled up for the analysis of larger datasets in larger areas 

and the advantages of semantic profiles over (non-semantic) space-time profiles. 

Finally, we discuss the aggregation results and their accuracies at the end of this chapter, 

highlighting the areas that need to be addressed in the following chapter. These areas 

are then addressed by the network paradigm described in Chapter 6. 

 

5.2 MODULE I: PRE-PROCESSING 

The pre-processing module includes two tasks: trip-segregation and stay point 

identification. 

 

5.2.1 Trip segregation 

As explained in Chapter 3, trip segregation is a relatively simple task. We use a rule-

based method here to segregate the sequence of individual GPS records into multiple 

continuous trips. In APLS and many other location logging systems, a person’s 

movement trajectories are collected by a GPS device, and his/her location and status 

information is updated and logged at a constant and regular sampling rate (every 5 

minutes for APLS). Therefore, a long-time switch-off of the device can be regarded as 

the end of a trip and a later restart of continuous logging marks the beginning of a new 

trip. A travelling person may sometimes go into underground space or experience a poor 

GPS signal for many reasons; however, as long as the time of signal loss is not 

unreasonably long, the sequential records before and after the temporary signal loss will 

still be counted as one trip. Here we set the inactive time threshold to be one hour.  
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Figure 5.1 Trip segmentation example of one person’s sequential location updates 

 

An example of trip segmentation is shown in Figure 5.1. When the continuous location 

update of an officer pauses for a period shorter than one hour, the updates afterwards 

will still be regarded as records within the current trip. Such an update pausing period 

will therefore be considered as a stop episode within the trip and the last update before 

the pause will be considered as a stay point. If the update was missing for longer than 

one hour, the last point before the update stops will be marked as the end of a trip. 

When an police officer is at work, his location and communication device should always 

be on. According to the work of Cich et al. (2016), there are many “junk parts” of missing 

information in personal GPS records. The one-hour threshold is set to divided all the 

GPS records of one individual officer into multiple trips so that the missing location 

updates in the gaps between different trips cannot interrupt the correct calculation of 

dwelling time and the information of every trip is complete. 

 

5.2.2 Stay point identification 

Identifying stops in the trajectories is the first step in location-based activity studies 

(Alvares et al., 2007; Zheng et al., 2009). In this module, we aim to detect the stay point 

within every trip segmented by the previous module. A stay point, or stop episode, 

occurs when a person stops moving, stays stationary or moves slowly around a small 

area when the location updates continue in a trip. We have critically reviewed in Chapter 

2 the existing stay point identification methods. The conventional (speed) threshold-

based algorithm cannot detect “slowly-walk-around” stay behaviours or a complete stop 

with spatial noise (i.e. large positioning errors), while the conventional density-based 

methods ignore time and sometimes misidentify a place people visited at different times 

as a stop. However, erroneous locations cannot be avoided in GPS devices due to 

systematic errors and the effect of urban canyons. These errors can vary from some 1 m 

to 46 m in our case stay dataset. Because of these errors and the slight movements of a 

person’s body, the updated coordinates can differ every time, even when the person 

holding the device completely stops moving his/her position. 
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Chapter 2 has described a variety of developed approaches for stop identification in a 

GPS track. Some of these methods are based on point density calculations, while the 

others set up thresholds of speed or distance between updates. Although most of the 

developed algorithms are simple and low cost in terms of computation, they cannot 

efficiently identify all stops, especially in an urban movement dataset with many 

positioning errors. They also fail to account for the structure of complex street networks. 

Another major limitation of density-based stop identification methods is relying solely 

on spatial clustering while ignoring the spatiotemporal nature of people’s movements, 

which in turn leads to miscalculation of dwelling time and ignoring shorter stays.  

 

Figure 5.2 p1 and p are in the temporal scanning window while p2 is not 

 

Siła-Nowicka et al. (2016) introduced a temporal sliding window to kernel density based 

approach to integrate time information and spatial point density to overcome the above 

mentioned defects in stop identification. However, their method is only suitable for 

movement data with constant sampling rates as reviewed in Chapter 2. This feature 

prevented it from its implementation to trajectory records that often pauses or have 

changing sampling rates such as the APLS dataset. The APLS’s location sampling and 

update can be done at any time on special demand of officers, which often means 

disruptions of the constant sampling process. In contrast to previous research, we 

attempt to apply a kernel-based temporal scanning window (KTSW) to make use of both 

spatial and temporal information of people’s movements so that the accuracy of stop 

identification can be improved even in a movement dataset with changing sampling rate. 

Our approach is to use a 30-minute window to scan through every trip trajectory of 

people in time and undertake spatial kernel density estimations on the points within the 

temporal window. The size of the temporal window affects the performance of stop 

identification. If the size of the temporal window is too big, the sliding window will lose 
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its meaning of existence and misidentify a stop with another stop in the returning trip 

(see Trip 1 in Figure 2.5). If the window size is too small, the window will contain not 

enough of points for stop identification and misidentify a single stop episode with 

multiple stops or a move episode in case of large positioning errors (see Trip 2 in Figure 

2.5). In our study, the size of the window is set as 30 minutes (i.e. one half of the trip 

segregation threshold), so that the window is smaller than the gaps between trips and 

can still contain 6 location points (if the device is working properly) for stop 

identification.  

KDE is used to interpolate the points’ adjacency to make a smooth and continuous value 

surface. We call the KDE value of every point on the smooth surface “stay value”. This 

process is demonstrated in Figure 5.2, where the stay value of p is calculated. p2 is not 

included in the calculation of the stay value because it is not in the temporal window 

ranging from 05:10 to 05:40, although it falls in the spatial adjacency of p. 

Because the APLS’s EPE shows a skewed normal distribution in Chapter 4 (Figure 4.2), 

we use a Gaussian kernel (Equation 5.1) with a spatial searching bandwidth B of 66 m 

so that we can have a 99% confidence that the point with error is within the searching 

bandwidth of its actual location. 

            k(D) =
1

√2π
exp [−

1

2
(

D

B
)2]                 Equation 5.1 

where D is the Euclidean distance between an arbitrary point in the temporal window 

and the kernel centre. 

Given the Gaussian kernel function k, and time span Twindow of the scanning window, 

the stay value (i.e. density estimate) of point p  within a group of points 

p1, p2, p3 … … pN in the temporal window can be expressed as Equation 5.2. 

   StayValuek(p) =
1

N
∑ k(Dp,pi

),   t(pi)
N
i=1 ∈ Twindow    Equation 5.2 

where t(pi) is the time stamp of pi and Dp,pi
 is the Euclidean distance from p to pi. 

When the temporal window slides through the point and the density estimated stay 

value at this point is larger than the threshold θStayValue that we define, the point is 

marked as a stay point in the trip, as suggested in Figure 5.3. The erroneous noises that 

fall in the same high stay value area and the same scanning window as the detected stay 

points are also marked as stay points. It is noteworthy that the point with error is inside 
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the searching bandwidth with a 99% confidence. This means that StayValuek(p) is a 

approximate value. 

 

Figure 5.3 A kernel-based temporal window scanning through a trajectory 

 

In the previous chapter, the recommended speed threshold for a threshold-based stop 

identification method is 0.2 m/s, which is equal to a 60 m displacement in 5 minutes. 

We set our stay value threshold θStayValue =  
k(0)+5∗k(60)

6
 =  0.1854  to make an 

equivalent stop identifying rule, so that the accuracy of our method can be compared 

with conventional methods in section 5.6. The denominator is 6θStayValue because there 

are normally 6 position update points of a trajectory in each 30min time window. Once 

all stay points are identified, we can then enter the next module to detect significant 

aggregation of these stay points in space and time. 

 

5.3 MODULE II: ST-ROI DETECTION 

All conventional approaches and models reviewed in Chapter 2 hold purely spatial views 

of the ROIs (hotspot areas) and completely ignore the temporal aspect of the activities 

in the region. These approaches failed to describe most places that only attract people’s 

activities in a confined time period and places that change their functions or semantic 

meanings over time. In this module, we overcome this limitation by introducing Spatio-
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Temporal Region of Interest for describing phenomena and activities with a time-

varying view of places. 

Evolving from the definition of ROI (introduced in Chapter 2), an ST-ROI is defined as 

a region intensively visited by people in a limited time period. In other words, an ST-

ROI is a region having a dense aggregation of stay points in space and time. Every ST-

ROI has its spatial boundaries, as well as emerge and perish times describing its time 

span. 

 

5.3.1 ST-DBSCAN 

Density-based clustering algorithm and its variations are the most commonly used 

methods for ROI detection. This widespread use arises because the working mechanism 

of the density-based clustering algorithm (DBSCAN) enables it to detect point clusters 

of arbitrary shapes without specifying the number of clusters in the data a priori. It also 

has a notion of noise and is tolerant to outliers. Moreover, because the algorithm can 

work directly with a database, the clustering process can be speeded up by optimising 

the query strategy in the database (Patwary et al., 2012). However, due to the purely 

spatial view of interesting regions in previous studies, all existing density-based methods 

for ROI detection only search for stay point aggregations in space as reviewed in Chapter 

2. We therefore apply ST-DBSCAN (Birant and Kut, 2007) to detect ST-ROI and hence 

introduce a view of places with spatio-temporal ontology. 

Among the many variations of the density-based approach to cater to different research 

purposes, ST-DBSCAN is an extension particularly developed to deal with space and 

time intervals comprehensively. Besides the advantages inherited from DBSCAN, ST-

DBSCAN has features of its own to make it even more effective for detecting ST-ROIs. 

By extending the idea of traditional DBSCAN, the ST-DBSCAN not only sets up 

Maximum Reachable Distance (MRD) in space but also in time. Similar to the spatial 

search for neighbouring points in DBSCAN, a space-time searching cylinder scans 

through the adjacency of every point (Figure 5.4). Any stay point must satisfy the criteria 

of spatial maximum reachable distance (Spatial Eps) and temporal maximum reachable 

distance (Temporal Eps) simultaneously in order to be included in the spatio-temporal 

cluster. While other density-based methods can only use one MRD parameter for all 

types of variable no matter whether they share the same measurement units or not, ST-

DBSCAN enables us to set spatial and non-spatial (temporal) MRD separately according 

to the nature of the moving data on which we are working. 
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Figure 5.4 An example of ST-DBSCAN 

 

As for determining the parameters in density-based clustering, many researchers have 

optimised the parameters by tuning according to the domain knowledge and aided by 

visual representation (Cortez et al., 2014). ST-DBSCAN has 3 parameters, namely 

Spatial Eps , Temporal Eps  and MinPts (the minimum number of reachable points 

needed to form a new cluster). In a similar way, we firstly determine Spatial Eps and 

Temporal Eps according to the estimated GPS spatial error and time resolution in the 

APLS dataset. Then MinPts is defined in Equation 5.3, determined by calculating the 

neighbourhood of every point in the dataset, as proposed by Zhou et al. (2012). 

     MinPts =
1

n
∑ numpi

n
i=1                Equation 5.3 

where numpi  is the number of points in Spatial Eps  and Temporal Eps 

neighbourhood of point pi, and n is the total number of all the points. 

ST-DBSCAN is capable of clustering objects with a combination of both spatial and 

temporal measurements and detecting noise when different densities exist. These 

characteristics make ST-DBSCAN the best option to detect the location as well as the 

time span of ST-ROIs, revealing where ST-ROIs are, when they emerge and when they 

perish in a day. As far as the semantic meaning of the place is concerned, the time spans 

of ST-ROIs are of equal importance to their locations because interesting places are not 

always busy all day long and can become interesting for different reasons in different 

time periods. Therefore, it is possible for ST-DBSCAN to find places that are interesting 

for different groups at different times of the day. For instance, a district with bars and 

an underground station nearby can be busy in the morning peak because of commuters’ 

intensive visits to the underground station, and then become lively again at midnight 
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when London underground trains stop their services and bars reach their business 

climaxes when people relax. The ST-ROIs can be visualised in a space-time cube 

(Andrienko et al., 2010) as shown in Figure 5.4. 

To ensure the speed of processing of large point datasets, a kd-tree (Wald and Havran, 

2006) for space index acceleration is used in the ST-DBSCAN algorithm to optimise the 

neighbour searching strategy. 

 

5.3.2 The simplified representation of trajectories 

Knowing the ST-ROIs and the stops and moves of every individual user, we can establish 

a model in which the time and spatial aspects are considered in a joint effort, similar to 

Parent et al.’s (2013) idea of modelling human movement by aggregated trajectories 

among a set of ROIs in a city. We describe an individual's trip process by noting when 

the user visits a particular ST-ROI and how long he/she stays before leaving for another 

ST-ROI and so on. The movement description of a user can be represented by the time 

he/she arrives at an ST-ROI and then leaves for another; thus, the whole movement of 

a user in a day is simplified as a series of ST-ROIs visited. As discussed in the literature 

review, temporal information is an important aspect of activity studies. In this way, we 

can not only preserve the information of location and sequence of location visits in the 

trips as Parent et al. (2013) (and many other Bluetooth movement studies) did, but also 

add time of visit and duration of stay (i.e. dwelling time) into the simplified tracks to 

fully describe the stop episodes in trips. This improvement, although not a fundamental 

contribution in our framework, bridges the gap between sequential study and time 

allocation study of activity patterns. Figure 5.5 shows how two persons’ trajectories 

(Figure 5.5(a)) are simplified as two sequences of their respectively visited ST-ROIs 

(Figure 5.5(b)) with the time information recording when they arrive at and leave each 

ST-ROI. This simplified representation is also widely used in movement pattern studies 

(Zheng, 2011) but without taking the time span of interesting places into account. 
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Figure 5.5 The simplified representation of two example users’ movements  

(a) the trajectory of two GPS users in space-time; (b) simplified movements with 

sequence of time-stamped ST-ROIs 

 

Based on this simplified representation of individual movements, the daily behaviour 

routine of individuals in the study period can be expressed by how much time each user 

spends in different ST-ROIs. As in the example shown in Figure 5.5, A, B, C, D and E are 

the major ST-ROIs visited frequently by two users. The circular shadow of the ST-ROIs 

projected on the base map indicates their spatial boundaries. It can be noticed that B 

and E are spatially located at the same place but not at the same time; therefore, we see 

B and E as two independent ST-ROIs. In this example, user 1 keeps active from 06:00 to 

12:10 in the day. He/she spends approximately 0.5 hours, 3 hours and 2 hours in ST-ROI 

(A), ST-ROI (B) and ST-ROI (C) respectively, while user 2 spends about 1 hour, 1 hour 

and 2.5 hours of the stopping time in ST-ROI (A), ST-ROI (D) and ST-ROI (E), 

respectively, from 05:41 to 16:05. 
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One of the advantages of this model over the purely spatial models is that it considers 

not only spatial information but also temporal and sequential factors so that more 

information can be discovered. In our model, although two ST-ROIs may be in the same 

spatial location, they can exist in different time periods with different time spans and 

have a clear temporal gap in between with no activity linking these two spatio-temporal 

entities as one. Therefore, the semantic meaning of these two ST-ROIs may be different. 

Taking Figure 5.5(a) as an example, ST-ROI (B) and (E) are in the same location, but 

user 1 visits ST-ROI (B) in the morning and user 2 visits ST-ROI (E) at night. ST-ROIs (B) 

and (E) locate at the same place but the purposes of visits can still be very different 

because of the differences in time. 

 

5.3.3 Space-time profile and its similarity 

In terms of similarity of activity patterns, it is assumed that individuals usually stop at 

places for certain objectives. Different social groups may have different preferences and 

habits that may lead to dissimilarities in their movement patterns and reactions to 

certain events (Chapin, 1974). Based on the patterns in which individuals stop at a series 

of places, various similarity metrics are proposed with emphases on different features of 

movements. 

In our study, the stay durations and time budget allocations are the major concern. 

However, the information of sequences in which an individual visits different places can 

still be preserved. This is because the generated ST-ROIs include emerge and perish 

times and people can only visit an ST-ROI that exists early in the day first before visiting 

an ST-ROI that comes later. For example, a user can start his/her day in a coffee shop 

that is of great interest to lots of people in the early morning and then go to work in a 

business centre that becomes “interesting” afterwards. 

In our proposed model, the basic assumption is that people of different socioeconomic 

compositions allocate time to different places and phases of the day for different pursuits 

in their everyday affairs. Not only the places, but also the time of the activity indicates 

the behavioural preference of the individual. For example, in Figure 5.5(a), B and E are 

ST-ROIs that are geographically located in the same place, but the reason why people 

visit them can differ at different times of the day.  

With the model describing the behaviours of individuals as movements from one ST-

ROI to another, the patterns of how users spend different percentages of their time in 

each of the ST-ROIs are acquired. Just like research that uses time allocation to indicate 

personal characteristics in behavioural studies (Kölbl and Helbing, 2003), we use the 
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profiles of time allocation in ST-ROIs (Figure 5.6), called ‘space-time profiles’, as a 

measure of activity features. The question now is how to quantify the pairwise similarity 

of the movement patterns based on these space-time profiles so that they can be used 

as a defined distance metric in the following clustering analysis. To satisfy the 

requirements of clustering analysis as well as the purpose of the behaviour comparison, 

discrete Jensen-Shannon Divergence (JSD) (Lin, 1991) is used to measure the 

dissimilarity of the time distribution profiles of two users. 

 

 

Figure 5.6 Histogram showing the percentage of the time two users allocate to ST-ROIs 

 

Classic information theory concepts have the potential to be applied to new space-time 

data (Tsou, 2015). JSD, as demonstrated in Equation 5.5, is also known as the Information 

Radius. It is a popular method used in information theory and taxonomy in 

bioinformatics, measuring the dissimilarity of multiple distributions. In mathematical 

statistics, the Kullback–Leibler Divergence (KLD) (Kullback and Leibler, 1951) is a 

measure of how one probability distribution diverges from another expected probability 

distribution. In other words, it is the expectation of the logarithmic difference between 

two probability distributions. A KLD value of 0 indicates that we can expect similar, if 

not the same, behavior of two different distributions, whereas a KLD value of 1 indicates 

that the two distributions are so different that the expectation of difference approaches 

zero. JSD is an extension of the KLD, which is based on Jensen's inequality and the 

Shannon entropy. Some remarkable ameliorated properties of JSD make it especially 

suitable for our research: 

  

(1) Unlike the well-known Kullback divergences, JSD does not require the condition of 

absolute continuity of the distributions. It can be applied to discrete distributions 

just like the space-time profile shown as the percentage histogram in Figure 5.6. 

(2) Unlike many other similarity metrics used in information theory, the JSD between 

two distributions P and Q is symmetric, which means that JSD(P,Q) is equal to 

https://zh.wikipedia.org/w/index.php?title=Solomon_Kullback&action=edit&redlink=1
https://zh.wikipedia.org/w/index.php?title=Richard_Leibler&action=edit&redlink=1
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JSD(Q,P). This symmetric characteristic is similar to the distances between objects, 

which enables it to act as a distance metric in clustering analysis.  

(3) The upper bound of the JSD has been proven to be no greater than 1 (Lin, 1991). These 

bounds are crucial for the definition of similarity. 

 

The following equations show how the discrete version of the JSD is derived from the 

KLD (Equation 5.4). According to this equation, the JSD ranges between 0 and 1. The 

closer the JSD is to 1, the larger the difference between the two space-time profiles.  

    KLD(X||Y) = ∑ X(i)ln
X(i)

Y(i)i                      Equation 5.4 

where X and Y are two distributions to be compared by the KLD and X(i) is the i-th term 

in the distribution X. 

JSD(P||Q) =
1

2
KLD(P||M) +

1

2
KLD(Q||M) 

where P and Q are the two users' space-time profiles, M =
1

2
(P + Q). 

  JSD(P||Q) =
1

2
∑ P(i)ln

2∙P(i)

P(i)+Q(i)
+i

1

2
∑ Q(i)ln

2∙Q(i)

P(i)+Q(i)i      Equation 5.5 

Whenever P(i)=0, the contribution of the i-th term to JSD is interpreted as zero because 

lim
x→0

x ln(x) = 0. 

 

5.3.4 Hierarchical clustering of space-time profiles 

With the JSD-based similarity metric (Equation 5.5), a dissimilarity matrix can be 

calculated. Each element in the matrix represents the pairwise dissimilarity of two users’ 

profiles. This pairwise dissimilarity matrix can be processed by a hierarchical clustering 

algorithm for user segregation. The strength of hierarchical clustering is that any valid 

measure of distance can be used, including self-defined distance metrics. Furthermore, 

the observations themselves are not required: all that is used is a matrix of pairwise 

distances.  

 

The number of clusters to be generated can be determined by the Dunn Index (DIm) 

(Dunn, 1973) that quantifies how well the dataset is separated. As defined in Equation 

5.6, the Dunn index is the ratio of the minimal inter-cluster distance of m clusters to the 

maximal intra-cluster distance in each cluster: 

              DIm =
min

1≤i<j≤m
δ(Ci,Cj)

max
1≤k≤m

∆k
                 Equation 5.6 
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The Dunn index is also chosen as an evaluation metric to compare the hierarchical 

clustering results with other clustering methods in grouping users as shown in the 

preliminary single-borough case study (section 5.4). Grouping results can be 

demonstrated as a dendrogram (as shown in Figure 5.10) in a hierarchical structure. 

Besides histograms, the space-time profiles can also be visualised in space-time cubes as 

space-time point clusters to provide a more intuitive sense of difference (as shown in 

Figure 5.13). 

 

5.4 MODULE III: SEMANTIC ENRICHMENT OF ST-ROIS 

This module is a crucial step towards evolving Zhong’s (2015) concept of “you are where 

you go” into “the place you go (Semantic ST-ROIs), when you go and how long you stay 

is who you are” that we propose. Chapter 2 reviewed situations of how a stop is related 

to the occurrence of outdoor activities, such as a having a coffee break or shopping. 

Enriching the semantic meaning of the ST-ROI can help better answer “what the 

place/activity is about” and explain why individuals allocate their time differently among 

ST-ROIs. Moreover, more ST-ROIs will be generated if the framework is to be applied 

to a larger study area (e.g. all of London). The drastically increasing number of ST-ROIs 

means that the time allocation profile will contain many more variables than in the 

previous methodological framework, which will lead to the “curse of dimensionality” 

(Bellman, 1961) in the following clustering process. By applying the newly proposed 

method in this work, the number of dimensions of the profile can be limited to a small 

number of certain semantic categories and the problem of “curse of dimensionality” in 

large study areas can be avoided. 

The semantic meaning of an ST-ROI is described by a summary of different POI 

categories’ semantic contribution to ST-ROI. However, the quantity unbalance of POIs 

of different categories (see section 4.2) causes great bias in this description and should 

be mitigated. To achieve this, we annotate the POI semantic information to the ST-ROIs 

through the following steps:  

• Firstly, the spatial boundary of each ST-ROI is defined by a 20m buffer zone of the 

convex hull covering all the stay points in the ST-ROI. The temporal boundary is the 

time span of the ST-ROI. Together, these two boundaries define the space-time 

boundaries of ST-ROIs. 

• Secondly, the buildings and POIs that are located in the convex hull’s buffer zone 

are extracted. The overlapping duration of every extracted POI’s opening hours and 

the ST-ROI’s time span is calculated. The quantity and the overlapping duration of 
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different categories of POIs decides different POI categories’ raw semantic 

contribution to the ST-ROI. 

• Lastly, the raw semantic contributions of various POIs are reweighted by a term 

frequency–inverse document frequency (TF–IDF) algorithm to generate different 

POI’s categorical semantic contribution to the ST-ROI they are in and transform the 

ST-ROIs into semantic ST-ROIs. 

 

5.4.1 Space-time boundaries of ST-ROIs 

The ST-ROIs are essentially aggregations of stay points and can be visualised with a 3D 

point distribution map in a space-time cube. Point distribution maps represent spatial 

distribution of geo-referenced data using points as a basic graphical element (Slocum, 

2009). Every point represents a datum with geo-location information. The points can 

only show the density of an area, rather than depict the clear boundary and exact 

location of the area. We must therefore implement a method that allows us to define 

the spatial and temporal boundary of the ST-ROI before explaining the semantic 

meaning within the area.  

 

 

Figure 5.7 An ST-ROI and its space-time boundary 

 

Convex hulls are usually used to turn point-based objects into spatial areas, and the 

minimal convex hull bounding method can create a polygon area enclosing all the stay 

points of each ST-ROI, making it the most ideal way to serve this purpose (Andrew, 

1979). In this step, we used the parallel spatial retrieving method (Miller and Stout, 1988) 

to find the convex hulls that define the spatial boundaries of the ST-ROIs. To 

incorporate points with positioning errors, a 20m buffer zone is used to define the actual 
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coverage area of each ST-ROI. This buffer distance is set with the consideration that all 

the recorded GPS points have spatial errors and 20 m is the mean value of EPE in our 

APLS dataset. The time span of an ST-ROI is its temporal boundary. An example of an 

ST-ROI and its space-time boundary is showcased in Figure 5.7. 

 

5.4.2 POIs in the space-time boundaries 

A POI dataset contains the information of all the public buildings (POIs) that can be 

summarised to interpret the semantic meaning of a place in which they exist (Alvares et 

al., 2007; Alves, 2011; Braun et al., 2010). In order to understand the staying behaviour 

within each ST-ROI area, we used POI data to depict the functional images of the ST-

ROIs and enrich the semantic meaning of users’ visits to these ST-ROIs. The POI dataset 

used in the case study contains the information of a wide range of finely categorised 

infrastructures and buildings that offer different services and utilities (Ordnance Survey, 

2016). Similar to the hierarchical category structure of POI information used by Krüger 

et al. (2015) and Yan (2013), we made slight changes to the official Ordnance Survey POI 

classification scheme to make an 11-category classification scheme as shown in Table 4.2, 

and use it as our POI categories for the semantic enrichment of ST-ROIs. After the space-

time boundaries of all ST-ROIs are found, we use a spatial query to find POIs that locate 

inside the expanded convex hull of every ST-ROI (Figure 5.8). If a POI is outside the 

spatial boundaries or its opening hours do not overlap with the ST-ROI’s time span, the 

POI contributes no semantics to the meaning of the ST-ROI. 

 

 

Figure 5.8 The space-time relationship between POIs and ST-ROIs 
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We assume in our model that the longer a POI’s opening hours overlap with an ST-ROI, 

the more semantic meaning the POI will contribute to the ST-ROI. Besides, the more 

the number of POIs of the same category falling in the spatial boundary of a ST-ROI, the 

more the contribution that this category of POIs will have in the sematic meaning of the 

ST-ROI. It can be seen in Figure 5.8 that some POIs open multiple times in a day. We 

also take this situation into account and see the two periods of opening hours of a POI 

as two homogenous POIs that open at different times of the day and calculate their 

semantic contributions separately. 

 

Hence, we revise Equation 2.2 and define the raw semantic contribution w of a POI 

sub-category in a ST-ROI with Equation 5.7. 

         wi,j =
counti,j

∑ counti,j
52
i=1

∗
∑ OverLapk,j

TimeSpanj
                Equation 5.7 

where i is one of the 52 POI sub-categories, counti,j is the number of POIs of sub-

category i in ST-ROI j, k is the POIs of sub-category i and ∑ counti,j
52
i=1  is the total 

number of POIs in ST-ROI j. TimeSpanj  is the time span duration of ST-ROI j , 

∑ OverLapk,j is therefore the sum of the overlap times of all sub-category i POIs in ST-

ROI j. 

 

5.4.3 Reweighting POIs for semantic annotation of ST-ROIs 

However, quantities of different categories of POIs vary dramatically in urban space. For 

instance, a large number of iconic public telephones and 24-hour cash machines can be 

found throughout London, but they have a relatively small influence on the meaning or 

function of an area. On the contrary, if there is only one museum in the entire city, the 

influence of this museum upon the local region where it is located should be magnified 

to outrank the many telephone boxes nearby. Hence, directly using the quantity of POIs 

for semantic enrichment is not enough. The bias caused by unbalanced quantities of 

different POIs should be subdued. 

A similar case can be found in text mining studies where article words like “the” and “a” 

appear far more frequently than the truly meaningful words in most sentences. The 

significance (semantic contribution) of a given word in one sentence increases 

proportionally to the number of times this word appears in the sentence, but is offset by 

the frequency of the word in the whole context. Likewise, the more sibling POIs (i.e. 

POIs that belong to the same major category) fall into an ST-ROI’s expanded convex 

hull, the more impact they have on a place; however, the more sibling POIs exist in the 

entire district or other places, the less impact the POIs should have on the current place. 

https://en.wikipedia.org/wiki/Proportionality_(mathematics)
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In other words, POIs distributed ubiquitously are less relevant to the meaning of the 

local area.  

In information retrieval and text mining studies, Term Frequency–Inverse Document 

Frequency (TF-IDF) is designed to measure the semantic contribution (weighting factor) 

of a word to the meaning of the sentence it falls in (Salton and Buckley, 1988). TF-IDF 

can downplay the semantic contribution of a word if it appears everywhere in the entire 

article. Inspired by its function in semantic analysis of articles and documents, we 

introduce the TF–IDF method to reweight and readjust the weight of different sub-

categories of POIs to each ST-ROI so that the negative effect of dominant insignificant 

POIs can be eliminated. 

In our case of study, a double normalisation weighting scheme was chosen for term 

frequency (TF) calculation and a classic inverse document frequency (IDF) weighting 

scheme was chosen for IDF calculation, so that the original TF–IDF for text mining was 

amended to process the semantic POIs, as in Equation 5.8. All POIs in the study area are 

regarded as the corpus of an entire article in text mining. Every sub-category of POI was 

equivalent to a word in the article and the combination of the sub-categories of all POIs 

in one ST-ROI’s space-time boundary was considered to be a document sentence in the 

article. The process of semantic enrichment of ST-ROIs is equivalent to inferring the 

semantic meaning of a document sentence in text mining. When using the TF-IDF for 

this purpose, the reweighted semantic contribution of each POI sub-category i to the 

ST-ROI j is: 

      TFIDFi,j = (0.5 + 0.5
wi,j

maxi′wi′,j
) ∙ log

N

ni
            Equation 5.8 

where i is one of the 52 POI sub-categories and ni  is the number of ST-ROIs that 

contain sub-category i POIs in their expanded convex hulls. wi,j is the raw semantic 

contribution of i to ST-ROI j. maxi′wi′,j is the semantic contribution of the POI sub-

category that contribute the largest w  to ST-ROI j . 0.5 + 0.5
wi,j

maxi′wi′,j
 is called 

augmented frequency. It can prevent a bias towards longer documents (i.e. ROIs with 

more POIs inside their boundaries). N is the total number of ST-ROIs. log
N

ni
 is called 

inverse document frequency. It is a measure of how much information the POI provides, 

that is, whether the kind of POI is common or rare across all ROIs. According to 

Equation 5.8, the minimum value of TFIDF is zero and there is no upper limit for TFIDF. 
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As shown in Equation 5.9, the semantic contribution of the 52 POI sub-categories was 

weighted by TF–IDF and summed to generate the semantic contribution of the 11 major 

categories according to the major category to which they belonged. 

     SCI,j = ∑ TFIDFi,ji∈I ∑ ∑ TFIDFi,ji∈I
11
I=1⁄     Equation 5.9 

where I is one of the 11 major categories. One major category of POI’s semantic 

contribution to an ST-ROI is the normalised sum of the semantic contribution of all the 

sub-categories within a major category. 

 

5.5 MODULE IV: SEMANTIC PROFILING AND HIERARCHICAL CLUSTERING 

In module II, users’ behaviour profiles were generalised based on their time budget 

allocation (i.e. space-time profiles) in the ST-ROIs. In this way, the users’ inclinations in 

different time periods and spatial locations were discovered. However, this method did 

not consider the semantic meaning regarding the generated ST-ROIs. Spending time in 

two different places does not necessarily indicate any differences in visit purposes 

because the two places may have homogeneous functions or semantic meanings, even 

though they are far apart. Moreover, the non-semantic space-time profile cannot work 

in large cities because more and more ST-ROIs will be detected as the study area expands 

dramatically, and the difference between users’ time allocation profiles will be erased. 

By summarising ST-ROIs into a limited number of categories according to their 

semantic and functional meanings, the time budget allocation in ST-ROIs can be 

translated into semantic profiles that demonstrate the time spent on different semantic 

places instead of meaningless locations.  

In order to understand how people act in different functional areas at different times of 

the day, and especially how officers performing different roles on patrol allocate their 

attention across different activities in our case study, the TF–IDF reweighted semantics 

of the ST-ROIs were added to the analysis. One officer’s staying time in an ST-ROI was 

assigned to the 11 categories of POI according to each POI’s semantic contribution to 

that specific ST-ROI, as Equation 5.10 describes. This process turns space-time profiles 

(i.e. time allocations across ST-ROIs) into semantic profiles (i.e. allocation across 

functional areas), so that the differences in higher activity levels can be revealed.  

                 SPo,I = Po,j ∙ SCI,j                    Equation 5.10 

where Po,j is the space-time profile of officer o, and SPo,I is the semantically-weighted 

profile of officer o in the 11 POI major categories. 
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After semantically profiling the users (officers), the pairwise differences among the 

officers’ TF–IDF weighted profiles can be again quantified with Jensen Shannon Distance 

(JSD) (Lin, 1991) and similar profiles could be grouped together as a result of the 

hierarchical clustering method. Equation 5.11 shows how the JSD value between 

semantic profiles of two people, SPP and SPQ, is calculated.  

  JSD(SPP|SPQ) =
1

2
∑ SPPln

2∙SPP

SPP+SPQ
+i

1

2
∑ SPQln

2∙SPQ

SPP+SPQ
i    Equation 5.11 

Once the dissimilarity metric of semantic profiles is settled, the profiles can be 

hierarchically clustered by the same method as demonstrated in section 5.3.4 and people 

sharing similar semantic profiles can be aggregated. The modules are firstly 

demonstrated in the following single-borough case study to demonstrate the work flow 

in greater detail. 

 

5.6 A SINGLE-BOROUGH CASE STUDY 

This preliminary study took place in the Camden Borough (Figure 4.7), which lies to the 

north of central London, United Kingdom. Five major police stations are located in this 

region, namely West Hampstead, Hampstead, Kentish Town, Albany Street and 

Holborn. We use the same dataset of police movement as collected in February 2012. 

This is the same dataset used for basic data exploration in section 4.3. 

We choose the APLS movement dataset of this time period as a preliminary test because 

this was the first movement dataset that the Metropolitan Police declassified and made 

available for us at the beginning of our research. Another reason is that there was a major 

security related incident in February 2012 and this strongly influenced the activity 

patterns of officers in Camden. This incident will be used to explain the results of 

Module II in section 5.4.4. We also choose the top 100 active officers with a high number 

of continuous and frequent GPS records as the members of the pilot study. This is 

because we want to show the clustering result of all officers’ profiles in the pilot study, 

and the result of having too many officers is impossible to visualise. In the afterwards 

extended case study, however, the data of all officers with enough records in APLS will 

participate in the analysis. 

 

5.6.1 Module I: Pre-processing 

The methods for trip segmentation and stay point identification described in section 5.2 

are applied to the APLS data sample of February 2012. Trips containing less than three 

records and trips with their spatial location more than 10 km away from the study area 
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are considered as errors and are hence removed. If the time gap between two contiguous 

GPS records of a user is longer than one hour, the two records are assigned to two 

separate trips. 

Like many movement dataset, APLS data is automatically collected and does not include 

manual surveys of information of the moving individuals. Because of this, the stopping 

behaviours in the movement cannot be verified by the moving individuals themselves 

and the validation of the stop identification accuracy is not feasible based on the original 

APLS data. To test the increased accuracy of the stay point identification caused by the 

KTSW method, we can only rely on artificial trajectory data to provide synthetic ground 

truth, synthetic raw trajectories and simulated positioning errors of the movements. To 

this end, an artificial trajectory generator is designed with its working process described 

in section 8.1.1. The KTSW has demonstrated prominent higher accuracy than 

conventional methods. The detailed performance comparison of existing classic 

methods and the proposed methods in the thesis for stay point identification can be 

found in Chapter 8.  

 

5.6.2 Module II: ST-ROIs in foot patrol activity 

Just as places can have different meanings to people at different times, a similar situation 

also applies to police patrol activities. Many ROIs of officers have their own life spans 

and the patrols in a day are divided into 3 shifts (i.e. early, late and night shifts), each 

lasting for about 8 hours to give each officer proper working hours. Therefore, a place 

can only be meaningful to the officers during their working hours and the officers can 

go to the same area to perform different tasks at different moments in time.  

 

To detect the high-density aggregation of stays in space and time, we applied ST-

DBSCAN to the stay points of all officers to detect their common ST-ROIs. In ST-

DBSCAN, Spatial Eps is set to be equal to the sum of the mean and twice the standard 

deviation of EPE of APLS. This is to make sure that 95.4% of the positioning errors can 

be offset. Temporal Eps  is set to be equal to the minimal sampling interval of an 

individual officer’s device so that the algorithm can be agile enough to detect a single 

officer’s intensive activity in one place and identify this place as an ST-ROI. Then, 

MinPts is set based on Equation 5.3 after Spatial Eps and Temporal Eps are set. With 

ST-DBSCAN, 28 clusters were detected as ST-ROIs (Figure 5.9). It can be seen that 

although the town centre is an interesting place, it does not always draw the officers’ 

attention throughout the entire day. It also shows that some ST-ROIs are outside the 

boundary of Camden, and we will discuss the reason for this in section 5.6.4. The 

movement of each officer is then captured as the movements and stays from one ST-
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ROI to another. Dwelling time allocation profiles (i.e. space-time profiles) generated 

from this representation are then compared pairwise to group the officers. 

 

 

Figure 5.9 One typical working day of officers is separated into 3 shifts. 28 ST-ROIs of 

foot patrol officers are detected by ST-DBSCAN and are labelled with different colours 

(Shen and Cheng, 2016) 

 

5.6.3 Intermediate outcomes: Space-time profiles 

Using hierarchical clustering, the entire officer community in Camden was segregated 

into a dendrogram structure visualised in Figure 5.10, with the identification numbers 

representing each unique officer. The tree can be cut at certain places according to the 

condition that the researcher defines in order to separate the whole dataset into several 

clusters. In this research, we use Dunn Index as this condition. 
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Figure 5.10 Dendrogram showing the clustering results of officers with different patrol 

patterns (Shen and Cheng, 2016) 

 

To test the performance of our proposed similarity (Equation 5.5) based upon time 

allocation to ST-ROIs, we compared the hierarchical clustering results with those 

generated by using the similarity metric based on purely spatial ROIs (Equation 2.6) 

proposed by Zheng (2009). Figure 5.11 shows the performance comparison using the 

Dunn Index. 

 

 

Figure 5.11 Evaluation of hierarchical clustering results based on two different 

similarity metrics (Shen and Cheng, 2016) 
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The similarity based on only spatial ROIs demonstrates better segregations when the 

cluster number is less than four, but it falls below the performance of our proposed 

metric based on space-time profiles with higher cluster numbers. This is partly because 

the number of detected spatial ROIs is much less than ST-ROIs and the distribution of 

each user’s number of visits to each ROI is therefore much simpler and adapted to 

segregation of lower cluster numbers. However, a small-cluster-number clustering is not 

appropriate for semantic explanations of behaviours since a binary or ternary 

segregation will separate people into groups that are too simple to make sense. For 

instance, if the officers are only separated into two groups, i.e. one group that only 

moves inside the Camden border and another group outside, much potential valuable 

information will be subsumed. According to the cluster number determination method 

proposed by Salvador and Chan (2003) and the Dunn index evaluation, the number of 

officer subgroups generated by the hierarchical clustering based on the proposed 

similarity metric is set to be 8. The red dashed circle in Figure 5.10 is the place where the 

tree was cut so that the officers are segregated into 8 subgroups. The three officers 

highlighted by red rectangles in Figure 5.10 will be further discussed in section 5.6.7. 

 

5.6.4 Explanation of the outcomes 

It should be noted that effective segregation of the data does not necessarily indicate 

that the result will make sense in terms of having a reasonable semantic interpretation. 

To discover the semantic meaning of the generated cluster of space-time profiles, 

additional information and further study is required. By pinpointing the stay points of 

each cluster of officers and associating them with building and land use information, 

the semantic meanings of these differences are revealed. In this section, we try to explain 

the findings of Modules I and II by manually accessing the data of public POIs in the 

adjacency of the detected ST-ROIs. 

For security reasons, we cannot present all the 8 clustered officer subgroups, although 

4 of them were randomly chosen as examples to demonstrate the results. Figure 5.12 

shows the average time percentage allocation to 28 ST-ROIs of the 4 chosen officer 

subgroups, subgroups I, II, III and IV. Each column in the histograms represents the 

percentage of time one officer subgroup has spent on one corresponding ST-ROI. 
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Figure 5.12 Histograms of average space-time profiles of different officer subgroups 

 

For a more direct and concrete understanding of the discovered differences between the 

time allocation patterns of the subgroups, the stay points of the 4 example subgroups 

are visualised in space-time cubes in Figure 5.13 to show how different subgroups behave 

differently in both space and time. The base maps in Figure 5.13 depict the boundary of 

Camden and the circles marked with numbers and dashed circles on the base maps 

indicate the locations of the stay point clusters in space. By associating them with public 

points of interest data provided by the Ordnance Survey, we identified spatial region No. 

1 as an underground station on a commercial street and spatial region No. 3 as an 

underground station in residential area. The location (spatial region No. 2) that exists in 

all the 3 graphs is the centre of Camden, which is a place with bars, restaurants, a large 

market and a busy London Underground station. It is a highly populated area and many 

crimes occur there. Some foot patrol officers spend a long time in Camden town centre 

because they believe that high visibility has a positive impact on public confidence and 

acts as deterrent to potential criminals. Region No. 4 is Belgrave Square, an embassy 

area outside Camden's border; the below mentioned Syrian embassy is located in this 

area. 
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Figure 5.13 The stay points of 4 chosen generated officer subgroups. 

 (① Underground station; ② Central Camden; ③ Underground Station; ④ Syrian 

embassy in Belgrave Square) 

 

It can be seen in Figure 5.13 that subgroup I has a special interest in regions No. 1, No. 3 

and sometimes No. 2 during the afternoon peak periods. All of the three regions have 

underground stations. The interpretation of this behaviour pattern is that some officers 

are assigned to focus on peak locations at peak times for high visibility and crime 

reduction, and London Underground stations are often their typical targets.  

The aggregation of police force, especially officer subgroup III in this study period, 

February 2012, was confirmed by the news that hundreds of violent protestors trying to 

get into the Syrian embassy clashed with the police, and that the police arrested several 

protestors overnight (Daily Mirror News, 2012). It was also explained by the 

metropolitan police that when there are big events in neighbouring boroughs and extra 
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manpower is needed, officers may be ordered to go out of their own borough to help. 

We can see that officer subgroup III spent most of their stay time from the early morning 

throughout the day in this embassy area while other subgroups spent very little, if any, 

time there.  

It is noteworthy that officer subgroups II and IV were both interested in region No. 2, 

the centre of Camden Town. Existing methods that are solely based on location history 

will not distinguish between them. However, the proposed similarity metrics still 

managed to distinguish these officers as two groups because their time of visit, length 

of stay and visit intensity to this common place differed. Officer subgroup II tended to 

pay frequent visits to central Camden Town at the beginning of the day from 00:00 to 

04:00. This phenomenon can be explained by officers keeping an eye on alcohol related 

and recreational activities in this area at night. In contrast, officer subgroup IV preferred 

to appear at this area in the afternoon and to stay for a longer time for a different purpose, 

namely to maintain a visible presence in an area with large flows of citizens visiting the 

underground station and shops. Similar analyses can be carried out to explain the 

patterns of the other subgroups. 

Besides, the information of the officer types contained in the APLS dataset can be used 

for validation as well. Most of the officers on duty are foot patrol officers (FP), 

community support officers (CSO) and senior officers (SO). The behaviour of different 

types of officers can be very different because different tasks they are asked to undertake 

are determined by their types. Figure 5.14 shows the percentages of these 3 officer types 

in the 4 generated officer subgroups. Officers in subgroup I focus on multiple ST-ROIs 

and they consist mainly of foot patrol officers and senior officers, while officers that are 

temporally seconded outside Camden to assist the security work in the embassy area are 

all foot patrol officers. We have also verified from the Metropolitan Police that FPs are 

interested in multiple places distributed in Camden and only they can be seconded to 

do the work outside Camden. The most interesting phenomenon is again seen in the 

comparison between subgroup II and IV. With the two subgroups concentrating their 

efforts in the same place (spatial region No.2 in central Camden) but in different time 

periods, the contribution percentage of foot patrol officers and community support 

officers within the two subgroups reversed. It is pointed out by the field expert in the 

Metropolitan Police that the nature of community CSOs’ work is to help the FPs at peak 

places in peak periods and the CSOs do not have much work at night. Similar analyses 

can be conducted to explain the patterns of the other subgroups. 
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Figure 5.14 They stay points of 4 chosen generated officer subgroups 

 

5.6.5 Discussion: The need for semantic enrichment 

Modules I and II of our framework extend the traditional ideas of time budget allocation 

in behavioural studies and existing spatial-location-based user similarity definitions. It 

is possible to profile the activity patterns of people according to both space and time 

aspects by defining a new moving behavioural similarity metric. However, the semantic 

aspect of the places is not accounted for in these two modules. This means that similarity 

of individual space-time profiles does not directly translate into semantically similar 

activity patterns and we still need to manually ratify the meaning of places to police 

officers’ activities as we did in section 5.6.4. Moreover, when we need to aggregate 

activity patterns in larger areas (e.g. a much bigger city with huge number of interesting 

places for clustering and grouping), there will be too many features in the (non-semantic) 

space-time profiles for the hierarchical clustering methods to achieve a clear and 

reasonable segregation. 

Our solution for these problems is to look into the semantic meanings of places and 

summarise all the ST-ROIs into semantic ST-ROIs of a limited number of generic 

categories. After the semantic enrichment process in Module III, human dynamics data 

with more ST-ROIs in a larger area can be aggregated. Module III will also enable us to 
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detect similar activity patterns even though they happened in mutually far apart 

locations. 

 

5.6.6 Module III: Semantic enrichment of ST-ROIs 

After 28 ST-ROIs are detected by ST-DBSCAN in Module II, the space-time boundaries 

of all ST-ROIs are generated by the method described in section 5.4.2. Among all ST-

ROIs, ST-ROI No.23 and its space-time boundary are shown in Figure 5.15 as an example. 

 

 

Figure 5.15 Spatial boundary of ST-ROI No.23 in the 28 ST-ROIs detected by Module II 

 

We search for POIs in the expanded convex hull and find the overlapping periods of 

POIs with the time span of the ST-ROIs. Taking ST-ROI No.23 again as an example, this 

is a very special ST-ROI that locates outside Camden police’s mission area. It is detected 

because of the intensive police activities around the Syrian embassy for the safeguard of 

the embassy area against violent protesters (Daily Mirror News, 2012). 

Nine POIs are found in the space-time boundary of ST-ROI Nol.23 as presented in Figure 

5.16. Among these POIs, three belong to the “public infrastructure” major category, one 

is a POI of commercial services, two are “education” POIs and three POIs are related to 

a “government and organisation” major category. The surrounding of the Syrian 

embassy in February 2012 is one of the “government and organisation” POIs in this place. 

The simplest way of inferring the semantic meaning of ST-ROI No.23 is to directly use 

the quantity of sibling POIs as their semantic contribution index in an area, as did 

Krüger et al. (2013) and Polisciuc et al. (2015). As we know, however, public 

infrastructures, such as bus stops and phone boxes, can be found in large numbers 
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throughout the city and should be considered as less significant POIs in the semantic 

enrichment process. If we weight the semantic contribution of POIs solely by numbers, 

the three less meaningful “public infrastructures” that make up 33% of the POIs in ST-

ROI No.23 will generate a considerable portion of semantic contribution to the ST-ROI 

and misrepresent the meaning of the ST-ROI. Even if we add the length of overlapping 

opening hours into the consideration, as Equation 5.7 describes, the contribution of 

“public infrastructures” is still dominant in the region. Obviously, the police officers 

were not interested in the “public infrastructures” in that particular area since they can 

be found everywhere in the city. Hence, the raw semantic contribution w does not 

translate into the truly significant contribution of police activities in this case. 

 

 

Figure 5.16 The Ordnance Survey POIs in the space-time boundary of ST-ROI No.23 

 

Therefore, reweighting the POIs’ categorical semantic contribution and removing the 

negative influence of ubiquitous POIs in semantic enrichment is necessary. Table 5.2 

shows that the semantic contribution of the major category “public infrastructures” 

calculated by Equation 2.2 and Equation 5.9. had been significantly weakened after the 

TF–IDF weighting process, from 0.333 to 0.043. In contrast, small-size categories, such 

as educational POIs, were emphasised and the weights of governmental POIs were 

reinforced after the significance is recalculated with TF-IDF, corresponding to the 

common sense that ST-ROI No.23 is an embassy area and most educational and cultural 

branches of foreign embassies are nearby their countries’ embassies. 

 

Table 5.2 The semantic contribution of different categories of POIs in ST-ROI No.23 

calculated with Equation 2.2 and Equation 5.9 
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Table 5.3 shows the time span of each ST-ROI. For confidential reasons, the emerge 

times and perish times of most ST-ROIs are hidden. This table also includes the semantic 

contributions of the 11 categories of POIs in the 28 ST-ROIs reweighted by TF–IDF. The 

contributions are added to officers’ space-time profiles to generate officers’ semantic 

profiles (SP) in the next step. 

 

Table 5.3 The TF–IDF weighted semantic contribution of different categories of POIs 

in each ST-ROI in Camden 

 

 

5.6.7 Module IV: Aggregative analysis of semantic profiles 

Most of the officers on duty are foot patrol officers (FP), community support officers 

(CSO) and senior officers (SO). The dwelling time that different types of officer allocate 

to ST-ROIs can be very different, because the different tasks they are required to 

undertake are determined by their types. According to the outcomes of Module II, the 

(non-semantic) space-time profiles of three typical police officers (i.e. 1812PO, 8971PO, 

ST-ROI No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Emerge Time 15:30 Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified
Perish Time 16:05 Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified Classified
Accommodation, eating and drinking 0.023 0.1004 0.0964 0.1248 0.0271 0.0192 0 0.104 0.087 0.2867 0 0.0257 0.1204 0.0856
Commercial services 0.1657 0.2751 0.2494 0.2533 0.3181 0.2806 0.257 0.2712 0.2482 0.1193 0.389 0.7276 0.1957 0.2698
Attractions 0.2664 0.0103 0.0128 0.0238 0.0501 0.0711 0.1412 0.0136 0 0.0702 0.4033 0.1488 0.0083 0.0142
Sport and entertainment 0 0.1022 0.0962 0.064 0.0294 0.0416 0 0.0828 0.0993 0.0779 0 0 0.0756 0.0746
Health 0.0907 0.0628 0.0666 0.0266 0 0 0 0.0478 0.0438 0.0497 0 0.0338 0.0293 0.0533
Public infrastructure 0.031 0.0233 0.0269 0.0134 0.0137 0.0162 0.0103 0.0203 0.0201 0.0765 0.047 0.0087 0.0165 0.0206
Manufacturing and production 0.1179 0.0415 0.0234 0.0573 0.0456 0.0647 0 0.0441 0 0 0 0 0 0.0413
Retail 0.1677 0.2855 0.3304 0.3514 0.1476 0.195 0 0.3135 0.4164 0.3197 0 0.0257 0.4586 0.3446
Transport 0.0796 0.0518 0.0576 0.0514 0.0228 0 0 0.0558 0.0578 0 0.1607 0.0297 0.0423 0.0534
Education 0.058 0.0317 0.0277 0.0248 0.0517 0.0733 0.1561 0.0298 0.0274 0 0 0 0.0367 0.0357
Government and organisations 0 0.0153 0.0126 0.0092 0.294 0.2384 0.4355 0.0172 0 0 0 0 0.0166 0.007

ST-ROI No. 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Emerge Time Classified Classified Classified Classified Classified Classified Classified Classified 10:00 Classified Classified Classified 14:00 Classified
Perish Time Classified Classified Classified Classified Classified Classified Classified Classified 18:00 Classified Classified Classified 16:00 Classified
Accommodation, eating and drinking 0.2339 0 0.1895 0 0.2471 0.1032 0.0573 0.1626 0 0 0.1448 0 0 0.0439
Commercial services 0.3543 0.7264 0.3659 0 0.2438 0.2509 0 0.5179 0 0.8689 0.404 0.5718 0 0.2244
Attractions 0.0187 0 0.0205 0.1525 0 0.0159 0 0 0 0 0 0 0 0.029
Sport and entertainment 0.0438 0 0 0.0751 0.0833 0.1043 0.2611 0 0 0 0.0872 0 0 0.0642
Health 0.0133 0 0.0145 0 0.0324 0.0525 0.1504 0.0184 0 0 0.028 0 0 0.0082
Public infrastructure 0.0306 0 0.0112 0.0111 0.0166 0.0207 0.0193 0.0047 0.0434 0 0.0287 0.0411 0 0.0084
Manufacturing and production 0.0792 0 0.0866 0 0 0.0332 0 0.0932 0 0 0.1079 0 0 0.0832
Retail 0.2145 0 0.2125 0 0.0861 0.3385 0 0.0921 0 0 0.1451 0.1811 1 0.4177
Transport 0.0116 0.2736 0.0741 0 0.2343 0.0346 0.132 0.1109 0 0.1311 0.0542 0.206 0 0.1051
Education 0 0 0 0.1685 0 0.0349 0.3801 0 0.3299 0 0 0 0 0.0158
Government and organisations 0 0 0.0252 0.5929 0.0563 0.0112 0 0 0.6267 0 0 0 0 0
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8986PO) can be seen in Figure 5.17; the identity call signs of the officers have been 

encrypted for security’s sake.  

 

 

Figure 5.17 The space-time profiles of three police officers 

 

The semantic enrichment of ST-ROIs in Module III allows us to transform ST-ROIs into 

semantic ST-ROIs. Similarly, the time allocation on ST-ROIs (i.e. space-time profiles) 

can also be transformed into time allocations on different semantic meaning categories 

after Module III. For instance, officer 8986PO spends 90% of his/her staying time in ST-

ROI No.21 and 10% staying time in ST-ROI No.2. According to the semantic 

contributions in Table 5.3, 2.75% (0.2751 ∗ 10% + 0 ∗ 90%) of 8986PO’s total active 

time is assigned to commercial service places, whereas 34.5% (0.0317 ∗ 10% + 0.3801 ∗

90%)  of 8986PO’s total active time is assigned to educational venues. Figure 5.18 

displays the comparison of the three chosen officers after their space-time profiles are 

turned into semantic profiles by Equation 5.10. 

It is worth noting that the time allocations on ST-ROIs of officers “1812PO”, “8972PO” 

and “8986PO” were by no means the same (Figure 5.17). After interpreting the activities 

of the officers with POI impacts, however, the profiles of officer “1812PO” and officer 

“8972PO” became quite similar to each other semantically (Figure 5.18). This is because 

they have visited semantically similar places in semantically similar times, despite the 

spatial locations they have visited being different. Their common interests in retail and 

commercially-related areas were revealed, whereas semantically interpreting the profile 

of officer “8986PO” made it prominently distinct from the other two officers. This shows 

the new method’s capability to find users sharing semantically similar activity patterns, 

despite the fact that the places in which they stayed may be spatially far apart. 
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Figure 5.18 The summarised semantic profiles of three police officers 

 

At the end of the case study, we hierarchically cluster the individual semantic profiles 

again with JSD-based dissimilarity (Equation 5.11). Figure 5.10 shows hierarchical 

clustering results of the non-semantic space-time profiles and Figure 5.19 shows the 

hierarchical clustering results with the consideration of semantic meaning of ST-ROIs. 

As suggested again by the Dunn index (Dunn, 1973), the officers with the newly proposed 

semantic profiles are divided into 5 groups. The call signs of officers have been encrypted 

and the three example officers are marked with dashed rectangles. In Figure 5.10, the 

three example officers are grouped into three different groups because of their 

differences in space-time profiles. In contrast, Figure 5.19 shows that the new method 

can find the semantic similarities between officers “1812PO” and “8972PO”, despite their 

location differences. The new method also generated clearer segregation and simpler 

grouping results than the old one in Module II. This is mainly because the number of 

summarised semantic categories in the semantic profile is far less than the number of 

the extracted ST-ROIs in a space-time profile. 
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Figure 5.19 Dendrogram showing the clustering results based on semantic profiles 

 

5.7 AN EXTENDED CASE STUDY IN MULTIPLE BOROUGHS 

Greater London consists of 32 boroughs (local authority districts), each of which is 

assigned a Borough Operational Command Unit (BOCU) of the Metropolitan Police. All 

BOCUs provide police officers (regulars and specials) who are responsible for patrolling 

and responding to emergencies, normally within boundaries of their home boroughs 

and their surrounding areas. This allows us to see the analysis of the police activities in 

each borough as a work thread and work on an extended case study of multiple boroughs 

in a parallel manner. 

We have showcased how the new method works within one borough and how different 

it is from the previous method above. Here, to prove that the new method improves its 

capability to process larger scale data and aggregate similar activities in different areas, 

we implemented the algorithms in parallel with police foot patrol activities in 12 inner 

London BOCUs (UK legislation, 1963), based on a newly updated APLS dataset in 2015. 

Thanks to the hardware upgrades of the Metropolitan Police, this new dataset is able to 

include all patrol activities in all of the 32 London boroughs and contains more active 

officers in each borough.  
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5.7.1 Semantic ST-ROIs 

ST-DBSCAN was first used in parallel with the police patrol activities in each of the 12 

inner London BOCUs in August 2015. The input parameters of ST-DBSCAN are 

determined by Equation 5.3 in every borough. For simplicity of visualisation and security 

reasons, we demonstrated the results of the three inner London boroughs (City of 

Westminster, Islington and Camden) as examples. By trip segregation in the pre-

processing modules, we found that 620 officers had more than 5 trips in the three 

selected boroughs in August 2015. The movements of these 620 officers are input to 

Module I for stop identification and the stay points are clustered by ST-DBSCAN in 

Module II. As for the parameters for ST-DBSCAN, the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐸𝑝𝑠 = 20 + 2𝜎 = 36𝑚,  

the 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐸𝑝𝑠 = 5𝑚𝑖𝑛 = 300𝑠 , and the 𝑚𝑖𝑛𝑃𝑡𝑠  is set to be 55 according to 

Equation 5.3. 

Figure 5.20 shows all 54 ST-ROIs detected in the extended case study area. For security 

reasons, we cannot label all the ST-ROIs with place names and exact time spans, though 

we choose 5 places that people are familiar with to show their semantic meanings in the 

next step. 

 

Figure 5.20 The 54 ST-ROIs in three BOCU areas chosen for demonstration 

 

The second step in the extended case study was to import the POI data of the entire 

Greater London area and enrich the semantic meaning of the 54 ST-ROIs. Table 5.4 

shows the semantic weights of POIs in the five ST-ROIs in Figure 5.20 as examples. It 
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shows that the TF-IDF results are in line with the citizens’ common impression of the 

meaning of the places. For example, the detected ST-ROI No.37 is Buckingham Palace 

and its time span ranges from 10:35 to 12:07. This is exactly the time when the famous 

everyday changing of the guards at Buckingham Palace takes place and police officers 

gather there every day to block the road for the parade and safeguard this place of tourist 

attraction. This module also turns the semantic meaning into a time-varying attribute 

of a place. For example, ST-ROIs No.48 and No.21 in the extended case study are both 

in the area of Camden Town, yet the semantic contributions of different types of opening 

POIs change dramatically over time. Camden Town’s dominant semantic meaning is 

“accommodation, eating and drink” at night, whereas “retail” POIs contribute most to 

its semantic meaning in the afternoon. This summarised POI semantic contribution 

information is used to turn the officers’ time allocation to ST-ROIs into semantic profiles 

according to Equation 5.10. 

 

Table 5.4 The TF–IDF semantic meanings and names of five chosen ST-ROIs in the 

extended case study 

 

 

5.7.2 Semantic profiles and profile aggregation 

After the semantic profiles were grouped via the JSD-based hierarchical clustering 

method, officers with similar activity patterns across all boroughs can be detected, even 

if they never belonged to the same BOCU area branch. 54 ST-ROIs are detected in the 

three boroughs and even more will be generated if the method is to be applied to the 

entire London area. This means that clustering space-time profiles containing too many 

ST-ROIs will lead to the “curse of dimensionality” (Bellman, 1961). By turning the space-

time profile into a semantic profile, the number of dimensions of the semantic profile is 

limited to 11 (the number of POI major categories) and the following aggregative 

clustering process will not be undermined. 

ST-ROI ID 37 13 25 48 21
Name of the Place Buckingham Palace Soho Whitehall Camden Town Camden Town
Emerge Time 10:35 Classified Classified 0:00 12:55
Perish Time 12:07 Classified Classified 4:42 15:32
Accommodation, eating and drinking 0 0.3233 0.1375 0.6428 0.1041
Commercial services 0.0487 0.1676 0.1818 0.0945 0.2371
Attractions 0.7438 0.0375 0.0156 0 0.0118
Sport and entertainment 0 0.1339 0.0288 0 0.1047
Health 0 0.0411 0 0.1134 0.0812
Public infrastructure 0.0233 0.0387 0.0268 0.0284 0.0236
Manufacturing and production 0 0.0426 0 0 0.0267
Retail 0.0523 0.1412 0 0.0917 0.3027
Transport 0 0.0332 0.0357 0.0292 0.0375
Education 0 0.0296 0 0 0.0534
Government and organisations 0.1319 0.0114 0.5738 0 0.017
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As the Dunn index test suggested, the optimal group number should be five in the 

hierarchical clustering for the extended case study. There are 2,064 highly active officers 

(20 times the number of officers who participated in the single-borough case study in 

section 5.6) patrolling in these three boroughs in the study period, and the visualisation 

of the hierarchical clustering results of all officers like Figure 5.19 is impossible to be 

presented properly on a printed page. Therefore, the average semantic profile of each 

officer group was summarised to show the representative pattern of their activities 

(Figure 5.21). It showed that the focus of officers on different semantic places varied 

greatly. Officers in Group 1 allocated their time more evenly than did others and paid 

more attention to commercial and retail streets. Group 2 preferred to stay near tourist 

attractions, whereas Group 3 focused on sport and entertainment events and Group 5 

patrolled around both governmental and public infrastructures. Group 4 spent most of 

their time near hospitals and had far fewer activities than other groups. This 

demonstrates that the activity patterns of police officers show clear differences when 

the semantic meaning of places is brought into the profile clustering process, and each 

group has its own major interest.  

 

 

Figure 5.21 The average semantic profiles of five officer groups generated by the 

aggregative analysis 

 

5.8 CHAPTER SUMMARY 

In this chapter, we used a Euclidean paradigm of our methodology framework to 

demonstrate the work flow of our framework and resolved the four problems 

summarised in Chapter 1 with four modules. We also introduced the new concept, ‘, “the 

place you go, when you go and how long you stay is who you are”, to focus on the spatial, 
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temporal and semantic aspects of places rather than just spatial locations. 

Methodologically, the framework further extends the traditional ideas of time budget 

allocation in behavioural studies and existing spatial-location-based user similarity 

definitions to a semantic explanation of people visiting places. It can profile the activity 

patterns of people according to space, time and semantic aspects by defining the JSD 

similarity metric, which in reality is closer to people’s place visiting purposes. 

Furthermore, after determining what the place is about semantically, the pattern 

differences of individuals’ activities are better explained. We used police foot patrol data 

as case studies to represent kindred location-based applications. The semantic meanings 

of the places are extracted and measured based upon the space-time information of 

urban POIs. This evolution from Space-Time to Place-Time enables analysis of a large 

population with much higher heterogeneity and dynamism in a large city-scale area. 

The modules of the Euclidean paradigm presented in this chapter, despite their 

generally positive evaluation compared with conventional methods, are constructed 

under the condition that all spatial distances are Euclidean, and require further 

awareness of the urban network’s influence on people’s movements and stops in order 

to provide a complete picture of their activity patterns. 

Further work will turn this methodological framework into a street network-based 

version to further improve the space-time accuracy of activity extraction in police 

patrols and to further adapt all modules to the urban street environment. The next 

chapter will address the development of a network paradigm according to the unsolved 

limitations of the Euclidean paradigm. The stay identification, ST-ROI detection and 

semantic profiling modules developed during the next phase must integrate with a 

network representation of space. To this end, map-matching algorithms and a network-

based space-time clustering method will be developed. The accompanying rise in 

computation cost also needs to be mitigated. 
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Chapter 6 

The Network Paradigm 
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6 THE NETWORK PARADIGM 

6.1 INTRODUCTION  

Our methodology framework has been described and tested in the Euclidean paradigm 

in Chapter 5. The Euclidean paradigm has provided better solutions for the listed 

Challenges 1 to 4 in Chapter 3 than existing conventional approaches. Together, the four 

modules also formed a standard procedure for the aggregative analysis of human urban 

activity patterns. However, the spatial distance metric throughout the Euclidean 

paradigm is not perfect in depicting the true topological structure of a city, nor is it 

appropriate to act as the proximity indicator of physical entities (Meier, 2017) and 

movements in street segments. To apply our framework onto urban street networks 

where most human dynamics data were collected, adaptations and improvements in 

every module of our framework should be made.  

In this chapter, we propose a new paradigm to specifically detect streets that attract 

intensive visits in certain time periods and analyse the semantic activity patterns of 

people in the complex street networks of a city. Here, we use street segments as the base 

level spatial unit in all the framework modules instead of polygon regions or grids in the 

planar space. Therefore, we detect streets and time periods with intensive human visits. 

Because the geometric units are linear segments instead of bounding areas, we extend 

the concept of ST-ROI to the street networks and define them as Spatio-Temporal Lines 

of Interests (ST-LOIs). Accordingly, the functional information of roadside POIs is then 

annotated to the street addresses contained in the ST-LOIs to enrich the meaning of the 

ST-LOIs. The semantic profiles in Modules III and IV are also summarised based on the 

detected ST-LOIs and POIs along the streets. These changes will bring three 

improvements: (1) The positioning errors in the raw trajectories are mitigated; (2) The 

boundary of ST-ROIs/ST-LOIs are better defined; and (3) The semantic enrichment is 

more precise. 

To achieve all these improvements, changes of methods in the framework are as listed 

in sections 6.1.1 to 6.1.4. 

 

6.1.1 From trip trajectories to trip routes 

Most stop identification methods are based on a Cartesian expression of space and 

ignore the fact that the majority of people’s movements in urban areas follow the 

segments of the interconnected road networks. Their problem settings, therefore, are 

not realistic for the study of urban movements.  
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Ignoring the structure of road networks can cause serious troubles for the analysis of 

moving trajectories in an urban context. An example can be seen in Figure 6.1. The two 

points are isolated from each other by the semi-underground rails in between, and they 

are by no means close to each other if the road network context is considered. One 

pedestrian would take more than 10 minutes to walk from one point to the other, 

although the straight line Euclidean distance is just 78 m. If the two points are two 

contiguous location updates in Module I of the Euclidean paradigm, Euclidean-based 

methods will miscalculate the distance and speed between the two points and identify 

wrong stop episodes and stay points. The comparison of stop identification accuracy of 

Euclidean-based and network-based methods can be found in Chapter 8. If the two 

points in Figure 6.1 are two stay points in Module II of the Euclidean paradigm to be 

clustered, Euclidean-based spatial clustering methods will fail to exploit the underlying 

network context and unreasonably take the two far away points in the network into one 

ROI, which can generate misleading point clusters in space. 

 

 

Figure 6.1. The Euclidean distance between two points is 78m, however, people need to 

move 1240m from one point to the other in the network 

 

For the pre-processing module (Module I) of our framework, the accuracy of stay point 

detection can be improved with the awareness that the movements are along the streets. 

Map-matching is used as the technique to align the observed GPS positions with the 

road network on a given digital map. It acts as a fundamental pre-processing step to 

transform the point-based each trajectory in the Euclidean paradigm into a route 

consisting of a sequence of covered street segments in the network paradigm. All 

analyses of semantic places, times and activities in the network paradigm will be built 

on the basis of stop episodes and stay points along the map-matched trips routes. 
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6.1.2 From ST-ROI to ST-LOI 

Points generated by movements in road networks may appear to be sparser in the planar 

space, which makes it harder for Euclidean-based clustering methods to detect the 

aggregation, especially the margin of the aggregation. Besides, the Euclidean methods 

tend to generate large and imprecise ROI boundaries that cover unwanted areas where 

the moving objects have never actually visited or private spaces that do not contribute 

any semantic meaning to the public. 

Since all the trips, especially the stop episodes, are snapped to the road segments in the 

network paradigm, the ST-ROIs detected in Module II are also space-time point 

aggregations along the street networks with linear shapes. To differentiate with the ST-

ROI in the Euclidean paradigm, we call these network-based space-time point clusters 

Spatio-Temporal Lines of Interests (ST-LOI). Instead of covering a solid part of space 

regardless of whether it is a private space or a space of public semantic meanings like 

ROIs in most studies (cite), the ST-LOI only covers a partial set of urban streets with 

POIs on roadsides and preserves the interconnected segment structure inside. In 

Chapter 8, the advantages of ST-LOI representation over ST-ROIs and conventional 

ROIs are presented with a performance comparison. 

 

6.1.3 From 3D scatter map visualisation to 3D wall map visualisation 

The 3D scatter map in a space-time cube shows a point aggregation in time and planar 

space. It is hard, however, for the 3D scatter map to inform us about the relationship 

between the stay points and the road links that they are in. Inspired by Tominski et al.’s 

(2012) 3D wall map method for massive trajectory data visualisation, we use the 3D wall 

map to visualise the space-time clusters of stop episodes in trajectories (i.e. ST-LOIs). 

This method is the most suitable option for visualising the ST-LOI that we proposed 

since it preserves and highlights the network structure in space. It allows us to use street 

segments as basic units in space-time visualisation and present results on a finer scale 

for people to understand. 

 

6.1.4 Work flow of the network paradigm 

The network paradigm also follows the 4-step work flow of the general framework. 

Nevertheless, one essential difference between the network paradigm and the Euclidean 

paradigm is the increased computation burden accompanying network-based methods, 

especially in Modules I and II. Apart from the optimisation measures for the algorithms 

within each module, Modules I and II are separated into multiple work threads so that 
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the overall framework can be accelerated by parallel processing as described in Figure 

6.2. When analysing the activity patterns in a large study area, the area is separated into 

multiple districts with buffer zones. Each district is home to a group of individuals and 

each work thread is in charge of the pre-processing and ST-LOI detection of the 

movement data within a district buffer zone. If the study area is inseparable (e.g. most 

individuals often move across different districts or the overall area is small), Modules I 

and II will still be operated in a single-stream manner. In our case study of London Police 

movements, the Modules I and II are executed for the officers and their movements in 

each BOCU and its surrounding areas in each independent work thread. 

 

Figure 6.2 Work threads and work flow of the network paradigm for large study area 

 

The detailed methodologies and case studies are presented in the rest of the chapter. All 

the network analysis methods and algorithms across modules in the network paradigm 

will require common tools such as network indexing and shortest network route 

calculation. Therefore, the common tool kit for the modules in the network paradigm is 

firstly explained in section 6.2 before the description of the modules. Sections 6.3 to 6.4 

provide a step-by-step explanation of the proposed algorithms, demonstrating how the 

proposed methods can improve the ROI detection and semantic activity study in urban 

scenarios. The increases of computation complexity brought by the improvements in 

the network paradigm will be discussed at the end of every module. The framework is 

then tested with a case study of multiple boroughs in section 6.7. Finally, section 6.8 

summarises the major findings and directions for further research. 

 

6.2 BASIC TOOLKIT FOR SPATIAL NETWORK ANALYSIS 

Here we introduce two general tools that will be frequently used across modules in the 

network analysis. These two toolkits are substantialised as Python packages in 

programing and are invoked by the module when required. 
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6.2.1 Shortest path finding tool 

The network distance between two objects is defined by the length of the shortest path 

from one object to the other through the network. In the network paradigm, such a 

distance provides the spatial-closeness measurement for the map-matching process of 

Module I and our proposed ST-Net-DBSCAN clustering method in Module II. 

Nevertheless, replacing the commonly used Euclidean distance with network distance 

in Modules I and II involves shortest path computations, which causes a much higher 

complexity and inconstant cost for computation. Specialised shortest path finding 

algorithms are the solution to speed up this process. As reviewed in Chapter 2, A* 

algorithm (Hart et al., 1968), which guides the query towards the destination with a 

heuristic function, is an informed search algorithm, or a best-first search, meaning that 

it solves problems by searching among all possible paths to the solution for the one that 

requires the lowest cost (i.e. least distance travelled).  Among all these paths, A* first 

inspects the ones that are likely to lead fastest to the solution. A* constructs a tree of 

paths starting from a specific node in a weighted graph, expanding paths one step at a 

time, until one of its paths ends at the predetermined destination node (i.e. the solution). 

At each iteration of its main loop, A* determine which of its partial paths to expand into 

longer paths based on an estimate of the cost (i.e. total weight in the path) still to go to 

the destination. A* demonstrates a 40–60% saving of computational cost in a medium-

scale network (Fu et al., 2006) as compared to the Dijkstra algorithm. Therefore, we use 

A* algorithm as the shortest path finding tool throughout our network paradigm. 

 

6.2.2  Range searching and nearest neighbour searching tool 

Organising points by constructing a space-partitioning data structure can greatly 

improve the spatial query efficiency. K-d tree is a binary indexed tree that can split a 

hyperplane into two parts at every non-leaf node. Because of the tree index properties, 

the K-d tree can achieve efficient range searches and nearest neighbour searches by 

eliminating large portions of the irrelevant search space.  

In Module II, we use K-d tree as a part of our space–time neighbour retrieval strategy as 

discussed in section 6.4.3. It can improve the overall speed of the neighbourhood query 

in street networks by narrowing down the search for the network-based space–time 

neighbour candidates in Euclidean space before the high-load network search begins. In 

Chapter 8, K-d tree is also used in speeding up KNN queries for performance evaluation 

of the paradigms. 

 

file:///C:/Users/Administrator/AppData/Local/youdao/DictBeta/Application/7.0.0.2017/resultui/dict/result.html
file:///C:/Users/Administrator/AppData/Local/youdao/DictBeta/Application/7.0.0.2017/resultui/dict/result.html
https://en.wikipedia.org/wiki/Range_search
https://en.wikipedia.org/wiki/Nearest_neighbor_search


139 
 

6.3 MODULE I: PRE-PROCESSING OF MOVEMENT DATA IN URBAN 

NETWORKS 

6.3.1 Trip segmentation 

At the beginning of Module I, every trip with continuous short-term updates is identified 

and labelled. The rule of this trip segmentation is the same as for the trip segmentation 

process in the Euclidean paradigm. 

 

6.3.2 Map-matching 

To alleviate the spatial observation/positioning error of the GPS device and identify the 

network routes taken in the actual movement, we apply the ST-Matching algorithm 

proposed by Lou et al. (2009) as the map-matching method to snap the observations 

onto the streets. The original ST-Matching algorithm did not account for movements in 

complex transport networks with a large number of local and narrow pedestrian 

walkways. Therefore, we trim its parameters according to our case study in this module 

and apply it in the more complex ITN urban theme layer that contains local links of 

walking and cycling pathways. ST-Matching finds the most probable candidate point 𝑐𝑖 

on the nearby street sections within the searching bandwidth of each original GPS 

record 𝑝𝑖  in each trip. The segment of streets covered by the shortest path from ci to 

𝑐𝑖+1 is labelled as 𝑒𝑢. The shortest path is found and measured by the A* algorithm 

mentioned in section 6.2. For every matched/confirmed trip, the route R is represented 

by a list of street paths (𝑅: 𝑒′1 → 𝑒′2 → ⋯ → 𝑒′𝑘) between the matched candidates that 

the user has moved through chronologically. For all the observed GPS points p in the 

trajectory of one trip 𝑇𝑟: 𝑝1 → 𝑝2 → ⋯ → 𝑝𝑖, the goal of map-matching is to find the R 

that fits 𝑇𝑟  with the highest probability as shown in Figure 6.3. We choose this 

algorithm because it is more robust than conventional incremental and AFD algorithms 

when the sampling rate deteriorates, and it is specifically designed for the matching of 

GPS data with low sampling rates similar to our case (i.e. between 2-5 minutes). Another 

similarity between Lou et al.’s (2009) movement dataset and ours is that the positioning 

error in their dataset also follows a normal distribution, but with a different standard 

deviation of 20 metres.  
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Figure 6.3 The task of map-matching 

 

There are also differences between the two datasets. In Lou et al.’s (2009) experiment, 

GPS data are collected from moving vehicles in Beijing with an average speed of 13.88 

m/s (50 km/h) and a sampling rate of 2 minutes. This means that the average Euclidean 

distance between every two observations/updates of a GPS device is 2,266 m in Lou et 

al.’s (2009) case study. As demonstrated in the data exploration of Chapter 4, the officers 

in the APLS dataset have an average Euclidean moving speed of 1.874 m/s and a GPS 

sampling rate of 5 minutes, which is equal to 562.2 m average Euclidean distance 

between every two observations/updates. This means that our dataset has far denser 

observations than Lou et al.’s (2009) experiment data, which is a positive contribution 

to the accuracy of map-matching. Besides, the ST-Matching method is originally tested 

for hybrid mode movements, most of which are vehicle movements. This is different 

from the police patrolling activities that include walking for most of the time, in terms 

of median speeds, traffic rules and the accessibility of narrow local streets. Moreover, 

the extent of the environment varies and the urban canyon effects differ between 

different cities.  

In consideration of the differences between our dataset and the original dataset 

collected for testing the ST-Matching algorithm, corresponding changes are made 

according to the local situations of our study area. Details of these changes can be seen 

in the case study of section 6.7, where parameters are readjusted and the extended urban 

networks that include local pedestrian walkways are added into the experiment. 

The mechanism of ST-Matching is as follows. The algorithm firstly defines the space-

time transition probability (STTP) from every 𝑝𝑖 ’s candidate 𝑐𝑖
𝑛 to the candidate 𝑐𝑖+1

𝑚  

of the next observation 𝑝𝑖+1. After that, a unilateral connected graph 𝐺𝑇𝑟 is built to 

connect 𝑐𝑖
𝑛  with its next observation candidate’s 𝑐𝑖+1

𝑚  in trip 𝑇𝑟 . The space-time 
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transition probability (STTP) is used as weights on the segments between 𝑐𝑖
𝑛 to 𝑐𝑖+1

𝑚  

as demonstrated in Figure 6.4. 

 

 

 

Figure 6.4 Candidate transition graph GTr of trip Tr (Lou et al., 2009) 

 

The STTP is defined as the product of spatial transition probability (STP) and temporal 

transition probability (TTP). Here, we use Lou et al.’s (2009) description of STP in 

Equation 6.1. The closer a candidate is to their observation, the more likely they are the 

matched candidate of the observation. The closer the network distance between two 

candidates is to the Euclidean distance between their observations, the more likely the 

two candidates are matched candidates. 

𝑆𝑇𝑃(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) =
1

√2𝜋𝜎
𝑒

−
(𝑑𝑖𝑠𝑡(𝑝𝑖+1,𝑐𝑖+𝑖

𝑚 )−𝑚𝑒𝑎𝑛(𝐸𝑃𝐸))2

2𝜎2 ∗
𝑑𝑖𝑠𝑡(𝑝𝑖,𝑝𝑖+1)

𝑠ℎ𝑜𝑟𝑡𝑝𝑎𝑡ℎ( 𝑐𝑖
𝑛,𝑐𝑖+1

𝑚 )
    Equation 6.1 

where 𝑑𝑖𝑠𝑡(𝑝𝑖+1, 𝑐𝑖+𝑖
𝑚 ) is the Euclidean distance between 𝑝𝑖+1 and one of its candidates, 

and 𝑑𝑖𝑠𝑡(𝑝𝑖 , 𝑝𝑖+1)  is the straight line Euclidean distance from 𝑝𝑖  to 𝑝𝑖+1 . σ  and 

𝑚𝑒𝑎𝑛(𝐸𝑃𝐸)  are the standard deviation and distribution centre of EPE. 

𝑠ℎ𝑜𝑟𝑡𝑝𝑎𝑡ℎ( 𝑐𝑖
𝑛, 𝑐𝑖+1

𝑚 ) is the length of the shortest path (i.e. network distance) from pi’s 

candidate 𝑐𝑖
𝑛 to 𝑝𝑖+1’s candidate 𝑐𝑖+1

𝑚 . 

The temporal transition probability (TTP) can be described with Equation 6.2 (Lou et 

al., 2009). The idea of this is to match the assumed average speed between two 

contiguous candidates with the speed limit of the assumed covered streets. In reality, 

the closer the assumed speed is to the speed limit, the larger the temporal transition 

probability is between the two candidates.  

 𝑇𝑇𝑃(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) =
∑ (𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡(𝑒𝑢)×𝑣̅(𝑐𝑖

𝑛→𝑐𝑖+𝑖
𝑚 )𝑢

√∑ 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡(𝑒𝑢)2
𝑢 ×√∑ 𝑣̅(𝑐𝑖

𝑛→𝑐𝑖+𝑖
𝑚 )2

𝑢

          Equation 6.2 
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where 𝑣̅(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) is the moving object’s assumed average speed on the shortest path 

between two possible candidates and 𝑣̅(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) =
𝑠ℎ𝑜𝑟𝑡𝑝𝑎𝑡ℎ( 𝑐𝑖

𝑛,𝑐𝑖+1
𝑚 )

𝑡(𝑝𝑖+1)−𝑡(𝑝𝑖)
. 𝑠𝑝𝑒𝑒𝑑𝑙𝑖𝑚𝑖𝑡(𝑒𝑢) 

is the legal speed limit on the street segment eu. For local walkways that are not given 

a legal speed limit, we set the speed limit to be the average Euclidean moving speed of 

officers on patrol (i.e. 1.874 m/s). 

  𝑆𝑇𝑇𝑃(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) = 𝑆𝑇𝑃(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 ) ∗ 𝑇𝑇𝑃(𝑐𝑖
𝑛 → 𝑐𝑖+𝑖

𝑚 )     Equation 6.3 

The STTP is the product of STP and TTP, as described by Equation 6.3. After the STTPs 

of every pair of contiguous observations are calculated, the goal of ST-Matching is to 

find the sequence of edges through graph GTr that maximise the global sum of the 

weights on the edges. Because there are so many observations that possess multiple 

candidates, and calculating the STTP of every pair of candidates involves intensive 

shortest path finding computations, we abandon the global weight maximum and use a 

sliding window to find the local maximum of the STTP sum of observations in the 

window at a given time. This improvement can greatly reduce the computation burden 

with a slight sacrifice of matching accuracy. The accuracy of the map-matching process 

is tested based on routes and trajectories simulated by an artificial trajectory generator 

that we design. The result is compared with other map-matching methods and discussed 

in Chapter 8. The map-matched routes and confirmed candidates are used for network-

based stay point identification in the next step. 

 

6.3.3 Network-based stay point identification 

The map-matching process has provided us with the matched trip routes with speed and 

location information of higher accuracy (performance evaluation can be seen in Chapter 

8). With these map-matched trip routes in the network, we can also identify the 

locations and dwelling times of stop episodes more accurately. Here we apply the kernel-

based approach (i.e. KTSW), with the same kernel function (Equation 5.1) as described 

in section 5.2, to the map-matched trips. The major difference here is that we replace 

the Euclidean metric of D in Equation 5.1 with the network distance between map-

matched GPS updates to define the kernel in spatial networks (Equation 6.4) for the 

network paradigm. 

    k(D) =
1

√2π
exp [−

1

2
(

shortpath(pi, pj)

B
)2]          Equation 6.4 

where shortpath(p′i,  p′j) is the length of the shortest path between two arbitrary map-

matched updates pi and pj in the temporal window. B is the present bandwidth of 

the kernel that decays along the street segments. 
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Figure 6.5 The kernel-based temporal scanning window based on network route length 

 

After the spatial distance metric is changed, the calculation of stay value stays in the 

same way as defined by Equation 5.3 and the stay value is attached to the street segments 

instead of planar space (Figure 6.5). As the scanning window scans through time, only 

the points within the temporal window participate in the stay value calculation. Map-

matched point updates with a stay value higher than θStayValue are identified as map-

matched stay points. Figure 6.6 shows an example of the difference of stay point 

identification results in the Euclidean paradigm and the network paradigm. A noticeable 

difference is that the precision of locations is improved by implementing map-matching 

before KTSW and conducting KTSW in street networks. This is because some actual stay 

point sequences with large positioning errors can have large displacements between 

observations. Module I of the Euclidean paradigm identifies these points as move 

episodes, whereas Module I of the network paradigm can correctly identify them as stops. 

The increased accuracy enables us to find more stay points correctly and more precisely 

estimate the actual time span of ST-ROIs. The accuracy comparison of conventional 

approaches and the KTSW methods in two paradigms are compared in Chapter 8 based 

on synthetic routes and trajectories. All identified stay points will be used as inputs to 

the ST-Net-DBSCAN method we proposed for ST-LOI detection in the next module. 
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Figure 6.6 Comparison between the stay point identification in Euclidean paradigm 

and network paradigm in space 

 

6.3.4 Complexity 

The global ST-Matching algorithm has the time complexity of O(mk2n log n +  mk2) 

(Lou et al., 2009), where m is the number of GPS points generated, n is the number of 

segments in the street network and k is the maximum number of map-matched 

candidates.  

Since each GPS observation only considers its side projection points on neighbouring 

road segments within its searching bandwidth as a set of candidates, the candidate set 

size is significantly smaller than the total size of road networks in real-life datasets. This 

makes the algorithm, besides having better matching quality, also more efficient, with 

linear complexity on the size of the GPS points O(n). The parameters of map-matching 

(e.g. searching bandwidth R  and the window size Twindow)  are tuned in the 

experiment in section 6.7 according to the characters of the movements and street 

networks in our case study. 

 

6.4 MODULE II: ST-LOI DETECTION 

Like Module II in the Euclidean paradigm, ST-LOI is detected in this module and the 

individual space-time profiles are generated based on the detected ST-LOIs. As Chapter 

5 has demonstrated, density-based clustering approaches based on Euclidean distance 

cannot fully represent the topological structure of interesting regions in street networks. 

Although DBSCAN and its variations are specifically designed to detect arbitrarily 

shaped point clusters, it is still impossible for DBSCAN to find the true shape of people’s 

stay point aggregation when the input points fed into the clustering approach have 
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position errors and the true shapes of the point cluster are submerged in noise in the 

dataset beforehand. With the method used in Module II of the Euclidean paradigm, 

interesting regions such as line-shaped shopping streets are still detected as a polygon 

or circular region because the GPS observation points always fall around the 

suborbicular surroundings of their true locations with a normally distributed 

positioning error. In the network paradigm, however, most positioning errors are 

mitigated in Module I. Hence, we further take the advantage of the map-matched stay 

points provided by Module I of the network paradigm and apply our newly designed, 

ST-Net-DBSCAN algorithm (i.e. a network-based variation of ST-DBSCAN) to 

comprehensively detect interesting regions in time and at the urban street network. so 

that the shape of the interesting regions in the city can be represented in a finer scale. 

By inheriting the advantages of DBSCAN, which can detect arbitrary shapes, ST-Net-

DBSCAN can detect regions of interest with shapes confined by road geometry. Hence, 

the proposed method enables spatio-temporal clustering of points with regard to the 

urban road network structure and generates road segments of interest instead of the 

approximate regions that attract people in spatial networks and time (i.e. ST-LOI). The 

following semantic enrichment module can also benefit from the better spatial 

boundaries of the ST-LOIs detected in this module. 

As viewed in Chapter 2, most existing network-based spatial clustering methods are 

applied and tested on synthesised point data (Yiu & Mamoulis, 2004) or points 

representing independent issues such as crimes (Tompson et al., 2009). None of them 

are designed or used for the analysis of point data generated by consecutive movements. 

Therefore, before the clustering process there was no map-matching technique that 

could be used to guarantee that the movement points themselves are precisely located, 

the speed correctly calculated and the stay points correctly identified. Also, there is no 

existing network-based spatial clustering method that simultaneously aggregates points 

in spatial networks and time. So far, the network paradigm that we propose is the first 

to combine map-matching and space-time network clustering for movement analysis. 

This module is the core of the entire network paradigm and involves the ST-Net-

DBSCAN algorithm that we developed. ST-Net-DBSCAN is a space–time clustering 

method for urban network environments based on DBSCAN. We chose to develop our 

method based on DBSCAN due to its four major advantages: 

(1) DBSCAN can detect clusters of arbitrary shapes. Linear, ring-shaped and curve-

shaped segments are ubiquitous in road network structures. By using network 

distance as the distance metric, DBSCAN can detect high-density clusters confined 
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in the shapes of any network structure. In contrast, it is difficult for other methods 

to detect clusters of noncircular shapes. 

(2) DBSCAN has the highest efficiency for clustering problems in road networks. 

Network neighbourhood queries and network-distance computations make up the 

largest number of calculations in the network space clustering process. Hierarchical 

clustering methods require that network distance between all points be 

precomputed and stored. Portioning-based methods, such as K-means and K-

medoids, need to run for many iterations before converging into the final result, 

which also causes a huge number of network-distance calculations. Moreover, 

finding the centroid of points within the network is expensive and sometimes 

impossible, which makes portioning-based methods even more inappropriate. On 

the other hand, only partial distance computations are necessary when the network 

neighbours are queried in density-based clustering methods, which makes DBSCAN 

the algorithm of the lowest computation cost in the network space (Yiu & Mamoulis, 

2004). 

(3) Unlike portioning-based methods and hierarchical methods, DBSCAN and its 

variants are not sensitive to noise. Outliers are not included in the generated clusters, 

and the locations and coverages of the detected interesting regions are therefore 

more accurate. 

(4) Unlike portioning-based methods and hierarchical methods, a priori knowledge is 

not needed by DBSCAN and its variants. The number of interesting regions does not 

need to be predefined. 

 

On the other hand, the ST-Net-DBSCAN is different form normal DBSCAN in 3 aspects: 

(1) ST-Net-DBSCAN uses network distance as the spatial distance metric. Unlike 

most of the spatial disctance metrics that can be expressed by equations, 

network distance is more complex and requires special algorithms to find 

shortest path within the network before the distance is calculated. 

(2) ST-Net-DBSCAN uses an extra temporal distance metric to work together with 

the spatial network distance. The stay point aggregations must be both spatially 

and temporally dense enough to be identified as an ST-LOI. 

(3) The network distance calculation and temporal dimension increase the 

intensity and complexity of computation. Therefore, ST-Net-DBSCAN needs to 

be accerlerated by optimisation solutions to make the processing time tolerable. 
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6.4.1 Definitions 

ST-Net-DBSCAN can be described with a series of definitions: 

• Definition 1 Map-matched stay points: After using the ST-Matching algorithm to 

snap the GPS points of a journey onto the segments of the streets, the network 

version of KTSW is used to detect stay points in the map-matched trip routes. We 

call these stay points map-matched stay points. 

• Definition 2 𝑵𝒆𝒕𝒘𝒐𝒓𝒌_𝑬𝒑𝒔 : The network-distance bandwidth that defines the 

network-space neighbourhood of stay point 𝑠′  along the road network. 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝐸𝑝𝑠 is calculated from the network distance of the shortest path between 

stay points. All map-matched stay points within the 𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝐸𝑃𝑆  network 

distance from a given stay point 𝑠’ are called the network space neighbours of 𝑠’. 

• Definition 3 𝑺𝒑𝒂𝒕𝒊𝒂𝒍_𝑬𝒑𝒔: Same as the definition in Chapter 5, 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐸𝑝𝑠 is the 

Euclidean bandwidth that defines the neighbourhood in Cartesian space. All map-

matched stay points within the straight line Euclidean distance 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐸𝑃𝑆 from 

a given stay point 𝑠’ are called the Cartesian space neighbours of 𝑠’. 

• Definition 4 𝑻𝒆𝒎𝒑𝒐𝒓𝒂𝒍_𝑬𝒑𝒔: The maximum time interval that defines the temporal 

neighbourhood of stay point s′ . All map-matched stay points within the 

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝐸𝑃𝑆  period from a given stay point 𝑠’  are called the temporal 

neighbours of 𝑠’. 

• Definition 5 Space-time network neighbours: The space-time network 

neighbours of s′ are the intersection set of its temporal neighbours and its network 

space neighbours. 

• Definition 6 Euclidean Space-time neighbours: The Euclidean space-time 

neighbours of s′  are the intersection set of its temporal neighbours and its 

Cartesian space neighbours. 

• Definition 6 MinPts: The minimum number of stay points required to generate a 

new Net-ST-ROI. 

• Definition 7 Directly reachable: A stay point 𝑠′ is a core stay point if it has more 

than MinPts space–time network neighbours (including 𝑠′  itself). Those 

neighbouring points are considered to be directly reachable from 𝑠′ . By this 

definition, no points are directly reachable from a non-core point. 

• Definition 8 Reachable: A stay point s′′  is said to be reachable from s′  if there is a 

path s1, s2, ⋯ , sk with s1 = s′ and sk = s′′, where each si+1 is directly reachable from 

its previous point si in the path (i.e. all the stay points on the path must be core stay 

points, except for the last one sk). 

• Definition 9 Noise: Points that are not reachable from any other point are noises. 
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• Now if s′ is a core stay point, then the ST-LOI determination process of the ST-Net-

DBSCAN can be described as follows. 𝑠′ forms an ST-LOI (map-matched stay point 

cluster) together with all stay points (core or non-core) that are reachable from it. 

Each ST-LOI contains at least one core stay point. Non-core points can be part of a 

cluster, but they cannot be used to reach any further points, so they form the margin 

of the ST-LOI. 

 

6.4.2 Describing the algorithm 

The process of the ST-Net-DBSCAN algorithm is described with the pseudocode in 

Figure 6.7. 
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Figure 6.7 Pseudocode of ST-Net-DBSCAN 

 

For example, Figure 6.8 shows the circular coverage area of stay point A with a 300 metre 

Euclidean radius. If Network_Eps = 300 m, map-matched stay points B and C are the 

network-space neighbours of A. D and E are A’s Euclidean neighbours because they 

locate within the 300 metre radius, but they are not A’s network-space neighbours. If 

MinPts = 3, NetworkEps = 300 m and the time intervals from B and C to A are both less 

than Temporal_Eps, then A will be a core point and the three points (A, B and C) can 

make up an ST-LOI. 
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Figure 6.8 The Euclidean coverage of map-matched stay point A and its reachable 

points in the network 

 

Like map-matching, ST-Net-DBSCAN also requires a large number of queries for 

network neighbours, which involves intensive shortest path computation. The strategy 

to search for space-time network neighbours therefore needs to be optimised. 

 

6.4.3 Space-time neighbour retrieving strategy 

Neighbourhood retrieval is the most time-consuming and memory-consuming step in 

our network paradigm. By optimising the retrieving strategy, redundant and 

unnecessary distance computations and I/O operations for the network data can be 

avoided. An example can be found in reducing the time complexity of conventional 

DBSCAN: the spatial retrieving process is optimised with partitioning and indexing 

techniques (Abbasifard et al., 2014) so that not all distances between every pair of points 

need to be calculated. Similar but more complex improvements can also be made for  

ST-Net-DBSCAN. 

Optimising the searches for space-time network neighbours plays a crucial role in the 

entire clustering process of ST-Net-DBSCAN, since retrieving neighbours and finding 

shortest paths with network distances involves complex and high-cost calculations. In 

our research, points that fall within the Temporal_Eps interval of stay point s′ are 

temporal neighbours of s′ . Points that are within the Temporal_Eps  and 

(Euclidean) Spatial_Eps from s′ are Euclidean space-time neighbours of s′. Temporal 

neighbours of one point therefore always contain Euclidean space-time neighbours. 
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Figure 6.9 The Euclidean filter area of s′ and the reachable street segments of s′ 

when (Euclidian) Spatial_Eps =  Network_Eps 

 

In ST-Net-DBSCAN, Network_Eps is the network-distance parameter that determines 

whether a stay point is a space-time network neighbour of s′ (i.e. whether a point is 

reachable from s′  through the shortest path on the street network). The Euclidean 

neighbourhood area from s′  is a planal and circular area of a Spatial_Eps. When the 

length of Spatial_Eps is equal to the length of Network_Eps, this circular area always 

covers all the reachable street segments that Network_Eps defines, as demonstrated in 

Figure 6.9. Consequently, the space-time network neighbours of a point are always the 

subset of the Euclidean space-time neighbours of this point. 

On account of this, the space-time network neighbours are included in Euclidean space-

time neighbours, and Euclidean space-time neighbours are included in temporal 

neighbours. We use a three-step query strategy to optimise the query by selecting the 

space-time network neighbours layer by layer: 

(1) Temporal selection: All space-time neighbours should satisfy the requirement 

defined by 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙_𝐸𝑝𝑠 . Also, time is a simple one-dimensional variable. 

Therefore, the first step of the neighbourhood query strategy is to determine the 

temporal neighbours of 𝑠′ with a simple subset operation in time. The temporal 

neighbours of 𝑠′ are used as inputs of the selection in the next stage. 

 

file:///C:/Users/ucesjsi/AppData/Local/Youdao/Dict/Application/6.3.69.8341/resultui/frame/index.html
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(2) Selection in Euclidean space: The second step is a fast Euclidean range query in 

planar space. In this stage, we search for Euclidean space-time neighbours of 𝑠′ 

based on the results obtained in the temporal selection. When 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐸𝑝𝑠 =

𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝐸𝑝𝑠, all space-time network neighbours of 𝑠′ fall within the space defined 

by 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐸𝑝𝑠, but not all stay points within 𝑆𝑝𝑎𝑡𝑖𝑎𝑙_𝐸𝑝𝑠 are space–time network 

neighbours of 𝑠′. We can therefore use the Euclidean range query as a filter to 

exclude the points that are too far away from further selection, therefore avoiding 

unnecessary network-distance calculations before searching for the space-time 

network neighbours in stage 3.  

Since we are not searching in a data set that keeps changing, the K-d tree (Cormen 

et al., 2001), a relatively straightforward and memory-oriented spatial-indexing 

method, is constructed to speed up the massive Euclidean space search. During the 

search, the K-d tree is traversed for RNN queries (Reverse Nearest Neighbour queries, 

also called Euclidean range queries) from each stay point, finding the points within 

the 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 − 𝐸𝑝𝑠  (i.e. Euclidean space-time neighbours). The K-d tree greatly 

speeds up the Euclidean range query in 2D space because it avoids large global search 

spaces by partitioning and indexing. At the end of this stage, only points within the 

Euclidean radius filter are preserved as Euclidean space-time neighbours and input 

to the next selection stage. 

 

(3) Selection in spatial networks: The final step is to select the true space–time network 

neighbours from the Euclidean space–time neighbours. The network distance of the 

shortest path between Euclidean space–time neighbours generated in the previous 

step to 𝑠′ is calculated by a data mining algorithm called A*. In the search for the 

shortest path between two points in the network, the A* algorithm (Nilsson & 

Raphael, 1968) heuristically guides the search from 𝑠′  to each of its Euclidean 

space–time neighbours. In addition to the spatial index structure in step 2, the filters 

should also be able to reduce the search space for shortest-path calculations. That is 

to say, only street segments and nodes that fall within the circular filter areas of s' 

are preserved to participate in the network-distance and shortest-path calculations 

in step 3. They significantly reduce the input size of the network distance calculation 

and hence reduce the time consumption of the entire space-time network neighbour 

query in every work thread of Module II. 

Steps 1 and 2 are expressed by lines 6 and 18 in the pseudocode (Figure 6.7) of ST-Net-

DBSCAN. Step 3 is embedded in the spatial query process in lines 7 and 19. Experiments 

show that this three-step space–time filtering process can reduce 91.3–96.7% of pairwise 

network distance calculations, depending on the point distribution and network layout. 
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The result of the three-stage query is the reachability and neighbourhood status of each 

stay point, which determines whether the neighbours are directly reachable from s′ 

and whether a Net-ST-ROI can be generated as defined in subsection 6.4.1. 

 

6.4.4 Visualisation of ST-LOIs 

Visualising derived information in a suitable way is important for explaining and 

displaying the outcomes. Therefore, the task at the end of the module is to visualise 

temporally and spatially changing ST-LOI occurrences distributed over the study area. 

Additionally, the visualisation technique should be compatible with the spatial 

representation of the street in the network paradigm. The main goal is to support the 

exploratory understanding of the detected ST-LOIs. We have used a conventional 3D 

scatter map in the space-time cube to visualise the detected ST-ROIs in the Euclidean 

paradigm. If we continue to visualise the map-matched stay point clustering with the 

scatter map, additional projections are needed to show the points’ associations with the 

street segments. In Figure 6.10, the vertical axis shows the time spans of the ST-LOIs, 

and the magnified detailed example shows the street segments covered by one ST-LOI 

located in Camden Market, London. In this way, the spatial coverages of Net-ST-ROIs 

are expressed by the projections of the space-time points on the streets in the map used 

as a basis. 

 

 

 

Figure 6.10 Detected ST-LOIs visualised in a space-time cube and their projections on 

the streets 
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Nevertheless, the scatter map is after all a point-based visual presentation and cannot 

reflect in a clear and tidy manner the relationship between the ST-LOIs and the street 

networks consisting of the interconnected line segments. It will be especially difficult to 

understand when there are too many points in the clusters and when there are clusters 

that are close to each other. The connectivity of streets in individual ST-LOIs is also 

impossible to be seen in a point cluster. Moreover, the semantic information can also 

not be delivered by the points. Therefore, a 3D wall map visualisation is designed to gain 

insights into the ST-LOIs’ network geometry and additional semantic information. The 

3D wall map is essentially a 2D network link map (Becker et al., 1995) stacked layer by 

layer along an additional time dimension for showing the temporal variations of the data 

on the links. As reviewed in Chapter 2, it was originally used for the visualisation of 

traffic data and trajectory speed on the street networks. Instead of using as originally a 

3D wall map to visualise the data along the entire links, we use it to highlight only part 

of the segments in the ST-LOIs. We built a graphical user interface of a 3D wall map 

using R with rgeos, rgl, shiny, leaflet and maptools packages. From the 2D road network, 

we stacked a layer at a time. Each layer is equivalent to a 10 minute interval as the 

example describes in Figure 6.11. We call each 10 minute layer in each ST-LOI a time 

brick. 

 

 

Figure 6.11 The 3D wall map visualisation of one ST-LOI in a space-time cube 

 

The main goal for this visualisation is to support the joint expression and exploration of 

the ST-LOIs’ temporal aspect, spatial (network) aspect and semantic aspect. Since we 

have only acquired the temporal and spatial information of the human’s activities 

through Modules I and II, the first two aspects are included in the 3D wall map in this 
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section. Unlike the scatter map that can only roughly show the stay point density in a 

space-time cube, the 3D wall map enables us to add the heat map, similar to the data 

exploration heat maps in Chapter 4, onto the “walls” to display the ST-LOI’s exact visit 

intensity variation in time. The more officers are observed to have stayed within the 10-

minute time brick of the ST-LOI, the hotter the time brick’s colour. As can be seen in 

Figure 6.11, some of the street names are marked out on the wall. This shows that the 

wall shapes also preserve the 2D geometry of street segments in the ST-LOI. Additional 

visualisation for the semantic information will be discussed in section 6.5 after Module 

III’s semantic analysis of places. 

 

6.4.5 Complexity 

The complexity of the traditional DBSCAN algorithm is 𝑂(𝑚 𝑙𝑜𝑔 𝑚). ST-Net-DBSCAN 

does not change the runtime complexity of the algorithm’s ST-ROI determination 

process. However, the shortest-route search in the calculation of network distance 

between map-matched stay points, after the elementary spatial selection, has an extra 

run time of 𝑂(|𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠|) (Sedgewick & Vitter, 1986), where |𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠| is the number 

of end nodes and intersecting nodes that fall within the circular filter area of the 

elementary spatial selection. 

Building the K-d tree has a time complexity of 𝑂(𝑚 𝑙𝑜𝑔 𝑚) when an 𝑂(𝑚) median of 

the medians algorithm is used to select the median at each level of the nascent tree 

(Cormen et al., 2001). After construction of the K-d tree, using it for the Euclidean range 

search can bring an 𝑂(√𝑚  + |𝑜|) worst-case time complexity (Ooi, 1987), where |𝑜| is 

the number of output points of the Euclidean range query. 

 

6.5 MODULE III: SPACE-TIME SEMANTIC ENRICHMENT IN ROAD 

NETWORKS 

6.5.1 Network POIs 

POIs in a city and the urban networks naturally bond to each other. On one hand, all 

POIs in a city can be accessed through streets of various levels and the majority of POIs 

possess geocoded street addresses when collected. On the other hand, POIs and 

waypoints are interchangeable synonyms in the urban navigation context 

(OpenStreetMap, 2017) and travellers in the city navigate themselves on a point-to-point 

basis through the urban network. Moreover, movements in the city following the 

geometry of streets and networks is a better representation of urban structures than 

raster-based methods when movements are involved. Therefore, generating semantic 

https://en.wikipedia.org/wiki/Median_of_medians
https://en.wikipedia.org/wiki/Median_of_medians
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ST-LOIs with POI information along the street segments can provide us with the 

semantic meaning of places at a finer scale.  

 

 

Figure 6.12 The relationship between ST-LOIs and the POIs along the streets 

 

Figure 6.12 is a hypothetical example to demonstrate the method of ST-LOI semantic 

enrichment in street networks. The ST-LOI semantic enrichment method is based on an 

expression of space-time boundary different from ST-ROI. Its process can be divided 

into 3 steps: 

(1) Each ST-LOI’s spatial boundary is defined as the union set of street segments to 

which the ST-LOI’s stay points have been matched in Module I. The temporal 

boundary is the time span of the ST-LOI. The network space-time boundary is the 

combination of both. 

(2) The POIs are associated with the street segments containing the POIs’ registered 

street addresses or streets closest to the POI. If an ST-LOI covers the associated 

streets of a POI, the POI is considered to be inside the ST-LOI’s spatial boundary. 

POIs that fall inside a ST-LOI and, at the same time, have opening hours overlapping 

with such an ST-LOI, are considered to be inside the ST-LOI’s network space-time 

boundary. 

(3) The TF-IDF algorithm is used to annotate the semantic information of ST-LOIs. All 

POIs in the study area are equivalent to the corpus. The POIs in the network space-

time boundary of each ST-ROI are equivalent to a document, and the major 

categories of POIs are equivalent to the topics in text mining analysis. The semantic 

contribution of different (major) categories of POIs to ST-LOIs are weighted by the 

same method as used in the Euclidean paradigm. 

As can be seen from Figure 6.12, the church is not located along the street segments 

within the ST-LOI’s spatial boundary, so it is not considered in the semantic enrichment 
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process of this ST-LOI. The car rental service building has separated opening hours in a 

day. The earlier period of its opening hours do not overlap with the temporal boundary 

of the ST-LOI, so it also does not contribute any semantic meaning to the ST-LOI. 

6.5.1 Visualisation 

The semantic enrichment module can quantify the semantic contributions of POI 

categories to each ST-LOI. To incorporate semantic information in the 3D wall map, 

each ST-LOI is semantically labelled with different colours according to the dominant 

semantic meaning (i.e. the major POI category with the largest semantic contribution) 

in its network space-time boundary. Besides, the shades of the colours can still be used 

to show the visit intensities, just like the 3D wall map for non-semantic ST-LOIs. The 

visit intensity and time space of semantic ST-LOIs vary dramatically. Thus, the 

visualisation should convey semantic information in addition to the spatio-temporal 

knowledge when viewed at different zoom levels and angles. An example of the 

visualisation result can be seen in the case study section of this chapter. 

 

6.6 MODULE IV: PROFILE AGGREGATION 

Module IV is the aggregative analysis of the semantic profiles generated through the 

spatial and temporal analysis methods in Modules I, II and III. It does not involve any 

spatial operations or adaptive improvements for network analysis. Therefore, the 

procedure and methods in Module IV of the network paradigm are exactly the same as 

in Module IV of the Euclidean paradigm. After the individual space-time profiles are 

summarised based on ST-LOIs, they are transformed into semantic profiles according 

to Equation 5.10 and aggregated by the hierarchical clustering method with a JSD-based 

similarity metric (Equation 5.11). The results of hierarchical clustering are further 

evaluated and compared with the Euclidean paradigm and conventional approaches in 

Chapter 8. 

 

6.7 CASE STUDY 

We tested the network paradigm with the same dataset as used in the extended 

multiple-borough case study in the previous chapter. We separate the ITN street 

network file of the study area into 12 parts according to the 2 km buffer zones of 12 

boroughs, and consider police officers based in the 12 different BOCUs as 12 movement 

datasets. Modules I and II are organised in 12 workflows: each workflow processes the 

movement of officers in each BOCU in a spatial temporal way. For the intensive network 

computations in Modules I and II, we use UCL’s Legion cluster computation platform 
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(University College London, 2017) to process the 12 work threads in parallel and 

significantly speed up the first two modules of the network paradigm. The outcomes of 

Modules I and II are then processed on a desktop PC for the methods of much lighter 

workloads in Modules III and IV.  

In Module III, the outcomes (i.e. ST-LOIs and individual non-semantic profiles) of all 

workflows are combined and semantically enriched with the merged POI dataset of the 

entire study area. We execute Module III in a single workflow also because the text 

mining method requires a larger corpus to get high-quality results, which means a large 

enough number of POIs in all ST-LOIs of the study area should participate in the 

semantic enrichment process. In Module IV, all individual officers’ semantic profiles are 

aggregated. This chapter presents the outcomes of every module, as well as the 

differences and improvements made to the network paradigm. For security seasons, we 

only showcase the results of three central London boroughs for demonstration. 

 

6.7.1 Map-matched observations 

Before all analyses, the raw movement observations are segregated into individual trips 

and the trip trajectories are turned into trip routes in the ITN urban theme layer by the 

ST-Matching algorithm (Lou et al., 2009). Figure 6.13 shows the observation points 

before and after snapping by the ST-Matching. To make the map concise, we choose the 

movement data of one week (August 1st – August 7th, 2015) in the three chosen boroughs 

to avoid too many points that cause messy visualisation. It can be seen that 138,041 

observations during this week have been snapped onto the streets to recover the actual 

route taken by the officers. Afterwards, all the modules will be based on these post-

snapping movements. The accuracy of the map matching for the movement in the case 

study and London’s complex street networks cannot be directly tested with the APLS 

data because there is no ground truth of trip route recorded by the officers. We therefore 

design a synthetic trip route generator to mimic the true patrol routes and make up 200 

artificial trip routes as well as simulated GPS observation errors to test the accuracy of 

the map-matching process in this module. The evaluation can be found in section 8.1 of 

the validation chapter. 
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Figure 6.13 (a) Raw observations; (b) Map-matched observations 

 

6.7.2 ST-LOIs and their visualisation 

Here we use the same results of the ST-LOI detection in Camden, City of Westminster 

and Islington to demonstrate its merits over previous density-based clustering 

algorithms that use Euclidean distance as a distance metric. More than 1,800 officers 

working in the three chosen boroughs are recorded by the APLS. Among them, 620 

officers generated more than five trips during August 2015, sufficient for the pattern 

analysis. The 620 outdoor active officers are selected and analysed. According to 

Equation 5.3, we set the  𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝐸𝑝𝑠 = 20 + 2𝜎 = 36 𝑚  and the 𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐸𝑝𝑠 =

5 𝑚𝑖𝑛 = 300 𝑠, and the 𝑚𝑖𝑛𝑃𝑡𝑠 is set to be 55. Figure 6.14 is the visualisation of 67 ST-

LOIs detected by the proposed method. The geographic names of some typical Net-ST-

ROIs and their spatial coverages are also marked out in the figure. 
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Figure 6.14 Space–time cube visualisation of the 67 Net-ST-ROIs detected 

 

By comparing the 2D maps of the ST-LOIs (Figure 6.14) and the ST-ROIs (Figure 5.20) 

detected in the Euclidean paradigm, we can see that most ST-ROIs detected by 

conventional ST-DBSCAN are suborbicular clumps. Unlike normal DBSCAN methods, 

ST-Net-DBSCAN is able to preserve the geometry of the interesting regions, especially 

the line-shaped regions such as Oxford Street, the Mall near Buckingham Palace and 

even Westminster Bridge on the River Thames. It also allows some ST-LOIs that cannot 

be detected by normal DBSCAN to be detected in areas of low street segment density.  

 

 

Figure 6.15 (a) The spatial boundary of an ST-ROI in Oxford Circus; (b) The network 

spatial boundary of an ST-LOI in Oxford Circus 

 

Figure 6.15 shows an ST-ROI and an ST-LOI detected in the same area (i.e. Oxford Circus, 

London) in the afternoon with the same APLS dataset (i.e. August 2015). Figure 6.15 (a) 
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is the ST-ROI No.44 detected in the extended case study of the Euclidean paradigm in 

section 5.7, and Figure 6.15 (b) is the ST-LOI No.17 detected in the network paradigm. 

The comparison shows the differences between ST-ROI and ST-LOI in space. It can be 

seen that it is difficult to tell which stay point is in front of which POI or building in 

Figure 6.15 (a), whereas the ST-LOI is better ordered geographically. The ST-Net-

DBSCAN is also able to discover stay points on some street segments not covered by ST-

DBSCAN, and the Euclidean ST-ROI mistakenly covers some streets that officers never 

actually stopped at, probably due to GPS location error. It also shows that the stay points’ 

relative locations to the POIs are also clarified because the map-matching process of the 

network paradigm can recover the true location and speed of the patrol activities with 

high certainty. 

As illustrated in section 6.4.4, the 3D point clouds are not appropriate for visualising the 

detected ST-LOIs, whereas the 3D wall map can display the segment structures of ST-

LOIs that we detected in Module II in space and time. Figure 6.16 is a sideview of the 3D 

wall map of the 67 detected ST-LOIs. The colours on the time bricks of the walls 

represent the visit intensity in every 10-minute interval. The hotter the colour, the more 

officers have stayed in an ST-LOI during the time brick’s 10 minutes. In this way, not 

only the spatio-temporal information of ST-LOIs but also the time variation of officers 

ST-LOI visiting behaviours are visualised. It can also be seen that the high overall police 

visit intensity in the afternoon in Figure 6.16 also corresponds to the data exploration 

heatmap in Figure 4.9, although in comparison the 3D wall map is a great improvement. 

We incorporate this 3D wall map in a graphic user interface to allow zoom in, zoom out 

and rotate operations for the views in order to see and perceive the visualisation from 

different angles and different levels of detail. For example, a top-down angle of view 

allows the viewer to see the network structure of ST-LOIs in space, while a side profile 

can provide time span information of the ST-LOIs. 
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Figure 6.16 3D wall map visualisation of the 67 ST-LOIs 

 

The ST-LOIs detected in Soho and Camden Town are also marked in rectangles in Figure 

6.16. The spatial coverages of ST-LOIs are more clearly visualised by 3D wall maps. By 

observation, we find that the spatial boundaries of interesting places vary over time. The 

ST-LOIs detected in Camden Town before dawn and in the late evening show similar 

spatial boundaries, whereas the spatial coverage of the Camden Town ST-LOI in the 

afternoon shrinks back to the southeast side of the Regent’s Canal. Similarly, the spatial 

boundary of the Soho ST-LOI in the early morning is evidently smaller than the Soho 

ST-LOI in other periods of the day. The possible semantic cause of this phenomenon 

will be discussed in the next sub-section. 

 

6.7.3 Semantic enriched ST-LOIs 

As illustrated in the methodological framework, we use the information of POI 

subcategories in every ST-LOI’s and POI’s opening hours as input to the TF-IDF 

algorithm to generate semantic ST-LOIs in a quantified manner. An ST-LOI’s semantic 

meaning is described by the combination of the semantic contribution percentage of all 

POI categories. Among the 67 ST-LOIs detected by Module II, 7 of them are chosen to 

demonstrate the semantic enrichment results. 
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Figure 6.17 Semantic contributions of POI categories in ST-LOIs 

 

The semantic contributions of POI categories in each of the 7 ST-LOIs in figure 6.17 

generally fit people’s understanding of the places. For example, retail POIs account for 

the largest contribution in Oxford Circus, and Health POIs stand out in the ST-LOIs 

near the Hospital of St John & St Elizabeth (HJE Hospital). Apart from this, Module III 

enables people to compare the semantic ST-LOIs by numbers and observe the temporal 

variation of a place’s semantic meaning. For instance, ST-LOIs No.1, No. 2 and No.40 are 

all located in Camden Town and they reflect the busiest periods of this place; however, 

the semantic meaning keeps changing over time. It can be seen from Figure 6.17 that the 

transportation function of Camden is more significant during the day. The early 

morning ST-LOI (i.e. ST-LOI No.2) and late evening ST-LOI (i.e. ST-LOI No.1) of 

Camden Town attract visitors and police officers mainly because they are ST-LOIs with 

eating, drinking and entertainment related activities. A lot of POIs like bars and 

restaurants open during these periods, whereas ST-LOI No.40 shows a prominent 

function of retailing and shopping of Camden in the afternoon mostly because of 

Camden Market opening during the day time. This also explains why the spatial 

coverage of Camden Town ST-LOIs shrink in the daytime and expand at night. The 

market and most stores that are open in the daytime are distributed on the southeast 

side of the bridge over the Regent’s Canal, whereas the bar and restaurants can be found 

on both sides of the canal. 

 

ST-LOI No. 2 40 1 4 3 17 13
Name of the place Camden Town Camden Town Camden Town British Museum Parliament Square Oxford Circus HJE Hospital
Emerge Time 0:00 13:14 20:31 11:35 15:02 16:59 15:24
Perish Time 5:05 16:25 23:59 12:27 15:46 18:41 16:43
Accommodation, eating and drinking 0.3191 0.184600515 0.4068 0.1305 0 0.1759 0
Attractions 0.0371 0 0.0487 0.3027 0.4213 0 0
Commercial services 0.1067 0.237780257 0.1026 0.2778 0.0466 0.218 0.27
Education 0 0.039041175 0.0135 0 0 0 0
Government and organisations 0 0 0.0143 0.1719 0.2502 0.0073 0
Health 0.0577 0.08795296 0.0871 0 0 0.088 0.4921
Manufacturing and production 0 0 0.0064 0 0 0.0086 0
Public infrastructure 0.0966 0.025213847 0.0308 0 0.0335 0.0062 0
Retail 0.062 0.255141121 0.0644 0.1172 0.1091 0.3843 0.2379
Sport and entertainment 0.3207 0.025138659 0.2236 0 0 0.0212 0
Transport 0 0.145131465 0.0018 0 0.1594 0.0906 0
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Figure 6.18 3D wall map visualisation of semantic ST-LOIs 

 

In Figure 6.18, multiple colours are added into the 3D wall map to incorporate the 

semantic information. We colour the ST-LOIs differently according to the dominant 

POI category, i.e. the POI category that accounts for the largest share of semantic 

contributions in each ST-LOI. This improvement allows the viewer to intuitively 

compare the semantic meaning between places and observe the semantic meaning 

variation of a place over time. For example, the semantic meaning of Camden Town is 

dominated by the opening entertainment POIs before dawn and turns into a retail 

function in the daytime and then eating and drinking at night. Soho is a place of 

commercial services in the early morning before turning into a place for eating and 

drinking for the rest of the day.   

 

6.7.4 Semantic profiles and profile aggregation 

The methods used in Module IV of the network paradigm for aggregative analysis of 

semantic profiles are the same as the ones in the Euclidean paradigm. After acquiring 

the individual dwelling time allocation in Module II and the semantic ST-LOI in Module 

III, we transform individual space-time profiles in into semantic profiles for hierarchical 
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clustering analysis. According to the Dunn index test (Dunn, 1973), it is most appropriate 

to separate the officers’ activity patterns into 7 groups as shown in Figure 6.19.  

 

 

Figure 6.19 The 620 active officers separated into 7 groups 

 

Because it is impossible to list all 620 officers’ information and their profiles in the thesis, 

we present the officers in groups in Figure 6.20 by demonstrating the average semantic 

profile and the number of officers within each activity group for depiction of their 

activity patterns. The figure shows that different activity groups have different time 

allocation preferences. For example, Group No.1 spends more time in tourist attractions 

and government related areas than any other groups, while Group No.1 is more focused 

on streets of retail stores. Since our study area is near the city centre where no factories 

can be found, no one spent their time on ST-LOIs of a manufacturing type. The 

aggregative result also shows the methods ability to find behaviour outliers, i.e. officers 

that have semantic activity profiles different from all other officers. The only officer in 

Group No.6 has spent most of his/her working time in August 2015 on retail ST-LOIs 

and the only officer in Group No.7 spent much more time in public infrastructure and 

commercial services. 
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Figure 6.20 Average semantic profiles of officer subgroups 

 

As introduced in section 4.2, the APLS data contain the work type information of officers, 

indicating the different sectors to which officers are attached. We also summarised the 

work type information of the grouped officers to look into the relationship between 

activity patterns and the officers’ roles in the police force. Figure 6.21 is the pie chart 

showing the percentage of officer types in the 7 activity groups. Most community 

support officers are in Group No.2 and most special constables are in Group No.4. The 

section sergeants are very rare and they are not one of the common police work types 

listed in Table 4.1. The most interesting phenomenon is that all of the section sergeants 

are found in Group No.2 that has special interest in tourist attractions and governmental 

places. Due to the lack of ground truth behaviour records such as mission logs, we 

cannot analyse the cause of this phenomenon. Nonetheless, the grouping result shows 

that Module IV can provide quantified comparisons for the viewers to intuitively 

comprehend the activity patterns of officers and provide clues for more detailed 

inspections of officer behaviours. 
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Figure 6.21 Work type composition within the officer subgroups 

 

6.8 CHAPTER SUMMARY 

In this chapter, we substitute the Euclidean distance metrics with the network distance 

and propose a network-based ST-DBSCAN algorithm (i.e. ST-Net-DBSCAN) to facilitate 

spatio-temporal clustering in urban road networks. We combine it with the existing 

map-matching algorithm to find ST-LOIs based on the movement trajectories in the city. 

To our knowledge, this is by far the first work to integrate map-matching and clustering 

method in networks for movement trajectory analysis. For the consequent increase of 

computation burden, we optimised the space-time retrieval strategy to speed up both 

the map-matching and the ROI-detection module. We also execute the workflow in 

Modules I and II in parallel to further accelerate the entire framework.  

We tested it with real London’s Metropolitan Police patrol data of 12 boroughs in 

London’s complex and large urban network. Results showed that the algorithm can 

better pinpoint the street segments that officers are interested in and provide a more 

realistic tool for trajectory analysis in an urban context.  

While the 3D scatter map gives a general view of stay point aggregation in space and 

time, the 3D wall map constrained by road networks avoids the information loss of the 

network structure in the visualisation. It also provides more precise and more sensible 

locations of stay points and ST-LOIs, and reveals how the visiting intensity changes in 

each street to provide comprehensive insights for the viewer. 

The network paradigm generates better results than the existing Euclidean-based 

methods and overcomes the limitations of the previously proposed Euclidean paradigm 
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in terms of location accuracy, time sensitivity and legibility of the cluster boundaries in 

an urban context, and it is also scalable for large problems. Many previous studies on 

ROI detection have based their spatial metrics on the Euclidean distance and ignored 

the influences of location error and road networks. Other studies ignore the temporal 

dimension in human activities. The ST-Net-DBSCAN generates ST-LOIs that can fit into 

the structure of the road networks, truly reflect the patrolled street segments and 

consider the time span as an important aspect of the places. These modifications enable 

the method to pinpoint the locations and coverages of interesting regions with higher 

accuracy and hence help improve confidence in further semantic enrichment of the stays 

when needed. Detailed validations and comparisons of methods can be seen in Chapter 

8. 

The major limitation of the network paradigm is the accessibility of the POI data and 

the accuracy of the semantic enrichment process. The Ordnance Survey POI 

information we rely on for Module III is hierarchically categorised a priori. Nevertheless, 

a lot of POI data in other areas and countries are not that well organised. In the next 

chapter, we introduce a more advanced text mining algorithm that does not require a 

predefined hierarchical POI classification scheme and enables the semantic enrichment 

of places with higher accuracy. 
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7 IMPROVEMENTS IN SEMANTIC ENRICHMENT MODULE 

Chapter 6 has demonstrated a space time semantic enrichment approach based on TF-

IDF algorithm and achieved satisfying outcome. However, this approach requires the 

POI dataset to be well organised and hierarchically categorised, whereas any real-world 

POI datasets are not hierarchically categorised (e.g. google places). Even though some 

POI datesets are hierarchically categorised, their global classification scheme do not 

necessarily fit the purpose of semantic enrichment in cases of particular cities. Thus, a 

semantic enrichment approach to serve the same purpose without a hierarchical POI 

classification scheme is needed. To this end, we introduce a semantic probability-based 

topic extraction model, Latent Dirichlet allocation (LDA) (Blei et al., 2003), to replace 

TF-IDF. LDA is an unsupervised generative model that can dig out hidden topics from a 

large collection of documents. As reviewed in Chapter 2, It is a more sophisticated and 

objective algorithm compared to conventional approaches based on word frequencies 

such as TF-IDF. 

 

7.1 METHOD DESCRIPTION 

The LDA works by statistically grouping words into potential topics by studying their 

occurrences across different documents/sentences and represent the meaning of 

documents as mixtures of topics with different probabilities. As a bag-of-words model, 

the main premise of LDA topic modelling in semantic enrichment application is that co-

occurring same types of POIs in the same ST-LOIs are assumed to be related or bear 

similar semantic meaning for human activities, and are therefore more likely to be 

assigned to the same semantic category. 

From the mathematical perspective, a topic possesses a semantic meaning or concept 

and expresses a series of related words with conditional probability; Each document 

containing different words can be seen as a probabilistic distribution of multiple topics. 

In short, the more correlated the word is with a certain topic, the greater the word’s 

conditional probability is and vice versa. In our case of platial semantic enrichment, we 

regard all street segments in a ST-LOI as a document and the semantic category of the 

ST-LOI as a topic. In this way, the POIs located in the streets of ST-LOIs can be seen as 

words and terms. This means that, unlike TF-IDF in which each POI can only belong to 

one single category, each POI in LDA model can be given a corresponding probability 

of it belonging to different semantic categories to varying extents just like each word 

can be associated with different topics. Likewise, an ST-LOI can also contain multiple 

semantic meanings with different probabilistic weights just like a document possessing 
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various topics in text mining. This analogy between semantic enrichment and texting 

mining is demonstrated in Table 7.1. 

Table 7.1 Analogy from textual topics to semantic analysis of places 

Text mining Semantic enrichment of places 

Corpus  →  All POIs 

A word in a document  →  A POI in a ST-LOI 

Documents/sentences  →  Combination of all POIs in a ST-LOI 

Topic of a document  →  Semantic meaning of a ST-LOI 

Topic assignment  →  Semantic enrichment 

 

With this analogy in mind, the probability of each type of POI appearing in the space 

time boundary of a certain ST-LOI can be illustrated in a generative model as follows: 

 

𝑝(𝑃𝑂𝐼 𝑖𝑛 𝑆𝑇 − 𝐿𝑂𝐼) = ∑ 𝑝(𝑃𝑂𝐼 𝑖𝑛 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐) ∗ 𝑝(𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑖𝑛 𝑆𝑇 − 𝐿𝑂𝐼)𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐   

Equation 7.1 

 

This Equation can also be expressed in a matrix form as show by Equation 7.2. 

 

[

𝑝11 𝑝12

𝑝21 𝑝22
⋯

𝑝1𝑛

𝑝2𝑛

⋮ ⋱ ⋮
𝑝𝑚1 𝑝𝑚2 ⋯ 𝑝𝑚𝑛

] = [

∅11 ∅12

∅21 ∅22
⋯

∅1𝑡

∅2𝑡

⋮ ⋱ ⋮
∅𝑚1 ∅𝑚2 ⋯ ∅𝑚𝑡

] × [

𝜃11 𝜃12

𝜃21 𝜃22
⋯

𝜃1𝑛

𝜃2𝑛

⋮ ⋱ ⋮
𝜃𝑡1 𝜃𝑡2 ⋯ 𝜃𝑡𝑛

] Equation 7.2 

 

As described in Equation 7.2, 𝑝𝑚𝑛 is the probability of the m-th POI in the n-th ST-LOI; 

∅𝑚𝑡 is the probability of the m-th POI in the t-th semantic category; and 𝜃𝑡𝑛 represents 

the probability of the t-th semantic category in the n-th ST-LOI. Consequently, the 𝑝 

matrix represents the probability of each POI falling in each ST-LOI; the ∅ matrix 

represents the probability of each POI falling in each semantic category c; and the 𝜃 

matrix represents the contribution of each semantic category to the meaning of the ST-

LOI. After detecting all ST-LOIs in the study area, a tokeniser can use all POIs in the 

space time boundaries of all ST-LOIs to generate a 𝑝 matrix. The process of the LDA 

algorithm is to iteratively derive the corresponding ∅  matrix and 𝜃  matrix in the 
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process of training this 𝑝 matrix with Gibbs sampling method (Griffiths & Steyvers, 

2004).  

LDA require two parameters to be determined before implementation. α  is the 

parameter of the Dirichlet prior on the per-document topic distributions. β  is the 

parameter of the Dirichlet prior on the per-topic word distribution. A low α value 

places more weight on having each document composed of only a few dominant topics, 

whereas a high α value will generate many more relatively dominant topics. Similarly, a 

low β value places more weight on having each topic composed of only a few dominant 

words. In the implementation of LDA, different values of α and β are iteratively tested 

with log likelihood. The combination of α and β that generates the highest and most 

stable log likelihood is selected as the most suitable parameter input to the algorithm. 

The mathematical details of log likelihood will be discussed in Section 7.2.2 together 

with the evaluation method. 

In the case study of Inner London, we implement the LDA semantic enrichment using 

the R text mining package. Subsequently, we illustrate the results of different semantic 

meanings with different colors in the same 3D wall map visualisation method in Section 

6.4.4.  

 

7.2 CASE STUDY 

7.2.1 The multiple-borogh case 

Here we infer the semantic meanings of each ST-LOI in Inner London by applying a 

basic LDA algorithm instead of TF-IDF to the same dataset used in Section 5.7 and 

Section 6.7. To demonstrate LDA’s ability to generate the semantic categories based on 

non-hierarchically categorised POIs, we abandon the OS POI dataset in this case study. 

Instead, we use the POI dataset and the POI classification scheme (see Appendix C) of 

Google Places in Inner London as the input corpus of the LDA algorithm. 

The LDA model can firstly generate a “top words - topic” table for researchers to 

determine the thematic description for each “topic” (i.e. semantic category) intuitively. 

The “top words - topic” table generated for our case study is demonstrated in table 7.2. 

The top 8 probabilistically significant subcategories of POIs are listed for each semantic 

category. According to the contents of the “top words”, we manually annotate the 7 

categories as food and eating, shopping, health and beauty, financial and public services, 

local life centre, entertainment and night life, and attractions. The higher the rank of a 

“word” (i.e. POI subcategory) in a semantic category’s top word list, the more 
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contribution it makes to form the category. Some POI subcategories appears in multiple 

categories and make these categories more similar to each other than the rest of the 

categories. However, they can still be distinguished semantically by taking more “top 

words” into account. For example, the “store” POIs rank first in both Category 2 and 

Category 5. However, the other POI subcategories listed in these two categories in Table 

7.1 shows that Category 2 is related to more specialised and luxurious shopping activities, 

whereas Category 5 focuses on the retail of daily necessities. 

 

Table 7.2 Semantic categories summarised by LDA though the combination of popular 

POI subcategories 

 Category 

1 

Category 

2 

Category 

3 

Category 

4 

Category 

5 

Category 

6 

Category 

7 

Annotat

ion 

Food & 

eating 

Shopping Health & 

beauty 

Financial 

& public 

services 

Local life 

centre 

Entertain

ment & 

night life 

Attractio

ns 

1 Food Store Health Finance Store Bar Museum 

2 
Restaura

nt 

Clothing 

store 

Beauty 

salon 

Travel 

agency 

Food Night 

club 

Park 

3 
Bar Shoes 

tore 

Haircare ATM Grocery Food Restaura

nt 

4 

Café Jewelry 

store 

Spa Real 

estate 

agency 

Homegoo

d store 

Restaura

nt 

Place of 

worship 

5 
Liquor 

store 

Painter dentist Lawyer Laundry Movie 

theater 

Store 

6 
Convenie

nce store 

Meal 

takeaway 

Gym Park Café Casino Lodging 

7 

Meal 

takeaway 

Shopping 

mall 

Doctor Church General 

contracto

r 

Lodging Florist 

8 

Book 

store 

Pet store Pharmac

y 

Local 

governm

ent 

Bakery Car 

rental 

Stadium 

 

The same 3D wall map used in Section 6.7 is used to visualise the ST-LOIs semantically 

enrichment by LDA (Figure 7.1). The orange rectangles in Figure 7.1 mark out the ST-
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LOIs located in Oxford Street. These ST-LOIs are identified by LDA as Category 2 

semantic ST-LOIs and related to shopping activities. Compared with the outcomes of 

TF-IDF in Figure 6.18, the LDA can distinguish the major shopping street in a city with 

minor commercial areas in local districts. The LDA algorithm also generates similar 

results in some ST-LOIs as the TF-IDF method. For instance, the changes of semantic 

meanings in Camden Town and Soho are detected and the unique tourist attraction in 

Buckingham Palace is also correctly identified. 

 

 

Figure 7.1 3D visualisation of the outcomes of LDA semantic enrichment 

 

7.2.2 Model evaluation 

The LDA model is based on the sampling of part of the “words” (i.e. POIs), therefore the 

results are inconsistent when the samples for training the model are changed in every 

iteration. Therefore, we use the goodness of fit to evaluate the LDA model. Log 
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likelihood (Griffiths & Steyvers, 2004) is the most commonly used indicator for this 

evaluation. For LDA, the whole input dataset of POIs in ST-LOIs are splitted into two 

parts: one for model training, the other for testing. The log likelihood in this case is 

calculated based on the sampled training set in iterations as illustrated in Equation 7.3.  

𝐿𝑜𝑔𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑({𝑑′}|𝐷) = ∑ ∑ 𝑙𝑜𝑔 (𝑝(𝑑𝑖,𝑗|𝐷))
𝑙𝑒𝑛𝑔𝑡ℎ(𝑑)
𝑗=1

𝑁
𝑖=1       Equation 7.3 

where 𝐷 denotes all the POIs in all ST-ROIs; {𝑑′} is the sampled training set of ST-

ROIs; 𝑁 is the number of ST-ROIs; 𝑙𝑒𝑛𝑔𝑡ℎ (𝑑) is the number of POIs in a ST-ROI and 

𝑑𝑖,𝑗 is the j-th POI in the i-th ST-ROI. The larger the value of the log likelihood, the 

better the fit. The likelihood curve’s stabilising speed and consistency across multiple 

runs indicate the convergence of the model (Griffiths & Steyvers, 2004) and the proper 

assignment of the semantic categories to POIs. 

To demonstrate the relationship between the log likelihood with the size of our input 

data (i.e. POIs and ST-LOIs in London), we apply the LDA semantic enriment in 

different scales in London. The scales of the input data vary from the ST-LOIs detected 

in August 2015 in one borough (i.e. Camden) to ST-LOIs all Inner London boroughs. The 

log likehood curves of different tests are demonstrated in Figure 7.2. The curves show 

that as the scale and number of ST-LOIs increase, the log likelihood become higher and 

the curve is more likely to be a convergence after many iterations. The stability and 

goodness of fit of the LDA model are improved as the study area and the input date 

expend. This means that the LDA method is not suitable for a small study area because 

the results are unstable when the input number of POIs and ST-LOI are small. However, 

the increased and converged loglikelihood in experiments on large study areas 

demonstrates that this method is stable for large number of POI inputs. Therefore, the 

LDA semantic enrichment module is only appropriate for large study areas and the 

stability of the result should be verified before using the result as the final conclusion. 
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Figure 7.2 Loglikelihood values of LDA outcomes based on different scales of inputs 

 

The differences and relationship between the outcomes of TF-IDF and the outcomes of 

LDA are visualised with a alluvial diagram in Figure 7.3. Although it should be bear in 

mind that the outcomes of the two approaches are generated based on different input 

POI data and therefore cannot be used to judge the performance of these two methods, 

the comparison shows how the choice of algorithm and source data can influence the 

perception of the meaning of places and time periods. For example, most of the ST-LOIs 

recognised as retail category and eating category by TF-IDF are also recognised by LDA 

as shopping and food. In contrast, not all health and beauty related places in the LDA 

approach come from the health related ST-LOIs discovered by TF-IDF. This is probably 

because the health and beauty category in LDA include wider range of facilities than the 

health category in TF-IDF. The most conspicuous difference between Figure 6.18 and 

Figure 7.1 is the ST-LOI in London’s Soho district between 0:00 am to 4:00 am. The TF-

IDF sees this ST-LOI as a place of commercial services, whereas the LDA identifies it as 

a place related to entertainment and night life. Based on the fact that the time period is 

late at night and Soho is famous for night entiretainments, the LDA’s judgement of the 

place’s semantic meaning seem more reasonable in this case. 

 



177 
 

 

Figure 7.3 Alluvial diagram showing the outcome comparison of TF-IDF and LDA 

approaches in Camden, Islington and Westminster 

 

7.3 CHAPTER SUMMARY 

This chapter provides an alternative methodological option for Module III in the proposed 

framework. By applying the LDA algorithm, we can infer the semantic meaning of each ST-

LOI based on simple and non-hierarchical POI classification schemes and looking into the 

contents that contribute to each semantic categories in greater details. It overcomes the 

shortcomings of predefined hierarchical POI classification schemes and can automatically 

searches for the semantic meaning among great amount of POIs. 

To sum up, the LDA-based semantic enrichment module has four major features that 

distinguish it from conventional approaches: 

1. This method does not need a hierarchical classification scheme of POIs as inputs, 

which means its applicability for different POI data sourcds is expanded. 

2. This method can automatically summarise semantic “topics” and generate different 

POI classification scheme in different cities. 

3. Each POI can belong to multiple semantic categories, which is more realistic. 

4. The outcome of this method is not stable with a small dataset, but its performance 

increases with the size of the input dataset. This indicates that this method is more 

appropriate for the semantic enrichment of large POI datasets and large study areas. 
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8 FURTHER MODEL COMPARISON AND VALIDATION 

The drawbacks and advantages of single conventional approaches and paradigms of the 

proposed framework have been briefly discussed during the description of the methods 

and algorithms in Chapters 4, 5 and 6. In this chapter, multiple approaches and 

paradigms are compared to demonstrate the improvements achieved by the proposed 

methodological framework. 

Here the comparisons are organised according to the four modules used in both 

Cartesian and network paradigms. Section 8.1 describes an artificial route and trajectory 

generator to provide simulated ground truth information so that the accuracy of the stay 

point identification and map matching methods in Module I can be evaluated against 

conventional approaches. Section 8.2 evaluates the results of space time clustering 

methods in the two proposed modules and conventional approaches with predefined 

spatial and temporal performance indicators respectively. Section 8.3 uses distance from 

stay point to POIs to measure how good the detected ROIs are in supporting semantic 

enrichment algorithms. Section 8.4 summarises the comparisons and emphasises the 

advantages of the network paradigm over other approaches. 

 

8.1 MODULE I 

The major task of Module I in the proposed methodological framework in this thesis is 

to identify the stop episodes in individual trips with high accuracy so that the afterwards 

modules can be provided with reliable location and temporal information of the stops. 

Therefore, the accuracy of stop identification is needed in this module. The APLS dataset, 

however, was originally used for police operations and did not include ground truth 

records reporting the true and precise locations of the officers in patrol. This means that 

direct accuracy evaluations of stay point identification and map-matching based on the 

original APLS dataset is impossible. To overcome the lack of ground truth of trip routes, 

an artificial trajectory and route generator is designed in this chapter to simulate the 

APLS movement data with artificial positioning errors as well as the precise route taken 

during the artificial trips. Section 8.1.1 describes the working mechanism of the route 

and trajectory generator. Section 8.1.2 and Section 8.1.3 then use the simulated 

trajectories and trip routes to evaluate the performance of stay point identification and 

map-matching methods applied in Module I of the proposed framework. 
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8.1.1 Artificial route and trajectory generator 

Our urban trajectory and route generator is developed on the basis of Kami et al. (2010). 

The trajectory generating process is as follows: 

(1) Random generation of 800 (x, y) coordinates on the road segments in Camden. 

From the 800 generated coordinates, randomly take out four points (A, B, C, D) as 

a group every time so that the 800 coordinates are divided into 200 groups. For each 

group of coordinates, a synthetic trajectory of a trip is represented by a polyline 

starting from A, moving through B and C and ending at D. 200 synthetic trips are 

generated in this step. 

(2) Calculation of shortest road network paths from A to B, from B to C and from C to 

D in each trip using igraph package in R. The synthetic route of each trip is 

generated by linking the network paths through A, B, C and D in each trip. 

(3) Transformation of trip routes into GPS point updates by adding points along each 

route with a regular spacing of 400 m – corresponding to a preferred walking speed 

of 1.33 m/s in London and the 5-minute sampling rate of APLS. 

(4) Randomly shifting the coordinates of each update in space to simulate the GPS 

positioning errors along routes. The shifting direction is random and the shifting 

distance of points follows the normal distribution of EPE according to Chapter 4, 

centring on 20m with a standard deviation of 8 m. 

(5) Selecting one to five data points per track randomly to be stop episodes. The 

dwelling time of each stop episode is set to follow a normal distribution centring on 

40 minutes with a standard deviation of 8 minutes.  

(6) Generating additional stay points in the stop episode. According to the duration of 

each stop, add one stay point every 5 minutes at the stop episode’s location with a 

simulated distance shift that follows a normal distribution of a 40m mean value and 

a 16m standard deviation. This distance shift is larger than the simulated EPE on 

the move because people are more likely to stop by a building or even enter the 

building and thus generate more imprecision in their location updates. 

 

8.1.2 Accuracy of stay point identification methods 

To demonstrate the advantages of the kernel-based temporal scanning window over 

conventional stop identification methods, the artificial route and trajectory generator in 

section 8.1.3 is used to simulate the ground truth trajectories for validation. It mimics 
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the features of the individual movements in the original APLS and generates 200 

synthetic trips with error, speed and stop durations similar to the real APLS data. The 

artificial data contain the street segments covered by the route of each trip and the 

sequence of location updates with synthetic positioning errors. We test our pre-

processing methods of Module I on the artificial trajectories to provide a reference of its 

performance in processing real urban movement data. We also compared the accuracy 

of several conventional (speed/distance) threshold-based and density-based stay point 

identification methods with ours. The results are listed in Table 8.1. 

We define the stay point accuracy of stop identification algorithms as Accuracy𝑝 in 

Equation 8.1. Accuracy𝑝  measures how correct the algorithms are in labelling stay 

points. 

Accuracy𝑝 =
𝐶𝑜𝑢𝑛𝑡(𝑇𝑃)

𝐶𝑜𝑢𝑛𝑡(𝑇𝑃)+𝐶𝑜𝑢𝑛𝑡(𝐹𝑃)+𝐶𝑜𝑢𝑛𝑡(𝐹𝑁)
        Equation 8.1 

 

where 𝐶𝑜𝑢𝑛𝑡(𝑇𝑃) is the number of stay points that the algorithm identified correctly 

(i.e. true positive), 𝐶𝑜𝑢𝑛𝑡(𝐹𝑃) is the number of points that are not real stay points, but 

the algorithm identifies as stay points (i.e. false positives), and 𝐶𝑜𝑢𝑛𝑡(𝐹𝑁)  is the 

number of stay points the algorithm fail to identify (i.e. false negative). 

For the correctly identified stops, we define the dwelling time accuracy as Accuracy𝑡 in 

Equation 8.2. Accuracy𝑡  measures how precise the algorithms are in calculating the 

dwelling time for each correctly labelled stop. 

Accuracy𝑡 = ∑
2∗|𝐷𝑡𝑟𝑢𝑒(𝑇𝑃) ∩ 𝐷𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑(𝑇𝑃)|

|𝐷𝑡𝑟𝑢𝑒(𝑇𝑃)|+|𝐷𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑(𝑇𝑃)|

𝐶𝑜𝑢𝑛𝑡(𝑇𝑃)
0 /𝐶𝑜𝑢𝑛𝑡(𝑇𝑃)    Equation 8.2 

 

where 𝐷𝑡𝑟𝑢𝑒(𝑇𝑃)  and 𝐷𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑(𝑇𝑃)  are the true dwelling time period and the 

identified dwelling time period of each correctly labelled stop episode e, respectively. 

|𝐷| is the length of the dwelling time. |𝐷𝑡𝑟𝑢𝑒(𝑇𝑃) ∩  𝐷𝑖𝑑𝑒𝑛𝑡𝑖𝑓𝑖𝑒𝑑(𝑇𝑃)| is therefore the 

overlapping time length between the identified and true stop episodes.  

As shown in Table 8.1, our methods, KTSW and KTSW-network adaption, achieved 

significant higher accuracy in both stop identification Accuracy𝑝 and dwelling time 

Accuracy𝑡, and KTSW- network adaption is slightly higher than the pure STKW in the 
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stop identification, but 6% higher in the dwelling time accuracy. Therefore, the method 

used in the network paradigm is more accurate in stop identification.  

Table 8.1 Accuracy comparison of stay point identification methods 

Algorithm Stopher et 

al. (2005) 

Schüessler and 

Axhausen 

(2009) 

Thierry et 

al. (2013) 

Kernel-based 

temporal 

scanning window 

(KTSW) 

KTSW with 

network 

adaption 

Type Distance 

threshold-

based 

Speed 

threshold-

based 

Kernel 

density-

based 

Kernel density-

based with time 

constraint 

Integration of 

time and spatial 

network 

Tested trips 200 200 200 200 200 

TP number 6005 6223 5371 6192 6278 

FP number 757 670 510 314 258 

FN number 561 343 1195 374 288 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲𝒑 82% 86% 76% 90% 92% 

𝐀𝐜𝐜𝐮𝐫𝐚𝐜𝐲𝒕 72% 79% 65% 84% 90% 

 

8.1.3 Map-matching accuracy 

The artificial route simulated by the trajectory generator proposed in Section 8.1.1 can 

also be used to evaluate the accuracy of map-matching techniques. We use the 

percentage of correctly matched records in the 200 simulated trip trajectories to 

evaluate the accuracy of map-matching algorithms. If one point in a trip is correctly 

matched to the road segment the simulated trip route had gone through, the point will 

be considered as correctly matched. Table 8.2 shows the matching accuracy of the 

simple strategy of snapping to the nearest segments, spatial incremental map-matching, 

and ST-matching. It also demonstrates that the ST-matching achieved highest map-

matching accuracy. 

 

Table 8.2 Accuracy comparison of map-matching methods 
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Algorithm Snapping to the 

nearest segment 

Global incremental map-matching 

(Yin & Wolfson, 2004) 

ST-matching 

(Lou et al., 2009) 

Tested trips 200 200 200 

Accuracy 58.5% 87.1% 91.4% 

 

8.2 MODULE II 

Module II in the two proposed paradigms generates ST-ROIs and ST-LOIs with density-

based space time clustering algorithms. As clustering results, the ROIs (Spatial ROIs, 

ST-ROIs, ST-LOIs) can be validated by the cohesion of the points within the clusters. 

Section 8.2.1 evaluates the cohesion of stay points in ROIs in space and Section 8.2.2 

evaluates the cohesion of stay points in ROIs in time. The ST-LOI detection algorithm 

in Module II of the network paradigm is more complex than conventional approaches. 

Therefore, we also evaluate how the proposed network query strategy in Section 6.4.3 

has decreased the time cost of the ST-network-DBSCAN algorithm. 

 

8.2.1 Spatial cohesion of points in ROIs 

One important indicator for evaluating the spatial clustering results is the cohesion of 

the points in each cluster. Here we measure the spatial cohesion by calculating the 

average Euclidean distance from each stay point in a detected ROI to its k-th nearest 

neighbouring points (k-NN). The smaller the distance, the closer the points in the ROIs 

are to their neighbouring points in space and the better the result. The average k-NN 

distance of a ROI is defined by Equation 8.3. 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑘𝑁𝑁 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
∑

∑ 𝐷(𝑝,𝑁𝑁𝑛)𝑘
𝑛=1

𝑘
⁄

𝑅𝑂𝐼

𝑐𝑜𝑢𝑛𝑡(𝑅𝑂𝐼)
      Equation 8.3 

 

where 𝑝 is a stay point in a ROI and 𝑅𝑂𝐼 contains all stay points in that ROI. 𝑁𝑁𝑛 is 

the n-th nearest stay point to 𝑝 in the ROI. 

Figure 8.1 demonstrates the concept of k-NN with three examples of different chosen 

points’ neighours. Figure 8.1 (a) shows the k-NNs of point A when 𝑘 = 3, while Figure 

8.1 (b) shows the k-NNs of point A when 𝑘 = 4. As demonstrated in Figure 8.1 (c), the 

distribution of point 𝐵  and its neighbouring points are sparser than  𝐴  and its 
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neighbouring points in Figure 8.1 (b) when 𝑘 = 4, therefore, the average k-NN distance 

from 𝐵  to its neighbours are larger than the average k-NN distance of 𝐴  and its 

neighbours when 𝑘 = 4 . Hence, the spatial cohesion of A and its four nearest 

neighbours is higher than B and its four nearest neigbours. In comparing the ROIs 

detected by different methods, high spatial cohesion indicates better result. 

 

 

Figure 8.1 Three examples of k-NN queries of chosen points (a) the top 3 nearest 

neighbour points of point A; (b) the top 4 nearest neighbour points of point A; the top 

4 nearest neighbour points of point B 

 

The average k-NN distance of points in the Spatial -ROIs detected by conventional 

DBSCAN, ST-ROIs detected by the Euclidean paradigm and the ST-LOI detected by the 

network paradigm in the same APLS dataset of August 2015 are calculated and compared 

in Figure 8.2. The result shows that the points in Spatial-ROIs are the most aggregative, 

then is the ST-LOI and the ST-ROIs. This is because the conventional DBSCAN ignore 

time differences and counts stay points in the same place but at different times into one 

single ROI. Therefore, the stay points in a Spatial-ROI are far more than those in a ST-

ROI or a ST-LOI, which causes the higher spatial cohesion. The lower average k-NN 

distances of the ST-LOIs than ST-ROI (when 𝑘 ≤ 8) indicates the better outcome in 

the spatial cohesion of ROIs contributed by the network paradigm. 
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Figure 8.2 Average k-NN distance of the ROIs generated by different approaches 

 

8.2.2 Temporal Cohesion 

We define the average temporal density as the major indicator to express the temporal 

cohesion of the ROIs. The larger the density, the closer the points in the ROIs are 

temporally and the better the result. The average temporal density of ROIs is defined by 

Equation 8.4. 

𝑇_𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
∑

𝑐𝑜𝑢𝑛𝑡(𝑝)

𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛(𝑅𝑂𝐼)𝑅𝑂𝐼

𝑐𝑜𝑢𝑛𝑡(𝑅𝑂𝐼)
    Equation 8.4 

where 𝑝 is a stay point in a ROI (i.e. 𝑝 ∈ 𝑅𝑂𝐼), 𝑡𝑖𝑚𝑒𝑠𝑝𝑎𝑛(𝑅𝑂𝐼) is the time difference 

between the first stay point and the last stay point within a ROI, 𝑐𝑜𝑢𝑛𝑡(𝑅𝑂𝐼) is the total 

number of detected ROIs. 

Table 8.3 Average temporal density of ROI detect by different approaches 

 Spatial ROIs ST-ROIs ST-LOIs 

T_density 4.73 points/hour 16.50 points/hour 18.11 points/hour 

 

Table 8.3 shows the average temporal density of the result ROIs detect by conventional 

DBSCAN, the Euclidean paradigm and the network paradigm respectively. It 

demonstrates that the temporal cohesion of Spatial ROIs is significantly poorer than ST-
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ROIs and ST-LOIs because of the absence of temporal dimension in the conventional 

DBSCAN approach, and the better outcome in the temporal cohesion of ROIs 

contributed by the network paradigm. 

 

8.2.3 Optimisation of ST-network-DBSCAN 

In Section 3.3.3, we proposed a fast network query strategy to speed-up space time 

clustering in networks by reducing redundant distance calculations. Therefore, the 

percentage of avoided unnecessary distance calculations can be used as the quantitative 

indicator to measure how much the map-matching algorithm has been accelerated. 

Without the space time neighbour retrieving strategy, network distances between all 

pairs of stay points should be calculated. This means that if 𝑛 stay points are input in 

to ST-network-DBSCAN without a query strategy, distances between all n! pairs of 

points should be calculated. Equation 8.5 expresses how much speed improvement is 

contributed by the space time neighbour retrieving strategy. 

𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠𝐴𝑣𝑜𝑖𝑑𝑒𝑑 = 1 −
𝑐𝑜𝑢𝑛𝑡(𝐴𝐶)

𝑛(𝑛−1)
      Equation 8.5 

where 𝑐𝑜𝑢𝑛𝑡(𝐴𝐶) is the number of pairwise network distance calculations that are 

undertaken after applying the 3-step space time query strategy. 𝑛(𝑛 − 1) is the is the 

number of pairwise network distance calculations need to be undertaken without the 

help of any query optimisations. Table 8.4 below shows the percentage of distance 

calculations between stay points avoided by the space time query strategy in three 

boroughs. 

Table 8.4 The basic network information and the percentage of avoided distance 

computations. 

BOCU Area Number 

of Edges 

Number 

of Nodes 

Number of 

GPS Point 

Records 

Number 

of Stay 

Points 

Distance 

Calculations 

Avoided 

Camden 5049 6018 253526 71220 95.0% 

Islington 4202 5125 198044 49788 91.3% 

City of 

Westminster 

5302 6409 308466 104542 

 

93.6% 
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8.3 MODULE III 

Module III is the semantic enrichment module from the framework. As the semantic 

meaning is related to human perception of places, there is no ground truth to support 

its validation. We can only evaluate the accuracy of the spatial coverage of ROIs to make 

sure that the spatial boundaries of the detect ROIs covers the correct POIs related to the 

stops of people.  

 

8.3.1 Closeness of ROIs to POIs 

As has been discussed in the literature review, many studies use distance from the 

staying location to a POI to measure the semantic contribution of the POI to the staying 

behaviour (Krueger et al., 2015; Spinsanti et al., 2010). Therefore, the closer a POI is to a 

person’s stay point, the more likely the POI and the person’s activity to be related and 

the semantic enrichment to be meaningful for the ROIs. The short distance from a stay 

point to its nearest POI helps clarifying the meaning of the stay. Figure 8.3 shows the 

difference of the distances from a stay points to its nearby POIs. If a stay point is very 

close to its nearest POI and relatively far away from other nearby POIs, the semantic 

meaning of the stay easy to be distinguished. If each stay points in a ROI are close to its 

own nearest POI and relatively far away from other POIs, the POIs covered by the ROI’s 

spatial boundary is more likely to be the right POIs to be put into the semantic 

enrichment algorithms. The closeness of a detected point-based ROI to the contextual 

POIs can be defined by the average of each stay point’s distances to k-th nearest POI in 

this ROI. The mathematical description of a ROI’s closeness to the k-th nearest POIs is 

demonstrated by Equation 8.6. 

𝐶𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠𝑅𝑂𝐼 =
∑ 𝐷(𝑝, 𝐾𝑁𝑃𝑝)𝑅𝑂𝐼

𝑐𝑜𝑢𝑛𝑡(𝑝)
      Equation 8.6 

where 𝑝 is a stay point, 𝑝 ∈ 𝑅𝑂𝐼, 𝑐𝑜𝑢𝑛𝑡(𝑝) the is number of stay points in a ROI, 

 𝐾𝑁𝑃𝑝 is the k-th nearest POI to 𝑝. 

We compare the closeness of a ROI to its nearest POI and the closeness of such ROI to 

other nearby POIs to evaluate how good the approaches are in supporting the semantic 

enrichment processes. The larger the difference is in a ROI’s closeness to different 

nearby POIs, the better the ROI is for semantic enrichment. 
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Figure 8.3 The different distances from a stay point to its nearby POIs 

 

Figure 8.4 shows the example of spatial distribution of stay points in one ST-ROI and 

one ST-LOI detected in the same place and time period. Figure 8.4 (a) is a typical case 

of the relative location of stay points in a ST-ROI to the surrounding POIs and Figure 

8.4 (b) is a typical case of the relative location of map-matched stay points. 

 

Figure 8.4 The relative location of stay points to POIs:  

(a) stay points in an ST-ROI; (b) map-matched stay points in an ST-LOI 

 

The line chart in Figure 8.5 shows the mean value of all in-ROI points to their own k-th 

nearest POIs (i.e. ROI’s closeness to k-th POIs) calculated based on the APLS data in 

August 2015. It shows that the map-matched stay points in ST-LOIs are closer to their 

closest POIs and second closest POIs than stay points in the ST-ROIs are when k < 3. 

The map-matched stay points are also further away to k-th nearest POIs than the ST-

ROI stay points when 𝑘 > 3. On the other hand, the changes in the distances of k-th 
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nearest POIs to the stay points in ST-ROIs are far less significant when k increases. That 

is to say, the nearest POI to a stay point in an ST-LOI is easier to be spatially 

distinguished from all other POIs. As reviewed in Chapter 2, the closer a stay point is to 

its nearest POI and the further away a stay point is to other POIs, the easier the semantic 

meaning of the stay can be inferred. Therefore, the ST-LOIs outperform the ST-ROIs in 

clarifying the relative locations of stay points to the nearby POIs and supporting the 

semantic enrichment module of the framework. 

 

 

Figure 8.5 Average closeness of ROIs to their k-th nearest POIs 

 

 

8.4 CHAPTER SUMMARY 

This chapter demonstrated the performance of the framework modules developed in 

this thesis. The performance of methods applied in each module is assessed based on 

the predefined indicators and compared with existing conventional approaches. To test 

the accuracy of the methods in Module I, an artificial trajectory generator is design and 

applied due to lack of ground truth moving routes. We have also compared the 

Euclidean paradigm and the network paradigm with real movement datasets to assess 

their suitability for ROI detection in urban scenarios. We have then presented the 

validation results for different modules of the framework. 

Through comparison and validation in Section 8.1, the network paradigm shows greater 

accuracy in pinpointing the true movement trajectories, identifying stops, and 
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estimating dwelling durations than Module I of the Euclidean paradigm and other non-

spatial-temporal methods. Since Module I serves as the pre-processing module of the 

geographic process in the entire framework, the improved accuracy of Module I in the 

network paradigm demonstrates distinct advantages over conventional approaches in 

guaranteeing the data quality of the input to the afterwards semantic and knowledge 

discovery processes. 

The spatial and temporal cohesion tests in Section 8.2 show better performance of 

spatio-temporal ROI detection methods over purely spatial methods from the 

perspective of clustering evaluation. These also show that the spatio-temporal clustering 

methods can take account of aggregations of points in both space and time and therefore 

reflect the highly dynamic nature of urban activities. As for the computational burden 

caused by the spatio-temporal clustering algorithm in networks, Section 8.2.3 

demonstrates the effectiveness of the space time retrieving strategy in improving the 

speed of network clustering algorithm in the network paradigm. 

Section 8.3 of the chapter discussed how the network paradigm clarifies the relative 

location between stay points and POIs and hence provides better spatial boundaries to 

support the semantic enrichment of places. 

In summary, the comparisons in this chapter firstly demonstrate the higher spatio-

temporal accuracy and cohesion of space time clustering methods over conventional 

approaches in stay point identification and ROI detection. Secondly, the network 

paradigm is more suitable for urban activity pattern analysis than the Euclidean 

paradigm. These results demonstrate that, by incorporating the spatial, temporal and 

network aspect of the urban movements and activities, the network paradigm is able to 

provide a more advanced methodological framework for urban activity pattern studies. 
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Chapter 9 

Conclusion and Future 

Work 
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9 CONCLUSION AND FUTURE WORK 

This thesis has sought to introduce a fresh perspective on the subject of space-time 

activity pattern analysis for human dynamics. Although the area has a long research 

history and various options of conventional approaches, our proposed works and 

theories that we present in this thesis demonstrate that there remains considerable 

room for improvement in this field of study. Through the combination of the abundant 

human dynamics data and the state-of-the-art data mining tools in the digital age, we 

are able to build a methodological framework of human activity pattern analysis that 

contributes to a clear advancement on conventional study approaches. 

In this final chapter, we revisit the research objectives and challenges previously 

discussed in Chapter 1, while introducing how this thesis overcame each of these 

challenges. It also generalises the findings of this research on current theories and 

approaches of activity pattern studies, as well as their implications. This is followed by 

a discussion of the applications and policy influences. Then, the limitations and a list of 

further research work to further improve and extend our proposed framework in this 

thesis is summarised. The chapter is finalised by concluding the achievements and 

contributions of the efforts in this thesis to research and to provide applications. 

 

9.1 REVIEW OF FINDINGS IN RESEARCH 

The stated overall aim of the project, as outlined in the introduction chapter, was to 

develop a methodological framework to automatically profile and aggregate people’s 

space-time activity patterns based on space-time human mobility data in urban 

semantic backgrounds. Accomplishing this aim required the completion of four 

objectives listed in Chapter 1. In this section, we describe the findings in the research 

and extend the discussion to the broader implications associated with each objective. 

Objective 1: Review existing approaches and methodologies for activity pattern analysis 

based on mobility data from both geography and other disciplines. Summarise and 

critically assess the fundamental theories, experiment settings and methodologies in these 

approaches. 

Objective 1 was achieved during the literature review in Chapter 2. The review explored 

conventional approaches towards the profiling and summary of human activity patterns 

emerging from both traditional activity pattern studies and data driven research 

domains enabled by the advancement of modern information technology. 
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In assessing the state-of-the-art in activity and behaviour patterns and human dynamic 

studies, we started the review from the early theories and traditional understandings of 

activity studies from temporal, spatial and semantic aspects. By collating the changes 

and developments of the research methods, we highlighted the modern approaches that 

stem from the principles of these three aspects of activity pattern studies. Intertwined 

within these three aspects, and thus implemented within many subsequent models and 

approaches proposed by researchers, lies the assumption that stops between movements 

are associated with the possible occurrences of activities. Therefore, all of the works on 

activity pattern studies put emphasis on the stop episodes over move episodes. Based on 

this theory, some researchers consider the sequence in which the moving individual 

stops at various places as the indicator of the individual’s travel/activity pattern. Some 

researchers look into the time duration of stops at places for the description of activities. 

Others use the series of visited semantic locations for aggregative analysis of activity 

patterns. This theory, and accompanying modelling approaches, normally focus on the 

revealed activity patterns through the single aspect or the combination of two aspects 

of the travel behaviours of multiple individuals. A number of authors were identified to 

have raised concerns around the deficiency of the incomplete description of activities 

inherent within these approaches, and advocated the establishment of new approaches 

to combine the spatial and temporal analysis of activities in a joint effort, and emphasise 

the inseparability of people’s movements and the semantic context and environment in 

which they move for human dynamics studies. 

Although convincing and having a reference value with respect to this thesis, a range of 

limitations were identified with these approaches to activity pattern analysis. One 

significant limitation lies in the lack of tests and practical implementations of these 

principles and approaches with the awareness of the urban context. No works were 

found linking the activities and movements to the city streets in the real-world where 

most of the mobility data were collected. The second limitation is that no existing 

activity studies have considered the time varying nature of the interesting places in the 

city and their semantic meanings. In reality, the attractiveness of a place to human 

activities changes over time and the meaning of a place is not permanent, which again 

raises questions as to the conventional approaches’ applicability within the highly 

dynamic urban context. In view of this t, section 2.5 of the literature review introduced 

literature pertaining to general theories, methods and algorithms of spatial network 

analysis. The third limitation was highlighted in that many of the experiments in which 

these approaches were tested utilised only small-scale samples of travel/movement data, 

usually conducted within controlled or virtual environments. All of these deficits should 

be overcome by the new methodological framework that incorporates spatio-temporal 

and semantic aspects of the activity patters in an urban context. 
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In the process of accomplishing Objective 1, we outlined the literature review that 

highlighted both the obstacles in conventional methods for a comprehensive activity 

pattern study and the inspiration of existing frameworks in this thesis. It is on the 

foundation of the findings from this thorough review of literatures that the 

methodological framework, presented in Chapter 3, was inspired and developed. The 

rest of the thesis is also organised according to the research problem and limitations 

summarised in the review. 

 

Objective 2: Develop an ST2P (Space-Time to Profile) framework of multiple modules. 

Each module is designed to address part of the limitations listed in section 1.2. 

Objective 2 was achieved through the conception of the general methodological 

framework in Chapter 3. Based on the summarised limitations of existing approaches 

and the ideas inspired during the literature review, a methodological framework was 

designed together with a combination of methods for its implementation. The 

methodological description in Chapter 3 and validations in Chapter 8 have shown that 

the proposed methodological framework can harnesses technological advances to 

extract activity pattern subgroups from low-level raw GPS trajectories. In this thesis, we 

proposed the theory of ‘the place you go (ST-ROIs types), when you go and how long 

you stay is who you are’ to provide a more complete and realistic picture than the ideas 

of ‘you are where you go’ in traditional activity studies. The framework constructed 

according to the new theory further extended the traditional time budget allocation 

analysis in activity studies and existing spatial-location-based similarity definitions of 

individual profiles. The methodological framework consisted of four modules to address 

the “ST2P” task in four steps: pre-processing of movement data, ST-ROI detection, 

semantic enrichment of detected places, and aggregative analysis of semantic activity 

profiles. Each module generated intermediate outcomes to be input to the next module. 

Combining the modules, the framework was capable of aggregatively analysing the 

activity patterns of people according to spatial, temporal and semantic aspects by 

defining a new way for profile description and new similarity metric for profile 

comparison. The final clustering analysis based on this similarity metric explains the 

semantic meaning of various behaviours more reasonably than competing methods. Our 

contribution also provided a set of computational and visual techniques to human 

dynamics researchers who may be interested in the variety of individual moving 

behaviours and helped location-based businesses to better understand the 

characteristics of their customers. 
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Objective 3: Design and build two paradigms according to the structure of the framework 

in Objective 2 to incorporate the spatial, temporal and semantic information for activity 

profiling and aggregation in Cartesian space and urban networks. 

The completion of Objective 3 was described in full in Chapters 5 and 6, where a 

Euclidean paradigm and a network paradigm of the proposed framework were utilised 

in addressing the limitations identified during the process of fulfilling Objective 1. The 

two paradigms respectively incarnated the framework with different representations of 

space: a Cartesian view of space and a network view of space. 

The implementation of the framework in Cartesian space demonstrated how the 

framework turned raw trajectories into ST-ROIs, ST-ROIs into semantic profiles, and 

then semantic profiles into semantic activity subgroups. 

During the case study of police movements in London, it was discovered that the 

hotspots or interesting places were not just a concept of space. The significance and 

attractiveness of each place varied through time and its semantic meaning for human 

activities differed from other places and even from itself at different times of day. Results 

of the experiment showed that the conventional static expression of interesting regions 

was inadequate for depicting places and a temporal dimension should be added for the 

study of movements and activities in highly dynamic cities. The example of patterned 

police activities detected in embassy areas in section 5.6.3 shows that major changes of 

activities can be revealed with the proposed space-time profiles for activity description. 

It is also found in section 5.6.6 that the unbalanced number of POIs of different 

categories was the major problem for semantic enrichment of places, and the ideas of 

rebalancing term and word frequency weights in text mining studies could be an 

important reference in addressing such issues. 

In the experiments of the Euclidean paradigm, we were able to find that a Cartesian 

representation of space had negative impacts on the precision of all modules in the 

framework. A network variation of the framework was therefore designed, tested and 

compared in Chapter 6. In this process, the network paradigm demonstrates great 

suitability to urban street networks and a new method for visualising hotspots (i.e. ST-

LOIs) in network space and time was created.  

 

Objective 4: Compare the performance of the two paradigms proposed in Objective 3 and 

the existing mainstream approaches. Examine and demonstrate our framework’s 

suitability on real people’s large-scale movement trajectories in urban road networks from 

various aspects. 
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The completion of Objective 4 was detailed during Chapter 8, where the full evaluations 

and comparisons were made of methods used in the two paradigms of the framework, 

as well as the conventional approaches. The comparisons are outlined to align with the 

work flow of modules in the framework. Of particular focus during the execution of this 

objective was the accuracy of the proposed methods against conventional approaches. 

As such, during the course of the evaluation, the indicators of accuracy in spatial, 

temporal and semantic aspects of the methods in modules are respectively proposed. 

We tested the methods with real-world movement data and designed a trajectory 

generator to simulate synthetic ground truths that were unable to be included in the 

real-world data. It can be found in the results that the methods used in the Euclidean 

paradigm improved on conventional methods in stop episode and ST-ROI detection. It 

also shows that the network paradigm was a more accurate option for patterned activity 

analysis in cities with complex transportation networks, but comes with a sacrifice in 

computation complexity. 

As outlined above, during the thesis a more detailed representation of individual activity 

patterns was developed, aiming to better reflect the spatial, temporal and semantic 

aspects of human activities in urban space. As a result of these findings, it may be 

concluded that the limitations summarised in the completion of Objective 1 have been 

fulfilled by the development of the Euclidean paradigm and the further improvements 

made in the network paradigm.  

 

9.2 THEORETICAL CONTRIBUTIONS AND TECHNICAL INNOVATIONS  

During the description in Chapter 3 of the methodological framework on which the 

thesis would be based, we have outlined the methods that we designed and novel 

applications of existing methods as solutions to the limitations in conventional 

approaches. Among them, a number of elements in the functioning modules of our 

methodological framework were identified as major contributions of this thesis to 

research. 

As our framework has overcome all the limitations listed in Chapter 3, we can come to 

the conclusion that these contributions have been successfully delivered. The 

theoretical contributions have been summarised and listed below, with reference to the 

point at which the works and algorithms related to each contribution were described in 

the thesis. In addition to these theoretical contributions, we also made technical 

innovations by making improvements to or new applications of existing methodologies. 

These technical innovations, having played auxiliary but equally significant roles in the 

completion of the thesis, are also outlined below along with their positions in the thesis. 
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Conceptual/theoretical contributions: 

− Chapter 3: Integrating spatial, temporal and semantic dimensions of activities 

into the analysis and developing the concept of “the place you go (ST-ROIs 

types), when you go and how long you stay is who you are. Formalising the 

procesure to extract the profile and activity patterns from raw movement 

trajectories. 

− Section 5.3.2: Development of a model for the simplified representation of 

individual trips and activities that preserves the temporal, sequential and 

spatial information in trips. 

− Section 5.4.2: Improvement of the semantic enrichment method’s awareness of 

the time varying semantic meanings of places by adding POI opening hours 

and ST-ROIs’ time boundaries into the semantic enrichment model. This 

improvement turns the conventional and static definition of semantic places 

into a time varying and dynamic one. 

− Section 5.5: Development of a time allocation profiling approach for the 

description of individual activity patterns. This profile representation jointly 

implemented the theories of Chapin’s (1974) time budget allocation for 

activities and Zhong et al.’s (2015) spatial activity profile of individual activities. 

− Chapter 6: Implementation of a network representation of urban activity space 

in the framework to extend the spatial dimension from planar space to network 

space which in line with the realistic urban environment. 

− Section 6.4：Proposing the concept of ST-LOI to incorporate the network 

geometry into the representation of ST-ROIs in urban areas. 

 

Technical innovations: 

− Section 4.2.2: Merging a POI dataset containing well-organised semantic 

category information with a POI dataset containing opening hours information 

to create a more complete POI dataset. The merging method filled the merged 

dataset with well-rounded spatial, temporal and semantic information of POIs 

and supported a time-sensitive semantic enrichment method that we proposed 

to detect the semantic variation of places in time. 

− Section 5.2.2: Development of a kernel-based scanning window to implement 

spatial threshold and temporal confines together for high-accuracy stay 

point/stop episode identification. 

− Section 5.3.1: Novel application of ST-DBSCAN for the identification of 

interesting regions, as well as the regions’ interesting times that attract visitors. 

Proposing the concept of ST-ROI to incorporate the concept of temporal 

boundaries into the conventional spatially defined interesting regions. 
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Designing an optimised retrieving strategy to avoid redundant and unnecessary 

distance computations and I/O operations in the network analysis. 

− Section 5.4: Novel application of text mining and topic modelling algorithms 

for semantic enrichment of places with POI data. 

− Section 5.5: Novel application of JSD (i.e. information radius) as the similarity 

metric of individual activity patterns for aggregative analysis. 

− Section 6.3.2: Application of existing spatio-temporal map-matching methods 

to extended street networks that include both major traffic links and minor 

local pedestrian walkways 

− Section 6.3.3: Application of the newly proposed kernel-based temporal 

scanning window in a network environment to pinpoint stay points with higher 

accuracy. 

− Section 6.4: Development of the ST-Net-DBSCAN algorithm for interesting 

region detection within urban networks. 

− Section 6.4.4: Novel application of a 3D wall map to comprehensively visualise 

the spatial structure, time span, semantic meaning and activity intensity of ST-

LOIs in one model. 

− Chapter 7: Novel application of LDA topic modelling algorithm to increase the 

applicability of the semantic enrichment process. 

 

9.3 APPLICATIONS AND POLICY IMPLICATIONS 

9.3.1 Application perspectives 

The overall advantage of the framework developed in this thesis is that it provides a 

useful toolkit to automatically extract activity patterns from GPS data and make sense 

out of these GPS-based activity/travel logs by analysing the staying behaviours in a 

semantic environment. This toolkit can be used to depict the time-varying semantic 

meaning of places for human activities so that urban planning authorities can be 

provided with well-rounded, dynamic and time sensitive information of the hotspots in 

the city, which helps policy makers make better informed decisions. It can also be 

applied to the emerging location-based social networks, linking users’ social features in 

virtual space with their real-world activities to provide a more accurate and complete 

profile for the users. The implementation of the framework can aggregate users sharing 

similar semantic activity profiles and space-time preferences in activities, and facilitate 

smarter friend recommendations in the social network applications. 
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9.3.2 Policy implications 

Apart from the findings in research, some policy implications are also revealed during 

completion of the research process in the thesis. They include improvement in data 

collection, spatial representation for urban contexts, and future development in 

Geographic Information Science. 

For organisations and governmental geographic surveying agencies who are in charge of 

geographic data collection and rectification, it is suggested that the future POI data 

collections should take into account the temporal information of POIs, as it is as 

significant as spatial location information in describing the accessibility of POIs. No 

matter that it be for research purposes or daily navigation, people need to know not only 

where the place is but also when it is available, especially in a highly dynamic urban 

environment. By replacing a purely spatial expression of POIs with POIs that 

incorporate temporal information, the changes and differences in the time dimension 

can be discovered and hence the semantic meaning of places can be greatly enriched. 

The POI dataset of Ordnance Survey UK is well organised with precise location and 

categorical information. Its high-quality laid the foundation for the semantic study of 

places in the thesis; however, the lack of temporal data is its major deficiency. As 

described in Chapter 4, we had to mitigate this problem by referencing other datasets 

that are not as well collected but come with temporal information. The authorities can 

improve on this by updating the POI dataset with a thorough survey of POI opening 

hours, or by opening up an online platform to be compatible with the voluntarily 

uploaded temporal information. The quality of the VGI temporal data source may not 

be guaranteed but it can broaden the applicability of the POI data for the booming 

spatio-temporal data mining research. 

Another implication for POI data collection is that the current location information in 

POI datasets cannot perfectly reflect the true logical relationship between POIs and 

street segments with high accuracy. The current POI dataset only uses the coordinates 

on map and geocoded addresses as location descriptions of POIs. Nonetheless, for 

spatial network analyses that involve POIs, such as the methods used in Module III of 

the proposed framework, the conventional location information cannot pinpoint the 

true location and accessibility of POIs within the network. Admittedly, researchers can 

associate the POI with the nearby street segments according to the registered street 

address, like the work in this thesis, or simply use the nearest segment as the POI’s 

location in the networks. These simple solutions, however, ignored the fact that the POI 

can be related to multiple streets or the entrance of the POI building may not be on the 

nearest street. For example, some large POIs, like shopping centres near a road 



200 
 

intersection, can have multiple entrances on more than one side of the building and can 

be located through multiple segments in the street network. This means that the correct 

network location should not be confined to a single location on one street segment. As 

network analysis has been a well-developed and popular realm in geo-spatial analysis, it 

has become a necessity that the network expression of urban POI locations is added into 

the future geographic information systems. The research in this thesis has also 

demonstrated that stop and move episodes in an urban area, as well as the related 

activities, can be considered in finer scales by transforming the raw movement 

trajectories into routes along the streets. Therefore, the implications of this research 

(and similar initiatives) on GPS-based activity and travel pattern studies would be to 

switch to a network representation of public spaces and movements in urban areas. 

This study has also provided evidence showing that the effectiveness and accuracy of 

activity and travel pattern analyses can be improved by taking spatial and temporal 

information together and bringing spatial-temporal thinking into every step and 

method in the framework. The view of places and activities with spatio-temporal 

ontology in this thesis also suggests that the semantic meaning and many other 

attributes of places should not be considered static, since human activities forge the 

highly dynamic nature of cities and places. More and more human dynamics data will 

be generated and collected in the foreseeable future with the continuous advancement 

of information technology and location-based web applications. The trend of spatio-

temporal analysis to replace spatial analysis in human activity studies would be even 

more evident if organisations/working-groups took an initiative to instrumentalise and 

standardise the developing theories of spatial phenomena with spatio-temporal 

ontology. The emergence of similar spatio-temporal data mining applications in the 

future may give birth to a new geographic information platform by which more up-to-

date, time varying and dynamic spatial phenomena, especially human activities, can be 

comprehensively analysed. 

 

9.4 CRITIQUE OF LIMITATIONS 

The novel contributions made by the work in this thesis towards the current research 

and literature base have been presented the previous chapters. A number of criticisms 

may, however, be drawn with respect to a number of limitations encountered in the 

construction of the proposed methodological framework. These limitations are 

highlighted here and they need to be considered in evaluating the outcomes of the 

corresponding modules. 
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9.4.1 Data limitations 

Dataset limitations include the quality of the POI dataset and the homogeneity in the 

human movement dataset.  

Firstly, the opening hours information, spatial information and semantic information 

are collected by different organisations with different standards. About 11% of POIs in 

the Google places dataset do not match with the Ordnance Survey POIs. Secondly, not 

all POIs possess temporal information as they should. 21% of the matched POIs in the 

merged dataset do not include opening hours data. This is probably due to the irregular 

opening patterns of the POIs and the reluctance of the POI owners to register temporal 

information. The imperfections of the POI data impose negative influences on the 

quality of sematic enrichment results and the outcome of afterward modules. 

Secondly, although more and more human movement data are being generated every 

day, the access to large-scale and high-precision human movement datasets is still 

limited, mostly because of privacy issues. The movement dataset that this thesis is based 

on is the patrol movements of police officers when they are at work. This means that all 

moving individuals share a certain homogeneity in their behaviours because of their 

common occupation in this dataset, even though officers of different work types focus 

on different tasks and objectives. The fact that the GPS location sensors only work 

during the working hours of the officers indicates that the APLS dataset only describes 

parts of the officers’ life cycles instead of all of them. This limitation is not a major 

problem for activity pattern study itself as the objective of this is not focused on life 

patterns. However, if the developed framework were to be applied to the analysis of 

activities and trips of individuals of heterogenous personal backgrounds and higher 

diversity of activities, changes and adaptations should be made to some modules 

accordingly. For instance, for individuals that tend to visit unpopular places for others, 

the study should focus on space-time aggregations of personal stay points instead of ST-

ROIs (or ST-LOIs) that are commonly visited by multiple individuals. 

Last but not least, the APLS data were originally collected for law enforcement 

operational purposes and did not include an interactive status logging mechanism. 

Ground truth data, such as the actually covered trip routes, actually dwelling times, 

reasons for stops and the detailed relationship between stops and nearby POIs, were not 

recorded in the movement dataset in this thesis. The evaluation of the results, therefore, 

can only be based on assumptions and synthetic movement data simulated by a simple 

rule-based trajectory generator. The lack of ground truth raises challenges to the 

validation of the proposed framework. 
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9.4.2 Limitation in the hybrid spatial representation of places 

In Chapter 6, a novel representation of urban places is introduced during the 

development of the network paradigm. The network representation of the spatial 

boundaries of the ST-LOIs, derived from the topological structure of Ordnance Survey’s 

extended ITN urban theme layer, was intended to incorporate the geometry of streets 

that people actually travel in. This way of representation is particularly designed for an 

urban area with a dense street network. Nonetheless, pedestrians do not necessarily 

follow the path along the network links in urban open fields such as parks, grasslands 

and squares, although the ITN urban theme layer dataset includes minor walkways in 

these places. That is to say, there is a small portion of urban space that does not follow 

the network representation of space. This is not a major limitation for semantic analysis 

in the network paradigm because all urban POIs can be reached through the segments 

in the extended ITN urban theme layer. However, a hybrid paradigm that applies 

network spatial representation for an area of high density of streets and Cartesian spatial 

representation for open fields can still be helpful in improving the accuracy of stay point 

identification and ROI detect in areas of hybrid landscapes such as rural-urban fringe 

zones. 

 

9.4.3 Information losses in ROI detection 

As the ROI detection module in look for significant aggregation of people’s stay points 

in space and time, some relatively insignificant hotspots will be ignored. No matter how 

the parameters (i.e. Eps and minPts) were set in density-based space-time clustering 

algorithms and many other algorithms for similar purposes, there will always be point 

clusters under the aggregation threshold. Some place may have personal meanings for 

individual activities but unpopular for others, but information of these may be lost in 

the ROI detection process because they are not visited with high enough overall 

intensity. For the activity pattern analysis on people that do not share many commonly 

visited ROIs, personal ROIs should be detected and semantically enriched on a personal 

basis instead of applying ROI detection methods on all individuals’ trajectories 

altogether. 

 

9.5 FUTURE WORK 

Aiming at the limitations listed in the previous section and considering the progress 

made so far, several research areas are clearly open to further exploration. The future 

work contents are summarised in this section and aligned with the four modules in the 

methodological framework developed in this thesis. 
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9.5.1 Data pre-processing 

• Improving data collection 

Clearly, one important next development will involve the improvement of data quality. 

The new movement dataset with ground truth status and activity information 

specifically collected for validation use will be of great help in explaining the patterns 

revealed through the implementation of the proposed framework and will provide more 

reliable performance measures in the evaluation of results and comparison of models 

and methods. To achieve this, an experiment and data collection can be organised 

specifically for activity pattern studies to replace the existing datasets. During the new 

experiment, an interactive activity data collection system can be developed and 

integrated into the portable GPS device. The system should be able to detect stop 

episodes in real time during the trip, and make queries to the carrier about the possible 

activity information on the scene or right after the end of the trip to avoid lapses and 

errors in personal memories. The queries should be designed to be short and brief to 

avoid over-intervention of the activities per se. This system should also lighten the 

burden of the experiment participants compared with complex surveys and traditional 

questioners. 

 

• Transport network matching 

Further improvement can also be made to the map-matching technique in the 

framework, as not all transportation in big cities is related to road networks. In our case 

study, London police officers hardly use rail transportation at work because places and 

vehicles relating to public transportation are task areas of other law enforcement 

agencies (i.e. British Transport Police). Rail and underground transportation, however, 

do play important roles in common people’s life cycle, especially for urban commuters. 

Hence, if the framework is used to analyse the patterned activities of common citizens, 

the raw movement trajectories should not only be matched to street segments, but also 

to railway lines and underground stations. This means that map-matching should be 

replaced by hybrid network matching in the pre-processing modules in order to mitigate 

positioning errors for trips containing multiple transportation modes. 

 

• Extending the framework for LBS data 

Although a reasonable volume of continuous GPS movement data is used in the research 

of this thesis, large-scale discrete check-ins and geotagged information are more widely 



204 
 

seen in location-based applications such as Foursquare, Twitter and Instagram. These 

datasets contain spatial, temporal and semantic information altogether and are directly 

related to activities, which is a great advantage when describing individual activity 

patterns. The results of an experiment based on these datasets can also be directly 

turned into applications and be tested by the user because LBS applications are often 

associated with social media accounts. To extend the proposed framework for LBS 

datasets, adaptations are needed. For instance, Module I can be exempted and the 

semantic enrichment works in Module III can be directed based on the textual 

information contained in the LBS datasets instead of external environmental 

information sources. 

 

• Trajectory and route generator 

An agent-based modelling (ABM) method can be used to replace the simple and random 

route generator. It can produce synthetic routes of moving individuals that more closely 

resemble routes generated by real people with a decision-making process and 

preferences in route choices. This improvement will increase the credibility of 

performance evaluations of Modules I and II based on ABM-simulated trajectories.  

 

9.5.2 ROI detection 

• More advanced density-based clustering algorithm 

The parameters of ST-DBSCAN are determined for each borough area in this thesis; 

however, the density of point aggregation in space and time still varies within each 

borough and some ST-LOIs may still be ignored. It is therefore necessary to tailor the 

parameter for space-time point clusters of different densities. Another possible solution 

is the development of a more advanced ST-ROI/ST-LOI detection algorithm. OPTICS 

(Ankerst et al., 1999) is a variation of DBSCAN that addresses one of DBSCAN's major 

weaknesses, i.e. the problem of detecting meaningful clusters in data of varying density. 

OPTICS also incorporates the advantage of hierarchical clustering algorithms, so that 

parameter determination like DBSCAN is exempted. These two major advantages make 

OPTICS a promising algorithm for future improvements of ROI detection. At present, 

OPTICS is a purely spatial clustering algorithm and much work still needs to be done to 

develop an algorithm that can detect spatio-temporal clusters based on OPTICS. Besides, 

based on the parallel improvements of OPTICS (Patwary et al., 2013), the spatio-

temporal version of OPTICS would be less time-consuming than the proposed ST-Net-

DBSCAN algorithm in this thesis. The development of a novel space-time clustering 

algorithm will be our major direction of research in the near future. 
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9.5.3 Semantic enrichment 

• Using VGI data 

The semantic enrichment of places is based on rigorously collected POI data in this 

thesis. There are also many other data sources that can serve similar purposes. 

Geotagged tweets, photographs on social media and VGI data are less precise but more 

easily accessible and are continuously refreshed, which means they can reflect the most 

up-to-date semantic aspect of places and ongoing activities. Semantic enrichment based 

on these datasets collected by web-based approaches would provide a common ground 

on which the activities in real-life can be linked with the virtual internet space. 

 

9.5.4 Aggregative analysis of activity profiles 

• More advanced aggregative analysis method 

In the aggregative analysis of semantic activity profiles, we have applied a hierarchical 

clustering algorithm and determine the resulting subgroup number via the Dun index 

test (Dunn, 1973). Its advantage over other traditional clustering methods is that it does 

not require the number of clusters to be determined or estimated before running the 

algorithm. However, the cluster number still needs to be determined after the clustering 

is done. The ongoing progresses in data mining techniques will provide solutions to this 

limitation. For example, affinity propagation (AP) is a state-of-the-art clustering method 

proposed by Frey and Dueck (2007) and takes advantage from the growth in 

computational capabilities of CPUs. It has been successfully applied to broad areas of 

computer science research because it has much better clustering performance than 

traditional clustering methods. By applying the AP algorithm, setting subgroup numbers 

before or after the clustering process would be unnecessary and the algorithm can 

determine the most appropriate subgroup number in an iterative manner by itself. 

 

9.6 FINAL CONCLUSION 

The work carried out in this thesis has demonstrated a methodological framework that 

seeks to generalise and aggregate the activity patterns from people’s GPS movement 

records within the urban realm. The pre-processing, ROI detection, semantic 

enrichment and profile aggregation modules that we developed in the framework have 

achieved higher accuracies than conventional approaches. The map-matching 

technique was applied, and combined with the kernel-based scanning window that we 
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developed, to achieve a superb overall accuracy of nearly 95% for identifying stay points 

in the trips. It also paved the way to a network representation of urban space in the 

implementation of the framework to achieve a better overall fit with the real-world 

scenario. As parts of the framework, a network-based spatio-temporal clustering 

method has been designed for the detection of regions of interest in urban street 

networks and time. Advanced algorithms are borrowed from text mining to describe the 

time-varying semantic meaning of places and patterned activities. It is hoped that the 

framework, as well as the methodological advances introduced during this thesis, will 

have wider applications in other urban movements, and trip studies providing an 

understanding of the local data per se. 
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APPENDICES 

APPENDIX A: DATA SAMPLE OF APLS4 

CALL 

SIGN 

EASTING NORTHING 

TIME 

STAMP 

WORK 

TYPE 

STATUS EPE 

OTHER OPERATIONAL 

INFO 

302PF 529723 185255 
03/08/2015 

12:39 
FP 

On patrol 32  

302PF 529590 184349 
03/08/2015 

14:44 
FP 

On patrol 17 
 

302PF 529594 184349 
03/08/2015 

14:49 
FP 

On patrol 12  

302PF 529591 184350 
03/08/2015 

15:54 
FP 

On patrol 
15 

 

302PF xxx yyy ttt FP On patrol 10  

302PF xxx yyy ttt FP On patrol 47  

302PF xxx yyy ttt FP On patrol 24  

302PF xxx yyy ttt FP On patrol 34  

302PF xxx yyy ttt FP On patrol 23  

847PF 
529794 187919 

03/08/2015 

13:06 
CSO With vehicle 

26  

847PF 
529564 187290 

03/08/2015 

14:58 

CSO With vehicle 26  

847PF 
529370 187524 

03/08/2015 

15:03 

CSO With vehicle 18 
 

847PF xxx yyy ttt CSO With vehicle 16  

847PF xxx yyy ttt CSO With vehicle 23  

847PF xxx yyy ttt CSO With vehicle 15  

847PF xxx yyy ttt CSO With vehicle 16  

847PF xxx yyy ttt CSO Refreshment 10  

847PF xxx yyy ttt CSO Refreshment 38  

34PF 
524560 187941 

03/08/2015 

15:03 

SP Limited 
21 

 

34PF xxx yyy ttt SP Limited 17  

34PF xxx yyy ttt SP Limited 15  

 

FP = Foot Patrol Officer 

CSO = Community Support Officer 

SP = Special Constable 

  

                                                             
4 This sample dataset is an anonymised example for demonstration. The call sign, 
location and time data in this table are not true. 
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APPENDIX B: MERGED POI DATASET 

Name Street 

Address 

Post 

Code 

Latitude Longi 

-tude 

Category 

Code 

Major 

Category 

Sub 

-category 

Open 

Time 

Close 

Time 

St 

Margaret's 

School 

18 

Kidderpore 

Gardens, 

London 

NW3 

7SR 
51.52889 

-

0.2187 

1031 Education Secondary 

School 

08:00 17:00 

Top Shop 70 Berners 

St, Fitzrovia, 

London 

W1T 

3NL 51.52927 
-

0.2181 

0846 Retail Clothing 

Store 

10:00 19:00 

Strauss 

Photography 

31 Ranulf Rd, 

London 

NW2 

2BS 
51.52850 -0.2171 

0208 Services Media 09:30 17:00 

Malorees 

Junior 

School 

Christchurch 

Ave, London 

NW6 

7PB 51.52882 
-

0.2173 

1031 Education Primary 

School 

08:00 16:45 

Sainsbury's 

Local 

165 Ladbroke 

Grove, 

London 

W10 

6HJ 51.52892 
-

0.2188 

0847 Retail Multi-item 

Retail 

08:00 23:00 

Barbados 

High 

Commission 

1 Great 

Russell St, 

London 

WC1B 

3ND 51.52875 
-

0.2180 

1133 Organisa 

-tions 

Government 10:30 15:00 

North 

London 

Appliance 

Repair 

25 Purley 

Ave, London 

NW2 

1SH 
51.52831 

-

0.2172 

0213 Services Repair 

Service 

10:30 18:30 

SBF Fitness 

Ltd 

Jack Straws 

Castle, N 

End Way, 

London  

NW3 

7ES 
51.56275 

-

0.1800 

0424 Sport & 

Entertain 

-ment 

Sports 

complex, 

gym 

09:00 21:45 

Quex Road 

(Stop K) 

North Maida 

Vale, 

London 

NW6 

51.54024 
-

0.1944 

0959 Transport Bus 

Transport 

00:00 23:59 
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APPENDIX C: POI CLASSIFICATION OF GOOGLE PLACES 

accounting embassy museum 

airport finance night_club 

amusement_park fire_station painter 

aquarium florist park 

art_gallery food parking 

atm funeral_home pet_store 

bakery furniture_store pharmacy 

bank gas_station physiotherapist 

bar general_contractor  place_of_worship  

beauty_salon grocery plumber 

bicycle_store gym police 

book_store hair_care post_office 

bus_station hardware_store real_estate_agency 

cafe health restaurant 

campground home_goods_store roofing_contractor 

car_dealer hospital school 

car_rental insurance_agency shoe_store 

car_repair jewelry_store shopping_mall 

car_wash laundry spa 

casino lawyer stadium 

cemetery library storage 

church liquor_store store 

city_hall local_government_office subway_station 

clothing_store locksmith synagogue 

convenience_store lodging taxi_stand 

courthouse meal_delivery train_station 

dentist meal_takeaway transit_station 

department_store mosque travel_agency 

doctor movie_rental university 

electrician movie_theater veterinary_care 

electronics_store moving_company zoo 
 


