
1 
 

Urban function connectivity: 

Characterisation of functional urban streets with social media 
check-in data 

 
YAO SHEN      KAYVAN KARIMI 

Space Syntax Laboratory, Bartlett School of Architecture, University College London 

22 Gordon St, Bloomsbury, WC1H 0QB, London, UK 

y.shen.12@ucl.ac.uk     k.karimi@ucl.ac.uk  

March 2016 

 
Abstract 

 

Social media check-in data, one type of crowdsourcing open data about individual activity-related choices, provides a new perspective to 
sense people’s spatial and temporal preference in urban places. In this paper, through the analysis of the interaction between these scored 
places on streets, we aim to advance our knowledge of network accessibility with social media check-ins to portray urban structure and related 
socioeconomic performance more explicitly. By conceptualising an interface graph to reflect the interplay between land-use points and the 
co-visual paths, we propose a novel framework to characterise the urban streets with land-use connectivity indices that are measured with a 
new type of place-function signature. A “3-Ds” model is introduced to package three principal dimensions of urban function network, 
including accessible density, accessible diversity and delivery efficiency, as one integrated index that works towards a comprehensive 
understanding of function connectivity from each street’s midpoints to all reachable land-use points. Streets are further partitioned to the 
annotated function regions based on function connectivity in different types of active land-use. The results of preliminary studies in the city of 
Tianjin, China show that the proposed metrics can explicitly describe the inherent function structure and the regions’ typology across scales. 
Compared with space syntax measurements at the same radius for describing the variation of empirically observed house price, the integrated 
metric can improve the predictability of statistic models sufficiently, and each specified index is confirmed to be statistically significant by 
controlling other factors. Overall, this research shows that the usage of ubiquitous big social media data can enrich the current description 
of the urban network system and enhance the predictability of network accessibility on socioeconomic performance.  
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1 Introduction 

The recent growth in the provision of location-based 
services has inspired people to share their location 
preferences in social media networks, through which the 
ubiquitous user-generated information of location choices 
has produced a new generation of ‘human knowledge’ 
regarding urban spaces at a fine-grained resolution (Wyly 
2014). Although such a provision offers new opportunities 
for research, the use of social media data has its limitations, 
including sampling problems, context-related uncertainty, 
lack of theoretical composition, etc. (Boyd and Crawford 
2012). However, the finer resolution of these datasets has 
the potential to enable people to ask different questions 
than those based on conventional data that is oftentimes 
aggregated and out of date (Shelton et al. 2015). As a new 
type of fine-scaled datasets that contains detailed 
information about urban land-use, Points-of-Interest 
(POIs) and Check-in data in modern social media are a 
new focus in urban studies, resulting in research that 

identifies urban regions with POIs and taxi trajectories 
(Yuan et al. 2012), that determines the characteristics of 
urban parcels using vector cellular automata (Liu and 
Long, 2015), that maps urban areas of cities (Long et al. 
2015), etc. Simultaneously, geo-tagged data have been 
increasingly discussed with reference to modelling human 
mobility patterns. Studies have applied individual-based 
check-in datasets to map mobility patterns (Hasan et al. 
2013), to calibrate the parameters of distance decay (Wu 
et al. 2014), to infer daily activity clusters (Jiang et al. 
2012; Hasan and Ukkusuri 2014), to validate retail store 
replacement (Karamshuk et al. 2013) and to analyse urban 
structure (Ratti et al. 2010; Zhong et al. 2015; Long and 
Thill 2015). All these efforts imply that now the open ‘big 
data’ can represent the variations of place in people’s 
minds. However, no prior study has examined the function 
connections among various land-uses based on social 
media check-in data, other than Liu et al. (2016), who 
classified land-use clusters using spatial interaction 
patterns between parcels. The aforementioned studies 
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have instead focused more on origin-destination patterns 
and have not considered the impact of physical layout on 
the detailed spatial interaction between real urban public 
spaces in their models that limit the contribution of 
location-based ‘big data’ to urban morphology, land-use 
planning and urban design studies.  

An important issue that should be noted in any urban 
design and planning task is that streets are the fundamental 
spatial elements for movements; they interlink urban 
functions physically and cognitively (Jacobs, 1993; Gehl, 
2011). Urban function locations, as the destinations of 
urban activities, interact with one another through a 
network of urban public spaces and formulate a network-
based land-use system. Consequently, the distance-based 
and cognitive proximity between urban land-uses 
influence not only the movement but also the choices of 
land-use locations (Geurs et al. 2015). A vibrant urban 
location can revitalise the urban context, in which it is 
embedded; additionally, the proximity of active urban 
locations can increase the popularity of the places that are 
connected to them. Nevertheless, only a small number of 
have prompted the important role of streets and the 
physical layout in the traditional models of accessibility, 
which are generally based on assumptions in which there 
is no spatial heterogeneity in the urban space (Batty, 2009). 
This gap has been addressed with the configurational 
studies, such as the work undertaken by researchers from 
the space syntax community. These studies have 
demonstrated that the network properties of urban grids 
can adequately capture the influence of cognitive efforts 
on pedestrian movement patterns (Hillier et al. 1993), car 
volume distributions (Hillier and Iida 2005), land-use 
distributions (Penn and Turner 2004, Shen et al. 2013; 
Scoppa and Peponis, 2015) and other socioeconomic 
issues (e.g., Vaughan 2007; Karimi, 2012; Hillier 2007).  

There has been some criticism of configurational studies 
for not considering the impacts of land-use distribution or 
other attractors on the spatial network analysis (Ratti, 
2004), but these criticisms seem to lack a certain depth in 
understanding of theoretical and methodological 
propositions of space syntax (Hillier and Penn 2004). In 
fact, the space syntax model is capable of offering 
significant potential for further development precisely 
because it links cognitive costs to navigational energy 
expenditures in spatial analysis (Kim and Penn, 2003). 
However, the topological/geometrical interaction between 
the land-uses though streets is an important dimension in 
which to scrutinise the underlying structures of functional 
streets that are typically neglected in conventional studies 
on land-use distribution and accessibility (Geurs et al. 
2012). Recently, by taking into account the reachable 
densities of activities distribution in the space syntax 
model, Stahle et al. (2005) developed a toolbox called 
‘place syntax’ to calculate accumulated opportunities 
within the buffers defined by the 
metric/topological/geometrical radius. With the emphasis 
on the value of perceived density, Marcus and his team 
suggested that the space syntax model could be extended 
to a more general concept, the ‘spatial capital’, with the 
possibility of translating the urban form to other social, 
economic and cultural capitals (Marcus, 2010; Berghauser 

and Marcus, 2014). Simultaneously, another areas of 
focus include modelling the interplay between reachable 
metric distance and directional distance to enhance 
standard space syntax in predicting human pedestrian 
patterns (Peponis et al. 2008; Ozbil et al. 2011), analysing 
transit riderships (Ozbil et al. 2009), and modelling the 
pattern of commercial frontage (Scoppa and Peponis, 
2015). These studies implicitly considered the detailed 
possibility of improving the existing space syntax model, 
but did not propose a systematic perspective.  

In this paper, we propose an original method for 
computing urban function connectivity by considering the 
spatial interaction between the scored urban spaces and 
partitioning the urban streets based on the composition of 
the defined spatial interactions. Social media check-ins are 
used to infer the significance of a place for a specific type 
of active urban function, to weight respectively the 
accessible density and accessible diversity, and to measure 
the delivery efficiency and the so-called urban function 
connectivity. A statistical data mining approach is adopted 
to characterise urban streets with the similar composition 
of function accessibilities for different types of land-uses. 
The proposed method is applied in a case study in Tianjin 
and its feasibility is verified by confirming the 
enhancements of the predictability of the statistic models 
that capture explicitly the variation of the house prices.  

 

2 The Method 

2.1 Preliminary definition  

In this study, urban function connectivity (UFC) is defined 
as the relatedness information between land-uses through 
the street networks, representing the sense of function 
potentials from every street’s midpoint to all the reachable 
land-use points. This particular form of connectivity, 
therefore, is constructed on the basis of the street network 
where urban land-uses are assigned spatially. An urban 
function region (UFR) is identified as a group of places 
where the properties of function connectivity for different 
active land-uses are similar. Apart from the conventional 
definition of the functional region for comparing 
economic development in regional studies (Antikainen 
2005; Williams 2007), we use this format of UFRs to refer 
to the clusters of streets within which urban functions 
operate similarly. Given this definition, we introduce an 
alternative approach to partition urban space from the 
bottom up by considering the spatio-functional 
relationships in a specified land-use system. 

The land-use system in this study is conceptualised as a 
path-point model (PPM), or as a ‘network interface model’ 
(NIM) to abstract the co-existential relationship between 
urban function points and the visual paths as graphs. In 
such a model, scored urban function locations (points) are 
assigned to the nearest paths based on their spatial inter-
linkage which is identified as the interface between 
buildings and public spaces (Alexander et al. 1977; Hillier 
and Hanson 1984). By converting the spatial relationship 
between the main elements in PPM/NIM to edges and 
nodes, the land-use system can be transformed to an 
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interface graph/network. The land-use locations and the 
directly visible street segments are defined as ‘function 
nodes’ and ‘segment nodes’, respectively, whereas the 
interfaces (the directly physical relationship) between 

nodes - including the entrances from the street to the 
locations and the intersections between the roads - are 
identified as ‘entrance edges’ and ‘intersection edges’.  

 

 

Figure 1: The PPM (or NIM): (a) road network and land-use distribution; (b) the interface map of street network featured by 
land-uses; (c) the interface map of street network and POIs and their popularity estimated by social media data; (d) the dual 
graph of the  interface network as a public space network and POIs. (The greyscale of POIs refers to the typology of activities, 
and the size of the points shows the check-in intensity.) 

 

Figure 1 illustrates the basic conceptual method used to 
construct an interface graph step-by-step. We first prepare 
the necessary data maps including the road network and 
land-use pattern so that these entities can be transformed 
into function and segment nodes with the entrance edges 
in an interface map on the basis of their interface 
connections. In the following stages, the dual graph of the 
interface network is created by converting the street 
junctions to the intersection edges that connect the 
segment nodes and assigning the cognitive cost at every 
junction to the graph as the weights of those intersection 
edges. The cognitive cost for the intersection edges is 
specified as the angular change at each junction according 
to space syntax theory (Turner 2001; Dalton. 2000, 2001; 
Kim and Penn 2003; Haq 2003; Hillier and Iida 2005) and 

earlier evidence in the field of cognitive neuroscience and 
way-finding (e.g., Bailenson et al. 1998, 2000; Crowe et 
al. 2000, Montello 1991). Using angular-weighted 
adjusted graphs in a simple land-use system, we represent 
the manner in which the angle change through a journey 
along the shortest path is calculated (Figure2). As the 
current evidence suggests that humans are not sensitive to 
very slight directional change (Figueiredo 2009), a cut-off 
angle is used to filter the imperceptible angular deviations 
(α) from straight lines to enable a more appropriate 
approximation of the real movement decision making. 
Urban streets are the basic spatial units for the function 
connectivity model, as they are the real conduits for 
human movement.  
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Figure 2: The shortest path through a network and its associated angular justified graphs from different segment nodes (V1 
and V2) with different settings for cut-off angles ((α<θ1) and (α>θ1)).  

 

 

Notably, scores or any other information can be used to 
weight the function nodes to capture the various levels of 
the significance of urban functions. In this research, 
check-ins and POIs derived from social media service 
providers are adopted to present the diverse types of urban 
activity locations and the proxies for the relative 
preferences of people in urban destinations. By adding 
weights for the function nodes, many aspects of function 
connectivity can be addressed to develop a comprehensive 
and robust methodology.  

 

2.2 The framework for characterising urban streets 

We introduce a stepwise framework to identify the various 
dimensions of UFC and UFRs, which contains several 
main modules, including data preparation, interface graph 
formation, function connectivity computation and 
function regional characterisation (Figure 3).  

 

(a) Data preparation   

In the first module, the dataset is processed using a 
standard GIS procedure. The initial road network dataset 
should be cleared and readjusted to an angular segmental 
map that corresponds better to reality based on visibility 
and walkability. An important part of this process is to 
transform the road network to an 'axial model', which will 
then be segmented to create the segment model needed for 

this study. In previous space syntax studies, the segment 
models created from an axial model has been shown an 
efficient method of capturing the movement and 
navigation in cities. The road network data are first 
simplified and then split at the real road intersections. In 
order to avoid the large curves of the road network, they 
are transformed to straight segments according to the 
degree of their curviness (Figure 4), following a 
segmentation method suggested by Liu and Jiang (2012) 
to convert street central lines to axial segments. 
Specifically, we use the deviating distance from the base 
line that links the two endpoints of all segments to the 
farthest vertex in the segment lines to reflect the curviness 
of segments. The curved segments will be cut at the 
farthest vertex for calculating deviating distance if their 
deviating distance are longer than the average (Jiang and 
Liu 2010). This process will be repeated until all curves 
are transformed. In so doing, an objective description of 
angular segmental map is formed based on the notion of 
visibility.  

The POI dataset is collected and geocoded with the street 
network. The POIs are then reclassified as the required 
main types of urban activities. The social media check-in 
data are then linked with the POIs based on the tags and 
coordinates after filtering the fake points, including the 
check-in locations placed outside of the study area and the 
locations that have misfits between the coordinates of the 
check-in point and cell phone GPS for generating clean 
data, which reflects all real usage of the land-use locations.
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Figure 3: Stepwise framework for identifying urban function connectivity (UFC) and urban function regions (UFRs) 

 

(b) Interface graph formation 

To draw the interface graph and perform the related 
computation, we combine spatially the segment map and 
the social media check-in data on the GIS (Geographic 
Information System) platform. The POIs are inferred with 
their check-ins features and snapped to the most proximal 
segments, whereby the interface relationship can then be 
appropriately modelled. We have used 15 degrees as the 
cut-off angle for defining the perceptible angular change 
and calculate the effective accumulated angular change to 
a reachable destination as a numeral variable to reflect the 
cognitive cost between a place and the functions 

accordingly. Given that humans can only easily recognise 
significant differences between two turns, angular step 
depth - a discrete description of the angular change - 
would be more appropriate for describing a sensible 
angular change for humans. We define the angular depth 
at every angular intersection as an integer that rounds up 
to the quotient, in which the numeric angular change is 
divided by a designated interval. In this study, we assume 
that 45 degrees is the project interval for defining the 
angular depth. For instance, if the angular change at 
intersection A and B are 35 degrees and 95 degrees, the 
angular depth for these two angular transits will be 1 and 
2, respectively.  

 

 

 

Figure 4: Re-definition of the road central line data to angular segment map (X is a deviating distance for an included 
curve/segment. The segments with a deviating distance greater than the mean value are cut at the farthest vertices in the 
segments, and the divided segments are re-evaluated in terms of their curves and further cut until their deviating distance are 
smaller than the mean value.)
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(c) UFC computation 

We consider UFC based on three principal dimensions that 
are summarised as ‘3-Ds’ model, in which accessible 
density, diversity and delivery efficiency are calibrated. In 
attempting to achieve comprehensive understanding of the 
interplay among these three aspects, we package them as 
an integrated index to balance the methodological 
complexity and the simplicity of result interpretation. 

 

Density (DEN) 

The DEN index measures the accumulation of scored 
urban activities from each street within a defined radius 
through the reachable shortest paths. Assuming there are 
K types of active land-uses, the accessible function density 
for the segment node i at radius r would be aggregated as 
ܧܦ ሺܰ௜,௥ሻ: 

ܧܦ ሺܰ௜,௥ሻ ൌ 	∑ ∑ ܱሺ௝,௞ሻ ൈ ሺܹ௝,௞ሻ
௃
௝ୀଵ

௄
௞ୀଵ ,			ሼ݀݅ݐݏሺ݅, ݆ሻ ൏   …..(1)	ሽݎ

This summation considers the function nodes that are 
assigned to street segment edges and weighted based on 
the social media check-in scores. In the equation above, r 
is the defined radius, and ሺܹ௝,௞ሻ	is the specified weight for 
the function node j in type k. The scores for the function 
nodes are relativised according to the list of defined land-
use types including retail, catering, hotel, etc., and 
measured as the normalised check-ins which can be 

presented as ሺܹ௝,௞ሻ ൌ 	
୪୭୥஼ሺೕ,ೖሻ
୪୭୥ ஼ೖ

೘ೌೣ  , where log  ሺ௝,௞ሻܥ

represents the log-normalised check-ins for the specific 
function node j in type k, and log ௞ܥ

௠௔௫ denotes the log-
normalised value of the maximum check-ins for all the 
function nodes in the built graph. 

 

Diversity (DIV) 

The DIV index measures the balance degree of all 
reachable weighted urban activities from the original 
street within a given radius. Diversity can be measured in 
several ways, but the most popular methods include the 
dissimilarity index (Cervero & Kockelman 1997) and the 
entropy method (Chuvieco 1999). In this study, 
information entropy is applied to measure the diversity of 
urban function nodes from segment node i at the radius r, 
and represented as ݒ݅ܦ௜,௥ ௜,௥ݒ݅ܦ)   = [0, 1]). Further, a 
normalisation process has been applied to enable the 
different types of activities to be comparable. A direct way 
apply such a process is to convert the absolute density to 
a relative density by dividing the accessible weighted 
density in type k for each segment node by the maximum 
value of the accessible density of land-use of the same type 
at the same radius for all the segment nodes within the 

study area (ܰܽܧܦ ሺܰ௜,௞,௥ሻ ൌ 	
஽ாேሺ೔,ೖ,ೝሻ

஽ாேሺೖ,ೝሻ
೘ೌೣ ). The computation of 

accessible diversity can be formally represented as follows. 

ܫܦ ሺܸ௜,௥ሻ ൌ 	
ି	∑ ௉ሺ೔,ೖ,ೝሻൈ୪୬൫௉ሺ೔,ೖ,ೝሻ൯

಼
ೖసభ

୪୬ሺ௄ሻ
,				ሼ݀݅ݐݏሺ݅, ݆ሻ ൏  … (2)		ሽݎ

ሺܲ௜,௞,௥ሻ ൌ 	
ே௔஽ாேሺ೔,ೖ,ೝሻ

∑ ே௔஽ாேሺ೔,ೖ,ೝሻ
಼
ೖసభ

 …………………………...… (3) 

The presence probability ( ሺܲ௜,௞,௥ሻ) of the function nodes in 
type k at radius r for segment nodes i is measured by its 
empirically observed frequency of normalised density 
ܧܦܽܰ) ሺܰ௜,௞,௥ሻ) among all K types of land-uses.  

 

Delivery efficiency (DEF) 

The DEF index measures the mean angular shallowness to 
all the reachable urban activities from the original street 
within a given radius through the shortest paths. This 
index is the reciprocal of the angular step depth, revealing 
the cognitive efficiency of land-use delivery from all 
reachable functions to the original street segments beyond 
the same energy expenditure that is measured in the light 
of the metric length of the streets. This index can be 
formally expressed in the following equation. 

ሺ௜,௥ሻܨܧܦ ൌ
ேሺ೔,ೝሻ

∑ ∑ ஺ௌ஽ሺ೔,ೕ,ೖሻ
಻
ೕసభ

಼
ೖసభ

,			ሼ݀݅ݐݏሺ݅, ݆ሻ ൏  ሽ …..….. (4)ݎ

In the equation above, ܦܵܣሺ௜,௝,௞ሻ shows the angular step 
depth from segment node i to function node j in type k 
within the buffer area defined by radius r, and ሺܰ௜,௥ሻ is the 
summation of the accessible functions at the same radius. 
Notably, the average angular step depth is inverted in this 
measurement so that the segment node, which is ‘closest’ 
to all reachable function nodes at metric radius r, will have 
the highest efficiency.  

 

Urban function connectivity (UFC) 

The UFC index is a composite measurement that measures 
the degree to which the dense and diverse urban activities 
are accessible with less angular step depth within a given 
radius. Here, three principal dimensions in the 3-Ds model 
reflecting the impacts of opportunity accumulations, 
function composition and cognitive distance are 
incorporated into the final UFC index (ܷܥܨሺ௜,௥ሻ) which 
can be calculated formally as follows: 

ሺ௜,௥ሻܥܨܷ ൌ ܧܦ	 ሺܰ௜,௥ሻ
஽ூ௏ሺ೔,ೝሻ ൈ ,ሺ௜,௥ሻܨܧܦ	 ሼ݀݅ݐݏሺ݅. ݆ሻ ൏  ……. (5)	ሽݎ

Here, the impact of the interplay between density and 
diversity on function connectivity is quantified by a power 
function, which recently has been applied as an elasticity 
parameter in measuring job accessibility (Cheng and 
Bertolini 2013). In the light of foregoing, the product of 
these two factors (ܧܦ ሺܰ௜,௥ሻ

஽ூ௏ሺ೔,ೝሻ) will be 1, when ܫܦ ሺܸ௜,௥ሻ 

is equal to 0, and will be ܧܦ ሺܰ௜,௥ሻ if ܫܦ ሺܸ௜,௥ሻ is 1.  

 

(d) Urban function regions (UFRs) characterisation 

Urban streets are connected to different types of functions, 
in which the UFRs are characterised by the function 
connectivity in different land-use types. In this essence, 
we apply the statistical data mining approach to 
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quantitatively measure the similarity of the function 
connectivity composition. Specifically, we use a k-means 
clustering analysis to partition the urban street segments 
and then annotate each cluster according to the unique 
composition of function connectivity. 

 

Function angular closeness (FAC) 

The FAC index is a particular form of the function 
connectivity with the focus on the specified type of land-
use, and it measures the angular agglomeration of the 
urban function of a certain type through the shortest 
reachable urban paths within a given radius. The 
computation logic of this index follows the idea of 
establishing so-called angular closeness which is 
computed as the quotient in which node counts are divided 
by the mean angular step depth in the space syntax model. 
Mathematically, this metric can be identified in a 
straightforward way as follows.  

ሺ௜,௞,௥ሻܥܣܨ ൌ ܧܦ ሺܰ௜,௞,௥ሻ ൈ ,ሺ௜,௞,௥ሻܨܧܦ ሼ݀݅ݐݏሺ݅, ݆ሻ ൏  ሽ… (6)ݎ

In the equation above, ܧܦ ሺܰ௜,௞,௥ሻ  refers to accessible 
density of function nodes in type k from segment node i at 
the radius r, and ܨܧܦሺ௜,௞,௥ሻ captures the angular delivery 
efficiency of these functions.  

 

Urban function region (UFR) 

Within the family of statistical data mining approaches, 
many algorithms can be used to address the question of 
grouping multi-dimensional data as clusters. These 
algorithms include hierarchical clustering, two-step 
clustering, the self-organisation map (SOM), etc. In this 
study, k-means clustering for several states is employed 
by using the FACs of each street as the vectors’ 
dimensions due to its efficiency in handling large-sized 
numerical datasets (Bishop 2006). In this method, streets 
maintaining similar function connectivity in all the 
defined types will be redistricted to several function 
regions. As its name implies, k-means clustering intends 
to group objects into predefined k clusters where every 
object in the same cluster will have the nearest mean. 
Consequently, the objective of k-means clustering in this 
study is to minimise the total intra-cluster variance, which 
is measured by the squared errors. As a type of iterative 
descent clustering algorithm, k-means clustering can be 
summarised as follows: 

ሺ௖,௥ሻܬ ൌ 	min஼
∑ ∑ ሺݐݏ݅݀ ௜ܸ, തܸ௟ሻ஼ሺ௜ሻୀ௟
௅
௟ୀଵ , ሼ݀݅ݐݏሺ݅, ݆ሻ ൏  ሽ. (7)ݎ

where ܬሺ௖,௥ሻ  is an objective function for a given cluster 

assignment ܥ at a radius r, ܥሺ݅ሻ refers to the label that the 
observations have, തܸ௟ is the mean vector for the l th cluster, 
and ௜ܸ  is a multi-dimensional vector illustrating the co-
presence of function accessibility of various land-uses  
( ௜ܸ ∈ ሺܥܣܨሺ௜,ଵ,௥ሻ, ,ሺ௜,ଶ,௥ሻܥܣܨ …… , ሺ௜,௄,௥ሻሻܥܣܨ ). This 
process will be repeated iteratively until the grouping 
results are stable with a minimised sum of squares.  

One well-known problem of k-means clustering is the 
problem of cluster validity. In other words, we must 
evaluate the results and select the optimised number of 
clusters, which can hardly be decided before the analysis 
(Halkidi et al. 2001). Some metrics have been developed 
in previous studies for validating cluster numbers, such as, 
Dunn’s Index (Dunn 1973), Davies-Bouldin index 
(Davies and Bouldin 1979), Silhouette Index (Rousseeuw 
1987), Xie and Beni’s Index (Xie and Beni 1991) and 
others. In this paper, we use Dunn’s Index and Silhouette 
Index as the validation measurements to evaluate the most 
proper number of clusters. The former index emphasises 
maximising the inter-cluster distances and minimising the 
intra-cluster distances, whereas the latter index focuses on 
the clustering strength of each observation by measuring 
the mean compactness and separation of clusters.  

 

2.3 The settings 

Because the proposed method is a trade-off approach, the 
radius refers to the metric distance thresholds applied to 
select the set of functions from the entire system to be 
analysed from the root segments. In this work, the distance 
of the radius is measured along the street segments. Four 
radius thresholds are specified to represent the spatial 
scales of the analysis, namely, 500 metres (super-local 
scale), 1,000 metres (local scale), 2,500 metres (lower 
semi-local scale), 5,000 metres (higher semi-local scale) 
and 10,000 metres (global scale).  

Active land-uses in this study are defined as the 
complementary land-uses that are more likely to be linked 
by urban travels and thereby contribute to emergent 
movement patterns. Unlike mixed-use developments, 
which seek a balance of all land-uses, the active uses in 
this study are based on function complementarity between 
non-residential land-uses (Hess et al. 2001). 
Complementary land-uses (active land-uses in this work) 
include retail, catering, hotel, office, school, social 
services, hospital, recreation, culture, park and transport 
according to the main activity types that are distinguished 
in the social media. Although the overall effects of the 
mixture of complementary land-uses through streets are of 
great concern, the check-in behaviour for different active 
land-uses will exhibit different frequencies. Consequently, 
the way in which activities are classified will influence the 
weighting results for those functions thereby impacting 
the final results of function connectivity. Therefore, 
classifications of POIs should consider the internal 
similarity of check-in behaviours for different types of 
land-uses in order to score the specific function 
appropriately. For example, retail and catering are two 
distinct categories because the probability that various 
shops are checked in is approximately 10%, whereas the 
same check-in likelihood for restaurants of different types 
is generally about 35%. We should also distinguish the 
culture land-use from recreation as an independent type 
due to the fact that about 80% of culture amenities are 
scored, whereas only 15% of other recreation facilities are 
featured in social media. In summary, we use 
complementary functions and check-in behaviours as two 
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critical criteria to optimise the classification list of active 
land-uses and to secure the data reliability by controlling 
the bias.  

 

03 Study area and data specifications 

3.1 Study area 

In this study, the central area in the Tianjin Metropolitan 
Area (TMA) is used as the case study for our empirical 
investigation. Tianjin functions as a major economic 
centre in north China, with a very strong connection with 
the capital, Beijing. With approximately 12 million 

inhabitants, Tianjin ranks the third city in China in terms 
of population. The study area is located in the centre of the 
administrative districts and covers 100 census survey units, 
i.e., 2,081 square kilometres with a population of nearly 
10 million. The central area here reflects the spatial 
context in which the inner city is embedded. Tianjin is 
presented as test case to implement the proposed method 
for evaluating and visualising the interplay between 
spatial configuration and active urban functions. To better 
represent the street-based results, we select a rectangular 
area of approximately 48 square kilometres in the centre 
of the defined study area to scrutinise the complexity of 
the functionality information associated with the street 
network (Figure 5).  

 

 

Figure 5: Spatial girds (a) and POIs (b) in the study area 

 

3.2 Road network and social media check-in data 

The road network used in this study was obtained from 
Tianjin’s Surveying and Mapping Bureau in October 2014. 
There are 67,603 road segments within the boundary of 
the study area after converting the original road network 
to a segmental map (Figure 5-a). The central area of 
Tianjin maintains a higher road network density and 
smaller block sizes than the suburban areas. A total of 
127,258 POIs were obtained from a well-known social 

media platform, Weibo, which is the equivalent of Twitter 
in the Chinese context. This dataset was obtained from 
Weibo’s streaming API in December 2014. At the same 
time, we also gathered 3,012,970 records of tagged tweets 
of 136,842 users across 35,220 avenues in the same areas. 
By joining the geo-tagged tweets in Weibo, nearly 30% of 
the POIs are featured with the check-in intensity. All of 
these check-in data cover the large built-up areas within 
the study area, suggesting that human activities are highly 
related to urbanisation (Figure 5-b).  
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The POIs were then ranked based on the number of check-
ins and users for all POIs, aiming to identify popularity of 
places in the public social media map (Figure 6). The log-
log plot patterns show that the regularity patterns follow a 
similar scaling law, in which there are far more POIs with 
fewer check-ins than POIs with many check-ins, 
suggesting that popular places in the public’s minds will 
be more likely to attract more people and encourage them 

to revisit. In both diagrams, almost all of the upper half of 
the checked-in POIs follows a power law distribution, 
which reflects both the preferential selection process of 
people who visit urban places and the fact that less popular 
places are known to everyone. Therefore, the findings here 
illustrate that the scaling law represents people’s 
preferences and the real usage of urban sites, which should 
be addressed in the accessibility modelling.  

 

 

Figure 6: Log-log plot of the probability of POIs against check-in number (a) and uses (b) 

 

For computing the land-use inter-complementarity, the 
check-in locations are reclassified into eleven types of 
active land-uses that were previously defined. Retail 
locations occupy the highest number of POIs, followed by 
catering, office and recreation, whereas most check-in 
records are concentrated in transport, education, catering 

and shopping categories. The check-ins without clear POI 
definitions have been removed from the dataset to 
generate a real site-related land-use map. In this sense, the 
temporal functionality distribution of an urban space can 
be properly derived from the ubiquitously available social 
media check-in data in our framework. 

 

Table 1: Social media check-in data types and aggregated information 

Type Abbreviation POIs count Check-in POIs count Check-in number Check-in users
Retail RET 33,429 2,884 209,888 123,340
Catering CAT 27,485 9,475 322,583 245,334
Hotel HOT 2,575 1,298 87,872 49,614
Office OFF 17,178 3,017 167,510 63,913
Education EDU 2,016 1,286 442,558 111,659
Public service PUB 7,277 1,446 36,027 18,411
Hospital HOS 2,808 1,298 85,523 41,548
Recreation REC 14,045 2,342 125,547 84,076
Culture CUL 252 207 33,303 17,121
Park PAR 2,126 873 96,637 56,290
Transport TRA 2,025 1,467 503,509 224,377

 

04 Empirical results  

4.1 Urban function connectivity for streets 

The formerly defined indices in various aspects of UFC at 
different spatial scales have been mapped in central 
Tianjin (Figure 7). The density maps (DEN) present the 
transformation of metric function agglomeration across 

scales from the polycentric local centre structure to a 
relatively homocentric one. The Central Business District 
(CBD) is empirically observed as the place with a multi-
level synergy to generate the sense of multi-scaled 
centrality for density. Moreover, the maps of urban 
diversity (DIV) at different levels suggest a general 
similarity between land-use agglomeration and land-use 
mixture. However, many mismatched areas with different 
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densities and diversity values can be clearly observed, 
where the land-use mixture is significantly high but the 
function density is relatively low, particularly at the super-
local (500 m) and lower semi-local scales (1,000 m). 
Meanwhile, the street-based urban centres highlighted by 
the diversity centrality are more polycentric than the ones 
highlighted by function density, indicating that functional 
mixture can occur at different degrees of function 
clustering. It implies that diversity adds valuable 
information to local centres, thereby depicting the urban 
structure more explicitly. 

The results of the computed accessible density and 
diversity are relatively patch-like because they are based 
on the network metric distance without taking into account 
the cognitive dimension. In contrast, the results of the 
delivery efficiency (DEF) of street-based urban functions 
present network patterns that distinguish the active 
primary streets with more angularly connected active 
functions from the secondary streets that have deep 
angular connection in the denser built environment, 
illustrating the influence of the geometric properties of 
spatial structure on connecting land-uses through the street 
system. It can be argued that the primary streets with less 
angular distance to urban functions captures the super-
block structure in modern cities or the continuous main 
roads in historic cities, whereas the secondary streets 
reflect the urban communities, in which land-uses are 
metrically proximal but angularly distanced from the 
original streets. In particular, the long and straight roads 
are more likely to be captured as the primary network on 
local scales, whereas the historically developed roads with 
a high degree of self-adjustment within the process of 
urban transformation are typically identified as the active 
primary structure at the larger spatial levels. At the local 
level, the patches of the secondary streets are discretely 
distributed, but at the global scale, they are aggregated and 
interlinked by the primary structure. As discussed before, 
the geometric interaction between land-uses through 
streets is an important dimension for scrutinising the 
inherent structures of functional streets that are absent 
from conventional studies on land-use distribution. 

The results of UFC in Tianjin are reported in the last panel 
of Figure 7, illustrating how the street structure influences 
the locality of places in the built environment. 
Additionally, the changes in the function connectivity 
patterns between scales can further represent the 
relationship between functional centres through urban 
streets. The structures of the function connectivity at 
larger radii highlights the routes, through which the 
centres at smaller radii are interconnected to generate a 
global structure. In the case of Tianjin, the organic historic 
roads are the critical routes for the spill-over effects of the 
land-use agglomeration. In economic geography, the 
agglomeration economy is the driving force for urban 
development (Fujita et al. 2001). Based on this logic, the 
UFC pattern can represent developing trends if the 
function clustering is considered as the evidence of the 
occurrence of economic agglomeration. For instance, it 
seems that the local centre structure will move westward 
and combines the three local centres that emerge at the 
pedestrian levels. But the global centres might seek 

expansion to the south.  Instead of using a single 
measurement for one dimension, it is suggested that the 
UFC based on social media data, might provide an 
alternative perspective for studying the morphological 
structure explicitly at the street level. 



11 
 

Figure 7: Urban function connectivity maps (DEN: accessible density index; DIV: accessible diversity index; DEF: delivery efficiency index; UFC: urban function connectivity) 
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4.2 Characterisation of urban streets  

Land use configuration is represented not only by the 
function connectivity centralities that are reflected in their 
positions in the street network, but also by their detailed 
compositions of connectivity in various land-use types. 
We rank segments based on the FAC for each activity 
category across scales and find that urban streets can be 

selected with diminish regularity patterns which follow 
relaxed scaling laws (Figure 8). With the increase of the 
scales, the cumulated distributions of FAC for each type 
of land-use tend to be more similar and cut-off values 
appear. Below the cut-off values at the global scales, 
probability of selecting a cell vary significantly, which 
implies that the significant difference between the highly 
urbanised areas and the non-urban areas. 

 

 

Figure 8: Cumulated distributions of function closeness for each type of active land-use among urban streets 

 

Figure 9 shows the results of the detected UFRs at 
different spatial scales and the associated information, 
including the final cluster centres for the detected regions, 
which are measured by the FAC in each function types, 
the cluster validation to select the optimised number of 
clusters and the transformation of clusters across scales. 
Table 2 summaries the annotations of the emergent 
clusters at various scales according to the emergent cluster 
centres represented in Figure 9.  

The UFRs at the super-local level (500 m) represent the 
most detailed characterisation, reflecting the 
heterogeneity of the patterns of FACs. Except for cluster 
C2 (non-central streets), all other clusters represent the 
central area of Tianjin, because the FACs for various 
active land-uses are ranked highly in those regions. Three 
FURs are captured due to the dominance of function 
connectivity in certain types of POIs. These specific 
clusters include the education streets (C1) on which most 
university campuses are located, the cultural streets (C7) 
with good connectivity to cultural amenities, historic 
interests and associated parks and the streets for travels 
and hotels (C8). Good examples in C8 are the well-known 
train stations in Tianjin (e.g., Tianjin station), which are 
crowded by hotels and are impacted by their roles as 
termini for intra-city travels. 

Four UFRs are annotated as a group because the average 
angular closeness in all land-use types are relatively high: 
the office led central business streets (C3) with the highest 
ranks of the FACs to offices, public agencies, shops, 
recreation and restaurants; the developed 
commercial/recreational streets (C6), which are the 
destinations for shopping, eating and entertainment 
activities; the developed business streets (C4), where a 
large number of retail units, shopping centres, restaurants, 
offices, public agencies/organisations, recreation and 
transport nodes are angularly reachable through streets; 
and the developing business streets (C5), where the 
average levels of function connectivity are lower than 
those in C3, C4 and C6. Unlike the conventional ways of 
identifying function areas, these results demonstrate the 
complexity of the interplay between fine-gained functions, 
suggesting the possibility of studying street life at every 
spatial turn instead of using the aggregated - but somehow 
meaningless - zones. 

At the local scale (1,000 m), the number of UFRs is 
reduced to six, and less specified clusters are recognised. 
Many government agencies that offer public health care 
services, offices and amenities are clustered in the 
diplomatic and business streets (C5), which were 
originally located within the historic colonial areas, but 
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have been transformed to become the modern diplomatic 
centre of the city in the 1970s. The central business streets 
(C2) are located around the famous pedestrian shopping 
street ‘Binjiang Road’, which is known as the main 
business centre in Tianjin, to form a pervasive rather than 
discrete cluster at the local level. The developed 
commercial/recreational streets (C3) are the segments 
where daily public activities significantly co-exist with 
parks and hotels. The patterns at this level illustrate the 
angularly pervasive structure of functional regions, 
showing that land-uses would spill over convexly or 
relatively linearly according to the geometric features of 
the locations across space. 

With the increase of a study scale, the detected optimised 
numbers of emerging clusters are further reduced and the 
distributions become more hierarchical and mono-centric 
from the city centre to the peripheral areas. At the semi-
local scales and at the global scale, five and four clusters 
are recognised, respectively. These clusters are 
distinguished by the average degree of FACs in all types 
of land-uses as the result of similar degrees of accessible 

diversity at the larger scales. With regard to the 
transformation of these patterns on a large scale, it 
suggests that the city centre has shifted from the old core 
towards the south and the west, and the convex or linear 
patterns in different areas illustrate the shape of the UFC 
and the morphological shape of urban development. 

The transformation of emerging UFRs across scales is also 
proof that urban streets, characterised by land-uses and 
street networks, perform differently at different scales. 
Evidently, the real urban function is highly mixed in the 
central area, which consequently makes it relatively 
difficult for people to discern the function characteristics 
of urban spaces. In addition, land-use patterns are 
continuously changing and are formed from the bottom up, 
piece-by-piece and street-by-street. The UFR is a scale-
reliant concept; consequently, a certain function region 
may be merged into other regions, when the study scale is 
changed. Although increasing scales would lead to the 
simplification of urban regions, the geometric connection 
between the functions significantly influences the patterns 
of detected regions.   

 

 

Table 2: Function regions annotation according to the emerging cluster centres in k-means analysis 

Clusters at 500m Clusters at 1,000m Clusters at 2,500m Clusters at 5,000m

C1 Education streets C1 Non-central streets C1 Developing business 
streets 

C1 Central business streets

C2 Non-central streets C2 Central business streets C2 Highly developed 
business streets 

C2 Developed business 
streets 

C3 Office led central business 
streets 

C3 Developed 
commercial/recreational streets 

C3 Developed business 
streets 

C3 Non-central streets

C4 Developed business streets C4 Developing business streets C4 Central business streets C4 Developing business 
streets 

C5 Developing business streets C5 Diplomatic and business streets C5 Non-central streets   
C6 Developed 

commercial/recreational 
streets 

C6 Developed business streets   

C7 Cultural streets      
C8 Streets for travels and hotels     
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Figure 9: Characteristics of functional streets (1st panel: the functional regions; 2nd panel: the final cluster centres measured by the intra-cluster average function angular closeness (FAC) in the 
individual land-use type; 3rd panel: cluster validation diagrams with Dunn index (purple) and Silhouette index (orange) for the number of clusters from 2 to 15; 4th panel: alluvial diagrams of 
cluster transformation across scales) 
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05 Validation and application  

For evaluating our proposed method, house price data are 
adopted for the validity and the discussion of possible 
applications. Asking house price datasets, were gathered 
from online websites including 58tongcheng and Soufan 
in China. These data are building-based and consist of 
10,015 samples (Figure 10). Previous studies have shown 
that the network accessibility matters significantly in 
house price modelling, for which hedonic models are 
predominantly used (Law et al. 2012; Xiao 2012, Shen and 
Karimi 2015). The theoretical foundation of these studies 
is that locational characteristics are perceived as the 
environmental externality that will be directly reflected as 
a part of the price of properties (Boyle and Kiel 2001). 

Furthermore, a reliable validation of network centrality 
should rely on the sample covering most of the study area 
to prove the universal effectiveness. Due to the sensitivity 
of housing prices to locational advantages and data 
coverage, it is argued that the effectiveness of the 
proposed metrics can be verified by means of the way in 
which people value the residential properties in this study. 
By using a comparison of the correlation coefficients in 
the Unary Linear Regression (ULR) and the t-values of 
variables in the Multivariable Linear Regression (MLR) 
analysis, we will explore the effectiveness of the indices 
in our methods for modelling urban performance in a 
manner that is favourably comparable to standard 
centrality metrics.  

 

 

 

Figure 10: Asking house price map of Tianjin city (RMB per square) 

 

To validate the results generated by the proposed 
framework, we compare the predictability of statistical 
models in asking house price distribution by using the 
indices proposed in this study with other existing network-
based centrality metrics and planar geometric indices. The 
distance to a predefined central business district (CBD) is 
selected as planar accessibility, and the segmental 
closeness and betweenness of the street network (also 
known as integration and choice in space syntax studies) 
are used as standard network centrality indices. The 
validation process is conducted in two scenarios: in the 
first scenario, each metric used in the comparison is 
treated as a variable in the ULR model and then the 

adjusted correlation coefficients are mapped and 
compared to reveal the predictability of UFC indices at 
each radius. In the second scenario, density, diversity, and 
delivery efficiency at a certain radius are entered in the 
MLR model with the standard network accessibility 
indices at the same radius as the variables to compare their 
statistical significance in a head-to-head manner. The 
metrics of standard network analysis in the space syntax 
theory are calculated in the Depthmap software developed 
by Turner (2001) and Varoudis (2012), while the proposed 
measurements in the present study are computed in a self-
developed toolkit in ArcGIS 10.2. 
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Figure 11: Comparison of adjusted R-squared values of urban function connectivity with and without social media weights 
from social media, standard network accessibility index (closeness) and distance to the CBD in ULR models at different radii 
of modelling the variation of asking house price 

 

 

Four indices of accessibility centralities, distance to the 
CBD (Euclidean distance to the CBD), closeness, 
weighted and non-weighted function connectivity with 
social media scores, are computed and compared as a 
single variable in the ULR model such that the role of 
social media check-in data is shown in the first scenario 
(Figure 11). Overall, the network measurements perform 
significantly better than the distance to CBD, which 
suggests that the definition of CBD is arbitrary and that 
network centralities can summarise the importance of 
urban spaces more strongly. Moreover, the UFC weighted 
by the social media check-ins, correlates with asking 
house price more significantly than the non-weighted 
measures or segmental closeness, highlighting the 
importance of check-in data for inferring the real 
functionality of point-based urban functions. The best 
correlation appears at 2,500 m for the weighted UFC, with 
an adjusted R2 value of 0.426, whereas the peak of the 
correlation (0.367) between non-weighted composite 
accessibility and the house price is present at 5,500 m. 
This finding demonstrates that the clustering pattern of 
human activity is more compact than the density of 
functions, whereby the economic externality of residential 
properties is captured at a relatively local scale by the 
function accessibility based on social media data. If we 
consider the economic externality of urban space as the 
key aspect of urban locality, a safe argument can be made 
that incorporating the geo-tagged social media check-in 
data with the spatial network can increase the accuracy of 

modelling place locality and its socioeconomic 
significance across radii.  

The second test shows that all network centrality variables 
at different radii are statically significant, except for the 
delivery efficiency at 500 m (Figure 12), which suggests 
that location centrality cannot be reflected by a single 
measurement; instead, it is impacted by the interaction 
between different types of network centrality variables, 
which emphasises further the significance of the 
interaction between spatial and functional elements in the 
built environment at various scales. The peak of the 
significance for the accessible density is found at 
approximately 5,000 m. The closeness of the spatial 
network and the accessible density of urban functions 
experience a similar trend across all radii, in which 
function diversity is more significant at the local and semi-
local scales from 500 m to 7,000 m and becomes less 
significant as the scale increases. By contrast, the 
significance of the betweenness variable and delivery 
efficiency index grows from 7,000 m to 10,000 m, 
indicating the geometric or topological connection 
between land uses and that the route choice matters more 
significantly when other functionality information is more 
aggregated at the macro scale. At all radii below 5,000 m, 
the significance of betweenness continuously falls and the 
t-value of the functional delivery efficiency rises. The 
shifting relationship among these variables across scales 
indicates that the proposed individual index of UFC can 
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provide additional valuable information regarding existing 
descriptions of the spatial network to infer the housing 
price variations. The interaction between the spatial 

configuration and functional system characterises the 
locality of urban space in terms of modelling the physical 
and functional externality of housing properties.  

 

 

 

Figure 12: Comparison of t-values of variables (weighted function density, weighted function diversity, delivery efficiency, 
angular closeness, and angular betweenness) in MLP models at different radii of modelling the variation of asking house price 

 

06 Conclusion 

With the aim to advance our knowledge of network 
accessibility to portray urban structures and related 
socioeconomic performance more explicitly in the new 
data environment, this study has proposed an analytical 
framework to characterise urban streets with function 
connectivity indices that are measured with a new type of 
place-function signature. We introduce a “3-Ds” model to 
integrate three principal dimensions of UFC patterns that 
include density, diversity and delivery efficiency into one 
integrated index that works towards a comprehensive 
understanding of function connectivity from each street’s 
midpoints to all reachable land-use points. Based on 
computing a series of urban function angular closeness, a 
particular form of function connectivity in individual land-
use type, urban streets have been grouped as UFRs with 
the mixture of urban function connectivity in different 
land-use types.  

In an empirical study of Tianjin, the geo-referenced user-
generated social media data reveal the sound dynamics of 
street-based spatio-functional structures and function 
regions at different radii. Using a current asking house 
price dataset, the computed results in our framework 
demonstrate that the integrated urban function 
connectivity index captures more explicitly the variation 

of locational externalities than existing network 
accessibility measurements for predicting the variation of 
residential properties’ value across scales. Meanwhile, the 
measurements based on the three principal dimensions 
projected in this study are recognised to be statistically 
significant, controlling the impacts of spatial accessibility 
indices at every radius. The result of this study show that 
the proposed method enhances the understanding of the 
morphological structure of the land-use system and 
socioeconomic performance based on location-based 
social media data. 

The main advantage of using this framework lies in its 
ability to capture the functional information though urban 
streets more efficiently with increasingly more available 
urban data. There are several contributions that this 
approach makes. Firstly, urban streets are characterised 
and grouped based on the interplay between spatial 
configuration and the visually interlinked land-use 
locations that are scored in social media. In this way, we 
provide a spatio-functional model in which location-based 
urban ‘big data’ can be properly utilised in morphological 
analyses. Secondly, social media check-ins are 
empirically tested to confirm their role in improving the 
accuracy of network centrality computation, particularly 
at the local scales. Thirdly, we extend the standard space 
syntax model by adding the influence of land-use 
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attractions and improve the predictability of existing 
network centrality indices on socioeconomic performance. 
Fourthly, the UFC index balances methodological 
complexity and the interpretational simplicity of the 
proposed method, enabling its potential applications 
theoretically and practically. Finally, the proposed 
approach can potentially be applied in the urban design 
process to evaluate the effects of different spatial plans on 
connecting the land-uses and assess the detailed land-use 
plan and the allocation of facilities in the spatial and 
functional contexts, in which the study area is embedded. 
Subsequently, this approach promotes the advantages of a 
street-based model for planning and design at fine-grained 
scales. This, in turn, highlights the potential role of 
ubiquitous big social media data in an explicit and real-
time description of urban systems, and drives further 
relevant studies. 
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