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Abstract 1 

The aim of boiling histotripsy is to mechanically fractionate tissue as an alternative to thermal 2 

ablation for therapeutic applications. In general, the shape of a lesion produced by boiling 3 

histotripsy is tadpole like, consisting of a “head” and a “tail”. While a number of studies have 4 

demonstrated the efficacy of boiling histotripsy for fractionating solid tumours, the exact 5 

mechanisms underpinning this phenomenon are not yet well understood, particularly the 6 

interaction of a boiling vapour bubble with incoming incident shockwaves. To investigate the 7 

mechanisms involved in boiling histotripsy, a high-speed camera with a passive cavitation 8 

detection (PCD) system were used to observe the dynamics of bubbles produced in optically 9 

transparent tissue mimicking gel phantoms exposed to the field of a 2.0 MHz High Intensity 10 

Focused Ultrasound (HIFU) transducer. We observed that boiling bubbles were generated in a 11 

localised heated region and cavitation clouds were subsequently induced ahead of the 12 

expanding bubble. This process was repeated with HIFU pulses and eventually resulted in a 13 

tadpole shaped lesion. A simplified numerical model describing the scattering of the incident 14 

ultrasound wave by a vapour bubble was developed to help interpret the experimental 15 

observations. Together with the numerical results, these observations suggest that the overall 16 

size of a lesion induced by boiling histotripsy is dependent upon the sizes of (a) the heated 17 

region at the HIFU focus and (b) the backscattered acoustic field by the original vapour 18 

bubble. 19 

 20 
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INTRODUCTION 1 

High intensity focused ultrasound (HIFU) is a non-invasive ultrasound technique which has 2 

been used to thermally necrose solid tumours without disruption to surrounding tissue (ter 3 

Haar and Coussios 2007; Aubry et al. 2013). In recent years, an alternative HIFU technique to 4 

thermal ablation has been developed. This is known as mechanical tissue fractionation or 5 

histotripsy. Acoustic peak positive (P+) and negative (P-) pressures at the HIFU focus used in 6 

histotripsy are comparable to those in the shockwaves used in lithotripsy for kidney stone 7 

fragmentation (Zhu et al. 2002; Pishchalnikov et al. 2003). One of the initial works to show 8 

the feasibility of using acoustic shock waves to induce controlled mechanical injuries in soft 9 

tissue was published in 1997 (Tavakkoli et al. 1997). A well-defined lesion in the form of a 10 

cavity can be produced by histotripsy without any significant thermal damage at the 11 

periphery of the cavity. Recent in vivo studies on kidney, prostate, heart and liver have shown 12 

that a lesion produced by histotripsy contains complete fragmentation of tissue and is sharply 13 

demarcated between treated and untreated regions (Roberts et al. 2006; Hall et al. 2009; Styn 14 

et al. 2010; Xu et al. 2010; Vlaisavljevich et al. 2013; Khokhlova et al. 2014; Pahk et al. 15 

2015, 2016). Subcellular debris remaining inside a mechanically fractionated lesion can be 16 

absorbed as part of the physiologic healing mechanism, whereas a thermally ablated lesion 17 

becomes fibrous scar tissue (Hoogenboom et al. 2015). 18 

In histotripsy, there are two different methods of creating pure mechanical damage of 19 

soft tissue by (a) pulsed ultrasound cavitation or (b) shock wave heating and millisecond 20 

boiling (Parsons et al. 2006; Canney et al. 2010a, 2010b; Maxwell et al. 2011; Khokhlova et 21 

al. 2011, 2014; Khokhlova et al. 2015). In both methods, acoustic cavitation is believed to be 22 

one of the main mechanisms for inducing mechanical tissue fractionation (Khokhlova et al. 23 

2015). An inertial cavitation cloud at the HIFU focus can be formed by two different 24 

mechanisms, termed shock scattering histotripsy and intrinsic threshold histotripsy (Allen and 25 
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Hall 2015; Vlaisavljevich et al. 2016). For shock scattering histotripsy, a number of 1 

microsecond-long HIFU pulses with high peak positive (P+ > 80 MPa) and negative (P- = 15 2 

– 25 MPa) acoustic pressures at the focus are used to produce a dense bubble cloud. This 3 

cloud formation results from the production of a greater peak negative pressure field 4 

generated by the interference between the reflected and inverted peak positive pressure from 5 

a single cavitating bubble and the incoming incident rarefactional phase (Maxwell et al. 2011; 6 

Vlaisavljevich et al. 2014). In intrinsic threshold histotripsy, a single microsecond-long HIFU 7 

pulse with a single dominant negative pressure P- of 24 – 30 MPa at the focus is employed to 8 

induce a cavitation cluster directly from the negative pressure phase of the incident acoustic 9 

wave (Lin et al. 2014; Maxwell et al. 2013; Vlaisavljevich et al. 2015a, 2015b). Because the 10 

pressure threshold for cavitation clouds is –28 MPa for most soft tissues (Maxwell et al. 11 

2013; Lin et al. 2014), the site of the bubble cloud is spatially confined to the HIFU focus. 12 

In contrast to shock scattering or intrinsic threshold histotripsy, there is another method 13 

of inducing a mechanically fractionated lesion. This ultrasound technique is known as boiling 14 

histotripsy, which utilises shock wave heating to produce a boiling vapour bubble (as opposed 15 

to cavitation clouds) and fractionate soft tissue with a number of millisecond HIFU pulses 16 

(Khokhlova et al. 2015). Boiling histotripsy has been demonstrated in ex vivo bovine liver 17 

(Khokhlova et al. 2011, Wang et al. 2013), heart (Wang et al. 2013), kidney (Schade et al. 18 

2014) and in vivo porcine and rat liver (Khokhlova et al. 2014; Pahk et al. 2015, 2016). These 19 

studies have shown that boiling histotripsy can induce similar lesions to those generated by 20 

shock scattering histotripsy or intrinsic threshold histotripsy. 21 

Mechanisms involved in boiling histotripsy are currently being investigated by several 22 

research groups such as Canney et al. (2010a), Kreider et al. (2011), Khokhlova et al. (2011), 23 

Wang et al. (2013) and Simon et al. (2012, 2015). In soft tissue, significant acoustic wave 24 

distortion at the HIFU focus due to tissue nonlinearity leads to the production of a shock 25 
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wavefront. This wavefront contains tens of higher order harmonic components of the 1 

fundamental frequency. Since the absorption of ultrasound energy in tissue increases with 2 

frequency (ter Haar and Coussios 2007), a shockwave enables the heating rate to be 3 

dramatically increased. Canney et al. (2010a) demonstrated that localised heating by 4 

shockwaves at the HIFU focus can raise tissue temperature to 100oC in a few milliseconds 5 

followed by the formation of a boiling vapour bubble at the HIFU focus. This bubble then 6 

grows to millimetre size, which may tear off tissue due to shear stresses produced around the 7 

oscillating bubble (Khokhlova et al. 2011). The growth of this millimetre-sized bubble, 8 

known as rectified bubble growth, is likely to be due to the combination of the asymmetry in 9 

the compressional and rarefactional pressure phases in the shock waveforms and water 10 

vapour transport (Kreider et al. 2011). After the formation and explosive growth of a boiling 11 

bubble, it further interacts with incoming incident shockwaves to promote a mechanical 12 

tissue fractionation process (Maxwell et al. 2012). A miniature acoustic fountain and 13 

atomisation may occur at the tissue-bubble interface to emit jetting with sub-micrometre 14 

sized tissue fragments into the bubble (Simon et al. 2012).  15 

In general, the shape of a lesion produced by boiling histotripsy is tadpole like, 16 

consisting of a “head” and a “tail” with the “head” closest to the HIFU source (Khokhlova 17 

and Hwang 2011). Canney et al. (2010b) and Khokhlova et al. (2011) observed that the HIFU 18 

focus was at the “tail” and the “head” migrated towards the HIFU transducer during the 19 

course of boiling histotripsy. Khokhlova et al. (2011) and Simon et al. (2012) suggested that 20 

the production of a “head” shaped lesion is likely to be due to the formation of a boiling 21 

bubble at the HIFU focus and the HIFU atomisation at the tissue-bubble interface. Besides 22 

this, the “tail” of a lesion may be formed by streaming of the liquefied tissue within the 23 

forming “head” (Wang et al. 2013). These proposed mechanisms, however, are not enough to 24 

explain the prefocal shift of the lesion “head” towards the transducer, because the atomisation 25 
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process is likely to be limited to the region where shocks and boiling bubbles are present 1 

(Khokhlova et al. 2011, Wang et al. 2013). Therefore, there may be other mechanisms 2 

involved in boiling histotripsy besides the HIFU atomisation and the streaming effects.  3 

While a number of studies have demonstrated the efficacy of boiling histotripsy for 4 

fractionating tumours, the exact mechanisms underpinning this phenomenon are poorly 5 

understood, particularly the interaction of a boiling bubble with incoming incident 6 

shockwaves. To that end, the main objective of the present study is to help provide a better 7 

understanding of the mechanisms behind the formation of a mechanically induced tadpole 8 

shaped lesion resulting from boiling histotripsy. In this study, a high-speed camera and a 9 

passive cavitation detection (PCD) system are used to observe the dynamics of bubbles 10 

induced in tissue mimicking gel phantoms exposed to HIFU fields and record the 11 

corresponding acoustic emissions. Furthermore, a numerical model describing the incidence 12 

of ultrasonic waves on a vapour bubble close to the focus of the HIFU transducer and the 13 

backscattered field by the bubble, is developed using a boundary element method (BEM). 14 

 15 

MATERIALS AND METHODS 16 

HIFU experimental arrangement 17 

A schematic diagram of the experimental set up used in this study is shown in Figure 1. The 18 

experiment was performed in an acrylic water bath filled with degassed and de-ionised water 19 

at a temperature of 20oC. A water treatment system (Precision Acoustics Ltd, Dorset, UK) 20 

was used for degassing. A 2.0 MHz single element bowl-shaped HIFU transducer (Sonic 21 

Concepts H106, Bothell, WA, USA) with an aperture size of 64 mm, a focal length of 62.6 22 

mm, and lateral and axial full width half maximum (FWHM) pressure dimensions of 1.05 23 

mm and 6.67 mm was used. The HIFU transducer was characterised in our previous study 24 

(Pahk et al. 2016) using a calibrated 0.2 mm polyvinylidene fluoride (PVDF) needle 25 
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hydrophone (Prevision Acoustics Ltd, Dorchester, UK) in water (free-field) under linear 1 

propagation conditions. The HIFU source was driven by a function generator (Agilent 2 

33220A, Santa Clara, CA, USA) via a linear radiofrequency (RF) power amplifier (ENI 3 

1040L, Rochester, NY, USA). A computer with waveform generation software (Agilent 4 

Waveform Builder, CA, USA) was used for driving the function generator with the desired 5 

HIFU pulsing protocol. A power meter (Sonic Concepts 22A, Bothell, WA, USA) was 6 

connected between the RF power amplifier and the HIFU source to measure the level of the 7 

electrical power Pelect supplied to the transducer.  8 

During the experiments, the position of the HIFU transducer was fixed relative to the 9 

phantom in the water bath and an acoustic absorber (Precision Acoustics Ltd AptFlex F28, 10 

Dorchester, UK) was placed on the opposite end to minimise ultrasonic reflections. A 10 11 

MHz focused PCD (20 mm in diameter and 64 mm in geometric focal length, Sonic Concepts 12 

Y107, Bothell, WA, USA) featuring a wide bandwidth (10 kHz–20 MHz) was connected to a 13 

digital oscilloscope (LeCroy HDO 6054, Berkshire, UK). This PCD was used to obtain 14 

acoustic emissions resulting from cavitation activity at the HIFU focus. A sampling 15 

frequency of 0.5 GHz was used. 16 

 17 

Tissue mimicking gel phantoms 18 

An optically transparent tissue mimicking phantom containing a polyacrylamide gel with 19 

bovine serum albumin (BSA) used in this study has also been used in a number of other 20 

boiling histotripsy studies (Canney et al. 2010a; Khokhlova et al. 2011; Zhou and Gao 2013). 21 

Temperatures above 60oC cause BSA protein to denature and form an opaque thermal lesion, 22 

which can be visualised. Table 1 shows the chemical composition required to produce a 50 23 

mL gel with 7% BSA concentration. A tissue phantom consisting of the chemical composition 24 

listed in Table 1 has very similar acoustic and thermal properties to those of liver, except for 25 
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the attenuation coefficient, which is 0.15 dB cm-1MHz-1 rather than that for liver which is 1 

0.52 dB cm-1MHz-1 (Lafon et al. 2005; Khokhlova et al. 2011).  2 

The tissue phantom was prepared by first mixing 3.5 g of BSA (Sigma-Aldrich A7906, 3 

Dorset, UK) in 35.805 mL of degassed and de-ionised water. The mixture was gently stirred 4 

to dissolve the BSA completely. The solution was then placed in a vacuum chamber (Edwards 5 

High Vacuum ISC30A, Sussex, UK) and held in a vacuum of 720 mm Hg for 30 minutes for 6 

additional degassing. 8.75 mL of acrylamide (Sigma-Aldrich A9926, Dorset, UK) was added 7 

to the mixture followed by a 1 mol L-1 TRIS buffer (Sigma-Aldrich T2694, Dorset, UK) and a 8 

0.42 mL of APS (Sigma-Aldrich A7460, Dorset, UK) to initiate polymerisation. Because 9 

acrylamide is a neurotoxic substance, the mixing process was performed in a fume hood 10 

(Labcaire T400L, Somerset, UK) with appropriate safety measures. The entire solution was 11 

again stirred gently and placed in the vacuum chamber with a vacuum of 720 mm Hg for 1 12 

hour. 0.025 mL of TEMED (Sigma-Aldrich T9281, Dorset, UK) was finally added to the 13 

solution to accelerate the polymerisation process. The final solution was immediately poured 14 

into a customised mould (6 × 6 × 6 cm). Because the polymerised gel has a limited lifespan 15 

of several weeks (Khokhlova et al. 2006), it was stored in an air-tight plastic bag at 8oC and 16 

used the next day for experiments.  17 

Prior to the camera experiments, the tissue phantom was kept at room temperature until 18 

its temperature reached 20oC. The phantom was then cut into cuboid samples (1.5 × 3 × 6 19 

cm) and clamped in a custom-built holder (4.5 × 5 × 7.5 cm). The holder coupled with the 20 

phantom was attached to a customised three-axis positioning system for alignment with the 21 

HIFU focus. The distance from the centre of the transducer surface to the phantom was 57.6 22 

mm. Therefore, the HIFU focus was 5 mm below the surface of the phantom. This depth was 23 

chosen according to our previous in vivo study (Pahk KJ et al. 2016) that shows the 24 

production of a well-defined ‘tadpole’ shaped lesion at 5 mm below the surface of the liver 25 
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without rupturing the liver surface. 17 tissue phantoms in total (n = 17) were used in this 1 

study. 2 

 3 

Camera set up 4 

A high speed camera (FASTCAM-ultima APX, Photron, San Diego, CA, USA) with a 12X 5 

Navitar lens (Navitar, Rocester, NY, USA) connected to a three-axis-positioning system 6 

(Sherline Products 5430, Vista, CA, USA) was used to film the bubble dynamics induced at 7 

the HIFU focus in the tissue phantom. The camera was operated at 1000, 15,000 and 100,000 8 

frames per second (fps) with a shutter speed of 1/1000 s, 1/15000 s and 1/100000 s, and a 9 

pixel resolution of 512 × 128, 1028 × 128 and 128 × 32, respectively (24 μm/pixel). During 10 

the experiments, 15,000 and 100,000 fps were used to capture bubble dynamics induced by a 11 

single or five HIFU pulses in the gel whilst 1,000 fps was employed for fifty HIFU pulses 12 

due to memory limitation. All experiments were backlit with an illuminating system (Solarc 13 

ELSV-60, General Electric Company, Connecticut, USA). Hence, captured optical images 14 

appeared as shadowgraphs where the tissue phantom appeared grey and HIFU-induced 15 

bubbles appeared black. Optical images were post-processed with Photron FASTCAM 16 

Viewer (Photron, San Diego, CA, USA). Tissue phantoms were cross-sectioned after HIFU 17 

exposure for morphological analysis. 18 

During the experiments, a camera processor (FASTCAM-ultima APX, Photron, San 19 

Diego, CA, USA) triggered the camera and the function generator at the same time to 20 

synchronise the image capturing process and HIFU exposure. 21 

 22 

HIFU exposure condition 23 

A 10 ms-long HIFU pulse with Pelect = 200 W (nominal electrical to acoustic power 24 

conversion efficiency of 85%, P+ = 85.4 MPa and P- = –15.6 MPa) was used to produce a 25 
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lesion in the tissue phantom. The duty cycle (1%) and the pulse repetition frequency (1 Hz) 1 

were kept constant while changing the number of pulses, which was set to 1, 5 or 50. In 2 

boiling histotripsy, it has been shown that the time to initiate boiling at the HIFU focus can be 3 

reliably predicted theoretically (Canney et al. 2010a; Khokhlova et al. 2011; Wang et al. 4 

2013). Acoustic peak positive (P+) and negative (P-) pressures at the HIFU focus in the gel 5 

were, therefore, obtained by numerically solving the Khokhlov-Zabolotskaya-Kuznetsov 6 

(KZK) parabolic nonlinear wave propagation equation for a set of input parameters using the 7 

HIFU Simulator v1.2 (Soneson 2009). The simulated acoustic waveform at the focus is 8 

shown in Figure 2(a). Figure 2(b) depicts the corresponding peak temperature rise. This was 9 

calculated using the bioheat transfer (BHT) equation (Pennes 1948) and the time to reach the 10 

boiling temperature of 100oC (tb) was predicted to be 3.66 ms. The physical properties of the 11 

tissue phantom used in the simulations are listed in Table 2. The HIFU exposure parameters 12 

used in this study were verified for the creation of a cavity with in vivo experiments reported 13 

earlier (Pahk et al. 2015, 2016) and were similar to those used by Khokhlova et al. (2011). 14 

 15 

Scattered pressure fields 16 

The presence of a vapour bubble close to the focus of the HIFU transducer is likely to cause 17 

scattering of the incident ultrasonic field due to the difference in the acoustic impedance 18 

between water vapour and the tissue phantom. This phenomenon may lead to constructive 19 

and destructive interactions of the scattered field with the incident field, potentially 20 

generating localised peak negative pressures, leading to additional cavitation nucleation sites. 21 

Furthermore, the presence of a vapour bubble close to the transducer focus may also lead to a 22 

distortion of the focus and generate a shadow zone. 23 

It is well-known that the KZK equation can only simulate one-way par-axial 24 

propagation. Producing a full-wave nonlinear acoustic propagation model capable of dealing 25 
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with scattering by localised heterogeneities remains a challenge. This is particularly the case 1 

if the computational domain is large relative to the wavelength of the highest frequency 2 

present in the ultrasonic signal. On the basis of the KZK simulations, significant harmonic 3 

content is present at the focus up to 10 MHz. This is likely to result in a densely meshed 4 

computational grid. It is, therefore, likely that accurately modelling such a configuration will 5 

present substantial computational challenges. To get a qualitative appreciation of what the 6 

effects of scattering of the incident HIFU field by a vapour bubble may be, a linear scattering 7 

analysis was, therefore, opted for. The calculated scattered acoustic pressure fields based 8 

upon the linearity assumption would therefore only be for qualitative analysis. Boundary 9 

element methods (BEM) are particularly well-suited to dealing with exterior scattering 10 

problems, and such analysis techniques will be opted for here. In BEM, the partial differential 11 

equation to be solved is reformulated into an integral equation that is defined on the boundary 12 

of the domain (in this case, on the surface of the vapour bubble) and an integral that relates 13 

the boundary solution to the solution at any point in the domain. The boundary integral 14 

equation may then be solved by discretising the surfaces defined by the domain boundaries 15 

into smaller regions known as boundary elements. A major advantage of BEM over other 16 

numerical schemes, such as finite difference time domain methods, is that the discretisation 17 

occurs only over the surfaces rather than over the entire domain. More details on BEM are 18 

provided by Banerjee (1994). 19 

The BEM implementation used in this study was described by Gélat et al. (2014, 2015). 20 

The method is a colocation BEM implementation of the Kirchhoff-Helmholtz integral 21 

equation, which uses isoparametric elements with quadratic shape functions. The scatterer is 22 

assumed to be locally reacting so that nvuinp  on the surface of the vapour bubble, 23 

where p is the acoustic pressure in the liquid, n is the node on the mesh of the surface, un is 24 

the normal component of the particle velocity vector, ρv is the liquid density, ω is the angular 25 
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frequency and i2 = –1. Transmission of acoustic waves through the bubble was neglected, due 1 

to the large difference between the acoustic impedance of water vapour and that of the tissue 2 

phantom (Canney et al. 2010a). 3 

For computation of scattered acoustic fields from a boiling bubble, the BEM scheme 4 

requires an incident acoustic pressure field on the surface of the scatterer as input data. This 5 

was derived using a Rayleigh integral method (Pierce 1989) by effectively discretising the 6 

surface of the HIFU source into smaller surfaces with a point source located at their centroid. 7 

By weighting each source with the appropriate surface area and by summing all their 8 

contributions, the incident field at any required location may be computed. This is achieved 9 

through a discretisation of the following integral 10 
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where ρ is the density of the tissue phantom, k = ω/c is the acoustic wave number and c is the 12 

sound speed in the phantom. r
 depicts a position vector in the acoustic domain, 0r


 a position 13 

on the surface of the source, n


is the unit normal vector on the surface of the source (pointing 14 

towards to the focus), u


is the velocity and s is the radiating surface of the HIFU source, 15 

which is assumed to be moving uniformly in the radial direction.  16 

The exterior domain was assumed to be homogeneous, possessing the properties of the 17 

tissue phantom gel. In fact, this domain also comprises a region of water between the HIFU 18 

source and the gel. This water region was not included here, and the normal surface velocity 19 

of the transducer was adjusted to result in 22 MPa at the focus, in the absence of the scatterer. 20 

The pressure value of 22 MPa was obtained from the simulated acoustic pressure for the first 21 

harmonic using the KZK simulation (i.e., in the linear case). The resulting acoustic pressure 22 

at focus is shown in Figure 3(b), which represents the sum of the incident and the scattered 23 

pressure magnitude from a vapour bubble. 24 
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RESULTS 1 

The formation of a boiling bubble in the tissue phantom gel with a single HIFU pulse 2 

Figure 4 shows a sequence of camera images obtained over a single 10 ms HIFU pulse in the 3 

tissue mimicking gel phantom with an acoustic power of 170 W (P+ = 85.4 MPa; P- = –15.6 4 

MPa at the HIFU focus). Localised heating in the HIFU focal region is observed as a dark 5 

elliptical shape at 3.4 ms (Figure 4(b)). This heated region corresponds well to the simulated 6 

temperature contour plot shown in Figure 4(c). A large bubble of 360 μm in diameter appears 7 

in this heated region after 3.6 ms of exposure to the HIFU field (indicated by an arrow in 8 

Figure 4(d)). This bubble is hereafter referred to as a boiling bubble because its onset time 9 

matches the calculated time to reach a boiling temperature of 100oC (tb = 3.66 ms) 10 

(Khokhlova et al. 2011). A significant increase in the PCD voltage occurs as this large boiling 11 

bubble manifests itself. This can be seen in the PCD voltage vs time plot in Figure 5(a). Also 12 

coinciding with the appearance of this bubble is the manifestation of higher order multiple 13 

harmonic components of the fundamental frequency (2 MHz) in the spectrogram in Figure 14 

5(b). These significant changes are indications of the formation of a boiling bubble due to the 15 

reflection of an incident nonlinear-shocked wave from this bubble (Canney et al. 2010a). 16 

During the experiments, the time to boiling for the single HIFU pulse in the gel was 3.78 17 

± 0.67 ms (mean ± standard deviation SD with n = 17) with differences of 0.12 ms between 18 

the PCD measurement and the temperature simulation. 19 

After the formation of a boiling bubble at t = 3.6 ms (see Figure 4(d)), a cavitation 20 

cluster is subsequently produced in front of the boiling bubble, progressing towards the HIFU 21 

source until the HIFU pulse is switched off (see Figures 4(e) to (h)). Simultaneously with the 22 

generation of the bubble cloud, significant appearance of broadband emissions (an indicator 23 

of inertial cavitation) is noticed within the black dashed lines in the corresponding 24 

spectrogram plotted in Figure 5(b). In addition to the generation of a cavitation cluster, a 25 



14 

secondary localised heated region at ~1 mm away from the primary boiling bubble further 1 

along the beam axis is observed. This event is indicated by an arrow in Figure 4(e) and is 2 

followed by the production of a secondary boiling bubble at t = 5.7 ms, also indicated by an 3 

arrow in Figure 4(f). More boiling bubbles can be seen to form at t = 7.6 ms towards the 4 

primary boiling bubble (see Figure 4(g)). These secondary boiling bubbles are spatially 5 

confined to the localised heated region. 6 

 7 

The formation of a tadpole shaped lesion with multiple HIFU pulses 8 

Five HIFU pulses 9 

Figure 6 shows a series of high speed camera images taken during five 10 ms HIFU pulses. 10 

Images in the left column represent the formation of a boiling bubble during each HIFU pulse 11 

(indicated by arrows in Figure 6(a)), whereas those in the middle column show bubble 12 

activities at the end of each HIFU pulse (see Figure 6(b)). During each HIFU pulse, a boiling 13 

bubble appears either at the HIFU focus or close to the focus (within 1 mm, see Figure 6(a)), 14 

but disappears in the time interval between HIFU pulses (1% duty cycle). The time taken to 15 

form a boiling bubble decreases with HIFU pulses (3.6, 3.1, 2.9, 2.5 and 2.3 ms). Besides this 16 

boiling bubble, a cavitation bubble clouds is always produced in front of a boiling bubble 17 

(indicated by the blue arrows in Figure 6(b)), persisting throughout each HIFU exposure, but 18 

disappearing between HIFU pulses. 19 

The corresponding induced mechanical damage in the gel prior to the arrival of the next 20 

HIFU pulse is shown in the right column in Figure 6(c). Examining the phantom morphology 21 

at the HIFU focus, residual mechanical damage of the gel is optically visible and the size of 22 

the lesion becomes enlarged with the number of HIFU pulses. When comparing the location 23 

of the bubbles (i.e. boiling bubbles and cavitation clouds) with the corresponding residual 24 

damage induced in the phantom (see Figures 6(b) and (c)), the position of the “head” shaped 25 
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lesion corresponds well to that of the cavitation cloud, whereas the boiling bubbles generated 1 

in the heated region match the location of the “tail” shaped lesion. In addition, bubbles less 2 

than 200 μm in diameter are pushed away from the HIFU focus (indicated by the black 3 

arrows in Figure 6(b)) most probably due to the HIFU radiation force. This movement may 4 

also contribute to the formation of the “tail” together with the generation of boiling bubbles. 5 

 6 

Fifty HIFU pulses 7 

In boiling histotripsy, 10 to 50 HIFU pulses are usually delivered to produce a well-defined 8 

mechanically fractionated lesion (Maxwell et al. 2012). Figure 7 shows a number of high 9 

speed images captured during 50 HIFU pulses. The shape of a tadpole-like mechanical 10 

damage produced in the phantom corresponds well to the locations of a cavitation cloud and 11 

of boiling bubbles, in the “head” and in the “tail”, respectively. This is further confirmed by 12 

cross sectioning the lesion immediately after exposure to the 50th HIFU pulse, as shown in 13 

Figures 7(f) and (g). No evidence of thermal damage, which would manifest itself as an 14 

opaque lesion (Khokhlova et al. 2011), was present. 15 

Figure 8 shows the length along the direction of wave propagation and the width in the 16 

lateral direction of the “head” and of the “tail” as a function of the HIFU pulse numbers. 17 

After the fifth HIFU pulse, the length of the “head” does not increase significantly, whereas 18 

the width of the “head” and both the width and length of the “tail” continue to grow. After the 19 

30th HIFU pulse, the overall lesion size does not change significantly. 20 

 21 

DISCUSSION 22 

Formation of a boiling bubble 23 

In this work, the mechanism for the formation of a tadpole shaped lesion produced by boiling 24 

histotripsy was investigated both experimentally and numerically. Canney et al. (2010a) and 25 
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Khokhlova et al. (2011) showed that localised shock wave heating can increase the 1 

temperature to 100oC in a few milliseconds followed by the formation of a boiling vapour 2 

bubble at the HIFU focus. The experimental results presented in this study concurred with 3 

theirs. A boiling bubble appeared in a localised heated region (see Figure 4). The boiling time 4 

resulting from a single 10 ms HIFU pulse in the gel (3.78 ± 0.67 ms, mean ± SD with n = 17) 5 

agreed well with that obtained from the temperature simulation, where the computed time to 6 

boil was predicted to be 3.66 ms. Furthermore, it was noticed that the onset time of a boiling 7 

bubble reduced with the number of HIFU pulses used (see Figure 6). This is most likely to be 8 

due to an accumulation of heat at the HIFU focus, where the peak temperature does not return 9 

to ambient temperature between pulses (Khokhlova et al. 2011; Zhou and Gao 2013).  10 

During the course of HIFU exposure, the changes in temperature dependent acoustic 11 

properties, especially speed of sound, can lead to a shift of the HIFU focus in the axial 12 

direction towards the transducer (Hallaj et al. 2001). In Figures 4(d) and 6(a), it can be seen 13 

that a boiling bubble forms at the edge of the heated region during the first 10 ms HIFU 14 

pulse. This was also observed by Khokhlova et al. (2011). In the presence of a localised 15 

region heated by shockwaves, there is a large temperature gradient across the edge of the 16 

region. This eventually leads the local speed of sound in the heated volume to be greater than 17 

that outside of this region, causing an acoustic refraction effect at the interface. 18 

 19 

Interaction of a boiling bubble with an incident shockwave 20 

Maxwell et al. (2011) showed that the reflection and inversion of incident shockwaves from 21 

the surface of a single cavitating bubble produces a large peak negative pressure field, leading 22 

to additional bubble nucleation sites for cavitation clouds. This phenomenon is known as the 23 

shock scattering effect. This cavitation cluster was also observed during the course of boiling 24 

histotripsy, after the creation of a boiling bubble at the HIFU focus (see Figures 4(e)-(h)). 25 
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Simultaneously with the bubble cloud formation in front of a boiling bubble, a secondary 1 

localised heated region appears within the HIFU focal region followed by a secondary boiling 2 

bubble (see Figures 4(e),(f)). This is likely to be due to (a) the fact that the incident acoustic 3 

field is partially shielded by the cavitation cluster together with the boiling bubble and (b) the 4 

larger size of the HIFU focal width (FWHM of 1.05 mm) relative to that of the region heated 5 

by shocks (~0.2 mm, see Figure 4(c)). Indeed, as a result of the constructive and destructive 6 

interference between the incident field and that scattered by the secondary boiling bubble, 7 

local pressure minima as well as enhanced heating may be induced. This may lead to the 8 

generation of a number of boiling bubbles in front of the secondary boiling bubble moving 9 

towards the transducer (see Figures 4(f)-(h)). Figure 9 shows the simulated sum of the 10 

incident pressure and the pressure scattered by a boiling vapour bubble. The backscattered 11 

acoustic pressure field in front of the bubble and the reduced acoustic pressure in the shadow 12 

zone behind the bubble can be clearly observed. The boundary element numerical results 13 

have been obtained based on the linearity assumption. So although both the backscattered 14 

acoustic field and the field behind the bubble are given by the simulations, it is only the 15 

pressure field behind the bubble that can be used for a direct comparison with the 16 

experimental observations. This is because the dominant components in the backscattered 17 

field of an incident shock from a bubble have been experimentally observed to be the higher 18 

frequency components (Maxwell et al. 2012). The linear model used here does not model a 19 

shock or the higher harmonics of the fundamental. The fundamental component, which is the 20 

only component modelled here, and the lower frequency harmonics in a shock are however 21 

expected to be scattered more weakly and thus more in the forward direction, i.e. behind the 22 

bubble. Therefore behind the first large vapour bubble, the simulated field can be expected to 23 

be more accurate and thus used to explain the occurrence of the secondary boiling vapour 24 

bubbles within the HIFU focal zone. 25 
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Mechanisms for the creation of a tadpole shaped lesion 1 

Khokhlova et al. (2011), Simon et al. (2012) and Wang et al. (2013) proposed that the 2 

formation of a tadpole shaped lesion produced by boiling histotripsy is most likely to be due 3 

to the explosive growth of a boiling bubble together with the HIFU atomisation for a “head” 4 

shaped lesion and the streaming of a mechanically fractionated tissue within the forming 5 

“head” for a “tail” shaped lesion. The experimental results presented in this study, however, 6 

could possibly support an additional mechanism being responsible for the formation of a 7 

tadpole shaped lesion. The mechanical destruction of the polymer structure of the tissue 8 

phantom corresponded well to the locations of cavitation clouds for a “head” and boiling 9 

bubbles for a “tail”, respectively (see Figures 6 and 7). The shape of the lesion was further 10 

confirmed by cross sectioning it immediately after the HIFU insonation (see Figures 7(f) and 11 

(g)). Based upon the numerical and experimental results presented in this work, another 12 

possible mechanism for the formation of a “tadpole” shaped lesion resulting from boiling 13 

histotripsy is proposed. This is shown in Figure 10. After the formation and explosive growth 14 

of a boiling bubble at the HIFU focus, the shock scattering effect leads to the production of 15 

inertial cavitation clouds (i.e. violent bubble collapses) in front of the boiling bubble. These 16 

bubble clouds, which are known to be responsible for shock scattering histotripsy and 17 

intrinsic threshold histotripsy (Maxwell et al. 2012; Khokhlova et al. 2015), enable the 18 

disruption of tissue (Lake et al. 2008; Hall et al. 2009; Schade et al. 2012a, 2012b; 19 

Vlaisavljevich et al. 2013) leading to the production of the “head” of the lesion. In addition to 20 

this, the shear stresses produced around a number of boiling bubbles within a localised heated 21 

region (Khokhlova et al. 2011) may create the “tail” of the lesion. Simultaneously, ultrasonic 22 

atomisation at the tissue-bubble interface may also contribute to some extent to the 23 

production of the “tail” of the lesion; however, this process is spatially limited by the 24 

presence of shocks with high enough pressure amplitudes to cause tissue atomisation 25 
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(Khokhlova et al. 2011, Wang et al. 2013). Cavitation clouds which form right in front of the 1 

vapour cavity may weaken the tissue or gel to facilitate ultrasonic atomisation process 2 

(Khokhlova et al. 2011). 3 

 4 

The variation of the size of a lesion with the number of HIFU pulses 5 

As shown in Figures 7 and 8, the overall size of the lesion produced by boiling histotripsy 6 

increased gradually with the number of HIFU pulses, but did not change significantly starting 7 

from the 30th pulse with the HIFU exposure condition used in this study. Khokhlova et al. 8 

(2011) and Wang et al. (2013) have also observed a similar trend in the growth of a lesion 9 

size with HIFU pulses. With the proposed mechanism described in Figure 10, it is suggested 10 

that the change of a lesion dimension is primarily dependent upon the extent of a localised 11 

heated region and the pressure amplitude of backscattered acoustic fields. As a heated region 12 

broadens with an increase in the number of HIFU pulses due to the accumulation of heat, 13 

more boiling bubbles with larger sizes will form within this heated volume. These spatially 14 

confined boiling bubbles lead to the formation of a tail for the lesion which grows in both 15 

axial and lateral directions along the beam axis. Simultaneously, the enlarged boiling bubble 16 

with a larger surface area generates a wider backscattered acoustic field (see Figure 11). This 17 

results in the formation of a wider cavitation cluster in the lateral direction towards the HIFU 18 

source, producing a wider head for the lesion. However, as heat transfer processes reach 19 

equilibrium in between HIFU pulses, the volume over which the heating occurs reaches a 20 

maximum (Wang et al. 2013). It is, therefore, reasonable to assume that beam width of the 21 

backscattered pressure field also reaches a maximum. As a result of this, the axial and lateral 22 

sizes of a “tail” do not change and neither does the lateral size of a “head”. Furthermore, the 23 

reduction of the pressure amplitude of backscattered fields due to attenuation limits the axial 24 

growth of a “head” towards the HIFU source. Cavitation clouds, for example, stop 25 
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progressing in the direction of the HIFU transducer when the sum of incident and scattered 1 

acoustic pressures is below a pressure threshold for cavitation clouds, which is –28 MPa for 2 

most soft tissues (Maxwell et al. 2013; Lin et al. 2014). This is the most likely reason why 3 

cavitation clouds were not optically observed at the surface of the phantom in the course of 4 

boiling histotripsy whereby the axial extent of the resulting lesion did not rupture the surface 5 

(see Figure 7). 6 

 7 

CONCLUSIONS 8 

In this work, a mechanism for the production of a tadpole shaped lesion induced by boiling 9 

histotripsy was proposed and investigated. Boiling bubbles were produced in a localised 10 

heated region and cavitation clouds were subsequently induced ahead of the expanding 11 

bubble. This process was repeated and eventually resulted in a tadpole shaped lesion. A 12 

simplified numerical model describing the scattering of the incident ultrasound wave by a 13 

vapour bubble was developed to help interpret the experimental observations. Together with 14 

the numerical results, these observations suggest that the overall size of a lesion generated by 15 

boiling histotripsy is dependent upon the spatial extent of (a) the heated region at the HIFU 16 

focus and (b) the backscattered ultrasound wave by the original vapour bubble. Future work 17 

will be focused on the prediction of the size of a mechanically induced lesion as well as the 18 

comparison of ex-and in vivo PCD data and induced mechanical injuries with the gel phantom 19 

at a given HIFU exposure setting. 20 
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Figure Legends 1 

Figure 1. HIFU experimental set up used for investigating the generation of tadpole shaped 2 

lesions resulting from boiling histotripsy. 3 

Figure 2. Simulated acoustic waveforms and peak temperatures at the HIFU focus in the 4 

tissue phantom. (a) Acoustic wavefronts with Pelect = 200 W (P+ = 85.4 MPa, P- = –15.6 MPa 5 

at focus). (b) Corresponding peak temperature. The time to reach the boiling temperature of 6 

100ºC is predicted to be 3.66 ms. 7 

Figure 3. Simulated acoustic pressure magnitudes at the HIFU focus using BEM. The 8 

contour plots of the incident acoustic pressure (a) without and (b) with a scatterer. The 9 

presence of a vapour bubble is indicated by an arrow in (b). The HIFU beam propagates from 10 

top to bottom. 11 

Figure 4. A sequence of high speed camera images (a), (b), (d)-(h) obtained in an optically 12 

transparent tissue phantom during the single 10 ms HIFU insonation with an acoustic power 13 

of 170 W (P+ = 85.4 MPa; P- = –15.6 MPa at the HIFU focus). Images were captured at a 14 

15,000 fps. (c) Simulated temperature contour plot at t = 3.4 ms. The HIFU beam propagates 15 

from left to right. The vertical lines pass through the HIFU focal point perpendicular to the 16 

beam axis. The time at 0 ms corresponds to the start of the HIFU exposure. 17 

Figure 5. Acoustic signal emitted from the HIFU focus in the gel during the single 10 ms 18 

HIFU pulse. (a) shows the PCD voltage vs time plot and (b) is the corresponding 19 

spectrogram. Acoustic emissions were recorded at a sampling rate of 0.5 GHz. The time at 0 20 

ms represents the start of the HIFU insonation. 21 

Figure 6. High speed images taken over the course of five HIFU pulses. (a) Images acquired 22 

of the formation of a boiling bubble during each HIFU pulse (left column). (b) Images 23 

captured at the end of each pulse (middle column). (c) Corresponding mechanical damage 24 

induced in the gel prior to the arrival of the next HIFU pulse (right column). The HIFU beam 25 
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propagates from left to right. The images were captured at a frame rate of 15,000 fps. The 1 

vertical lines pass through the HIFU focal point perpendicular to the beam axis. 2 

Figure 7. (a)-(e) high speed images taken over the course of 50 HIFU pulses. (f) is the cross-3 

sectioned lesion after the 50th HIFU pulse and (g) is the same lesion as (f) but with an added 4 

dye. An acquisition rate of 1000 fps was used. Images in the left column show bubble activity 5 

at the end of each 10 ms HIFU pulse and the right hand column shows the corresponding 6 

mechanical damage induced in the gel, which were taken at 1 ms (i.e. 1 frame) before the 7 

arrival of the next HIFU pulse. The HIFU beam propagates from left to right. The vertical 8 

dashed lines pass through the HIFU focal point perpendicular to the beam axis. 9 

Figure 8. Length measurement (mean ± SD) along the direction of wave propagation and the 10 

width along the lateral direction of the “head” and of the “tail” as a function of the number of 11 

HIFU pulses. The reference measurement point was at the HIFU focus. Photron FASTCAM 12 

Viewer software (Photron, San Diego, CA, USA) was used for the size measurement (24 13 

μm/pixel). Each measurement was repeated five times. 14 

Figure 9. (a) calculated acoustic pressure magnitudes resulting from the scattering of the 15 

HIFU field by a boiling bubble. The green arrow indicates the presence of partially shielded 16 

acoustic pressure field behind the vapour bubble. The red arrow shows the backscattered 17 

pressures. The HIFU beam propagates from top to bottom. (b) a captured high speed image 18 

showing a cavitation cluster (indicated by the yellow arrow) in front of and a secondary 19 

boiling bubble (indicated by the blue arrow) behind the primary boiling bubble (indicated by 20 

the black arrow). 21 

Figure 10. Proposed mechanisms for boiling histotripsy. (a) Shock wave heating. (b) 22 

Formation of a primary boiling bubble at the HIFU focus. (c) Rectified growth of a boiling 23 

bubble. (d) Production of cavitation clouds (indicated by the green arrow) and secondary 24 
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boiling bubbles (indicated by the red arrows). (e) Creation of a tadpole-shaped lesion 1 

resulting from boiling histotripsy. 2 

Figure 11. The sum of the incident and the backscattered acoustic pressure magnitudes from 3 

a vapour bubble with a diameter of (a) 100 μm, (b) 200 μm, (c) 300 μm and (d) 500 μm. The 4 

HIFU beam propagates from top to bottom. 5 
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Tables 1 

Table 1. Composition of 50 mL gel with 7% concentration of BSA. APS = ammonium 2 

persulfate. TEMED = tetramethylethylenediamine. TRIS = tromethamine. 3 

Components Quantity Percent (%) 

Degassed and de-ionised 

water 

35.805 mL 71.61 

BSA 3.5 g 7 

1 M TRIS 5 mL 10 

40% Acrylamide 8.75 mL 17.5 

10% APS 0.42 mL 0.84 

TEMED 0.025 mL 0.05 

 4 

Table 2. Properties of tissue phantom used in the acoustic and temperature fields simulations. 5 

These values were obtained from Khokhlova et al. (2011). 6 

Properties Value 

Speed of sound   1544 m s-1 

Mass density   1044 kg m-3 

Absorption coefficient at 1 MHz   15 dB m-1 

Coefficient of nonlinearity  4.0 

Specific heat capacity per unit volume  5.3106 J m-3oC-1 

Thermal diffusivity  1.310-7 m2 s-1 

Ambient temperature   20 oC 
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