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Abstract (243) 23 

Human cytomegalovirus (HCMV) is an important pathogen in transplant patients and 24 

in congenital infection. Previously, we demonstrated that vaccination with a 25 

recombinant viral glycoprotein B (gB)/MF59 adjuvant formulation before solid organ 26 

transplant reduced viral load parameters post-transplant. Reduced post-transplant 27 

viraemia was directly correlated with antibody titres against gB consistent with a 28 

humoral response against gB being important. Here we show that sera from the 29 

vaccinated seronegative patients displayed little evidence of a neutralising antibody 30 

response against cell-free HCMV in vitro. Additionally, sera from seronegative 31 

vaccine recipients had minimal effect on the replication of a strain of HCMV 32 

engineered to be cell-associated in a viral spread assay. Furthermore, although 33 

natural infection can induce antibody dependent cellular cytotoxicity (ADCC) 34 

responses, serological analysis of seronegative vaccinees again presented no 35 

evidence of a substantial ADCC-promoting antibody response being generated de 36 

novo. Finally, analyses for responses against major antigenic domains of gB 37 

following vaccination were variable and their pattern was distinct when compared to 38 

natural infection. Taken together, these data argue that the protective effect elicited 39 

by the gB vaccine is via a novel mechanism of action in seronegative vaccinees that 40 

cannot be explained by neutralisation or the induction of ADCC. More generally, 41 

these data, which are derived from a human challenge model that demonstrated that 42 

the gB vaccine is protective, highlight the need for more sophisticated analyses of 43 

new HCMV vaccines over and above the quantification of an ability to induce potent 44 

neutralising antibody responses in vitro. 45 

 46 
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Significance Statement (114) 47 

Conventionally, vaccines are screened for induction of a neutralising antibody 48 

response in human volunteers before proceeding to late stage clinical trials. We 49 

present results from a human cytomegalovirus (HCMV) challenge study suggesting 50 

that this paradigm may not apply universally to all viruses. Instead viruses like 51 

HCMV, which establish lifelong infections and grow both cell-free and cell-52 

associated, may be controlled independently of a potent neutralising antibody 53 

response. Our results suggest that more detailed laboratory studies are required to 54 

identify correlates of immune protection for such viruses and failure of a vaccine to 55 

induce a neutralising antibody response should not necessarily be considered as a 56 

key go-no-go decision point in the design of future vaccine studies. 57 

 58 
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/body 69 

Introduction 70 

Human cytomegalovirus (HCMV) causes substantial morbidity in multiple patient 71 

populations with impaired or immature immune responses (1, 2). The threat posed 72 

during organ transplantation or congenital infection led to HCMV vaccine 73 

development being categorised as the highest priority (3). Several vaccines against 74 

HCMV (from whole virus, DNA and viral subunits) have been studied in different 75 

patient cohorts establishing, in general, that a vaccination strategy targeted against 76 

HCMV is a viable option with major clinical implications (4-10). 77 

 78 

One vaccine target is the viral glycoprotein B (gB) which has been shown to be 79 

partially protective in three phase 2 clinical trials when presented with MF59 adjuvant 80 

(6, 9, 11). The gB protein is an essential virion component required for viral entry 81 

(12, 13) and represents a major target of the humoral immune response, including 82 

neutralisation (14-16). Conventionally, neutralising antibody titres have been 83 

considered the benchmark by which vaccines are assessed as this represents a 84 

potent anti-viral mechanism. However, the humoral immune response is far more 85 

complex and can produce antibodies that can drive antibody dependent cell 86 

cytoxicity (ADCC), that can bind to both the pathogen directly or to the target antigen 87 

expressed on the infected cell surface to recruit complement and promote pathogen 88 

or cell lysis, they can promote pathogen phagocytosis as well as modulate the 89 

downstream response of both the adaptive and innate immune responses (17). Here 90 

we report data showing limited evidence of a neutralising antibody response as a 91 

correlate of protection for the gB vaccine in a phase 2 study where transplant 92 
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patients were challenged with wild type HCMV (9). An inability to detect evidence of 93 

neutralisation of clinical Merlin was consistent with previous data demonstrating no 94 

effect of antibody plus complement against the laboratory strain Towne in a classical 95 

plaque assay (9).Furthermore, we provide evidence that the humoral response 96 

against gB induced in seronegatives by vaccination displays a distinct biological 97 

spectrum compared to that observed in naturally infected seropositives.  98 

 99 

Results 100 

Sera from seronegative vaccinated patients do not neutralise HCMV infection 101 

in single round infection assays 102 

Note that throughout this paper the term seronegative refers to patients who were 103 

seronegative before being given gB/MF59 vaccine or placebo. We tested for 104 

evidence of neutralisation of HCMV infection using a high throughput assay that 105 

measured the establishment of a lytic infection by enumeration of immediate-early 106 

(IE) positive cells (Fig. 1). Two anti-gB monoclonal antibodies (ITC88; an anti-AD-2 107 

antibody demonstrated to prevent gB fusion post binding (23) and 2F12; a 108 

commercial monoclonal antibody against an unspecified region of gB) inhibited 109 

HCMV infection in a concentration-dependent manner (Fig.1a). Next we tested a 110 

panel of sera from our vaccine study under the same conditions. Prior to vaccination, 111 

sera from seronegative individuals had no impact on HCMV infection. Importantly, no 112 

evidence of activity against HCMV was observed in this assay when seronegative 113 

sera post vaccination was assessed (Fig. 1b; Fig. S1a-d) even when exogenous 114 

complement was added to the sera prior to infection (Fig. S2). In contrast, sera from 115 

seropositive patients had inherent neutralising activity against HCMV prior to 116 
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transplantation (Fig. 1b; Fig. S1e-h) but no evidence of increased neutralising 117 

capacity was observed post vaccination (Fig. 1b; Fig. S1e-h).  118 

 119 

To address the possibility that the sera from seronegative vaccinees contained 120 

antibodies capable of inducing abortive/quiescent infections, as proposed for 121 

varicella infection (18), a parallel analysis was performed that measured pp28 (a viral 122 

late gene) positivity (Fig. 1c,d). Unsurprisingly, pp28 positive cells were rare in the 123 

ITC88 control (Fig. 1c) given that IE positive cells were rarely seen (Fig. 1b). In 124 

contrast, and consistent with the IE data, no effect on pp28 positivity was observed 125 

using the sera from vaccinated seronegative transplant recipients (Fig. 1c; Fig. S3). 126 

  127 

Sera from vaccinated seronegative patients do not inhibit spread of cell-128 

associated Merlin strain of HCMV in fibroblast monolayers.  129 

Our first assays measured the ability of sera to limit infection of cells with large titres 130 

of cell-free virus by measuring the number of IE positive cells 24hpi. To investigate 131 

whether sera had activity against cell-associated HCMV we assessed their impact on 132 

the growth of HCMV in fibroblast cultures using a viral spreading assay seeded at 133 

low MOI. To be able to ask this question, we utilised a Merlin-IE2-GFP virus 134 

engineered to grow predominantly in a cell-associated fashion (19). The expression 135 

of GFP with IE2 kinetics allows real time imaging and enumeration of the spread of 136 

the virus as we visualise in real time the increase in the number of infected cells over 137 

time and thus monitor the spread of the virus through the fibroblast monolayer (Fig. 138 

2a). Firstly, we measured the ability of ITC88 to limit spread of this cell-associated 139 

virus. The data show that ITC88 had minimal impact on spread with the number of 140 
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infected cells increasing with culture time which would be consistent with cell-141 

associated virus being resistant to neutralisation (Fig. 2b). Importantly, ITC88 could 142 

effectively limit the spread of a high passage Merlin strain that grows predominantly 143 

cell-free and thus is functional in this viral spreading assay (Fig. 2c). Similar data 144 

were also observed with healthy donor sera whereby seropositive sera were far less 145 

potent against the spread of the IE2-GFP virus whereas healthy donor seronegative 146 

sera had no effect (Fig. 2d). Having established a baseline for the assay, we next 147 

analysed the sera from the vaccine study. The data show that seropositive sera did, 148 

on average, impact on the spread of Merlin-IE2-GFP to similar levels to those 149 

observed with the control sera from natural seropositives (Fig. 2e; Fig. S4a-d). In 150 

contrast, sera from seronegative individuals had no effect on viral spread in this 151 

assay both prior to and post vaccination (Fig. 2e; Fig. S4e-h). Furthermore, the data 152 

also demonstrated that vaccination of the seropositives did not enhance  the 153 

moderate inhibition of viral spread observed with the seropositive sera prior to 154 

vaccination (Fig. 2e; Fig. S4a-d). 155 

 156 

Vaccination does not induce an antibody repertoire capable of promoting a 157 

measurable ADCC response 158 

A lack of evidence to support potent neutralisation led us to investigate other 159 

antibody effector mechanisms. ADCC involves antibody recognition of an epitope 160 

and the subsequent recruitment of cellular effector functions (e.g. NK cells) to kill the 161 

infected cell. To allow for a high throughput screen of our sera for any potential 162 

ADCC promoting activity we developed an in vitro assay based on a previous study 163 

for antibodies directed against influenza proteins (20). Recombinant vaccine gB was 164 
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immobilised and incubated with PBMC from healthy donors in the presence of sera. 165 

We then analysed NK cells by flow cytometry for evidence of CD107a expression - a 166 

classic marker of degranulation of NK cells. Validation of the assay utilised 167 

PMA/Ionomycin - a potent activator of NK cell degranulation whereby, in the 168 

presence of these activators, CD107a surface expression on CD56+ NK cells was 169 

significantly upregulated (Fig. 3a). With this assay we could observe a differential 170 

CD107a phenotype between healthy donor seropositive and seronegative sera (Fig. 171 

3b; Fig. S5a,b). Having established the conditions, we tested the sera from our 172 

longitudinal vaccine study. Evidence of ADCC promoting antibodies was evident in 173 

the seropositive patient sera both pre and post vaccination (Fig. S5c-e). However 174 

there was no evidence that vaccination boosted pre-existing responses in these 175 

seropositive individuals nor were levels of ADCC promoting antibodies correlated 176 

with protection from viraemia (Fig. 3c,d).  177 

 178 

We next asked whether any effect of vaccination in seronegatives was evident. As 179 

expected, no ADCC effect was evident in the seronegative samples at baseline (i.e. 180 

pre-vaccination; Fig. 4a-d). The analysis of longitudinal samples post-vaccination 181 

revealed no evidence that vaccination consistently elicited detectable levels of anti-182 

gB antibodies capable of inducing ADCC right up to the day of transplantation (Fig. 183 

4a-d).  184 

 185 

Distinct antibody responses against gB epitopes in vaccinated individuals 186 

Our inability to detect evidence for neutralising or ADCC effector functions 187 

associated with protection in the seronegative vaccine recipients led us to investigate 188 
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the composition of the humoral response against key antigenic domains (AD) of 189 

HCMV. In a parallel study of seropositive individuals we have evidence that reduced 190 

viraemia post-transplant correlates with higher antibody levels against AD-2 (21) 191 

consistent with this epitope being considered an important target for antibody 192 

responses (22). Thus we asked whether vaccination of seronegatives induced 193 

specific antibody responses against known antigenic domains of gB. ELISA assays 194 

were performed on serial samples of sera from seronegatives pre and post 195 

vaccination (Fig. 5). The data show that vaccination elicited limited responses 196 

against the known ADs with no responses detectable at all against AD-2 (Fig. 5cd) 197 

nor AD-4 (Fig. 5e,f). In contrast, AD-1 and AD-5 responses were observed in certain 198 

individuals but these did not correlate with protection (Fig. 5a,b,g & h). Thus, unlike 199 

for seropositives, no direct correlate of protection could be established with well-200 

defined ADs of gB. 201 

. 202 

Discussion 203 

The administration of a subunit vaccine based on the key viral glycoprotein B of 204 

HCMV is a potent inducer of anti-gB antibodies (6, 9, 11). Furthermore, the level of 205 

these antibodies correlated with reduced viral load parameters in a randomised 206 

phase 2 trial in solid organ transplant recipients (9). These data support the concept 207 

that the induction of a potent humoral response against gB represents a good 208 

strategy to protect from HCMV disease. However, despite this understanding of 209 

improved clinical outcome, the mechanistic basis of protection is still not fully 210 

understood.  211 

 212 
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Classically, the induction of potent neutralising antibody responses has been 213 

considered the gold standard for evaluating any vaccine strategy (23, 24). Indeed, a 214 

number of successful vaccination programmes have utilised vaccines that do exactly 215 

this (24). However, in this study we could provide no supporting evidence for a 216 

potent neutralising antibody response as an explanation for the success of the gB 217 

HCMV vaccine. The data show that the sera of seropositive transplant recipients 218 

possessed neutralising antibodies but these were not detectably enhanced by 219 

vaccination with gB/MF59. Most likely, these potent antibodies are a composite of 220 

anti-gB and other major glycoprotein targets including the trimer gH/gL/gO and also 221 

the pentameric complex (25). Consistent with these being targets for neutralisation 222 

are data that demonstrate monoclonal antibodies directed against gH or the 223 

pentameric complex neutralise infection effectively (26-28). Recent work has 224 

demonstrated that cell-associated HCMV growth is largely resistant to the activity of 225 

Cytotect (a heterogeneous mix of anti-HCMV antibodies) presumably because the 226 

physical state of the virus denies access to neutralising antibodies (19) consistent 227 

with a previous report (29). Our data presented here support those observations; a 228 

minor effect of seropositive sera on decreasing the rate of spread in vitro could be 229 

explained by small amounts of cell-free virus made by the Merlin-IE2-GFP strain of 230 

HCMV.  231 

 232 

It is likely then that biphasic modes of growth (i.e. cell-free and cell-associated) in 233 

vivo would argue that an effective vaccine against HCMV could be dependent on the 234 

induction of multiple humoral effector functions. Thus, while there is still a role for a 235 

vaccine that can induce neutralising antibody responses, these clinical trial data 236 
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argue that a vaccine against HCMV can be effective despite an inability to detect a 237 

potent neutralising response associated with it. More generally, they reinforce the 238 

value of assessing vaccination strategies using challenge models. A recent study in 239 

mice concluded that vaccination with AD-2 was not useful because a poor 240 

neutralising response was elicited. However, it was never addressed whether the 241 

vaccination with AD-2 was protective against CMV challenge (30). Indeed, a recent 242 

study presents data implicating a role for both neutralising and non-neutralising gB 243 

antibody responses in the MCMV challenge model (31). Furthermore, this concept 244 

may not be restricted to HCMV because human studies of a candidate HIV vaccine 245 

reported that a major component of the anti-viral humoral response correlated with 246 

ADCC (32, 33).  247 

 248 

In contrast to acute viral infections, HCMV persists for the lifetime of the host in the 249 

face of a prodigious immune response (33). HCMV encodes multiple immune 250 

evasion genes to facilitate lifelong survival in the host and ability to re-infect new 251 

hosts even those with pre-existing natural immunity against HCMV. This illustrates 252 

the complex interactions of HCMV with the immune response and the ability of this 253 

virus to persist in the face of a potent immune response may impact on the ability to 254 

produce a sterilising vaccine based solely on the induction of neutralising antibodies. 255 

Put simply, sera from seropositives are potently neutralising in vitro but re-infection 256 

with HCMV is possible in vivo. Consequently, we investigated the ability of sera from 257 

vaccinated patients to enhance antibody dependent responses. NK cells can be 258 

recruited in an antibody dependent manner to promote cellular cytotoxicity. HCMV 259 

encodes a number of NK immune evasion genes that suggests this is an important 260 
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functional interaction (34). Furthermore, the NK cell repertoire in HCMV seropositive 261 

individuals is dominated by subsets of NK cells – with an implication of NK cell 262 

memory (35). Whether these NK cell subsets are elite controllers of HCMV or 263 

instead, reflect a virally induced reprogramming remains an important open question. 264 

Clearly, seropositives invoke anti-gB responses that could direct NK cell mediated 265 

ADCC based on our work. However, we could not attribute the success of the 266 

vaccine to this so that, while anti-gB antibodies exist that promote ADCC, we could 267 

provide no evidence that this explained the protection afforded by the vaccine. The 268 

development of antibodies that promote ADCC responses may be triggered following 269 

initial exposure to the pathogen or a focusing of the immune response through 270 

multiple episodes of reactivation. A vaccine clearly does not deliver these additional 271 

exposures to the immune system. Indeed, the vaccine delivers gB in the absence of 272 

other pathogen-encoded functions and thus, potentially, presents gB in a unique 273 

way. Whether this allows potent anti-HCMV responses to develop more effectively 274 

than they would in the context of infection is an important question for vaccine 275 

studies to address. Finally, it is important to avoid suggesting that ADCC responses 276 

have no role to play. Our data show that ADCC responses directed against gB are 277 

not detectable (seronegative vaccinees), boosted (seropositive vaccinees) or 278 

correlate with protection (seropositive patients cohort). However, they do not rule out 279 

ADCC responses against other HCMV antigens being important for control in natural 280 

infection. 281 

 282 

Although the mechanistic correlate of protection remains to be determined, it is 283 

evident that the gB HCMV vaccine is protective (6, 9, 11). Interestingly, the epitope 284 
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analysis points towards the exciting hypothesis that a novel epitope may be 285 

responsible. The vaccine gB is modified in the transmembrane domain as well 286 

through the loss of the furin cleavage site and is thought to exist in a post-fusion 287 

form. All these differences may result in the presentation of novel epitopes of gB not 288 

normally exposed in the virion but transiently exposed during the entry process or in 289 

HCMV infected cells. Studies are ongoing to test the hypothesis of novel epitopes 290 

being presented by the vaccine form of gB. 291 

 292 

In conclusion, the data in this human challenge model demonstrate that the 293 

effectiveness of the gB vaccine is imparted by a novel mechanism and not wholly 294 

reliant on the classic biological activity of neutralisation.   295 

 296 

Materials & Methods 297 

The study was approved by the UCL Research Ethics Committee and all patients 298 

whose samples were investigated here gave written informed consent (9). 299 

To assess sera for neutralising capacity, HCMV was pre-incubated with sera for 1 300 

hour and then the whole sample used to infect HFFs. Alternatively, virus was 301 

incubated with anti-gB antibody 2F12 (abcam) or anti- AD-2 monoclonal antibody 302 

ITC88 (22, 36) After 24 hours cells were fixed and stained for IE gene expression 303 

using anti-IE (Millipore; 1:1000) and goat anti-mouse Alexafluor 568nm (Life 304 

Technologies; 1:1000). Alternatively, an anti-pp28 antibody (Santa Cruz; 1:1000) 305 

was used to stain cells fixed at 72hpi and detected with the same secondary 306 
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antibody. Nuclei were counterstained with DAPI (SIGMA). Percentage infection was 307 

enumerated using Hermes WiScan instruments and software. 308 

Either a high passage Merlin (grows cell free) or an IE2-GFP virus engineered to 309 

grow predominantly cell associated (a kind gift of Richard Stanton (19)) was used to 310 

infect HFFs at an MOI of 0.01. Cells were either fixed and stained for IE (Merlin) or 311 

visualised for GFP expression (IE2-GFP) between 1-14 days post infection. Nuclei 312 

were counterstained with DAPI (SIGMA). Percentage infection was enumerated 313 

using Hermes WiScan instruments and software. 314 

To assay for ADCC promoting antibodies, total PBMC or purified NK cells (MACS 315 

NK cell isolation kit II; Miltenyi Biotec) from seronegative healthy donors was used. 316 

Briefly, 96 well plates were coated with gB vaccine protein (0.75ug/well) and then 317 

incubated with sera diluted in PBS as described. Either PBMC or NK cells were 318 

added to the wells and, 48 hours later, the cells harvested and stained for CD3, 319 

CD56 and CD107a expression (BD biosciences) and enumerated by Flow cytometry. 320 

Stimulation with PMA and Ionomycin was used as a positive control and healthy 321 

seronegative donor sera as a negative. Additionally, sera isolated pre-vaccination 322 

from seronegatives was used as a baseline negative response. 323 

ELISAs for AD1,2, 4 and 5 have been described previously (15). AD1 and AD2 are 324 

non-structured epitopes and it is well established that the peptides are recognised by 325 

AD1 and AD2 antibody responses. The recombinant AD4 used has been shown to 326 

be recognised by known AD4 conformational antibodies and the structure of the AD5 327 

antigen has been shown to have the same structure as AD5 in gB (15, 37, 38). 328 

Briefly, sera was diluted in PBS as described and then incubated with peptide coated 329 

96 well plates. Healthy seropositive and seronegative sera were used as controls. 330 
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Anti-human IgG conjugated to HRP was used to detect CMV antibodies and 331 

visualised using TMB substrate. OD was measured at 450nm. Visit 1 (e.g. pre-332 

vaccination of seronegative patients) was set as background/baseline.  333 

 334 
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 342 

Figure Legends 343 

Figure 1 Vaccination does not promote neutralising antibody responses in 344 

seronegatives a) HCMV was incubated for 1 hour with different concentrations of 345 

monoclonal antibodies against gB (ITC88 and 2F12), IgG1 isotype control or media 346 

and then used to infect HFFs (MOI=0.5). Percentage IE positivity was scored 24hpi. 347 

n=3. b) HCMV was incubated for 1 hour with sera from seropositive or seronegative 348 

patients either vaccinated with gB or given placebo and then used to infect HFFs 349 

(MOI=1). The analysis was performed on sera isolated pre-vaccination and at day of 350 

transplant (post vaccination). Percentage IE positivity was scored 24hpi and further 351 

stratified into patients who developed viraemia. n=3. c) HCMV was incubated for 1 352 

hour with sera from seronegative patients either vaccinated with gB or given placebo 353 
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and then used to infect HFFs (MOI=1). The analysis was performed on sera isolated 354 

pre-vaccination and at day of transplant (post vaccination). Percentage pp28 355 

positivity was scored 120hpi and further stratified into patients who developed 356 

viraemia. n=3. 357 

 358 

Figure 2 Sera from vaccinated seronegatives does not control the spread of 359 

cell associated HCMV in vitro a) HFFs were infected with Merlin-IE2-GFP 360 

(MOI=0.01) and progress of infection monitored for two weeks. Representative 361 

images of GFP expression at 1, 6, 9 and 14 days post infection are shown. Cells 362 

were counterstained with DAPI to show cell layers. b-c) HFFs infected with Merlin-363 

IE2-GFP (B) or Merlin (C) were, 24hpi, incubated with ITC88 (100ug/ml) and viral 364 

spread assay 2 weeks post infection. GFP (Cell associated) or IE immunostaining 365 

(Cell Free) was used to calculate percentage infection. n=3. d) HFFs infected with 366 

Merlin (cell free) or Merlin-IE2-GFP (cell associated) were, 24hpi, incubated with no 367 

sera (control), seropositive or seronegative sera. After 2 weeks GFP (Cell 368 

associated) or IE immunostaining (Cell Free) was used to calculate percentage 369 

infection. n=3. e) HFFs infected with Merlin-IE2-GFP (cell associated) were, 24hpi, 370 

incubated with no sera (infected cells), healthy donor seropositive (HCMV(+)) or 371 

seronegative (HCMV(-)) sera. Alternatively, they were incubated with sera from 372 

either seropositive or seronegative patients given gB vaccine or placebo. Sera pre-373 

vaccination and at day of transplant (post-vaccination) was analysed. After 2 weeks 374 

GFP (Cell associated) was used to calculate percentage infection. n=3. Patients 375 

were further stratified into those who experienced viraemia versus those that did not. 376 

 377 
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Figure 3. Increased ADCC antibody responses against gB are not detected in 378 

seropositives a) Gating strategy to study evidence of ADCC activity. NK cells 379 

defined as CD56+CD3- were then assayed for CD107a expression or IFNg. 380 

PMA/Ionomycin was used as a positive control. b) Titration of healthy donor sera 381 

from seropositive and seronegative donors for ability to promote CD107a expression 382 

on NK cells. c-d) Summary of data of ADCC responses in seropositive liver and 383 

kidney organ recipients at time of transplant. Comparisons between placebo and 384 

vaccination or viraemia or no viraemia shown. n=3    385 

 386 

Figure 4. Vaccination does not induce detectable ADCC antibody responses 387 

against gB in seronegatives a-d) Longitudinal sera samples from multiple visits 388 

were analysed for ADCC promoting activity. Samples were pre-vaccination (v#1), or 389 

1 (v#2), 2 (v#3), 6 (v#4), 7 (v#5) months post vaccination or time of transplant (d0) or 390 

7 days post transplant (d7). Baseline negative controls are shown using unstimulated 391 

cells or healthy donor seronegative sera and PMA/Ionomycin served as positive 392 

control. 393 

 394 

Figure 5. Vaccination induces a pattern of epitope responses distinct from 395 

natural infection A-H) ELISA assays were performed on sera pre-vaccination (0 396 

months) or 1,2,6 and 7 months post vaccination. Pre-vaccination represents 397 

background. ELISA ODs for anti-AD1 (a), AD2 (c), AD4 (e) and AD5 (g) responses 398 

are shown. Alternatively, data was stratified using outcome post transplant (b,d,f,h) 399 

to assess impact of responses on viraemia. Statistical significance was measured 400 

using non-parametric Mann-U Whitney test. N.S. = non significant. 401 
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Supplementary Figure Legends 

Figure S1. Vaccination does not induce detectable neutralizing antibody 

responses in seronegative vaccine recipients and does not boost pre-existing 

neutralizing antibody responses in seropositive vaccinees. Merlin was 

incubated with sera from seronegative (a-d) and seropositive (e-h) renal (a,b,e,f) and 

liver (c,d,g,h) transplant recipients or an ITC88 positive control (green bar), and used 

to inoculate HFFs in vitro (MOI=1). Infection was assayed by IE immunostaining 

24hpi and the proportion of infected cells calculated by counterstaining nuclei with 

DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day 

of transplant – red bars) was tested in triplicate. Sera from patients vaccinated with 

gB (a,c,e,g) or placebo (b,d,f,h) are shown and are subdivided into patients who 

went onto display evidence of viraemia post-transplant. The mean values of the 

percentage of infection are presented with the error bars indicating the standard 

deviation (SD). 

 

Figure S2. Exogenous Complement does not promote neutralisation with sera 

from seronegative vaccinees. HCMV Merlin was incubated with media, heat 

inactivated sera from seronegative patients given gB vaccine (vac) or placebo and 

then additionally incubated with guinea pig complement (+C) at 1:2 for 3 hours. As a 

control, healthy donor seropositive sera was used fresh or heat inactivated and heat 

inactivated with the addition of complement (1:2). HFFs were then infected, immuno-

stained for IE 24hpi and infection scored for % infection. 

 



Figure S3. Pre-incubation of HCMV with seronegative sera does not routinely 

reduce the frequency of pp28 positive cells 96hpi.   Merlin was incubated with sera 

from seronegative renal transplant recipients, or an ITC88 positive control, and used 

to inoculate HFFs in vitro (MOI=1). Infection was assayed by pp28 immunostaining 

96hpi and the proportion of infected cells calculated by counterstaining nuclei with 

DAPI. Sera isolated pre-vaccination (baseline – blue bars) or post vaccination (day 

of transplant – red bars) was tested in triplicate. Sera from patients vaccinated with 

gB, n=12 (A) or placebo, n=8 (B) are shown and are subdivided into patients who 

went onto display evidence of viraemia post-transplant. The mean values of the 

percentage of infection are presented with the error bars indicating the standard 

deviation (SD).  

 

Figure S4. Vaccination does not promote an ability of sera from seronegatives 

to limit cell to cell spread of HCMV in vitro. IE2-GFP tagged Merlin was incubated 

with sera from seropositive liver (a,b) and renal (c,d) transplant patients and 

seronegative liver (e,f) and renal (g,h) transplant patients, healthy donor sera 

(seronegative and seropositive individual) or an ITC88 positive control, and used to 

inoculate HFFs in vitro (MOI=0.25). Infection was assayed by GFP positivity at 14dpi 

and the proportion of infected cells calculated by counterstaining nuclei with DAPI. 

Sera isolated pre-vaccination (baseline – red bars) or post vaccination (day of 

transplant – blue bars) was tested in triplicate. Sera from patients vaccinated with gB 

(a,c,e,g) or placebo (b,d,f,h) are shown and are subdivided into patients who went 

onto display evidence of viraemia post-transplant. The mean values of the 



percentage of infection are presented with the error bars indicating the standard 

deviation (SD). 

  

Figure S5. ADCC promoting antibodies can be detected specifically in 

seropositive sera from healthy donors and transplant patients but levels are 

not affected by vaccination. a-b) PBMC isolated from a healthy seronegative donor 

was incubated with sera isolated from 10 seropositive (a) or seronegative (b) donors 

or with PMA/Ionomycin positive control and analysed for CD107a expression on NK 

cells (CD3-CD56+). c-f) PBMC from a healthy seronegative donor was incubated 

with PMA/Ionomycin, healthy seronegative donor sera (autologous sera) or left 

unstimulated and NK cells analysed for evidence of CD107a surface expression by 

FACS. Alternatively, PBMC was incubated with longitudinal serum samples from 

liver (c) and renal (d-f) where v#1 is pre-vaccination, v#2 is 1 month post vaccination, 

v#3 is two months post vaccination, v#4 is 6 months post vaccination, v#5 is 7 

months post vaccination, d0 is day of transplant and d7 is 7days post transplant.  

 


