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Abstract. Lamport’s Paxos algorithm is a classic consensus protocol
for state machine replication in environments that admit crash failures.
Many versions of Paxos exploit the protocol’s intrinsic properties for
the sake of gaining better run-time performance, thus widening the gap
between the original description of the algorithm, which was proven cor-
rect, and its real-world implementations. In this work, we address the
challenge of specifying and verifying complex Paxos-based systems by (a)
devising composable specifications for implementations of Paxos’s single-
decree version, and (b) engineering disciplines to reason about protocol-
aware, semantics-preserving optimisations to single-decree Paxos. In a
nutshell, our approach elaborates on the deconstruction of single-decree
Paxos by Boichat et al. We provide novel non-deterministic specifications
for each module in the deconstruction and prove that the implementa-
tions refine the corresponding specifications, such that the proofs of the
modules that remain unchanged can be reused across different implemen-
tations. We further reuse this result and show how to obtain a verified
implementation of Multi-Paxos from a verified implementation of single-
decree Paxos, by a series of novel protocol-aware transformations of the
network semantics, which we prove to be behaviour-preserving.

1 Introduction

Consensus algorithms are an essential component of the modern fault-tolerant
deterministic services implemented as message-passing distributed systems. In
such systems, each of the distributed nodes contains a replica of the system’s
state (e.g., a database to be accessed by the system’s clients), and certain nodes
may propose values for the next state of the system (e.g., requesting an update
in the database). Since any node can crash at any moment, all the replicas have
to keep copies of the state that are consistent with each other. To achieve this,
at each update to the system, all the non-crashed nodes run an instance of a
consensus protocol, uniformly deciding on its outcome. The safety requirements
for consensus can be thus stated as follows: “only a single value is decided uni-
formly by all non-crashed nodes, it never changes in the future, and the decided
value has been proposed by some node participating in the protocol” [16].
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The Paxos algorithm [15,16] is the classic consensus protocol, and its single-
decree version (SD-Paxos for short) allows a set of distributed nodes to reach an
agreement on the outcome of a single update. Optimisations and modifications
to SD-Paxos are common. For instance, the multi-decree version, often called
Multi-Paxos [15,27], considers multiple slots (i.e., multiple positioned updates)
and decides upon a result for each slot, by running a slot-specific instance of an
SD-Paxos. Even though it is customary to think of Multi-Paxos as of a series of
independent SD-Paxos instances, in reality the implementation features multi-
ple protocol-aware optimisations, exploiting intrinsic dependencies between sep-
arate single-decree consensus instances to achieve better throughput. To a great
extent, these and other optimisations to the algorithm are pervasive, and veri-
fying a modified version usually requires to devise a new protocol definition and
a proof from scratch. New versions are constantly springing (cf. Sect. 5 of [27]
for a comprehensive survey) widening the gap between the description of the
algorithms and their real-world implementations.

We tackle the challenge of specifying and verifying these distributed algo-
rithms by contributing two verification techniques for consensus protocols.

Our first contribution is a family of composable specifications for Paxos’
core subroutines. Our starting point is the deconstruction of SD-Paxos by
Boichat et al. [2,3], allowing one to consider a distributed consensus instance
as a shared-memory concurrent program. We introduce novel specifications for
Boichat et al.’s modules, and let them be non-deterministic. This might seem
as an unorthodox design choice, as it weakens the specification. To show that
our specifications are still strong enough, we restore the top-level deterministic
abstract specification of the consensus, which is convenient for client-side rea-
soning. The weakness introduced by the non-determinism in the specifications
has been impelled by the need to prove that the implementations of Paxos’
components refine the specifications we have ascribed [9]. We prove the refine-
ments modularly via the Rely/Guarantee reasoning with prophecy variables and
explicit linearisation points [11,26]. On the other hand, this weakness becomes a
virtue when better understanding the volatile nature of Boichat et al.’s abstrac-
tions and of the Paxos algorithm, which may lead to newer modifications and
optimisations.

Our second contribution is a methodology for verifying composite consensus
protocols by reusing the proofs of their constituents, targeting specifically Multi-
Paxos. We distill protocol-aware system optimisations into a separate semantic
layer and show how to obtain the realistic Multi-Paxos implementation from SD-
Paxos by a series of transformations to the network semantics of the system,
as long as these transformations preserve the behaviour observed by clients. We
then provide a family of such transformations along with the formal conditions
allowing one to compose them in a behaviour-preserving way.

We validate our approach for construction of modularly verified consensus
protocols by providing an executable proof-of-concept implementation of Multi-
Paxos with a high-level shared memory-like interface, obtained via a series of
behaviour-preserving network transformations. The full proofs of lemmas and
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Fig. 1. A run of SD-Paxos.

theorems from our development, as well as some boilerplate definitions, are given
in the appendices of the supplementary extended version of this paper.1

2 The Single-Decree Paxos Algorithm

We start with explaining SD-Paxos through an intuitive scenario. In SD-Paxos,
each node in the system can adopt the roles of proposer or acceptor, or both. A
value is decided when a quorum (i.e., a majority of acceptors) accepts the value
proposed by some proposer. Now consider a system with three nodes N1, N2 and
N3, where N1 and N3 are both proposers and acceptors, and N2 is an acceptor,
and assume N1 and N3 propose values v1 and v3, respectively.

The algorithm works in two phases. In Phase 1, a proposer polls every accep-
tor in the system and tries to convince a quorum to promise that they will later
accept its value. If the proposer succeeds in Phase 1 then it moves to Phase 2,
where it requests the acceptors to fulfil their promises in order to get its value
decided. In our example, it would seem in principle possible that N1 and N3 could
respectively convince two different quorums—one consisting of N1 and N2, and
the other consisting of N2 and N3—to go through both phases and to respec-
tively accept their values. This would happen if the communication between N1
and N3 gets lost and if N2 successively grants the promise and accepts the value
of N1, and then does the same with N3. This scenario breaks the safety require-
ments for consensus because both v1 and v3—which can be different—would get
decided. However, this cannot happen. Let us explain why.

The way SD-Paxos enforces the safety requirements is by distinguishing each
attempt to decide a value with a unique round, where the rounds are totally
ordered. Each acceptor stores its current round, initially the least one, and only
grants a promise to proposers with a round greater or equal than its current
round, at which moment the acceptor switches to the proposer’s round. Figure 1
depicts a possible run of the algorithm. Assume that rounds are natural numbers,
that the acceptors’ current rounds are initially 0, and that the nodes N1 and
N3 attempt to decide their values with rounds 1 and 3 respectively. In Phase 1,
N1 tries to convince a quorum to switch their current round to 1 (messages
P1A(1)). The message to N3 gets lost and the quorum consisting of N1 and
N2 switches round and promises to only accept values at a round greater or

1 Find the extended version online at https://arxiv.org/abs/1802.05969.

https://arxiv.org/abs/1802.05969
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Paxos

Round-Based Consensus

Round-Based Register

1 val vP := undef;

2 proposeP(val v0) {

3 〈 assume(!(v0 = undef));

4 if (vP = undef) {

5 vP := v0;

6 } return vP; 〉 }

Fig. 2. Deconstruction of SD-Paxos (left) and specification of module Paxos (right).

equal than 1. Each acceptor that switches to the proposer’s round sends back to
the proposer its stored value and the round at which this value was accepted,
or an undefined value if the acceptor never accepted any value yet (messages
P1B(ok,⊥, 0), where ⊥ denotes a default undefined value). After Phase 1, N1
picks as a candidate value the one accepted at the greatest round from those
returned by the acceptors in the quorum, or its proposed value if all acceptors
returned an undefined value. In our case, N1 picks its value v1. In Phase 2,
N1 requests the acceptors to accept the candidate value v1 at round 1 (messages
P2A(v1, 1)). The message to N3 gets lost, and N1 and N2 accept value v1, which
gets decided (messages P2B(ok)).

Now N3 goes through Phase 1 with round 3 (messages P1A(3)). Both N2
and N3 switch to round 3. N2 answers N3 with its stored value v1 and with the
round 1 at which v1 was accepted (message P1B(ok, v1, 1)), and N3 answers
itself with an undefined value, as it has never accepted any value yet (message
P1B(ok,⊥, 0)). This way, if some value has been already decided upon, any pro-
poser that convinces a quorum to switch to its round would receive the decided
value from some of the acceptors in the quorum (recall that two quorums have
a non-empty intersection). That is, N3 picks the v1 returned by N2 as the can-
didate value, and in Phase 2 it manages that the quorum N2 and N3 accepts
v1 at round 3 (messages P2A(v1, 3) and P2B(ok)). N3 succeeds in making a
new decision, but the decided value remains the same, and, therefore, the safety
requirements of a consensus protocol are satisfied.

3 The Faithful Deconstruction of SD-Paxos

We now recall the faithfull deconstruction of SD-Paxos in [2,3], which we take
as the reference architecture for the implementations that we aim to verify. We
later show how each module of the deconstruction can be verified separately.

The deconstruction is depicted on the left of Fig. 2, which consists of modules
Paxos, Round-Based Consensus and Round-Based Register. These modules cor-
respond to the ones in Fig. 4 of [2], with the exception of Weak Leader Election.
We assume that a correct process that is trusted by every other correct process
always exists, and omit the details of the leader election. Leaders take the role
of proposers and invoke the interface of Paxos. Each module uses the interface
provided by the module below it.
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1 read(int k) {

2 int j; val v; int kW; val maxV;

3 int maxKW; set of int Q; msg m;

4 for (j := 1, j <= n, j++)

5 { send(j, [RE, k]); }

6 maxKW := 0; maxV := undef; Q := {};

7 do { (j, m) := receive();

8 switch (m) {

9 case [ackRE, @k, v, kW]:

10 Q := Q ∪ {j};

11 if (kW >= maxKW)

12 { maxKW := kW; maxV := v; }

13 case [nackRE, @k]:

14 return (false, _);

15 } if (|Q| = �(n+1)/2�)
16 { return (true, maxV); } }

17 while (true); }

18 write(int k, val vW) {

19 int j; set of int Q; msg m;

20 for (j := 1, j <= n, j++)

21 { send(j, [WR, k, vW]); }

22 Q := {};

23 do { (j, m) := receive();

24 switch (m) {

25 case [ackWR, @k]:

26 Q := Q ∪ {j};

27 case [nackWR, @k]:

28 return false;

29 } if (|Q| = �(n+1)/2�)
30 { return true; } }

31 while (true); }

Fig. 3. Implementation of Round-Based Register (read and write).

The entry module Paxos implements SD-Paxos. Its specification (right of
Fig. 2) keeps a variable vP that stores the decided value (initially undefined) and
provides the operation proposeP that takes a proposed value v0 and returns vP
if some value was already decided, or otherwise it returns v0. The code of the
operation runs atomically, which we emphasise via angle brackets 〈. . .〉. We define
this specification so it meets the safety requirements of a consensus, therefore,
any implementation whose entry point refines this specification will have to meet
the same safety requirements.

In this work we present both specifications and implementations in pseudo-
code for an imperative WHILE-like language with basic arithmetic and primitive
types, where val is some user-defined type for the values decided by Paxos, and
undef is a literal that denotes an undefined value. The pseudo-code is self-
explanatory and we restraint ourselves from giving formal semantics to it, which
could be done in standard fashion if so wished [30]. At any rate, the pseudo-code
is ultimately a vehicle for illustration and we stick to this informal presentation.

The implementation of the modules is depicted in Figs. 3, 4 and 5. We
describe the modules following a bottom-up approach, which better fits the pur-
pose of conveying the connection between the deconstruction and SD-Paxos.
We start with module Round-Based Register, which offers operations read and
write (Fig. 3) and implements the replicated processes that adopt the role of
acceptors (Fig. 4). We adapt the wait-free, crash-stop implementation of Round-
Based Register in Fig. 5 of [2] by adding loops for the explicit reception of each
individual message and by counting acknowledgement messages one by one. Pro-
cesses are identified by integers from 1 to n, where n is the number of processes
in the system. Proposers and acceptors exchange read and write requests, and
their corresponding acknowledgements and non/acknowledgements. We assume
a type msg for messages and let the message vocabulary to be as follows.
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k; send(i, [ackRE, k, v, w]); 〉 }

10 case [WR, k, vW]:

11 if (k < r) { send(i, [nackWR, k]); }

12 else { 〈 r := k; w := k; v := vW; send(i, [ackWR, k]); 〉 }

13 } }

14 while (true); } }

Fig. 4. Implementation of Round-Based Register (acceptor).

Read requests [RE, k] carry the proposer’s round k. Write requests [WR, k, v]
carry the proposer’s round k and the proposed value v. Read acknowledge-
ments [ackRE, k, v, k’] carry the proposer’s round k, the acceptor’s value
v, and the round k’ at which v was accepted. Read non-acknowledgements
[nackRE, k] carry the proposer’s round k, and so do carry write acknowledge-
ments [ackWR, k] and write non/acknowledgements [nackWR, K].

In the pseudo-code, we use _ for a wildcard that could take any literal value.
In the pattern-matching primitives, the literals specify the pattern against which
an expression is being matched, and operator @ turns a variable into a literal
with the variable’s value. Compare the case [ackRE, @k, v, kW]: in Fig. 3, where
the value of k specifies the pattern and v and kW get some values assigned, with
the case [RE, k]: in Fig. 4, where k gets some value assigned.

We assume the network ensures that messages are neither created, modified,
deleted, nor duplicated, and that they are always delivered but with an arbi-
trarily large transmission delay.2 Primitive send takes the destination j and the
message m, and its effect is to send m from the current process to the process j.
Primitive receive takes no arguments, and its effect is to receive at the cur-
rent process a message m from origin i, after which it delivers the pair (i, m) of
identifier and message. We assume that send is non-blocking and that receive
blocks and suspends the process until a message is available, in which case the
process awakens and resumes execution.

Each acceptor (Fig. 4) keeps a value v, a current round r (called the read
round), and the round w at which the acceptor’s value was last accepted (called
the write round). Initially, v is undef and both r and w are 0.

Phase 1 of SD-Paxos is implemented by operation read on the left of Fig. 3.
When a proposer issues a read, the operation requests each acceptor’s promise
to only accept values at a round greater or equal than k by sending [RE, k]

2 We allow creation and duplication of [RE, k] messages in Sect. 5, where we obtain
Multi-Paxos from SD-Paxos by a series of transformations of the network semantics.
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1 proposeRC(int k, val v0) {

2 bool res; val v;

3 (res, v) := read(k);

4 if (res) {

5 if (v = undef) { v := v0; }

6 res := write(k, v);

7 if (res) { return (true, v); } }

8 return (false, _); }

1 proposeP(val v0) {

2 int k; bool res; val v;

3 k := pid();

4 do { (res, v) :=

5 proposeRC(k, v0);

6 k := k + n;
7 } while (!res);

8 return v; }

Fig. 5. Implementation of Round-Based Consensus (left) and Paxos (right)

(lines 4–5). When an acceptor receives a [RE, k] (lines 5–7 of Fig. 4) it acknowl-
edges the promise depending on its read round. If k is strictly less than r
then the acceptor has already made a promise to another proposer with greater
round and it sends [nackRE, k] back (line 8). Otherwise, the acceptor updates
r to k and acknowledges by sending [ackRE, k, v, w] (line 9). When the pro-
poser receives an acknowledgement (lines 8–10 of Fig. 3) it counts acknowl-
edgements up (line 10) and calculates the greatest write round at which the
acceptors acknowledging so far accepted a value, and stores this value in maxV
(lines 11–12). If a majority of acceptors acknowledged, the operation succeeds
and returns (true, maxV) (lines 15–16). Otherwise, if the proposer received some
[nackRE, k] the operation fails, returning (false, _) (lines 13–14).

Phase 2 of SD-Paxos is implemented by operation write on the right of
Fig. 3. After having collected promises from a majority of acceptors, the pro-
poser picks the candidate value vW and issues a write. The operation requests
each acceptor to accept the candidate value by sending [WR, k, vW] (lines 20–
21). When an acceptor receives [WR, k, vW] (line 10 of Fig. 4) it accepts the
value depending on its read round. If k is strictly less than r, then the acceptor
never promised to accept at such round and it sends [nackWR, k] back (line 11).
Otherwise, the acceptor fullfils its promise and updates both w and r to k and
assigns vW to its value v, and acknowledges by sending [ackWR, k] (line 12).
Finally, when the proposer receives an acknowledgement (lines 23–25 of Fig. 3)
it counts acknowledgements up (line 26) and checks whether a majority of accep-
tors acknowledged, in which case vW is decided and the operation succeeds and
returns true (lines 29–30). Otherwise, if the proposer received some [nackWR, k]
the operation fails and returns false (lines 27–28).3

Next, we describe module Round-Based Consensus on the left of Fig. 5. The
module offers an operation proposeRC that takes a round k and a proposed
value v0, and returns a pair (res, v) of Boolean and value, where res informs
of the success of the operation and v is the decided value in case res is true.
We have taken the implementation from Fig. 6 in [2] but adapted to our pseudo-
code conventions. Round-Based Consensus carries out Phase 1 and Phase 2 of

3 For the implementation to be correct with our shared-memory-concurrency app-
roach, the update of the data in acceptors must happen atomically with the sending
of acknowledgements in lines 9 and 12 of Fig. 4.
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N1:

N2:

N3:

read(1)

⊥ read(2)

v1read(3)

⊥

write(3,v3)
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⊥

write(1,v1)

read(2)

v1 read(3)

⊥

write(3,v3)

write(2,v1)

Fig. 6. Two histories in which a failing write contaminates some acceptor.

SD-Paxos as explained in Sect. 2. The operation proposeRC calls read (line 3)
and if it succeeds then chooses a candidate value between the proposed value
v0 or the value v returned by read (line 5). Then, the operation calls write
with the candidate value and returns (true, v) if write succeeds, or fails and
returns (false, _) (line 8) if either the read or the write fails.

Finally, the entry module Paxos on the right of Fig. 5 offers an operation
proposeP that takes a proposed value v0 and returns the decided value. We
assume that the system primitive pid() returns the process identifier of the
current process. We have come up with this straightforward implementation of
operation proposeP, which calls proposeRC with increasing round until the call
succeeds, starting at a round equal to the process identifier pid() and increasing
it by the number of processes n in each iteration. This guarantees that the round
used in each invocation to proposeRC is unique.

The Challenge of Verifying the Deconstruction of Paxos. Verifying
each module of the deconstruction separately is cumbersome because of the
distributed character of the algorithm and the nature of a linearisation proof. A
process may not be aware of the information that will flow from itself to other
processes, but this future information flow may dictate whether some operation
has to be linearised at the present. Figure 6 illustrates this challenge.

Let N1, N2 and N3 adopt both the roles of acceptors and proposers, which
propose values v1, v2 and v3 with rounds 1, 2 and 3 respectively. Consider the
history on the top of the figure. N2 issues a read with round 2 and gets acknowl-
edgements from all but one acceptors in a quorum. (Let us call this one acceptor
A.) None of these acceptors have accepted anything yet and they all return
⊥ as the last accepted value at round 0. In parallel, N3 issues a read with
round 3 (third line in the figure) and gets acknowledgements from a quorum in
which A does not occur. This read succeeds as well and returns (true, undef).
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1 (bool × val) ptp[1..n] := undef;

2 val abs_vP := undef; single bool abs_resP[1..n] := undef;

3 proposeP(val v0) {

4 int k; bool res; val v; assume(!(v0 = undef));

5 k := pid(); ptp[pid()] := (true, v0);

6 do { 〈 (res, v) := proposeRC(k, v0);

7 if (res) {

8 for (i := 1, i <= n, i++) {

9 if (ptp[i] = (true, v)) { lin(i); ptp[i] := (false, v); } }

10 if (!(v = v0)) { lin(pid()); ptp[pid()] := (false, v0); } } 〉
11 k := k + n; }

12 while (!res); return v; }

Fig. 7. Instrumented implementation of Paxos.

Then N3 issues a write with round 3 and value v3. Again, it gets acknowledge-
ments from a quorum in which A does not occur, and the write succeeds deciding
value v3 and returns true. Later on, and in real time order with the write by
N3 but in parallel with the read by N2, node N1 issues a write with round 1
and value v1 (first line in the figure). This write is to fail because the value v3
was already decided with round 3. However, the write manages to “contami-
nate” acceptor A with value v1, which now acknowledges N2 and sends v1 as
its last accepted value at round 1. Now N2 has gotten acknowledgements from
a quorum, and since the other acceptors in the quorum returned 0 as the round
of their last accepted value, the read will catch value v1 accepted at round 1,
and the operation succeeds and returns (true, v1). This history linearises by
moving N2’s read after N1’s write, and by respecting the real time order for the
rest of the operations. (The linearisation ought to respect the information flow
order between N1 and N2 as well, i.e., N1 contaminates A with value v1, which
is read by N2.)

In the figure, a segment ending in an × indicates that the operation fails. The
value returned by a successful read operation is depicted below the end of the
segment. The linearisation points are depicted with a thick vertical line, and the
dashed arrow indicates that two operations are in the information flow order.

The variation of this scenario on the bottom of Fig. 6 is also possible, where
N1’s write and N2’s read happen concurrently, but where N2’s read is shifted
backwards to happen before in real time order with N3’s read and write. Since
N1’s write happens before N2’s read in the information flow order, then N1’s
write has to inexorably linearise before N3’s operations, which are the ones that
will “steal” N1’s valid round.

These examples give us three important hints for designing the specifications
of the modules. First, after a decision is committed it is not enough to store only
the decided value, since a posterior write may contaminate some acceptor with a
value different from the decided one. Second, a read operation may succeed with
some round even if by that time other operation has already succeeded with a
higher round. And third, a write with a valid round may fail if its round will
be “stolen” by a concurrent operation. The non-deterministic specifications that
we introduce next allow one to model execution histories as the ones in Fig. 6.
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4 Modularly Verifying SD-Paxos

In this section, we provide non-deterministic specifications for Round-Based Con-
sensus and Round-Based Register and show that each implementation refines its
specification [9]. To do so, we instrument the implementations of all the modules
with linearisation-point annotations and use Rely/Guarantee reasoning [26].

This time we follow a top-down order and start with the entry module Paxos.

Module Paxos. In order to prove that the implementation on the right of
Fig. 5 refines its specification on the right of Fig. 2, we introduce the instru-
mented implementation in Fig. 7, which uses the helping mechanism for external
linearisation points of [18]. We assume that each proposer invokes proposeP with
a unique proposed value. The auxiliary pending thread pool ptp[n] is an array
of pairs of Booleans and values of length n, where n is the number of processes
in the system. A cell ptp[i] containing a pair (true, v) signals that the process
i proposed value v and the invocation proposeP(v) by process i awaits to be
linearised. Once this invocation is linearised, the cell ptp[i] is updated to the
pair (false, v). A cell ptp[i] containing undef signals that the process i never
proposed any value yet. The array abs_resP[n] of Boolean single-assignment
variables stores the abstract result of each proposer’s invocation. A linearisation-
point annotation lin(i) takes a process identifier i and performs atomically the
abstract operation invoked by proposer i and assigns its result to abs_resP[i].
The abstract state is modelled by variable abs_vP, which corresponds to variable
vP in the specification on the right of Fig. 2. One invocation of proposeP may
help linearise other invocations as follows. The linearisation point is together
with the invocation to proposeRC (line 6). If proposeRC committed with some
value v, the instrumented implementation traverses ptp and linearises all the
proposers which were proposing value v (the proposer may linearise itself in this
traversal) (lines 8–9). Then, the current proposer linearises itself if its proposed
value v0 is different from v (line 10), and the operation returns v (line 12). All
the annotations and code in lines 6–10 are executed inside an atomic block,
together with the invocation to proposeRC(k, v0).

Theorem 1. The implementation of Paxos on the right of Fig. 5 linearises with
respect to its specification on the right of Fig. 2.

Module Round-Based Consensus. The top of Fig. 8 shows the non-
deterministic module’s specification. Global variable vRC is the decided value,
initially undef. Global variable roundRC is the highest round at which some
value was decided, initially 0; a global set of values valsRC (initially empty)
contains values that may have been proposed by proposers. The specification is
non-deterministic in that local value vD and Boolean b are unspecified, which we
model by assigning random values to them. We assume that the current process
identifier is ((k−1)modn)+1, which is consistent with how rounds are assigned
to each process and incremented in the code of proposeP on the right of Fig. 5.
If the unspecified value vD is neither in the set valsRC nor equal to v0 then
the operation returns (false, _) (line 11). This models that the operation fails
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1 val vRC := undef; int roundRC := 0; set of val valsRC := {};

2 proposeRC(int k, val v0) {

3 〈 val vD := random(); bool b := random();

4 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

5 if (vD ∈ (valsRC ∪ {v0})) {

6 valsRC := valsRC ∪ {vD};

7 if (b && (k >= roundRC)) { roundRC := k;

8 if (vRC = undef) { vRC := vD; }

9 return (true, vRC); }

10 else { return (false, _); } }

11 else { return (false, _); } 〉 }

1 val abs_vRC := undef; int abs_roundRC := 0;

2 set of val abs_valsRC := {};

3 proposeRC(int k, val v0) {

4 single (bool × val) abs_resRC := undef; bool res; val v;

5 assume(!(v0 = undef)); assume(pid() = ((k - 1) mod n) + 1);

6 〈 (res, v) := read(k); if (res = false) { linRC(undef, _); } 〉
7 if (res) { if (v = undef) { v := v0; }

8 〈 res := write(k, v); if (res) { linRC(v, true); }

9 else { linRC(v, false); } 〉
10 if (res) { return (true, v); } }

11 return (false, _); }

Fig. 8. Specification (top) and instrumented implementation (bottom) of Round-Based
Consensus.

without contaminating any acceptor. Otherwise, the operation may contaminate
some acceptor and the value vD is added to the set valsRC (line 6). Now, if the
unspecified Boolean b is false, then the operation returns (false, _) (lines 7
and 10), which models that the round will be stolen by a posterior operation.
Finally, the operation succeeds if k is greater or equal than roundRC (line 7), and
roundRC and vRC are updated and the operation returns (true, vRC) (lines 7–9).

In order to prove that the implementation in Fig. 5 linearises with respect
to the specification on the top of Fig. 8, we use the instrumented implementa-
tion on the bottom of the same figure, where the abstract state is modelled by
variables abs_vRC, abs_roundRC and abs_valsRC in lines 1–2, the local single-
assignment variable abs_resRC stores the result of the abstract operation, and
the linearisation-point annotations linRC(vD, b) take a value and a Boolean
parameters and invoke the non-deterministic abstract operation and disam-
biguate it by assigning the parameters to the unspecified vD and b of the specifi-
cation. There are two linearisation points together with the invocations of read
(line 6) and write (line 8). If read fails, then we linearise forcing the unspecified
vD to be undef (line 6), which ensures that the abstract operation fails without
adding any value to abs_valsRC nor updating the round abs_roundRC. Other-
wise, if write succeeds with value v, then we linearise forcing the unspecified
value vD and Boolean b to be v and true respectively (line 8). This ensures that
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1 read(int k) {

2 〈 val vD := random();

3 bool b := random(); val v;

4 assume(vD ∈ valsRR);

5 assume(pid() =

6 ((k - 1) mod n) + 1);

7 if (b) {

8 if (k >= roundRR) {

9 roundRR := k;

10 if (!(vRR = undef)) {

11 v := vRR; }

12 else { v := vD; } }

13 else { v := vD; }

14 return (true, v); }

15 else { return (false, _); } 〉 }

16 val vRR := undef;

17 int roundRR := 0;

18 set of val valsRR := {undef};

19
20 write(int k, val vW) {

21 〈 bool b := random();

22 assume(!(vW = undef));

23 assume(pid() =

24 ((k - 1) mod n) + 1);

25 valsRR := valsRR ∪ {vW};

26 if (b && (k >= roundRR)) {

27 roundRR := k;

28 vRR := vW;

29 return true; }

30 else { return false; } 〉 }

Fig. 9. Specification of Round-Based Register.

the abstract operation succeeds and updates the round abs_roundRC to k and
assigns v to the decided value abs_vRC. If write fails then we linearise forcing
the unspecified vD and b to be v and false respectively (line 9). This ensures
that the abstract operation fails.

Theorem 2. The implementation of Round-Based Consensus in Fig. 5 lin-
earises with respect to its specification on the top of Fig. 8.

Module Round-Based Register . Figure 9 shows the module’s non-
deterministic specification. Global variable vRR represents the decided value,
initially undef. Global variable roundRR represents the current round, initially
0, and global set of values valsRR, initially containing undef, stores values that
may have been proposed by some proposer. The specification is non-deterministic
in that method read has unspecified local Boolean b and local value vD (we
assume that vD is valsRR), and method write has unspecified local Boolean b.
We assume the current process identifier is ((k − 1) mod n) + 1.

Let us explain the specification of the read operation. The operation can
succeed regardless of the proposer’s round k, depending on the value of the
unspecified Boolean b. If b is true and the proposer’s round k is valid (line 8),
then the read round is updated to k (line 9) and the operation returns (true, v)
(line 14), where v is the read value, which coincides with the decided value if some
decision was committed already or with vD otherwise. Now to the specification of
operation write. The value vW is always added to the set valsRR (line 25). If the
unspecified Boolean b is false (the round will be stolen by a posterior operation)
or if the round k is non-valid, then the operation returns false (lines 26 and
30). Otherwise, the current round is updated to k, and the decided value vRR is
updated to vW and the operation returns true (lines 27–29).

In order to prove that the implementation in Figs. 3 and 4 linearises with
respect to the specification in Fig. 9, we use the instrumented implementation in
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Figs. 10 and 11, which uses prophecy variables [1,26] that “guess” whether the
execution of the method will reach a particular program location or not. The
instrumented implementation also uses external linearisation points. In partic-
ular, the code of the acceptors may help to linearise some of the invocations to
read and write, based on the prophecies and on auxiliary variables that count
the number of acknowledgements sent by acceptors after each invocation of a
read or a write. The next paragraphs elaborate on our use of prophecy variables
and on our helping mechanism.

Variables abs_vRR, abs_roundRR and abs_valsRR in Fig. 10 model the
abstract state. They are initially set to undef, 0 and the set containing undef
respectively. Variable abs_res_r[k] is an infinite array of single-assignment
pairs of Boolean and value that model the abstract results of the invocations
to read. (Think of an infinite array as a map from integers to some type; we
use the array notation for convenience.) Similarly, variable abs_res_w[k] is an
infinite array of single-assignment Booleans that models the abstract results of
the invocations to write. All the cells in both arrays are initially undef (e.g.
the initial maps are empty). Variables count_r[k] and count_w[k] are infinite
arrays of integers that model the number of acknowledgements sent (but not
necessarily received yet) from acceptors in response to respectively read or write
requests. All cells in both arrays are initially 0. The variable proph_r[k] is an
infinite array of single-assignment pairs bool× val, modelling the prophecy for
the invocations of read, and variable proph_w[k] is an infinite array of single-
assignment Booleans modelling the prophecy for the invocations of write.

The linearisation-point annotations linRE(k, vD, b) for read take the pro-
poser’s round k, a value vD and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameters to the unspecified vD
and b of the specification on the left of Fig. 9. At the beginning of a read(k)
(lines 11–14 of Fig. 10), the prophecy proph_r[k] is set to (true, v) if the invo-
cation reaches PL: RE_SUCC in line 26. The v is defined to coincide with maxV at
the time when that location is reached. That is, v is the value accepted at the
greatest round by the acceptors acknowledging so far, or undefined if no accep-
tor ever accepted any value. If the operation reaches PL: RE_FAIL in line 24
instead, the prophecy is set to (false, _). (If the method never returns, the
prophecy is left undef since it will never linearise.) A successful read(k) lin-
earises in the code of the acceptor in Fig. 11, when the �(n + 1)/2�th acceptor
sends [ackRE, k, v, w], and only if the prophecy is (true, v) and the operation
was not linearised before (lines 10–14). We force the unspecified vD and b to
be v and true respectively, which ensures that the abstract operation succeeds
and returns (true, v). A failing read(k) linearises at the return in the code
of read (lines 23–24 of Fig. 10), after the reception of [nackRE, k] from one
acceptor. We force the unspecified vD and b to be undef and false respectively,
which ensures that the abstract operation fails.

The linearisation-point annotations linWR(k, vW, b) for write take the pro-
poser’s round k and value vW, and a Boolean b, and they invoke the abstract
operation and disambiguate it by assigning the parameter to the unspecified b
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1 val abs_vRR := undef; int abs_roundRR := 0;

2 set of val abs_valsRR := {undef};

3 single val abs_res_r[1..∞] := undef;

4 single val abs_res_w[1..∞] := undef;

5 int count_r[1..∞] := 0; int count_w[1..∞] := 0;

6 single (bool × val) proph_r[1..∞] := undef;

7 single bool proph_w[i..∞] := undef;

8 read(int k) {

9 int j; val v; set of int Q; int maxKW; val maxV; msg m;

10 assume(pid() = ((k - 1) mod n) + 1);

11 〈 if (operation reaches PL: RE_SUCC and define v = maxV at that time) {

12 proph_r[k] := (true, v); }

13 else { if (operation reaches PL: RE_FAIL) {

14 proph_r[k] := (false, _); } } 〉
15 for (j := 1, j <= n, j++) { send(j, [RE, k]); }

16 maxKW := 0; maxV := undef; Q := {};

17 do { (j, m) := receive();

18 switch (m) {

19 case [ackRE, @k, v, kW]:

20 Q := Q ∪ {j};

21 if (kW >= maxKW) { maxKW := kW; maxV := v; }

22 case [nackRE, @k]:

23 〈 linRE(k, undef, false); proph_r[k] := undef;

24 return (false, _); 〉 // PL: RE_FAIL

25 } if (|Q| = �(n+1)/2�) {

26 return (true, maxV); } } // PL: RE_SUCC

27 while (true); }

28 write(int k, val vW) {

29 int j; set of int Q; msg m;

30 assume(!(vW = undef)); assume(pid() = ((k - 1) mod n) + 1);

31 〈 if (operation reaches PL: WR_SUCC) { proph_w[k] := true; }

32 else { if (operation reaches PL: WR_FAIL) {

33 proph_w[k] := false; } } 〉
34 for (j := 1, j <= n, j++) { send(j, [WR, k, vW]); }

35 Q := {};

36 do { (j, m) := receive();

37 switch (m) {

38 case [ackWR, @k]:

39 Q := Q ∪ {j};

40 case [nackWR, @k]:

41 〈 if (count_w[k] = 0) {

42 linWR(k, vW, false); proph_w[k] := undef; }

43 return false; 〉 // PL: WR_FAIL

44 } if (|Q| = �(n+1)/2�) {

45 return true; } } // PL: WR_SUCC

46 while (true); }

Fig. 10. Instrumented implementation of read and write methods.
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1 process Acceptor(int j) {

2 val v := undef; int r := 0; int w := 0;

3 start() {

4 int i; msg m; int k;

5 do { (i, m) := receive();

6 switch (m) {

7 case [RE, k]:

8 if (k < r) { send(i, [nackRE, k]); }

9 else { 〈 r := k;

10 if (abs_res_r[k] = undef) {

11 if (proph_r[k] = (true, v)) {

12 if (count_r[k] = �(n+1)/2� - 1) {

13 linRE(k, v, true); } } }

14 count_r[k]++; send(i, [ackRE, k, v, w]); 〉 }

15 case [WR, k, vW]:

16 if (k < r) { send(j, i, [nackWR, k]); }

17 else { 〈 r := k; w := k; v := vW;

18 if (abs_res_w[k] = undef) {

19 if (!(proph_w[k] = undef)) {

20 if (proph_w[k]) {

21 if (count_w[k] = �(n+1)/2� - 1) {

22 linWR(k, vW, true); } }

23 else { linWR(k, vW, false); } } }

24 count_w[k]++; send(j, i, [ackWR, k]); 〉 }

25 } }

26 while (true); } }

Fig. 11. Instrumented implementation of acceptor processes.

of the specification on the right of Fig. 9. At the beginning of a write(k, vW)
(lines 31–33 of Fig. 10), the prophecy proph_r[k] is set to true if the invocation
reaches PL: WR_SUCC in line 45, or to false if it reaches PL: WR_FAIL in line 43
(or it is left undef if the method never returns). A successfully write(k, vW)
linearises in the code of the acceptor in Fig. 11, when the �(n+1)/2�th acceptor
sends [ackWR, k], and only if the prophecy is true and the operation was not
linearised before (lines 17–24). We force the unspecified b to be true, which
ensures that the abstract operation succeeds deciding value vW and updates
roundRR to k. A failing write(k, vW) may linearise either at the return in its
own code (lines 41–43 of Fig. 10) if the proposer received one [nackWR, k] and no
acceptor sent any [ackWR, k] yet, or at the code of the acceptor, when the first
acceptor sends [ackWR, k], and only if the prophecy is false and the operation
was not linearised before. In both cases, we force the unspecified b to be false,
which ensures that the abstract operation fails.

Theorem 3. The implementation of Round-Based Register in Figs. 10 and 11
linearises with respect to its specification in Fig. 9.
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5 Multi-Paxos via Network Transformations

We now turn to more complicated distributed protocols that build upon the idea
of Paxos consensus. Our ultimate goal is to reuse the verification result from the
Sects. 3 and 4, as well as the high-level round-based register interface. In this
section, we will demonstrate how to reason about an implementation of Multi-
Paxos as of an array of independent instances of the Paxos module defined pre-
viously, despite the subtle dependencies between its sub-components, as present
in Multi-Paxos’s “canonical” implementations [5,15,27]. While an abstraction of
Multi-Paxos to an array of independent shared “single-shot” registers is almost
folklore, what appears to be inherently difficult is to verify a Multi-Paxos-based
consensus (wrt. to the array-based abstraction) by means of reusing the proof of
a SD-Paxos. All proofs of Multi-Paxos we are aware of are, thus, non-modular
with respect to underlying SD-Paxos instances [5,22,24], i.e., they require one
to redesign the invariants of the entire consensus protocol.

This proof modularity challenge stems from the optimised nature of a classical
Multi-Paxos protocol, as well as its real-world implementations [6]. In this part
of our work is to distil such protocol-aware optimisations into a separate network
semantics layer, and show that each of them refines the semantics of a Cartesian
product-based view, i.e., exhibits the very same client-observable behaviours. To
do so, we will establishing the refinement between the optimised implementations
of Multi-Paxos and a simple Cartesian product abstraction, which will allow to
extend the register-based abstraction, explored before in this paper, to what is
considered to be a canonical amortised Multi-Paxos implementation.

5.1 Abstract Distributed Protocols

We start by presenting the formal definitions of encoding distributed protocols
(including Paxos), their message vocabularies, protocol-based network seman-
tics, and the notion of an observable behaviours.

Protocols P 
 p � 〈Δ, M, S〉
Configurations Σ 
 σ � Nodes ⇀ Δ
Internal steps Sint ∈ Δ × Δ
Receive-steps Srcv ∈ Δ × M × Δ
Send-steps Ssnd ∈ Δ × Δ × ℘(M)

Fig. 12. States and transitions.

Protocols and Messages. Figure 12
provides basic definitions of the dis-
tributed protocols and their compo-
nents. Each protocol p is a tuple
〈Δ,M,Sint,Srcv,Ssnd〉. Δ is a set of
local states, which can be assigned to
each of the participating nodes, also
determining the node’s role via an addi-
tional tag,4 if necessary (e.g., an acceptor and a proposer states in Paxos are
different). M is a “message vocabulary”, determining the set of messages that
can be used for communication between the nodes.

4 We leave out implicit the consistency laws for the state, that are protocol-specific.
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StepInt
n ∈ dom(σ) δ = σ(n)

〈δ, δ′〉 ∈ p.Sint σ′ = σ[n �→ δ′]

〈σ, M〉 p
==⇒
int

〈σ′, M〉

StepSend
n ∈ dom(σ) δ = σ(n) 〈δ, δ′,ms〉 ∈ p.Ssnd

σ′ = σ[n �→ δ′] M ′ = M ∪ ms

〈σ, M〉 p
===⇒
snd

〈σ′, M ′〉

StepReceive
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to) 〈δ, m, δ′〉 ∈ p.Srcv

m′ = m[active �→ False] σ′ = σ[n �→ δ′] M ′ = M \ {m} ∪ {
m′}

〈σ, M〉 p
===⇒
rcv

〈σ′, M ′〉

Fig. 13. Transition rules of the simple protocol-aware network semantics

Messages can be thought of as JavaScript-like dictionaries, pairing unique
fields (isomorphic to strings) with their values. For the sake of a uniform treat-
ment, we assume that each message m ∈ M has at least two fields, from and to
that point to the source and the destination node of a message, correspondingly.
In addition to that, for simplicity we will assume that each message carries a
Boolean field active, which is set to True when the message is sent and is set to
False when the message is received by its destination node. This flag is required
to keep history information about messages sent in the past, which is customary
in frameworks for reasoning about distributed protocols [10,23,28]. We assume
that a “message soup” M is a multiset of messages (i.e. a set with zero or more
copies of each message) and we consider that each copy of the same message in
the multiset has its own “identity”, and we write m �= m′ to represent that m
and m′ are not the same copy of a particular message.

Finally, S{int,rcv,snd} are step-relations that correspond to the internal
changes in the local state of a node (Sint), as well as changes associated with
sending (Ssnd) and receiving (Srcv) messages by a node, as allowed by the pro-
tocol. Specifically, Sint relates a local node state before and after the allowed
internal change; Srcv relates the initial state and an incoming message m ∈ M
with the resulting state; Ssnd relates the internal state, the output state and the
set of atomically sent messages. For simplicity we will assume that id ⊆ Sint.

In addition, we consider Δ0 ⊆ Δ—the set of the allowed initial states, in
which the system can be present at the very beginning of its execution. The
global state of the network σ ∈ Σ is a map from node identifiers (n ∈ Nodes) to
local states from the set of states Δ, defined by the protocol.

Simple Network Semantics. The simple initial operational semantics of the
network (

p
=⇒ ⊆ (Σ×℘(M))×(Σ×℘(M))) is parametrised by a protocol p and

relates the initial configuration (i.e., the global state and the set of messages)
with the resulting configuration. It is defined via as a reflexive closure of the
union of three relations

p
==⇒
int

∪ p
===⇒
rcv

∪ p
===⇒
snd

, their rules are given in Fig. 13.
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The rule StepInt corresponds to a node n picked non-deterministically from
the domain of a global state σ, executing an internal transition, thus chang-
ing its local state from δ to δ′. The rule StepReceive non-deterministically
picks a m message from a message soup M ⊆ M, changes the state using the
protocol’s receive-step relation p.Srcv at the corresponding host node to, and
updates its local state accordingly in the common mapping (σ[to �→ δ′]). Finally,
the rule StepSend, non-deterministically picks a node n, executes a send-step,
which results in updating its local state emission of a set of messages ms, which
is added to the resulting soup. In order to “bootstrap” the execution, the initial
states from the set Δ0 ⊆ Δ are assigned to the nodes.

We next define the observable protocol behaviours wrt. the simple network
semantics as the prefix-closed set of all system’s configuration traces.

Definition 1. (Protocol behaviours)

Bp =
⋃

m∈N

{
〈〈σ0, M0〉, . . . , 〈σm, Mm〉〉

∣∣∣∣∣
∃δn∈N

0 ∈ Δ0, σ0 =
⊎

n∈N [n �→ δn0 ] ∧
〈σ0, M0〉 p

=⇒ . . .
p

=⇒ 〈σm, Mm〉

}

That is, the set of behaviours captures all possible configurations of initial states
for a fixed set of nodes N ⊆ Nodes. In this case, the set of nodes N is an implicit
parameter of the definition, which we fix in the remainder of this section.

Example 1 (Encoding SD-Paxos). An abstract distributed protocol for SD-Paxos
can be extracted from the pseudo-code of Sect. 3 by providing a suitable small-step
operational semantics à la Winskel [30]. We restraint ourselves from giving such
formal semantics, but in Appendix D of the extended version of the paper we out-
line how the distributed protocol would be obtained from the given operational
semantics and from the code in Figs. 3, 4 and 5.

5.2 Out-of-Thin-Air Semantics

We now introduce an intermediate version of a simple protocol-aware semantics
that generates messages “out of thin air” according to a certain predicate P ⊆
Δ × M, which determines whether the network generates a certain message
without exercising the corresponding send-transition. The rule is as follows:

OTASend
n ∈ dom(σ) δ = σ(n) P(δ, m) M ′ = M ∪ {m}

〈σ, M〉 p,P
===⇒
ota

〈σ, M ′〉

That is, a random message m can be sent at any moment in the semantics
described by

p
=⇒ ∪ p,P

===⇒
ota

, given that the node n, “on behalf of which” the

message is sent is in a state δ, such that P(δ,m) holds.
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Example 2. In the context of Single-Decree Paxos, we can define P as follows:

P(δ,m) � m.content = [RE, k] ∧ δ.pid = n ∧ δ.role = Proposer ∧ k ≤ δ.kP

In other words, if a node n is a Proposer currently operating with a round
δ.kP, the network semantics can always send another request “on its behalf”,
thus generating the message “out-of-thin-air”. Importantly, the last conjunct in
the definition of P is in terms of ≤, rather than equality. This means that the
predicate is intentionally loose, allowing for sending even “stale” messages, with
expired rounds that are smaller than what n currently holds (no harm in that!).

By definition of single-decree Paxos protocol, the following lemma holds:

Lemma 1 (OTA refinement). B p=⇒∪ p,P===⇒
ota

⊆ Bp, where p is an instance of

the module Paxos, as defined in Sect. 3 and in Example 1.

5.3 Slot-Replicating Network Semantics

With the basic definitions at hand, we now proceed to describing alternative net-
work behaviours that make use of a specific protocol p = 〈Δ,M,Sint,Srcv,Ssnd〉,
which we will consider to be fixed for the remainder of this section, so we will
be at times referring to its components (e.g., Sint, Srcv, etc.) without a qualifier.

SRStepInt
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′〉 ∈ p.Sint

σ′ = σ[n[i] �→ δ′]

〈σ, M〉 ×==⇒
int

〈σ′, M〉

SRStepSend
i ∈ I n ∈ dom(σ)

δ = σ(n)[i] 〈δ, δ′,ms〉 ∈ p.Ssnd

σ′ = σ[n[i] �→ δ′] M ′ = M ∪ ms[slot �→ i]

〈σ, M〉 ×===⇒
snd

〈σ′, M ′〉

SRStepReceive
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ] 〈δ, m, δ′〉 ∈ p.Srcv

m′ = m[active �→ False] σ′ = σ(n)[m.slot �→ δ′] M ′ = M \ {m} ∪ {
m′}

〈σ, M〉 ×===⇒
rcv

〈σ′, M ′〉

Fig. 14. Transition rules of the slot-replicating network semantics.

Figure 14 describes a semantics of a slot-replicating (SR) network that exer-
cises multiple copies of the same protocol instance pi for i ∈ I, some, possibly
infinite, set of indices, to which we will be also referring as slots. Multiple copies
of the protocol are incorporated by enhancing the messages from p’s vocabulary
M with the corresponding indices, and implementing the on-site dispatch of the
indexed messages to corresponding protocol instances at each node. The local
protocol state of each node is, thus, no longer a single element being updated,
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but rather an array, mapping i ∈ I into δi—the corresponding local state com-
ponent. The small-step relation for SR semantics is denoted by ×=⇒. The rule
SRStepInt is similar to StepInt of the simple semantics, with the difference
that it picks not only a node but also an index i, thus referring to a specific
component σ(n)[i] as δ and updating it correspondingly (σ(n)[i] �→ δ′). For the
remaining transitions, we postulate that the messages from p’s vocabulary p.M
are enhanced to have a dedicated field slot , which indicates a protocol copy at
a node, to which the message is directed. The receive-rule SRStepReceive is
similar to StepReceive but takes into the account the value of m.slot in the
received message m, thus redirecting it to the corresponding protocol instance
and updating the local state appropriately. Finally, the rule SRStepSend can
be now executed for any slot i ∈ I, reusing most of the logic of the initial protocol
and otherwise mimicking its simple network semantic counterpart StepSend.

Importantly, in this semantics, for two different slots i, j, such that i �= j,
the corresponding “projections” of the state behave independently from each
other. Therefore, transitions and messages in the protocol instances indexed by
i at different nodes do not interfere with those indexed by j. This observation
can be stated formally. In order to do so we first defined the behaviours of
slot-replicating networks and their projections as follows:

Definition 2 (Slot-replicating protocol behaviours).

B× =
⋃

m∈N

⎧
⎪⎨

⎪⎩
〈〈σ0, M0〉, . . . , 〈σm, Mm〉〉

∣∣∣∣∣∣∣

∃δn∈N
0 ∈ Δ0,

σ0 =
⊎

n∈N [n �→ {i �→ δn0 | i ∈ I}] ∧
〈σ0, M0〉 p

=⇒ . . .
p

=⇒ 〈σm, Mm〉

⎫
⎪⎬

⎪⎭

That is, the slot-replicated behaviours are merely behaviours with respect to
networks, whose nodes hold multiple instances of the same protocol, indexed by
slots i ∈ I. For a slot i ∈ I, we define projection B×|i as a set of global state
traces, where each node’s local states is restricted only to its ith component.
The following simulation lemma holds naturally, connecting the state-replicating
network semantics and simple network semantics.

Lemma 2 (Slot-replicating simulation). For all I, i ∈ I, B×|i = Bp.

Example 3 (Slot-replicating semantics and Paxos). Given our representation of
Paxos using roles (acceptors/proposers) encoded via the corresponding parts of
the local state δ, we can construct a “näıve” version of Multi-Paxos by using the
SR semantics for the protocol. In such, every slot will correspond to a SD-Paxos
instance, not interacting with any other slots. From the practical perspective,
such an implementation is rather non-optimal, as it does not exploit dependen-
cies between rounds accepted at different slots.
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5.4 Widening Network Semantics

We next consider a version of the SR semantics, extended with a new rule for
handling received messages. In the new semantics, dubbed widening, a node,
upon receiving a message m ∈ T , where T ⊆ p.M, for a slot i, replicates it for
all slots from the index set I, for the very same node. The new rule is as follows:

WStepReceiveT
m ∈ M m.active m.to ∈ dom(σ) δ = σ(m.to)[m.slot ]

〈δ, m, δ′〉 ∈ p.Srcv m′ = m[active �→ False] σ′ = σ(n)[m.slot �→ δ′]
ms = if (m ∈ T ) then

{
m′ | m′ = m[slot �→ j], j ∈ I

}
else ∅

〈σ, M〉 ∇
===⇒
rcv

〈σ′, (M \ {m}) ∪ {
m′} ∪ ms〉

At first, this semantics seems rather unreasonable: it might create more messages
than the system can “consume”. However, it is possible to prove that, under
certain conditions on the protocol p, the set of behaviours observed under this
semantics (i.e., with SRStepReceive replaced by WStepReceiveT) is not
larger than B× as given by Definition 2. To state this formally we first relate the
set of “triggering” messages T from WStepReceiveT to a specific predicate P.

Definition 3 (OTA-compliant message sets). The set of messages T ⊆
p.M is OTA-compliant with the predicate P iff for any b ∈ Bp and 〈σ,M〉 ∈ b,
if m ∈ M , then P(σ(m.from),m).

In other words, the protocol p is relaxed enough to “justify” the presence of m in
the soup at any execution, by providing the predicate P, relating the message to
the corresponding sender’s state. Next, we use this definition to slot-replicating
and widening semantics via the following definition.

Definition 4 (P-monotone protocols). A protocol p is P-monotone iff for
any, b ∈ B×, 〈σ,M〉 ∈ b, m, i = m.slot , and j �= i, if P(σ(m.from)[i], �m) then
we have that P(σ(m.from)[j], �m), where �m “removes” the slot field from m.

Less formally, Definition 4 ensures that in a slot-replicated product × of a pro-
tocol p, different components cannot perform “out of sync” wrt. P. Specifically,
if a node in ith projection is related to a certain message �m via P, then any
other projection j of the same node will be P-related to this message, as well.

Example 4. This is a “non-example”. A version of slot-replicated SD-Paxos,
where we allow for arbitrary increments of the round per-slot at a same pro-
poser node (i.e., out of sync), would not be monotone wrt. P from Example 2.
In contrast, a slot-replicated product of SD-Paxos instances with fixed rounds is
monotone wrt. the same P.

Lemma 3. If T from WStepReceiveT is OTA-compliant with predicate P,
such that B p=⇒∪ p,P===⇒

ota

⊆ B p=⇒ and p is P-monotone, then B ∇=⇒ ⊆ B ×=⇒.

Example 5 (Widening semantics and Paxos). The SD-Paxos instance as
described in Sect. 3 satisfies the refinement condition from Lemma 3. By tak-
ing T = {m | m = {content = [RE, k]; . . .}} and using Lemma 3, we obtain the
refinement between widened semantics and SR semantics of Paxos.
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5.5 Optimised Widening Semantics

Our next step towards a realistic implementation of Multi-Paxos out of SD-
Paxos instances is enabled by an observation that in the widening semantics,
the replicated messages are always targeting the same node, to which the initial
message m ∈ T was addressed. This means that we can optimise the receive-step,
making it possible to execute multiple receive-transitions of the core protocol in
batch. The following rule OWStepReceiveT captures this intuition formally:

OWStepReceiveT
m ∈ M m.active m.to ∈ dom(σ) 〈σ′,ms〉 = receiveAndAct(σ, n, m)

〈σ, M〉 ∇∗
===⇒
rcv

〈σ′, M \ {m} ∪ {m[active �→ False]} ∪ ms〉

where receiveAndAct(σ, n, m) � 〈σ′,ms〉, such that ms =
⋃

j {m[slot �→ j] | m ∈ msj} ,

∀j ∈ I, δ= σ(m.to)[j] ∧ 〈δj , �m, δ1j 〉 ∈ p.Srcv ∧ 〈δ1j , δ2j 〉 ∈ p.S∗
int ∧ 〈δ2j , δ3j ,msj〉 ∈ p.Ssnd,

∀j ∈ I, σ′(m.to)[j] = δ3j .

In essence, the rule OWStepReceiveT blends several steps of the widening
semantics together for a single message: (a) it first receives the message and
replicates it for all slots at a destination node; (b) performs receive-steps for
the message’s replicas at each slot; (c) takes a number of internal steps, allowed
by the protocol’s Sint; and (d) takes a send-transition, eventually sending all
emitted message, instrumented with the corresponding slots.

Example 6. Continuing Example 5, with the same parameters, the optimising
semantics will execute the transitions of an acceptor, for all slots, triggered by
receiving a single [RE, k] message for a particular slot, sending back all the
results for all the slots, which might either agree to accept the value or reject it.

The following lemma relates the optimising and the widening semantics.

Lemma 4 (Refinement for OW semantics). For any b ∈ B ∇∗
=⇒ there exists

b′ ∈ B ∇=⇒, such that b can be obtained from b′ by replacing sequences of configu-

rations [〈σk,Mk〉, . . . , 〈σk+m,Mk+m〉] that have just a single node n, whose local
state is affected in σk, . . . , σk+m, by [〈σk,Mk〉, 〈σk+m,Mk+m〉].
That is, behaviours in the optimised semantics are the same as in the widening
semantics, modulo some sequences of locally taken steps that are being “com-
pressed” to just the initial and the final configurations.

5.6 Bunching Semantics

As the last step towards Multi-Paxos, we introduce the final network seman-
tics that optimises executions according to ∇∗

=⇒ described in previous section
even further by making a simple addition to the message vocabulary of a slot-
replicated SD-Paxos—bunched messages. A bunched message simply packages
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BStepRecvB
m ∈ M m.active m.to ∈ dom(σ)
〈σ′,ms〉 = receiveAndAct(σ, n, m)

M ′ = M \ {m} ∪ {m[active �→ False]}
m′ = bunch(ms, m.to, m.from)

〈σ, M〉 B===⇒
rcv

〈σ′, M ′ ∪ {
m′}〉

BStepRecvU
m ∈ M m.active m.to ∈ dom(σ)
m.msgs = ms M ′ = M \ {m} ∪ ms

〈σ, M〉 B===⇒
rcv

〈σ, M ′〉

where bunch(ms, n1, n2) = {msgs = ms; from = n1; to = n2; active = True} .

Fig. 15. Added rules of the Bunching Semantics

together several messages, obtained typically as a result of a “compressed” exe-
cution via the optimised semantics from Sect. 5.5. We define two new rules for
packaging and “unpackaging” certain messages in Fig. 15. The two new rules
can be added to enhance either of the versions of the slot-replicating semantics
shown before. In essence, the only effect they have is to combine the messages
resulting in the execution of the corresponding steps of an optimised widen-
ing (via BStepRecvB), and to unpackage the messages ms from a bunching
message, adding them back to the soup (BStepRecvU). The following natural
refinement result holds:

Lemma 5. For any b ∈ B B=⇒ there exists b′ ∈ B ∇∗
=⇒, such that b′ can be obtained

from b by replacing all bunched messages in b by their msgs-component.

The rule BStepRecvU enables effective local caching of the bunched messages,
so they are processed on demand on the recipient side (i.e., by the per-slot
proposers), allowing the implementation to skip an entire round of Phase 1.

( B=⇒) (
p

===⇒
ota

) via Lm 1 refines (
p

=⇒)

via Lm 5 refines sim. via Lm 2 sim. via Lm 2

( ∇∗
==⇒) via Lm 4 refines ( ∇=⇒) via Lm 3 refines ( ×=⇒)

Fig. 16. Refinement between different network semantics.

1 proposeM(val^ v, val v0) {

2 〈 assume(!(v0 = undef));

3 if (*v = undef) { *v := v0; }

4 return *v; 〉 }

5 val vM[1..∞] := undef;

6 getR(int s) { return &(vM[s]); }

7 proposeM(getR(1), v);

8 proposeM(getR(2), v);

Fig. 17. Specification of Multi-Paxos and interaction via a register provider.
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5.7 The Big Picture

What exactly have we achieved by introducing the described above family of
semantics? As illustrated in Fig. 16, all behaviours of the leftmost-topmost,
bunching semantics, which corresponds precisely to an implementation of Multi-
Paxos with an “amortised” Phase 1, can be transitively related to the corre-
sponding behaviours in the rightmost, vanilla slot-replicated version of a simple
semantics (via the correspondence from Lemma 1) by constructing the corre-
sponding refinement mappings [1], delivered by the proofs of Lemmas 3–5.

From the perspective of Rely/Guarantee reasoning, which was employed in
Sect. 4, the refinement result from Fig. 16 justifies the replacement of a semantics
on the right of the diagram by one to the left of it, as all program-level assertions
will remain substantiated by the corresponding system configurations, as long
as they are stable (i.e., resilient wrt. transitions taken by nodes different from
the one being verified), which they are in our case.

6 Putting It All Together

We culminate our story of faithfully deconstructing and abstracting Paxos via
a round-based register, as well as recasting Multi-Paxos via a series of network
transformations, by showing how to implement the register-based abstraction
from Sect. 3 in tandem with the network semantics from Sect. 5 in order to
deliver provably correct, yet efficient, implementation of Multi-Paxos.

The crux of the composition of the two results—a register-based abstraction
of SD-Paxos and a family of semantics-preserving network transformations—is
a convenient interface for the end client, so she could interact with a consensus
instance via the proposeM method in lines 1–4 of Fig. 17, no matter with which
particular slot of a Multi-Paxos implementation she is interacting. To do so,
we propose to introduce a register provider—a service that would give a client a
“reference” to the consensus object to interact with. Lines 6–7 of Fig. 17 illustrate
the interaction with the service provider, where the client requests two specific
slots, 1 and 2, of Multi-Paxos by invoking getR and providing a slot parameter.
In both cases the client proposes the very same value v in the two instances that
run the same machinery. (Notice that, except for the reference to the consensus
object, proposeM is identical to the proposeP on the right of Fig. 2, which we
have verified wrt. linearisability in Sect. 3.)

The implementation of Multi-Paxos that we have in mind resembles the one
in Figs. 3, 4 and 5 of Sect. 3, but where all the global data is provided by the
register provider and passed by reference. What differs in this implementation
with respect to the one in Sect. 3 and is hidden from the client is the semantics of
the network layer used by the bottom layer (cf. left part of Fig. 2) of the register-
based implementation. The Multi-Paxos instances run (without changing the
register’s code) over this network layer, which “overloads” the meaning of the
send/receive primitives from Figs. 3 and 4 to follow the bunching network
semantics, described in Sect. 5.6.
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Theorem 4. The implementation of Multi-Paxos that uses a register provider
and bunching network semantics refines the specification in Fig. 17.

We implemented the register/network semantics in a proof-of-concept pro-
totype written in Scala/Akka.5 We relied on the abstraction mechanisms of
Scala, allowing us to implement the register logic, verified in Sect. 4, separately
from the network middle-ware, which has provided a family of Semantics from
Sect. 5. Together, they provide a family of provably correct, modularly verified
distributed implementations, coming with a simple shared memory-like interface.

7 Related Work

Proofs of Linearisability via Rely/Guarantee. Our work builds on the
results of Boichat et al. [3], who were first to propose to a systematic deconstruc-
tion of Paxos into read/write operations of a round-based register abstraction.
We extend and harness those abstractions, by intentionally introducing more
non-determinism into them, which allows us to provide the first modular (i.e.,
mutually independent) proofs of Proposer and Acceptor using Rely/Guarantee
with linearisation points and prophecies. While several logics have been proposed
recently to prove linearisability of concurrent implementations using Rely/Guar-
antee reasoning [14,18,19,26], none of them considers message-passing dis-
tributed systems or consensus protocols.

Verification of Paxos-Family Algorithms. Formal verification of different
versions of Paxos-family protocols wrt. inductive invariants and liveness has been
a focus of multiple verification efforts in the past fifteen years. To name just a
few, Lamport has specified and verified Fast Paxos [17] using TLA+ and its
accompanying model checker [32]. Chand et al. used TLA+ to specify and verify
Multi-Paxos implementation, similar to the one we considered in this work [5].
A version of SD-Paxos has been verified by Kellomaki using the PVS theorem
prover [13]. Jaskelioff and Merz have verified Disk Paxos in Isabelle/HOL [12].
More recently, Rahli et al. formalised an executable version of Multi-Paxos in
EventML [24], a dialect of NuPRL. Dragoi et al. [8] implemented and verified
SD-Paxos in the PSync framework, which implements a partially synchronised
model [7], supporting automated proofs of system invariants. Padon et al. have
proved the system invariants and the consensus property of both simple Paxos
and Multi-Paxos using the verification tool Ivy [22,23].

Unlike all those verification efforts that consider (Multi-/Disk/Fast/. . .)Paxos
as a single monolithic protocol, our approach provides the first modular verifica-
tion of single-decree Paxos using Rely/Guarantee framework, as well as the first
verification of Multi-Paxos that directly reuses the proof of SD-Paxos.

5 The code is available at https://github.com/certichain/protocol-combinators.

https://github.com/certichain/protocol-combinators
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Compositional Reasoning about Distributed Systems. Several recent
works have partially addressed modular formal verification of distributed sys-
tems. The IronFleet framework by Hawblitzel et al. has been used to verify both
safety and liveness of a real-world implementation of a Paxos-based replicated
state machine library and a lease-based shared key-value store [10]. While the
proof is structured in a modular way by composing specifications in a way similar
to our decomposition in Sects. 3 and 4, that work does not address the linearis-
ability and does not provide composition of proofs about complex protocols (e.g.,
Multi-Paxos) from proofs about its subparts

The Verdi framework for deductive verification of distributed systems [29,31]
suggests the idea of Verified System Transformers (VSTs), as a way to provide
vertical composition of distributed system implementation. While Verdi’s VSTs
are similar in its purpose and idea to our network transformations, they do not
exploit the properties of the protocol, which was crucial for us to verify Multi-
Paxos’s implementation.

The Disel framework [25,28] addresses the problem of horizontal composition
of distributed protocols and their client applications. While we do not compose
Paxos with any clients in this work, we believe its register-based specification
could be directly employed for verifying applications that use Paxos as its sub-
component, which is what is demonstrated by our prototype implementation.

8 Conclusion and Future Work

We have proposed and explored two complementary mechanisms for modu-
lar verification of Paxos-family consensus protocols [15]: (a) non-deterministic
register-based specifications in the style of Boichat et al. [3], which allow one to
decompose the proof of protocol’s linearisability into separate independent “lay-
ers”, and (b) a family of protocol-aware transformations of network semantics,
making it possible to reuse the verification efforts. We believe that the applica-
bility of these mechanisms spreads beyond reasoning about Paxos and its vari-
ants and that they can be used for verifying other consensus protocols, such as
Raft [21] and PBFT [4]. We are also going to employ network transformations to
verify implementations of Mencius [20], and accommodate more protocol-specific
optimisations, such as implementation of master leases and epoch numbering [6].
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