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Abstract 

Further quantitative understanding of the biological effects and mechanisms involved in 

cellular and intracellular delivery of nucleic acid materials is critical to produce clinical 

applications in the area of gene therapy. Several modeling approaches have been used in this 

field; however, a comprehensive approach that integrates all the key pharmacological issues 

into a holistic framework that is applicable for in vivo conditions is still lacking. This 

contribution presents a pharmacokinetic/pharmacodynamic model-based control study of 

non-viral siRNA delivery describing the dynamics of the delivery process and takes into 

account the main multi-objective optimization issues such as efficacy and toxicity, as well as 

the effect of uncertainty in cell doubling time. The methodology developed in this work is 

used to predict the optimal dosage injection rate and optimal intracellular exposure of 

siRNAs in order to improve pharmacological effects before cell division occurs. The present 

analysis successfully provides quantitative predictions of non-viral siRNA activity paving the 

path for further experimental work to probe more efficient delivery systems. 

Key words: siRNA delivery; Pharmacokinetic/pharmacodynamic modeling; Optimal control; 

Cell division; Toxicity; Efficacy 



1 Introduction 

Researchers in fields ranging from nanomedicine to gene therapy have investigated a broad 

range of nucleotide-based therapies. The RNA interference (RNAi) pathway is one of such 

methods which emerged in 1998 with the aim of gene silencing (Fire et al, 1998). The 

strategy of using synthetic small interfering RNA (siRNA) as a therapeutic agent has become 

a powerful tool for the post-transcriptional knockdown of defective genes in mammalian cells 

with the aim of treating severe diseases such as viral infection and cancer. While optimization 

of siRNA design along with chemical modifications can reduce off-target effects and improve 

the stability of siRNAs, safe and efficient delivery is still a key challenge in realizing the 

clinical potential of RNAi therapeutics. Non-viral nanocarrier formulations are effective 

delivery systems to improve the pharmacokinetic properties and maximize the siRNA cargo 

at its site of action, cytoplasm. However, several extracellular and intracellular barriers as 

well as different interactions between nanocarriers and biological systems can restrict the 

efficient delivery of therapeutic agents (Bumcrot et al., 2006; Kanasty et al., 2012; Semple et 

al., 2010; Wang et al., 2010; Whitehead et al., 2009). Significant efforts have been made to 

develop non-viral delivery carriers and a number of recent studies have pointed to the design 

and structure of various types of non-viral systems (reviewed in detail by: Videira et al., 

2014; Williford et al., 2014; Yin et al., 2014). In this work, a novel type of cationic lipid-

based nanocarrier (NC), SPANosomes (SP) formulation, which was developed and evaluated 

by Zhou et al. (2012), is investigated for modeling and control purposes. 

Advanced modeling and control techniques are not only helpful for understanding the 

dynamics of a gene delivery process, but also are essential for optimizing and controlling the 

delivery amount, timing, and speed in an effective and safe way. The area of modeling for 

gene delivery systems has emerged since Ledley and Ledley (1994) developed a 



multicompartment and numerical model for studying the kinetics of cellular processes. Since 

that time, researchers have made considerable efforts in the development of mathematical and 

computational models for understanding the cellular transport processes (Schwake et al., 

2010; Zhou et al., 2007). Most authors (Banks et al., 2003; Ledley and Ledley, 1994; Varga 

et al., 2001, 2005) developed mathematical modeling based on the concept of mass action 

kinetic model to investigate the critical steps involved in the gene delivery process. Although 

the exact mechanisms of the biological effects and the transfection process are not fully 

understood, further development of mathematical and computational methodologies has 

provided insights into the process. Such methodologies include quantitative structure–activity 

relationship (QSAR) modeling strategy (Horobin and Weissig, 2005), stochastic simulations 

(Dinh et al., 2007), semi-mechanistic model of transgene expression (Berraondo et al., 2009), 

mechanistic spatiotemporal and stochastic model of DNA delivery (Jandt et al., 2011), and 

telecommunication model (Martin et al., 2015). However, no effort has been made to develop 

a holistic framework that is applicable for in vivo gene therapy, and provides a model-based 

decision-making platform taking into account the main multi-objective optimization issues, 

which consequently forms the main objective of this paper. Table I summarizes the key 

limitations of previous computational studies. 

A literature survey revealed that while a number of research had been done on model-based 

control of drug delivery (Dua et al., 2010), very little thought had been given to the 

development of control strategies for gene delivery systems (Dua, 2012; Jamili and Dua, 

2016; Ma and Zhang, 2009). This paper presents the mathematical modeling, simulation and 

control of the dynamic process of non-viral siRNA delivery. We developed an integrated 

computational framework that is capable of modeling simultaneously intracellular trafficking 

of siRNAs and biological effects such as efficacy and toxicity while taking into account the 

effect of possible uncertainties in cell doubling time. The proposed model follows a 



compartmentalization approach. Compartmental modeling frameworks (Banks et al., 2003) 

are amenable for control purposes (Parker and Doyle, 2001), an advantage over detailed 

models (Dinh et al., 2007). Pharmacokinetic/pharmacodynamic (PK/PD) modeling approach 

can be valuable in the optimization and rational development of non-viral gene-based 

therapies (Parra-Guillen et al., 2010). 

In the present work, an integrated PK/PD modeling platform for both efficacy and safety was 

developed based on in vitro experimental analysis to provide quantitative understanding of 

non-viral siRNA delivery. The developed PK/PD models were then used for an optimal 

control formulation that is set up to optimize siRNA delivery, which is applicable for in vivo 

conditions. The proposed modeling and control approach effectively computed an optimal 

infusion rate of siRNA therapeutics while simultaneously considering key pharmacological 

issues. Unlike many previous studies that partially describe the complexity of gene delivery 

processes (Banks et al., 2003; Ledley and Ledley, 1994; Varga et al., 2001, 2005), the 

developed mathematical modeling and control framework in this research study provide an 

effective trade-off decision-making platform for siRNA delivery to take into account the 

main multi-objective optimization issues such as efficacy, toxicity, and the influence of 

uncertainty in cell division time. Effect of variations in cell doubling time was explored in the 

course of model assembly by incorporating time constraints into the optimization problem to 

achieve maximum desired effects before cell division occurs. A number of dynamic 

simulations were also performed comparing continuous infusions with bolus injections of 

siRNA therapeutics. According to the obtained results, a single bolus administration of 

therapeutic agents is not optimal for obtaining a persistent reduction in expression of 

defective genes. Therefore, maximum therapeutic effect with minimal toxicity was 

manifested with an optimal continuous infusion of siRNAs over time, before cell division 

takes place. 



2 Methods 

2.1 Mathematical Modeling of siRNA Delivery 

A pharmacokinetic model was developed based upon the level of available experimental data 

to represent intracellular transport processes responsible for delivery of siRNA during in vitro 

cell transfection. The PK model was then modified to include the infusion rate of siRNAs for 

in vivo delivery. A pharmacodynamic model was constructed consistent with published data 

to study the relationship between siRNA concentration and pharmacological effects. The 

developed PK model, coupled with the PD model, provided an integrated PK/PD modeling 

platform that was used for a multi-objective optimization framework in the presence of 

different practical constraints in order to obtain an optimal siRNA delivery infusion profile 

for in vivo conditions. 

Development of high-fidelity mathematical models involves parameter estimation in which 

the objective is to minimize the summed square of the difference between the set of 

experimental data and the model predictions (Englezos and Kalogerakis, 2001). The focus of 

this paper is on a gene delivery system that follows pharmacokinetic modeling approach 

involving ordinary differential equations (ODEs). Parameter estimation of such systems 

requires solving a dynamic optimization problem. In this work, a simultaneous parameter 

estimation approach was performed using Artificial Neural Network (ANN) approximations 

(Dua and Dua, 2012). Orthogonal Collocation on Finite Elements (OCFE) was then used as a 

solution scheme for the full discretization of the dynamic models in the gene delivery optimal 

control problem. For the purpose of comparison, the dynamic simulations were validated 

using a well-known fourth order Runge–Kutta (RK4) scheme and the meshless ANN 

framework. All the optimization problems were formulated as nonlinear programming (NLP) 

problems and solved using the General Algebraic Modeling System (GAMS) (Brooke et al., 

1998). 



2.2 Experimental Data 

In an experimental study by Zhou et al. (2013), SK Hep-1 cells (human hepatocellular cell 

line) were transfected with siRNA/NC complexes, and the overall cellular and cytoplasm 

exposure of siRNA were reported over a 24-hour period as a function of time. The authors 

analyzed the cellular pharmacokinetics of siRNA for a novel type of nanocarrier, 

SPANosomes (SP) formulation. They also reported the gene silencing activity and 

cytotoxicity of siRNA/NC complexes. In the current computational work, the published 

experimental data were used to develop an integrated PK/PD model that describes the kinetic 

pathways of nanocarrier-mediated disposition of siRNA so as to effectively predicts the 

siRNA exposure to its site of action while improving pharmacological effects. 

2.3 Pharmacokinetic Modeling 

Mathematical representations of the PK model were used for quantitative evaluation of in 

vitro transfection. There are several biological barriers for NC-mediated siRNA delivery to 

reach their intended targets. The focus of this work is on intracellular barriers where the 

developed PK compartmental model, which is based upon the available experimental data, 

includes two compartments: the endosome and the cell cytoplasm. Figure 1 shows the model 

structure in which siRNA therapeutics can be transferred in one direction across the barriers. 

Despite the advantages of complex compartmental model structures such as better predictive 

performance, their use in control purposes would be limited due to their size (Parker and 

Doyle, 2001). In this work, the developed compartmental representation of siRNA delivery 

uses minimum number of compartments and unknown parameters to accurately capture the 

available experimental data and replicate the behavior of siRNA/NCs in vitro. The following 

system of ODEs, resulting from mass balances, represents the two-compartment model of 

siRNA pharmacokinetics from in vitro experimental data. The compartmental model, which 

indicates the changes in the amount of siRNA inside the endosome and cytoplasm over time, 



is given by: 

𝑑

𝑑𝑡
𝐸(𝑡) = −𝜃1𝐸(𝑡) 

(1) 

𝑑

𝑑𝑡
𝐶(𝑡) = 𝜃1𝐸(𝑡) − 𝜃2𝐶(𝑡) 

(2) 

where 𝐸 (𝑛𝑀) and 𝐶 (𝑛𝑀) are state variables and represent the siRNA concentration in the 

endosome and in the cytoplasm, respectively. 𝜃1 (ℎ−1) and 𝜃2 (ℎ−1) are rate constants 

controlling the transport of siRNA from the endosome to the cytoplasm (𝜃1) and trafficking 

through the cytoplasm in order to be loaded onto RNAi machinery (𝜃2). 

2.4 Pharmacodynamic Modeling and Optimal Control of siRNA Delivery 

2.4.1 Gene Silencing Activity 

In in vivo conditions, siRNA/NCs can be infused over a period of time (Fig. 1). So, Equation 

(1) is modified as follows: 

𝑑

𝑑𝑡
𝐸(𝑡) = −𝜃1𝐸(𝑡) + 𝑞(𝑡) 

(3) 

where 𝑞(𝑡) (𝑛𝑀/ℎ) is the flow rate of the siRNA therapeutics infused. Incorporating the 

infusion rate into the PK model allows for the computation of optimal siRNA delivery profile 

in the presence of different practical constraints. In this work, the main objective is to 

minimize the total inhibitory effect over the time of therapy to achieve an efficient gene 

silencing by optimally infusing the siRNA/NCs at rate 𝑞(𝑡). The total siRNA concentration 

in the cell (𝐶𝑠𝑖𝑅𝑁𝐴, 𝑛𝑀) is considered as a determinant for efficacy, so the following 

relationship is assumed: 

𝐼 (%) = (𝐼𝑚𝑎𝑥 + 𝐼0) − 𝐼𝑚𝑎𝑥 ×
𝐶𝑠𝑖𝑅𝑁𝐴

𝐶𝑠𝑖𝑅𝑁𝐴 + 𝐼𝐶50
 

(4) 



where 𝐼 is the inhibitory effect, 𝐼𝑚𝑎𝑥  (%) represents the maximum inhibitory effect, 𝐼0 (%) is 

a baseline effect parameter when maximum therapeutics are present in the cell, and 

𝐼𝐶50 (𝑛𝑀) is the siRNA concentration required to produce 50% of the maximum inhibitory 

effect. To estimate the pharmacodynamic parameters, the inhibitory effect model, Equation 

(4), was fitted to the relative gene expression values, which had been experimentally 

observed by Zhou et al. (2013). 

2.4.2 Cytotoxicity 

Cellular toxicity is investigated by considering a population of alive cells known as Cell 

Viability, which is controlled by two processes: production of cells and cell loss. 

Cell Viability = production of cells – cell loss (5) 

To describe the cytotoxic effects, the sigmoid Hill equation model has been modified to a 

composite 𝐸𝑚𝑎𝑥 model to include a no-drug response (𝐶𝑉0) and concentration effects over 

time. The following relationship was constructed such that the both processes of cell 

production and cell loss are functions of total siRNA concentration in the cell: 

𝐶𝑉 (%) = 𝐶𝑉0 +
𝐺𝑚𝑎𝑥  ×  𝐶𝑠𝑖𝑅𝑁𝐴

𝛾

𝐺𝐶50
𝛾 + 𝐶𝑠𝑖𝑅𝑁𝐴

𝛾 −
𝑇𝑚𝑎𝑥  ×  𝐶𝑠𝑖𝑅𝑁𝐴

𝛾

𝑇𝐶50
𝛾 + 𝐶𝑠𝑖𝑅𝑁𝐴

𝛾 
(6) 

where 𝐶𝑉 denotes the Cell Viability indicating the percentage of alive cells during the 

therapy, 𝐶𝑉0 (%) represents the initial percentage of alive cells, 𝐺𝑚𝑎𝑥 (%) is the maximum 

percent growth, 𝐺𝐶50 (𝑛𝑀) is the siRNA concentration required to produce 50% of the 

maximum percent growth, 𝑇𝑚𝑎𝑥 (%) denotes the maximum toxicity, 𝑇𝐶50 (𝑛𝑀) is the 

siRNA concentration required to produce 50% of the maximum toxicity, 𝛾 is the power 

parameter to account for the curvature. The situation of combined drug action occurs when a 

single drug performs simultaneously at two different receptors (Gabrielsson and Weiner, 

2010). The 𝐶𝑉 model, Equation (6), represents a biphasic concentration-effect relationship 



involving two phases: phase A corresponded to the protective effect on cell viability 

(production process), whereas phase B reflected the cytotoxicity (loss process). The former 

phase is represented by the 𝐺𝑚𝑎𝑥 term and the latter phase is represented by the 𝑇𝑚𝑎𝑥 term. In 

this work, cell viability values, which had been experimentally observed by Zhou et al. 

(2013), were fitted to the developed 𝐶𝑉 model in order to obtain the corresponding 

pharmacodynamic parameters. 

2.4.3 Optimal Control 

The siRNA delivery optimal control problem is formulated and solved subject to the system 

models and a set of constraints for computing an optimal infusion rate at optimal times. To 

this purpose, a multi-objective optimization framework is applied dealing with a number of 

objective functions to be optimized simultaneously. The siRNA delivery optimal control 

problem is of the following form: 

min
𝑞(𝑡)

 𝑇𝐼𝐸 = ∫ 𝐼(𝑡) 𝑑𝑡

𝑡=𝑡𝑓

𝑡=0

= ∆𝑡 ∑ 𝐼(𝑡)

𝑡=𝑡𝑓

𝑡=0

 

 

(7) 

max
𝑞(𝑡)

𝐶𝑉(𝑡) (8) 

subject to the system models and initial conditions; where 𝑇𝐼𝐸 represents the Total Inhibitory 

Effect, and 𝑡𝑓 (ℎ) is the final time at the end of the therapy. The first objective, minimization 

of 𝑇𝐼𝐸, aims to reduce undesirable gene expression, while the second objective, 

maximization of 𝐶𝑉(𝑡), aims at minimizing cytotoxicity by preserving the life of the cells. 

The above multi-objective optimal control problem is reformulated as an 𝜖-constrained 

optimization problem (Clark and Westerberg, 1983), with the total inhibitory effect treated as 

the primary objective to be minimized, which is stated as follows: 



min
𝑞(𝑡)

 𝑇𝐼𝐸 = ∫ 𝐼(𝑡) 𝑑𝑡

𝑡=𝑡𝑓

𝑡=0

= ∆𝑡 ∑ 𝐼(𝑡)

𝑡=𝑡𝑓

𝑡=0

 

(9) 

subject to: 𝐶𝑉(𝑡) ≥ 𝐶𝑉𝐿𝑂, Equations (2) - (4), (6), and initial conditions.  

where 𝐶𝑉𝐿𝑂 (%) is the minimum acceptable Cell Viability level. A number of case studies 

are presented in Section 3 to demonstrate the advantages of the proposed model-based 

optimal control framework for siRNA delivery. A conceptual block diagram representing a 

closed-loop model-based control scheme is shown in Figure 2. 

3 Results 

In the present work, we consider the following PD parameters, which were reported by Zhou 

et al. (2013), 𝐼0 = 5.2 % and 𝐼𝐶50 = 5.5 𝑛𝑀. 𝐼𝑚𝑎𝑥 was obtained as 94.8 % by fitting the 

relative gene expression values to the inhibitory effect model given by Equation (4). Cell 

viability values were also fitted to the 𝐶𝑉 model (Equation 6) to obtain the following PD 

parameters: 𝐺𝑚𝑎𝑥 = 21.2 %, 𝐺𝐶50 = 15.4 𝑛𝑀, 𝑇𝑚𝑎𝑥 = 71.7 %, 𝑇𝐶50 = 94.9 𝑛𝑀, and 𝛾 =

7. The developed PK/PD models in this work were validated by comparing their predictions 

to experimental measurements, which is demonstrated in Supplementary Appendix as 

Supplemental Fig. S1 and S2. The schematic illustration of the composite 𝐺𝑚𝑎𝑥/𝑇𝑚𝑎𝑥 model 

may also be found in Supplementary Appendix (Fig. S3), indicating that the estimated PD 

parameters in this study are in accordance with the system biology. We have also performed 

sensitivity analysis (Fig. S4) to determine the relative impact of each parameter on the 𝐶𝑉 

model output. The role of each parameter in the model was determined by varying only one 

parameter at a time while keeping all the other parameters constant, set at their estimated 

values. From our analysis, the maximum percent growth parameter, 𝐺𝑚𝑎𝑥, turned out to be 

the most sensitive parameter. 



As cells were transfected for 4 ℎ followed by 44 ℎ incubation, a 48 ℎ time frame (𝑡𝑓 = 48 ℎ) 

was assumed for the simulation and optimization problems. Intracellular exposure of siRNA, 

gene silencing activity, and cytotoxicity resulting from two different delivery modes are 

compared and reported in Sections 3.1 and 3.2. PK/PD profiles were observed following a 

bolus administration of siRNA therapeutics and a continuous infusion over a period of time. 

3.1 Bolus Injection 

Single-dose bolus injections were simulated and the model was implemented in GAMS. 

Figure 3 shows the siRNA concentration in the cell, inhibitory effect, and cell viability as a 

function of time, after start of treatment with total injected doses of 80, 100, 150 and 250 nM. 

Time profile of siRNA concentration in the endosome and cytoplasm are shown in Figure 3a 

and 3b respectively, when the therapeutic is administered as a bolus dose. The observed 

reduction of siRNA concentration over time for all four different doses in the endosome is 

due to the cellular distribution and irreversible elimination of the compound. siRNA 

therapeutics must be capable of escaping the endosome-lysosome degradation axis and 

releasing from their carriers to the cytoplasm so as to be loaded onto RNA-Induced Silencing 

Complex (RISC) (Wang et al., 2010). 

Pharmacological responses depend on the total siRNA concentration in the cell, so minimum 

inhibitory effect can be achieved once a bolus dose of therapeutics is administered (Fig. 3c). 

The decrease in the total inhibitory effect appeared to be dose-dependent. Increasing the 

infusion from a low dose of siRNA therapeutics (80 nM) to intermediate doses (100 nM and 

150 nM), and finally to a high dose (250 nM) will decrease the total inhibitory effect. For 

more details see Figure S5 in the Supplementary Appendix. According to Figure 3d, the 

reduction in cell viability is associated with high-dose bolus injections. No significant 



cytotoxicity was observed in the low injected dose (80 nM); however, higher dose of siRNA 

therapeutics could decrease cell viability in a dose-dependent manner. 

There is a rapid rise in the inhibitory effect profile while siRNA concentration is getting 

decreased over time (Fig. 3c). Therefore, a single bolus infusion of siRNAs resulted in a 

transient dose-dependent decrease in inhibitory effect that influences on the total inhibitory 

effect to become about 10 times greater for bolus injection, suggesting an optimal continuous 

siRNA infusion is more favorable delivery mode. The observed PK/PD profiles following a 

continuous infusion over a time frame of 48 ℎ are reported and discussed in the next section. 

Note that, the OCFE-based simulation results were validated by comparisons with ANN and 

RK4 simulation values and the results are shown in the Supplementary Appendix 

(Supplementary Fig. S6). 

3.2 Optimal Control of siRNA Delivery 

The siRNA delivery optimal control problem was solved for lower bound values of 50 %, 

60 %, 70 %, 80 %, 90 % and 100 % that were placed on cell viability. Figure 4 shows the 

multi-objective optimization results describing the trade-off between the minimum total 

inhibitory effect and lower bounds on cell viability. A relaxation on 𝐶𝑉𝐿𝑂 results in a 

decrease in the minimum total inhibitory effect that can be achieved (Fig. 5c), and an increase 

in the infusion rate (Fig. 5a). Typically, there is a conflict between efficacy and toxicity. 

Minimal inhibitory effect cannot be achieved without sacrificing the safety. According to the 

obtained results and comparing the six different case studies of various lower bounds, 

increasing the siRNA infusion rate would lead to a reduction in the inhibitory effect while 

increasing the risk of toxicity-induced cell death (Fig. 5). An optimal infusion rate was 

computed such that the total inhibitory effect was minimized and bounds on cell viability 

were respected. Figure 5a shows the optimal siRNA concentration that can be infused over a 



48-hour period of time to achieve maximum gene silencing activity (Fig. 5c) while 

maintaining cell viability at desirable levels (Fig. 5d). 

The control optimization problem was solved subject to the constraints on the cell viability. 

Adding sensible bounds is necessary to ensure that minimum toxicity can be achieved, while 

still reaching maximum knockdown efficacy (Fig. 5d). According to Zhou et al. (2013), the 

production process is presumed to occur because low concentrations of siRNA/NC 

complexes can stimulate cell metabolic activity that leads to increase the apparent cell 

viability in comparison with the untreated group. However, the loss process could be due to 

the fact that the cells may die if the level of toxicity rises above a certain level. Undesirable 

effects such as toxicity result from the interactions between biological components and 

foreign materials such as siRNA molecules, gene carriers alone or in formulation with 

siRNAs (Kanasty et al., 2012; Lv et al., 2006; Nel et al., 2009). Here, the observed 

cytotoxicity is probably due to the surfactant activities of Span 80 or the other compositions 

of the SP formulation. Zhou et al. (2013) reported that the helper component in the SP 

formulation might make an important contribution to the cytotoxicity of the NCs. However, 

siRNA molecules can also elicit adverse biological effects include immune stimulation 

resulting in inflammatory responses and off-target silencing leading to toxicity (Kanasty et 

al., 2012; Wang et al., 2010; Xue et al., 2014). Figure 5b shows the exposure of siRNAs in 

the cytoplasm. siRNA therapeutics are first released in the endosome and then dispersed 

throughout the cytoplasm. As time passes, siRNA concentration in the endosome is shown to 

rise at a rapid pace suggesting that the infused siRNAs accumulate in the endosome upon 

their arrival (Data not shown). After infusing the genetic materials, a fraction of siRNAs is 

escaped from the endosome into the cytoplasm and gets distributed throughout the cytoplasm 

and finally transferred to the site of action in order to elicit their biological effects. 



Depending on the practical limitations of gene delivery devices, different constraints can be 

introduced into the optimization model. Two such examples are: (i) constraints on the process 

control variable, e.g. the maximum value that infusion can take, and (ii) the incremental 

change in infusion rate, ∆𝑞(𝑡), can be constrained between certain lower and upper bounds. 

In this section, a case study was first considered when 𝑞 was unconstrained to investigate the 

controlled siRNA delivery when practical limitations were not imposed. The siRNA delivery 

optimal control problem was also formulated and solved where practical limitations of gene 

therapy devices were imposed thereby an important constraint was introduced and 

incorporated into the control framework: 

0 ≤ 𝑞(𝑡) ≤ 𝑞𝑚𝑎𝑥 (10) 

where 𝑞𝑚𝑎𝑥 represents an upper bound on the infusion rate indicating the maximum value 

that infusion can take during the therapy. In the presence of constraints on 𝑞, i.e. 𝑞𝑚𝑎𝑥 =

30 𝑛𝑀/ℎ or 𝑞𝑚𝑎𝑥 = 40 𝑛𝑀/ℎ, while lower bound of 100 % on cell viability is respected, 

the results are shown in Figure 6. For both cases, a maximum allowable value of infusion 

takes place initially, which drops with time and then increases to a plateau of 21.85 𝑛𝑀/ℎ for 

the rest of the therapy to achieve persistent gene silencing with minimum adverse side effects 

(Fig. 6). 

The observed initial spike in the siRNA infusion rate in Figure 5a, which decreases rapidly in 

the first hour after delivery, reveals the need to introduce another important constraint into 

the formulation. So, incremental change in infusion rate, Δ𝑞(𝑡), is constrained between 

certain lower and upper bounds of 1 𝑛𝑀/ℎ, which is modelled as follows and the results are 

shown in Figure 7. 

∆𝑞𝑚𝑖𝑛 ≤ ∆𝑞(𝑡) ≤ ∆𝑞𝑚𝑎𝑥 (11) 



This constraint was proposed to reduce problems associated with practical limitations of 

infusion devices in which the transfer of a large amount of therapeutics over a short period of 

time would be impossible. The observed results suggest that the system could be controlled in 

the presence of different constraints. When practical limitations are imposed, a high value of 

siRNA infusion takes place initially, which eventually decreases to a plateau, to obtain 

minimum total inhibitory effect over the therapy (Fig. 7). 

3.3 Incorporating Time Constraints 

The proposed model-based optimal control framework in the previous section addressed 

siRNA delivery to non-dividing cells. The aim of this section is to address the issues 

pertaining to the presence of constraints in the developed models to study the effects of 

mitosis and uncertainties in cell division time. A generic formulation for non-dividing 

conditions was presented in section 2.4 where constraints on process variables were 

incorporated into the siRNA delivery optimal control problem. Another critical constraint is 

on the time to take into account the cell multiplication so that the therapeutic effect is 

manifested before cell division takes place. To this purpose, the developed PK/PD models 

and control framework were used to incorporate the required constraints in order to deal with 

disruptions of cell proliferation. If the siRNAs inside the cytoplasm are loaded onto RNAi 

machinery and exert their therapeutic effects before the time of mitosis, the desired effects 

will remain in the newly formed cells. So, the length of the whole cell cycle should be 

considered in the formulation, as the site of action for siRNA therapeutics is the cytoplasm. 

According to research findings from literature (Ling et al., 2012), the doubling time for SK 

HEP-1 cells is approximately 25 ℎ, so optimal concentration of siRNA therapeutics must be 

delivered to the cytoplasm before cell division takes place. It is then possible to set an 

optimal control problem, by defining time constraints. According to Sandler et al. (2015), 

there is variability in cell cycle duration as different conditions could affect various stages of 



the cell cycle. For instance, in this study, low concentrations of siRNA/NC complexes can 

stimulate cell metabolic activity (Zhou et al., 2013) that could affect cell cycle in SK HEP-1 

cells in comparison with the untreated group. To assess if uncertainties in doubling time 

affected the siRNA delivery process, a constrained optimization problem was developed and 

solved while considering different cell doubling time (𝑇𝑑) values of 4, 10, 15, 20 and 25 ℎ. 

Cell division greatly affects transfection (Martin et al., 2014), so the duration of therapy relies 

on the cell doubling time. Infusion must be completed before cell division takes place in 

order to achieve more efficient therapy. Therefore, siRNA therapeutics are assumed to be 

infused over the period of time required to obtain maximum desired effects, so the infusion is 

stopped at the doubling time while the algorithm considers the system performance for 

further two hours. These assumptions were performed for all case studies in this section and 

they can potentially be modified under different experimental conditions. 

Figure 8a shows the time profile of optimal siRNA infusion for different cell doubling times. 

As the doubling time increases, the amount of infusion increases. Longer transfection times 

require more siRNAs to keep the therapeutic effect at a desirable level. As it is signified in 

Figure 8a, a large amount of siRNAs can be infused at the start of treatment to get maximal 

knockdown while minimizing cytotoxicity. Minimum inhibitory effect is reached before cell 

division takes place. Once cells divide, siRNA infusion is discontinued and remains steady at 

0 𝑛𝑀/ℎ towards the end of the study resulting in increase in both inhibitory effect and cell 

viability (Fig. 8). 

According to Zhou et al. (2013), only the portion of siRNA therapeutics that is released from 

the carriers into the cytoplasm is considered as determinants for gene silencing activity. The 

results in Figure 8b suggest the optimal siRNA exposure at the target compartment, 

cytoplasm, for exerting maximum therapeutic efficacy over the therapy. Constraints on the 

𝐶𝑉 model were proposed to address issues associated with cytotoxicity. The cell viability is 



increased rapidly just after the first injection suggesting that low concentrations of siRNA/NC 

complexes stimulate cell metabolic activity leading to an increase in the apparent cell 

viability (Zhou et al., 2013). However, as the siRNA concentration in the cell (Fig. 8b) 

increases, cell viability decreases and remains bounded until cell division takes place (Fig. 

8d). 

From the observed results, it can be concluded that the model-based optimal control 

methodology provided a balance between efficacy and toxicity for siRNA delivery, while 

considering the effect of uncertainties in cell division time on intracellular transport. 

The current findings have provided valuable information; however, challenges remain such as 

capability of infusion devices to deliver a large amount of therapeutics for different time 

frames. So, the developed model was reformulated as the control variable was constrained to 

investigate the behavior of the system over different time frames while simultaneously 

considering efficacy, toxicity, mitosis and the uncertainty in cell division time, which allows 

for representing siRNA delivery with wider scope. The optimal control results and the 

pharmacodynamic responses of this case study are presented in Figure 9 in which the 

maximum value that infusion can take is 40 𝑛𝑀/ℎ. In this case, the total inhibitory effect is 

higher than that of achieved for unconstrained 𝑞. Once the therapy is initiated, 𝑞 takes the 

maximum allowable value of 40 𝑛𝑀/ℎ, which then drops over the first hours of therapy. The 

siRNA infusion rate depends upon the transfection time periods. As the cell doubling time 

increases, longer transfection times are required, so more siRNA therapeutics must be infused 

to keep the inhibitory effect and the cell viability at desirable levels (Fig. 9). 

Our novel application of the optimal control problem in siRNA delivery systems aims to 

simultaneously describe the intracellular transfection process and incorporate the main multi-

objective optimization issues such as efficacy and toxicity, as well as uncertainties in cell 



doubling time. The developed integrated modeling platform can be simply adapted for a wide 

range of conditions such as different carriers and various practical limitations. Different 

scenarios were defined in this study and the corresponding results are available in the 

Supplementary Appendix (Supplementary Fig. S7, S8 and S9). 

4 Discussion 

An optimal delivery of siRNA-based therapeutics into the site of action is critical for the 

safety and efficacy of RNAi therapy for patients suffering from diseases that are associated 

with undesirable gene expression. This computational study begins with the development of 

an integrated PK/PD model, consistent with the level of available experimental data, 

demonstrating the time-concentration-effect relationship for siRNA/NC complexes. The 

siRNA delivery by non-viral nanocarriers was modelled as biochemical reactions illustrating 

the critical steps involved in the delivery. This is favourable as it allows us to study the 

mechanisms of siRNA delivery by determining the rate-limiting steps in NC-mediated 

delivery. From a kinetic point of view, the rate constants obtained from our quantitative 

analysis of in vitro experimental data (Supplementary Table S1), suggest that the possible 

rate-limiting step in siRNA delivery is the endosomal escape, which is consistent with the 

work by Gilleron et al. (2013). 

We subsequently developed an optimal control algorithm for gene delivery to take into 

account the efficacy, toxicity and cell division proposing an important model-based tool for 

making decisions under uncertainty, which is lacking for gene delivery systems. The 

proposed modeling and control approach allows for the simulation of siRNA delivery for in 

vivo conditions in order to compute the optimal delivery profile in the presence of different 

practical constraints. One of such constraints is on the time to take into account the cell 

multiplication so that the therapeutic effect is manifested before cell division takes place. 



Cell-doubling effect was addressed to develop a more realistic representation of model-based 

control of gene delivery that enables to predict the distribution of genetic materials in vivo 

and before cells divide. A constrained optimization problem was formulated and solved while 

considering different cell division times to account for uncertainty in cell doubling time. We 

obtained time profiles of optimal dosage infusion rate and optimal intracellular exposure of 

siRNAs to exert maximum therapeutic effects. We also demonstrated how these profiles can 

be affected by the trade-offs between toxicity and efficacy. The multi-objective optimization 

framework was also set up to control the process system in the presence of other practical 

constraints such as incremental change in the infusion rate, ∆𝑞(𝑡), which could be 

constrained between certain lower and upper bounds. Incorporating of such process 

constraints is because of the practical limitations of gene delivery devices. In conclusion, the 

solution of the gene delivery optimal control problem has provided very interesting insights 

on what siRNA delivery profile might look like in a clinical setting. According to Petrocca 

and Lieberman (2011), continuous infusion might be used to prolong gene silencing. The 

results from our study also indicated that an optimal continuous infusion is superior to a bolus 

injection for achieving maximum gene silencing activity while preserving cell viability. 

Therefore, a promising platform for gene delivery systems was provided by model-based 

control technology, which can further assist in the optimization of the process. 

Moreover, the potential power of the developed models and control strategy was limited to 

intracellular barriers due to the lack of suitable experimental data. Model extensions require 

appropriate experimental analysis that describe spatiotemporal distribution of siRNAs in the 

extracellular matrix and intracellular environment. Another avenue that can be explored is to 

build a detailed mathematical model representing the biophysicochemical effects between 

nanocarriers and biological systems, in order to effectively investigate the intracellular 

reactions that occur in the cell. Future work involving experimental validation of the 



proposed control profiles will further assist in the development of this technology. 
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Figure 1 – Two-compartment model with infusion. A representation of the compartmentalization where 

𝜽𝒊 represent the process rate constants: 𝜽𝟏 controls movement out of the endosome and 𝜽𝟐 controls 

movement from the cytoplasm to the RNAi machinery. 

 

 

 

 

Figure 2 – Block diagram for a model-based optimal control of siRNA delivery. Depending on the disease 

type, the patient output variable of interest could be measured and supplied to a control algorithm.  
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Figure 3 – Pharmacokinetic and pharmacodynamic responses to bolus injections of siRNA therapeutics 

after start of treatment with total injected doses of 80, 100, 150, and 250 nM. (a) Time profile of siRNA 

concentration in the endosome. (b) Time profile of siRNA concentration in the cytoplasm. (c) Time profile 

of inhibitory effect. (d) Time profile of cell viability. 



 

Figure 4 – Trade-off between efficacy and toxicity. A relaxation on 𝑪𝑽𝑳𝑶 results in a decrease in the 

minimum total inhibitory effect. 

  



 

Figure 5 – siRNA delivery optimal control results and the pharmacodynamic responses to siRNA infusion 

over 48 h transfection for different lower bounds on cell viability when practical limitations of gene 

delivery devices are not imposed. (a) Time profile of optimal siRNA infusion. (b) Time profile of siRNA 

concentration in the cytoplasm. (c) Time profile of inhibitory effect. (d) Time profile of cell viability. 



 

Figure 6 – siRNA delivery optimal control results and the pharmacodynamic responses to siRNA infusion 

over 48 h transfection when practical limitations of gene delivery devices are imposed. The control 

optimization problem was solved subject to the system models, and constraints on the cell viability 

(𝑪𝑽𝑳𝑶 = 𝟏𝟎𝟎%) and the control variable (𝒒𝒎𝒂𝒙 = 𝟑𝟎  or 𝟒𝟎 𝒏𝑴/𝒉). (a) Time profile of optimal siRNA 

infusion. (b) Time profile of siRNA concentration in the cytoplasm. (c) Time profile of inhibitory effect. 

(d) Time profile of cell viability. 



 

Figure 7 – siRNA delivery optimal control results and the pharmacodynamic responses to siRNA infusion 

over 48 h transfection when practical limitations of infusion devices are imposed. The optimal control 

problem was solved subject to the system models, and constraints on the cell viability and the change in 

infusion rate. (a) Time profile of optimal siRNA infusion. (b) Time profile of siRNA concentration in the 

cytoplasm. (c) Time profile of inhibitory effect. (d) Time profile of cell viability. 



 

Figure 8 – Optimal control results and the pharmacodynamic responses to siRNA infusion over different 

transfection time periods in order to study the effect of uncertainty in cell division time when practical 

limitations are not imposed, so q is unconstrained. (a) Time profiles of optimal siRNA infusion for 

different cell doubling time (𝑻𝒅) values. (b) siRNA concentration-time profiles in the cytoplasm for 

different cell doubling time (𝑻𝒅) values. (c) Percentage inhibitory effect for different cell doubling time 

(𝑻𝒅) values. (d) Percentage cell viability for different doubling time (𝑻𝒅) values. 



 

Figure 9 – Optimal control results and the pharmacodynamic responses to siRNA infusion over different 

transfection time periods in order to study the effect of uncertainty in cell division time when practical 

limitations are imposed, so q is constrained. (a) Time profiles of optimal siRNA infusion for different cell 

doubling time (𝑻𝒅) values. (b) siRNA concentration-time profiles in the cytoplasm for different cell 

doubling time (𝑻𝒅) values. (c) Percentage inhibitory effect for different cell doubling time (𝑻𝒅) values. (d) 

Percentage cell viability for different doubling time (𝑻𝒅) values. 

 

 

 


