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Abstract

Community services are fundamental in the delivery of health care, providing

local care close to or in patient homes. However, planning, managing and evaluating

these services can be difficult. One stand out challenge is how these services may be

organised to provide coordinated care given their physical distribution, patients using

multiple services, and the increasing use of these services by patients with differing

needs. This is complicated by a lack of comparable measures for evaluating quality

across differing community services. Presented in this thesis is work that I conducted,

alongside the North East London Foundation Trust, to understand referrals and

the use of outcome data within community services through data visualisation and

mathematical modelling.

Firstly, I applied several data visualisations, building from a network analysis,

to aid the design of a single point of access for referrals into community services -

helping to understand patterns of referrals and patient use. Of interest were concur-

rent uses of services, whether common patterns existed and how multiple referrals

occurred over time. This highlighted important dynamics to consider in modelling

these services.

Secondly, I developed a patient flow model, extending fluid and diffusion approx-

imations of stochastic queueing systems to include complex flow dynamics such as
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re-entrant patients and the use of multiple services in sequence. Patient health is

also incorporated into the model by using states that patients may move between

throughout their care, which are used to model the differential impact of care. I

also produced novel methods for allocating servers across parallel queues and patient

groups.

Finally, I developed the concept of “the flow of outcomes” - a measure of how

individual services contribute to the output of patients in certain health states over

time - to provide operational and clinical insight into the performance of a network

of services.

This thesis was completed under the supervision of Professor Martin Utley, Pro-

fessor Naomi Fulop, Dr Christina Pagel and Dr Nora Pashayan.
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Chapter 1

Introduction

Community health care is formed of clinically diverse and geographically dis-

persed services that provide local health care close to or in patient homes. These

services are fundamental in the delivery of care and important within global policy

[1], helping to maintain and improve patient health through a range of clinical activ-

ities. This includes potentially recurring, long-term care (such as diabetes services)

and shorter, potentially one-off episodes of care (such as an orthopaedic service), see

Table 1.1 for examples of community services. The breadth of their role, diversity of

care and complexity of patient use present a challenge in the planning and operation

of community services. This is where the application of operational research methods

to community health care may contribute, which is the focus of this thesis.

In beginning this work, I shadowed several community services, including: a

prosthetics and wheelchair service; an integrated community care team (a service for

patients with complex, long-term conditions who may require health and social care);

an acute admission avoidance service (known as the “falls ambulance” consisting of

a paramedic and a nurse); and district nursing.

In observing these services, both the care offered and patients treated were di-

verse. Some patients presented with a single condition, simply requiring a check up;

whilst others presented with on-going problems, such as persistent leg ulcers, and

18



Chapter 1. Introduction 19

Service name Description

Adult speech and
language therapy

Supports patients with communication and swallowing
difficulties - such as those with stroke, brain injury,
dementia, or voice disorders.

Cardiac service Provides support to patients with heart failure.

Community
rehabilitation service

Provides assessment and rehabilitation to patients who
have been diagnosed with a neurological condition.

Community treatment
team

Aims to prevent unnecessary hospital admissions for
people experiencing a physical health crisis.

District nursing Provides 24 hour care for people with an identified
nursing need, including those who are chronically sick
or terminally ill.

Orthopaedic service Assesses patients’ needs - such as physiotherapy -
before and after hip or knee replacements.

Podiatry service Provides foot care services to those with a clinical
need, treating patients with long-term conditions -
such as diabetes and rheumatoid arthritis.

Table 1.1: Examples of community services

required regular treatment. Other patients were more complex, presenting multiple

co-morbidities that stemmed from a single long-term condition, such as diabetes,

and required several services.

A final observation was the potential impact of these services on the wider health

care system. For example, the “falls ambulance” responded to new emergency calls

that would result in an acute admission since patients required treatment that a

paramedic could not provide, but a nurse/paramedic team could. Having treated a

patient and kept them out of acute care, they then sought to refer them to community

services that could meet their needs and provide ongoing support. Thus, their aim

was to reduce acute demand and enable patients to receive the appropriate care in

the community.
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1.1 Health care policy and community

services

Community services are seen as crucial in meeting the current and future chal-

lenges facing health care [2]. They help to ensure that care: is person-centred, coor-

dinated and closer to patients’ homes; maintains patient health and independence;

and, minimises hospital stays wherever possible [3]. Several high-priority national

policies, such as the Better Care Fund and the NHS Forward View [4], require a

larger role for the community sector. Thus, there has been an emphasis within NHS

policy towards moving services out of acute settings and into the community. This

is often motivated by the perceived benefits that increased community care may

lead to reduced health care costs, improved access to services, improved quality of

care, a greater ability to cope with an increasing number of patients, and improved

operational performance in relation to a patient’s health and time [1].

A scoping review analysed the evidence for the impact that moving services out of

acute settings may have on the quality and efficiency of care [5]. It found that under

certain conditions, moving services into the community may help to increase patient

access and reduce waiting times. However, across multiple types of care (minor

surgery, care of chronic diseases, outpatient services, and GP access to diagnostic

tests), the quality of care and health outcomes may be compromised if a patient

requires competencies - such as minor surgery - for which acute services are better

equipped.

On the evidence for the effect on the monetary cost of services, [5] found that it

was generally expected that community care would be cheaper when offset against

acute savings. However, increases in the overall volume of care [6] and reductions in

economies of scale [7, 8] may lead to an increase in overall cost in certain instances.

Given the importance of these services, the growing emphasis in delivering more



Chapter 1. Introduction 21

care within the community sector, and the questions around how best to develop and

manage these services, a clearer understanding is required. This is where applying

operational research (OR) methods to community care services can contribute.

1.2 Operational research

OR is a discipline in which analytical methods from mathematics, statistics, en-

gineering and systems thinking are used to inform and understand decision related

problems. Traditionally, it is used to provide insight into processes that occur in com-

plex systems and organisations, given the system’s purpose, the available resources

and the key measures used to evaluate the system. For example, within health care,

systems may be modelled to understand how goals (such as improved access) may be

achieved when constraints (such as fixed capacity) and objectives (such as reduced

operational costs) are considered. An example of one such method is patient flow

modelling, which is the focus of this thesis.

1.2.1 Patient flow modelling

In a model of flow, a system is viewed as comprising a set of distinct compartments

or states through which continuous matter or discrete entities move. A key charac-

teristic is that the set of states and the set of transitions between them comprise a

complete description of the modelled system.

Within health care applications, the entities of interest are commonly patients

(alternatives include blood samples or information). In [9], two viewpoints for under-

standing patient flow are identified, an operational perspective and, less commonly, a

clinical perspective. From an operational perspective, the states that patients enter,

leave and move between are defined by clinical and administrative activities, and

how patients interact with a care system. Thus, states may represent, for example,
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a consultation with a physician, being on a waiting list for surgery, or specific care

settings.

From the clinical perspective, states are defined by some aspect of patient health;

for instance, whether a patient has symptomatic heart disease, or the clinical stage

of a patient’s tumour. A more generic view is that the states represent an amalgam

of activity, location, patient health and changeable demographics [10].

Within the modelling process, characteristics of the patient population and the

system states are incorporated to evaluate how such factors influence flow. Examples

of the former include patient demographics or care requirements, whilst examples of

the latter include capacity constraints relating to staffing, resources, time or budgets.

The characteristics used depend upon the modelled system, modelling technique, and

questions being addressed.

Furthermore, the performance of a system may be evaluated by output measures,

such as resource utilisation [11], average physician overtime [12] and waiting time

[13]. The measures used depend upon the modelled problem, modelling technique

and the factors considered to influence flow.

1.2.2 Queueing theory

One way to model patient flow is through the use of queueing theory - the math-

ematical study of how queues form, grow and disperse as potential service users (e.g.

customers, patients) seek to access a service. Here I briefly discuss some of the basics

of queueing theory. For a more comprehensive treatment see Advances in Queueing:

Theory, Methods, and Open Problems [14] and Applied Probability and Queues [15].

To analyse a queueing system, several processes must be understood and mod-

elled, see Figure 1.1. Firstly, service users from a population of potential users arrive

to the service. This population is considered to be all those who may possibly use

the service or a group of service users who are of interest. It may be modelled as
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Figure 1.1: Diagram of a queueing system and its fundamental processes

infinite or finite (e.g. a pool of repeat users), and homogeneous or heterogeneous (e.g.

when several distinguishable types of service user exist). Furthermore, how people

arrive at the service must be understood and is modelled by an arrival process. This

considers the characteristics of their arrivals (e.g. whether they arrive individually

or in batches), possible influences (e.g. limited waiting space), and the timing of

arrivals (e.g. whether they can be modelled stochastically or deterministically; the

time distribution).

A Poisson arrival process is commonly assumed, where service users arrive ac-

cording to some mean rate λ, such that, in a time interval [0, t] the probability that

n service users arrive is given by:

P(i = n) = e−λt
(λt)n

n!

A benefit of this distribution is that inter-arrival times (the time between consecutive

arrivals) are exponentially distributed and thus Markovian (possessing a “memory-

less” property).
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Secondly, the configuration and behaviour of the queue need to be defined. The

configuration relates to whether there is a single queue or multiple parallel queues,

and if there is limited waiting space. The queue’s behaviour includes whether service

users may: renege (when someone leaves the queue having waited too long), balk

(when someone does not join the queue based on its length) or jockey (for parallel

queues, someone moves to another queue to try and reduce their waiting time).

Finally, the service process must be defined. This consists of: a service discipline

(how service users are selected for service e.g. first come first served, last in first out,

by priority, etc.), the number of servers (single or multiple) and the distribution of

service time. Similar to the arrival process, there is a probabilistic distribution that

governs the time within which patients complete service. Commonly, service times

are considered to be independent and exponentially distributed with a mean service

rate of µ. Thus, the Markovian property holds for service times. For Tn, the time

when the n−th service user completes service:

P(Tn > t0 + t|Tn > t0) = P(Tn ≥ t)

By describing arrival processes as Poisson processes and treating service times

as exponentially distributed, the model is viewed as a random process and called a

Markovian model. Thus, the future movement of an entity is dependent only upon

its present state, and independent of the time spent in that state or the pathway

previously travelled. Whilst few systems (especially in health care) are truly Marko-

vian, such systems may be understood using steady state analysis. This allows for

the calculation of long run averages of system metrics.

A key concept within a queueing system is capacity. This relates to the limitations

that a system’s service processes and available resources place on how service users

are served and the number that can be served. In a real world system, this may be

interpreted as the number of available beds, working hours of staff, or the constraints
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of physical space. Within a model, these may be represented by capacity constraints

such as multiple servers, time variable dynamics and limited queue lengths.

Models of queueing systems may become large and complex depending on the ap-

plication and the analysis carried out. In this thesis, I develop methods for modelling

networks of services with heterogeneous patients and complex flow dynamics.

1.3 North East London Foundation Trust

During this project I have collaborated with the North East London Foundation

Trust (NELFT). Covering a large area of north east London (Waltham Forest, Red-

bridge, Barking and Dagenham, Havering) and Essex, NELFT provide health care

to a population of almost 2.5 million patients.

In recent years, NELFT adopted a community based model of health care for

some of their services such as their provision of care for long-term illnesses, mental

health and elderly patients. In accordance with national developments and changes

in policy [16], this followed “the trend to deliver more care out of hospital” [17].

To begin this work, I held scoping meetings with clinicians and care managers

from several community services. This included meeting with staff from the inte-

grated care management service; the COPD, heart failure and respiratory service;

and older adult care. From these meetings, I decided to focus this research on

community based physical health services for patients aged 65 and over based in

Havering. This choice was made due to the operational difficulties of these services

and mix of service users. For example, the diverse profile of services makes planning

and organising difficult, as do the multiple points of access for each service. These

difficulties were apparent from conversations with NELFT clinical staff; thus, the

insight gained during this work may be beneficial to NELFT.
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1.4 Evaluating community health care

Typically, OR methods are used to quantitatively understand systems in terms of

their operational capability to deliver service. Within health care, this is the ability

of services to provide care efficiently given the available resources, demand of pa-

tients and the service they provide. Thus, outputs often focus on process outcomes -

measurable, operational performance indicators such as waiting times, queue lengths

and throughput, that can be compared to the real system.

In practice, health care services are also assessed according to other measures

that relate to several domains (for example: clinical effectiveness, patient safety and

patient experience [18]). The measurement of these is known as quality measurement.

In [3], the authors found that despite the crucial role of community health care,

these services had been overlooked within the general national agenda around assur-

ing and improving quality. In contrast to acute and primary care, they found that

approaches for measuring and improving quality in these services were less devel-

oped. Moreover, they found that nationally, data on quality, quality measures for

community services, and systems for capturing such data had been underdeveloped.

This was especially true for national comparability and comparability between ser-

vices. Thus, they noted that as challenges arise within the coming years, there is a

risk that poor or declining quality would not be identified promptly.

Furthermore, they noted that outcome measures similar to those used within

acute services, namely short-term clinical outcomes, may be ineffective within the

community setting. This was due to the focus of many community services towards

treating long-term conditions.

Finally, the authors suggested that the implementation of national and local

quality measures is complicated by:

• the diversity of services provided within the community sector;
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• multiple service providers;

• the complexity introduced by the mix of patients and how they use services;

• weak information infrastructure in community care;

• the difficulty of monitoring the quality of care provided in patient homes.

1.5 Purpose and aim of this thesis

Historically, community services have received less attention within the OR lit-

erature than acute and primary services. Given the challenges noted above, the aim

of this project was to inform how patient flow in community health care may be

modelled, and to explore how patient outcomes are used by these services. Informed

by the literature [19] and clinical practice, in this thesis patient outcomes are consid-

ered as: measurable aspects of patient health that are potentially influenced by care.

Notably, they may be used to track patient health and evaluate the quality of care.

Incorporating patient outcomes within patient flow modelling is increasingly per-

tinent. For example, improved patient outcomes and satisfaction are often used jus-

tifications for the increased provision of community care [1]; thus, the combination

of outcomes and patient flow modelling may help evaluate this assertion. Further-

more, this combination may help to inform the organisation of health care services

according to operational capability and clinical impact on the patient population;

unifying two concerns of providers and patients in a single modelling framework.

The ultimate goal of this thesis is to begin to develop methods for modelling the

“flow of outcomes” - the perspective as to how individual services contribute to the

output of outcomes within a network of services where patients may participate in

multiple care interactions. I achieve this through the combination of patient flow

modelling and patient outcome progression.
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The rationale for this work is partly motivated by how outcome measures are

used at a population level. Often, they are understood as proportions of patients

from a given population with common clinical characteristics post care.

When a time frame is considered, its length is often significantly greater than that

of a care interaction e.g. monthly. Thus, these measures represent a somewhat static

view in relation to the daily operation of services, which may be misleading. Since

care is dynamic, static measures fail to capture variability in the daily “output” of

outcomes from services. Furthermore, these measures fail to capture how changes

in “outcome production” occur as patient flow problems arise and disperse. By

incorporating patient outcomes into models of patient flow, the timely impact that

services have on patient health may be understood.

The combination of patient flow modelling and patient outcomes may also be

used as a novel method for measuring the performance of a system. In practice,

services are often evaluated individually; however, when patients are able to use

several services and have multiple care interactions, the performance of services is

inherently linked. Thus, through the development of these methods, a holistic view

of a system’s performance may be gained; viewing the services as components within

an interrelated network of services that work together to produce good outcomes.

Given the above focus, the presented work is formed of two sections. Chapters 2,

3 and 4 present my work towards understanding the operation and clinical impact of

community health care services and how patients use these services. This is achieved

by: a systematic review of OR literature (chapter 2); analysis of referral data for

NELFT community services through visualisation to understand common referral

dynamics (chapter 3); and, an exploration of what outcome measures are collected

and used to evaluate different community services, and how they may be used in a

patient flow model (chapter 4).

Of note, the data analysis and visualisations (chapter 3) had two major contri-
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butions within this body of work. Firstly, it enabled the identification of important

patient flow dynamics such as patients reusing services multiple times and the pos-

sibility for patients to use several services either sequentially or concurrently. This

was important for the development of the theoretical model in chapter 5 since these

are key dynamics to model. Furthermore, this was the first (to my understanding)

application of such methods in community health care, that focussed on the dynam-

ics seen in this setting. Secondly, it provided an opportunity to analyse NELFT’s

services and share important information and insights that may otherwise have been

difficult to identify or communicate. An example of this is the complexity and di-

versity of patient referrals and use of services in the system, especially when reuse

and common pathways were considered.

The second section of work is presented in chapters 5 and 6 and consists of my

work in developing a theoretical method for modelling the combination of patient

flow and patient outcomes within a network of queues. Notably, there is a disconnect

between the applied body of work and the theoretical. Whilst the work in chapters 5

and 6 is informed by the prior chapters and was originally intended to be implemented

within the Trust, only a theoretical modelling approach could be presented due a lack

of usable data on patient use and outcomes.

The methods developed are extensions of fluid and diffusion approximations for

stochastic queueing networks (chapter 5), which are evaluated to understand the

parameter space for which they are accurate, given the extensions (chapter 6). This

method provides a framework for quickly modelling large time-dependent complex

systems due to its scalability. Through an analysis of smaller systems, understanding

of the accuracy and use of these methods is highlighted in chapter 6.

Notably, these methods differ from those seen in chapter 2 since they have not

previously been applied to community health care, can be applied to several diverse

services, used for time and health dependent analysis of a system, and may be used
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to model patient mix in the system. The main contribution of this model is the

emphasis on and ability to evaluate systems by the contribution of services to the

clinical (outcomes) and operational (flow) performance of the system. Furthermore,

the methods produced in chapter 5 may be used to model the types of problem and

provide the types of analysis stated above. This is explained in detail in chapter 6.

1.6 Structure of this thesis

To begin, I systematically review two types of relevant literature. By considering

applications of patient flow models in community services and how outcomes have

been previously incorporated into flow models, I identify any possible gaps in the

literature. Based on the conclusions of this chapter, I position my work in chapter 5

to address some of the gaps that arise - such as time dependent modelling, networks

of multiple services and the possibility of multiple care interactions.

In chapter 3, I explore the referral processes and dynamics of patient use in

NELFT community services. Through visualisations of patient data, I seek to un-

derstand how the care provided by multiple community services may be modelled.

This work focuses on how services are connected by referrals and patient use, inform-

ing the key dynamics and patient flow mechanisms of the model. By identifying the

reuse of services and use of several services as key dynamics, these are incorporated

into the theoretical framework of chapter 5.

In chapter 4, I explore what outcome measures NELFT use to monitor the clinical

effectiveness of their community services by surveying several sources of information.

The aim is to understand how and by what measures community services are eval-

uated in order to inform how the progression of patient outcomes may be modelled

when patients attain care and use several services. In particular, I identify whether

there are any measures currently used by NELFT that may be incorporated into
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patient flow modelling and the method produced in chapter 5.

Having learned about what happens within community health care in practice, in

chapter 5 I develop a theoretical model of such systems. This method is a fluid and

diffusion approximation of a stochastic network of services which incorporates patient

health. Here I present the mathematical framework and proofs for this method, and

produce a basis for modelling the “flow of outcomes”. I also introduce a dynamic

multi-class server allocation for parallel queues - where servers are assigned to parallel

queues and continuously adjusted in response to changes in demand for service and

patient mix.

In chapter 6, I evaluate the appropriateness of the fluid and diffusion methods

developed in chapter 5 for modelling community health care services, considering

how they may relate to real world systems. Through a series of applications to

hypothetical scenarios, I explore the parameter space of these methods, assessing

when they are most accurate and identifying the types of analyses they may be

used for. Beginning with small systems, I address how the accuracy of the model

is affected by the extensions introduced in chapter 5, from which understanding is

gained for application to a larger system. This chapter culminates with a discussion

on modelling the “flow of outcomes”.

To conclude this thesis, in chapter 7 I discuss the contributions made in each

chapter and the possible directions for future work.



Chapter 2

Literature Review

In this chapter, I present a systematic literature review of operational research

methods for modelling patient flow. This is formed of a review I published with my

supervisors [20], which I have updated for use within this thesis.

Papers are assessed for inclusion at three levels, with the references of included

papers also assessed for inclusion. I make comparisons between each paper’s set-

ting, definition of states, factors considered to influence flow, output measures and

implementation of results. The discussion focuses on the common complexities and

characteristics of the models, from which I suggest possible directions for future work

and discuss how this informs the rest of this thesis. The aims of this chapter are to:

1. Explore applications of patient flow models in community services;

2. Understand how outcomes have been previously incorporated into flow models;

3. Identify any possible gaps that exist within the literature and position my work

to address them.

32
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2.1 Introduction

For many decades operational research methods have been applied to several set-

tings and problems within health care to better understand the challenges facing

health care systems and inform decision making through useful analysis. Whilst the

focus of this thesis is patient flow, it should be noted that operational research meth-

ods have been applied to a wide range of systems and problems including scheduling,

resource and capacity management, clinical and administrative modelling, logistics,

economic analysis, risk management, treatment evaluation, and design and layout

modelling [21].

Due to the range of problems that may be modelled and the number of available

techniques, many reviews of operational research literature focus on specific applica-

tions or methods. Thus, to inform the work presented in this thesis, I systematically

reviewed two types of relevant literature. The first type were publications that pre-

sented models of operational patient flow within a community health care context,

denoted “Patient flow within community care”. The second type were publications

that presented combinations of patient outcomes and patient flow modelling in any

setting, denoted “Patient flow and outcomes”. No specific setting was sought in the

latter to identify potentially transferable methods.

For a broad and comprehensive review of operational research methods in appli-

cation to health care see [21] and [22]. In [21] the authors present a literature review

of operational research within UK health care, covering a broad range of methods

and applications. From their findings they categorise the types of technique em-

ployed, and analyse the applications and publication trends since 2000. Due to its

breadth, their review also contains several methods and applications not featured

in this chapter and serves as a good basis for understanding recent developments

in the literature. This review also includes problems typical of other health care

setting such as overcrowding and resource allocation problems often found in acute



Chapter 2. Literature Review 34

and emergency care settings. In [22] the authors produce a taxonomy of the types

of planning decisions that may be modelled, the suitable methods for understanding

a given scenario and the possible benefits of the analysis. Their review considers

several care settings and services (ambulatory, emergency, surgical, inpatient, resi-

dential and home care) and highlights the breadth of both the field of operational

research and the problems to which such methods may be applied. They also identify

several types of planning decision that do not feature in this chapter (for example,

access policy, staff scheduling and facility layout).

Throughout this thesis I will refer back to the findings detailed in this chapter.

Furthermore, by using a systematic approach, I ensure that this review is repro-

ducible and rigorous.

Structure and aims of the chapter

In section 2.2, the method of review is discussed, noting how the search was con-

ducted, the process used to assess the literature for inclusion and the framework used

for reviewing the literature. Following this, the results of the search and inclusion

assessment are presented in section 2.3. In section 2.4.1, the “Patient flow with com-

munity care” papers are analysed, and in section 2.4.2 “Patient flow and outcomes”

papers are analysed. In section 2.5, I summarise and discuss the findings from both

searches, drawing out key themes from across the two literatures. This chapter ends

in conclusions drawn from the findings and suggestions of future avenues of work.

2.2 Method of review

To analyse this literature, I conducted a configurative systematic review - an ap-

proach for gathering and understanding a heterogeneous literature, to identify pat-

terns and develop new concepts [23]. I performed two searches to find peer-reviewed
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operational research (OR) publications, as previously noted. Seeking papers pub-

lished in English before September 2017 (previously November 2016 in the published

review) with no lower bound publication date, I conducted this search within the

electronic databases Scopus, PubMed and Web of Science.

For each search I used a combination of search terms listed in Table 2.1. To find

papers related to “Patient flow within community care” I sought records with at least

one operational research method term in the article title, journal title or keywords

AND at least one patient flow term in the article title, journal title, keywords or

abstract AND at least one community health setting term in the article title, journal

title, keywords or abstract. To find papers related to “Patient flow and outcomes”

I sought records with at least one operational research method term in the article

title, journal title or keywords AND at least one patient flow term in the article title,

journal title, keywords or abstract AND at least one outcome term in the article

title, journal title, keywords or abstract. Operational research method terms were

not sought in abstracts since this greatly increased the number of redundant papers.

Initial sets of search terms relating to community health care settings and oper-

ational research methods were informed by [22], with synonyms added prior to the

preliminary searches. For patient flow terms and outcome terms, I formed initial lists

that I considered to be relevant (original search terms are in bold in Table 2.1). The

first batch of papers found using these terms were examined for further applicable

search terms, and these were subsequently added to form an updated list.

Papers obtained from the final searches were assessed for inclusion for full review

at three levels. If a paper was not a literature review, it was required to meet all the

inclusion and none of the exclusion criteria outlined in Table 2.2. For each included

paper, references were assessed using the same inclusion and exclusion process to

find any papers that may have been missed in the searches.

Literature reviews were included at each level if they were concerned with opera-
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Table 2.1: Final terms for literature searches. The terms in bold are those used
within the initial search and the non-bold terms are those added through an iterative
process.
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Table 2.2: Inclusion and exclusion criteria for assessing papers presenting models of
patient flow
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tional research methods for evaluating patient flow, were focussed on the operational

processes of health care, and had no equivalent systematic review already included.

Additionally, within the “Patient flow within community care” literature, review

pieces were included if they solely focussed on community settings, whilst within the

“Patient flow and outcome” literature, review pieces were included if they focussed

on uses of patient outcomes in modelling processes.

Data tables were constructed to collate key characteristics of the literature and

shape the analysis, noting each paper’s setting, definition of states, factors considered

to influence flow, output measures and implementation of results. The factors that

were considered to influence flow included key flow dynamics (e.g. reuse of services),

patient behaviours (e.g. reneging), important constraints (e.g. resource or time), and

differences within the patient population (e.g. stratified groups or variable health).

In this review, implementation refers to any actions taken by the researchers to

share and use the results of the work within the modelled setting. Examples include

feedback to stakeholders or changes within the operation or organisation of a system.

Informed by initial readings, papers were grouped into five categories based on an-

alytical method: Markovian methods, non-Markovian methods, system dynamic ap-

proaches, analytical methods featuring time dependence and simulation approaches.

The findings from these papers are tabulated and shown in Tables 2.4, 2.5 and 2.6.

2.3 Results of literature searches

The combined results of the original and updated searches, and selection of pa-

pers, are shown in an adapted PRISMA flow chart [24], Figure 2.1. Reasons for the

exclusion of papers at full text assessment are shown in Table 2.3.

The published search and inclusion assessment provided 25 “Patient flow within

community” papers, 23 “Patient flow and outcomes” papers and five papers in the
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Figure 2.1: Flow chart of literature search results

58 papers were eligible for review: 30 “Patient flow within community care” papers;
23 “Patient flow and outcomes” papers; and five papers within the intersection.
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intersection for full review. The updated search provided an extra five “Patient flow

within community” papers, one newly published with four found from its references.

Table 2.3: Reasons for exclusion at full text assessment

In the next section, a synthesised analysis of publications within their respective

search group is presented. Papers in the intersection are included in the “Patient

flow within community care” section. I highlight three papers that are particularly

informative in developing the methods presented in this thesis, providing further

methodological insight into their work.

2.4 Analysis of papers

2.4.1 “Patient flow within community care”

Markovian models

The settings of these publications were long-term care [25, 26], residential mental

health care [27], post-hospital care pathways [28], flow between community services

and hospital care [29] and services for elderly patients with diabetes [30].

Within these models, states were defined as different services or stages of care,
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with two papers also defining states of future care requirements [28, 30]. In [28] these

states included patient mortality, admission to long-term care and re-hospitalization,

whilst in [30] states of subsequent health progression were defined.

Two main factors were considered to influence flow within these models: the effect

of congestive blocking caused by limited waiting space [27, 29] and the diversity

of patients, defined by demographics [25, 26, 28] and severity of disease [30]. In

considering blocking, flow was influenced by the available capacity and the average

occupancy of each service.

The output measures used within these papers were: queue lengths and wait times

for each state (with and without congestive blocking) [27, 29]; forecasts of demand

[25, 26]; and the probability that patients would be in a given post-care outcome

state [28, 30]. An analysis of different scenarios was undertaken in the latter two

papers to identify how alternative pathways may help improve post-care outcomes.

None of the papers explicitly reported implementation of their results.

Spotlight: Modeling patient flows using a queuing network with blocking

N. Koizumi, E. Kuno and T. E. Smith used an open queueing network to analyse

the effect of limited waiting capacity on wait times within community services for

progressive, residential, mental health care [27]. Progressive care is configured so

that patients move from higher intensity care to lower intensity care as their health

improves and their care progresses. Three service states were considered within

this paper: extended acute hospitals, residential facilities and supported housing,

each with different service times and different capacities. Source states (general

community care and acute hospital care) were modelled with infinite capacity.

The analysis in this paper focused on how limited queueing capacity within a

queueing network may cause a congestive phenomenon known as blocking. This

occurs when a patient, in a service i, is ready to move to the next level of care,

in service i + 1, but no spaces are available. Since each service state represents
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residential care, patients remain in service i until there is a free space in i + 1,

potentially blocking incoming patients to service i.

The outputs for this method were average queue length and waiting times, eval-

uated for each service, first without blocking, and then with. In the latter, an

algorithm was used to calculate the effect of blocking by an effective service time.

For patients moving to a service with limited capacity, this was a combination of

their service time and the expected wait time for the next service.

This method could be used to analyse how flow problems for one service affect

flow throughout the system. For example, congestion in the system was greatly

reduced if bottlenecks at supported housing were reduced, perhaps through changes

in capacity. However, the authors also found that increasing the capacity of other

stations would cause the problem to intensify at supported housing. Overall, this

paper introduced: complex flow dynamics (how limited queueing capacity affected

flow across the system), a mix of services, and progressive health care where patients

have multiple care interactions.

Non-Markovian steady state models

Producing an optimisation approach for resource allocation, [31] defined states

as services within specified pathways. The aim was to minimise overall costs whilst

maintaining a desired level of care as measured by metrics, such as wait time targets,

given the capacity constraints of the system, such as the number of beds. There was

no indication of implementation.

System dynamics

In system dynamic approaches complex organizations are modelled using a system

of coupled ordinary differential equations to analyse and design effective policies

and process structures [32]. Five applications were found for modelling systems of
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markedly different sizes and setting; these included an evaluation of the UK’s NHS

[33], community services used to bolster acute cardiac services [34], and long-term

care [35, 36, 37].

States were defined as different services, such as community or acute services

[34], types of residential and long-term care [35, 36, 37], or different sectors of care

[33] (namely primary, acute, NHS continuing care and community care). In each

model and setting, capacity and transition rate variables, such as waiting list size

and clinical referral guidelines were considered, with [35, 36, 37] also including ageing

populations. Furthermore, a feedback mechanism was used in [34] to evaluate how

changes in the input variables affected future demand.

The main metrics used in each model related to demand and access, namely

waiting times and patient activity such as the long run use of services and the length

of queues [33]. In all of the papers, scenario analysis was performed to evaluate how

changes within the model input parameters affected their outputs.

Implementation was reported in two papers [33, 35], both noting that results had

been shared with clinical partners.

Analytical methods including time dependence

Applications included long-term institutional care [38, 39], home/community care

[40], community mental health services [10, 41], care after discharge from an acute

stroke unit [42], and specialist clinics [43, 44].

The state definitions within these models related to stages of care/different ser-

vices [10, 38, 39, 40, 41, 42], whether patients were “waiting” or “in service” [43, 44],

and health states, in particular stages of health progression [43] or post care out-

comes [42]. The factors considered to influence flow included capacity of services

[41, 44], patient demographics and care requirements [38, 39, 40, 42], and patient

health between recurrent appointments [43].
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Commonly, the system metrics related to the time a patient spent interacting

with parts of the system - such as expected length of stay, waiting times and time

spent in states. Other measures included the daily cost of care and likely post care

outcome states for patients in different demographic groups [42]. In [41] appointment

allocations were “optimised” to meet desired levels of queue lengths and wait times

across multiple types of care interaction. Similarly, in [43] an “optimised” timing

for sequential appointments was sought given variable patient health. The possible

future demand for services, under different scenarios, was evaluated in [40].

Of these applications, three reported implementation, this included the creation

of a tool [41], the sharing of findings with stakeholders [10] and the use of a model

for care planning [40].

Spotlight: Improving Health Outcomes Through Better Capacity

Allocation in a Community-Based Chronic Care Model

S. Deo, S. Iravani, T. Jiang, K. Smilowitz, and S. Samuelson sought to combine

both clinical and operational aspects of health care in modelling the treatment of

school children with asthma [43]. Using disease progression modelling alongside finite

horizon stochastic dynamic programming, they modelled a scenario where patients

periodically required repeated care from a single service. A model was created to

allocate care appointments in order to maximise aggregate health outcomes subject

to resource constraints. Each visit had the potential to improve their health, whilst

longer times between visits meant patient health was more likely to decline. Thus,

the method was designed to provide an “optimal” duration between visits for patients

with varying health care needs.

The state of the system was tracked by an amalgam of each patient’s information

consisting of the time since their last appointment and their health between visits.

Patient health was assumed to progress according to a Markov process defined over

K discrete health states, 0 being the best and K− 1 the worst. Given the modelling
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of health in response to care, and in the absence of it, two health transition matrices

were considered, representing positive and negative progression respectively.

This method included: time varying patient health that changed in response to

care or in the absence of it; a patient’s future use of service in light of health and

limited capacity; and the effect of multiple care episodes on patient health.

Simulation methods

The settings of these papers included long-term care [45, 46, 47], outpatient

services [48, 49, 50, 51, 52, 53], primary care and ambulatory clinics [54, 55, 56],

and provisions of integrated acute and community services [57, 58, 59].

States were defined as different services, clinics, sectors of care or health care

tasks within single clinics. In two papers the flow of patient information was mod-

elled alongside patient flow [51, 53]; thus, state definitions also included stages of

information flow.

The factors considered to influence flow were the health care requirements and

demographics of patients [48, 49, 51, 55, 56], constrained capacity and rates of no

show/reneging [48, 49, 56]. Monetary influences such as budgetary constraints, cost

of care and profitability were considered in four papers [45, 52, 57, 59]. Also, the

variability of time in completing care tasks was considered [51].

Common metrics related to the time that a patient spent in a state or in the

system as whole. “Optimised” capacity levels relating to key performance measures

were also widely considered [46, 47, 52]. In one paper [50], a single, composite system

metric was calculated as an aggregate of multiple performance measures (such as

average throughput, average system time and average queue time) and were stratified

by day, facility routing and patient group.

Several papers noted implementation of suggested changes [46, 48, 50, 51, 54, 56].
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2.4.2 “Patient flow and outcomes” papers

Markovian models

The modelled settings were transplant waiting lists [60, 61, 62], intensive care

units [63] and emergency care [64]. In these models, states related to whether patients

were “waiting” or had obtained a service/transplant. Patient priority states were also

defined to reflect health deterioration [62].

The factors that influenced flow related to patient health (such as levels of severity,

organ type required or probability of survival), with groups or states used to assign

priorities within the patient population [61, 62], or to represent different demograph-

ics and care requirements. In each transplant paper, the reneging characteristics

of different patient groups were considered with patients modelled as leaving the

waiting list due to death or for other reasons [60, 62].

The output measures of these papers commonly related to the wait time faced by

patients. Other metrics included the probability of reneging per patient group [62],

the expected number of deaths for waiting patients [61], and lives saved under an

admission policy [63]. In one paper [60], the average time spent in the system and

in the queue for each demographic group was calculated, alongside the proportion of

patients from each group who received a transplant.

None of the papers reported an implementation of their results.

Non-Markovian steady state models

The modelled settings and applications included an emergency department [11]

and two waiting lists; one for hospital care [65], the other for transplant patients

[66]. States were defined as stages of hospital care [11] and as “waiting” or “in

service”[65, 66].

The factors considered to influence flow were seasonality [11], resource availability
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and patient health (groups relating to care requirements [11, 66] or the wellness of

patients [65]). Each model used metrics relating to the amount of time a patient

spent within different parts of the system.

Implementation of results was noted by one paper [11], having developed software

for use by clinicians and care managers. In addition, they provided feedback and

educational sessions to help stakeholders understand the work.

System dynamics

For system dynamic approaches, a single paper was found [67], presenting an

evaluation of patient flow between states of acute care and home care for patients with

chronic disease. The factors considered to influence flow related to patient groups

(based on their care requirements), whether they possessed insurance and potential

improvements in their health outcomes given the care they received. Congestion and

total resources were also considered. A scenario analysis was performed to evaluate

the impact of different patient routes and resource allocations on the level of demand

for services and the cost of providing care.

Analytical methods including time dependence

The modelled settings included care for chronic diseases [68], two intensive care

models [69, 70], two radiotherapy models [71, 72] and two transplant waiting lists

[73, 74].

States were defined as “in service” or “waiting”, different services or appointment

slots [71, 72] and multiple health states [68, 69, 73, 74]. Additionally, the factors

considered to influence flow commonly related to differences within the patient pop-

ulation pertaining to: variable health [68, 73, 74]; care requirements/health related

groups [73]; and the availability of resources such as organs [73, 74] or appointment

slots [68, 71, 72].
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Metrics produced by these methods commonly focussed on the amount of time a

patient spent waiting for a service - for example, the optimal timing of appointments

[68] or transplants [74], subject to changes in patient health. In one paper [73],

output measures were calculated for different groups of patients to evaluate equity

within organ allocation. Forecasts of capacity requirements and optimal allocations

of resources, based on patient groups, were also common.

Two papers noted that their suggestions had influenced decision making [71, 68].

Spotlight: Dynamic Allocation of Kidneys to Candidates on the

Transplant Waiting List

Following [60], where a simple queueing model was used to analyse the dynamics

of multiple patient classes on a waiting list, S. A. Zenios, G. M. Chertow and L. M.

Wein produced a deterministic model for a similar transplant waiting list system [73].

Modelled using a system of ordinary differential equations, they used a continuous

representation of the state space instead of the usual discrete representation. The

aim was not to produce an exact model but rather to represent the dynamics of the

waiting list to assess transplant allocation policies.

Patients were grouped into several classes, representing their health status and de-

mographics, with organs also classified into several groups representing demographic,

immunological and physiological characteristics. Upon receiving a transplant, a pa-

tient could change health state, representing improved health. Furthermore, patients

on the waiting list could leave due to death.

In this model, both patients and organs were assumed to arrive according to in-

dependent Poisson distributed processes. Thus, upon arrival, a patient would wait

until an appropriate organ arrived (became available), which was then immediately

transplanted i.e. no service time. They also modelled the potential for graft fail-

ure with patients who had received a transplant potentially experiencing a negative

change in health and rejoining the queue.
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By including the different demographics of patients and organs, and changes in

health, the method was used to assess the factors that affect the equity-efficiency

trade off in managing transplant waiting lists.

It was stated throughout the paper that the fluid model had multiple flaws in

terms of accurately reflecting the system. For instance, in modelling stochastic flow

processes, the deterministic model lacked variance. However, the intention was to

stylistically represent the system so that new policies could be formed and assessed.

Overall, this paper included: deterministic, fluid representations of patient flow;

several health related patient classes that changed in response to care; and, the

possibility for the reuse of a service based on patient health.

Simulation methods

Applications included a cardiac catheterization clinic [75], transplant waiting lists

[76, 77, 78], an emergency department [79], neonatal intensive care [80] and a health

care resource allocation model [81].

Within these papers, states were defined as the number of beds; “waiting” or “in

service”, and health care tasks [75, 81].

The factors considered to influence flow within these models included patient

demographics or care requirements [75, 77, 78, 81]; the health, mortality and survival

rates of patients [77, 78, 81]; and capacity such as available resources and beds.

Several metrics were calculated within these methods, with the time patients

spent interacting with or waiting within parts of the system a common measure.

Other outputs of interest included capacity allocation [75, 76, 80], the cost of care

[80], health benefits of service [81], and expected the survival rate of patients [77, 78].

Two papers noted the adoption of some of their suggested changes [75, 79].
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Table 2.4: Papers included from “Patient flow within community care” search only



Chapter 2. Literature Review 51

Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.4 (Continued): Papers included from “Patient flow within community care”
search only
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Table 2.5: Papers included from both “Patient flow within community care” search
and “Patient flow and outcomes” search
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Table 2.6: Papers included from “Patient flow and outcomes” search only
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Table 2.6 (Continued): Papers included from “Patient flow and outcomes” search
only
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Table 2.6 (Continued): Papers included from “Patient flow and outcomes” search
only
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Table 2.6 (Continued): Papers included from “Patient flow and outcomes” search
only
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2.5 Summary and discussion of findings

I will now discuss findings from across the literature, drawing together common

themes and key characteristics as presented in Tables 2.4, 2.5 and 2.6. Overall, I

reviewed 58 papers presenting models of patient flow. 35 applied to community care

services, which included mental health services, physical health services, long-term

care, outpatient care, and patient flow between acute and community settings. 34

applications used, in some form, queue lengths or the amount of time that a patient

spent within states as output measures. The second most common metrics were

monetary costs and the allocation of capacity related resources.

Within the “Patient flow and community care” literature a range of flow char-

acteristics were considered. For instance, patient access and arrivals to community

services were modelled as unscheduled [34], by appointment [43, 68], by external

referral [27], or a mixture of the above [29, 51]. Furthermore, multiple care interac-

tions were modelled as either sequential visits to different services [27, 29] or as single

visits where multiple tasks were carried out [51]. In either instance, patients were

sometimes able to recurrently visit the same service over time with some patients

using the service more frequently [43, 56].

As per Tables 2.5 and 2.6, within the “Patient flow and outcome” literature there

were ten models of transplant/waiting lists; eight of community, ambulatory and

outpatient services; three of emergency departments; four for intensive care; two for

radiotherapy and one general model of resource allocation. Outcome measures were

incorporated within the outputs of these models in three broad ways: 1) system

metrics were stratified by outcome related groups; 2) variable patient or population

level health was used as an objective or constraint within a model to influence re-

source allocation; or 3) health outcomes were used as system metrics themselves -

such as patient mortality or future use of care. Notably, 15 papers stratified patients

into groups based on differing health/outcomes in which they remained; whilst 13
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papers incorporated health/outcomes that could change during a course of care. By

modelling changes in patient health/outcomes, a model’s output was informed by

the clinical effect of a care interaction, or absence of a care interaction, on patients

and on the operation of the system (e.g. [43, 68]).

Patient groups relating to health/outcomes were used in models of each method,

and were commonly used in resource and service capacity allocations (e.g. [43, 45, 50,

70]). Notably, their application within steady state methods may be limited since it is

difficult to model health/outcome dependent variables, such as service times, because

the order of patients within the queue is unknown in these methods. Furthermore,

health/outcomes that could change during a course of care were commonly used

within time dependent methods (e.g. analytically [68, 74], simulation [50]). They

were often used to model the effect of care on a population where the modelled time

period was large or where multiple interactions were considered (e.g. [43, 72]).

Across both literatures queues could be categorised as either physical or non-

physical. Physical queues form when patients wait for service within a fixed physical

space such as a clinic or emergency department [11, 51, 54, 56], or when moving

between residential care and waiting within a service [27, 38, 39]. Thus, these queues

may be constrained by a fixed physical capacity, with demand modelled from the

point when patients physically arrive at a service.

The most common analysis of physical queues in this review related to the oper-

ation of single type of service (such as long-term care services), to gain insight into

the delivery of care (such as flow between multiple treatments/consultations in a

single visit e.g. [11]). Notably, studies of physical queues were carried out using each

type of method, with the choice of method dependent on the desired insight, the

factors considered to influence flow and the size of the system. Steady state methods

were often sufficient if queue lengths and wait times were of primary concern over

long periods of time (comparative to service length). However, if variability in input
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parameters or periodic influences were important, time variable methods were more

common.

Alternatively, non-physical queues occur when patients may wait in any location

away from the service such as their own place of residence [52, 55]. An example of

when these queues are modelled includes when a patient’s wait is potentially long

and unknown for multiple care interactions [43]. Non-physical queues may represent

unconstrained demand since there is no physical limit to waiting space; however,

there may be set sizes such as capped waiting lists [61].

The most common analysis of non-physical queues related to waiting lists and

multiple uses of a single service or several services [43, 73]. When modelling demand

and access at a system level, steady state analysis or time dependent methods were

typically used (e.g. steady state [25, 26], time dependent [10]). In scenarios of

resource allocation, time variable methods were increasingly used [41]. Within these

models, variable health/outcomes were widely considered over longer time frames of

care and when multiple interactions were possible.

As a final observation, the reporting of implementation and collaboration varied

greatly within each group of analytical method.

2.5.1 Limitations

It should be noted that the work presented in this chapter is limited due to the

difficulty of systematically reviewing this literature. In particular, I found two main

difficulties. Firstly, papers were published within a wide range of journals, some

within health care journals, others in operational research (OR) journals; whilst

a proportion were found within journals that were neither health specific nor OR

specific. Secondly, I found that within the literature, patient flow was described and

referred to in many ways. No clear standards were found; thus, locating these papers

was particularly difficult.



Chapter 2. Literature Review 65

Due to these complexities, I cannot claim that these findings are exhaustive.

However, by following an iterative process of literature searching the findings are

representative of the research landscape, allowing for meaningful conclusions to be

drawn in the next section.

2.6 Conclusions and directions for work

The factors that are considered to influence patient flow within community health

care are often markedly different to acute services, and can vary from one service

to another. Considering the characteristics discussed in this review, it is common

for a mixture of complex dynamics to be modelled within community care applica-

tions. Thus, modelling these services can become complicated, requiring innovative

methods to include all or some of these dynamics - as highlighted by the breadth of

methods presented in this review.

I now draw out some possible directions for future patient flow modelling in

community care. These conclusions are formed in light of known challenges for

community care, gaps found within the literature and any transferable knowledge

between the two sets of literature.

Few models considered patient flow within systems of differing community ser-

vices with many studies focussing on single services/single types of service. Likewise,

few considered the mix of patients. A significant challenge in managing community

health care is how to co-ordinate and deliver care within physically distributed ser-

vices, that are used by a mix of patients (with differing frequency and care needs),

who may use a range of services [3]. With a shift of focus in the NHS towards care for

the increasing number of patients with multiple long-term illnesses [4], the patient

mix within each service further exacerbates this challenge. Given that it is often

difficult to measure the impact that changes within one part of the system have on
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the whole system [27], it would be beneficial to develop methods for modelling the

flow of heterogeneous patients through multiple services.

Another useful direction is to develop time dependent analytical methods. Whilst

often analytically difficult, there are important benefits in using these methods as

shown by the wide range of applications within this review - such as faster speed

of calculation compared to simulation methods. Given the characteristics of com-

munity services previously discussed, methods for modelling time varying capacity,

demand and timing of patient (e.g. seasonal spikes) would be a helpful addition. As

would methods for modelling systems where steady state assumptions do not hold

(e.g. systems that become heavily loaded during seasonal changes in demand). The

development of these methods would be beneficial in analysing the time variable

impact of changes in the immediate, short-term and long-term for the whole system.

Finally, 13 papers used variable health/outcomes, of which five applied to multiple

care interactions. Again, considering the purpose and nature of community care,

a useful direction for future study would be towards methods that use measures of

health that may change throughout a care process. In particular, those that allow for

the improvement and decline of patient health throughout several care interactions.

A good example of these methods is presented by [43, 68]. Having otherwise not

been widely explored, methods that quantify and evaluate the quality of care and

include an interaction between patient outcomes, care pathways and flow within the

system would be valuable and appropriate for community care modelling. I note here

that health states need not only represent the severity of illness, rather they may also

represent a patient’s “capacity to benefit” from care - a concept that I develop further

throughout this thesis. This incorporates notions of the extent to which a patient’s

outcomes may possibly be impacted by the receipt of care, the likelihood of a change

in their health as a result of service (or lack of it), and the potential impact on their

future need/use of services. With the goal of maintaining and improving patient
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health whilst preventing any negative impact, modelling the capacity to benefit of

patients provides a mechanism for analysing the trade off in/effect of providing care

to patients with different needs.

In considering OR methods for community services that combine patient flow

modelling and patient outcomes, there may be some transferable knowledge from

transplant models and radiography models. These models may provide a useful

basis for modelling non-physical queues because they share some distinct similarities

to community care services - such as time varying demand, limited resources and in

some cases re-entrant patients [73]. Furthermore, they may be informative for both

scheduled care [72] and unscheduled care [60].

The identified gaps and the above literature motivated the work contained in

the remainder of this thesis. In particular, the theoretical framework developed in

chapter 5 can be used to model patient flow through several services and multiple

service interactions. The method is also time dependent and health dependent, with

a patient’s health able to improve, decline or stay the same throughout a course of

care, further meeting a gap in the literature for analysing networks of care.

Whilst constructed for a Markovian service network, the method differs from the

reviewed literature since it is a deterministic fluid and diffusion approximation of a

stochastic process. The method is unseen within the review and has not previously

been applied to community health care. Only system dynamic approaches or the

fluid method in [73] are similar since they represent the modelled services as a system

of coupled ODEs. However, the above give stylistic representations of the system

where as the method in chapter 5 is intended to give an approximation of a stochastic

service system to provide efficient and accurate analysis. Likewise the variance of

the process is considered in chapter 5, providing a further difference.

Finally, the focus towards evaluating systems from the novel perspective, denoted

the “flow of outcomes”, has not been widely seen in the literature. Thus, the methods
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in chapter 5 help to emphasise the potential of such a view in evaluating systems

and introduce both a language and framework to better understand, communicate

and apply this perspective.



Chapter 3

Understanding referral data

through data visualisation and

analysis

In this chapter I present work that I carried out to inform the development of

patient flow models for community health services. I present my key findings about

the dynamics of referrals within community services, gained through collaborative

work and through the analysis of patient level referral data.

To understand this data, I applied several visualisation methods to NELFT refer-

ral data, each focussing on a different characteristic of community referrals. At the

time of carrying out this analysis, managers within Havering community health ser-

vices were beginning to design a single point of access (SPA) for managing referrals

within their services. This presented an opportunity to make a timely contribution

by using data visualisations to inform their thought process in designing this service

through the possible identification of important referral paths, patterns of patient

use and key services. The main benefit of these visualisations to NELFT was the

opportunity to explore and discuss the nature of referrals within their community

services as informed by the data.

69
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In this chapter I:

1. Identify key characteristics of how patients use community services relevant to

patient flow modelling;

2. Present data visualisation methods for understanding complex referral data in

community health care;

3. Discuss how these data visualisations may inform the planning of services;

4. Inform the development of patient flow models for community health care.

3.1 Introduction

In developing methods for modelling patient flow, it is important to understand

how patients interact with health care services and the key issues in providing care.

As identified in chapter 2, there is a range of referral and flow dynamics that may

be considered when modelling patient flow within community health care. Thus,

I worked collaboratively with care leads from the North East London Foundation

Trust (NELFT) to learn about the key dynamics seen in their services.

Focusing on community services for patients aged 65 and over in Havering (a Lon-

don borough), I sought to understand how patients used these services and whether

there were any common characteristics of patient use. In beginning this work, I found

that NELFT possessed a wealth of data, yet did not have the capacity or resources to

analyse it in order to learn more about their community referrals and inform service

planning. As a result, I sought to provide helpful insight by producing accessible

methods for analysing their data; in particular, informative methods for visualising

patient referral data.
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Methods for visualising referral data are important because they can help both

researchers and care managers to ask and answer questions that might otherwise

be unclear, or difficult to interpret, from the raw data. They can help to commu-

nicate complex information in a “digestible” and understandable way. This makes

them easier to share with collaborators, creating an engaging format for delivering

information that promotes questions and discussion.

At the time of carrying out my analysis, care managers within Havering commu-

nity services were beginning to design a single point of access (SPA). The SPA is

a service that manages referrals between community services, seeking to streamline

the process and reduce inappropriate referrals. The plans to implement this service

presented an opportunity to make a timely contribution. In applying data visual-

isation methods to their referral data, I helped to inform their thought process in

designing this service. This will be discussed later in the chapter.

Structure of chapter

In the following section, I briefly explore the literature on visualising electronic

patient records and referral data across health care settings. In section 3.3, I detail

the initial thought process gained from scoping conversations with Havering commu-

nity care leads. I also discuss the data obtained for this work and the process taken

to clean it. This is followed by a descriptive analysis of the data and a discussion of

the methods in section 3.4.

In section 3.5, I detail the visualisations and present an application of them to

NELFT community health care data. Firstly, I present a network map, using filters

and simple network statistics to help identify patterns of patient use and significant

groupings of services. Secondly, I conduct an analysis of referral pathways looking

at the concurrent use of services by patients and chains of referral from one service

to another. Thirdly, I produce an aggregated patient pathway plot, looking at how
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the subsequent care of patients, who used a given service, develops over time.

This chapter culminates in a discussion of these visualisations, the insight gained

in designing a SPA and the limitations of this work. In my concluding remarks I

note how this work informs the development of the patient flow model in chapter 5.

3.2 Research landscape and original con-

tribution

For an introduction and overview of visualisation methods and their use for un-

derstanding data, see Graphical Perception and Graphical Methods for Analyzing

Scientific Data [82]. In this article, the authors briefly identify and summarise some

of the key principles behind data visualisation and comment on some of the key

features of graphical representations that may lead to more effective graphical per-

ception.

Within health care, several studies have used methods to visualise electronic

health records using a range of methods and to insight into different settings. These

studies range from visualisations of a single patient’s data [83, 84] to larger sets

of multiple patients [85]. Overall, the applications of simple visualisation methods

highlight how presenting complex data in a straightforward and digestible manner

can provide valuable insight. Additionally, the more complex methods may help to

identify key patterns within the data [85]. Across the range of methods, it is common

and helpful to use different colours and sizes of both text and objects; visual filters;

and interactive methods to explain differences in data [86].

A common visualisation method is to represent data using a network. In network

representations, the pairwise relationships between sets of entities are described vi-

sually by a collection of shapes, usually circles, (nodes) and lines connecting them

(edges), see Figure 3.1. Nodes are connected by an edge if they relate to each other,
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e.g. if nodes represent services, an edge connecting them may represent a referral

between them. This structure is both visually informative and creates a means for

mathematical analysis.

Figure 3.1: Diagram of a simple network representing referrals between services

Network representations may be used to understand a variety of health care

processes, such as the clinical pathways of patients [87] or how patient records are

used by care providers [88]. By producing a network, characteristics of the nodes

and edges may be represented by different sizes or colours. For example, the size of a

node may represent the number of patients in a specific service [87], whilst the width

of an edge may represent the number of patient referred between two services. In

addition, node and edge colouring may be used to highlight key information about

the nodes or how they relate to each other, as shown in Figure 3.1.

Contributions

In this chapter I use several visualisation methods to explore different character-

istics of community referrals, analyse the data and aide the communication of the

results. The aims of this work were to understand this large and complex system
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of community services, identify how patients used multiple services and to explore

whether common patterns of referrals existed. Furthermore, these maps help to un-

derstand how these services could be modelled, and help NELFT by providing insight

into how patients used their services, aiding discussion as to how these services may

be organised. In particular, these methods helped to inform these conversations by

highlighting and communicating key characteristics of patient referrals and uses of

service as seen within the data.

This work differs from the existing literature since it considers community health

care and the referral dynamics of this sector, in particular the reuse of services,

concurrent uses of different services and potential patterns of subsequent referrals.

Furthermore, the combination of methods alongside the network representation and

the dynamics which they are used to analyse has not been seen within the literature

before. Whilst applied to a single provider (NELFT), the methods are generalisable

and easy to use in other boroughs, trusts and organisations. These maps are visually

impactful, informative and simple to create, increasing their scope for use in practice.

Regarding the contribution to the work in this thesis, the dynamics identified

through this analysis are considered when developing the theoretical model in chapter

5. In particular, the potential for patients to reuse services and the potential for the

sequential use of multiple services.

3.3 Initial steps

3.3.1 Understanding patient referrals - learning

from care leads

This visualisation work was carried out in collaboration with NELFT clinical

staff to understand better the structure of NELFT community services and how
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patients were referred between them. A particular example of this was a meeting

held with leads from physical health services and mental health services during which

they participated in a mapping exercise to identify: the types of community services

delivered by NELFT; how patients were referred into and between them; whether

any common pathways existed (theoretically and in practice); whether there were

any significant characteristics that should consider from the outset; and, whether

any previous attempts had been made to visualise this system.

This involved two tasks. The first was to categorise services into mental or

physical health services, and into home based, clinic based or inpatient based services.

The sources of referral were also identified. An example of this task is given in Figure

3.2. The second task was to organise services into possible referral pathways in order

to identify theoretical referral pathways and to learn about what they expected to

occur in practice and why. This informed the methods I could use to visualise their

data. An example of this task is presented in Figure 3.3.

Figure 3.2: Example of service categorisation task

Blue symbols indicate physical health services, whilst orange indicate mental health.
The symbol paired with Podiatry shows that it is clinic based, whilst the symbol paired
with the Older Adults Home Treatment Team represents a home based service. The
arrow cards were used to note the routes of referral into services.
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Figure 3.3: Example of referral mapping task for physical health services

Care leads noted that no defined pathway existed; thus, all services could refer to each
other. However, they suggested groups of services based on patient use.

From these meetings, three characteristics were identified as important. Firstly,

it was theoretically possible for all physical health services to refer to each other,

creating a complete network of more than thirty services. Secondly, in practice,

this network would be highly connected since patients could use any combination of

services, with more defined pathways seen amongst mental health services both theo-

retically and practically. Thirdly, it was indicated that few routes for referral existed

between mental health services and physical health services. A further key detail was

the possibility that patients could reuse certain community services multiple times.

This was a feature of both mental and physical health.

Furthermore, the CCG had previously attempted to visualise this system, see

Figure 3.4. The map begins with access points in primary, community and acute care,

and presents possible pathways through community services for patients experiencing

medical “crisis” - although the term crisis was not defined. The map includes details

of opening times and possible routes for discharge; however, it lacks notions of service

capacity and patient activity, and represented theoretical pathways.
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Figure 3.4: Map produced by CCG of possible referral routes through community
physical health services

Since there are few referral paths between physical and mental health services I

decided to only focus on physical health services. Reasons for this include the difficul-

ties in accessing data for both sets of services because patient data were recorded on
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different systems. Furthermore, by working with physical health services there was

an opportunity to provide greater insight due to the lack of definable pathways, the

possibility of patients reusing services and the potentially highly connected nature

of these services.

To produce the visualisations, I obtained the relevant data after discussions with

NELFT’s performance team and data managers. The scope and structure of this data

is discussed in the next section, presenting some initial observations and analysis.

3.3.2 Routine patient data - content and cleaning

I obtained a non-identifiable routine dataset of patient level data, extracted from

RiO (an electronic patient record system), which was stored securely within UCL’s

Data Safe Haven [89]. This is a technical solution for storing, handling and analysing

sensitive data, certified to the ISO27001 information security standard and conform-

ing to the NHS Information Governance Toolkit.

Working within this Safe Haven introduced limitations in processing and using

the data. For example, the mapping software was installed locally on a laptop and

was not available within the Safe Haven. Furthermore, in using the Safe Haven, the

data had to be first cleaned, aggregated and processed within the secured setting

and then extracted for use. Other limitations are discussed later.

The data consisted of all referrals for patients aged 65 and over to NELFT com-

munity services in Havering from 1 April 2014 to 31 August 2016. Lasting from the

date of referral until discharge or loss, referrals consisted of one or more appoint-

ments - with each appointment represented as a row in the data. Thus, a patient’s

community care history could span multiple rows, representing the combination of

their referrals to community services. See Table 3.1 for key variables within the data.

Prior to its use the data were cleaned. Due to the size of the dataset size (over

1,200,000 rows and over 30 columns), I used the statistical software Stata. There
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Variable name Description Level

Client ID Non-identifiable patient reference.
20293 unique IDs

Patient

Ref ID ID for referral. 65306 unique IDs Referral

Referral Datetime Date and time of referral Referral

Source Description of where patients were referred
from. 61 sources (Processed)

Referral

Specialty Description Description of medical discipline patients
were referred to. 34 specialties (Processed)

Referral

Discharge Datetime Date and time of discharge Referral

Length of Stay Length of referral - days Referral

Appointment Date Date and Time of contact Appointment

Table 3.1: Variables contained in the dataset used for producing visualisations

were two main reasons for cleaning the data. Firstly, dates and times were stored as

a concatenated string; thus, these variable needed to be assessed for accuracy and

split for use. Secondly, some services were recorded under multiple names, such as

the Nutrition and Dietetics Service which was also recorded as: Adult Nutrition &

Dietetic Service, Nutrition & Dietetic Service, Acute - Nutrition and Dietetic Service.

Further details of the cleaning process see Appendix A.1.

3.4 Methods

3.4.1 Analysis of individual patient pathways

The data were left truncated - i.e. some referrals beginning before 1 April 2014 -

and right censored - i.e. not all referrals had concluded by 31 August 2016. For all

referrals, only appointments from 1 April 2014 onwards were included in the data.

Figure 3.5 illustrates the above, presenting an example of hypothetical referral data

for an individual patient.
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Due to left truncation, a patient’s first referral was unknown; therefore, I refer

to their first referral in the data as their index referral. To overcome the difficulties

presented by incomplete data, only referrals that began on or after 1 April 2014 and

finished on or by 31 August 2016 were analysed, the limitations of which is discussed

later. Notably however this does not impact the use of the methods since they are

generalisable and do not depend on the data’s structure.

From the inspection of individual patient plots, there were four clear dynamics

of patient use. Firstly, there was a large variation in the number and range of

services used by patients. Some used a single service once, whilst others had multiple

referrals, shown in Figure 3.6. Notably, patients sometimes used the same service

multiple times, a characteristic I explore later.

Secondly, referrals to different services commonly overlapped. Figure 3.7 shows

the distribution of the maximum number of services used at the same time per

patient.

Figure 3.5: Hypothetical patient level referral data for community health care

The grey dots each represent an appointment. The vertical red lines represent the
start date, 1 April 2014, and the end date of the data, 31 August 2016.
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Thirdly, the number of appointments, timing of subsequent referrals and length

of referral varied. Figure 3.8 shows the distribution of referral length. Whilst the

majority of patients experienced short length of stays, there is a long tail to this

distribution with many lasting over 200 days.

Fourthly, there was variability in the services used by patients and how they

used them. Informed by the above observations, I developed methods for exploring

whether common patterns of referral existed in the data.

3.4.2 Network map

Motivated by the potential complexity of referral pathways and size of the system,

I produced a network map of NELFT referral data using Gephi [90] - an open-source

network analysis and visualization software package.

The networks produced in this work are formed of two types of node: specialties

and sources (terms used within the data) shown in Tables 3.2 and 3.3 respectively.

Specialties represent NELFT’s community services, whilst sources are the services

Figure 3.6: A histogram showing the distribution of the total number of referrals per
patient in the dataset - maximum of 64
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Figure 3.7: A histogram showing the distribution of the maximum number of con-
current referrals, per patient, within the date range of the dataset - maximum of
12

Figure 3.8: A histogram showing the distribution of referral lengths, per referral, in
days - maximum > 800 days. Each bar represents a span of 20 days

outside of these that refer to them. Some specialties refer to other specialties and

edges are directed from the referring service to the receiving. Specialties may consist
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Referral Sources Total
referrals
made

Referral Sources Total
referrals
made

Acute 12,586 Occupational Health 1

Age Concern 2 Occupational Therapy Service 315

Care Co-ordination 1 Other Community Health
provider

1,477

Care Home 1,868 Other Community Professional 108

Carer/Relative 2,434 Other Medical Referral 24

Clinical Assessment Service 1 Other Source of Referral 3,777

Community Inpatient Service 162 Palliative Care Service 8

Community Nursing Service 182 Physiotherapy Service 807

Community Psychiatric Nursing
Service

3 Practice Nurse 121

Community Specialist Nurse 318 Private Care Provider 1

Day Centre 1 Private Hospital 1

Day Hospital 91 Psychiatry Service 1

Discharge Liaison Service 91 Rapid Assessment Team 38

GP 12,601 Residential Home Staff 9

Health Visiting Service 10 Self Referral 4,877

Heart Failure Service 25 Sheltered Accommodation Service 3

Hospice 75 Social Services 146

Intermediate Care Service 68 Specialist Neurology Nursing 1

Key Worker 46 Specialist Nursing 18

Mental Health Support Worker 2 Stroke Services 304

Night Nursing Service 15 Transfer In 4

Non-Emergency Health Care
Service (111)

27 Walk-in Centre 1

Table 3.2: Sources for community referrals included within the dataset. Community
services included in this table represent those that did not feature as a specialty in
the dataset.

of several teams that each provide different types of care (for example the District

Nursing Service provides both rehabilitative care and palliative care); thus, speciali-

ties may refer patients to themselves, representing a referral between teams. Notably,

in Table 3.2, only a handful of sources are services within mental health, each initi-

ating a small number of referrals.
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Referral Specialty Total
referrals
received

Referral Specialty Total
referrals
received

Community Beds 331 Neurological Specialist Nursing 63

Community Cardiology Services 380 Nutrition and Dietetics 2,575

Community Matron 1,328 Oncology Specialist Nursing 107

Community Rehabilitation
Services

1,409 Orthopaedics 1,031

Community Therapy Service 2,064 Orthotics 544

Community Treatment Team 12,598 Phlebotomy 2,251

Continence Service 375 Podiatry Service 288

Continuing Healthcare 1 Prosthetics Service 10

Diabetes Service 568 Psychological Services 38

District Nursing Service 8,461 Respiratory Service 1,014

Falls Service 976 Specialist Palliative Care 8

Integrated Care Liaison 971 Specialist Seating 4

Intensive Rehabilitation 1,562 Speech and Language Services 912

Intermediate Care Service 102 Tissue Viability Services 942

Leg Ulcer Service 2 Wheelchair Service 414

Musculoskeletal Service 4,179

Table 3.3: NELFT community services, known as specialties, included within the
data

Volume of activity and frequency of reuse is represented by the network in four

ways: edge width, node size, edge colour and specialty node colour. Edge width

represents the total number of referrals between two nodes - ranging from 1 to 5,810.

Edge colour represents the average number of times each unique patient who used

the edge was referred from the given edge’s source to its specialty. Moreover, source

node size represents the total number of referrals initiated, and specialty node size

represents the total number received. Source nodes are uniformly coloured white and

specialty nodes are coloured according to the average number of appointments per

referral. Other informative metrics may be used for colouring such as monetary cost

or aggregate patient outcomes.

Notably, this network can only be used to interpret pairwise relationships. Whilst
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visually connected, empirically the data may not contain continuous paths between

more than two nodes. For example, consider four nodes A, B, C and D connected

as in Figure 3.9.

B

D

A

C

Figure 3.9: Example network diagram

Firstly, whilst the network shows that C received referrals from both A and B,

it does not show whether patients referred to D originated from A or B. Rather, it

is possible that all those referred from C to D originated from either A only, B only,

or neither; we do not know from the network alone due to multiple sources.

The case when this is neither introduces the second limitation, caused by left

truncation. It could be the case that all patients referred from C to D were originally

referred from either A or B; however, if these referrals occurred before the start date

of the data, these referrals are not included in the analysis. Thus, I only know that,

during the timeframe of the data, patients were referred from C to D. A similar case

could be true for every edge in the network.

Finally, since the data is aggregated, specific patient pathways cannot be followed

within the network; hence, it is not known whether two or more referrals relate to

a unique patient. Given these limitations, I developed visualisations that could help

provide this information, presented next.
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3.4.3 Chains of referrals and concurrent uses of

multiple services

Figure 3.10 shows how the number of patients in their 2nd, 3rd, 4th, 5th and

6th+ referral changes over time, where time t = 0 is the start date of each patient’s

index referral. Additionally, Figure 3.11 shows how the number of patients in 2, 3, 4

and 5+ concurrent referrals changes since the start of their index referral.

Figure 3.10: Timelines showing how the number of patients in their 2nd, 3rd, 4th,
5th and 6th+ referrals changes over time. Time = 0 corresponds to the start date of
a patient’s index referrals.

Due to right censoring, these plots bias towards shorter referrals. However, they

highlight the potential for subsequent referrals to overlap. Thus, I examined the data

to identify chains of referrals and services that were commonly used at the same time.

A chain occurs when patients are first referred to a specialty that then refers

them to another specialty. These chains are visualised in a plot created using the

R package “alluvial” [91]. Flowing from left to right, the plot begins with the chain

sources. Lines are plotted from the source to the first specialty that patients are
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Figure 3.11: Timelines showing how the number of patients involved in 2, 3, 4, and
5+ referrals at the same time changes over time. Time = 0 corresponds to the start
date of a patient’s index referrals.

referred to. The line’s width indicates the total number of referrals and its colour

indicates the first specialty that is referred to in the chain. Similarly, lines are drawn

from the first specialty to the second specialty, maintaining the same colour. This

plot is ordered so that chains from the source, through the first specialty, to the

second are clearly distinguishable.

Similarly, I used an interactive sunburst plot, produced using R package “sun-

burstR” [92], to visualise how patients concurrently used services. This is a hierar-

chical plot showing the number of patients using different combinations of services.

The plot consists of layers of rings, each divided into segments that represent

different services, indicated by colour. The inner most ring contains parent segments,

representing all services used concurrently with at least one other service. The size

of each segment shows the total number of times this service was used concurrently

with other services. In the next ring, the parent segments are divided into sub-

segments. Considered in combination with their parent segment, these segments
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represent pairs of concurrently used services, with size indicating how many times

they were used together. Each subsequent ring follows this pattern, dividing into

further sub-segments, increasing the number of services used together.

This plot is also orderless to aid navigation. This means that the size of a segment

for some service A in the second ring with some parent service B, is equal to the

size of a segment for service B in the second ring when service A is its parent. Joint

uses can therefore be examined starting from a service of interest. In creating the

graph in this manner, each possible order of service combination is included. Thus,

combinations of three unique services will have 6 segments in the third ring, whilst

combinations of four unique services will have 24 in the fourth ring.

3.4.4 Subsequent uses of community services

From conversations with NELFT service managers, they wanted to understand

how patients’ subsequent referrals developed over time and what services they used.

Therefore, I visualised the future community care referrals of patients with a common

index service by plotting each of their referrals as horizontal lines, each beginning at

the start date of referral and finishing on the date of discharge. This plot displays

aggregated patient data, grouping referrals by service, and is ordered by referral

date, then referral length. Again, time 0 represents the start date of a patient’s

index referral.

I now present an application of these methods to NELFT’s data, discussing how

they may inform the design of their single point of access.
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3.5 Application to NELFT referral data

3.5.1 Network Map

Beginning with the complete network, Figure 3.12, there are 75 nodes comprising

44 sources and 31 specialties (11 referring to other specialties) with 386 edges rep-

resenting 45,506 referrals. Whilst this network is visually complex, the relationships

between nodes can be explored interactively within Gephi by highlighting individual

nodes to reveal their nearest connecting neighbours. When sharing the complete

map with collaborators, this was useful for highlighting key information, exploring

the network and identifying services of interest.

Working through the network, there are two levels of activity. Figure 3.13 is a high

activity network, containing edges with > 2 referrals per month, which represents

the bulk of activity within the system. Featuring 36 nodes - 14 sources, 22 specialties

(seven referring to other specialties) - and 81 edges this network represents 93.1% of

all patient referrals. Figure 3.14 is the low activity network, containing edges with

≤ 2 referrals per month. Representing the remaining 6.9% of referrals, there were a

total of 74 nodes - 44 sources, 30 specialties (11 referring to other specialties) - and

305 edges, highlighting the large number of low activity services and edges.

To explore this system further, I calculated several network statistics. For the

complete network, Figure 3.12, the average number of edges connecting each node

is 5.15. Furthermore, the directed network density with loops - the number of edges

in the network divided by the total number of possible edges, where specialties may

refer to themselves - is 0.17. Due to the source-specialty structure of the network, I

had to formulate an adapted density formula for this network:

GD =
|E|

|N |×|Nspec|
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Figure 3.12: Network map of referrals within NELFT’s community health care ser-
vices. All sources, specialties and edges.

where, |E| is the total number of edges in the network, |N | the total number of

nodes, and |Nspec| the total number of specialties.

These measures are reasonably low given my collaborator’s suggestion that be-

cause all specialties could refer to all specialties, this network would be highly con-

nected. However, given this reasonably low density, this may not be the case.

To investigate further, I filtered the network to consider specialty to specialty

referrals only, Figure 3.15. Containing 28 specialties and 74 edges, this network
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Figure 3.13: Network maps of referrals within NELFT’s community health care
services. High activity network: edges with > 2 per month.

represented 2,919 referrals with a directed graph density of 0.094. Interestingly,

eight nodes and seven edges represented 2,100 of these referrals, Table 3.4. This

confirmed that specialties did not refer to each other as much as initially suggested.

3.5.2 Chains of referrals and concurrent uses of

multiple services

Next, I analysed chains of referrals consisting of a source, first specialty and sec-

ond specialty, Figure 3.16. To begin, I only consider the first and second specialties.
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Figure 3.14: Network map of referrals within NELFT’s community health care ser-
vices. Low activity network: edges with ≤ 2 per month.

Referring specialty Receiving specialty Total
referrals

Community Matron Community Treatment Team 117

Community Matron Integrated Care Liaison 179

Diabetes Service Nutrition and Dietetics 189

Speech and Language Services Speech and Language Services 223

Nutrition and Dietetics Nutrition and Dietetics 398

District Nursing Service District Nursing Service 483

District Nursing Service Tissue Viability Services 511

Table 3.4: Seven high activity referral edges form the bulk of activity in the specialty
to specialty network, Figure 3.15
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Figure 3.15: Network map of referrals within NELFT’s community health care ser-
vices. Specialty only network with all specialty to specialty referrals.

I found 47 combinations of specialties representing 814 patient uses. Altogether,

there were nine different first specialties and 23 different second specialties, eight of

which were common between the two sets.

Of the first specialties, District Nursing Service (DNS) and Community Matron

services were the most common, featuring in 17 and 15 chains, accounting for 470

and 270 total patient uses, respectively. In comparison, the next most common were

Nutrition and Dietetics, and the Diabetes Service featuring in three and two chains,

amounting to 114 and 161 patient uses, respectively.

The maximum number of chains that a second specialty featured in was five, with

a mean of 2.04 appearances. Furthermore, there was large range in the number of

patient uses for these second specialties: Nutrition and Dietetics, 325; Tissue Viabil-

ity service, 227; DNS, 154; Community Therapy Service, 77; Community Treatment
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Figure 3.16: Chord plot for chains consisting of a source and two specialties. Only
instances with > 20 occurrences are shown to improve interpretability.

Team, 77; and Speech and Language Services, 62. Significantly, 260 patient uses

represented loops where the first and second specialty were the same.

In response to this information, care leads suggested that it would be useful to

explore the timing of these onward referrals, in particular instances of quick referral

and discharge. This could help identify inappropriate referrals e.g. instances where

patients were referred to an incorrect service. Table 3.5 presents chains with more

than 20 occurrences, and how many second referrals occurred in the first 14 days, 28

days, and time span of the data.

Investigating chains of a source and three specialties would be a natural next

step; however, I cannot present an extensive analysis here since few of these chains

existed in the dataset. In particular, there were 66 such chains representing 196

patients uses, yet only two had more than 10 occurrences.
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Referring specialty Receiving specialty Onward referrals

14 days 28 days Overall

District Nursing Service Tissue Viability Service 69 91 225

Diabetes Service Nutrition and Dietetics 107 121 159

District Nursing Service District Nursing Service 66 73 122

Nutrition and Dietetics Nutrition and Dietetics 29 51 97

Community Matron Community Therapy Service 34 44 65

Community Matron Community Treatment Team 19 25 62

District Nursing Nutrition and Dietetics 14 20 44

Community Matron Integrated Care Liaison 41 42 42

Speech and Language
Service

Speech and Language
Service

7 14 37

Community Matron District Nursing Service 7 9 31

Community Matron Nutrition and Dietetics 6 9 22

Table 3.5: Table of chains that occur more than 20 times in the data, noting how
many second referrals occurred in the first 14 days, 28 days, and length of the data

I also visualised joint uses of service, see Figure 3.17. It is immediately clear from

the plot that the DNS and the Community Treatment Team are the most concur-

rently used services. Whilst this map is visually complex, its interactive capability

helps overcome this for nuanced analysis. Furthermore, as noted by [82] the iden-

tification of angle sizes is often inaccurate; however, the ability interact with the

sunburst plot helps to overcome this and improve its usability.

For example, to explore how the Respiratory Service is used concurrently, one

starts at its parent segment in the inner ring. Highlighting the segment indicates

how many times it has been used concurrently. Moving through the outer rings,

highlighting a sub-segment reveals a step by step chain of the services used and the

number of occurrences, as in Figure 3.18.
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Figure 3.17: Example of joint uses of each community service, for instances of > 20
occurrences

3.5.3 Subsequent uses of community services

The previous analyses show that the DNS is highly connected, frequently ap-

pearing in several sequences of referrals and concurrent uses of service. Considering

patients with an index referral to the DNS, I created timeline plots to visualise their
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Figure 3.18: Example of sunburst plot’s interactive capability

This example shows how highlighting a segment in the third ring causes all segments
other than the concurrently used services to fade out. It also provides a helpful chain
of concurrently used services at the top, and the number of occurrences in the centre.

subsequent uses of community services, Figure 3.19. This plot adds context to the

chains presented above and may help to identify patterns in patient use.

Patient use within each service looks markedly different due to the variation in

the care each service provides and why patients use them. For example, the many

Community Treatment Team referrals only last for short periods of time since this

service aims to prevent unnecessary acute admissions by providing responsive care
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Figure 3.19: Timelines of subsequent referrals for patients whose index referral was
to the District Nursing Service

Each referral is represented by a horizontal line, starting at the date of referral, ending
at the date of discharge. Referrals are grouped by service and sorted by referral date
and length.

within the patient’s home. By comparison, the referral lengths of patients in the

DNS vary greatly, with some patients staying for a few days, others for years. This

reflects the diversity of care offered within this service. Furthermore, patients whose

index referral was to the DNS also had subsequent referrals to the DNS, highlighting

the potential for reuse.

Another interesting feature is the lack of significant clusters or patterns. This may

occur due to the limitation of using an index referral i.e. I potentially lack all prior

information regarding a patient’s use of community services, limiting the insight

gained from this analysis. This may also highlight my collaborators’ observations

that clear pathways are hard to define amongst these services due to the scope for

any patient to use any range of services and the diversity of patients.
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3.6 Summary and Discussion

Accessible methods for visualising referral data are useful for understanding how

patients use health care and for informing the management and organisation of health

care services. Through collaboration with care leads and the exploration of patient

level data, I applied several visualisations methods to NELFT referral data in order

to analyse the key dynamics of referrals within their community services. These

visualisations helped to understand multiple uses of service, the timing of patient

use and quantify repeated use of services.

Having shared this work with care managers throughout, the main benefit of these

methods to NELFT was the opportunity to ask and investigate more refined questions

around the nature and patterns of referrals as they designed their single point of

access (SPA). Notably, answers to these questions could be gained from exploring

the raw data and further analysis of more complete data. Hence, the visualisations

help to identify dynamics and patterns that should be further explored within the

data. Whilst the sharing of the visualisations led to more detailed discussion, at the

time of concluding this work I do not know how they may have helped to inform their

decision making; thus, I can only detail the resulting discussion topics and points

raised.

Using a network representation, node and edge colouring, and network filtering

helped to provide greater understanding of NELFT’s community referral data. This

helped inform NELFT’s thoughts around the design of a SPA and helped to identify

directions for further investigation. This included questions around what level of

activity is appropriate within the system and whether what is seen within the network

map was expected. Furthermore, the range of activity seen in this system was of

interest. For instance, the sharing of the map led to discussions as to whether the

high number of low activity referral pathways is appropriate for the range of services

and whether the high volume of low activity unnecessarily complicated the referral
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process or reflected a positive characteristic of the system.

When interacting with the network in Gephi, service managers began to be iden-

tify possible services for inclusion within the SPA, discussing what sort of activity it

should handle, e.g. only external referrals from GP, social care and acute? In partic-

ular, whether this would help to reduce some of the low level activity and help avoid

inappropriate referrals. Considering high activity, questions arose about whether

natural groups of services existed and how referrals between them could be handled

by a SPA and how the introduction of a point of triage may affect the structure

of these referrals. For example, if the SPA only handled NELFT to NELFT refer-

rals would this have a positive affect on patient access through improved handling

of multiple referrals for single patients and whether the SPA would help streamline

referrals so that patients are referred directly to the appropriate services.

Evaluating chains and concurrent uses of community services enabled the analysis

of sequences and the identification of common pathways. This information may be

used to inform referral guidelines and service planning. For example, after sharing

this work with my collaborators, they suggested this method may help identify cases

of inappropriate referrals in instances where the initial referral is short and the spe-

cialty acts as a “point of triage”, rather than a point of care. Thus, the SPA could

be used to prevent this. Similarly, such a referral may indicate that patients who

are referred to a particular service, say the Diabetes service, often require another

service, such as the Nutrition and Dietetics service, which could have been made

alongside the initial referral, potentiality improving the ease and speed of access.

Finally, plotting uses of community services after a patient’s index referral helped

care leads to understand what services patients used, when they used them, and how

long their referrals lasted. This visualisation could provide information that may

be useful for the initial triage of referrals within a SPA. For example it could give

an indication of whether there is a likely pathway for certain patients, aiding the
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future planning of their care. Notably however, the presented example (given the

limitations noted below) indicated no patterns or clear insight to further motivate this

discussion. Depending on the index service, there may be instances where explicit

patterns occur, further informing SPA referral practice and guidelines.

3.6.1 Limitations

Through collaborative working, several limitations of this work were identified

alongside areas for future research. Limitations in processing and using the data

were introduced by working within the Safe Haven, for example, Gephi was not

available within the Safe Haven. This increased the complexity of the visualisation

processes because the data had to be first processed in the secured setting and then

extracted in aggregated form. A further limitation occurred when sharing this work.

When exploring the visualisations, collaborators would ask questions that could only

be answered by patient level data. Not having this available introduced a time lag

in the information I could provide and stifled useful conversations.

Furthermore, I obtained a single extraction of data, limiting the work because I

did not have complete information for every patient, and did not know their entry

points to community care. It would have been insightful to apply these methods

to include each patient’s first referral, but I was limited to using index referrals.

The end date of the data added a further limitation, since patients who entered the

system later would use fewer services, introducing bias towards shorter referrals. This

could potentially be overcome by using Kaplan-Meier curves or multi-state models to

evaluate referral lengths; however, this does not overcome the limitations introduced

in identifying overlapping and subsequent referrals.

A solution to these issues is to work physically within the organisation, where

data is easily accessed and updated. To this end, I ran a seminar for care leads within

mental health, physical health and social care to teach them how to implement the
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network methods. However, it should be noted that access to more data may not

improve the work. Community services change rapidly with new configurations and

referral guidelines regularly introduced. As a result, datasets that span large time

periods may include multiple configurations of the system and lead to inaccurate

conclusions or a misrepresentation of the system.

3.6.2 Possible avenues for future work

Some questions that arose from this mapping work that were not directly ad-

dressed include:

• Can groups of service be identified in the system where patients “bounce be-

tween” them?

• Can data visualisation help to identify inappropriate referrals?

• Can a patient’s total care be described by including services outside of physical

community care, e.g. acute care, social care and mental health?

These would be good directions for the future of data visualisation for health care

planning. Each addresses key difficulties in the provision of community care that are

hard to identify from the raw data alone.

3.7 Conclusions

In this chapter I used several visualisations to aid the interpretation of complex

referral data. The primary aim was to learn about how patients are referred into

community services, how they use these services and whether there are any key

dynamics to be included within the patient flow model I develop in chapter 5.

Each analysis focussed on different referral characteristics of community health

care and provided insight into how patients used community services, considering
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the interface with external points of referral such as acute care. The network map

helped to portray the vastness and complexity of the system, to identify groups of

services according to patient activity, and to quantify the reuse of services. Analysing

chains and concurrent uses of services provided insight into the progression of patient

care and common combinations of services. Finally, plotting subsequent referrals

indicated the timing, length and patterns of future community care referrals for

patients with a common index referral.

Together, these visualisations give a broad understanding of the referral dynam-

ics in the system, providing informative analysis in three ways. Firstly, they help

to present and understand complex data. Secondly, they are accessible and may

aid the identification of individual or groups of services which patients commonly

use. Thirdly, they stimulate conversation around what information is beneficial in

planning these services.

As mentioned, in applying these maps several important dynamics of how patients

use community services were identified. These were: uses of multiple services; the

potential for patients to have overlapping referrals with different services; and the

potential for patients to reuse services. As a result, the work presented in this chapter

has directly informed the development of the patient flow model presented in chapter

5. A final benefit of this work is that all the visualisation are produced using open

source software.



Chapter 4

Measuring patient outcomes

within community services

In this chapter, I explore how outcome measures are currently used by the North

East London Foundation Trust (NELFT) within their community services, and how

they may be used within patient flow modelling. The aim of this work is to identify

the range of outcome measures currently considered important for evaluating a di-

verse collection of services, and what measures are collected and used within services.

This is achieved by surveying four sources of information (NELFT Quality Accounts,

conversations with staff, routine patient data and commissioning data) from which

a range of measures that are identified and presented.

In addition, I discuss the use, suitability and limitations of these measures for

evaluating clinical performance and discuss whether there are any measures currently

collected by NELFT that are suitable for use in a patient flow model. Furthermore,

I note whether any measures not currently collected by NELFT would be useful to

incorporate into a patient flow model. The aims of this chapter are to:

1. Survey several sources to understand the outcome measures that are important

for monitoring quality across NELFT community services;

2. Suggest measures that may be incorporated within models of patient flow.

104
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4.1 Introduction

Maintaining and improving quality is a major priority for health care providers

around the world. In the UK, the quality of health care has been of increasing

importance, featuring heavily in both health care policy [18, 93, 94, 95] and research

(see work by the King’s fund [96] and Health Foundation [97]).

Within the health care literature, there a many definitions of “quality”. The

World Health Organisation (WHO) define quality as “the extent to which health care

services, provided to individuals and patient populations, improve desired health out-

comes”. [98] The Institute of Medicine (IoM) uses a similar definition, adding that

this is dependent upon “current professional knowledge”[99]. The Health Foundation

extend this further still stating that quality is multi-dimensional, encompassing sev-

eral aspects of care, summarising quality as “the degree of excellence within health

care” [97].

The dimensions of quality, commonly called domains, relate to the aims and pur-

pose of health care. Defining quality in terms of domains helps to communicate

the meaning and relevance of quality in health care, and provides a framework for

measuring that quality. Throughout the literature various domains have been con-

sidered. In Lord Darzi’s 2008 review [18] three domains were suggested: patient

safety, clinical effectiveness and patients’ experience. Alternatively, the Care Qual-

ity Commission (CQC) use five domains in their inspection framework, assessing

whether care is: safe, effective, caring, responsiveness to patient needs, and well led

[100]. The Institute of Medicine define six domains, establishing whether care is:

safe, effective, patient-centred, timely, efficient and equitable [99].

As noted in the definitions of quality by the WHO and IoM, quality may be mea-

sured by changes in the health outcomes of individuals and populations of patients.

These are measurable aspects of patient health that can be influenced by care inter-

actions. With clinical effectiveness a fundamental component of health care quality,
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the measurement of health outcomes provides a means for assessing whether care

has its intended effect - to maintain and improve the welfare of patients. Therefore,

health care providers routinely collect data on outcome measures to quantify and as-

sess the quality of their care. This is important for the evaluation of both individual

services and systems of multiple services as they help to track trends in quality and

identify areas for improvement. With this in mind, I explore what outcome measures

the North East London Foundation Trust (NELFT) use for measuring clinical effect

across multiple services in this chapter.

Structure and contribution of the chapter

Seeking to inform how outcomes may be used within models of patient flow

through multiple services, I focus on measures that are used across a range of services.

The aim is to identify what measures community services are used to evaluate, after

which I discuss how useful these measures may be used in evaluating the clinical

impact of services. Having discussed and identified any suitable measures, I then

discuss how such measures may be used in a model of patients attaining care and

using several services.

As in chapter 3, I concentrate on the measures relevant to community services

located in Havering and used by patients aged 65 and over, drawing this information

from several sources: NELFT Quality Accounts 2013-2017, informal conversations

with NELFT staff, commissioning data and routine patient data. These sources are

discussed further in the next section.

In section 4.3, I identify the range of measures used in community services and

present a synthesis of findings from across the sources, drawing out common themes

and measures. The themes relate to the overarching goals identified within the

sources and are discussed in turn, referencing the relevant measures used to evalu-

ate them. I the discuss their appropriateness and limitations in evaluating clinical
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performance across different services.

The chapter concludes with a discussion of how outcome measures may be in-

corporated into models of patient flow. This includes suggestions as to whether any

measures currently collected by NELFT may be useful in modelling their services.

Additionally, I indicate types of measures that are not currently collected by NELFT

that could be informative in a flow model. These suggestions will be made with a

system’s view in mind - how measures may be used to evaluate quality across diverse

services, and how they may be used to assess the contribution of multiple services

to improvements in patient outcomes.

4.2 Sources used for understanding out-

come measurement

NELFT Quality Accounts 2013-2017

Quality Accounts are produced annually by each NHS care provider to report on

the quality of their services according to patient safety, clinical effectiveness and pa-

tient experience. They comment upon the progress made over the year, the achieve-

ment of goals set the previous year, and outline new targets for the coming year.

This includes the identification of services and streams of care where quality is an

organisational or national priority for the next year. Additionally, the reports high-

light key outcome measures for monitoring the progress of services in meeting their

future quality goals. By surveying five years of NELFT reports, I gain a comprehen-

sive account of NELFT’s past, present and future organisational priorities and the

types of measures deemed important.



Chapter 4. Measuring patient outcomes within community services 108

Learning from conversations with NELFT staff

To understand outcome measurement at both service level and patient level, I

spoke to several of NELFT’s clinical and managerial staff. This included clinicians

from various community services, community care managers and performance man-

agers, with conversations carried out both in person and over the telephone. During

these conversations, I asked a range of questions to understand how each service

operated, what types of care they provided, what outcome measures they collected,

and how they used them to both monitor patient health and evaluate the quality of

their service.

Data - workbook of service level performance measures

For commissioning purposes, a workbook of performance measures for community

services is produced annually by NELFT. It contains several key performance indi-

cators for each service, ranging from generic measures to service specific measures.

Notably, the data contained in this workbook does not differentiate between patient

groups and represents patients of all ages who used the services. I therefore refer to

this data to understand the outcome measures that are important for commissioning

community services, but recognise that it does not specifically inform the care of

elderly patients.

Data - patient level

Finally, I use the same data as in chapter 3 to explore which performance measures

were recorded during care interactions within community services. In addition to the

information noted in chapter 3, there are several other fields in the dataset, including:

the reason for referral, the number of contacts, the length of stay, discharge date and

urgency of referral.

At appointment level, the data consists of appointment dates, cancellation dates
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(if relevant), outcome of appointment, and the activity that occurred during the

contact. The outcome field contains information about whether the appointment

was attended and whether follow up was suggested or changes were made to the

patient’s care plan. In addition, the activity field details the medical tasks carried

out within the contact, ranging from physical interventions to the administration

of medication or advice. Notably, neither of these fields has any direct relation to

patient health or the evaluation of clinical outcomes.

4.3 Important themes and measures across

the sources

From the sources, several measures were identified as key for monitoring clinical

effectiveness within NELFT community services, collated in Table 4.1. Each of

these measures was reported at one or more levels: patient level, service level or

organisational level, as noted in the Table 4.1.

At patient level, measures are used to track, monitor and evaluate the clinical

quality of care that service users receive. These measures may be used to inform the

future care of a patient, whilst helping services to understand the impact of their

care on individuals.

At service level, patient level measures are often aggregated to evaluate the quality

of care across the population of patients. This includes the use of clinical, experiential

and operational measures.

At an organisational level, measures are collected to inform the commissioning,

management and evaluation of services both locally and nationally. Measures that

directly related to the running, costing and budgetary capacity of services were im-

portant at this level, in particular those relating to the operational effectiveness of

the system.
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Performance measures Type of measure Level of reporting

5 × 5 surveys Patient experience Patient, Service,

Organisation

Friends and family test Patient experience Patient, Service,

Organisation

Length of appointments Process outcome Patient, Service

Length of referral Process outcome Patient, Service

Number of acute admissions

amongst patient population

Process outcome Service, Organisation

Number of cancelled

appointments

Process outcome Service, Organisation

Number of contacts per referral Process outcome Patient, Service

Number of discharges from

community services

Process outcome Service, Organisation

Number of non-arrivals (DNA) Process outcome Service, Organisation

Number of patients using

community services

Process outcome Service, Organisation

Number of referrals to

community services

Process outcome Patient, Service,

Organisation
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Performance measures Type of measure Level of reporting

Number of referrals to

community services accepted

Process outcome Service, Organisation

Number of reuses of community

services

Process outcome Service, Organisation

Proportion of avoidable acute

admissions amongst hospital

frequent attendees

Process outcome Service, Organisation

Waiting times Process outcome Service, Organisation

Presence/absence of harm Clinical measure Patient, Service,

Organisation

Volume of adverse events due to

staff absence

Clinical measure Patient, Service,

Organisation

Condition specific measures Clinical measure Patient

Self-management/stability of

condition

Clinical measure Not explicitly recorded

Table 4.1: Table of key outcome measures as identified from Quality Accounts
2013-2017, conversations with NELFT staff, commissioning datasets and routine
patient data

Notably, not all the measures in Table 4.1 are explicit clinical measures, noted

in the second column. Rather in some instances patient experience measures and
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process outcomes were suggested as helpful indicators of clinical effectiveness. Pro-

cess outcomes relate to the operational capability of care services to treat patients

efficiently, such as waiting times and length of stay.

Examples of condition specific measures are the Timed Up and Go test, a physio-

therapy test, assessing the time it takes patients to leave their seat and get moving,

and blood sugar levels for diabetes patients. I will now discuss these measures and

their limitations in measuring the clinical effectiveness across community services.

4.3.1 NELFT quality themes and outcome mea-

sures

Patient experience and satisfaction

Patient experience and satisfaction were important themes at multiple levels (as

identified within the Quality Accounts, conversations with staff and the commission-

ing workbook). Primarily measured by surveys, experience was considered to be

linked to: ease of access, staff communication with patients and whether the service

met patient expectations.

During conversations, it was frequently suggested that experience was a key

service level priority, since patients would often use and reuse community services

throughout their lifetime. As a result, improving patient experience was important

to ensuring that patients continued to engage with these services.

The main measure for gauging patient experience and satisfaction was the 5 ×

5 survey. Undertaken by five service users a month, these surveys assessed multiple

aspects of a patient’s care experience through a set of simple questions. Included

within this was the friends and family test (FFT), in which patients were asked

whether they would recommend the service to friends or family. This was widely

noted as an important measure since patients would only recommend services they
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considered to be beneficial and where they had a positive experience. It was also

indicated that clinicians and care managers regularly used this information to un-

derstand how their service is perceived by patients, and learn where they could focus

improvement initiatives.

Survey results are helpful measures as they provide a framework for comparing

diverse services against a service’s patient experience priorities. However, 5 × 5 sur-

veys are limited in their use for evaluating the experiences of specific patient groups

such as elderly patients. This is because the five monthly respondents represent a

small sample of the entire population of service users and not just those of specific

demographics. Thus, the results are dependent on the patients who are willing to

take part in the survey. The experience data for elderly patients may therefore be

missing from the results or only consist of a small sample that is not representative

of the population. This is problematic since results may skew towards more positive

or negative results.

Whilst patient experience is helpful for understanding how patients engage with

(and may continue to engage with) a service, it does not give any explicit clinical

insight as to how their health is affected as a result of care.

Service integration and patient activity

A recurring theme throughout my conversations with NELFT staff and the Qual-

ity Reports was the integration of care within community services. Written after the

publication of the Francis report [94], the 13-14 report stressed the importance of

quality measurement and improvement within NELFT services, identifying the inte-

gration of community services as a way of achieving this. The 14-15 report further

noted their intention to develop community services with integration in mind.

Whilst not explicitly defined within the accounts, integration is often thought to

improve quality through: better communication between services, a reduction in task
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duplication (where appropriate), information sharing, and improved access between

services. These themes came through in my conversations with staff, where measures

of patient activity and service use were suggested for evaluating the integration of

services and the quality of care they provided. Examples included process outcomes

such as: time between referrals to different services, length of appointments, number

of referrals between community services, and the activities carried out by different

teams within each contact.

The tracking of patients after discharge was also noted as important. For in-

stance, the number of patients who use community health care in the future may

help measure whether these services are meeting their goals, e.g. acute admission

avoidance and patients reusing community services.

In practice, tracking patients after discharge can be difficult since different ser-

vices and sectors of health care use different electronic systems to record patient

information. Hence, information about which services a patient used, in-between

and after community referrals, is not always easily available.

For the most part only process outcomes relating to activity within individual

services were suggested as a means to measure improved quality in relation to in-

tegration. Clinical improvements resulting from integration were often mentioned;

however, no explicit measures for these were given.

Acute admission avoidance

The Quality Reports, conversations with clinicians, and the commissioning work-

book indicated that the effectiveness of community services could be measured by

the number of patients requiring urgent services and by any changes in avoidable

demand for acute services. An avoidable acute admission occurs if a patient is ad-

mitted to an acute service when a non-acute service exists that could have met their

needs. Several services were identified as important in achieving this, including those
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that support patients with long-term conditions (e.g. diabetes service, occupational

therapy, health visiting and district nursing); and community services providing care

usually accessed within hospital (e.g. phlebotomy). Outcome measures for evaluat-

ing the impact of these services were noted as the number of patients using these

services, the number of patients re-referring to these services, time between acute ad-

missions of their service users, and the number of acute admissions amongst service

users - all of which are process outcomes.

Using avoidable admissions to measure the clinical effectiveness of community

services is limited since it can be difficult to identify when an avoidable admission

occurred. Furthermore, in seeking to reduce avoidable admissions one must be careful

to not reduce or avoid necessary admissions. Again, whilst linked to the clinical

impact of services, I only found process measures.

Discharge, self management and health improvement

Within both sets of data and from conversations, discharge from service was

an important measure since it was considered to be a marker of patient stability

and independence. This was especially true for patients with long-term conditions.

These patients will engage with community services throughout their lifetime to

maintain their health and manage a condition. Thus, a discharge in this setting is

representative of them attaining positive clinical outcomes.

As a measure on its own, the number of discharges should be used with caution

since early or inappropriate discharges typically associate with negative outcomes,

both clinically and experientially. Through improvements in clinical effectiveness -

such as increased uptake and completion of personalised care plans - improved quality

may be marked by increased discharge. However, discharge is a process outcome and

is linked to the operational capabilities of the service to meet the current and future

care needs of patients. Thus, an increased discharges does not necessarily indicate
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improved quality since this may occur due to increased early discharges and capacity

driven decisions, which may associate with poor quality service.

It was also emphasised that self management was a useful measure. This occurs

when a patient is able to monitor and maintain their condition outside of the ser-

vice by themselves. This may be used to gauge the effect of a single service or an

amalgam of services in helping patients manage their own conditions. Currently, self

management is implicitly recorded as part of a patients clinical notes, and is not

explicitly recorded as an outcome within NELFT’s routine datasets. In practice, it

represents an amalgamation of measures, some of which are service/condition spe-

cific, and is the result of progress according to the range of measures. Whilst the

clinical definition of self management will differ between services, it is a concept that

translates across services.

Again, as with discharge, caution must be taken when considering self manage-

ment since it is often measured as a process outcome relating to a lack of service use,

e.g. the patient no longer using the service or requiring the service. Thus, to consider

this as a positive clinical measure, the absence of service use has to associate with

positive clinical outcomes, which may not always be the case.

4.4 Summary and Discussion

The collection and use of outcome measures are important for the evaluation of

health care. They help to quantify quality and provide understandable information

that can be used to monitor, maintain and improve care. By using a range of

measures, clinicians and care managers are able to assess the impact of their care on

individuals and populations of patients, and identify where and how improvements

may be made. In practice, this can be difficult since quality measurement is multi-

faceted, consisting of multiple domains and many levels of use.
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From the exploration above, I found several themes and priorities for quality

measurement within NELFT’s community services and a range of measures for eval-

uating them. In particular, three types of measure stood out: experience measures,

clinical measures and process measures. However, the use of these measures is not

easily compartmentalised into discrete categories since many correlate with several

aspects of care.

The most common measures were for process outcomes relating to patient activity

and the operation of services. They were used to evaluate the clinical and operational

quality of a wide range of services since they are easily collected and informative.

To use process outcomes as a gauge of clinical effectiveness, they must be assumed

to associate with positive clinical outcomes, but this may not always be true. Whilst

process measures evaluate the operational capability of a service, how care is delivered

and how patients use it; clinical outcomes measure how a patient’s health and well-

being is affected by the receipt (or non-receipt) of care. Whilst a process outcome

may reflect positive clinical outcomes, this is not wholly the case since they are

inextricably linked to the operation of services and patient activity. This includes

non-clinical factors such as staffing levels, the time of year and referral guidelines.

Moreover, process outcomes that link to a cessation or non-use of service - such

as discharge from service or reduction in acute admission - do not always correlate

with positive clinical outcomes. Whilst a positive link is clear when a discharge

occurs for clinical reasons; a positive link is not so clear when the decision is made

due to capacity related issues. In the latter case, prematurely discharging patients

from service may result in negative clinical and experiential outcomes. Since process

measures are not always clinically driven, they cannot provide the same information

as clinical outcomes. To assume that they indicate clinical effectiveness in the absence

of other information is inappropriate.

In contrast to process measures, there was a lack of clinical outcome measures for
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use across services. In obtaining data for this work, information relating to clinical

outcome measures was unavailable. The only such measures widely collected were

service or condition specific and were recorded in the text fields of patients notes

that were not available to me due to confidentiality reasons.

Of most interest to this work are clinical outcome measures for comparison across

multiple services; however, these were neither routinely collected, nor was the re-

quired infrastructure or framework in place for this to happen. Whilst more generic

and comparable clinical measures - such as independence and self management - were

referred to, they were not explicitly recorded.

4.5 Conclusions

In chapter 2, I identified three ways in which outcome measures may be incor-

porated into models of patient flow. These were: 1) stratifying system metrics by

outcome related groups; 2) as objectives or constraints within models of resource

allocation; or 3) as system metrics themselves. From this survey of available mea-

sures and data, I found no clinical outcome measures - either explicitly recorded or

available to us - that could be used informatively within patient flow modelling.

With a view towards patient flow modelling, several of the process measures

and dynamics found in this chapter will be included within the model developed in

chapter 5; namely, patients reusing services and uses of multiple community services.

In addition, uses of services other than community services will be considered.

Notably, solely modelling these dynamics and process outcomes is not new and the

collection of measures that I have found above do not help us in seeking to incorporate

health outcomes in patient flow models. My rationale for including health outcomes

is to move away from assuming a positive correlation between changes in process and

health, and produce a model for understanding how individual services affect patient
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health and contribute positive health impact.

To this end, what is needed are clearly defined and recordable outcomes that

provide insight into the clinical quality of a diverse range of services. In [3], this

is summarised as “a framework for understanding and measuring quality that accu-

rately and fully covers the whole range of community service activities and impact”.

A clinical example within NELFT where this sort of measure is considered is

their Integrated Care Management service (ICM). The ICM manages the care of

patients with complex long-term conditions, whose care may require several health

and social care services. To monitor a patient’s health and response to care, they

use three categories (red, amber and green) to reflect the level of support a patient

requires and the stability of their health. Patients may progress through different

stages throughout their care, improving and declining as they progress. A similar

marker may be helpful if introduced across services and morbidities.

In a patient flow model, such measures may be incorporated by defining states of

patient health that represent categories of outcome that patients may move between

in response to multiple care interactions. An example of a publication which uses

such health states is [43] where health states are used to model improvement in health

as a result of care or a decline according to natural progression.

By representing outcomes in this way, the effect of patients with different health

care requirements on the operation of the system can be modelled, alongside how

different patients are affected by care (or the lack of it). This adds further insight into

process measures, such as discharge, providing a clinical perspective that would be

informative in the quality evaluation of multiple services. Such measures may be used

in systems of single and multiple services, in systems with loss or the potential for

patients to reuse services, and in situations where patients with diverse backgrounds

and care requirements use the same service. In the next chapter I will begin to

explore how such measures could be used in patient flow modelling.



Chapter 5

Fluid and diffusion approximations

for modelling the flow of

heterogeneous patients within a

network of queues

In this chapter, I present fluid and diffusion approximations for a network of

stochastic queues with heterogeneous patients. These methods feature some of the

flow dynamics identified in chapters 3 and 4, namely, the potential for patients to

reuse services and for patients to sequentially use different services. For generality

these methods also include the potential for patients to abandon the queue, and the

possibility for them to subsequently rejoin the queue, or use an alternative service.

Furthermore, I incorporate clinical outcomes in the form of transitions between health

states that patients may move between, as a result of service, or lack of it.

For tractability, patients are modelled as being served in parallel queues according

to their health state. To overcome some of the difficulties that this may introduce, a

dynamic multi-class server allocation is applied to the system. Here parallel queues

share servers from a single pool and are continuously reassigned across parallel queues
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in response to fluctuations in the demand for service and patient attributes. By

using parallel queues, the outputs from this method (the average and variance of

the number of patients in the system, waiting time estimate and the production

of outcomes) can be calculated for each health state, process state and may be

aggregated for use at a service level.

The aims of this chapter are to:

1. Describe the stochastic system and the key patient flow dynamics of the model;

2. Develop the fluid and diffusion approximations for describing the expected

behaviour of each queue, process state and health state;

3. Present methods for calculating system outputs and their variance.

5.1 Introduction

In this chapter, I develop a method for informing the planning and operation

of networks of queues through a combination of outcome and operational measures.

This framework has been informed by the work of chapters 2, 3 and 4; however, this

model provides a theoretical method that may be applied to community services as

well as other settings (such as telecommunications). Given the purpose and work

presented within this thesis the formulation in this chapter is presented in reference

to community health care.

In producing a modelling framework that includes these two perspectives on qual-

ity, new avenues for understanding and analysing systems of care are created such

as the “flow of outcomes”. This includes notions of how the health of patients with

different capacities to benefit from care is affected by receiving, or not receiving care,

and how patients with different care needs affect the operation of the system.
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In chapters 3 and 4, several referral and patient flow dynamics were identified

for community health care, namely uses of multiple services (either sequentially or

concurrently), reuse of services and the use of services outside of the community

setting. Whilst each needs to be considered when developing a completely descriptive

model, this is not a simple task. Notably, the dynamics of re-entrant patients and

concurrent uses of service can be methodologically difficult to model.

A range of methods could be used to model such systems including simulation,

system dynamic approaches and Markov chain approaches. However, as the system

becomes larger in considering multiple services and patient health, the problem be-

comes computationally expensive. Furthermore, including service reuse and health

transitions within these models can be impractical due to the large number of events

that need to be considered. Thus, given the multiplicative effect on the state space,

the system can become very time consuming to model. There is a similar limitation

in using traditional queueing methods since the linear algebra involved quickly be-

comes complex and even intractable [101]. Ultimately, computation time may not be

an issue depending on the desired analysis and requirements of the model; however,

this can reduce how and when the model may be used. For example, an analysis of

a wide range of scenarios may be beneficial for an optimisation approach or scenario

analysis, yet the running time of the above methods may limit such approaches.

One way to quickly model these types of system is by fluid and diffusion approxi-

mation, which I develop in this chapter. Notably, these methods are valid only under

strict Markovian assumption that may not correspond with real-life data.

By extending current methods, I develop a model that includes several complex

dynamics, namely the potential for patients to: reuse services; use different services

sequentially; abandon the queue; and, having abandoned, rejoin the queue or use an

alternative service. These methods will give insight into the impact of multiple care

interactions on patient health. Furthermore, they may be used to inform resource
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allocation and referral protocols within complex systems through new metrics that

provide clinical and operational insight.

In chapter 4, I found that there is both a lack of data and the required mechanisms

for measuring clinical outcomes across diverse community services. As a result, to

include clinical outcomes within the model, I use a theoretical framework similar

to that of [43]. I define multiple distinct health states, which patients may move

between throughout a course of care, to represent the severity of patient health and

their capacity to benefit from service.

To overcome some of the limitations introduced by multiple health states, I use a

process for continuously allocating servers across multiple queues. This is a form of

server allocation for multiple classes of patient where servers are allocated to queues

depending on specific characteristics - for example, a proportional allocation that

reflects the proportion of total demand each patient group represents. An impor-

tant distinction of this process is that the server allocation updates continuously

throughout the modelled time period, with queues gaining and losing servers to one

another in response to changes in patient demand. Thus, this approach is a dy-

namic method for modelling the demand driven operational response of services to

fluctuations between different streams of arrivals.

As I develop these methods, I will proceed without application to community

health care. For now, I will focus on how these approximations are formulated, their

mathematical validity and how they may be used to produce informative perfor-

mance measures. Having established the above, in chapter 6 I will explore how these

methods may be used to model patient flow in community health care.

Structure of the chapter

In section 5.2, I provide an introduction to fluid and diffusion approximations,

noting what they are, how they are formulated and why they are used. I also provide
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a brief survey of previous applications of fluid and diffusion approximations in health

care. In section 5.3, I describe the stochastic system for which I develop the fluid

and diffusion approximations and define the key flow parameters. In section 5.4

and 5.5, I set up the system and produce the fluid limit, the diffusion limit and a

method for calculating virtual waiting time (VWT) - an estimate of waiting time.

Throughout, I provide proof and mathematical argument as to why the extensions

hold. This chapter ends with a discussion of the developed methods, highlighting

the limitations of the approach and areas for future work.

Key terms

Before continuing, I will first define several terms that I use throughout the

remainder of this thesis. Firstly, I reserve the term rejoin to refer to patients who

abandon a queue and subsequently join it again. Secondly, I reserve the term reuse

to refer to patients who, after completing service, seek to use the same service again.

The term re-enter may be used to describe either process. Thirdly, I will discuss

when a system is heavily loaded - informally, when demand exceeds the capability of a

service to serve patients, which, if sustained, may lead to infinitely long average queue

lengths. Finally, I will discuss instances when the system is underloaded, overloaded

or critically loaded. Notably, these are widely used within the queueing literature

and are used here with respect to the fluid scale. A system is underloaded if there

is no queue and there are servers available to serve new arrivals; whilst a system is

overloaded when all of the servers are busy and a queue has formed. Furthermore,

the system is critically loaded when all servers are busy, but no one is queueing.



Chapter 5. Fluid and diffusion approximations for modelling the flow of
heterogeneous patients within a network of queues

125

5.2 Introduction to fluid and diffusion ap-

proximations for stochastic systems

In chapter 2, I discussed [73] in which a fluid model was used to represent a

transplant waiting list. Thus, a continuous, deterministic representation of the sys-

tem’s state variables was considered rather than the traditional, discrete, stochastic

representation.

The authors used transitions in health states to model the effect of service, such

that, upon receiving a transplant, a patient could change health state as they de-

parted the waiting list. Additionally, the model included a mechanism of reuse where

patients could experience a graft failure causing them to re-enter the waiting list.

These dynamics are similar to some of those I seek to model; in particular, that a pa-

tient’s use of service may result in a change of health, and the possibility for patients

to reuse a service depending on their health. However, this method is not entirely

appropriate for modelling community health care since there is no consideration of

the stochastic variation within the arrival and service processes, which are important

features of patient flow in this setting.

Exploring the merits of fluid models further, I found several methods and appli-

cations where fluid approximations had been formed for stochastic queueing systems.

A fluid approximation is the limit in distribution for a stochastic process that can be

calculated by scaling the size of the system (number of servers and new arrivals) and

applying the law of large numbers. The system can then be modelled by a coupled

system of ordinary differential equations (ODEs) that tracks the average state of the

network i.e. the number of patients in the system over time [102]. This produces a

continuous approximation of the discrete process and overcomes some of the com-

putational difficulty of traditional methods. For example, in traditional state-based

probabilistic methods the probability distribution is calculated over the entire state
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space; however, in a fluid approximation, the modelling process is simplified through

an abstract state representation based on state variables [103].

Fluid approximations can be used to model a variety of dynamics and produce

several useful output measures [104]. However, at first order, they are a deterministic

approximation and do not capture the variance seen within the system. To gain

information about the variance, a diffusion approximation can be produced through

an application of the functional central limit theorem to the scaled process [102]. The

variance within the queueing process can then be calculated using a system of ODEs

that results from the limit, adding insight into the system’s stochastic variability.

By describing the system in this way, fluid and diffusion approximations provide

a means for efficient calculation of measures of complex queueing processes. The

approach avoids state space explosion in the analysis of large systems [101], which

is a useful property as I come to consider multiple services and health states. Noted

within the literature, fluid and diffusion limits are particularly accurate for large

and heavily loaded systems due to the scaling process used [102, 105]. Finally, these

approximations have been shown to be appropriate for analysing the behaviour of

time-varying systems, and for understanding the finite-horizon evolution of systems

in steady-state [106].

Work by Mandelbaum A et al. [104, 107], has been significant in developing

my thoughts throughout this chapter. In these articles, methods are established

for a range of systems that exhibit complex flow dynamics such as abandonment

and rejoin. Their work highlights that under certain conditions, fluid and diffusion

approximations can accurately model the queueing processes of stochastic systems.

In addition, the work of S Ding et al. [105] has informed my work in this chapter.

They produce a first order fluid approximation to describe the operation of a call

centre, represented as a single service with multiple servers. In this system customers

could: call and be served if a server is free; wait within a queue until a server
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is free; abandon the queue due to impatience; potentially rejoin the queue after

abandoning; or reuse the service again having completed service. Notably, this model

introduces the concept of process orbits - the flow of patients through process states

that represent a customer’s pre-service/post-service/post-abandonment flow, e.g. the

states in which customers who are seeking to rejoin the queue or reuse the service

wait within before re-entering the queue. I will continue to use this terminology as

I present my method.

5.2.1 Applications of fluid and diffusion approxi-

mations within health care

To illustrate previous applications of fluid limits to health care services, I briefly

discuss four papers. Each paper applies to acute settings, with two focusing on emer-

gency departments [106, 108], and the other two producing more general methods

[101, 109].

Firstly, in [106] several methods were presented for modelling queues with reuse.

Applied to an emergency department during a mass casualty event, fluid and diffu-

sion limits were produced to understand scenarios where services temporarily became

heavily loaded. The focus in this paper was to determine the required staffing levels

for meeting the demand of new and reusing patients within the heavily loaded in-

tervals. The approximations were appropriate for modelling this system since they

captured the time varying nature of arrivals and service, as seen within their data.

Secondly, again in application to emergency care [108], a fluid approximation was

used to inform staffing levels within an overcrowded emergency department. The

authors devised new rules and algorithms for staffing policies, seeking to minimise

patient delays and staffing costs. In the model, patients were split into two states

representing those who were “sick” and those who were “well”, with “sick” patients
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entering the “well” state after receiving care. In addition, after completing service,

patients waited to be discharged, placing a further constraint on resources since

this discharge process was carried out by servers who would otherwise treat “sick”

patients. Whilst this method introduced a concept of health states, wellness in this

model was measured by a process outcome since all patients who received service

became “well”. Hence, there was no variation in, or measurement of, clinical benefit.

Rather, the process outcome of “receiving care” was assumed to have a perfect,

positive effect on patient health.

Thirdly, in [101] a fluid limit was used to model the flow of patients within a

hospital in order to inform the creation of a dynamic scheduling policy that could

improve patient flow. In using a fluid approximation, the authors noted that their

solution was scalable, aiding its application to, and analysis of, different systems.

Finally, in [109] a fluid approximation was used to assess a system where patients

chose which queue to join based on waiting time information. Waiting times were

provided to patients upon arrival; however, a delay existed in providing this informa-

tion. Thus, the waiting time information they were given reflected the state of the

queue some time before their arrival. Using theory from dynamical systems to assess

how the queues interacted, the analysis focussed on the behaviour of these queues in

response to delays. The aim was to understand how services could provide customers

with waiting time information in order to avoid unwanted system dynamics.

5.2.2 Contribution

As far as I am aware, this is the first piece of work to consider the application

of fluid and diffusion approximations to community health care and their key flow

dynamics. In seeking to produce a method for modelling some aspects of patient flow

within community health care, I extend the methods set out in [105] and [107]. In

particular, I combine the approaches to capture all the dynamics considered by [105],
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whilst producing the range of outputs given by [107]. Thus, I formulate fluid and

diffusion limits to calculate the average and variance of system outputs, including

the virtual waiting time (an estimation of waiting time) for the system.

An additional distinction of these methods is the extension to multiple services,

the inclusion of transitions between health states, and a generalisation of the rejoin

process where patients may use an alternative service after abandonment. Thus, the

methods make a methodological contribution to the way in which networks of queues

and complex flow dynamics may be modelled, and how the performance of a queueing

system may be understood given the combination of patient flow and outcomes. In

particular, this framework can be used to conduct analysis of time varying systems,

where parameters are dependent on both time and patient health. By using health

states the flow of patients with differing resource/service requirements and different

capacities to benefit from care. Thus, it makes a contribution to the possible uses

and applications for understanding the “flow of outcomes”. The model’s output is

informed by the effect of care, or absence of it, on patient health and the effect of

patients with different health care requirements, e.g. service times, on the operation

of the system. This is highlighted by the production measure, section 5.5.5.

Throughout this chapter I provide formal proof and argument to show that these

extensions are mathematically valid. The method I produce provides a framework for

modelling community services quickly, whilst capturing key dynamics and producing

informative outputs. The speed of computation is a significant benefit of these meth-

ods. If the methods can provide results comparable to others, such as simulation and

Markov chain approaches, they may be used in to perform analyses that is otherwise

potentially too time consuming, such as optimisation and scenario analysis, for large

complex systems. This will be addressed further in chapter 6 where the parameter

space is examined to understand when these methods are accurate and valid.
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5.3 Description of the stochastic system

Consider a network consisting of J services, each with multiple servers. During

a time interval [0, T ], patients may arrive to, and be served within, any one of the

services, as in Figure 5.1. In each service patients may: arrive as a new patient;

abandon the queue and potentially rejoin it, seek to use an alternative service or leave

the system as a loss (L); or, receive service and potentially reuse the same service,

use another service within the network, or leave as a discharge (D), see Figure 5.2.

Thus, each service consists of five process orbits: m ∈ {Q,R,U,A,O}, representing

the service and queue, the rejoin process, the reuse process, the alternative service

process, and the other service process, respectively. Note that the term alternative

service always refers to a use of service after abandonment, and that other service

refers to a use of service having previously received care.

Suppose that at any one time, a patient belongs to a health state denoted k ∈

{1, ..., K} = H, the set of all health states. Each represents a category/amalgam of

progressive outcome measure that patients move between as they proceed through

the system. To denote each state that a patient may occupy, I use the following

notation. For a service i ∈ {1, ..., J} = Ser, health state k ∈ H, at time t ∈ [0, T ]:

Zk,Q,i(t) := number of patients in the queue or service

Zk,R,i(t) := number of patients in the rejoin orbit

Zk,U,i(t) := number of patients in the reuse orbit

Zk,A,i(t) := number of patients in the alternative service orbit

Zk,O,i(t) := number of patients in the other service orbit

Zk,L,i(t) := number of patients lost due to abandonment

Zk,D,i(t) := number of patients discharged
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I now describe the flow process in the system and the parameters that govern it.

Explicitly defined in Table 5.1, each parameter is required to be locally integrable

throughout the modelled time period. Each parameter is also required to be continu-

ous throughout the modelled time period if the dynamic server allocation introduced

in 5.3.1 is used and the VWT is calculated. This will become clearer in section 5.5.4.

Figure 5.1: Diagram of patient flow between services within the queueing network

New patients enter services from external sources, and may reuse the same service,
use another service, or leave the system due to abandonment or discharge

Figure 5.2: Diagram of a single service within the stochastic queueing network
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ci(t) Number of servers available for service i.

Ck,i(t) The number of servers allocated to each queue.
∑

k∈H Ck,i(t) = ci(t)

λk,i(t) Arrival rate of new patients, time-inhomogeneous Poisson process.

µk,i(t) Service rate of patients, where Γk,S,i(t) is a time-inhomogeneous
exponentially distributed service time with mean
EΓk,S,i(t) = 1/µk,i(t) <∞.

θk,i(t) Abandonment rate of patients, where Γk,L,i(t) is a time-inhomogeneous
exponentially distributed amount of time with mean
EΓk,L,i(t) = 1/θk,i(t) <∞.

sk,l,m,i(t)
Probability that a patient moves from a health state k ∈ H to a health
state l ∈ H given that they are leaving the orbit m ∈ {S,R, U,A,O}
or queue m = L.

rk,L,i,j(t)
Probability that a patient, having abandoned the queue for service
i ∈ Ser, enters the alternative service orbit for j ∈ Ser, j 6= i.

For j = i a patient enters the rejoin orbit of i.

rk,L,i,J+1(t) denotes a loss from service i ∈ Ser

rk,s,i,j(t)
Probability that a patient completes service within i ∈ Ser and enters
the orbit for arrivals from other services for j ∈ Ser, j 6= i.

For j = i a patient enters the reuse orbit of i.

rk,S,i,J+1(t) denotes a discharge from service i ∈ Ser

δk,R,i(t) Rate of rejoin, where Γk,R,i(t) is a time-inhomogeneous exponentially
distributed amount of time until patients re-enter the queue with
mean EΓk,R,i(t) = 1/δk,R,i(t) <∞.

δk,A,i(t) Rate of alternative service use, where Γk,A,i(t) is a time-inhomogeneous
exponentially distributed amount of time until patients enter the
queue with mean EΓk,A,i(t) = 1/δk,A,i(t) <∞.

δk,U,i(t) Rate of reuse, where Γk,U,i(t) is a time-inhomogeneous exponentially
distributed amount of time until patients re-enter the queue with
mean EΓk,U,i(t) = 1/δk,U,i(t) <∞.

δk,O,i(t) Rate of other service use, where Γk,O,i(t) is a time-inhomogeneous
exponentially distributed amount of time until patients enter the
queue with mean EΓk,O,i(t) = 1/δk,O,i(t) <∞.

Table 5.1: Parameter definitions for stochastic system t ∈ [0, T ], k ∈ H, i ∈ Ser
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Servers

For each service i ∈ Ser, a time-varying number of servers, ci(t), are available.

For analytical tractability, patients are assumed to be served on a first come first

served (FCFS) basis within their respective health states, forming up to K parallel

queues per service. Notably, health states can be defined such that patients have

equal priority within their group; thus, FCFS is a natural approach to take. The

number of servers allocated to each queue is denoted Ck,i(t) such that, for all k ∈ H

at time t,
∑

k∈H Ck,i(t) = ci(t). Several definitions of Ck,i(t) are given in section

5.3.1.

Since the number of servers for each service (and queue) may vary with time, it is

possible that the number of servers may drop below the number of patients in service.

Within the model, this situation is handled by using pre-emptive resumption [107].

That is, the number of patients in service is reduced to equal the number of servers

by placing arbitrary “excess” patients into an infinite buffer space. The service of

these patients is assumed to be paused and later resumed once a server becomes

available, with priority ahead of the queue.

New arrivals

New patients, in a health state k ∈ H, arrive at a service i ∈ Ser according to a

time-inhomogeneous Poisson process of rate λk,i(t).

Queue and service

If a server is free, patients enter service and are served according to a time-

inhomogeneous exponentially distributed process of rate µk,i(t). If no servers are

available, the arriving patient will wait within an infinite buffer space, forming a

non-physical queue. Whilst waiting, a patient may lose patience and abandon the

queue at a time-inhomogeneous exponentially distributed rate θk,i(t).
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Abandonment

Upon abandoning, one of three events may occur. A patient may rejoin the queue

(seeking to access the service again) with probability rk,L,i,i(t), where the subscript L

denotes a patient leaving the queue. Such patients enter the rejoin orbit, where they

spend a time-inhomogeneous exponentially distributed amount of time, rejoining the

queue at rate δk,R,i(t). Alternatively, a patient may seek to use an alternative service

with probability rk,L,i,j(t), i 6= j, j ∈ Ser. These patients enter the alternative

service orbit for j, where they spend a time-inhomogeneous exponentially distributed

amount of time, joining the queue at a rate δk,A,j(t). The third possibility is that

a patient will leave the system as a loss with probability rk,L,i,J+1(t) > 0. Notably:∑J+1
j=1 rk,L,i,j(t) = 1, for allt ∈ [0, T ].

Completing service

Similarly, after completing service, one of three events may occur. Having used

a service i, a patient may seek further service within i with probability rk,S,i,i(t),

entering the reuse orbit. Again, patients spend a time-inhomogeneous exponentially

distributed amount of time in this state, arriving to the service at rate δk,U,i(t).

Alternatively, with probability rk,S,i,j(t), i 6= j, j ∈ Ser a patient may seek to use

another service, entering the orbit of arrivals from other services for j, remaining in

this state for a time-inhomogeneous exponentially distributed amount of time, and

join the queue at a rate δk,O,j(t). Lastly, there is a probability rk,S,i,J+1(t) > 0 that

a patient will not require any further service and leave the system as a discharge.

Notably:
∑J+1

j=1 rk,S,i,j(t) = 1, for all t ∈ [0, T ].

Changes in health state

A patient’s health state may change throughout their interaction with the system

and is modelled to occur at: the completion of service; the point of abandoning the
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queue; or, upon joining the queue as a rejoin, reuse, alternative service arrival or

other service arrival as in Figure 5.2. sk,l,m,i(t) is the probability that a patient

moves from a health state k ∈ H to a health state l ∈ H given that they are leaving

a process state m ∈ {S,R, U,A,O} at time t, or abandoning the queue, m = L.

The stochastic process

Given the above, the stochastic process for this system, {Z(t), t ≥ 0}, can be

defined as a vector of length 7KJ (since there are seven process orbits, K health

states and J services) such that:

Z(t) := (Z1,1(t),Z2,1(t), ...,ZK,1(t),Z1,2(t), ...,ZK,2(t), ...,ZK,J(t))T (5.1)

where, for k ∈ H, i ∈ Ser:

Zk,i(t) := (Zk,Q,i(t), Zk,R,i(t), Zk,U,i(t), Zk,A,i(t), Zk,O,i(t), Zk,L,i(t), Zk,D,i(t))

This is a Markov process since the inter-arrival rates, service duration and or-

bit durations are exponentially distributed, and health/service state transitions are

Markovian. The state space for this process is Z7KJ
+ , which is the space of length

7KJ vectors whose entries are 0 or positive integers.

5.3.1 Dynamic multi-class server allocations

To ensure analytical tractability whilst modelling the differentiated service of

patients in different health states, each service is modelled using parallel queues

pertaining to each health state. Thus, patients in each queue seek service from a

single pool of servers. To maintain the FCFS assumption, servers must be allocated

to each queue.
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The simplest allocation is to divide the number servers across parallel queues,

assigning a constant number to each. Considering the simplest, yet unrealistic, il-

lustration of assigning servers equally highlights an issue, that care must be taken

when K is not a factor of ci(t). To overcome this scenario, define: Ck,i(t) =
⌊
ci(t)
K

⌋
,

the floor of the fraction. If
∑K

k=1Ck,i(t) < ci(t), assign ci(t) −
∑K

k=1Ck,i(t) servers,

one at a time, to arbitrary queues until all servers are assigned. Notably, in scenarios

when Ck,i(t) does not depend on the output of the stochastic system (e.g. a constant

function) the input parameters may be defined as piecewise continuous [105].

In using constant allocations, the only interaction between the queues is through

the health state transitions of patients, otherwise the queues act autonomously. How-

ever, in real world systems, a further way in which the queues may affect one another

is through a patient’s use of servers, i.e. by using a server, a patient denies others

the opportunity to be served by that server.

One way to model this is through a dynamic server allocation. There is a wide and

extensive literature that is relevant to this type of allocation such as that on allocating

servers in multi-class queues e.g. [110, 111, 112] and scenarios of server sharing e.g.

[113, 114]. Here I apply an allocation which continually updates according to the

changes in the overall demand for service, the attributes of different patient groups

and the mix of patients. Thus, a queue with more “dominant” attributes, e.g. queues

with higher proportion of overall demand or a longer proportional service times, may

require more servers throughout the modelled time period than other queues. Within

the stochastic system the number of servers allocated to each queue is updated

each time an event occurs that changes the size of Zk,Q,i(t) e.g. an arrival (new or

from a process state), a completion of service or an abandonment. Thus, the fluid

approximation will provide a deterministic approximation of this process.

One method for allocating servers in this way is to assign them to each queue

according to the proportion of patients in each health state k and in the queue or
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service for a service i:

Ck,i(t) = Ck,i(Z(t)) =

⌊
ci(t)Zk,Q,i(t)∑K
l=1 Zl,Q,i(t)

⌋
(5.2)

Again, the method introduced earlier is implemented when the number of servers does

not divide into an integer. Furthermore, to ensure that this allocation may always

be calculated, the system must never become empty; thus, the initial condition must

be non-empty. As seen in the next chapter, this is not an issue.

Alternatively, a continuous weight or cost function, Bk,i(t), could be used to

favour patients in certain health states. For example, Bk,i(t) may be defined as

1/µk,i(t). In this case, servers are allocated to the queues that will take the longest

time to serve. Furthermore, if Bk,i(t) = θk,i(t), servers are allocated based on the

potential for patients to abandon, seeking to mitigate losses in the system. Thus, for

the stochastic process, one may allocate servers by:

Ck,i(Z(t)) =

⌊
ci(t)Bk,i(t)Zk,Q,i(t)∑K

l=1Bl,i(t)Zl,Q,i(t)

⌋
, for all t ∈ [0, T ] (5.3)

Again, the method introduced above may be implemented to ensure that all the

servers are allocated; the system must also never become empty. A further limitation

of these allocations is that their equivalent result from fluid approximation must be

continuously differentiable, a limitation introduced by the calculation of the VWT.

Notably each of the above allocations depends on Zk,Q,i(t) which is dependent on

Ck,i(t) by definition. This is not a limitation however since a fall in the number of

allocated servers leads to patients formerly in service re-entering the queue such that

Zk,Q,i(t)is unchanged. Furthermore, allocations may be defined based on different

orbits or process states as long as the definition remains continuously differentiable.

These allocations may be used to understand how the service requirements of

patients in different health states and fluctuations in demand may affect the operation
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of the system. Likewise, this method helps to overcome the limitations that parallel

queues introduce; namely, the possibility that patients in some health states may be

waiting, yet servers assigned to other queues are inactive. By modelling a dynamic

allocation process, servers are reallocated to queues as changes occur in the system

such that if there are any patients waiting in the system, it is not possible for servers

to become inactive. Furthermore, this method may be used to understand how the

allocation of servers may help to mitigate negative process outcomes (such as the

abandonment of patients in poor health states).

5.4 Set up for fluid and diffusion approx-

imations

To proceed, conservation equations must be formulated for the stochastic system

(5.1). These are constructed in a similar manner to [105], extending their definitions

to include multiple health states, dynamic server allocations, multiple services and

the new orbits these introduce.

Aside 5.4.1 (A sketch to show how the fluid approximation is constructed)

Having outlined the system and flow dynamics, the mathematical mechanisms are de-

fined for modelling how patients move between process states and health states - the

flux terms. These are Poisson processes of rate 1, where “time” is the number of

patients flowing through the process state (the reason for this will become clear).

A scaled process is produced for this system by scaling the number of servers and

arrivals for each service by a factor η > 0, and dividing the number of patients in each

state by η. By the definition of the flux terms, as η → ∞, the law-of-large-numbers

gives the limit of these terms as the mean number of patients flowing through each

part of the system.
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Informally, as η grows large, the system becomes more deterministic. This is

because the arrival rate grows larger, increasing the probability of patients arriving,

causing the system to behave more predictably (e.g. it is more likely that all servers

are busy, that patients will abandon the queue, etc.).

This approximation is continuous and the limit gained from this scaled process

is a deterministic approximation for the stochastic system, which is shown to be

mathematically valid and unique.

The flux terms for modelling the movement of patients must first be defined for

each health state k, l ∈ H and for each service i, j ∈ Ser. The arrival process of

new patients is Πλk,i(t), a Poisson process of rate λk,i(t). The number of patients

leaving process states - service (S), abandonment from queue (L), rejoin (R), reuse

(U), alternative service (A) and arrivals from other services (O) - are defined as

Πk,m,i(.), m ∈ {S, L,R, U,A,O} independent Poisson processes of rate 1 such that:

Dk,S,i(Z(t)) = Πk,S,i

(ˆ t

0

µk,i(u) min (Zk,Q,i(u), Ck,i(Z(u))) du

)
(5.4)

Dk,L,i(Z(t)) = Πk,L,i

(ˆ t

0

θk,i(u)(Zk,Q,i(u)− Ck,i(Z(u)))+du

)
(5.5)

Dk,R,i(Z(t)) = Πk,R,i

(ˆ t

0

δk,R,i(u)Zk,R,i(u)du

)
(5.6)

Dk,U,i(Z(t)) = Πk,U,i

(ˆ t

0

δk,U,i(u)Zk,U,i(u)du

)
(5.7)

Dk,A,i(Z(t)) = Πk,A,i

(ˆ t

0

δk,A,i(u)Zk,A,i(u)du

)
(5.8)

Dk,O,i(Z(t)) = Πk,O,i

(ˆ t

0

δk,O,i(u)Zk,O,i(u)du

)
(5.9)

Note: (x)+ := max(0, x). Proof of these statements may be produced along the lines

of Lemma 2.1 in [115].

Multinomial random variables - a generalisation of the binomial distribution (see

[116] for more information) - are used to model the movement of patients between

health states. For patients who transition to a new process state according to
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Dk,m,i(Z(t)), m ∈ {S, L,R, U,A,O}, a change in health is modelled by:

MSk,m,i(Z(t)) ∼ Mult(Dk,m,i(Z(t)), sk,m,i(t)) (5.10)

where MSk,m,i(Z(t)) is a vector of length K. Its l-th element, denoted MS
(l)
k,m,i(Z(t)),

gives the number of patients who were in health state k before moving to health

state l, having entered a new process state according to Dk,m,i(Z(t)). This process

is governed by health state transition parameters:

sk,m,i(t) = (sk,1,m,i(t), sk,2,m,i(t), ..., sk,K,m,i(t))

where
∑K

l=1 sk,l,m,i(t) = 1 such that
∑K

l=1MS
(l)
k,m,i(Z(t)) = Dk,m,i(Z(t)).

Again, multinomial random variables are used to model the movement of patients

after abandoning the queue. For patients who, upon abandoning the queue for

i ∈ Ser, have moved to a health state k,
∑K

l=1 MS
(k)
l,L,i(Z(t)), their post abandonment

movement is modelled by:

MRk,L,i(Z(t)) ∼ Mult

(
K∑
l=1

MS
(k)
l,L,i(Z(t)), rk,L,i(t)

)
(5.11)

where MRk,L,i(Z(t)) is a vector of length J+1. Its j-th element, denotedMR
(j)
k,L,i(Z(t)),

gives the number of health state k patients who enter the alternative service orbit

for j ∈ Ser, j 6= i; or, for j = i, enter the rejoin orbit of i; or, for j = J + 1, leave

the system. This process is governed by post-abandonment transition parameters:

rk,L,i(t) = (rk,L,i,1(t), rk,L,i,2(t), ..., rk,L,i,J(t), rk,L,i,J+1(t))

where:
∑J+1

j=1 rk,L,i,j(t) = 1 such that
∑J+1

j=1 MR
(j)
k,L,i(Z(t)) =

∑K
l=1 MS

(k)
l,L,i(Z(t)).

Finally, the movement of patients after completing service is modelled in a similar
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way. For patients who, upon completing service in i ∈ Ser have moved to health

state k,
∑K

l=1 MS
(k)
l,S,i(t), their post-service movement is modelled by:

MRk,S,i(Z(t)) ∼ Mult

(
K∑
l=1

MS
(k)
l,S,i(Z(t)), rk,S,i(t)

)
(5.12)

where MRk,S,i(Z(t)) is a vector of length J+1. Its j-th element, denotedMR
(j)
k,S,i(Z(t)),

gives the number of health state k patients who enter the orbit for arrivals from oth-

ers services for j ∈ Ser, j 6= i; or, for j = i, enter the reuse orbit of i; or, for j = J+1,

are discharged after service in i. This process is governed transition parameters:

rk,S,i(t) = (rk,S,i,1(t), rk,S,i,2(t), ..., rk,S,i,J(t), rk,S,i,J+1(t))

where
∑J+1

j=1 rk,S,i,j(t) = 1 such that
∑J+1

j=1 MR
(j)
k,S,i(Z(t)) =

∑K
l=1 MS

(k)
l,S,i(Z(t)).

Given the flux terms detailed above, the conservation equations for patient flow

in the stochastic system (5.1), for t ∈ [0, T ), are for k, l ∈ H and i, j ∈ Ser:

Zk,Q,i(t) = Zk,Q,i(0) + Πλk,i(t) +
K∑
l=1

MS
(k)
l,R,i(Z(t)) +

K∑
l=1

MS
(k)
l,U,i(Z(t))

+
K∑
l=1

MS
(k)
l,A,i(Z(t)) +

K∑
l=1

MS
(k)
l,O,i(Z(t))

−Dk,S,i(Z(t))−Dk,L,i(Z(t))

(5.13)

Zk,R,i(t) = Zk,R,i(0) +MR
(i)
k,L,i(Z(t))−Dk,R,i(Z(t)) (5.14)

Zk,U,i(t) = Zk,U,i(0) +MR
(i)
k,S,i(Z(t))−Dk,U,i(Z(t)) (5.15)

Zk,A,i(t) = Zk,A,i(0) +
J∑

j=1;j 6=i

MR
(i)
k,L,j(Z(t))−Dk,A,i(Z(t)) (5.16)

Zk,O,i(t) = Zk,O,i(0) +
J∑

j=1;j 6=i

MR
(i)
k,S,j(Z(t))−Dk,O,i(Z(t)) (5.17)

Zk,L,i(t) = Zk,L,i(0) +MR
(J+1)
k,L,i (Z(t)) (5.18)

Zk,D,i(t) = Zk,D,i(0) +MR
(J+1)
k,S,i (Z(t)) (5.19)
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5.5 Fluid and diffusion approximations for

stochastic queueing networks with het-

erogeneous patients

To compute the fluid and diffusion approximations, an appropriate metric space

is required to find the limits of the stochastic processes. Thus, the set in which the

approximations are contained, and the metric used to measure distances between

each set members need to be defined - the Skorokhod space and the J1 topology re-

spectively. Through careful definition important mathematical principles such as the

convergence of sequences, continuity of functions and completeness can be formulated

for the specific set.

5.5.1 Definitions

Definition 5.5.1 (Skorokhod space) Skorokhod space, denoted D([0, T ],Rn),

where [0, T ] ⊂ R and n ∈ N, consists of right continuous functions x : [0, T ] → Rn

that admit left limits x(t−) at each point t ∈ (0, T ].

In [117] four metric topologies are proposed of which, for the fluid limit (as in

[105]), I use the J1 metric. In particular it provides a natural and convenient for-

malism for describing trajectories of stochastic processes that admit discontinuities,

such as the trajectories of Poisson processes [118].

Definition 5.5.2 (Skorokhod J1 topology) Within D([0, T ],Rn), xη ∈ D con-

verges to x0 ∈ D under Skorokhod J1 topology if, for the family of increasing

homeomorphisms Λ : E → E, ∃ a sequence of functions λη ∈ Λ such that:

sup
t∈[0,T ]

|λη(t)− t|→ 0 and sup
t∈[0,T ]

|xη (λη(t)− x0(t)) |→ 0; as η →∞.
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Definition 5.5.3 (Converges in distribution) Let
{
X(η)

}∞
η=1

be a sequence of

random variables and denote the distribution function of each X(η) by F (η)(t).
{
X(η)

}∞
η=1

converges in distribution if and only if there exists a distribution function F (t)

such that the sequence
{
F (η)(t)

}∞
η=1

converges to F (t) for all t ∈ [0,∞), where F (t)

is continuous. If a random variable x has distribution function F (t), then x is called

the limit in distribution of the sequence, denoted X(η) d−→ x, with convergence:

lim
η→∞

X(η)(t)
d
= x(t), for all t ∈ [0,∞)

Definition 5.5.4 (Almost surely) Let (Ω, F,P) be a probability space. An event

E ⊂ F occurs almost surely if P(E) = 1, and P(Ec) = 0, where Ec is the compli-

ment of E (the event that E does not occur). This is denoted a.s.

Note: The difference between “almost sure” and “sure” events is the same as the

difference between an event that happens with probability 1 and one that always

happens. An event that is “sure” will always happen, and any outcome not in this

event cannot occur. For an event that is “almost sure”, outcomes not in the event

space are theoretically possible; however, the probability of them occurring is smaller

than any fixed positive probability. One cannot definitively say that these outcomes

will never occur, but for most purposes this can be assumed to be true.

5.5.2 Mathematical foundation for limiting theo-

rems and the fluid approximation

Having described the stochastic system in section 5.4, I now formulate the fluid

limit for equations (5.13)-(5.19). First, consider a sequence of models where the

η-th model - denoted by the superscript (η) - has a scaled arrival rate ηλk,i(t) for

new patients and scaled number of servers ηci(t) for all k ∈ H and i ∈ Ser. The
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scaled fluid process is defined as: Z
(η)

k,m,i(t) :=
Z

(η)
k,m,i(t)

η
, for k ∈ H, i ∈ Ser, m ∈

{S,R, U,A,O, L} and n ∈ {S, L}. This is similar to (5.13)-(5.19), where (5.4)-(5.12)

are replaced by:

D
(η)

k,S,i(t) = Πk,S,i

(
η

ˆ t

0

µk,i(u) min
(
Z

(η)

k,Q,i(u), Ck,i

(
Z

(η)
(u)
))

du

)/
η (5.20)

D
(η)

k,L,i(t) = Πk,L,i

(
η

ˆ t

0

θk,i(u)
(
Z

(η)

k,Q,i(u)− Ck,i
(
Z

(η)
(u)
))+

du

)/
η (5.21)

D
(η)

k,R,i(t) = Πk,R,i

(
η

ˆ t

0

δk,R,i(u)Z
(η)

k,R,i(u)du

)/
η (5.22)

D
(η)

k,U,i(t) = Πk,U,i

(
η

ˆ t

0

δk,U,i(u)Z
(η)

k,U,i(u)du

)/
η (5.23)

D
(η)

k,A,i(t) = Πk,A,i

(
η

ˆ t

0

δk,A,i(u)Z
(η)

k,A,i(u)du

)/
η (5.24)

D
(η)

k,O,i(t) = Πk,O,i

(
η

ˆ t

0

δk,O,i(u)Z
(η)

k,O,i(u)du

)/
η (5.25)

MS
(η)

k,m,i(t) =
MS

(η)
k,m,i(t)

η
, MS

(η)
k,m,i(t) ∼ Mult

(
ηD

(η)

k,m,i(t), sk,m,i(t)
)

(5.26)

MR
(η)

k,n,i(t) =
MR

(η)
k,n,i(t)

η
, MR

(η)
k,n,i(t) ∼ Mult

(
K∑
l=1

MS
(η)(k)

l,n,i (t), rk,n,i(t)

)
(5.27)

This emits the scaled fluid process defined as:

Z
(η)

(t) :=
(
Z

(η)

1,1(t),Z
(η)

2,1(t), ...,Z
(η)

K,1(t),Z
(η)

1,2(t), ...,Z
(η)

K,2(t), ...,Z
(η)

K,J(t)
)T

(5.28)

where, for k ∈ H, i ∈ Ser:

Z
(η)

k,i (t) :=
(
Z

(η)

k,Q,i(t), Z
(η)

k,R,i(t), Z
(η)

k,U,i(t), Z
(η)

k,A,i(t), Z
(η)

k,O,i(t), Z
(η)

k,L,i(t), Z
(η)

k,D,i(t)
)

From the definitions above, a fluid limit can be produced for (5.13)-(5.19). The

formulation and proofs follow those set out by [105]; however, I make the non-trivial

extensions to include health states, multiple services, the alternative service orbit

and the orbit for arrivals from others services. The proofs differ from [105] by the
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introduction of health states which add a complication when establishing the limiting

behaviour; particularly the introduction of the multinomial distributions. Hence, the

bounds in section (b) of the following proof differs and requires careful attention in

order to show the limiting behaviour of the sequence. Furthermore the proofs have

been extended to additional services and process orbits. Fundamentally, the proofs

closely mirror those in [105], and are given to show the validity of the extensions.

Definition 5.5.5 (Fluid limit) Let D([0,∞),R7KJ) be the Skorokhod space of right

continuous functions with the left limits in R7KJ having the domain [0,∞), endowed

with Skorokhod J1 topology. Suppose
{
Z(η)

}∞
η=1

is a sequence of stochastic processes

within D
(
[0,∞),R7KJ

)
. If there exists a limit in distribution, for the scaled process{

Z
(η)

(.)
}∞
η=1

such that Z(.)
d−→ z(.), then z(.) is called the fluid limit of the original

stochastic model.

To formulate the limit for a time period [0, T ], k ∈ H and i ∈ Ser, initial condi-

tions are required: (zk,Q,i(0), zk,R,i(0), zk,U,i(0), zk,A,i(0), zk,O,i(0), zk,L,i(0), zk,D,i(0)).

Theorem 5.5.1 For a time period [0, T ], k ∈ H and i ∈ Ser, assume that for

m = {Q,R,U,A,O, L,D}, Z(η)

k,m,i(0)
d−→ zk,m,i(0) as η → ∞. Then the fluid limit of

(5.1) is the unique solution to the following system of equations where t ∈ [0, T ):

zk,Q,i(t) = zk,Q,i(0) +

ˆ t

0

λk,i(u) +
K∑
l=1

sl,k,R,i(u)δl,R,i(u)zl,R,i(u) du

+

ˆ t

0

K∑
l=1

sl,k,U,i(u)δl,U,i(u)zl,U,i(u) du

+

ˆ t

0

K∑
l=1

sl,k,A,i(u)δl,A,i(u)zl,A,i(u) du

+

ˆ t

0

K∑
l=1

sl,k,O,i(u)δl,O,i(u)zl,O,i(u) du

−
ˆ t

0

θk,i(u)(zk,Q,i(u)− ck,i(z(u)))+ du

−
ˆ t

0

µk,i(u) min (zk,Q,i(u), ck,i(z(u))) du

(5.29)
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zk,R,i(t) = zk,R,i(0) +

ˆ t

0

rk,L,i,i(u)
K∑
l=1

sl,k,L,i(u)θl,i(u)(zl,Q,i(u)− cl,i(z(u)))+ du

−
ˆ t

0

δk,R,i(u)zk,R,i(u) du

(5.30)

zk,U,i(t) = zk,U,i(0) +

ˆ t

0

rk,S,i,i(u)
K∑
l=1

sl,k,S,i(u)µl,i(u) min (zl,Q,i(u), cl,i(z(u)))du

−
ˆ t

0

δk,U,i(u)zk,U,i(u)du

(5.31)

zk,A,i(t) = zk,A,i(0) +

ˆ t

0

J∑
j=1;j 6=i

K∑
l=1

rk,L,j,i(u)sl,k,L,j(u)θl,j(u)(zl,Q,j(u)− cl,j(z(u)))+du

−
ˆ t

0

δk,A,i(u)zk,A,i(u) du

(5.32)

zk,O,i(t) = zk,O,i(0) +

ˆ t

0

J∑
j=1;j 6=i

K∑
l=1

rk,S,j,i(u)sl,k,S,j(u)µl,j(u) min (zl,Q,j(u), cl,j(z(u)))du

−
ˆ t

0

δk,O,i(u)zk,O,i(u)du

(5.33)

zk,L,i(t) = zk,L,i(0) +

ˆ t

0

K∑
l=1

rk,L,i,J+1(u)sl,k,L,i(u)θl,i(u)(zl,Q,i(u)− cl,i(z(u)))+ du

(5.34)

zk,D,i(t) = zk,D,i(0) +

ˆ t

0

K∑
l=1

rk,S,i,J+1(u)sl,k,S,i(u)µl,i(u) min (zl,Q,i(u), cl,i(z(u))) du

(5.35)

To prove this theorem the following results are required. Applying the law of large

numbers to (5.20)-(5.27) for t ∈ [0, T ) ; i, j ∈ Ser; k, l ∈ H; m ∈ {R,U,A,O} as

η →∞:

Πλk,i(t)η

η

d−→
ˆ t

0

λk,i(u) du <∞ (5.36)
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D
(η)

k,m,i(t)
d−→
ˆ t

0

δk,m,i(u)zk,m,i(u) (5.37)

D
(η)

k,S,i(t)
d−→
ˆ t

0

µk,i(u) min (zk,Q,i(u), ck,i(z(u))) du (5.38)

D
(η)

k,L,i(t)
d−→
ˆ t

0

θk,i(u)(zk,Q,i(u)− ck,i(z(u)))+ du (5.39)

MS
(η)(l)

k,m,i(t)
d−→
ˆ t

0

sk,l,m,i(u)δk,m,i(u)zk,m,i(u) du (5.40)

MR
(η)(j)

k,S,i (t)
d−→
ˆ t

0

K∑
l=1

sl,k,S,i(u)rk,S,i,j(u)µl,i(u) min (zl,Q,i(u), cl,i(z(u))) du (5.41)

MR
(η)(j)

k,L,i (t)
d−→
ˆ t

0

K∑
l=1

sl,k,L,i(u)rk,L,i,j(u)θl,i(u)(zl,Q,i(u)− cl,i(z(u)))+ du (5.42)

Furthermore, the following lemma must be proved, as noted in [105].

Lemma 5.5.2 The sequence of scaled processes
{

Z
(η)

(.)
}∞
η=1

is relatively compact

and all weak limits are a.s. continuous.

Proof 1 (Lemma 5.5.2) Following the method in [105], but adapting to the ex-

tended system (5.1), I need to show that
{

Z
(η)

(.)
}∞
η=1

is relatively compact with con-

tinuous limits. To do this, it is sufficient to show the following two properties, which

together show that the process is a.s. continuous. These are from Corollary 7.4 and

Theorem 10.2 of [119].

(a) for any T ≥ 0, ε > 0, there exists a compact set ΓT ⊂ R7KJ such that:

P
(
Z

(η)
(t) ∈ ΓT , t ∈ [0, T ]

)
→ 1, as η →∞;

i.e. as the system scales with η, the solution remains contained in some set ΓT , for

t ∈ [0, T ] with probability 1.

(b) for any ε > 0, and T ≥ 0, there exists a δ > 0, such that:

lim sup
η→∞

P
(
ω
(
Z

(η)
(t), δ, T

)
≥ ε
)
≤ ε
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where:

ω
(
Z

(η)
(t), δ, T

)
:= sup

τ,t∈[0,T ]
|t−τ |<δ

max
m∈{Q,R,U,A,O,L,D}

k∈{1,...,K}
j∈{1,...,J}

∣∣∣Z(η)

k,m,j(t)− Z
(η)

k,m,j(τ)
∣∣∣

Proof of (a): Firstly, for the scaled fluid process, establish an upper bound for

the total number of patients in the system for t ∈ [0, T ]. A simple bound is the total

arrivals in time t with no departures - this is equivalent to the bound used in [105]:

J∑
j=1

K∑
k=1

(
Z

(η)

k,Q,j(t) + Z
(η)

k,R,j(t) + Z
(η)

k,U,j(t) + Z
(η)

k,A,j(t)

+ Z
(η)

k,O,j(t) + Z
(η)

k,L,j(t) + Z
(η)

k,D,j(t)

)
≤

J∑
j=1

K∑
k=1

(
Z

(η)

k,Q,j(0) + Z
(η)

k,R,j(0) + Z
(η)

k,U,j(0) + Z
(η)

k,A,j(0)

+ Z
(η)

k,O,j(0) + Z
(η)

k,L,j(0) + Z
(η)

k,D,j(0) + Πλk,j(T )η/η

)

Since Πλk,j(t)η is a time inhomogeneous Poisson process of rate λk,j(t)η, by (5.36)

and the assumption of Theorem 5.5.1, for η →∞:

J∑
j=1

K∑
k=1

(
Z

(η)

k,Q,j(0) + Z
(η)

k,R,j(0) + Z
(η)

k,U,j(0) + Z
(η)

k,A,j(0) + Z
(η)

k,O,j(0)

+ Z
(η)

k,L,j(0) + Z
(η)

k,D,j(0) + Πλk,j(T )η/η

)
d−→

J∑
j=1

K∑
k=1

(
zk,Q,j(0) + zk,R,j(0) + zk,U,j(0) + zk,A,j(0) + zk,O,j(0)

+ zk,L,j(0) + zk,D,j(0) +

ˆ T

0

λk,j(t)dt

)
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Hence: P
(
Z

(η)
(t) ∈ ΓT , t ∈ [0, T ]

)
→ 1 as η →∞, where:

ΓT =

{
(x1, x2, ..., x7KJ)

∣∣∣∣ 7KJ∑
n=1

xn ≤
J∑
j=1

K∑
k=1

(
zk,Q,j(0) + zk,R,j(0) + zk,U,j(0)

+ zk,A,j(0) + zk,O,j(0) + zk,L,j(0) + zk,D,j(0) +

ˆ T

0

λk,j(t)dt

)
;

x1, x2, ..., x7KJ ≥ 0

}

Proof of (b): The aim here is to show that, for any positive ε, the probability

of the maximum difference between two points in each of the states (that relate to

two points in time within a carefully chosen interval) exceeding ε, is negligible. i.e.

as time progresses, there are no large jumps in the scaled fluid process.

First consider the differences in each of the states of the scaled fluid process and

find a sensible bound for each. Following the method set out by [105], but extending

to include multiple health states and services, it follows from (5.13)-(5.19) that, for

all τ, t ∈ [0, T ], k ∈ H and j ∈ Ser:

∣∣∣Z(η)

k,Q,j(t)− Z
(η)

k,Q,j(τ)
∣∣∣ ≤ ∣∣Πλk,j(t)η − Πλk,j(τ)η

∣∣
η

+
∑

m∈{S,L,R,U,A,O}

∣∣∣∣∣D(η)

k,m,j(t)−D
(η)

k,m,j(τ)

∣∣∣∣∣∣∣∣Z(η)

k,R,j(t)− Z
(η)

k,R,j(τ)
∣∣∣ ≤ ∣∣∣D(η)

k,R,j(t)−D
(η)

k,R,j(τ)
∣∣∣+
∣∣∣MR

(η)(j)

k,L,j (t)−MR
(η)(j)

k,L,j (τ)
∣∣∣

≤
∣∣∣D(η)

k,R,j(t)−D
(η)

k,R,j(τ)
∣∣∣+

K∑
l=1

∣∣∣D(η)

l,L,j(t)−D
(η)

l,L,j(τ)
∣∣∣

∣∣∣Z(η)

k,U,j(t)− Z
(η)

k,U,j(τ)
∣∣∣ ≤ ∣∣∣D(η)

k,U,j(t)−D
(η)

k,U,j(τ)
∣∣∣+
∣∣∣MR

(η)(j)

k,S,j (t)−MR
(η)(j)

k,S,j (τ)
∣∣∣

≤
∣∣∣D(η)

k,U,j(t)−D
(η)

k,U,j(τ)
∣∣∣+

K∑
l=1

∣∣∣D(η)

l,S,j(t)−D
(η)

l,S,j(τ)
∣∣∣

∣∣∣Z(η)

k,A,j(t)− Z
(η)

k,A,j(τ)
∣∣∣ ≤ ∣∣∣D(η)

k,A,j(t)−D
(η)

k,A,j(τ)
∣∣∣+
∑
i 6=j

∣∣∣MR
(η)(j)

k,L,i (t)−MR
(η)(j)

k,L,i (τ)
∣∣∣

≤
∣∣∣D(η)

k,A,j(t)−D
(η)

k,A,j(τ)
∣∣∣+
∑
i 6=j

K∑
l=1

∣∣∣D(η)

l,L,i(t)−D
(η)

l,L,i(τ)
∣∣∣
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∣∣∣Z(η)

k,O,j(t)− Z
(η)

k,O,j(τ)
∣∣∣ ≤ ∣∣∣D(η)

k,O,j(t)−D
(η)

k,O,j(τ)
∣∣∣+
∑
i 6=j

∣∣∣MR
(η)(j)

k,S,i (t)−MR
(η)(j)

k,S,i (τ)
∣∣∣

≤
∣∣∣D(η)

k,O,j(t)−D
(η)

k,O,j(τ)
∣∣∣+
∑
i 6=j

K∑
l=1

∣∣∣D(η)

l,S,i(t)−D
(η)

l,S,i(τ)
∣∣∣

∣∣∣Z(η)

k,L,j(t)− Z
(η)

k,L,j(τ)
∣∣∣ ≤ ∣∣∣MR

(η)(J+1)

k,L,j (t)−MR
(η)(J+1)

k,L,j (τ)
∣∣∣

≤
K∑
l=1

∣∣∣D(η)

l,L,j(t)−D
(η)

l,L,j(τ)
∣∣∣

∣∣∣Z(η)

k,D,j(t)− Z
(η)

k,D,j(τ)
∣∣∣ ≤ ∣∣∣MR

(η)(J+1)

k,S,j (t)−MR
(η)(J+1)

k,S,j (τ)
∣∣∣

≤
K∑
l=1

∣∣∣D(η)

l,S,j(t)−D
(η)

l,S,j(τ)
∣∣∣

By (5.37)-(5.42) limits can be found for the above. For this, note that by (a)

there exists a finite constant V such that, for the event:

Γ
(η)
T =

{
Z

(η)
(t) ≤ V ; t ∈ [0, T ]

}
, P
(

Γ
(η)
T

)
→ 1 as η →∞

Therefore, on the event Γ
(η)
T each system state variable is bounded by V and the fol-

lowing inequalities hold for all τ, t ∈ [0, T ] such that |t−τ |≤ δ and m ∈ {R,U,A,O}:

γk,S,jδ := max
u∈[τ,t]

(
µk,j(u)Ck,j

(
Z

(η)
(u)
))

δ

≥
ˆ t

τ

µk,j(u) min
(
Z

(η)

k,Q,i(u), Ck,j

(
Z

(η)
(u)
))

du

γk,L,jδ := max
u∈[τ,t]

θk,j(u)V δ ≥
ˆ t

τ

θk,j(u)
(
Z

(η)

k,Q,j(u)− Ck,j
(
Z

(η)
(u)
))+

du

γk,m,jδ := max
u∈[τ,t]

δk,m,j(u)V δ ≥
ˆ t

τ

δk,m,j(u)Z
(η)

k,m,j(u)du

Since Zk,L,i(t) and Zk,D,i(t) are absorbing states for patients who are lost to the system

or have been discharged, their processes are captured by γk,S,j and γk,L,j, respectively.

Let Γ
(η)
T

c
be the compliment of the event Γ

(η)
T - the event

{
Z

(η)
(t) > V : t ∈ [0, T ]

}
- such that P

(
Γ
(η)
T

c
)
→ 0. To prove P

(
ω
(
Z

(η)
, δ, T

)
≥ ε
)
≤ ε, find an upper
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bound for P
(
ω
(
Z

(η)
, δ, T

)
≥ ε
)

and show that it diminishes as η → ∞. A suitable

bound can be formed by considering ω
(
Z

(η)
, δ, T

)
in the case of each state variable

i.e. finding the conditions for which each
∣∣∣D(η)

k,m,j(t)−D
(η)

k,m,j(τ)
∣∣∣ ≥ ε,m ∈ St =

{S, L,R, U,A,O} and the probability that this occurs:

P
(
ω
(
Z

(η)
, δ, T

)
≥ ε
)
≤ P

(
Γ
(η)
T

c
)

+
J∑
j=1

K∑
k=1

P
(
ω

(
Πλk,j(t)η

η
, δ, T

)
≥ ε

7KJ

)

+
J∑
j=1

K∑
k=1

∑
m∈St

P
(
ω
(
D

(η)

k,m,j(t), γk,m,jδ, γk,m,jT
)
≥ ε

7KJ

)
d−→

J∑
j=1

K∑
k=1

(
P
(

max
u∈[t,τ ]

λk,j(u)δ ≥ ε

7KJ

)
+
∑
m∈St

P
(
γk,m,jδ ≥

ε

7KJ

))

Convergence holds due to the earlier results gained using the law of large numbers

(5.36)-(5.42), and by the continuity of ω(x(t), γk,m,jδ, γk,m,jT ) and ω(x(t), δ, T ) with

respect to x(t). Hence, (b) holds with any δ such that maxu∈[t,τ ] λk,j(u)δ < ε/7KJ

and γk,m,jδ < ε/7KJ, for all k ∈ H, j ∈ Ser and m ∈ St. �

Now to prove Theorem 5.5.1. by extending the proof from [105] to (5.1), which

involves applying the law of large numbers to more cases. Fundamentally, the proof

is the same.

Aside 5.5.1 (Sketch of proof for Theorem 5.5.1) Re-write the system in vec-

tor form, for t ∈ [0, T ]:

Z
(η)

(t) = Z
(η)

(0) + G(η)
(
Z

(η)
(t)
)

+

ˆ t

0

H
(
Z

(η)
(u)
)
du

by adding and subtracting (5.29)-(5.35) to their respective counterpart in (5.13) -

(5.19). This can be rearranged to show that the right hand side tends to zero (because

of the law of large numbers) and that a unique limit exists for (5.13)-(5.19) i.e. the

solution to (5.29)-(5.35).



Chapter 5. Fluid and diffusion approximations for modelling the flow of
heterogeneous patients within a network of queues

152

Proof 2 (Theorem 5.5.1) The proof closely follows that of [105]; therefore, it has

been included within Appendix B.1. for reference. �

Analytical expressions cannot be found for (5.29)-(5.35); however, these equations

can be solved using common numerical schemes. In the following chapter I solve them

iteratively using the trapezium rule.

By Theorem 5.5.1, fluid approximations are gained for server allocations (5.2)

and (5.3). For (5.2), the continuous fluid approximation is:

ck,i(z(t)) =
ci(t)zk,Q,i(t)∑K
l=1 zl,Q,i(t)

, for all t ∈ [0, T ] (5.43)

For (5.3), the weighted allocation, the continuous fluid approximation is:

ck,i(z(t)) =
ci(t)Bk,i(t)zk,Q,i(t)∑K

l=1Bl,i(t)zl,Q,i(t)
, for all t ∈ [0, T ] (5.44)

Notably, the server allocation algorithm does not need to be implemented for the

continuous case since the fluid approximation is capable of modelling non-integer

allocations.

As previously noted, to calculate the VWT (section 5.5.4), ck,i(z(t)) needs to be

continuously differentiable. Thus, zk,Q,i(t), for all k ∈ H, i ∈ Ser must be continu-

ously differentiable throughout [0, T ], giving the requirement that all input param-

eters are continuous. These time varying server allocations are a further output for

the model.

5.5.3 Diffusion approximation

Following the method set out by A Mandelbaum et al. in the Appendix of [107]

and proved in [104], I apply their method to (5.1) to formulate a diffusion limit for

a system which includes health states, multiple services, arrivals to other services,
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uses of alternative services after abandonment and reuse. The method is largely

unchanged and is presented here to provide a more in-depth understanding of how

the method works in application to (5.1).

The diffusion limit quantifies deviations from the first order fluid approximation

[104], providing a second order limit that gives a system of ODEs for calculating

the mean and covariance of the diffusion process. As a result, information is gained

about the variance seen in the stochastic system. In the next chapter I will show

that, under the right conditions, the variance of the diffusion process closely matches

the sample variance from a simulated stochastic system.

Since all of the flow functions are continuous, the assumptions stated in Theorem

2.4 of [104] are maintained. Thus, the diffusion approximation may be formulated

by using the method in [107].

By Theorem 5.5.1, limη→∞ Z
(η)

(t) = z(t) a.s. with uniform convergence on com-

pact sets of t [107]. Thus, the diffusion limit is gained by applying the functional cen-

tral limit theorem to ẑ(t) = {ẑ(t)|T > t ≥ 0} [104]. That is, if limη→∞
√
η(Z

(η)
(0)−

z(0)) = ẑ(0) holds, where ẑ(0) is a constant, then:

lim
η→∞

√
η
(
Z

(η)
(t)− z(t)

)
d
= ẑ(t)

This is a convergence in distribution of the processes [104]. If the set of time points

{t ∈ [0, T ) |zk,Q,i(t) = ck,i(z(t))} has zero measure, ẑ(t) is a Gaussian process [107].

Thus, the mean vector and covariance matrix for the diffusion process are the unique

solutions to autonomous differential equations. Furthermore, for a service j ∈ Ser

both min(zk,Q,j(t), ck,j(z(t))) and (zk,Q,j(t)− ck,j(z(t)))+, are everywhere continuous.

Also, they are everywhere differentiable, except when zk,Q,j(t) = ck,j(z(t)).
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Noting that ẑ(t) is a column vector, for 0 ≤ t < T and for all x ∈ R(7KJ), define:

αt(x(t)) ≡
∑
i∈I

αt,i(x(t))vi

such that:

d

dt
E [ẑ(t)] = AT

t E [ẑ(t)]

and:

d

dt
Cov[ẑ(t)] = Cov[ẑ(t)]AT

t + AtCov[ẑ(t)] + Bt

where At = Dαt(z(t)) is the Jacobian of αt(z(t)) when differentiated at z(t) and

Bt =
∑

i∈I αt,i(z(t))vi⊗vi is the tensor product of two vectors forming a symmetrical

matrix. For 0 ≤ t < T , the matrices, A(t),B(t) and Cov[ẑ(t)] are of dimension

7KJ × 7KJ .

Instead of working with the index notation as in (5.45) and (5.46), I use a more

explicit notation to highlight how this method applies to the extended system. Be-

ginning with the rate functions, for k, l ∈ H and i, j ∈ Ser:

αk,i,1(z(t)) λk,i(t)

αk,l,i,2(z(t)) = sk,l,R,i(t)δk,R,i(t)zk,R,i(t)

αk,l,i,3(z(t)) = sk,l,U,i(t)δk,U,i(t)zk,U,i(t)

αk,l,i,4(z(t)) = sk,l,A,i(t)δk,A,i(t)zk,A,i(t)

αk,l,i,5(z(t)) = sk,l,O,i(t)δk,O,i(t)zk,O,i(t)

αk,l,i,6(z(t)) = sk,l,L,i(t)rl,L,i,J+1(t)θk,i(t)(zk,Q,i(t)− ck,i(z(t)))+

αk,l,i,7(z(t)) = sk,l,S,i(t)rl,S,i,J+1(t)µk,i(t) min (zk,Q,i(t), ck,i(z(t)))

αk,l,i,j,8(z(t)) = sk,l,L,i(t)rl,L,i,j(t)θk,i(t)(zk,Q,i(t)− ck,i(z(t)))+

αk,l,i,j,9(z(t)) = sk,l,S,i(t)rl,S,i,j(t)µk,i(t) min (zk,Q,i(t), ck,i(z(t)))
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zk,Q,i(t) = zk,Q,i(0) +

ˆ t

0

αk,i,1(u) +
K∑
l=1

(
αl,k,i,2(u) + αl,k,i,3(u) + αl,k,i,4(u)

+ αl,k,i,5(u)− αk,l,i,6(u)− αk,l,i,7(u)

−
J∑
j=1

(αk,l,i,j,8(u) + αk,l,i,j,9(u))

)
du

zk,R,i(t) = zk,R,i(0) +

ˆ t

0

K∑
l=1

(
αl,k,i,i,8(u)− αk,l,i,2(u)

)
du

zk,U,i(t) = zk,U,i(0) +

ˆ t

0

K∑
l=1

(
αl,k,i,i,9(u)− αk,l,i,3(u)

)
du

zk,A,i(t) = zk,A,i(0) +

ˆ t

0

K∑
l=1

(
J∑

i=1;j 6=i

αl,k,j,i,8(u)− αk,l,i,4(u)

)
du

zk,O,i(t) = zk,O,i(0) +

ˆ t

0

K∑
l=1

(
J∑

i=1;j 6=i

αl,k,j,i,9(u)− αk,l,i,5(u)

)
du

zk,L,i(t) = zk,L,i(0) +

ˆ t

0

K∑
l=1

αl,k,i,6(u)du

zk,D,i(t) = zk,D,i(0) +

ˆ t

0

K∑
l=1

αl,k,i,7(u)du

Continuing with this notation, I now form a basis of transition vectors of length

7KJ . Denoting the m-th element of each vector as v
(m)
k,i,1, the transition vectors are

defined as:

v
(m)
k,i,1 =


1, if m = 7K(i− 1) + 7(k − 1) + 1

0, otherwise

v
(m)
k,l,i,2 =



1, if m = 7K(i− 1) + 7(l − 1) + 1

−1, if m = 7K(i− 1) + 7(k − 1) + 2

0, otherwise
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v
(m)
k,l,i,3 =



1, if m = 7K(i− 1) + 7(l − 1) + 1

−1, if m = 7K(i− 1) + 7(k − 1) + 3

0, otherwise

v
(m)
k,l,i,4 =



1, if m = 7K(i− 1) + 7(l − 1) + 1

−1, if m = 7K(i− 1) + 7(k − 1) + 4

0, otherwise

v
(m)
k,l,i,5 =



1, if m = 7K(i− 1) + 7(l − 1) + 1

−1, if m = 7K(i− 1) + 7(k − 1) + 5

0, otherwise

v
(m)
k,l,i,6 =



−1, if m = 7K(i− 1) + 7(k − 1) + 1

1, if m = 7K(i− 1) + 7(l − 1) + 6

0, otherwise

v
(m)
k,l,i,7 =



−1, if m = 7K(i− 1) + 7(k − 1) + 1

1, if m = 7K(i− 1) + 7(l − 1) + 7

0, otherwise

v
(m)
k,l,i,j,8 =



−1, if m = 7K(i− 1) + 7(k − 1) + 1, for j = 1, ..., J

1, if m = 7K(i− 1) + 7(l − 1) + 2, for j = i

1, if m = 7K(j − 1) + 7(l − 1) + 4, for j 6= i

0, otherwise
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v
(m)
k,l,i,j,9 =



−1, if m = 7K(i− 1) + 7(k − 1) + 1, for j = 1, ..., J

1, if m = 7K(i− 1) + 7(l − 1) + 3, for j = i

1, if m = 7K(j − 1) + 7(l − 1) + 5, for j 6= i

0, otherwise

In this case:

αt(z(t)) ≡
K∑
k=1

J∑
i=1

αk,i,1(z(t))vk,i,1 +
K∑
k=1

K∑
l=1

J∑
i=1

7∑
p=2

αk,l,i,p(z(t))vk,l,i,p

+
K∑
k=1

K∑
l=1

J∑
i=1

J∑
j=1

9∑
q=8

αk,l,i,j,q(z(t))vk,l,i,j,q

Bt =
K∑
k=1

J∑
i=1

αk,i,1(z(t))vk,i,1 ⊗ vk,i,1

+
K∑
k=1

K∑
l=1

J∑
i=1

7∑
p=2

αk,l,i,p(z(t))vk,l,i,p ⊗ vk,l,i,p

+
K∑
k=1

K∑
l=1

J∑
i=1

J∑
j=1

9∑
q=8

αk,l,i,j,q(z(t))vk,l,i,j,q ⊗ vk,l,i,j,q

Both At and Bt are matrices of dimension 7KJ × 7KJ . For k ∈ H, i ∈ Ser, let

u = 7K(i− 1) + 7(k − 1) + 1. For m = 1, ..., 7KJ define:

a
(m,u)
t =

dα
(m)
t (z(t))

dzk,Q,i(t)
, a

(m,u+1)
t =

dα
(m)
t (z(t))

dzk,R,i(t)
, a

(m,u+2)
t =

dα
(m)
t (z(t))

dzk,U,i(t)

a
(m,u+3)
t =

dα
(m)
t (z(t))

dzk,A,i(t)
, a

(m,u+4)
t =

dα
(m)
t (z(t))

dzk,O,i(t)

a
(m,u+5)
t =

dα
(m)
t (z(t))

dzk,L,i(t)
, a

(m,u+6)
t =

dα
(m)
t (z(t))

dzk,D,i(t)



Chapter 5. Fluid and diffusion approximations for modelling the flow of
heterogeneous patients within a network of queues

158

5.5.4 Virtual waiting time

Adapting the method set out in [107], I now present a method for calculating the

virtual waiting time (VWT) for each service in (5.1). This method differs slightly

from [107]. Due to the extension to multiple health states and use of a dynamic

server allocation that is dependent on Z(t), additional assumptions and definitions

are required, as detailed below. The method is presented here to give further explicit

detail on how this applies in a scenario of multiple services and health states.

Definition 5.5.6 (Virtual waiting time) For a infinitely patient “virtual customer”

arriving to the service and queue at a fixed time τ, T > τ ≥ 0, their virtual wait-

ing time (VWT) is how long they have to wait until their service begins. This is

denoted: VWTk,i(τ) for each i ∈ Ser and k ∈ H.

The method set out in [107] needs to be adapted to calculate the VWT for (5.1).

Thus, given the parallel queues and multiple services, the following assumptions are

required to calculate the VWT for each k ∈ H and i ∈ Ser over the interval [0,∞):

1. The functions ck,i(z(t)) are continuously differentiable with respect to time;

2. All µk,i(t) are continuous;

3. δk,R,i(t), δk,U,i(t), δk,A,i(t), δk,O,i(t) and θk,i(t) are bounded on compact intervals.

The first assumption places the continuous constraint on all the input parameters

when using the dynamic server allocations in section 5.3.1 (thus the second is implicit

in 1, unless the dynamic allocations are not modelled). The third assumption ensures

that patients who reside in a process state spend a measurable amount of time in it,

i.e. if, say, δk,U,i(t) = ∞, patients spend no time in the process orbit, immediately

entering the queue.

To calculate the VWT at time τ > 0, (5.13)-(5.19) are modified. Denoted Z∗,

Z∗(t) = Z(t) for τ > t ≥ 0 . Thus, the results of Theorem 5.5.1 and the diffusion
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equations still hold in this time period. However, for t > τ , the time after a virtual

patient has arrived, the process differs as follows:

1. There are no external arrivals, rejoins, reuses, uses of alternative service or

arrivals from other services;

2. Only patients remaining in the queue and service are served after τ ;

3. Any patient departing the service and queue process leaves the entire system;

4. There are no health state transitions after τ .

Importantly, the above assumptions simplify the calculation of the VWT in a net-

work, as each health state queue (and service) behaves independently of each other

for t > τ . Therefore, the system can be decomposed such that the VWT can be

solved for each health state queue. Furthermore, due to the above assumptions for

t > τ , I need only focus on the operation of the service orbit.

Applying a scaling limit η > 0 as in section 5.5.2, the scaled modified process is

denoted Z
∗(η)

. To aid the formulation of the VWT, Z
∗(η)

may be defined in terms of

a scaled arrival process A
(η)

k,i (t) and a scaled departure process ∆
(η)

k,i (t), for t ≥ 0.

To define these processes, I first introduce new definitions of the service flux term

and abandonment flux term for the modified system:

D
∗(η)
k,S,i(t) = Πk,S,i

(
η

ˆ t

0

µk,i(u) min
(
Z
∗(η)
k,Q,i(u), Ck,i

(
Z

(η)
(u)
))

du

)/
η

D
∗(η)
k,L,i(t) = Πk,L,i

(
η

ˆ t

0

θk,i(u)
(
Z
∗(η)
k,Q,i(u)− Ck,i

(
Z

(η)
(u)
))+

du

)/
η

Notably, Ck,i

(
Z

(η)
(u)
)

, is given by the unmodified system since I am calculating the

VWT for the unmodified system.

Now, for Z
∗(η)
k,Q,i(t) = A

(η)

k,i (t) − ∆
(η)

k,i (t) and t > 0, I define A
(η)

k,i (t) to include the

patients who are in service at time 0, and ∆k,i(t) to be a continuously differentiable
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and non-decreasing function in [0,∞), as follows:

A
(η)

k,i (t) = Z
(η)

k,Q,i(0) +
Πλk,i(t)η

η
+

K∑
l=1

MS
(η)(k)

l,R,i (t) +
K∑
l=1

MS
(η)(k)

l,U,i (t)

+
K∑
l=1

MS
(η)(k)

l,A,i (t) +
K∑
l=1

MS
(η)(k)

l,O,i (t), τ > t > 0

∆
(η)

k,i = D
∗(η)
k,S,i(t) +D

∗(η)
k,L,i(t), t > 0

Noting: A
(η)

k,i (0) = Z
(η)

k,Q,i(0), A
(η)

k,i (t) = A
(η)

k,i (τ), t ≥ τ, ∆
(η)

k,i (0) = 0.

For k ∈ H and i ∈ Ser, as in [107]:

lim
η→∞

(
Z
∗(η)

(t), A
(η)

k,i (t),∆
(η)

k,i (t)
)

= (z∗(t), Ak,i(t),∆k,i(t)) a.s.

which converges uniformly on compact sets of t. As a result, the arrival process,

Ak,i(t), and service process, ∆k,i(t), for the modified fluid approximation, z∗k,Q,i(t) =

Ak,i(t)−∆k,i(t), t > 0, are:

Ak,i(t) = z∗k,Q,i(0) +

ˆ t

0

λk,i(u) +
K∑
l=1

sl,k,R,i(t)δl,R,i(u)zl,R,i(u)

+
K∑
l=1

sl,k,U,i(t)δl,U,i(u)zl,U,i(u)

+
K∑
l=1

sl,k,A,i(t)δl,A,i(u)zl,A,i(u)

+
K∑
l=1

sl,k,O,i(t)δl,O,i(u)zl,O,i(u) du, τ > t > 0

∆k,i =

ˆ t

0

µk,i(u) min
(
z∗k,Q,i(u), ck,i (z(u))

)
+ θk,i(u)

(
z∗k,Q,i(u)− ck,i (z(u))

)+
du, t > 0

Noting: Ak,i(0) = zk,Q,i(0), Ak,i(t) = Ak,i(τ), t ≥ τ, ∆k,i(0) = 0.
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Given the above and following [107], the diffusion approximation is given by:

lim
η→∞

√
η

(
Z
∗(η)

(t)− z∗(t), A
(η)

k,i (t)− Ak,i(t),∆
(η)

k,i (t)−∆k,i(t)

)
d
=
(
ẑ∗(t), Âk,i(t), ∆̂k,i(t)

)

If the set of time points {t ≥ 0|
∑A

k=1 z
∗
k,Q,i(t) = ck,i(z(t))}, has zero measure for all

k ∈ H and i ∈ H, then {ẑ∗(t)|t ≥ 0} is a Gaussian process for t ≥ τ . Therefore, for

t ≥ τ the fluid approximation service process is given by:

z∗k,Q,i(t) = z∗k,Q,i(τ)−
ˆ t

0

µk,i(u) min
(
z∗k,Q,i(u), ck,i (z(u))

)
du

−
ˆ t

0

θk,i(u)
(
z∗k,Q,i(u)− ck,i (z(u))

)+
du

And the variance of the modified diffusion process, Var(ẑ∗k,Q,i(t)), is the solution to:

d

dt
Var(ẑ∗k,Q,i(t)) = θk,i(t)(z

∗
k,Q,i(t)− ck,i(z(t)))+

+ µk,i(t) min(z∗k,Q,i(t), ck,i(z(t)))

− 2θk,i(t)Var(ẑ∗k,Q,i(t))I{z∗k,Q,i(t)>ck,i(z(t))}

− µk,i(t)Var(ẑ∗k,Q,i(t))I{z∗k,Q,i(t)≤ck,i(z(t))}

(5.45)

where I{x≥0} is an identity function such that for x ≥ 0, I{x≥0} = 1, otherwise I{x≥0} =

0. Furthermore, it follows that, for t ≥ 0 : ẑ∗k,Q,i(t) = Âk,i(t)− ∆̂k,i(t).

Having made these extra assumptions and established the modified system, the

method now follows that of [107]. To formulate the VWT, define the potential ser-

vice initiation process to be: D
(η)

k,i = ∆
(η)

k,i (t) + Ck,i

(
Z

(η)
(t)
)

, such that if Z
∗(η)
k,Q,i(t) <

Ck,i

(
Z

(η)
(t)
)
⇒ A

(η)

k,i (t) < D
(η)

k,i (t), giving the service “ahead” of arrivals. Further-

more, by definition, the following limit holds:

lim
η→∞

D
(η)

k,i (t) = Dk,i(t) a.s.
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Convergence is again uniform on compact sets of t [107] and Dk,i(t) = ∆k,i(t) +

ck,i(z(t)), t ≥ 0. Since ck,i(z(t)) and ∆k,i(t) are continuously differentiable, Dk,i(t)

is also continuously differentiable. Additionally, the derivative of Dk,i(t) is denoted

dk,i(t). A further necessary assumption is that dk,i(t) is strictly positive such that

limt→∞Dk,i(t) > Ak,i(τ) (this ensures that the VWT always exists because all pa-

tients will eventually be served and is why continuously differentiable parameters

and queueing process are required given the dynamic server allocation).

By definition, both A
(η)

k,i (t) and Ak,i(t) are constant for t ∈ [τ,∞). It is also helpful

to define all the processes on the interval [−Tk,i,∞), with Tk,i = ck,i(z(0))/dk,i(0) i.e.

whilst no arrivals or departures happen in [−Tk,i, 0), the number of servers increases

linearly from 0 to ck,i(z(0)) for each k ∈ H, i ∈ Ser. Thus, for D̂k,i(t) = ∆̂k,i(t):

lim
η→∞

(
Z
∗(η)

(t), A
(η)

k,i (t), D
(η)

k,i (t)
)

= (z∗(t), Ak,i(t), Dk,i(t)) a.s.

lim
η→∞

√
η

(
Z
∗(η)

(t)− z∗(t), A
(η)

k,i (t)− Ak,i(t), D
(η)

k,i (t)−Dk,i(t)

)
d
=
(
ẑ∗(t), Âk,i(t), D̂k,i(t)

)
Note that Ak,i, Dk,i, Âk,i, D̂k,i are continuous and Dk,i(−Tk,i) = D̂k,i(−Tk,i) = 0.

Given the stated assumptions, the following processes are well defined and finite

with probability 1 for all sufficiently large η [107]. Defining the first attainment

processes, S
(η)

k,i (t) and Sk,i(t), for all t ≥ −Tk,i:

S
(η)

k,i (t) = inf
{
s ≥ −Tk,i : D

(η)

k,i (s) > A
(η)

k,i (t)
}

Sk,i(t) = inf {s ≥ −Tk,i : Dk,i(s) > Ak,i(t)}

giving the attainment waiting time processes, W
(η)

k,i (t) and Wk,i(t), as:

W
(η)

k,i (t) = S
(η)

k,i (t)− t, Wk,i(t) = Sk,i(t)− t
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In defining these processes, the scaled VWT at τ for k ∈ H, i ∈ Ser, denoted

VWT
(η)

k,i (τ), is calculated by:

VWT
(η)

k,i (τ) = W
(η)

k,i (τ)+ =
(

inf
{
s ≥ −Tk,i : D

(η)

k,i (s) > A
(η)

k,i (τ)
}
− τ
)+

It is possible for W
(η)

k,i (τ) and Wk,i(τ) to be negative when Z
∗(η)

(τ) < Ck,i

(
Z

(η)
(τ)
)

,

hence VWT
(η)

k,i (τ) = 0. Thus, if no queue has formed, there is no waiting time. It

follows, as in [107], that:

lim
η→∞

(
Z
∗(η)

, A
(η)

k,i , D
(η)

k,i ,W
(η)

k,i

)
= (z∗, Ak,i, Dk,i,Wk,i) a.s.

lim
η→∞

√
η

(
Z
∗(η) − z∗, A

(η)

k,i − Ak,i, D
(η)

k,i −Dk,i,W
(η)

k,i −Wk,i

)
d
=
(
ẑ∗, Âk,i, D̂k,i, Ŵk,i

)

and by the theorem and corollary of [120] the diffusion approximation of the virtual

waiting time can be calculated as follows:

Ŵk,i(t) =
Âk,i(t)− D̂k,i (Sk,i(t))

dk,i (Sk,i(t))

Since the processes Âk,i, D̂k,i, ẑ
∗
k,Q,i, Ŵk,i are continuous with probability 1, they au-

tomatically obtain the convergence of finite-dimensional distributions [107].

For the non-trivial case Sk,i(τ) ≥ τ where z∗k,Q,i(τ) ≥ ck,i(z(τ)) if in [0, τ ] the set

of points {t | z∗k,Q,i(t) = ck,i(z(t))} has measure zero, then since A(Sk,i(t)) = A(τ):

lim
η→∞

W
(η)

k,i (τ) = Wk,i(τ) a.s.

lim
η→∞

√
η(W

(η)
(τ)−Wk,i(τ))

d
= Ŵk,i(τ)

=
Âk,i(τ)− D̂k,i (Sk,i(τ))

dk,i (Sk,i(τ))

=
Âk,i (Sk,i(τ))− D̂k,i (Sk,i(τ))

dk,i (Sk,i(τ))

=
ẑ∗k,Q,i(Sk,i(τ))

d(Sk,i(τ))
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Hence:

Var[Ŵk,i(τ)] = Var

[
ẑ∗k,Q,i(Sk,i(τ))

d(Sk,i(τ))

]
=

Var
[
ẑ∗k,Q,i(Sk,i(τ))

]
d(Sk,i(τ))2

As shown in [107], this can be solved analytically for each queue. For the non-

trivial case of Sk,i(τ) ≥ τ (i.e. the case that zk,Q,i(τ) > ck,i(z(τ))):

Sk,i(τ) = min{t ≥ τ |zk,Q,i(t) = ck,i(z(t))}

such that, d(Sk,i(τ))) = ck,i(z(Sk,i(τ)))µk,i(Sk,i(τ)) +
dck,i(z(t))

dt
|t=Sk,i(τ)). In the next

chapter, I solve these equations using MATLAB’s built-in ODE solver ode45; how-

ever, they may be solved numerically in open source software/software that is readily

available to health services.

5.5.5 Production of outcomes

Within a given time period, (5.13)-(5.19) may be adapted to measure the pro-

duction of outcomes from a service. That is, the number of patients who leave the

system at a point in time and are in a given health state. This includes those who

leave due to abandonment, Pk,L,i(t), and completing service, Pk,S,i(t). Over a period

of time [ts, te] ⊆ [0, T ] the production of patients in health state k ∈ H from a service

i ∈ Ser is given by:

Pk,S,i(t) =
K∑
l=1

MS
(k)
l,S,i(te)−MS

(k)
l,S,i(ts) (5.46)

Pk,L,i(t) =
K∑
l=1

MS
(k)
l,L,i(te)−MS

(k)
l,L,i(ts) (5.47)

with the analogous fluid approximation of:

pk,S,i(t) =

ˆ te

ts

K∑
l=1

sl,k,S,i(u)µl,i(u) min (zl,Q,i(u), cl,i(z(u))) du (5.48)
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pk,L,i(t) =

ˆ te

ts

K∑
l=1

sl,k,L,i(u)θl,i(u)(zl,Q,i(u)− cl,i(z(u)))+ du (5.49)

This measure can help to understand how different capacity allocations and changes

in time varying systems may affect the output of patients in certain health states

from a system, and the system’s impact on patients’ health.

5.6 Summary and Discussion

Fluid and diffusion approximations for stochastic processes are efficient methods

for modelling complex systems of queues that may otherwise be computationally in-

tensive or analytically intractable. I have shown that several flow dynamics may be

modelled by these methods, including the sequential use of multiple services, aban-

donment, rejoin, reuse, health states, and health and time dependent parameters.

Furthermore, I have shown that these extensions are mathematically valid.

Whilst the fluid limit is a deterministic approximation of the stochastic system,

the variance can be calculated by formulating the diffusion limit. Thus, one can

understand both the expected behaviour and variance of the number of patients in

each process state and of the virtual waiting time for each queue within the system.

A multifaceted view of system performance can be analysed by combining patient

flow and clinical outcomes into a single modelling framework. By using health states

the flow of patients with differing resource/service requirements and different capac-

ities to benefit from care. In particular, the model’s output is informed by the effect

of care, or absence of it, on patient health and the effect of patients with different

health care requirements, e.g. service times, on the operation of the system. This

may reflect real life where patients of varying health and care needs have markedly

different interactions with a health service. This may provide greater insight into

the positive and negative clinical effects of a system’s process outcomes - providing
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a framework for modelling the “flow of outcomes” - discussed further in chapter 6.

Traditionally, parallel queues are inefficient due to the possibility of inactive

servers. However, this limitation is overcome by using a dynamic multi-class server

allocation since servers are continuously reallocated. Thus, there is no possibility

of inactive servers if a queue exists for a service. As a result, the benefits of using

multiple queues to represent different health states may be fully utilised. That is,

differentiated services can be modelled in order to understand how patients with

different levels of health may affect the performance of the system and be used to

measure the performance of the system. Furthermore, this priority type allocation

can handle the complex flow dynamics of re-entrant patients and may in fact be

defined to specifically depend on the process orbits that represent these dynamic.

5.6.1 Limitation

As noted earlier, fluid and diffusion approximations are most accurate for large

and heavily loaded systems. There are two reasons for this. Firstly, the approxima-

tions are formed by scaling the number of servers and arrivals in the system; thus,

by construction, they are more accurate for larger systems. Whilst this may be a

limitation, it is also a benefit since the method is scalable and can maintain accuracy

and efficiency for larger systems. Secondly, for heavily loaded systems the behaviour

of the queues becomes “more deterministic”, such that these deterministic approx-

imations hold with greater accuracy. However, this may again limit when and how

these approximations may be used.

A second limitation is that, in considering multiple services and several health

states, the system can become unwieldy due to the number of input parameters. Fur-

thermore, when time dependence is considered, the implementation of this system

can become more complex to code. Whilst the solution to these ODEs is efficient,

editing and changing the inputs can be time consuming, especially if several configu-



Chapter 5. Fluid and diffusion approximations for modelling the flow of
heterogeneous patients within a network of queues

167

rations of the system are analysed. One way to overcome this is to use a configurable

interface for entering the inputs needed to run these models.

A final limitation, as identified by [107], is that the solution cannot “linger” near

zk,Q,i(t) = Ck,i(z(t)) when calculating the VWT and its variance. This is because the

approximation hinges on the assumption that {zk,Q,i(t) = Ck,i(z(t))|t > 0} is of zero

measure. As suggested by [107], an alternative, more general formulation of these

equations may be used to overcome this, as in [104].

In the next chapter I will explore how these limitations affect the application of

these methods within community health care.

5.6.2 Possible avenues for future work

There are several directions in which this work could be extended, adapted or

used. Firstly, the concurrent use of multiple services was identified in chapter 2

as a key dynamic of community health care. This would form a useful avenue for

future work in understanding how the concurrent uses of services may produce good

patient health and process outcomes. One potential direction is to define states that

represent the combination of services. For example, a system of two services would

be represented by three service states; two pertaining to the use of each single service

and one representing the combination.

Secondly, the stochastic system is formulated as a Markovian system with time

and health state dependent parameters. Future extensions for this work could involve

the relaxation of the Markovian assumptions to form a more generalisable approx-

imation. In addition, it would be insightful to use different parameter definitions.

This could include mechanisms for loss that are dependent on the number of patients

in different parts of the system, or the introduction of finite waiting space.

Thirdly, the definitions of the capacity allocation C(Z(t)) are illustrative of the

types that may be defined by using a fluid and diffusion approach. It would be worth-
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while exploring the benefits that the continuous representation of the system may

have in producing different definitions that may enable a range of avenues for anal-

ysis such as optimisation, capacity allocations and priority queueing. Furthermore,

through the combination with patient outcomes novel constraints and objectives may

be considered in such analysis and may be used to inform capacity allocations and

design referral pathways. For example this could be to maximise positive patients

outcomes or minimise adverse flow patterns that lead to poorer outcomes. Similarly,

health states have been defined to change at: the completion of service; the point

of abandoning the queue; or, upon joining the queue as a rejoin, reuse, alternative

service arrival or other service arrival. Hence, it would also be valuable to explore al-

ternative definitions and configurations of this system such as time dependent health

transitions that may change whilst a patient resides in a given state.

Fourthly, the methods developed in this chapter are general and may apply to

other sectors of health care or industry. They model systems of queues through

which a population of entities with different capacities to benefit from service may

flow, and whose service times, propensity to abandon, and subsequent use of service,

differs. These dynamics may translate into industries such as telecommunications,

where health states may be defined as states of satisfaction or opinion.

5.7 Conclusions

In this chapter, I have developed a method for modelling queues of heterogeneous

patients whose group (health) may change throughout the service process. These

methods contribute to the way in which community services may be modelled, and

how patient outcomes may be incorporated into patient flow modelling.

These methods are beneficial in three ways. Firstly, there is a methodological

benefit. The approximations are solved as a set of ODEs that are efficient to solve,
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even as the system grows large, providing informative performance measures. These

include: the number of patients within different health states, process orbits and

services in the systems; the virtual waiting time for each service; the variance of

each; and, the production of outcomes.

Secondly, complex dynamics may be modelled using these methods, such as:

patients reusing a service; future referrals to other services; and, the potential for

patients to abandon and potentially rejoin the queue or use another service. Whilst

potentially rendering the system analytically intractable or computationally inten-

sive, they can be modelled by producing fluid and diffusion limits.

This leads to the third benefit, that the combination of health states and patient

flow provides new avenues for insightful analysis within community care. The meth-

ods developed in this chapter highlight how two key perspectives of performance in

health care may be united in a single modelling framework. These methods may

be used to help understand: how patients use services; the effect of multiple care

interactions on patient health; the effect of delayed demand/reuse of services on the

operation of the system and on patient health; and, how a dependency between

capacity of the system and the future arrival process affects the system.

Moreover, the work presented in this chapter is in line with the findings of this

thesis so far. Explicitly, I have produced a time-dependent method that can be

numerically solved for modelling patient flow within systems of diverse community

services, that may consider the mix of patients who use them (as per chapter 2).

Additionally, I contribute to the way in which complex flow dynamics, such as pa-

tients reusing services, transitions between multiple services and transitions in patient

health may be modelled (as per chapters 3 and 4).

Finally, by extending and combining existing fluid and diffusion approximation

methods, I increase the scope for the application and use of these approximations in

various settings.



Chapter 6

Application of fluid and diffusion

approximations to patient flow in

community health care

Given the lack of available data for model validation, in this chapter I present a

theoretical understanding of the model. I begin with a discussion of how the methods

developed in chapter 5 may apply to community health care, considering how the

approximations may be used to represent real world systems.

In addition, I explore the parameter space for these methods to assess when they

are most accurate. Starting with a simple steady state model and extending to a

multiple health state time dependent scenario, I build up an understanding of when

these models are accurate, how the extensions change this and the parameters that

are important in determining the accuracy of the method.

I assess the accuracy of the approximations in comparison to simulations, con-

sidering the effect of different parameters, empty and non-empty initial conditions,

steady state and time varying scenarios, pre-allocation of servers and dynamic multi-

class server allocation, and multiple health states with different transition probabili-

ties. Having carried out this analysis, I will discuss how these methods may be used
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to model the “flow of outcomes”.

The aims of this chapter are to:

1. Discuss how these methods may apply to community health care;

2. Assess the accuracy of the approximations in response to different input pa-

rameters and flow dynamics;

3. Develop understanding of the “flow of outcomes” and how it may be modelled.

6.1 Introduction

It is widely established within the literature on fluid and diffusion approximations

that they increase in accuracy when modelling systems that are large (many servers)

and heavily loaded (when the demand for service persistently exceeds the capability of

services to meet it) [102]. This is especially true when abandonment of the queue and

rejoins are modelled [105]. Recognising this, there is a need to understand when the

methods developed in chapter 5 are accurate. In particular, which input parameters

are important for maintaining accuracy, under what conditions the system is heavily

loaded and for what size of system accuracy is maintained.

Due to the dynamics considered in chapter 5, the usual definitions of traffic

intensity, server utilisation and when systems are heavily loaded, do not hold. In

a simple queueing system, traffic intensity, denoted a, is a measure of congestion

within the system, calculated as the ratio between the mean arrival rate and mean

service rate, a = λ/µ. In a multi-server system, service utilisation is the traffic

intensity per server, denoted ρ = a/c = λ
cµ

.

For a simple stochastic queue, where there is no loss or abandonment, when

ρ < 1 the average queue length is finite throughout time. Alternatively, when ρ > 1
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a system is heavily loaded such that the queue grows without bound as demand

outstrips the service’s ability to serve all those who arrive. Notably, this may not be

the case if loss is considered.

However, in chapter 5 arrivals to each service consisted of: new patients; patients

rejoining the queue or using an alternative service after abandonment; and having

finished service, patients reusing a service or using another one. Furthermore, the

service process included transitions in health state. As a result, several parameters

may be significant in determining whether the queues are heavily loaded in the

extended system; thus, determining the accuracy of the approximations in modelling

the stochastic system.

I will analyse the accuracy of the approximations by comparing them to a simu-

lation of the stochastic system, and find the pragmatic constraints this places on the

input parameters. To do so, I explore several scenarios (some relevant to community

health care and some not) in order to test the approximations and identify key lim-

itations. From these findings, I discuss how additional dynamics further effect the

use and applicability of these methods.

This chapter makes two main contributions. Firstly, by carrying out a theoretical

investigation of the model, the limitations of these approximations in modelling the

stochastic system will be understood as I discuss where and how the method may

be used for accurate analysis. Secondly, I highlight how these limitations may affect

the application of these methods to community health care and the modelling of the

“flow of outcomes”.

Structure of chapter

In section 6.2, I discuss how the model parameters and dynamics may be inter-

preted in application to community health care, identifying scenarios for which these

models may be used. In section 6.3.1, I briefly describe a simulation model used for
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comparison and how the errors between the two models are measured; after which, in

section 6.3.2, I conduct steady state analyses of the base system (a single service and

a single health state). Here I explore several scenarios and consider how changes in

different parameters affect the accuracy of the model. In addition, I introduce time

varying behaviour to understand how seasonal changes in the arrival rate of new

patients affect the accuracy of the system over time. To conclude this section, I sum-

marise the limitations of the approximations in representing the stochastic system

and how this informs the understanding of when the system is heavily loaded. The

overall aim of this section is to develop understanding of the most basic model, when

it is most accurate and what parameters are important in maintaining accuracy.

Having established the above, in section 6.3.3, I consider a case with two health

states. I begin with a steady state analysis to show how health state transitions

cause the limitations and parameters that determine the accuracy of the method to

differ from those outlined in section 6.3.2. Secondly, I explore a time varying system,

introducing a dynamic server allocation for multi-class queues and considering a

seasonal spike in arrivals, again to further understand how accuracy may be affected.

In section 6.3.4, I discuss how the work in previous sections informs the under-

standing of when the complete system - multiple services and transitions between

several health states - is accurate in comparison to simulation. Given these findings,

the method is illustrated by an application of the fluid and diffusion methods to a

larger system. This chapter ends with a discussion of these methods and their use

in modelling the “flow of outcomes”.

6.2 Application to community health care

First note that conceptually, these methods are appropriate for modelling some

aspects of patient flow in community health care due to the dynamics they capture.
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Following from chapter 3, these methods include sequential uses of multiple services

and the potential for patients to reuse services. Thus, in practice and in the model,

the demand for these services is formed of new, previous and current users of care.

This effectively creates a higher traffic intensity in the system, increasing the theo-

retical applicability of these methods (discussed in detail later). In addition, from

discussions with community care leads, it was acknowledged that some community

services operate with a persistent waiting list throughout the year which may be

modelled as a permanent, non-physical queue.

With this in mind, before assessing the accuracy of the approximation method,

I now discuss how the parameters and patient flow dynamics within the model may

represent different aspects of community health care.

The queues

The methods developed in chapter 5 can be used to model physical and non-

physical queues. Considering community health care, a non-physical interpretation

is a natural approach to take, such as a waiting list for a service. Whilst in some cases

this may have a fixed capacity, I model an infinite waiting space, which is reasonable

for many scenarios when patients wait away from the service.

For analytical tractability, I have considered multiple parallel queues each per-

taining to the demand of patients in each health state. These queues use servers from

a single pool, with patients served on a first come first served (FCFS) basis in each

queue. In some real world settings, there may only be a single waiting list made up

of patients from all health states; thus, for these scenarios, the use of multiple queues

would not be appropriate. However, parallel queues may apply to situations where

the waiting list is effectively divided into several lists - such as services made up of

several types of health care professional, or where patients with a mixture of morbidi-

ties may attend, thus requiring different types of care. This may occur when servers
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are reserved/allocated to meet the demand of different groups of patients, or when

patients are managed in different groups. In each case, these groups may consist

of different health states/health outcomes, different capacities to benefit, different

health care needs, or certain morbidities.

Service process

As identified in chapter 3, how patients use services may be markedly different

depending on the service and needs of patients. In some instances, a referral may

consist of a single use, whilst in others it may represent multiple visits over several

days, weeks or months. In this chapter, I consider service to represent the span of a

patient’s referral - lasting from the start of their first appointment until the end of

their final appointment. As a result, referrals may consist of a single appointment

or several (as discussed in chapter 3, see Figure 3.4).

Having defined the service process as a continuous, time-inhomogeneous, expo-

nentially distributed process in chapter 5, service time 1/µk,i(t) represents the aver-

age length of referral for patients at time t within health state k ∈ H for a service

i ∈ Ser. Thus, for modelling purposes, the number of appointments that occur does

not need to be known, nor the date, time or length of each appointment. Rather,

only the average length of referral from start to finish is needed (if required, health

states may be defined to reflect information such as the number of appointments).

Using this interpretation, servers may be defined as individual clinicians. How-

ever, in modelling the length of patient referrals, a server will be considered busy

throughout this period while serving a patient, which is unlikely to be the case in

practice. Rather, over the length of a patient’s referral, a clinician may treat several

patients, managing multiple referrals at a time. To model this, servers may represent

the maximum number of patients a service can handle/serve at any one time, given

the possible mix of patients. Thus, for example, if a community service consists of



Chapter 6. Application of fluid and diffusion approximations to patient
flow in community health care

176

five clinicians who can each manage a maximum of five referrals at any one time,

the service is modelled as having 25 servers overall. However, defining the maximum

number of referrals a service can theoretically handle is not straightforward; thus,

this definition may require a hypothetical/potential capacity.

Abandonment, rejoin and use of alternative ser-

vices

Abandonment could be used to model patients who leave the queue having died,

left the geographical area of service, used another service, or who no longer require

care. Considering rejoin, a novel interpretation of abandonment is the use of a health

care service outside of the community system e.g. acute services. In particular,

abandonment would be considered to occur when the health of a patient, who has

waited for a significant length of time, deteriorates such that they require immediate

care or have become impatient and sought care elsewhere.

Considering the alternative community service orbit, the interpretation is similar;

however, the impact on other community services in the system may be modelled.

In this case, the time spent in the alternative service orbit before entering the queue,

may be interpreted as: a use of an acute service, the time between leaving the queue

and self referring, or the time taken to receive a referral from primary care to an

alternative service.

These interpretations may be useful for services that treat long-term conditions

because patients often require multiple care interactions over an extended period of

time. Likewise, they may be useful for modelling when, due to a long wait, a patient

feels they no longer require care as their symptoms subside, yet may require care in

the future if the underlying problem still persists. In each case, the use of an acute

or primary service may not negate their need for future use.
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Furthermore, this interpretation can provide an insightful measure for community

health care. As highlighted in chapter 4, a key goal in the provision of community

services is to reduce the volume of avoidable acute and primary care demand. There-

fore, by modelling a system that possesses high levels of abandonment in this way,

flaws in its capacity management and provision may be understood. For example,

instances where a delay in care led to increased acute/primary demand may be mod-

elled (only if abandonment is interpreted as a use of care elsewhere). Likewise, the

effect of patient behaviour on the operation of these services may be modelled.

However, by interpreting the queue as a waiting list, patients are required to be

removed from the list upon using another service, or for them to actively remove

themselves and be subsequently re-added as they rejoin - which may be unlikely

to occur in real life. Whilst this may not always be true, the use of loss and rejoin

provides a helpful measure that is descriptive of community health care. In particular,

it can help in understanding how a lack of capacity and long waiting times may

influence patient decisions and their health.

Reuse and uses of other services

The reuse orbit and other service orbit may be used to model the future needs

and demand of patients who have already used community care. In the case of reuse,

this may represent a later episode of care, whilst arrivals from other services could

represent a formal referral. In the latter case, the time spent in the orbit may be

negligible if patients immediately join the waiting list. However, as before, if this

orbit represents a self referral or a referral from primary care between community

visits, the time spent in the other service orbit may have a significant value.

Having discussed the possible interpretation of the model, I now begin to explore

when the approximations are accurate and how they may be used.
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6.3 Exploration of the accuracy of fluid

and diffusion approximations for mod-

elling community health care

6.3.1 Description of the simulation model

To evaluate their accuracy, I compare the output of the fluid and diffusion ap-

proximations to the equivalent results from a simulation of the stochastic system.

Produced in MATLAB, I use discrete event simulation (DES) methods for modelling

the stochastic system (see Appendix C for the code). This method is event driven

with time progressing as events occur. In the system described in section 5.3, an

event relates to an arrival of a patient (new, rejoin, reuse, other service, alternative

service), the completion of service or an abandonment from the queue. When these

events occur, patients may also transition in health state or enter the rejoin/reuse

orbits; however, these are instantaneous and part of the above events.

I used DES methods since they provide an intuitive way to model this system

given the number of possible events. To this end, I created a single script for mod-

elling several scenarios (steady state, time varying, single or multiple service, single

or multiple health states, and all or some of the flow dynamics).

The simulation includes the mechanism of pre-emptive resumption as discussed

in section 5.2. Notably, this mechanism may not represent a real life process since

servers may remain active until the patient they are serving completes care. However,

if it is not feasible for servers to carry on past their “active” period, pre-emptive

resumption ensures that all patients complete care once started, and allows for a

time varying number of servers. Since the simulation is not designed to be used for

single iterations (rather, I use it to find the average behaviour across multiple runs)
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this is a reasonable approach to take. For instance, due to stochastic variation, the

impact of pre-emptive resumption will vary for each run and will average out over

multiple simulations.

Model outputs

Within DES methods it is common to output every event that occurred and when

it occurred. However, since the simulation is used to find the average behaviour of

the system, this would increase the difficulty in comparing the results. For example,

in running the simulation several times, the size of the results matrix would vary,

outputting different time markers for each iteration. Instead, I programmed the

simulation to output a solution at a given time step, dt, producing an output of

length T/dt + 1, where T is the total modelled period. This is reasonable since it

creates a standardised solution, providing key information throughout the modelling

time frame. With careful selection of dt, any loss of detail is insignificant.

Another reason for producing outputs of length T/dt + 1 is for easy comparison

to the fluid and diffusion approximations. Having used numerical methods for com-

puting these approximations, such as forward Euler and the trapezium rule, the time

step is important in determining the accuracy of these solutions and their stability.

If the time step is too large, the solution will be less accurate and, in some cases,

unstable, see Figure 6.1. By reducing the time step, the stability and accuracy im-

proves; however, this increases the number of calculations required, thus increasing

the computation time. This highlights the need to balance accuracy and running

time in selecting dt.

By using these numerical methods, solutions of the approximations are calculated

at each time step, producing outputs of length T/dt+ 1. Therefore, formulating the

output of the simulation as above helps for comparison between simulations and the

numerical solution of the approximations.
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Figure 6.1: (a) Stability issues with forward Euler calculation for the variance when
time step is too large, dt = 0.6; (b) Improved stability and accuracy of solution for
smaller time step, dt = 0.5.

Since I have no data or real world scenario to apply the approximation methods

to, I take the simulated solution to be “true”. Therefore, the aim is to evaluate when

and how the fluid and diffusion approximations are faithful to this process. As noted

in chapter 5, simulation is one method for modelling these systems when they get

large due to the complexity. Thus, I compare two methods that are appropriate for

modelling this complex system. Other methods include system dynamic approaches

and Markov chains.
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Error measurement

To find the average solutions and variance of the simulation, I chose to use 1000

runs for two reasons. Firstly, in comparing the output from 100 (as in [105]), 500,

1000, and 5000 runs (as in [107]), I found that for 1000 runs the stochastic variation

is greatly reduced in the averaged solution, providing comparable results, see Figure

6.2 (modelling a single health state, using parameters in Table 6.2, with q = 0.5 and

c, λ = 20). Secondly, the number of runs has a significant impact on the running

time of the simulation, see Table 6.1.

Number of runs 100 500 1000 5000

Total run time (s) 8.78 42.33 84.92 472.68

Table 6.1: Total computation time for the simulation as the number of runs increases

Figure 6.2: Example of increased accuracy in the variance of the simulated waiting
time as the number of runs increases

If the simulation was solely used to assess this system, 1000 runs would be rea-

sonable for gaining reliable results. Hence, this analysis will provide a comparison of

the approximations to an appropriate method for evaluating this system.

To measure accuracy, I consider the errors between the average number of patients
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in each process state, the virtual waiting times (VWT) and the variance of each. For

m ∈ {Q,R,U}; p, q ∈ {0, 1, 2, ..., T/dt}; p < q such that tp = dt× p:

errm(tq − tp) =

∑q
r=p EZm(tr)− zm(tr)∑q

r=p EZm(tr)
(6.1)

verrm(tq − tp) =

∑q
r=p Var(Zm(tr))− Var(zm(tr))∑q

r=p Var(Zm(tr))
(6.2)

werr(tq − tp) =

∑q
r=pWT Sim(tr)− VWT(tr)∑q

r=pWT Sim(tr)
(6.3)

wverr(tq − tp) =

∑q
r=p Var(WT Sim(tr))− Var(VWT(tr))∑q

r=p Var(WT Sim(tr))
(6.4)

where WT Sim indicates the waiting time gained from the simulation.

6.3.2 Single service and a single health state

Having described a large an complex system in chapter 3, I begin by analysing the

approximations in their simplest form. The purpose of this section is to understand

the effect that different parameters have on the approximations’ accuracy and on the

understanding of when the system is “effectively” heavily loaded. Analysis of these

approximations in their most basic setting is conducted in order to understand how

this may differ as more dynamics and health states are introduced.

The analysis and insights gained add to those published in [105, 107] since: the

effect of changes in a range of different parameters is considered, the analysis is

conducted over a split time interval, and time dependent behaviour is modelled.

Analysing the system over two time intervals shows the accuracy of the model during

queue formation and as the system reaches steady state, providing insight into the

accuracy of modelling time varying behaviour. This also mitigates the bias that the

length of the modelled time period introduces (discussed below).
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The parameters used in each scenario are informed by discussion with NELFT

staff but do not relate to data. Thus, a hypothetical example is given which may be

interpreted for a range of different services e.g. the service time may be interpreted

as any length of time, as long as all other times are consistent with its definition.

Steady state analysis

To begin, I conduct a steady state analysis of a single service, single health state

model as in [105]. Given that the definition for traffic intensity per server, ρ = λ/cµ,

does not hold for systems with rejoin and reuse, the authors of [105] identify an

effective traffic intensity for this system: ρ̃ = λ
cµ(1−q) , where q is the probability that

a patient seeks to reuse the service. This provides a reasonable upper bound for the

busyness of servers in the system as it considers that “a proportion of at least 1
1−q

of ρ will reuse services”. In considering this scenario, I will use the notation from

[105] where q is the probability that a patient reuses the service after receiving care,

and p is the probability that a patient rejoins the queue after abandoning. Rejoins

are not included in this calculation since they are captured by the initial λ, and the

definition of the traffic intensity does not change for systems with loss.

Given the above, I first investigate the accuracy of these methods as q, the size

of λ and the size of c, vary for a system that begins empty and where ρ = 1.

The parameters used for this comparison are listed in Table 6.2. Whilst in reality

this initial condition is unlikely to relate to community services, beginning with

an empty system allows for the analysis of the approximations’ accuracy when the

system moves from being underloaded (zQ(t) < c(t)) to overloaded (zQ(t) > c(t)).

By inspecting the results of the simulation and approximations when T = 20,

q = 0.5 and c, λ = 20 (Figure 6.3), there are two distinct phases within the solution.

This is further highlighted by Figure 6.4 - the error between the two models’ outputs

for the number of patients in each process state, and Figure 6.5 - the errors in the
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Parameter - Value Description

dt = 0.1 Time step for the numerical scheme used to solve fluid and
diffusion approximations

T = 15 Total time period of solution

λ ∈ {10, 15, 20} Value range of arrival rates

c ∈ {10, 15, 20} Value range for total number of servers

µ = 1 Service rate

θ = 1 Rate of abandonment

p = 0.3 Proportion of patients rejoining after abandonment

q ∈ {0.1, 0.3, 0.5, 0.7} Value range for proportion of patients reusing the service

δR = 1 Rate of rejoin after abandonment

δU = 1 Rate of reuse after service

Table 6.2: Parameters used to assess the accuracy of the approximations - steady
state analyses of the effect of c, λ and q

Figure 6.3: Comparison of results from the approximations and the simulation for a
system with λ = c = 20, q = 0.5 and ρ̂ = 2
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Figure 6.4: Error in the average value of each process state. After time t = 2.8 the
accuracy of the fluid approximation improves greatly.

Figure 6.5: Graph of error in the variance of each process state. After time t = 2.8
the accuracy of the diffusion approximation improves greatly.
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variances given by each model for the number of patients in each process state.

Between time [0, 1.8] there is a large error between the approximations and the

simulation which diminishes over [1.8, 2.8]. Notably, in Figures 6.4 and 6.5 the error

for zR(t) reaches 1, indicating a 100% error. Whilst proportionately large, this is

given by ZR(t) divided by itself since zR(t) = 0 for 0.3 ≤ t ≤ 1.8. This error

is explained by the system starting underloaded, and the difference between when

queues form in the stochastic and deterministic processes.

In a real world system, when servers are free, new arrivals immediately enter

service until the system reaches a critical point zQ(t) = c(t). Subsequent arrivals

then form a queue such that zQ(t) > c(t) from which they may begin to abandon.

Due to random variation in the arrival process for a stochastic system, the ex-

istence and size of the queue fluctuates in time such that abandonment may occur

throughout the whole time frame. However, within the fluid approximation, this

variation does not occur. Instead, there is no queue or loss within the fluid system

until the critical point is reached. This delay between the two models causes the

initial inaccuracy, after which the approximations may recover and become accurate.

With this in mind, I produce two errors for the system relating to two periods of

time. Firstly, I calculate errors as the queue forms in the fluid approximation - for

[0, TI ], where TI = max{t + 1|zQ(t) ≤ c(t)} - denoted as the “formation error”. For

the system described in Table 6.2, these errors are shown in Table 6.3. From this I

will understand the size of this initial error, the length of time for which this error

occurs (TI) and how the size of the system and ρ̃ affects both of these. Secondly, I

calculate the errors for the remaining time period: (TI , T ], shown in Table 6.4.

Since the errors may diminish as the system reaches steady state, the size of T

affects the error measurement if (6.1)-(6.4) are simply calculated over the whole of

T . In particular, for larger T the errors will be lower because they are calculated

over a large period of time for which the system is more accurate. Thus, informed
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by Figures 6.3, 6.4 and 6.5, I consider T = 15 to ensure the system has enough

time to reach steady state in each situation, whilst diminishing the impact of large

time frames on the reported errors. Furthermore, by splitting the time interval and

reporting two errors for each scenario, I mitigate the bias of T . Finally, given the

modelled parameters, I have chosen T such that TI < T .

It is clear from Tables 6.3 and 6.4 that the approximations are progressively more

accurate as the size of the system (number of servers and number of arrivals) and the

effective traffic intensity (in relation to the size of q) grow. The method is accurate

for the queue and service process (zQ) and the reuse process (zU), even during the

q = 0.1 q = 0.3 q = 0.5 q = 0.7

TI = 3.8 TI = 3.1 TI = 2.8 TI = 2.6

c, λ err verr err verr err verr err verr

10

zQ 1.20 2.42 0.76 3.11 0.55 2.42 0.59 3.61

zR 95.45 71.96 82.80 56.91 72.15 48.56 62.16 39.22

zU 6.09 4.64 6.43 3.70 6.84 7.72 7.53 5.98

15

zQ 0.79 3.2 0.69 1.52 0.64 2.62 0.59 1.73

zR 94.02 66.96 78.40 50.69 65.01 39.91 57.59 32.10

zU 4.48 4.66 4.16 5.55 5.69 7.34 4.75 4.80

20

zQ 0.51 3.29 0.53 2.21 1.54 2.53 0.82 1.62

zR 93.33 65.98 72.97 44.19 63.38 43.74 50.96 29.79

zU 6.27 7.49 4.06 5.97 2.92 4.04 3.21 3.04

c, λ werr wverr werr wverr werr wverr werr wverr

10 zQ 91.20 75.46 73.71 62.05 61.98 55.91 51.62 50.45

15 zQ 89.30 73.21 68.31 60.16 52.68 51.84 45.48 45.19

20 zQ 87.38 74.61 63.11 56.44 49.20 52.25 37.60 44.61

Table 6.3: Errors between the approximations and the simulation during the “for-
mation period” as a percentage of the simulated solution - effect of q, c and λ
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q = 0.1 q = 0.3 q = 0.5 q = 0.7

TI = 3.8 TI = 3.1 TI = 2.8 TI = 2.6

c, λ err verr err verr err verr err verr

10

zQ 1.78 2.02 0.67 1.44 0.61 2.07 0.73 2.20

zR 46.41 3.01 10.17 2.24 3.15 2.95 1.79 2.13

zU 7.50 5.16 3.53 2.84 1.73 2.51 1.08 1.63

15

zQ 1.48 2.63 0.47 1.61 0.75 1.51 0.37 1.47

zR 39.23 6.21 6.28 2.24 2.17 2.27 1.26 1.95

zU 5.16 2.24 1.74 3.11 1.30 2.00 0.69 1.92

20

zQ 0.93 2.73 0.37 2.05 0.33 1.71 0.37 1.68

zR 32.73 7.74 3.23 1.60 1.76 1.67 1.17 2.04

zU 5.42 4.02 1.58 1.66 1.08 2.19 1.17 1.78

c, λ werr wverr werr wverr werr wverr werr wverr

10 zQ 48.47 22.90 17.33 3.50 9.60 2.61 7.61 2.52

15 zQ 40.91 25.17 11.81 3.48 7.69 2.46 4.76 1.89

20 zQ 35.10 23.67 8.37 3.28 5.54 2.13 4.46 2.16

Table 6.4: Errors between the approximations and the simulation after the “forma-
tion period” as a percentage of the simulated solution - effect of q, c and λ

“formation period”, often giving errors of less than 5% for the averages and variances.

However, the rejoin orbit has the biggest range in error. In some cases, the

approximations recover from the initial inaccuracy, quickly becoming accurate, see

Figure 6.3 and Table 6.4 (q ≥ 0.3). However, Table 6.4 and Figure 6.6 show that for

an effective traffic intensity close to 1 the inaccuracy persists, even for large systems.

The same is true for the accuracy of the VWT. Until the queue is formed, the

VWT is always 0; therefore, larger errors occur during the formation period, which

then diminish once the approximation overcomes the initial delay. In addition, once

a queue forms, the variance equations for the VWT change, see (5.47), producing
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Figure 6.6: Error in the approximation when ρ̃ = 1.1̇

The difference between when loss begins in the simulation compared to the approxi-
mation are clearly seen, producing an error that persists throughout the solution.

Figure 6.7: Example of an initial spike in the variance of the VWT

spikes in the solution at critical points [107], Figure 6.7. Additionally, for the VWT,

the solution is inaccurate when the system is critically loaded for a significant period
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of time [107] due to the assumption that {zQ(t) = c(t)|t > 0} is of zero measure.

Importantly, the size of q has a significant effect on the accuracy of the approx-

imation. As q increases, more patients reuse the service, increasing the effective

traffic intensity. Thus, in the scenario above, whilst ρ = 1, the system operates with

a higher effective traffic intensity, increasing the accuracy of the results. Even for

the smaller systems, the increased size of q greatly improves the accuracy of results.

From Tables 6.3 and 6.4, the length of the formation period decreases as the

effective traffic intensity increases. With a higher effective traffic intensity, queues

form quicker, resulting in the approximations becoming accurate at a faster rate.

Thus, the error introduced by beginning with an empty system is overcome. Notably,

the size of the system had no effect on the length of the formation period.

To further examine the system, I consider the effect of changes in other parameters

fixing c, λ = 20 and q = 0.3, and varying θ, δR and δU as in Table 6.5.

Parameter - Value Description

dt = 0.1 Time step for the numerical scheme

T = 15 Total time period of solution

λ = 20 Arrival rates

c = 20 Number of servers

µ = 1 Service rate

p = 0.3 Proportion of patients rejoining after abandonment

q = 0.3 Proportion of patients reusing the service

Table 6.5: Parameters used to assess the accuracy of the approximations - steady
state analyses of the effect of θ, δR and δU

In comparison to the effect of q, µ and the size of the system, these parameters

have little effect on the accuracy of the system, Table 6.6. Most effectual is the value

of θ, which reduces the error in calculating the VWT after the formation period.

Otherwise, each parameter produces a small change in the accuracy of the VWT,
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t ≤ TI t > TI

Parameters err verr werr wverr err verr werr wverr

θ = 1
2 zQ 1.19 2.80 63.65 52.82 0.74 2.00 5.81 3.54

δR, δU = 1 zR 72.31 48.04 - - 2.82 2.43 - -

TI = 3.1 zU 4.95 6.85 - - 1.32 2.23 - -

θ = 2 zQ 1.86 5.08 59.21 67.26 1.02 3.68 12.42 3.29

δR, δU = 1 zR 68.93 44.11 - - 4.01 4.67 - -

TI = 3.1 zU 2.33 3.90 - - 2.16 1.82 - -

δR = 1
2 zQ 0.72 2.63 63.55 56.58 0.55 2.09 9.68 3.23

θ, δU = 1 zR 74.58 42.36 - - 5.35 2.84 - -

TI = 3.1 zU 4.38 4.79 - - 1.44 2.20 - -

δR = 2 zQ 0.63 1.54 61.72 60.63 0.40 1.96 8.05 4.02

θ, δU = 1 zR 68.09 46.66 - - 3.31 3.06 - -

TI = 3.1 zU 3.33 4.12 - - 1.50 1.73 - -

δU = 1
2 zQ 0.54 2.32 70.43 66.73 0.31 1.54 9.75 3.53

θ, δR = 1 zR 79.53 53.52 - - 5.86 2.68 - -

TI = 3.4 zU 2.73 5.78 - - 1.16 2.27 - -

δU = 2 zQ 1.03 3.91 53.57 56.84 0.39 1.60 9.05 2.43

θ, δR = 1 zR 65.74 40.11 - - 2.78 2.62 - -

TI = 2.9 zU 4.72 5.92 - - 1.65 1.72 - -

θ, δR, δU = 1
2 zQ 1.24 5.97 71.05 64.29 0.97 2.58 7.58 4.72

zR 82.47 59.01 - - 5.84 1.47 - -

TI = 3.4 zU 4.36 5.30 - - 1.29 2.23 - -

θ, δR, δU = 2 zQ 1.35 4.86 55.00 60.99 0.55 3.62 13.28 2.75

zR 64.60 39.92 - - 4.44 2.80 - -

TI = 2.9 zU 4.39 5.48 - - 3.09 2.65 - -

Table 6.6: Error between the approximations and simulation as a percentage of the
simulated solution - effect of parameters θ, δR, δU

but overall there is little change for the other outputs. Notably, the length of the

formation period reduced as δU decreased, highlighting that systems with higher δU



Chapter 6. Application of fluid and diffusion approximations to patient
flow in community health care

192

become accurate faster. This is expected since patients re-enter the queue sooner,

creating a slight “boost” in the total rate arrivals.

By calculating errors during the formation period and after, I conclude that under

the right conditions, the error between the two methods is small; thus, the methods

are appropriate for steady state analysis. Given the results in this section, for the

remainder of the chapter, discussion of the model’s accuracy will centre around the

effective traffic intensity. This will include analysis of time varying behaviour, when

the system is underloaded and overloaded, non-empty initial conditions, and the

effect of transitions between multiple health states.

Time varying behaviour

As noted in [106, 107], fluid and diffusion approximations may be used to model

time varying systems. Figures 6.8, 6.9 and 6.10 show the results of the approxima-

tions as the number of arrivals falls from 20 to 10 at t = 10 (this uses the same input

parameters as in Table 6.2, except T = 20 and q = 0.7). Notably, the use of a piece-

wise continuous arrival rate is allowed for this scenario since the number of servers

is constant and continuous. Each output maintains accuracy, closely following the

behaviour of the simulation.

However, it should be noted that an inaccuracy may occur when moving from

an overloaded to an underloaded phase. To model this behaviour within the ap-

proximations, ρ̃ needs to fall below 1, which may occur due to a fall in arrivals, a

fall in reuse or an increase in the service’s capability to meet demand (increased c

or µ). In Figures 6.11 and 6.12, a similar scenario to Figure 6.8 is modelled but

with q = 0.4, such that ρ̃(t) = 1.6̇, t ∈ [0, 10) and ρ̃(t) = 0.83̇, t ∈ [10, 20]. This

highlights how accuracy may be maintained when passing between overloaded and

underloaded phases, as long as the system does not remain critically loaded for too

long. Furthermore, in Figure 6.11 a behaviour similar to that which occurs in the
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Figure 6.8: Example of the accuracy of the approximations in modelling a fall in the
rate of arrival - process states

Figure 6.9: Example of the accuracy of the approximations in modelling a fall in the
rate of arrival - the VWT
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Figure 6.10: Example of the accuracy of the approximations in modelling a fall in
the rate of arrival - the variance of the VWT

formation period is seen in the solution to zR(t) for 12 < t < 16. I refer to this as

a “dispersion” behaviour - where the queue (and thus the number of abandonments

and rejoins) diminishes quicker in the fluid approximation, again due to the lack of

stochastic variation. In addition, as noted by [107], this error may increase when the

difference between these phases are less distinct i.e. the difference between ρ̃ during

the two phases is small.

The above examples highlight that time varying behaviour between overloaded

and underloaded phases can be accurately modelled by fluid and diffusion approx-

imations. Importantly, the effective traffic intensity must be significantly greater

than 1 in overloaded phases, and significantly lower than 1 in underloaded phases.

When this does not occur, the largest errors are seen in the rejoin orbit and the

VWT during underloaded phases, and during the formation/dispersion periods.

I now explore the use of the approximations for modelling a spike in demand,
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Figure 6.11: Example of the accuracy of the approximations in modelling a system
that moves from an overloaded phase to an underloaded phase - process states

Figure 6.12: Example of the accuracy of the approximations in modelling a system
that moves from an overloaded phase to an underloaded phase - VWT
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beginning with a non-zero initial conditions zQ(0) = 20 and using the parameters in

Table 6.2, setting q = 0.3, c = 20 and T = 15. The arrival process is:

λ =


20, t ∈ [0, 6) ∩ [8, 15]

40, t ∈ [6, 8)

Figures 6.13 to 6.17 show that the approximations are accurate throughout the

time interval. An error still occurs during the formation period; however, the error

is smaller and quickly diminishes. If zR(0) > 0 this initial error greatly diminishes.

Furthermore, the solution to the VWT and its variance closely follow the simulation.

Figure 6.13: Example of a seasonal spike in arrivals - the number of patients in each
process state and the variance of each
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Figure 6.14: Example of a seasonal spike in arrivals - the error in the number of
patients in each orbit

Figure 6.15: Example of a seasonal spike in arrivals - the error in the variance
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Figure 6.16: Example of a seasonal spike in arrivals - the VWT

Figure 6.17: Example of a seasonal spike in arrivals - the variance of the VWT
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Summary of single service and single health state models

From the above analyses, I note the following:

• Large percentage errors may occur when moving from an underloaded phase

to an overloaded phase, caused by a delay between the queue forming and

when patients can begin to abandon the queue in the two models - denoted the

formation period;

• A similar error is seen when moving from an overloaded phase to an under-

loaded phase - denoted the dispersion period;

• Accuracy is maintained when moving between phases of underloading and over-

loading as long as the system does not “linger” in a critically loaded state and

ρ̃ is far from 1;

• Once these delays are overcome, the approximations can be used to accurately

model steady state scenarios and time dependent solutions;

• The size of the system (number of servers and arrivals) and the size of the

effective traffic intensity ρ̃ = λ/cµ(1 − q) are the most significant parameters

in determining the accuracy of the system. Either decreasing θ - the rate at

which patients leave the queue - or increasing δU - the rate at which patients

reusing the service enter the queue - also improves the accuracy of the model;

• The approximation of the number of patients in the reuse orbit, and queue and

service orbit, and the variance of these outputs is accurate irrespective of the

size of the system, effective traffic intensity and time;

• The VWT approximation and number of rejoin patients are more accurate

for higher effective traffic intensities, but may still exhibit large errors within

formation and dispersion periods.
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I have shown that the approximation methods can be highly accurate for the

service and queue process state, and the reuse process state. The majority of the

error comes through the rejoin orbit; hence, if this dynamic is negligible, this process

state may be dropped to increase accuracy. Nevertheless, when modelling a system

with an effective traffic intensity greater than 1, abandonment from the queue is

required to maintain a finite average queue length. Alternatively, if abandonment

is not considered, there must be periods within the modelled time period when the

system is not effectively heavily loaded to inhibit the queue growth [106].

I suggest that these methods are appropriate for modelling community services

when significant reuse is anticipated, and demand is regularly high such that the

queue persists or seasonal spikes cause excessive demand. I also suggest, in line with

[107], that care is taken when evaluating the fluid and diffusion approximations of

zR(t), VWT and their variances when zQ(t) is close to c(t).

6.3.3 Single service and multiple health states

Building on the previous section, I now explore a simple extension; a system with

two health states. I will begin by using a constant and equal allocation of servers

across queues. From this I will gain an understanding of how the effective traffic

intensity may differ when multiple health states are considered, for both steady

state and time varying scenarios.

Steady state analysis

Beginning with a steady state analysis of a system that begins empty, I examine

the accuracy of approximations when the system moves from being underloaded

to overloaded. Patients may arrive in either a health state k = 1 or k = 2, and

progress through the system according to health state dependent parameters, set

out in Table 6.7. In this example, patients from either health state have the same
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input parameters, such that ρ = λ/cµ = 1 for both queues. By modelling two

groups with the same input parameter, this analysis helps to understand the effect

that health state transitions have on the accuracy of the approximations.

Health State

Parameters k = 1 k = 2

µk 1 1

θk 1 1

λk 20 20

ck 20 20

pk = rk,L,1,1 0.3 0.3

qk = rk,S,1,1 0.3 0.3

δk,R 1 1

δk,F 1 1

Table 6.7: Parameters used to assess the accuracy of the approximations - steady
state analysis of a single service and two health states

Now to define the health transition matrices with k = 2 indicating better health

(despite the lack of difference between their flow parameters). Firstly, I assume that

receiving service has a potentially beneficial, but not perfect, effect. Thus, patients

in k = 2 remain in this state after service, whilst those in k = 1 are more likely to

improve and move to k = 2 than stay the same. Secondly, I assume a similar, reverse

effect for abandonment - that patients in k = 1 remain in this state, yet those in

k = 2 are more likely to decline in health than stay the same. Thirdly, for those who

seek to rejoin, I assume that such patients may use a service outside of the system;

hence, there may be an improvement in their health after rejoin. Finally, for those

who reuse the service, I assume that their health may change or stay the same after

their time in the orbit; however, they are more likely to remain in the state in which

they enter. This may represent a delayed benefit of service, or a decline in health

post service.
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Notably, these matrices highlight the differences in patients’ capacities to benefit

as the receipt of care, or the absence of it, has a different effect on patients in each

health state. The transition matrices for this system are as follows:

SS =


0.3, 0.7

0, 1

SL =


1, 0

0.6, 0.4

SR =


0.8, 0.2

0.5, 0.5

SF =


0.8, 0.2

0.2, 0.8


Table 6.8 presents the errors for this system, containing errors for the formation

period - [0, TI), and the error after - [TI , 15].

Parameters err verr werr wverr

k = 1
ZQ 0.34 2.12 75.32 64.77

ZR 63.00 37.00 - -

t ≤ TI = 3.4 ZU 2.60 3.97 - -

k = 1
ZQ 0.46 1.45 12.03 6.30

ZR 4.24 1.95 - -

t > TI = 3.4 ZU 2.67 2.33 - -

k = 2
ZQ 0.24 1.79 52.56 54.32

ZR 65.50 47.85 - -

t ≤ TI = 2.9 ZU 3.48 4.22 - -

k = 2
ZQ 0.42 1.30 6.71 1.55

ZR 2.05 2.06 - -

t > TI = 2.9 ZU 1.41 1.59 - -

Table 6.8: Error between the approximations and simulation as a percentage of the
simulated solution

A clear difference is seen in the accuracy of the fluid and diffusion limits for

the two health states. For k = 2, after the formation period, the solution is more

accurate for both zR(t) and the VWT , indicating that the queue is more heavily
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loaded and that the effective traffic intensity is no longer only dependent on reuse

patients and ρ. Moreover, there is a difference between the length of the formation

periods for the two health state queues, further highlighting the difference in effective

traffic intensity caused by the health state transitions. In particular, a smaller TI

indicates that the system has a higher effective traffic intensity, as in section 6.3.2.

A reason for this is that patients may join the queue for the health state they did

not arrive in through either the reuse or rejoin orbits. Previously, rejoining patients

were captured by λ in the steady state system; now however, since these patients

may join the other queue, this is no longer the case. Hence, these arrivals and the

effect of health state transitions are now influential when formulating the effective

traffic intensity with multiple health states.

As a final observation, the calculation of the approximations was over 150 times

faster than the simulated solution.

Time varying behaviour - dynamic server allocation

Extending this scenario further, I now model a time-varying system that begins

non-empty, with all servers busy at t = 0 with zk,Q(0) = 15 for k = 1, 2. Furthermore,

the two patient groups now have different flow parameters, see Table 6.9.

Considering a small spike in the arrivals of patients in health state k = 1, I analyse

the dynamics of queues, using a proportional allocation of servers (equation 5.43).

Thus, c(t) = 30 for all t ∈ [0, 15] and Ck,i(Z(t)) =
⌊
ci(t)Zk,Q,i(t)∑K
l=1 Zl,Q,i(t)

⌋
for the simulation

and ck,i(z(t)) =
ci(t)zk,Q,i(t)∑K
l=1 zl,Q,i(t)

for the approximations. Within the simulation, as in the

stochastic process, the number of servers allocated to a queue is updated each time

an event occurs that changes the size of Zk,Q(t) i.e. a new arrival, patient completing

service, an abandonment from the queue.

Using the same health state transition matrices as before, patients in health

state k = 1 are now have longer service times, a higher propensity to abandon, a
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Health State

Parameters k = 1 k = 2

µk 1/2 1

θk 1 1/2

λk 15 15

pk 0.5 0.3

qk 0.5 0.3

δk,R 1 1/2

δk,F 1 1/2

Table 6.9: Parameters used to assess the accuracy of the approximations - time-
varying analysis of a single service and two health states

higher likelihood of rejoin or reuse, and require sequential service sooner. Thus, these

patients are more resource intensive since they have longer stays within service and

less time between uses.

Since the input parameters are required to be continuous to ensure that zQ(t) is

continuously differentiable, I use a continuous jump in arrivals:

λ1(t) =



15, t ∈ [0, 4) ∩ [7, 15]

15 + 15× (sin(π(t− 4)− π
2
) + 1), t ∈ [4, 5)

45, t ∈ [5, 6)

15 + 15× (sin(π(t− 6) + π
2
) + 1), t ∈ [6, 7)

Using this arrival function, I model how parallel queues share servers from a

common pool, gaining and losing servers according to the proportion of total de-

mand each queue represents. By one queue “attracting” more servers, they deny the

opportunity for the other queue to use those servers.

Figures 6.18 to 6.22 show a comparison of the outputs of the two models, including

two new outputs for the system. First, Figure 6.19 shows the dynamic allocation
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Figure 6.18: Two health state system with dynamic server allocation - number of
patients in each process state and their variance

of servers over time as each queue gains servers from/loses servers to the other.

Secondly, Figure 6.22 shows the production of outcomes as measured by the rate

at which patients in each health state leave the system over time. Overall, the

approximations accurately model the system, indicating that it is suitable for this

analysis and that the continuous approximation of the capacity allocation holds.

Figure 6.18 shows that the approximations accurately model the number of pa-
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Figure 6.19: Two health state system with dynamic server allocation - number of
servers available to each queue over time as they gain/lose servers

tients in each process orbit and the variance of each throughout the modelled time

period. Notably, the increased arrivals for the k = 1 queue has seemingly little

impact on the queue for k = 2. There are two reasons for this. Firstly, patients

rejoining after abandonment are more likely to be in health state k = 1; thus, any

limitation on access of k = 2 patients results in more rejoins of patients in k = 1,

rather than a longer k = 2 queue. Secondly, the change in servers allocated for k = 2
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Figure 6.20: Two health state system with dynamic server allocation - the VWT

counteracts any increase in the queue size. If the queue and service were considered

separately, a clear difference would be seen i.e. looking at (zk,Q(t)− ck(z(t))+ and

min (zk,Q(t)− ck(z(t)). This is where Figures 6.19 to 6.22 provide more information.

In Figure 6.20, for k = 2 the gradient of the VWT increases at t = 4, reflecting

the loss in available servers to k = 1, increased queue lengths and longer waits.

Additionally, there is a large increase in the VWT for k = 1. Whilst this queue has

gained more servers, causing an initial dip, the increase in new arrivals and k = 1
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Figure 6.21: Two health state system with dynamic server allocation - variance of
the VWT

rejoin patients raises the waiting time. Considering the variance of the VWT, Figure

6.21, the fluid and diffusion approximations match the behaviour but fail to capture

the magnitude of the simulated solution. For increased effective traffic intensity

and size of system, the results improve; however, it is often inaccurate. One reason

is that the variance of the simulated waiting time has the most variability of the

system outputs. Combined with the added variability introduced by the dynamic

server allocation, this likely produces this inaccuracy.
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Figure 6.22: Two health state system with dynamic server allocation - the production
of outcomes

Alongside the effect on the VWT, the production of outcomes from this system

is affected. In Figure 6.22, the number of patients who are lost due to abandonment,

and are in the worst health state k = 1, greatly increases. Therefore, the impact of

the increased arrivals, even with more servers available for treating k = 1 patients,

results in an increased loss of patients in worse health states - some of who may

have transitioned from k = 2 at some point. Furthermore, the number of patients
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discharged in health state k = 2 decreases and the number lost in k = 2 increases.

This is understandable due to the reduced service of k = 2 patients because they are

more likely to be in k = 2 post service.

This interaction between the two queues and these additional outputs are help-

ful for modelling and understanding the “flow of outcomes”. In particular, how a

service produces good and bad outcomes over time in light of patient mix, demand,

available/allocated capacity and flow dynamics. This provides a perspective on the

quality of service and the performance of the system in relation to process outcomes

(such as patient throughput and number of abandonments) and how the differing

needs of patients impact the operation of the system.

Finally, to note, in Figures 6.20 and 6.21 there are small jumps in both solutions

for k = 1 and k = 2. Notably, this error is of an order similar to dt = 0.1 and

lasts for a small amount of time. To investigate further, I compared the results for

a scenario with dt = 0.1, 0.05 and 0.01 to see how these errors changed, Figure 6.23.

As dt decreases, the size of these errors decrease; however, their frequency increases.

There are several possible explanations for this. Firstly, to numerically solve

the approximated VWT in MATLAB I used the ODE solver ode45, which requires

continuous input parameters. However, since the calculation of the VWT relies on

the solution to the fluid approximation, i.e. (c(z(t))), the input parameters were

entered over discrete time steps. Thus, at certain points in time, changes in the

solution may be small compared to the size of the time step, creating an error in the

order of the time step, as seen in the zoomed in panel of Figure 6.23. Secondly, these

errors become more frequent as the size of dt reduces because the equations are solved

over more time steps, providing more opportunities for the jumps to occur. Thirdly,

by using a dynamic server allocation, the fluid approximation becomes non-linear

(the combination of equations (5.29)-(5.35) with (5.43) or (5.44)). Hence, solving

these systems numerically over discrete time steps may cause these types of error.
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Figure 6.23: Example of small errors in the solution of the VWT when modelling
competing queues. These errors are of order dt.

Ultimately, these errors do not have a significant impact on the solution of the

VWT or its variance since they last for short time intervals with potentially small

magnitude, Figure 6.23. However, in noting these errors, three considerations must

be made when choosing the size of dt. Firstly, the size and length of error in compar-

ison to the expected solution e.g. if the VWT equals 1, a time step of dt = 0.1 may

produce a 10% error that lasts an amount of time in the order of dt. Secondly, the

frequency of these errors. Is it better to have fewer larger errors or many smaller er-

rors? Thirdly, the running time, Table 6.10. As the size of dt falls, the time required

to solve the numerical scheme increases, creating a trade off between usability and

accuracy. Notably, if errors are small, infrequent and short lived, given that this is

an approximation of a stochastic system, they may be inconsequential.

dt 0.1 0.05 0.01

Time (s) 6.72 25.50 605.06

Table 6.10: Time taken to solve the fluid approximation for different sizes of dt
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Summary of single service and multiple health state models

From this brief exploration, I have shown that by extending to multiple health

states, the appropriateness and applicability of the approximations is maintained.

Importantly, the transition matrices influence the effective traffic intensity in this

system because a patient’s health may change throughout their interaction with the

system. Thus, each service has arrivals of new patients, reuse patients and rejoins,

including those who previously queued within another health state.

This is important for systems where reuse is low for a particular patient group,

since these methods may be accurately applied if there is a significant flow of patients

arriving from other health states. Therefore, the effective traffic intensity for each k ∈

H queue, when considering multiple health states, is dependent on the combination

of: λk(t), ck(z(t)), µk(t),Sk,m(t), qk(t) and pk(t), for all k ∈ H and m ∈ {S, L,R, U}.

6.3.4 Extending to multiple services

The analysis presented above shows when the approximations are accurate and

the parameters that determine accuracy in comparison to simulation. Notably these

findings still hold when applying both the approximations and the simulation to

larger systems since this is equivalent to modelling an amalgamation of these smaller

models with additional flow between them. As such, the modelling of larger systems

may be implemented through a modular programming of the code which would

increase its flexibility and scalability for modelling these scenarios.

By introducing multiple services, the flow dynamics of the other service orbits

and alternative service orbits are introduced. This leads to a further change in how

the effective traffic intensity is understood, which can be inferred from the model’s

structure. Notably, this is not significantly different to the previous results; thus, a

new comparison is not required as the previous results hold.
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In the analysis of multiple services, reuses and rejoins are governed by rk,m,i,i,m ∈

{S, L} respectively. Since patients may use other services after completing service,

or use alternative services having abandoned, rk,m,i,j,m ∈ {S, L}, j 6= i may be small

for systems of multiple services. However, patients may now arrive from other/alter-

native services, increasing the number of arrivals to each queue.

Thus, in considering the effective traffic intensity of a service in the network,

alongside the parameters previously noted, the values of rk,m,i,j,m ∈ {S, L}, for

all k ∈ H; i, j ∈ Ser should also be considered, helping to understand when the

approximations are faithful for the multiple service extension. Thus, in such sce-

narios, the size and value of Sk,m,i,Rk,S,i,Rk,L,i, for all k ∈ H, i ∈ Ser and m ∈

{S, L,R, U,A,O} may combine to increase the model’s accuracy.

To illustrate the application to a larger, I now present a fluid and diffusion ap-

proximation for a three service and three outcome state system - this system has

all the dynamics described in Figure 5.2. The input parameters used to populate

this example are shown in Appendix C.6. Service 1 represents an acute prevention

service, such as the Community Treatment Team or a service similar to District

Nursing. It is modelled to be likely to serve patients in worse health states and

represents episodes of care which are typically very short. From service 1 patients

are referred into service 2 or 3 depending on their care needs. Service 2 has longer

episodes of care and is likely to serve patients in any health state, whilst service 3 has

the longest episodes of care and typically serves patients in healthier health states.

Service 2 may be interpreted as a short term rehabilitation service and service 3 may

represent a service that provides longer term support, such as Nutrition and Dietet-

ics. Furthermore, a patient’s health is considered to only improve through service,

and may decline in between service.

This scenario highlights how the model may be used to represent a system of

diverse care services that each have a different purpose, type of care (indicated by
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service rate) and patient mix. Notably, given its small initial condition and arrival

rate, the effective traffic intensity for service 3 is significantly increased by the flow

from other services. Figure 6.24 shows the number of patients in each process orbit,

the variance is not shown to improve the readability of the figure. Figure 6.25 gives

the virtual waiting and its variance for each queue, whilst Figure 6.26 shows the

dynamic capacity allocation for each health state and service in the system.

Figure 6.24: Three service and three health state system - number of patients in each
process state

Figure 6.25: Three service and three health state system - dynamic server allocation
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Figure 6.26: Three service and three health state system - the VWT and variance

Figure 6.27: Three service and three health state system - the production of outcomes

Figure 6.27 illustrates the benefits of the production output in this scenario. For

each service the output of patients in different health states over time is given by

the loss and discharge curves. Additional curves correspond to the arrivals to each

service of patients in each health state from the alternative service and other service

process orbits - highlighting the flow between services. Together, these plots provide

greater insight into the flow of patients and outcomes in the system and may be used
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to identify negative and positive patterns of flow. For example, whilst service 3 has

the highest rate of discharge for patients in the healthiest state, health state 3, there

is a significant flow of patients from other services of patients in both health state

2 and 3. Thus, this service does not achieve good outcomes in isolation. Rather,

this shows how services combine to produce good outcomes as patients participate

in multiple care interactions and use several services.

6.4 Summary and Discussion

I have shown that under the right conditions, the approximations give accurate

results and output measures in comparison to a simulation of the stochastic system.

For larger systems and higher effective traffic intensity, these methods can be used

accurately to model community services, given the parameter space and limitations

investigated in this chapter. For example, systems with fewer servers may be accu-

rately modelled when there is a high effective traffic intensity. This may occur when

reuse of service, referrals from other services, arrivals from alternative services and

the definition of health state transitions combine to increase the referrals.

Furthermore, both steady state and time dependent behaviour may be modelled

accurately, increasing the range of scenarios to which these methods apply. Impor-

tantly, these methods model several complex dynamics, including multiple services,

abandonment and rejoin, reuse, multiple health states, health dependent parameters,

time dependence and use a dynamic multi-class server allocation.

When moving between underloaded and overloaded phases there can be periods

of larger error due to the discrepancy between the deterministic approximations and

stochastic variation of the simulation. In general, these errors are insignificant as

they often relate to small values and can be quickly overcome to produce an accurate

result (as long as the effective traffic intensity is “far” from 1).
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In using parallel queues, I have modelled the clinical impact of care on a popu-

lation of patients with different health, their different capacities to benefit and the

differences in their health care requirements. The impact of these differences on the

operation of the services may also be modelled. For example, by introducing com-

peting queues, the effect of different care needs and patient demand on how servers

may be dynamically allocated can be analysed, as well as the resulting effect of the

allocation on the system’s process outcomes e.g. loss, abandonment, throughput.

Discussion of process orbits and future demand

In this model, the total arrivals for each service include new arrivals, rejoins,

arrivals from alternative services, reuse and arrivals from other services. Thus, when

a system runs with a high utilisation, the total number of arrivals may increase as

more patients abandon and rejoin or use alternative services. Similarly, with more

servers, more patients complete service, increasing reuse and the arrival of patients

from other services.

As a result, there is a dependency between overall patient demand (total arrivals)

and system capacity since these orbits act as feedback loops of delayed demand. For

example, having arrived, queued and completed service, a patient seeking to reuse

the service will wait for a period of time before re-entering the queue. Therefore,

more patients in each process state leads to higher future demand. Understanding

the effect of these flow dynamics, and how resources may be managed in light of

them, is important. Ignoring these orbits may lead to under or over staffing when

modelling systems for which these arrivals are significant.

In previous publications, the modelling of these orbits has been most appropriate

for systems where arrivals from one of these process states is indistinguishable from

new arrivals [105]. However, through the use of health states, patient groups may be

defined, for example, to include previous uses of service; thus, overcoming a previous
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limitation of these methods.

Discussion of the “flow of outcomes”

By combining patient flow and clinical outcomes into a single modelling frame-

work, a multifaceted view of system performance can be analysed. In particular, the

model’s output is informed by the effect of care, or absence of it, on patient outcomes

and on the operation of services in the system. This provides a greater insight into

the positive and negative clinical effects of a system’s process outcomes.

In using health state dependent parameters, I modelled differentiated service to

understand the flows of patients who have differing resource/service requirements.

In combination with transitions between health states, these parameters provide

a means for understanding the effect of care on the health of patients who have

different capacities to benefit. This reflects real life, when patients of varying health

have markedly different interactions with a health care system.

An overarching aim within this thesis has been to develop a method for under-

standing the “flow of outcomes” - how individual services contribute to the produc-

tion of good outcomes across services, for patients who may use a range of these

services and have multiple care interactions. This has been achieved through the

development of these methods in several ways.

For example, the combination of health state transitions and abandonment helps

to measure the impact of poor access on patient health and the production of out-

comes from a given service. The number of patients who abandon, and the number

who seek to rejoin or use an alternative service, are measures of whether patients are

able to access and receive adequate care. In combination with health state transi-

tions, this may be used to understand the possible negative impact of poor access. In

a system with high abandonment and when rejoin/alternative service use is consid-

ered, patients may re-enter the queue in a worse health state than before, requiring



Chapter 6. Application of fluid and diffusion approximations to patient
flow in community health care

219

more resource intensive care and increasing the future burden on the health system.

Thus, this represents a poor “flow of outcomes”.

In addition, the combination of transitions in health state, reuse and uses of

other services, helps to understand how multiple service interactions combine to

produce good health. For example, how the receipt of care affects a patient’s future

use of services and the impact on their health. Thus, when a clinical improvement

occurs, patients may require fewer interactions, reducing their future demand and

the intensity of the care needed, thus producing a positive “flow of outcomes”.

The production output is also an insightful measure for the “flow of outcomes”,

especially in time varying systems. This output gives the rate at which patients

leave a service/the system in a given health state and may be used to understand the

timely effect of certain server allocations, across the system. Thus, as the allocation

of servers and patient demand changes, the wider impact and implications of these

allocations may be understood both operationally and clinically.

In addition, “competing” queues present an opportunity for new and interesting

analysis. In particular, they can provide insight into how the demand for services and

differences in care requirements may affect a time varying allocation of servers and the

demand for service. In combination with the production output, the dynamic server

allocation may enhance the understanding of the operational and clinical performance

of a system. For example, one may analyse how favourably allocating servers to

patients in poorer health states affects the process outcomes, patient outcomes and

the “flow of outcomes” in a system.

6.4.1 Limitations

There are several limitations of these methods. As discussed, these methods are

most accurate for heavily loaded systems, especially when abandonment and rejoin

is considered, limiting the scenarios to which these methods may be applied. In



Chapter 6. Application of fluid and diffusion approximations to patient
flow in community health care

220

particular, those with an effective traffic intensity close to 1, exhibit large errors for

the abandonment and rejoin values, and therefore poorly fit the service and queue,

reuse and other service orbits. This limitation may not be too restrictive for some

community services, for example, those where reuse/other service use is high within

the system.

Furthermore, the size of the system had a clear effect on the accuracy of these

methods. For systems with the same effective traffic intensity, the accuracy of the

results greatly improved as the system grew in size.

When considering multiple health states and services, the accuracy of the model

(and thus the traffic intensity) is affected by: the service rates; the number of rejoins,

reuses, alternative service uses and arrivals from other services; and the health state

transitions upon exiting each orbit. Therefore, attention must be paid to these

parameters when applying these methods. The size of the loss rate, θ, and rate of

reuse, δU , have a marginal effect on the accuracy of these methods, especially when

moving between underloaded and overloaded phases.

The largest errors between the approximations and simulation occur when the

system is underloaded, and when the effective traffic intensity is “close” to 1. This is

due to the stochastic variation in the queue size, which is not captured by the fluid

approximation. Care must therefore be taken when seeking to gain insight for the

model near critical points za,Q,i(t) = ca,i(z(t)). This is especially true for the variance

of the VWT (as seen in [107]), where spikes occur in the approximated solution when

switching between underloaded and overloaded phases.

When using the dynamic server allocation, errors in the order of dt occur in the

solution of the VWT and its variance. This produces a trade off between speed and

accuracy, as previously discussed.

Finally, the appropriateness of using these methods to evaluate community health

care is not clear. Given the discussion in section 6.2 there is scope to interpret these
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methods in the setting of community health care. However, when compared to data

the strict Markovian assumptions may limit their accuracy, as well as the limitations

of a large heavily loaded system. As a result, these methods may be better used to

provide a stylistic representation of the system that helps to understand the dynamics

of community health care and the consequences of changes in the system. Alternative

methods such as simulation and system dynamics have a greater flexibility in this

respect.

6.4.2 Possible avenues for future work

There are several natural directions in which this work could be extended, adapted

or used. Firstly, it may be interesting to perform sensitivity analyses and apply dy-

namical system approaches to the fluid approximation to understand how different

parameters affect the behaviour of the solution. This would be in a similar vein to

[109]. Such an analysis may help to understand the stochastic system in greater

detail, whilst improving understanding of the limitations and dynamics of the ap-

proximations.

Secondly, the modelling of the “flow of outcomes”, either through these methods

or by others, would be worthwhile. In particular, it would be interesting to explore

further the benefits of this approach in application to a real world system.

Finally, since the method is computationally efficient, the benefits of the fast

calculation may be used in optimisation algorithms and heuristic approaches. This

could open up new avenues for informative analysis regarding capacity allocations or

different referral policies, in light of patient outcomes, dynamic server allocation and

diverse services. In addition, novel constraints can be considered, such as maximising

health improvement, or maximising the number of patients in the best health states.
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6.5 Conclusions

I have compared fluid and diffusion approximations to equivalent simulated so-

lutions in application to a range of hypothetical scenarios, which feature several

different dynamics. By starting with steady state models and working through to

time varying behaviour with dynamic server allocation and multiple health states, I

have shown how these methods may be used to model community health care and

the “flow of outcomes” across multiple services. In particular, I have shown how the

effective traffic intensity within different systems is altered by the inclusion of new

dynamics, and how this subsequently impacts the accuracy of the approximations.

In developing these methods, I have produced a framework that may be used to

model some aspects of community health care, also providing an introduction to the

idea of the “flow of outcomes”. This combination of health states and patient flow

provides new avenues for insightful analysis within community care, highlighting the

potential benefits of combining these two key perspectives of service/system perfor-

mance. They help to understand how patients use services, the effect of multiple care

interactions on patient health, and the effect of delayed demand/reuse of services on

the operation of a system, in light of patient health.

By implementing a dynamic server allocation, I have produced a method for

modelling how the demand of patients with different health, needs and behaviours

(represented by health states/health state dependent parameters), combine to influ-

ence the number of servers each queue requires in comparison to others. This method

is particularly insightful when considering time varying behaviour and the “flow of

outcomes”.
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Conclusions

At the outset of this project there were two overarching aims. The first was to

develop methods for modelling patient flow in community health care, an area of

health care that had received little attention in the operational research literature

in comparison to acute and primary care. The second was to produce a method

that incorporated patient outcomes into patient flow modelling, combining two key

perspectives of health care performance.

In fulfilling these two goals, the ambition was to enhance the use of outcome

measures within community services by applying a systems view to how they were

understood. To do so, I sought to develop the concept of the “flow of outcomes”,

and methods for modelling it. In achieving this, the aim was to apply these methods

to North East London Foundation Trust’s (NELFT) services, helping them to better

understand their community services.

However, initial conversations with health care professionals and data managers

made clear that there was a lack of available data on outcome measurement. To

investigate further, I carried out the work detailed in chapter 4, from which I found

that there were neither measures for comparing the quality of diverse community

services, nor for assessing the impact of multiple services on patient health. Fur-

thermore, the patient data used in chapter 3 was not suitable to validate the model
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since it was incomplete and lacked information about the capacity of these services,

which was otherwise unavailable. Thus, it was not possible to apply these methods

to NELFT services. As a result, the work changed direction towards working with

hypothetical scenarios and methods.

The literature review in chapter 2 helped to inform the methods developed in this

thesis. The findings of this review indicated that the development of time dependent

methods that modelled patient flow within systems of multiple, differing community

services, and included a mix of patients whose health could change in response to

care would be useful.

This review made a further contribution outside of this thesis. Published in the

Health Systems journal [20], this was, to the best of my knowledge, the first literature

review to focus on OR methods for modelling patient flow applied to community

health care services, and the first to review methods for modelling patient flow and

outcomes in combination.

In order to develop a method for modelling patient flow in community health

care, the relevant characteristics and dynamics of how patients used these services

needed to be understood. To achieve this, I applied methods for visualising patient

level data that provided insight into the above, as presented in chapter 3. These

methods helped to: understand the vastness and complexity of the system; identify

common groups of services (in terms of patient use); understand the levels and types

of patient activity (such as reuse, sequential use and concurrent use); and better

understand the timing, length and patterns of use in community care.

To my knowledge, this work was the first to use the combination of visualisation

method with a specific focus to analyse the referral dynamics of community health

care, in particular: patients reusing services, concurrent uses of different services and

patterns of subsequent referrals. Whilst applied to a single provider, the methods are

generalisable and may be easily applied to other boroughs, trusts and organisations.
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They are visually impactful, informative, and simple to create using freely available

programs (R and Gephi), increasing their scope for use and application in practice.

Given the data limitations, I developed a theoretical model using fluid and dif-

fusion approximations, which could be used to model complex queue dynamics in a

general network of queues. This model featured some of the dynamics identified in

chapters 3 and 4, namely: the potential for patients to reuse services and for pa-

tients to use different services sequentially; and the potential for patients to abandon

the queue, and possibly rejoin later or use an alternate service. Extending current

methods, I also incorporated clinical outcomes into these methods in the form of

transitions between health states.

This framework can be used to conduct analysis of time varying systems, where

parameters are dependent on both time and patient health. By extending and com-

bining existing methods, I produced a framework for calculating: the average number

of patients in the system; an estimated waiting time (virtual waiting time); and the

variance of each output. This made a contribution to the possible uses and appli-

cations of these approximations, the application of a dynamic server allocation for

multi-class queues and the potential for modelling the “flow of outcomes”.

In chapter 6, the parameter space was explored for these methods to understand

whether the introduction of several services and transitions between health states

affected the accuracy of the system and when the system was heavily loaded. For sys-

tems that are not heavily loaded according to the traditional definition of traffic inten-

sity, the approximations may still produce accurate results since: pk,i, qk,i,Sk,m,i,Rk,n,i

for all k ∈ H, i ∈ Ser,m ∈ {S, L,R, U,A,O} and n ∈ {s, L} may combine to raise

the effective traffic intensity of each service.

In developing these methods I produced a framework that may be used to model

some aspects of community health care, and provide an introduction to modelling the

“flow of outcomes” and “competing queues”. Furthermore, these methods may be
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used to understand how: patients use services; the effect of multiple care interactions

on patient health; the effect of delayed demand/reuse of services on the operation of

the system in light of patient health; and the dependency between the capacity of

the system and the future arrival process affect the system.

There are several possible directions for future work. Firstly, there is merit in

further exploring the “flow of outcomes”. Having developed an illustrative method

of the potential benefits, it would be insightful to apply these methods to the large,

multi-service real world systems for which they were intended. For example, if there

are sets of services or morbidities that have well defined outcome measures, this

would be a useful avenue for further research. Likewise it would be beneficial to fur-

ther explore their benefits and limitations in comparison to other modelling methods,

such as system dynamic and Markov chain approaches, when modelling such systems.

Furthermore, as noted in chapter 5, it would be beneficial to explore the combination

of these methods with optimisation and heuristic approaches given the speed of cal-

culation and ODE representation of the system. In particular, the flexibility in the

definition of Ck,i(Z(t)) and the inclusion of patent outcomes introduces the imple-

mentation of novel constraints and objectives, such as: how best to allocate servers

to maximise health improvement and the production of outcomes in a system; or, to

minimise the flow of patients through patterns of care that lead to poor outcomes.

Secondly, the mapping work generated a significant amount of interest amongst

a range of health care professionals, organisations and researchers. Having presented

the visualisation methods at several conferences and to various groups of care man-

agers, future work would be to: distribute these methods further; apply them to

other settings, trusts and boroughs; and continue working with NELFT to provide

useful and responsive insight into their services. Furthermore, it would be benefi-

cial to explore the network representation further through a deeper analysis, such

as cluster analysis, and in combination other visualisation methods. Other methods
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such as heat maps and methods which capture the variation of patient use over time

would also be helpful.

Thirdly, there is the potential for wider application of the fluid and diffusion

methods outside of health care. For example, the method in chapter 5 is a gen-

eral framework for modelling a system of queues with complex dynamics, through

which heterogeneous entities may flow, whose category/class may change through-

out in response to, or due to, a lack of service. Furthermore, these groups may be

used to model class dependent flow parameters. These dynamics may translate into

industries such as telecommunications, where class represents levels of satisfaction,

customer opinion or sales.
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Appendix A

Chapter 3

A.1 Details of data cleaning process

Uncleaned dataset: 1,263,914 observations.

1) Keep entries where patients had at least one contact with a service:

• Remove cases where length of stay > 0 and number of contacts/DNA/cancellations = 0

2) Edited dates and time. Stored as “datetime” strings in the format MM/DD/YYYY
HH:MM:SS I split these for easier computation and data manipulation.

I converted dates to integer values of days since 1 January 1960 - a standard format in STATA.

Date of birth - time dropped due to inaccuracy

Referral Datetime - time retained to chronologically order the data by referral

Discharge Datetime - time was retained to chronologically order the data by discharges

Appointment date:

• Generated “appdate” variable: date of appointment

• Generated “apphour” variable: containing hour of appointment

• Generated “appmin” variable: containing minute of appointment

• Generated “ampm” variable: denoting AM or PM appointment

• “apphour” and “appmin” stored as integers

Cancellation Datetime - time retained for sorting data

3) Removed records where “refdate” was before 1 April 2014, or when a patient had not been
discharged by 31 August 2016

Table A.1: Details of the data cleaning process.
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4) Referral IDs created.

“refid” was a variable in the original dataset for designating each unique referral that a
patient had.

However, this variable was neither chronological nor formed of consecutive integers, hindering
data processing.

• Created“ref” variable, an ID of consecutively ordered integers for chronologically
identifying unique referrals for each patient.

5) Removed contact data where patients were younger than 65.

• Generated “ageatappointment” variable: the floor of (appointment date - date of birth)

• Removed cases where ageatappointment < 65; 29,579 observations dropped

• 3 cases where refdate < date of birth dropped; 302 observations dropped (3 referrals)

6) “Appid” created, a chronological identifier for unique appointments, for each referral.

7) Created new counts of: contacts, DNAs and cancellations so that the count variables for
each only included those between 1 April 2014 and 31 August 2016.

8) Edited source and specialty names for consistent referencing:

• GP: GP written, GP verbal, General medical practitioner, Out of hours GP Service

• Care Home: Care/residential home, Nursing home

• Acute: A+E, Ambulance, Hospital admission, Hospital clinical specialty, Hospital
consultant, Hospital inpatient service

• Nutrition and Dietetic Service: Adult Nutrition & Dietetic Service, Nutrition &
Dietetic Service, Acute - Nutrition and Dietetic Service

• Self referral: Choose and book

• Carer/Relative: Parent, Family

• Speech and language therapy: Acute - Speech and language therapy, Speech and
Language Therapy - Adult

• District Nursing Service: District Nursing Night Service, District Nursing Night Service
WF, District Nursing Service WF

• Health visiting Service: Health visiting

• Intermediate Care Service: Intermediate Care

• Podiatry service: Podiatry

• Prosthetics Service: Prosthetics

• Tissue Viability Service: Tissue Viability

Table 3.2. (Continued): Details of the data cleaning process.
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B.1 Proof of Theorem 5.5.1

Proof 3 Re-write the scaled fluid process as follows:
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Where, using the definitions (5.20)-(5.27):
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l,U,j(u)du

)

+
K∑
l=1

(
MS

(η)(k)

l,A,j (t)−
ˆ t

0

sl,k,A,j(u)δl,A,j(u)Z
(η)

l,A,j(u)du

)

+
K∑
l=1

(
MS

(η)(k)

l,O,j (t)−
ˆ t

0

sl,k,O,j(u)δl,O,j(u)Z
(η)

l,O,j(u)du

)
G

(η)
k,R,j

(
Z

(η)
(t)
)

:= MR
(j)

k,L,j(t)−
(
D

(η)

k,R,j(t)−
ˆ t

0

δk,R,j(u)Z
(η)

k,R,j(u)du

)
−

K∑
l=1

ˆ t

0

sl,k,L,j(u)rk,L,j,j(u)θl,j(u)
(
Z

(η)

l,Q,j(u)− Cl,j
(
Z

(η)
(u)
))+

du

G
(η)
k,U,j

(
Z

(η)
(t)
)

:= MR
(j)

k,s,j(t)−
(
D

(η)

k,U,j(t)−
ˆ t

0

δk,U,j(u)Z
(η)

k,U,j(u)du

)
−

K∑
l=1

ˆ t

0

sl,k,S,j(u)rk,S,j,j(u)µl,j(u) min
(
Z

(η)

l,Q,j(u), Cl,j

(
Z

(η)
(u)
))

du

G
(η)
k,A,j

(
Z

(η)
(t)
)

:= MR
(j)

k,L,i(t)−
(
D

(η)

k,A,j(t)−
ˆ t

0

δk,A,j(u)Z
(η)

k,A,j(u)du

)
−

K∑
l=1

J∑
i=1;i 6=j

ˆ t

0

sl,k,L,i(u)rk,L,i,j(u)θl,i(u)
(
Z

(η)

l,Q,i(u)− Cl,i
(
Z

(η)
(u)
))+

du

G
(η)
k,O,j

(
Z

(η)
(t)
)

:= MR
(j)

k,s,i(t)−
(
D

(η)

k,O,j(t)−
ˆ t

0

δk,O,j(u)Z
(η)

k,O,j(u)du

)
−

K∑
l=1

J∑
i=1;i 6=j

ˆ t

0

sl,k,S,i(u)rk,S,i,j(u)µl,i(u) min
(
Z

(η)

l,Q,i(u), Cl,i

(
Z

(η)
(u)
))

du

G
(η)
k,L,j

(
Z

(η)
(t)
)

:= MR
(η)(J+1)

k,L,j (t)−
K∑
l=1

ˆ t

0

rk,L,j,J+1(u)sl,k,L,j(u)θl,j(u)

×
(
Z

(η)

l,Q,j(u)− Cl,j
(
Z

(η)
(u)
))+

du
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G
(η)
k,D,j

(
Z

(η)
(t)
)

:= MR
(η)(J+1)

k,s,j (t)−
K∑
l=1

ˆ t

0

rk,S,j,J+1(u)sl,k,S,j(u)µl,j(u)

×min
(
Z

(η)

l,Q,j(u), Cl,j

(
Z

(η)
(u)
))

du

And:

ˆ t

0

Hk,Q,j

(
Z

(η)
(u)
)
du :=

ˆ t

0

λk,j(u)− µk,j(u) min
(
Z

(η)

k,Q,j(u), Ck,j

(
Z

(η)
(u)
))

− θk,j(u)
(
Z

(η)

k,Q,j(u)− Ck,j
(
Z

(η)
(u)
))+

+
K∑
l=1

sl,k,R,j(u)δl,R,j(u)Z
(η)

l,R,j(u)

+
K∑
l=1

sl,k,U,j(u)δl,U,j(u)Z
(η)

l,U,j(u)

+
K∑
l=1

sl,k,A,j(u)δl,A,j(u)Z
(η)

l,A,j(u)

+
K∑
l=1

sl,k,O,j(u)δl,O,j(u)Z
(η)

l,O,j(u) du

ˆ t

0

Hk,R,j

(
Z

(η)
(u)
)
du :=

K∑
l=1

ˆ t

0

− δk,R,j(u)Z
(η)

k,R,j(u) + sl,k,L,j(u)rk,L,j,j(u)

× θl,j(u)
(
Z

(η)

l,Q,j(u)− Cl,j
(
Z

(η)
(u)
))+

du

ˆ t

0

Hk,U,j

(
Z

(η)
(u)
)
du :=

K∑
l=1

ˆ t

0

− δk,U,j(u)Z
(η)

k,U,j(u) + sl,k,S,j(u)rk,S,j,j(u)

× µl,j(u) min
(
Z

(η)

l,Q,j(u), Cl,j

(
Z

(η)
(u)
))

du

ˆ t

0

Hk,A,j

(
Z

(η)
(u)
)
du :=

J∑
i=1;i 6=j

K∑
l=1

ˆ t

0

− δk,A,j(u)Zk,A,j(u) + sl,k,L,i(u)rk,L,i,j(u)

× θl,i(u)
(
Z

(η)

l,Q,i(u)− Cl,i
(
Z

(η)
(u)
))+

du

ˆ t

0

Hk,O,j

(
Z

(η)
(u)
)
du :=

J∑
i=1;i 6=j

K∑
l=1

ˆ t

0

− δk,O,j(u)Zk,O,j(u) + sl,k,S,i(u)rk,S,i,j(u)

× µl,i(u) min
(
Z

(η)

l,Q,i(u), Cl,i

(
Z

(η)
(u)
))

du
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ˆ t

0

Hk,L,j

(
Z

(η)
(u)
)
du :=

K∑
l=1

ˆ t

0

sl,k,L,j(u)rk,L,j,J+1(u)

× θl,i(u)
(
Z

(η)

l,Q,i(u)− Cl,i
(
Z

(η)
(u)
))+

du

ˆ t

0

Hk,D,j

(
Z

(η)
(u)
)
du :=

K∑
l=1

ˆ t

0

sl,k,S,j(u)rk,S,j,J+1(u)

× µl,i(u) min
(
Z

(η)

l,Q,i(u), Cl,i

(
Z

(η)
(u)
))

du

As shown in [105], from Lemma 5.5.2, we know that the sequence
{

Z
(η)

(t)
}∞
η=1

is

relatively compact with continuous limits. Thus, from the subsequence
{

Z
(ηκ)

(t)
}∞
κ=1

another subsequence
{

Z
(ηκι )(t)

}∞
ι=1

can be extracted that converges weakly in D
(

[0,∞),

R7KJ
)

, to a continuous process z∗(t) - the particular limit of the original sequence{
Z

(η)
(t)
}∞
η=1

.

I now want to show that this gives the unique fluid limit for equations the scaled

fluid process. To do this, consider an arbitrary particular limit z∗(t) for a subsequence{
Z

(ηκ)
(t)
}∞
κ=1

. By the arbitrariness of z∗(t), I will show that this is a unique solution.

The proof follows that of [105]. Again working in an arbitrary interval, say [0, T ]

re-write the system in the form detailed above and rearrange such that, for t ∈ [0, T ]:

Z
(ηκ)

(t)− Z
(ηκ)

(0)−
ˆ t

0

H
(

Z
(ηκ)

(u)
)
du = G(ηκ)

(
Z

(ηκ)
(t)
)

Since Z
(ηκ)

(t)
d−→ z∗(t) as κ→∞ and the limit z∗(t) is continuous,

Z
(ηκ)

(t)− Z
(ηκ)

(0)−
ˆ t

0

H
(

Z
(ηκ)

(u)
)
du

d−→ z∗(t)− z∗(0)−
ˆ t

0

H (z∗(u)) du

Furthermore, G(ηκ)
(

Z
(ηκ)

(t)
)

d−→ 0 since - by (5.36)-(5.42), and the Random time

change Theorem in [121] - each term in G
(ηκ)
k,Q,j(t), G

(ηκ)
k,R,j(t), G

(ηκ)
k,U,j(t), G

(ηκ)
k,A,j(t), G

(ηκ)
k,O,j(t),

G
(ηκ)
k,L,j(t) and G

(ηκ)
k,D,j(t) converge to 0, for all k ∈ Out and j ∈ Ser.
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Thus:

Z
(ηκ)

(T )− Z
(ηκ)

(0)−
ˆ T

0

H
(

Z
(ηκ)

(u)
)
du

d−→ 0

It then follows that the particular limit z∗(t) a.s. satisfies equations (5.13)-(5.19).

Also, as noted in [105], the mapping H is Lipschitz continuous and by Lemma 1 in

[122], equations (5.13)-(5.19) have a unique solution. Therefore, all particular fluid

limits are the same, they are the unique solution to (5.13)-(5.19). �



Appendix C

Chapter 6

C.1 Code for discrete event simulation of

stochastic system

function [Z, C] = (c, arrive, serve, leave, dr, df, p, q, dt,T, A, IC, type)

% Discrete Event Simulation of queue with rejoin, reuse and multiple health states

% exprnd = probabilty distribution of inter-arrival times for pat, service time, time until

rejoin, and time until reuse

% For each time interval i, such that t_(i-1) <= t < t_(i), and patient group k:

% Inputs:

% c(i) = number of available servers

% arrive(k,i) = mean arrival rate

% serve(k,i) = mean service rate

% leave(k,i) = mean abandonment rate

% dr(k,i), df(k,i) = mean rates of rejoin/reuse

% p(k,i), q(k,i) = probability a patient rejoins after abandon/reuses after service

% dt = time intervals for output

% T = total simulation time

% A(:,:,:,j): = array containing matrices of health state transition, where: j = 1

post-rejoin; j = 2 post-reuse; j = 3 post-abandon; j = 4 post-service.

% IC = initial conditions for the system

% type = string indicating which server allocation to use
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% Outputs:

% ZQ(k),ZR(k),ZF(k) = number in service/queue; in rejoin; in reuse orbits

% loss(k) = number of pat lost due to abandonment

% discharge(k) = number of pat discharged after service

% S(k),Q(k) = number of pat in service/queue

% Set up for simulation

% Number of health states

N = size(A, 1);

% time - vector of time intervals; set initial time t

time = (0:dt:T); t = time(1); i = 1;

% Initital conditions

ZQ = IC(:,1); ZR = IC(:,2); ZF = IC(:,3); loss = zeros(N, 1); discharge = zeros(N, 1);

% S,Q - Variables for tracking number of patients in service/queue

S = zeros(N, 1); Q = zeros(N, 1);

% Queue - variable for storing number in queue at each time step for calculating VWT

Queue = zeros(N,length(t));

% Define Z to store system state information

% Z(:, 1, :) - Number in queue/service

% Z(:, 2, :) - Number in rejoin

% Z(:, 3, :) - Number in reuse

% Z(:, 4, :) - Number discharged

% Z(:, 5, :) - Number lost

% Z(:, 6, :) - Time interval

% Z(:, 7, :) - VWT

Z = zeros(N, 7, length(time));

% C - variable for assigning servers across each outcome state

C = zeros(N, length(time)); i = 1;

% Assign servers according to type of server allocation

% Even split over each queue

if strcmp(type,’even’)

C(:,i) = round(c(i) ./ N);
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% Algorithm for assigning servers if not divisible into integers

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

% Continuous allocation of servers based on proportion of patient in queue and service for each

health state

elseif strcmp(type,’continuous’)

C(:,i) = round(ZQ(:) .* c(i) ./ sum(ZQ(:)));

% Algorithm for assigning servers if not divisible into integers

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

% Continuous allocation of servers based on proportion of patient in queue and service for each

health state, weighted by service time

elseif strcmp(type,’byserve’)

C(:,i) = round(ZQ(:) .* c(i) .* serve(:,i) ./ sum(ZQ(:) .* serve(:,i)));

% Algorithm for assigning servers if not divisible into integers

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

end
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% Begin simulation

% Create patient matrix for storing information

pat = inf(1,5);

% Populate patient matrix with all possible new arrivals in time frame [t_0,T]

for j = 1:N

% Set service and queue counts according to IC

S(j) = min(IC(j,1),C(j,1)); Q(j) = max(IC(j,1) - C(j,1),0);

% Use interarrival rate of patients in each health state, j, for time t_0

% i.e. exprnd(1./arrive(j,1))

pat(i,:) = [t + exprnd(1./arrive(j,1)), 0, j, inf, inf];

i = i + 1;

while pat(i-1,1) < max(time)

P = find(time > pat(i-1,1),1,’first’);

pat(i,:) = [pat(i-1,1) + exprnd(1./arrive(j,P)), 0, j, inf, inf];

i = i + 1;

end

% If the system starts with more patients in ZQ(j) than servers C(j,1)

if IC(j,1) > C(j,1)

k = C(j,1);

% Populate all servers with patients

while k >= 1

pat(i,:) = [exprnd(1./serve(j,1)), 3, j, inf, inf];

i = i + 1; k = k - 1;

end

% Place remaining patients in the queue

k = IC(j,1) - C(j,2);

while k >= 1

pat(i,:) = [exprnd(1./leave(j,1)), 4, j, k, inf];

i = i + 1; k = k - 1;

end

% If the system starts with fewer patients in ZQ(j) than servers C(j,1)

else

k = IC(j,1);
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% Place all patients into service

while k >= 1

pat(i,:) = [exprnd(1./serve(j,1)), 3, j, inf, inf];

i = i + 1; k = k -1;

end

end

% If the system starts with patients in ZR(j) assign a rejoin time

if IC(j,2) > 0

k = IC(j,);

while k >= 1

pat(i,:) = [exprnd(1./dr(j,1)), 1, j, inf, inf];

i = i + 1; k = k - 1;

end

end

% If the system starts with patients in ZF(j) assign a reuse time

if IC(j,3) > 0

k = IC(j,3);

while k >= 1

pat(i,:) = [exprnd(1./df(j,1)), 2, j, inf, inf];

i = i + 1; k = k - 1;

end

end

end

% PAT - variable for storing pat information at each time step for calculating VWT

PAT(:,:,:) = zeros(size(pat,1),5,length(t));

% Loop through time steps - updating variables accordingly

% Time intervals [t_i-1, t_i]

for i = 2:(length(time))

% Assign capacity in next time interval

C(:,i) = C(:,i-1);

% Update capacity allocation if type = ’even’

if strcmp(type,’even’)

C(:,i) = round(c(i) ./ N);
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% Algorithm for assigning servers if not divisible into integers

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

end

t = min(pat(:,1));

next = find(pat(:,1) == t,1,’first’);

% Update parameters when time interval is crossed

while t < time(i)

% Event: new patient joins service

if pat(next, 2) == 0 && S(pat(next, 3)) < C(pat(next, 3),i)

% Time to complete service

pat(next,1) = t + exprnd(1./serve(pat(next,3),i));

% 3: In service

pat(next,2) = 3;

% Update number in queue/service and number in service

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; S(pat(next, 3)) = S(pat(next, 3)) + 1;

% Event: new patient joins queue

elseif pat(next, 2) == 0 && S(pat(next, 3)) >= C(pat(next, 3),i)

% Time until abandonment

pat(next,1) = t + exprnd(1./leave(pat(next,3),i));

% 4: In queue

pat(next,2) = 4;

% Position in queue

pat(next,4) = Q(pat(next, 3)) + 1;

% Update number in queue/service and number in queue

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; Q(pat(next, 3)) = Q(pat(next, 3)) + 1;
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% Event: rejoin patient joins service

elseif pat(next, 2) == 1 && S(pat(next, 3)) < C(pat(next, 3),i)

% Update number in rejoin orbit

ZR(pat(next, 3)) = ZR(pat(next, 3)) - 1;

% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,1)) == 1);

% Time until complete service

pat(next,1) = t + exprnd(1./serve(pat(next,3),i));

% 3: In service

pat(next,2) = 3;

% Update number in queue/service and number in service

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; S(pat(next, 3)) = S(pat(next, 3)) + 1;

% Event: rejoin patient joins queue

elseif pat(next, 2) == 1 && S(pat(next, 3)) >= C(pat(next, 3),i)

% Update number in rejoin orbit

ZR(pat(next, 3)) = ZR(pat(next, 3)) - 1;

% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,1)) == 1);

% Time until abandonment

pat(next,1) = t + exprnd(1./leave(pat(next,3),i));

% 4: In queue

pat(next,2) = 4;

% Position in queue

pat(next,4) = Q(pat(next, 3)) + 1;

% Update number in queue/service and number in queue

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; Q(pat(next, 3)) = Q(pat(next, 3)) + 1;

% Event: reuse patient joins service

elseif pat(next, 2) == 2 && S(pat(next, 3)) < C(pat(next, 3),i)

% Update number in reuse

ZF(pat(next, 3)) = ZF(pat(next, 3)) - 1;
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% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,2)) == 1);

% Time until complete service

pat(next,1) = t + exprnd(1./serve(pat(next,3),i));

% 3: In service

pat(next,2) = 3;

% Update number in queue/service and number in service

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; S(pat(next, 3)) = S(pat(next, 3)) + 1;

% Event: reuse patient joins queue

elseif pat(next, 2) == 2 && S(pat(next, 3)) >= C(pat(next, 3),i)

% Update number in reuse orbit

ZF(pat(next, 3)) = ZF(pat(next, 3)) - 1;

% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,2)) == 1);

% Time until abandonment

pat(next,1) = t + exprnd(1./leave(pat(next,3),i));

% 4: In queue

pat(next,2) = 4;

% Position in queue

pat(next,4) = Q(pat(next, 3)) + 1;

% Update number in queue/service and number in queue

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) + 1; Q(pat(next, 3)) = Q(pat(next, 3)) + 1;

% Event: patient completes service

elseif pat(next, 2) == 3

% Update number in queue/service and number in service

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) - 1; S(pat(next, 3)) = S(pat(next, 3)) - 1;

% If there are free servers and patients waiting to resume

if isempty(pat(pat(:,3) == pat(next, 3) & pat(:,2) == 5)) == 0 && S(pat(next, 3)) <

C(pat(next, 3),i)
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% Select first patient in resume queue

row = find(pat(:,3) == pat(next, 3) & pat(:,2) == 5, 1,’first’);

% Time completed service

pat(row,1) = t + pat(row,5);

% 3: In service

pat(row,2) = 3;

% inf: not in resume

pat(row,5) = inf;

% Update number in service

S(pat(next, 3)) = S(pat(next, 3)) + 1;

% If there are pat in the queue and servers are available

elseif Q(pat(next, 3)) > 0

% Select first patient in queue

row = find(pat(:,2) == 4 & pat(:,3) == pat(next, 3) & pat(:,4) == 1);

% Time completed service

pat(row,1) = t + exprnd(1./serve(pat(next, 3),i));

% 3: In service

pat(row,2) = 3;

% inf: not in queue

pat(row,4) = inf;

% Adjust positions of patients in queue

pat(pat(:,2) == 4 & pat(:,3) == pat(next, 3) & pat(:,4) > 1,4) = pat(pat(:,2) == 4 &

pat(:,3) == pat(next, 3) & pat(:,4) > 1,4) - 1;

% Update number in queue and number in service

Q(pat(next, 3)) = Q(pat(next, 3)) - 1; S(pat(next, 3)) = S(pat(next, 3)) + 1;

end

% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,3)) == 1);

% Bernoulli trial - patient seek to reuse service; 2: yes
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pat(next,2) = binornd(1,q(pat(next,3),i)) * 2;

if pat(next,2) == 2

% Time until reenter queue

pat(next,1) = t + exprnd(1./df(pat(next,3),i));

% Update number in reuse orbit

ZF(pat(next,3)) = ZF(pat(next,3)) + 1;

else

% Remove patient from system

pat(next,1) = inf; pat(next,2) = inf;

% Update number discharged

discharge(pat(next,3)) = discharge(pat(next,3)) + 1;

end

% Event: Patient abandons queue

elseif pat(next, 2) == 4

% Update number in queue/service and number in queue

ZQ(pat(next, 3)) = ZQ(pat(next, 3)) - 1; Q(pat(next, 3)) = Q(pat(next, 3)) - 1;

% Adjust all queue positions of patients behind abandoning patient

pat(pat(:,2) == 4 & pat(:,3) == pat(next, 3) & pat(:,4) > pat(next,4),4) = pat(pat(:,2) == 4 &

pat(:,3) == pat(next, 3) & pat(:,4) > pat(next,4),4) - 1;

% Assign new health state

pat(next,3) = find(mnrnd(1,A(pat(next, 3),:,4)) == 1);

% Bernoulli trial - patient rejoin queue; 1: yes

pat(next,2) = binornd(1,p(pat(next,3),i));

pat(next,4) = inf;

if pat(next,2) == 1

% Time until reenter queue

pat(next,1) = t + exprnd(1./dr(pat(next,3),i));

% Update number in rejoin orbit

ZR(pat(next,3)) = ZR(pat(next,3)) + 1;
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else

% Remove patient from system

pat(next,1) = inf; pat(next,2) = inf;

% Update number lost

loss(pat(next,3)) = loss(pat(next,3)) + 1;

end

end

% Continuous allocation of servers based on proportion of patient in queue and service for each

health state

if strcmp(type,’continuous’)

% Algorithm for assigning servers if not divisible into integers

C(:,i) = round(ZQ(:) .* c(i) ./ sum(ZQ(:)));

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

% Continuous allocation of servers based on proportion of patient in queue and service for each

health state, weighted by service time

elseif strcmp(type,’byserve’)

C(:,i) = round(ZQ(:) .* c(i) .* serve(:,i) ./...

sum(ZQ(:) .* serve(:,i)));

while sum(C(:,i)) > c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) - 1;

end

while sum(C(:,i)) < c(i)

k = randi([1 N],1);

C(k,i) = C(k,i) + 1;

end

end

% Preemptive resumption: If the number of servers falls below the number in service

if sum(S(:) > C(:,i)) > 0

bigger = find(S(:) > C(:,i));
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for l = 1:length(bigger)

% Set health state indicator

k = bigger(l);

% Find pat who are in service and in health state k

row = find(pat(:,2) == 3 & pat(:,3) == k);

% Remove (S(k) - C(k,i)) pat from service

% Calculate remaining time in service

pat(row(C(k,i) + 1:end), 5) = pat(row(C(k,i) + 1:end), 1) - t;

pat(row(C(k,i) + 1:end), 1) = inf;

pat(row(C(k,i) + 1:end), 2) = 5;

% Update number in service

S(k) = C(k,i);

end

end

% Check: are servers available and patients waiting to resume service?

% Loop for outcome groups in system

for k = 1:N

% If there are pat in infinite buffer resume space and servers are available

while isempty(pat(pat(:,3) == k & pat(:,2) == 5)) == 0 && S(k) < C(k,i)

% Select first patient in resume queue

row = find(pat(:,3) == k & pat(:,2) == 5, 1,’first’);

pat(row,1) = t + pat(row,5);

pat(row,2) = 3;

pat(row,5) = inf;

% Update number in service

S(k) = S(k) + 1;

end

% If there are pat in the queue and servers are available

while Q(k) > 0 && S(k) < C(k,i)

% Select first patient in queue

row = find(pat(:,2) == 4 & pat(:,3) == k & pat(:,4) == 1, 1,’first’);

pat(row,1) = t + exprnd(1./serve(k,i));

pat(row,2) = 3;

pat(row,4) = inf;
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% Adjust all patient queue places

pat(pat(:,2) == 4 & pat(:,3) == k & pat(:,4) > 1,4) = pat(pat(:,2) == 4 & pat(:,3) == k

& pat(:,4) > 1,4) - 1;

% Update number in queue and number in service

Q(k) = Q(k) - 1; S(k) = S(k) + 1;

end

end

% Update time to correspond with next event

t = min(pat(:,1));

% Identify patient corresponding to next event

next = find(pat(:,1) == t, 1, ’first’);

end

% Update output vector and variables for calculating VWT (PAT, Queue)

Z(:,:,i) = [ZQ(:), ZR(:), ZF(:), loss(:), discharge(:), [time(i);time(i)], [0;0]];

PAT(:,:,i) = pat(:,:);

Queue(:,i) = Q;

end

% Calculate the VWT for each time interval and health state

for i = 1:length(time)

for l = 1:N

if Queue(l,i) > 0 && C(l,i) > 0

VWT = SimVWT((0:dt:4*T), i, PAT(PAT(:,3,i) == l,:,i),...

C(l,i), Queue(l,i), [C(l,:),C(l,end) * ones(1, 3 * length(time))],...

[serve(l,:),serve(l,end) * ones(1, 3 * length(time))]);

Z(l,7,i) = VWT - time(i);

end

end

end
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C.2 Code for discrete event simulation of

virtual waiting time

function [VWT] = SimVWT(time, j, pat, S, Q, C, serve)

% Function for calculating the simulated VWT

% Inputs:

% time - total modelled time frame

% j - time index indicating point in modelled time VWT is found for

% pat - matrix of patient information for j-th time interval

% S - number of patients in service in j-th time interval

% Q - number of patients in queue in j-th time interval

% C - number of servers available in j-th time interval

% serve - vector of service rate for the modelled time period

% Outputs:

% VWT - waiting time from simulated system

% Select patient arriving closest to time(j)

hold = find(pat(:,1) >= time(j) & pat(:,2) == 0,1,’first’);

% Ensure that this patient cannot abandon the queue, set queue length

pat(hold,1) = inf;

pat(hold,2) = 4;

pat(hold,4) = Q + 1; Q = Q + 1;

% Remove all patients who arrive after time(j)

pat(pat(:,1) > time(j) & pat(:,2) == 0,:) = inf;

pat(pat(:,2) == 4 & pat(:,4) > Q,1) = inf;

pat(pat(:,2) == 1,:) = inf;

pat(pat(:,2) == 2,:) = inf;

% Update pat variable to include only those in the queue or service

pat = pat(pat(:,1) < inf | (pat(:,4) > 0 & pat(:,4) < inf),:);

% Loop through time steps - updating variables accordingly

% Time intervals [t_i-1, t_i]

for i = j:(length(time))
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% Preemptive resumption: If the number of servers falls below the number in service

if S > C(i)

% Find all patients in service

row = find(pat(:,2) == 3);

% Remove (S - C) pat from service

% Calculate remaining time in service

pat(row(C(i) + 1:end), 5) = pat(row(C(i) + 1:end), 1) - t;

pat(row(C(i) + 1:end), 1) = inf;

pat(row(C(i) + 1:end), 2) = 5;

% Update number in service

S = C(i);

end

% Check: are servers available and patients waiting to resume service?

% If there are pat in infinite buffer resume space and

% servers are available, place them in service

while isempty(pat(pat(:,2) == 5)) == 0 && S < C(i)

% Select first patient in resume queue place in service

row = find(pat(:,2) == 5, 1,’first’);

pat(row,1) = t + pat(row,5);

pat(row,2) = 3;

pat(row,5) = inf;

% Update number in service

S = S + 1;

end

% If there are pat in the queue and servers are available

while Q > 0 && S < C(i)

% Select first patient in queue

row = find(pat(:,2) == 4 & pat(:,4) == 1, 1,’first’);

pat(row,1) = t + exprnd(1./serve(i));

pat(row,2) = 3;

pat(row,4) = inf;
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% Adjust all patient queue places

pat(pat(:,2) == 4 & pat(:,4) > 1,4) = pat(pat(:,2) == 4 & pat(:,4) > 1,4) - 1;

% Update number in queue and number in service

Q = Q - 1; S = S + 1;

end

% If queue is empty, output VWT

if Q == 0

VWT = t;

break;

end

% Update time to correspond with next event

t = min(pat(:,1));

% Identify patient corresponding to next event

next = find(pat(:,1) == t, 1, ’first’);

while t < time(i) && Q > 0

% Event: patient completes service

if pat(next, 2) == 3

% Update number in service

S = S - 1;

% If there are free servers and patients waiting to resume

if isempty(pat(pat(:,2) == 5)) == 0 && S < C(i)

% Select first patient in resume queue

row = find(pat(:,2) == 5, 1,’first’);

% Time completed service

pat(row,1) = t + pat(row,5);

% 3: In service

pat(row,2) = 3;

% inf: not in resume

pat(row,5) = inf;
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% Update number in service

S = S + 1;

% If there are pat in the queue and servers are available

elseif Q > 0

% Select first patient in queue

row = find(pat(:,2) == 4 & pat(:,4) == 1);

% Time completed service

pat(row,1) = t + exprnd(1./serve(i));

% 3: In service

pat(row,2) = 3;

% inf: not in queue

pat(row,4) = inf;

% Adjust positions of patients in queue

pat(pat(:,2) == 4 & pat(:,4) > 1,4) = pat(pat(:,2) == 4 & pat(:,4) > 1,4) - 1;

% Update number in queue and number in service

Q = Q - 1; S = S + 1;

end

% Remove patient from system

pat(next,:) = inf;

% Event: Patient abandons queue

elseif pat(next, 2) == 4

Q = Q - 1;

% Adjust all queue positions of patients behind abandoning patient

pat(pat(:,2) == 4 & pat(:,4) > pat(next,4),4) = pat(pat(:,2) == 4 & pat(:,4) >

pat(next,4),4) - 1;

% Remove patient from the system

pat(next,1) = inf; pat(next,2) = inf; pat(next,4) = inf;

end
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% If queue is empty, output VWT

if Q == 0

VWT = t;

break;

end

% Update time to correspond with next event

t = min(pat(:,1));

% Identify patient corresponding to next event

next = find(pat(:,1) == t, 1, ’first’);

end

end

end

C.3 Code for the fluid and diffusion ap-

proximation

function [Z, ZP, ZM, C, V, dcdt] = FluidComp(c, arrive, serve, leave, dr, df, p, q, dt, T, S, IC,

type)

% Function for calculating fluid approximation of a stochastic queueing system

% Inputs:

% c - number of servers

% arrive - rate of new arrival

% serve - rate of service

% leave - rate of abandonment

% dr - rate of rejoin

% df - rate of reuse

% p - probability of rejoin

% q - probability of reuse

% dt - time step

% T - total length of time

% S - matrices of health state transition

% IC - initial conditions

% type - sever allocation used
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% Outputs:

% Z - number of patients in each state

% ZP - upper variance envelope of Z

% ZM - lower variance envelope of Z

% C - capacity allocation from model

% V - variance of Z

% dcdt - vector of derivative for queue and service states (for VWT)

%Using trapezoidal rule in MatLab, solving iteratively:

% Calculate number of intervals for iteration

NT = T/dt;

% A - number of outcome states

A = size(S,1);

% VAR - variance matrix; ; V - variance output;

VAR = zeros(5*A, 5*A, NT + 1); V = zeros(A,5,NT+1);

% Set up error vector used to stop iteration -

err = 1 / 1000000;

% Z - number of patients in each state; ZP/ZM - variance envelopes for Z

Z(:,:,:) = zeros(A,5,NT+1); ZP = zeros(A,5,NT + 1); ZM = zeros(A,5,NT + 1);

% dcdt - matrix of derivatives

dcdt = zeros(A,NT+1);

% Y - variable for iteration

Y(:,:,:) = zeros(A,5,NT+1);

% C - capacity allocation variable

C(:,:) = zeros(A,NT+1);

% alpha - functions for producing diffusion equations

alpha = zeros (A, A, NT+1, 6);

% AT, B, BT - matrices for solving diffusion equations

AT = zeros(5*A, 5*A, NT + 1); B = zeros(5*A, 5*A, NT + 1, 9); BT = zeros(5*A, 5*A, NT + 1);

% Set initial condition
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Z(:,1:3,1) = IC; ZP(:,1:3,1) = IC; ZM(:,1:3,1) = IC;

if strcmp(type,’even’)

C(:,1) = round(c(1) ./ A);

end

% System starts empty Z(a,i) where a is the patient group, i is the time step

if sum(Z(:,1,1)) == 0

error(’Must have non-zero initial conditions for the queue and service.’);

else

if strcmp(type,’continuous’)

C(:,1) = c(1) .* Z(:,1,1) ./ sum(Z(:,1,1));

elseif strcmp(type,’byserve’)

C(:,1) = c(1) .* Z(:,1,1) .* serve(:,1) ./ sum(Z(:,1,1) .* serve(:,1));

end

end

% Calculate fluid approximation over multiple time steps

for i = 2:NT+1

% Y is a holding variable

Y(:,:,i) = Z(:,:,i-1);

% Allocation of servers based on previous number of patients in queue, or expected arrivals, or

equal allocation to each patient

if strcmp(type,’continuous’)

C(:,i) = c(i) .* Z(:,1,i) ./ sum(Z(:,1,i));

elseif strcmp(type,’byserve’)

C(:,i) = c(i) .* Z(:,1,i) .* serve(:,i) ./ sum(Z(:,1,i) .* serve(:,i));

elseif strcmp(type,’even’)

C(:,i) = round(c(i) ./ A);

end

ZR = S(:,:,1)’ * (dr(:,i) .* (Z(:,2,i-1) + Y(:,2,i))) * dt/2;

ZF = S(:,:,2)’ * (df(:,i) .* (Z(:,3,i-1) + Y(:,3,i))) * dt/2;

ZS = q(:,i) .* S(:,:,3)’ * (serve(:,i) .* (min(Z(:,1,i-1),C(:,i-1)) + min(Y(:,1,i),C(:,i)))) *

dt/2;

ZA = p(:,i) .* S(:,:,4)’ * (leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1),0) + max(Y(:,1,i) -

C(:,i),0))) * dt/2;

ZD = (1-q(:,i)) .* S(:,:,3)’ * (serve(:,i) .* (min(Z(:,1,i-1),C(:,i-1)) + min(Y(:,1,i),C(:,i)))) *

dt/2;

ZL = (1-p(:,i)) .* S(:,:,4)’ * (leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1),0) + max(Y(:,1,i) -

C(:,i),0))) * dt/2;
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Z(:,1,i) = Z(:,1,i-1) + arrive(:,i) * dt + ZF + ZR - serve(:,i) .* (min(Z(:,1,i-1), C(:,i-1)) +

min(Y(:,1,i), C(:,i))) * dt/2 - leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1), 0) + max(Y(:,1,i) -

C(:,i), 0)) * dt/2;

Z(:,2,i) = Z(:,2,i-1) - dr(:,i) .* (Y(:,2,i) + Z(:,2,i-1)) * dt/2 + ZA;

Z(:,3,i) = Z(:,3,i-1) - df(:,i) .* (Y(:,3,i) + Z(:,3,i-1)) * dt/2 + ZS;

Z(:,4,i) = Z(:,4,i-1) + ZL;

Z(:,5,i) = Z(:,5,i-1) + ZD;

% Continue iteration until negligible benefit in continuing

while sum(sum(Z(:,:,i) - Y(:,:,i) > err)) > 0

% Y is a holding variable

Y(:,:,i) = Z(:,:,i);

% Allocation of servers

if strcmp(type,’continuous’)

C(:,i) = c(i) .* Z(:,1,i) ./ sum(Z(:,1,i));

elseif strcmp(type,’byserve’)

C(:,i) = c(i) .* Z(:,1,i) .* serve(:,i) ./ sum(Z(:,1,i) .* serve(:,i));

elseif strcmp(type,’even’)

C(:,i) = round(c(i) ./ A);

end

ZR = S(:,:,1)’ * (dr(:,i) .* (Z(:,2,i-1) + Y(:,2,i))) * dt/2;

ZF = S(:,:,2)’ * (df(:,i) .* (Z(:,3,i-1) + Y(:,3,i))) * dt/2;

ZS = q(:,i) .* S(:,:,3)’ * (serve(:,i) .* (min(Z(:,1,i-1),C(:,i-1)) + min(Y(:,1,i),C(:,i)))) *

dt/2;

ZA = p(:,i) .* S(:,:,4)’ * (leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1),0) + max(Y(:,1,i) -

C(:,i),0))) * dt/2;

ZD = (1-q(:,i)) .* S(:,:,3)’ * (serve(:,i) .* (min(Z(:,1,i-1),C(:,i-1)) + min(Y(:,1,i),C(:,i))))

* dt/2;

ZL = (1-p(:,i)) .* S(:,:,4)’ * (leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1),0) + max(Y(:,1,i) -

C(:,i),0))) * dt/2;

Z(:,1,i) = Z(:,1,i-1) + arrive(:,i) * dt + ZF + ZR - serve(:,i) .* (min(Z(:,1,i-1),C(:,i-1)) +

min(Y(:,1,i),C(:,i))) * dt/2 - leave(:,i) .* (max(Z(:,1,i-1) - C(:,i-1),0) + max(Y(:,1,i) -

C(:,i),0)) * dt/2;

Z(:,2,i) = Z(:,2,i-1) - dr(:,i) .* (Y(:,2,i) + Z(:,2,i-1)) * dt/2 + ZA;

Z(:,3,i) = Z(:,3,i-1) - df(:,i) .* (Y(:,3,i) + Z(:,3,i-1)) * dt/2 + ZS;

Z(:,4,i) = Z(:,4,i-1) + ZL;

Z(:,5,i) = Z(:,5,i-1) + ZD;
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end

dcdt(:,i) = arrive(:,i) + S(:,:,2)’ * (df(:,i) .* Z(:,3,i)) + S(:,:,1)’ * (dr(:,i) .* Z(:,2,i)) -

serve(:,i) .* min(Z(:,1,i), C(:,i)) - leave(:,i) .* max(Z(:,1,i) - C(:,i), 0);

% Calculate variance of system

% Define values of alpha over each time interval

alpha(:,:,i,1) = dr(:,i) .* (S(:,:,1) .* Z(:,2,i));

alpha(:,:,i,2) = df(:,i) .* (S(:,:,2) .* Z(:,3,i));

alpha(:,:,i,3) = p(:,i)’ .* (S(:,:,4) .* leave(:,i) .* (max(Z(:,1,i) - C(:,i),0)));

alpha(:,:,i,4) = (1-p(:,i))’ .* (S(:,:,4) .* leave(:,i) .* (max(Z(:,1,i) - C(:,i),0)));

alpha(:,:,i,5) = q(:,i)’ .* (S(:,:,3) .* serve(:,i) .* (min(Z(:,1,i), C(:,i))));

alpha(:,:,i,6) = (1-q(:,i))’ .* (S(:,:,3) .* serve(:,i) .* (min(Z(:,1,i), C(:,i))));

% Set initial value for while loop

a = 1;

% Build matrices for variance calculation

while a <= A

b = 1; k = 5 * a - 4;

while b <= A

l = 5 * b - 4;

if a == b

if Z(a,1,i) <= C(a,i)

AT(k,k,i) = - serve(a,i);

AT(k+2,k,i) = q(a,i) * serve(a,i) * S(a,a,3);

AT(k+4,k,i) = (1-q(a,i)) * serve(a,i) * S(a,a,3) ;

else

AT(k,k,i) = - leave(a,i) * (1-c(i).*(sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2) -

serve(a,i) * c(i) .* ((sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2);

AT(k+1,k,i) = p(a,i) * leave(a,i) * S(a,a,4) * (1 - c(i) .*

(sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2) + p(a,i) .* (sum(leave(:,i) .* S(:,a,4) .* c(i) .*

(Z(:,1,i)/sum(Z(:,1,i))^2)) - leave(a,i) * S(a,a,4) * c(i) .* (Z(a,1,i)/sum(Z(:,1,i))^2));

AT(k+2,k,i) = q(a,i) * serve(a,i) * S(a,a,3) * (c(i) .*

(sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2) + q(a,i) .* (sum(serve(:,i) .* S(:,a,3) .* c(i) .*

(-Z(:,1,i)/sum(Z(:,1,i))^2)) - serve(a,i) * S(a,a,3) * c(i) .* (-Z(a,1,i)/sum(Z(:,1,i))^2));

AT(k+3,k,i) = (1-p(a,i)) * leave(a,i) * S(a,a,4) * (1 - c(i) .*

(sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2) + (1-p(a,i)) * (sum(leave(:,i) .* S(:,a,4) .* c(i)

.*(Z(:,1,i)/sum(Z(:,1,i))^2)) - leave(a,i) * S(a,a,4) * c(i) .* (Z(a,1,i)/sum(Z(:,1,i))^2));

AT(k+4,k,i) = (1-q(a,i)) * serve(a,i) * S(a,a,3) * c(i) .*

((sum(Z(:,1,i))-Z(a,1,i))/sum(Z(:,1,i))^2) + (1-q(a,i)) * (sum(serve(:,i) .* S(:,a,3) .* c(i)
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.*(-Z(:,1,i)/sum(Z(:,1,i))^2)) - serve(a,i) * S(a,a,3) * c(i) .* (-Z(a,1,i)/sum(Z(:,1,i))^2));

end

AT(k,k+1,i) = S(a,a,1) * dr(a,i);

AT(k,k+2,i) = S(a,a,2) * df(a,i);

AT(k+1,k+1,i) = - dr(a,i);

AT(k+2,k+2,i) = - df(a,i);

else

AT(k,l+1,i) = S(b,a,1) .* dr(b,i);

AT(k,l+2,i) = S(b,a,2) .* df(b,i);

if Z(b,1,i) <= C(b,i)

AT(k+2,l,i) = q(a,i) * serve(b,i) * S(b,a,3);

AT(k+4,l,i) = (1-q(a,i)) * serve(b,i) * S(b,a,3);

else

AT(k,l,i) = serve(a,i) * c(i).* Z(a,1,i)/sum(Z(:,1,i))^2 - leave(a,i) * c(i).*

Z(a,1,i)/sum(Z(:,1,i))^2;

AT(k+1,l,i) = p(a,i) * leave(b,i) * S(b,a,4) * (1 -c(i).*

(sum(Z(:,1,i))-Z(b,1,i))/sum(Z(:,1,i))^2) + p(a,i) * (sum(leave(:,i) .* S(:,a,4) .* c(i) .*

(Z(:,1,i)/sum(Z(:,1,i))^2)) - sum(leave(b,i) .* S(b,a,4) .* c(i).*

(Z(b,1,i)/sum(Z(:,1,i))^2)));

AT(k+2,l,i) = q(a,i) * serve(b,i) * S(b,a,3) * c(i).*

((sum(Z(:,1,i))-Z(b,1,i))/sum(Z(:,1,i))^2) + q(a,i) * (sum(serve(:,i) .* S(:,a,3) .* c(i) .*

(-Z(:,1,i)/sum(Z(:,1,i))^2)) - serve(b,i) .* S(b,a,3) .* c(i) .* (-Z(b,1,i)/sum(Z(:,1,i))^2));

AT(k+3,l,i) = (1-p(a,i)) * leave(b,i) * S(b,a,4) * c(i).* (1

-(sum(Z(:,1,i))-Z(b,1,i))/sum(Z(:,1,i))^2) + (1-p(a,i)) * (sum(leave(:,i) .* S(:,a,4) .* c(i)

.* (Z(:,1,i)/sum(Z(:,1,i))^2)) - sum(leave(b,i) .* S(b,a,4) .* c(i) .*

(Z(b,1,i)/sum(Z(:,1,i))^2)));

AT(k+4,k,i) = (1-q(a,i)) * serve(b,i) * S(b,a,3) * c(i).*

((sum(Z(:,1,i))-Z(b,1,i))/sum(Z(:,1,i))^2) + (1-q(a,i)) * (sum(serve(:,i) .* S(:,a,3) .* c(i)

.* (-Z(:,1,i)/sum(Z(:,1,i))^2)) - serve(b,i) .* S(b,a,3) .* c(i) .*

(-Z(b,1,i)/sum(Z(:,1,i))^2));

end

end

B(k,k,i,1) = arrive(a,i);

B(l,l,i,2) = alpha(a,b,i,1) + B(l,l,i,2);

B(5*a - 3, 5*a - 3,i,2) = alpha(a,b,i,1) + B(5*a - 3, 5*a - 3,i,2);

B(l, 5*a - 3,i,2) = -alpha(a,b,i,1) + B(l, 5*a - 3,i,2);



Appendix C. Chapter 6 273

B(5*a - 3, l,i,2) = -alpha(a,b,i,1) + B(5*a - 3, l,i,2);

B(l,l,i,3) = alpha(a,b,i,2) + B(l,l,i,3);

B(5*a - 2, 5*a - 2,i,3) = alpha(a,b,i,2) + B(5*a - 2, 5*a - 2,i,3);

B(l, 5*a - 2,i,3) = -alpha(a,b,i,2) + B(l, 5*a - 2,i,3);

B(5*a - 2, l,i,3) = -alpha(a,b,i,2) + B(5*a - 2, l,i,3);

B(k,k,i,4) = alpha(a,b,i,3) + B(k,k,i,4);

B(5*b - 3, 5*b - 3,i,4) = alpha(a,b,i,3) + B(5*b - 3, 5*b - 3, i,4);

B(k, 5*b - 3,i,4) = -alpha(a,b,i,3) + B(k, 5*b - 3,i,4);

B(5*b - 3, k,i,4) = -alpha(a,b,i,3) + B(5*b - 3, k,i,4);

B(k,k,i,5) = alpha(a,b,i,4) + B(k,k,i,5);

B(5*b - 1, 5*b - 1,i,5) = alpha(a,b,i,4) + B(5*b - 1,5*b - 1,i,5);

B(5*b - 1, k,i,5) = -alpha(a,b,i,4) + B(5*b - 1,k,i,5);

B(k, 5*b - 1,i,5) = -alpha(a,b,i,4) + B(k,5*b - 1,i,5);

B(k,k,i,6) = alpha(a,b,i,5) + B(k,k,i,6);

B(5*b - 2, 5*b - 2,i,6) = alpha(a,b,i,5) + B(5*b - 2, 5*b - 2,i,6);

B(k, 5*b - 2,i,6) = -alpha(a,b,i,5) + B(k, 5*b - 2,i,6);

B(5*b - 2, k,i,6) = -alpha(a,b,i,5) + B(5*b - 2, k,i,6);

B(k,k,i,7) = alpha(a,b,i,6) + B(k,k,i,7);

B(5*b, 5*b,i,7) = alpha(a,b,i,6) + B(5*b, 5*b,i,7);

B(5*b, k,i,7) = -alpha(a,b,i,6) + B(5*b, k,i,7);

B(k, 5*b,i,7) = -alpha(a,b,i,6) + B(k, 5*b,i,7);

b = b + 1;

end

a = a + 1;

end

BT(:,:,i) = B(:,:,i,1) + B(:,:,i,2) + B(:,:,i,3) + B(:,:,i,4) + B(:,:,i,5) + B(:,:,i,6) +

B(:,:,i,7);

% Forward Euler to solve variance equations

VAR(:,:,i) = VAR(:,:,i-1) + dt * (VAR(:,:,i-1) * AT(:,:,i-1)’ + AT(:,:,i-1) * VAR(:,:,i-1) +

BT(:,:,i-1));

hold = diag(VAR(:,:,i))’;

for k = 1:A
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V(k,:,i) = sqrt(diag(VAR(5 * (k - 1) + 1 : 5 * k, 5 * (k - 1) + 1 : 5 * k,i)))’;

ZP(k,:,i) = Z(k,:,i) + sqrt(hold(5 * (k - 1) + 1 : 5 * k));

ZM(k,:,i) = Z(k,:,i) - sqrt(hold(5 * (k - 1) + 1 : 5 * k));

end

end

end

C.4 Code for fluid and diffusion approxi-

mation of virtual waiting time

function [VWT, VARV] = FluidVWT(F, serve, leave, C, time, v, dcdt, a, Z, c)

% Function for calculating fluid approximation of a stochastic queueing system

% Inputs:

% F - output from the approximation script

% serve - vector of service rates for modelled time period

% leave - vector of abandonment rates for modelled time period

% C - capacity allocation

% time - modelled time period

% v - variance of queueing process

% dcdt - vector of derivatives for queue and service orbit

% a - health state of queue

% Z - fluid approximation of queue and service

% c - total servers available for a service

% Outputs:

% VWT - virtual waiting time approximation

% VARV - variance of virtual waiting time approximation

% Set initial conditions

y = [F,v];

% Set criteria for ending the ode solver: y(1) - C(i) = 0

function [value,isterminal,direction] = event_function(t,y)

value = y(1) - C(i); % when value = 0, an event is triggered

isterminal = 1; % terminate after the first event

direction = 0; % get all the zeros

end
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for i = 2:length(C)

% Set IC for each interation due to piecewise approximation of continuous functions

tspan = [time(i-1) time(i)];

IC = y(end,1:2)’;

y = IC;

% Set the ode solver

odefun = @(t,y) [- leave(i) * y(1) + (leave(i) - serve(i)) * C(i);...

- 2 * leave(i) * y(2) + leave(i) * (y(1) - C(i) + serve(i) * C(i)];

% create an options variable

options = odeset(’Events’,@event_function);

% Solve the system of ODEs

[t,y] = ode45(odefun, tspan, IC, options);

if y(end,1) - C(i) <= 0.00001

VWT = t(end);

VARV = y(end,2)/((C(i) * serve(i) + ((c(i) * (dcdt(a,i) * sum(Z(:,1,i)) - Z(a,1,i) *

sum(dcdt(:,i))))/(sum(Z(:,1,i))^2)))^2);

break

end

end

end

C.5 Code for implementing comparison

between the models

% Define parameters for simulation and fluid approximation

T = 15; dt = round(0.1,1); t = (0:dt:T); NT = length(t); IC = [[15,0,0];[15,0,0]]; sims = 1000;

c = 30 * ones(1, NT);

arrive(1,:) = 15 * ones(1, NT); arrive(2,:) = 15 * ones(1, NT);

serve(1,:) = 1/2 * ones(1, NT); serve(2,:) = 1 * ones(1, NT);

leave(1,:) = 1 * ones(1, NT); leave(2,:) = 1/2 * ones(1, NT);

p(1,:) = 0.7 * ones(1, NT); p(2,:) = 0.3 * ones(1, NT);

q(1,:) = 0.7 * ones(1, NT); q(2,:) = 0.3 * ones(1, NT);

dr(1,:) = 1 * ones(1, NT); dr(2,:) = 1/2 * ones(1, NT);
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df(1,:) = 1 * ones(1, NT); df(2,:) = 1/2 * ones(1, NT);

type = ’continuous’;

% Health state transitions

S(:,:,1) = [0.8, 0.2; 0.5, 0.5]; % rejoin

S(:,:,2) = [0.8, 0.2; 0.2, 0.8]; % reuse

S(:,:,3) = [0.3, 0.7; 0, 1]; % service

S(:,:,4) = [1, 0; 0.6, 0.4]; % abandon

A = size(S,1);

%Simulation loop

Y = zeros(A, 7, NT, sims);

CapSim = zeros(A, NT, sims);

for U = 1:sims

[Y(:,:,:,U), CapSim(:,:,U)] = SimMult(c, round(arrive), serve, leave, dr, df, p, q, dt, T, S, IC,

type);

end

M = sum(Y,4)/sims; V = sqrt(var(Y,1,4)); MP = M + V; MM = M - V;

% Fluid and diffusion approximation

VWT = zeros(A,3,NT);

% Solve fluid and diffusion model

[F, FP, FM, Cap, Var, dcdt] = FluidComp(c, arrive, serve, leave, dr, df, p, q, dt, T, S, IC, type);

% Calcualte approximation of the VWT and it’s varaince

for i = 2:length(t)

for a = 1:A

if F(a,1,i) >= Cap(a,i)

[vwt, varv] = FluidVWT(F(a,1,i), [serve(a,i:end), serve(a,end)*ones(1,3*NT)], [leave(a,i:end),

leave(a,end)*ones(1,3*NT)], [Cap(a,i:end), Cap(a,end)*ones(1,3*NT)],

(t(i):dt:4*T),(Var(a,1,i)^2), dcdt, a, F, c);

VWT(a,1,i) = vwt - t(i);

VWT(a,2,i) = VWT(a,1,i) + sqrt(varv);

VWT(a,3,i) = VWT(a,1,i) - sqrt(varv);

end

end

end

% Calculate error during/after warm up period for each queue
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for a = 1:A

WU = round(max(t(F(a,2,:) == 0)),1);

if isempty(WU) == 0

under = (t < WU); over = (t >= WU);

errunder = sign(M(a,1:3,under) - F(a,1:3,under)) .* (M(a,1:3,under) - F(a,1:3,under));

total.errunder = sum(errunder,3)./sum(M(a,1:3,under),3) * 100;

errover = sign(M(a,1:3,over) - F(a,1:3,over)) .* (M(a,1:3,over) - F(a,1:3,over));

total.errover = sum(errover,3)./sum(M(a,1:3,over),3) * 100;

verrunder = sign(V(a,1:3,under) - Var(a,1:3,under)).*(V(a,1:3,under) - Var(a,1:3,under));

total.verrunder = sum(verrunder,3)./sum(V(a,1:3,under),3) * 100;

verrover = sign(V(a,1:3,over) - Var(a,1:3,over)).*(V(a,1:3,over) - Var(a,1:3,over));

total.verrover = sum(verrover,3)./sum(V(a,1:3,over),3) * 100;

werrunder = sign(M(a,7,under) - VWT(a,1,under)).*(M(a,7,under) - VWT(a,1,under));

total.werrunder = sum(werrunder,3)./sum(M(a,7,under),3) * 100;

werrover = sign(M(a,7,over) - VWT(a,1,over)).*(M(a,7,over) - VWT(a,1,over));

total.werrover = sum(werrover,3)./sum(M(a,7,over),3) * 100;

vwerrunder = sign(V(a,7,under) - VWT(a,2,under) + VWT(a,1,under)).*(V(a,7,under) -

VWT(a,2,under) + VWT(a,1,under));

total.vwerrunder = sum(vwerrunder,3)./sum(V(a,7,under),3) * 100;

vwerrover = sign(V(a,7,over) - VWT(a,2,over) + VWT(a,1,over)).*(V(a,7,over) - VWT(a,2,over) +

VWT(a,1,over));

total.vwerrover = sum(vwerrover,3)./sum(V(a,7,over),3) * 100;

end

% Calculate pointwise errors

keep = M(a,1:3,:);

err = sign(keep - F(a,1:3,:)) .* (keep - F(a,1:3,:));

TotalERR = sum(err,3)./sum(keep,3) * 100;

PointERR = err ./ keep ;

PointERR(isnan(PointERR)) = 0;

keepv = V(a,1:3,:);

Verr = sign(keepv - Var(a,1:3,:)).*(keepv - Var(a,1:3,:));
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TotalVERR = sum(Verr,3)./sum(keepv,3) * 100;

PointVERR = Verr ./ keepv ;

PointVERR(isnan(PointVERR)) = 0;

keepw = M(a,7,:);

Werr = sign(keepw - VWT(a,1,:)).*(keepw - VWT(a,1,:));

TotalWERR = sum(Werr,3)./sum(keepw,3)*100;

PointWERR = Werr ./ keepw ;

PointWERR(isnan(PointWERR)) = 0;

figure(1)

subplot(A,1,a);

varNames1 = {’Queue and Serice: sim’,’Queue and Serice: fluid’,...

’Rejoin: sim’,’Rejoin: fluid’,’Reuse: sim’,’Reuse: fluid’};

plot(squeeze(M(a,6,:)),squeeze(M (a,1,:)),’.b’,t,squeeze(F (a,1,:)),’b’,...

squeeze(M(a,6,:)),squeeze(M (a,2,:)),’.r’,t,squeeze(F (a,2,:)),’r’,...

squeeze(M(a,6,:)),squeeze(M (a,3,:)),’.g’,t,squeeze(F (a,3,:)),’g’,...

squeeze(M(a,6,:)),squeeze(MP(a,1,:)),’.b’,t,squeeze(FP(a,1,:)),’b’,...

squeeze(M(a,6,:)),squeeze(MM(a,1,:)),’.b’,t,squeeze(FM(a,1,:)),’b’,...

squeeze(M(a,6,:)),squeeze(MP(a,2,:)),’.r’,t,squeeze(FP(a,2,:)),’r’,...

squeeze(M(a,6,:)),squeeze(MM(a,2,:)),’.r’,t,squeeze(FM(a,2,:)),’r’,...

squeeze(M(a,6,:)),squeeze(MP(a,3,:)),’.g’,t,squeeze(FP(a,3,:)),’g’,...

squeeze(M(a,6,:)),squeeze(MM(a,3,:)),’.g’,t,squeeze(FM(a,3,:)),’g’);

ylim = ([0 max(max(max(MP(a,1:3,:))),max(max(FP(a,1:3,:))))]);

legend(varNames1);

xlabel(’Time’)

ylabel(’Number of patients’);

figure(2)

subplot(A,1,a);

varNames2 = {’Queue and Service’,’Rejoin’,’Reuse’};

plot(squeeze(M(a,6,:)),squeeze(PointERR));

legend(varNames2);

xlabel(’Time’)

ylabel(’Error as proportion of simulation value’);

figure(3)

subplot(A,1,a);

varNames3 = {’Queue and Service’,’Rejoin’,’Reuse’};
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plot(squeeze(M(a,6,:)),squeeze(PointVERR));

legend(varNames3);

xlabel(’Time’)

ylabel(’Error as proportion of simulation value’);

figure(4)

subplot(A,1,a);

varNames4 = {’Simulation’,’Fluid Approximation’};

plot(squeeze(M(a,6,:)), squeeze(V(a,7,:)).^2, t, squeeze((VWT(a,2,:)-VWT(a,1,:)).^2)); %

legend(varNames4);

xlabel(’Time’)

ylabel(’Waiting time’);

title([’Variance in the virtual waiting timein health state’, num2str(a)]);

figure(5)

subplot(A,1,a);

varNames5 = {’Simulation’,’Fluid Approximation’};

plot(squeeze(M(a,6,:)), squeeze(M(a,7,:)), t, squeeze(VWT(a,1,:))); %

legend(varNames5);

xlabel(’Time’)

ylabel(’Waiting time’);

title([’Virtual waiting time for patients in health state ’, num2str(a)]);

figure(6)

subplot(A,1,a);

varNames1 = {’Loss: simulation’, ’Loss: fluid approximation’, ’Discharge: simulation’, ’Discharge:

fluid approximation’};

plot(squeeze(M(a,6,:)),squeeze(M (a,4,:)),’.b’,t,squeeze(F (a,4,:)),’b’,...

squeeze(M(a,6,:)),squeeze(M (a,5,:)),’.r’,t,squeeze(F (a,5,:)),’r’);

legend(varNames1);

xlabel(’Time’)

ylabel(’Number of patients’);

figure(7)

subplot(A,1,a);

plot(squeeze(M(a,6,:)), sum(CapSim(a,:,:),3)’/sims, t, Cap(a,:));

legend(varNames5);

xlabel(’Time’)

ylabel(’Number of servers’);

end



Appendix C. Chapter 6 280

C.6 Parameters used in the fluid and dif-

fusion approximation of section 6.3.4
Health state transition matrices, i ∈ {1, 2, 3}:

SS,1 =



0, 0.4, 0.6

0, 0.5, 0.5

0, 0, 1


SS,2 =



0, 0.4, 0.6

0, 0.2, 0.8

0, 0, 1


SS,3 =



0, 0, 1

0, 0.2, 0.8

0, 0, 1



SL,1 =



1, 0, 0

0.6, 0.4, 0

0, 1, 0


SL,2 =



1, 0, 0

0.6, 0.4, 0

0.6, 0.4, 0


SL,3 =



1, 0, 0

0.6, 0.4, 0

0, 0.6, 0.4



SR,i =



1, 0, 0

0.2, 0.8, 0

0, 0.2, 0.8


SU,i =



1, 0, 0

0.1, 0.9, 0

0, 0.1, 0.9


SA,i =



1, 0, 0

0.2, 0.8, 0

0, 0.2, 0.8


SO,i =



1, 0, 0

0.1, 0.9, 0

0, 0.1, 0.9


Service routing matrices:

R1,S =



0, 0.9, 0

0, 0.6, 0.4

0, 0.2, 0.7


R2,S =



0, 0.9, 0

0, 0.5, 0.4

0, 0.2, 0.6


R3,S =



0, 0.9, 0

0, 0.4, 0.5

0, 0.2, 0.2



R1,L =



0.6, 0, 0

0.8, 0, 0

0.8, 0, 0


R2,L =



0.4, 0.4, 0

0.2, 0.6, 0

0, 0.8, 0


R3,L =



0.4, 0.4, 0

0.3, 0.3, 0.2

0, 0.1, 0.2
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Service

Parameters i = 1 i = 2 i = 3

C(0) 30 20 10

λk=1 10 0 0

λk=2 5 5 0

λk=3 0 3 3

µk=1 2/14 4/14 2/14

µk=2 1 10/14 6/14

µk=3 2 1 8/14

θk=1 3/14 2/14 1/14

θk=2 7/14 5/14 3/14

θk=3 1 7/14 4/14

dk=1,F 3/14 2/14 1/14

dk=2,F 7/14 5/14 3/14

dk=3,F 1 7/14 4/14

dk=1,O 3/14 2/14 1/14

dk=2,O 7/14 5/14 3/14

dk=3,O 1 7/14 4/14

dk=1,R 6/14 4/14 2/14

dk=2,R 1 10/14 6/14

dk=3,R 2 1 8/14

dk=1,A 6/14 4/14 2/14

dk=2,A 1 10/14 6/14

dk=3,A 2 1 8/14

Table C.1: Parameters used in the fluid and diffusion approximation of section 6.3.4
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