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Abstract

This thesis is a detailed investigation into subcortical changes in Alzheimer’s

disease (AD). Hippocampal volumes, shapes and diffusion metrics were inves-

tigated in different disease stages and presentations, and the ability of these

metrics for disease group classification investigated. A new method for auto-

mated thalamic segmentation using multimodal imaging was developed and

applied to two different datasets.

Hippocampal volumes were found to be disproportionately affected by the

apolipoprotein (APOE) ε4 allele. Hippocampal volumes were also found to be

reduced in subjects with the posterior cortical atrophy variant of AD. These

changes were localized in the hippocampal tail region and hippocampal shape

metrics were found to be superior to hippocampal volumes in differentiating

these subjects from controls.

The manual thalamic segmentation protocol developed was found to have

good reliability, and a template library of thalamic segmentations was gen-

erated for use in automated pipelines. The manual segmentation protocol

used both T1-weighted and diffusion magnetic resonance imaging (MRI) scans

for improved segmentation accuracy. The template library was used for auto-

matic segmentation of the thalamus and leave-one-out cross-validation revealed

good segmentation reliability, better than that reported by the most widely-

used automated thalamic segmentation techniques. The thalami from subjects

from the Alzheimer’s disease neuroimaging initiative (ADNI)-GO/2 datasets,

which includes control subjects, subjects with subjective memory complaints,

with early mild cognitive impairment (EMCI), late mild cognitive impairment



Abstract 4

(LMCI) and AD, were segmented using the automated thalamic pipeline. Sub-

jects with AD and mild cognitive impairment (MCI) were found to have lower

thalamic volumes, as well as lower hippocampal volumes suggesting early tha-

lamic involvement.

Differences in diffusion metrics were found and some diffusion metrics

were associated with subsequently higher atrophy rates. The inclusion of hip-

pocampal and thalamic diffusion metrics, in addition to volumes were found

to improve disease group classification.

In summary, this work in this thesis extends existing knowledge about

how the hippocampi and thalami are affected in Alzheimer’s disease.
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Chapter 1

Thesis aims

Change in volume of whole brains, ventricles and hippocampi are well-

established markers of structural brain degeneration in Alzheimer’s disease

(AD). Whole brain and hippocampal atrophy rates and ventricular expansion

rates are elevated in AD and mild cognitive impairment (MCI) and have been

used as outcome markers in clinical trials of potentially disease-modifying ther-

apies [Fox et al., 2005, Salloway et al., 2009]. Rates of hippocampal atrophy

are usually considered more specific markers of AD progression and have been

shown to differentiate mildly cognitively impaired subjects from healthy con-

trols at an early disease stage [Henneman et al., 2009]. Presentations of AD

are heterogeneous however, and in some variants, such as posterior cortical at-

rophy (PCA) the hippocampus remains relatively spared [Crutch et al., 2012].

In addition, there is evidence that the hippocampi may be affected differently

in subjects who are carriers of the apolipoprotein (APOE) ε4 allele [Agosta

et al., 2009, Geroldi et al., 1999, Lehtovirta, 1995, Pievani et al., 2009], the

biggest genetic risk factor for sporadic AD [van Es and van den Berg, 2009].

In order to quantify changes in volumes using magnetic resonance imaging

(MRI), the structures or regions require segmentation. Baseline and follow-up

scans can then be registered and change in volume can be measured directly

from registered scan pairs using techniques such as the boundary shift integral

(boundary shift integral (BSI)) [Freeborough et al., 1997]. In addition to vol-

ume and volume change, shape metrics can be extracted from brain structures.
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There is evidence that shape metrics provide additional information to volume

that may aid in differential diagnosis [Gerardin et al., 2009].

Most segmentation algorithms require a single imaging modality: T1-

weighted structural MRI scans. Although whole-brain, ventricular and hip-

pocampal volumes are widely used as AD biomarkers, relatively little atten-

tion has been given to the role of other subcortical grey matter structures in

AD. However, there is evidence to suggest that structures such as the parahip-

pocampal gyrus [Braak and Braak, 1995,Echávarri et al., 2011], amydala [Vogt

et al., 1990, Poulin et al., 2011], thalamus [Braak and Braak, 1991, De Jong

et al., 2008] and putamen [De Jong et al., 2008] also undergo atrophy in AD.

Some of the boundaries of these structures are difficult to distinguish from sur-

rounding tissue on T1-weighted MRI scans meaning the accurate segmentation

of these regions remains a challenge.

It may be that other types of MRI scan which provide complimentary in-

formation on brain structure (such as diffusion tensor imaging (DTI)) improve

the segmentation accuracy of some of these deep brain structures. However,

including more types of scan has the disadvantage of increasing scan time and

hence cost and patient discomfort. Patient discomfort may result in motion

artefacts and although data is routinely discarded from studies due to motion,

a thorough investigation into how this may bias the data is warranted. Fur-

ther, the more scan types required for a segmentation to be successful, the

more likely one of these will have artefacts, such as motion, which will render

the scan unusable.

The aims of this thesis are therefore to:

1. Investigate whether accelerated T1-weighted MRI scans can be used in

place of non-accelerated scans for measuring volume and atrophy rates in

established structural biomarkers of AD and whether bias is introduced

by excluding scans which appear to suffer from motion artefacts.

Hypothesis: That accelerated T1-weighted scans can be used in place of

unaccelerated for measures of brain volume and atrophy and that fewer
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accelerated scans suffer from motion artefacts.

2. To explore in depth the heterogeneity of hippocampal atrophy patterns

in Alzheimer’s disease using existing techniques:

(a) To compare hippocampal and whole-brain atrophy rates in APOE

ε4 carriers and non-carriers and to investigate whether APOE ε4

carriers show disproportionate hippocampal atrophy.

Hypothesis: That not only do APOE ε4 carriers show higher rates

of hippocampal atrophy compared with non-carriers, but that the

hippocampi are disproportionately affected in APOE ε4 carriers.

(b) To investigate if and how the hippocampi of subjects with the PCA

variant of AD are affected using volume and shape metrics.

Hypothesis: That subjects with the PCA variant of AD have re-

duced hippocampal volumes compared with controls and that the

posterior portion of the hippocampus is likely more affected than

the anterior portion (given the that the posterior portion of the

brain is more affected in PCA subjects).

3. To investigate whether automated hippocampal segmentation can be im-

proved upon by using a template library which includes the full extent

of the hippocampal tail.

Hypothesis: That the hippocampal tail also atrophies in Alzheimer’s dis-

ease and that a template library with segmentations that include the full

extent of the hippocampal tail will improve disease group classification.

4. To investigate whether the use of diffusion-weighted imaging in addition

to T1-weighted imaging improves segmentation reliability of the thala-

mus and to generate a template library of thalamic regions for automated

segmentation pipelines.

Hypothesis: That diffusion-weighted imaging provides useful additional

structural information about the thalamus and will improve the reliabil-

ity of thalamic segmentation.
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5. To investigate whether there are thalamic and hippocampal volume and

diffusion differences in:

(a) The earliest stages of sporadic Alzheimer’s disease - subjective mem-

ory complainers and mild cognitive impairment, as well as in estab-

lished Alzheimer’s disease.

(b) Young-onset Alzheimer’s disease.

Hypothesis: That thalamic volumes are reduced in subjects with MCI

and that group differentiation can be improved by including thalamic

and hippocampal diffusion metrics. That thalamic volumes are reduced

in young-onset Alzheimer’s disease compared with controls.



Chapter 2

Introduction

2.1 Background

In the UK an estimated 850 thousand people are living with dementia [M.

Knapp et al., 2014] whilst globally, the number is estimated to be more than 46

million [Prince et al., 2015]. There is evidence to suggest that the prevalence

of dementia has actually fallen slightly in recent years in some high-income

countries [Langa et al., 2017,Wu et al., 2016], possibly due to improved educa-

tion and lifestyle factors. Increasing life expectancy in these countries means

that the numbers of people living with dementia will continue to rise signif-

icantly nonetheless. Low- and middle-income countries, on the other hand,

have seen a significant rise in the prevalance of dementia in recent years and

the numbers are predicted to continue rising dramatically [Prince et al., 2015].

By 2050, an estimated 131.5 million people will be living with dementia across

the world [Prince et al., 2015].

Dementia is a general term that describes a syndrome which results in a

decline in cognitive function severe enough to affect activities of daily living,

usually associated with progressive neuronal loss. According to the Diagnos-

tic and Statistical Manual of Mental Disorders IV (DSM-IV), dementia is a

syndrome that may be caused or characterized by:

Multiple cognitive deficits, which include memory impairment and at least

one of the following: aphasia, apraxia, agnosia or disturbance in executive
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functioning. Social or occupational function is also impaired. A diagnosis of

dementia should not be made during the course of a delirium. (A dementia

and a delirium may both be diagnosed if the dementia is present at times when

the delirium is not present.)

Alzheimer’s disease is the most common underlying pathology for demen-

tia, accounting for 60-80% of cases followed by vascular dementia, Lewy body

dementia, and frontotemporal dementia [Barker et al., 2002, Wilson et al.,

2012]. A majority of those with Alzheimer’s disease pathology actually have

some form of mixed pathology, such as Alzheimer’s disease together with vas-

cular dementia [Schneider et al., 2007].

Although dementia is typically thought of as a disease of old-age, ap-

proximately 5% of those with dementia are under the age of 65 at symptom

onset [M. Knapp et al., 2014]. Dementia in those under the age of 65 is

known as young-onset dementia with Alzheimer’s disease thought to be the

underlying pathology in 30-35% of cases [Harvey and Skelton-Robinson, 2003].

Although some genetic mutations cause young-onset Alzheimer’s disease, in

the vast majority of cases, there is no known genetic cause.

Previous studies have shown that there is more heterogeneity in symptom

presentation [Barnes et al., 2015] and atrophy patterns in those who are af-

fected by the Alzheimer’s at a younger age [Mendez et al., 2012]. A larger pro-

portion of patients with young-onset Alzheimer’s disease have a non-amnestic

presentation than older-onset cases [Mendez et al., 2012].

Posterior cortical atrophy (PCA) is a clinicoradiological syndrome char-

acterized by impairment of visuoperceptual, visuospatial and other poste-

rior cognitive functions and atrophy of the occipital, parietal and occipito-

temporal cortices [Benson et al., 1988, Crutch et al., 2012]. PCA is most

commonly caused by Alzheimer’s disease (AD) [Alladi et al., 2007, Renner

et al., 2004,Tang-Wai et al., 2004] and is probably the most common atypical

clinical presentation of AD [Dubois et al., 2014a]. Although AD is the most

common underlying pathology in PCA (>80%) [Alladi et al., 2007, Renner
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et al., 2004, Tang-Wai et al., 2004] a number of cases have other underlying

pathologies such as dementia with Lewy bodies (DLB), corticobasal degen-

eration, prion disease and subcortical gliosis [Crutch et al., 2012]. Unlike

typical Alzheimer’s disease (tAD), where memory loss is one of the earliest

and most prominent symptoms, episodic memory function in PCA is initially

relatively well preserved [Mendez et al., 2002,Tang-Wai et al., 2004]. Previous

cross-sectional magnetic resonance imaging (MRI) studies have shown distinct

atrophy patterns in subjects with PCA as compared to tAD with PCA show-

ing greater atrophy in the right occipital cortex compared with tAD subjects

and tAD subjects showing greater atrophy in the left temporal lobe compared

to PCA [Lehmann et al., 2011,Whitwell et al., 2007].

After a diagnosis of Alzheimer’s disease, a person can live for several

years, or even decades, for many of these requiring full-time care. It is a

disease that can be devastating on an individual level. On a global level it

is already having a huge impact on health services and society and as the

number of people affected by the disease continues to grow, it will become an

increasingly pressing burden.

As such, therapies that slow down or stop the disease are urgently needed.

2.2 Biomarkers in Alzheimer’s disease

A biomarker is ‘a characteristic that is objectively measured and evaluated as

an indicator of normal biological processes, pathogenic processes, or pharma-

cologic responses to a therapeutic intervention’ [Atkinson et al., 2001].

Biomarkers are required for accurate diagnoses and for objective measure-

ments to test the effect of putative Alzheimer’s therapies on the brain as well

as for understanding more about disease progression.

In Alzheimer’s disease, there is no single biomarker than can be used for

a definitive diagnosis of AD during life. A definitive diagnosis of AD can only

be made when the hallmark features of the disease - amyloid plaques and neu-

rofibrillary tangles - are identified in the brain, most often using histopathol-
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ogy at post-mortem. This means that in many of the clinical trials that have

taken place to date, a percentage of participants may not have actually had

AD pathology [Jellinger and Attems, 2015]. Another problem clinical trials in

AD have faced is that by the time a person has symptoms of AD , they may

have already lost a substantial amount of brain tissue. Complicating matters

further, it is a disease that can present with a variety of symptoms and the

disease can initially affect different areas of the brain in different individuals.

In order to find an effective treatment for Alzheimer’s disease, it is neces-

sary to test potential disease-modifying therapies in those who genuinely have

AD pathology, to target the disease at a stage when extensive damage has not

already taken place and to take into consideration some of the heterogeneity

in disease presentation when using biomarkers as outcome measures in clinical

trials.

The importance of recognising preclinical AD , in order that individuals

can be targeted at this early stage, before tissue is lost and symptoms are

accrued has resulted in published guidelines [Knopman et al., 2012, Dubois

et al., 2016]. The guidelines in these publications do not establish diagnostic

criteria for preclinical AD , but propose that additional research is undertaken

in order to establish which biomarkers are better able to identify dementia-

related changes in the brain at a preclinical stage.

A number of biomarkers are currently in use in Alzheimer’s disease and

have complimentary roles. Although the focus of this thesis is on structural

brain imaging as well as diffusion tensor imaging, a brief summary of some of

the most common biomarkers in use in Alzheimer’s disease is given below.

2.2.1 Biomarkers of amyloid and tau deposition in the brain

Abnormal levels of amyloid in the brain can be measured using cerebrospinal

fluid (CSF) [Shaw et al., 2009] and positron emission tomography (PET)

scans [Klunk and Mathis, 2008]. Although normal amyloid levels can be

used to exclude those without underlying Alzheimer’s disease pathology, there

are many individuals who are found to have numerous amyloid plaques post-
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mortem who had no other evidence of the disease during life [Dickson et al.,

1992]. Therefore, evidence of amyloid in the brain alone, is not enough for a

diagnosis of Alzheimer’s disease.

Tau protein levels can also be measured in CSF [Blennow et al., 2010],

and, more recently, imaging of tau pathology using PET tracers has become

possible [Villemagne et al., 2015]. Evidence suggests that tau deposition in the

brain is more tightly coupled to neurodegeneration than amyloid. Tau imaging

is still far from being widely available in the clinic however.

2.2.2 Structural brain imaging as a biomarker

MRI plays a key role in diagnosis, research and clinical trials in dementia.

Single time-point structural MRI of the brain allows for the visualisation of

atrophy patterns, which can aid diagnosis in neurodegenerative diseases. Re-

cent diagnostic criteria recommend structural imaging not only to exclude

treatable causes (e.g. tumour) but to support diagnosis (including variants of

AD ) [McKhann et al., 2011, Dubois et al., 2014b, Hyman et al., 2012]. Vol-

umetric MRI allows for quantification of brain volumes. Serial 3D structural

MRI scans of the brain allows for the visualisation and quantification of pro-

gressive tissue loss, which may be helpful in particularly difficult cases, and

notably as objective assessments in clinical trials. Reductions in brain vol-

ume are thought to predominantly reflect neuronal loss in AD. Differences in

hydration can impact brain volume measures however [Duning et al., 2005].

In addition, anti-amyloid trials have reported increased brain volume loss in

antibody responders [Fox et al., 2005] [Vellas et al., 2009]. It is thought that

this loss in volume was due to the removal of amyloid-plaques or changes in

fluid balance, rather than increased tissue loss in these individuals [Fox et al.,

2005].

2.2.2.1 T1-weighted MRI

An example of a T1-weighted MRI scan is shown in the first column of figure

2.1. In T1-weighted MRI scans, grey matter appears grey, white matter ap-
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Figure 2.1: Sagittal, coronal and axial slices of a T1-weighted scan (column 1),
T2-weighted scan (column 2) and coloured fractional anisotropy map
(column 3) through the brain of the same individual. The colours in-
dicate the diffusion direction (red = diffusion along the left-right axis,
blue = diffusion along the inferior/superior axis, green = diffusion along
the anterior/posterior axis.) and intensity is proportional to fractional
anisotropy.

pears as a lighter grey and cerebrospinal fluid appears dark. T1-weighted scans

are useful for visualising atrophy patterns. Examples of T1-weighted scans in

a healthy participant, an individual with mild cognitive impairment and an

individual with AD are shown in figure 2.2. Several visual rating scales have

been developed for assessing levels of atrophy on single time-point T1-weighted

scans [Scheltens and van de Pol, 2012, Koedam et al., 2011]. Volumetric 3D

scans with high resolution and good contrast between grey and white matter

can be acquired for measuring volumes and progressive tissue loss.

2.2.2.2 T2-weighted MRI

An example of a T2-weighted MRI scan is given in the second column of figure

2.1. In T2-weighted scans, CSF appears bright, white matter appears dark

grey, and grey matter appears light grey. T2-weighted scans are useful for

imaging pathology such as oedemas and for assessing white matter damage.
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Figure 2.2: Sagittal, coronal and axial views of T1-weighted MRI scans in a healthy
individual (column 1), an individual with mild cognitive impairment
(MCI) (column 2) and Alzheimer’s disease (AD) (column 3).

T1-weighted scans have been preferentially used for measuring brain volumes

. Recent advances in MRI pulse sequencing has made volumetric T2-weighted

scans feasible only recently [Busse et al., 2008] and so, although it may be

possible to use T2-weighted scans in place of T1-weighted scans for assess-

ment of atrophy, volumetric T2-weighted imaging has a less established role

in Alzheimer’s disease than volumetric T1-weighted imaging.

2.2.2.3 Computer tomography

computer tomography (CT) scans can also be used for visualisation of atrophy

patterns and for exclusion of other causes of cognitive deficits. The contrast

between grey and white matter is much better on MRI scans than CT scans

however, making MRI scans preferable for delineating subcortical structures

in the brain and for longitudinal assessment of brain atrophy patterns. An

additional advantage of MRI scans over CT scans is that MRI scans do not
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expose individuals to ionising radiation.

2.2.2.4 Diffusion tensor imaging

Multiple types of scan with complimentary information can be acquired using

an MRI scanner. In addition to structural MRI scans, such as T1-weighted

or T2-weighted scans, scans that give information about the diffusion of wa-

ter molecules in the brain can be acquired. Diffusion tensor imaging (DTI)

is a type of MRI scan that gives information about the orientation, location

and anisotropy of the brain’s white matter tracts. Metrics such as fractional

anisotropy (FA) and mean diffusivity (MD) can be derived from diffusion ten-

sor imaging, providing measures of altered tissue structure. FA represents the

degree of diffusion anisotropy and is a scalar value between 0 and 1, where 0

represents isotropic diffusion (unrestricted in all directions) and 1 represents

diffusion along only one axis. FA is a measure of microstructural integrity and

reflects a number of tissue properties such as axonal count and density, degree

of myelination and fibre organization [Winston, 2012]. MD, also a scalar value,

represents reflects the rate of water diffusion within a voxel, independent of

direction. Diffusion weighted imaging has a number of limitations such as it’s

relatively low resolution and it’s inability to correctly characterise diffusion

in areas where there is a complex fibre architecture. For example, in a voxel

where fibres cross, the FA would be lower than in a voxel where there are

fibres oriented in only one direction [Van Hecke et al., 2016]. An example of

a coloured FA map, showing both the magnitude and direction of diffusion of

water molecules in the brain, is given in column 3 of figure 2.1.

Differences in DTI metrics have been shown in AD when compared to

controls [Canu et al., 2012] and may even precede volume loss [Douaud et al.,

2011]. Previous work has shown that the addition of DTI metrics to grey mat-

ter morphometry in the hippocampus and parahippocampal gyrus improved

the ability to distinguish AD subjects from controls [Kantarci et al., 2010].

Other work has shown reduced white matter volumes and fractional anisotropy

in the parahippocampal gyrus in AD patients [Wang et al., 2012,Kalus et al.,
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2006] and in MCI [Rose et al., 2006] suggesting that disruption in flow of

information to the hippocampus may exist at early stages of disease.



2.2.
B

iom
arkers

in
A

lzh
eim

er’s
d
isease

33Figure 2.3: Baseline and month 36 follow-up scan. The first row shows unregistered follow-up scan and the difference between the baseline
and unregistered follow-up. The second row shows the follow-up scan affinely registered to the baseline and the difference
between baseline and registered follow-up scans. By registering the follow-up scan to the baseline, tissue loss can be localised
and quantified using the boundary shift integral.
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2.2.3 Neuropsychology

Cognitive deficits of Alzheimer’s disease can be assessed using neuropsycho-

logical tests. Results from these assessments are usually primary outcome

measures for clinical trials. Although somewhat subjective, they theoretically

more closely associate with symptomatic loss of skills and increase in deficits

experienced by patients. Neuropsychological tests have a number of limita-

tions. For example, the mini-mental state exam (MMSE) [Folstein et al.,

1975], widely-used in research and the clinic suffers from floor and ceiling ef-

fects. The MMSE assigns individuals a score out of 30. Controls and those

at the early stages of the disease often score 30 on this test. In addition, test

scores such as the MMSE, which is biased towards memory testing, may not

accurately capture disease severity in individuals who have atypical forms of

Alzheimer’s disease where memory problems are less likely to be apparent.

2.2.4 Genetics

Although only a small percentage of Alzheimer’s disease cases have a known

genetic cause, there are a number of genes that increase the likelihood of devel-

oping sporadic Alzheiemer’s disease. Arguably, the most important genetic risk

factor for sporadic AD is the ε4 variant of the apolipoprotein (APOE) gene [van

Es and van den Berg, 2009]. Of the three common alleles of the APOE gene,

ε3 is most frequent with ε4 less common and ε2 relatively rare [Eisenberg

et al., 2010]. The ε4 allele increases the risk of AD and lowers the age of

disease onset [Corder et al., 1993]. There is also evidence that the topography

of atrophy in ε4 carriers (ε4+) may be different from non-carriers (ε4-) in

AD [Agosta et al., 2009, Geroldi et al., 1999, Lehtovirta, 1995, Pievani et al.,

2009] although not all studies have confirmed this [Drzezga et al., 2009].

2.2.5 Ordering of biomarker changes in Alzheimer’s disease

Changes in biomarkers occur a different disease stages. A hypothetical model

for the ordering of biomarker changes in Alzheimer’s disease is given in [Jack

et al., 2013].
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Changes in levels of amyloid in the brain are thought to be the earliest

sign of Alzheimer’s disease. Abnormal levels of amyloid occur before the loss

of brain tissue and possibly many decades before symptom onset. These levels

likely approach plateau at an early stage in the disease course [Jack et al., 2013],

so may not be the most suitable biomarkers for tracking disease progression

once the disease is manifest. This is closely followed by abnormal levels of the

tau protein.

Increased brain atrophy occurs after the deposition of amyloid and tau in

the brain, but years before clinical onset [Dickerson et al., 2011]. Volumetric

MRI scans are therefore ideally placed for tracking disease progression.

Clinical symptoms and cognitive deficits of Alzheimer’s disease are

thought to become apparent only after the brain starts to atrophy. Neuropsy-

chological tests in Alzheimer’s disease are useful diagnostic tools of manifest

disease, but are less well placed for disease tracking at an early stage.

2.3 Measuring volumes and volume change using MRI

scans

In order to measure regional volumes and to quantify changes in volumes using

MRI , the structures or regions require segmentation.

2.3.1 Manual segmentation

Manual segmentation is considered the gold standard technique for region seg-

mentation, however, current databases of patients and control subjects are of

a size (total ADNI2 dataset > 700 subjects with multiple scans) where such

practices are difficult to implement for the whole study. This problem can be

circumvented by using a large number of manual segmentors, however, training

can take three months and inter-rater variability may confound the results. In

addition, manual segmentations are not always accurate - humans make errors.



2.3. Measuring volumes and volume change using MRI scans 36

2.3.2 Automated segmentation

Some of the most widely-used techniques for automated subcortical brain

structure segmentation are atlas-based (FIRST, freesurfer) [Patenaude et al.,

2011, Fischl et al., 2002], where a manually labelled brain atlas or atlases are

non-linearly warped to the unsegmented target image and the labels are used

segment the target brain. Various combinations of different types of atlas

(topological [Collins et al., 1998], probabilistic [Shattuck et al., 2008, Ham-

mers et al., 2003]), registration techniques and segmentation strategies (label

propagation [Iosifescu et al., 1997, Fischl et al., 2002], multi-atlas label prop-

agation [Aljabar et al., 2009], probabilistic atlas-based segmentation [Awate

et al., 2006] etc) are employed in the different segmentation algorithms. The

segmentation accuracy of atlas-based algorithms is dependent on the quality

of the manual segmentations used in the atlases, as well as the variety of mor-

phology represented in the atlas database and the types of pathologies under

investigation. Most existing automated subcortical segmentation methods rely

on manual segmentation of T1-weighted images to create the atlases used in

such algorithms. However, since not all boundaries of subcortical structures

are clearly visible on T1-weighted scans, the manual segmentation accuracy is

limited as is the accuracy of the resulting automated subcortical segmentation

methods based on these T1-weighted atlases.

2.3.3 Indirect measures of change

Volume change between two scans can be measured indirectly by segmenting

the structure of interest on the follow-up and baseline scans, measuring the

volume at each time point and subtracting one from the other. The problem

with measuring atrophy with this method is that the measurement errors (in

the segmentation) can be of the order of the volume changes being measured.

2.3.4 Direct measures of change

Volume change can be measured directly by registering baseline and follow-up

scans. Change in volume can be measured directly from registered scan pairs



2.3. Measuring volumes and volume change using MRI scans 37

using techniques such as the boundary shift integral (BSI) [Freeborough et al.,

1997]. The boundary shift integral reduces the measurement errors by using

the segmentations at baseline and follow-up to register the structure of interest

and then calculates how much the boundary of the structure of interest has

shifted using intensity windowing directly on the voxel intensities. A graphical

representation of the BSI is shown in figure 2.4.

Figure 2.4: The BSI determines the change in volume directly from voxel intensi-
ties on registered pairs of MRI scans. Hypothetical intensity profiles of
baseline and follow-up scans are shown along a line through the brain
boundary. The green hatched area represents the BSI on both the graph
and the image of a brain.

Another direct method for measuring change in brain volume is SIENA

(Structural Image Evaluation, using Normalisation, of Atrophy) [Smith et al.,

2002]. In this method, brain regions are automatically extracted from baseline

and follow-up scans and they are then registered. The surface motion (between

the two time points) is estimated at brain surface points, to subvoxel accuracy.

A percentage brain volume change estimate can then be calculated from the

mean perpendicular edge motion across the entire brain surface. This method

of measuring brain volume change has been shown to have strong correspon-

dence to the BSI [Smith et al., 2007].

Non-linear registration methods can also be used to measure brain volume

change directly [Boyes et al., 2006]. In these methods, an affine registration is

followed by a non-linear registration. From the non-linear registration, jaco-

bian matrices for each voxel are obtained. The determinant of each of these
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matrices represents the expansion or contraction of each voxel. These can then

be integrated over a brain region to produce an estimate of atrophy.

By treating the baseline scan as a reference scan for follow-up scans, some

techniques for measuring brain volume change directly have been found to be

biased and show asymmetry. A number of techniques for ensuring symmetrical

measures of atrophy have since been employed [Fox et al., 2011].

A head-to-head comparison of various direct methods for measuring vol-

ume change over time and an assesment of their bias is reported in [Cash et al.,

2015].

2.3.5 Structures commonly segmented in AD

Although whole-brain, ventricular and hippocampal volumes are widely-used

as AD biomarkers, little attention has been given to the role of other subcortical

grey matter structures in AD but there is evidence to suggest that structures

such as the parahippocampal gyrus [Braak and Braak, 1995, Echávarri et al.,

2011], amydala [Vogt et al., 1990, Poulin et al., 2011], thalamus [Braak and

Braak, 1991, De Jong et al., 2008] and putamen [De Jong et al., 2008] also

atrophy in AD. Some of the boundaries of these structures are difficult to

distinguish from surrounding tissue on T1-weighted MRI scans meaning the

accurate segmentation of these regions remains a challenge.

2.3.6 Multimodal segmentation: a way of investigating subcor-

tical structures?

Different MRI modalities provide complimentary information about tissue

properties and its microstructure including DTI. Subcortical regions, such

as the thalamus, have well-structured fibre connections to defined cortical

and subcortical areas. DTI allows the delineation of axonal tracts within

white matter, unlike T1-weighted MRI. As a result, DTI imaging may offer

enhanced intrinsic contrast in some subcortical areas such as the thalamus.

Incorporation of DTI into manual segmentation protocols may allow for more

accurate segmentations of subcortical regions and sub-regions by combining
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information from DTI and T1-weighted scans. Indeed fusion of DTI and T1

weighted scans has shown promising results for the improvement of the seg-

mentation of grey matter, white matter and cerebrospinal fluid (CSF) [Awate

et al., 2008]. In addition, several reports have demonstrated techniques for

segmenting sub-regions of the thalamus [Mang et al., 2012, Behrens et al.,

2003,Jbabdi et al., 2009,Johansen-Berg et al., 2005,Unrath et al., 2008,Wiegell

et al., 2003b, Ziyan et al., 2006, Ziyan and Westin, 2008] and the sub-regions

of the amygdala [Solano-Castiella et al., 2010, Solano-Castiella et al., 2011]

using information from DTI. These techniques focused on the segmentation of

sub-regions however and used masks (either manually or automatically gen-

erated) based on T1-weighted scans to define the limiting outer boundaries

of those structures. Only one study to date has used information from both

T1-weighted scans and DTI scans to automatically segment subcortical struc-

tures [Marrakchi-Kacem et al., 2010]. This study describes a hybrid multicon-

trast deformable model segmentation algorithm that incorporates information

from both T1-weighted and DTI scans. They reported increased segmentation

accuracy when including information from DTI into the algorithm but only

compared the segmentation results with and without DTI data to manual seg-

mentations performed on T1-weighted scans alone. Whether information from

both DTI and T1-weighted MRI scans can be successfully combined to improve

the segmentation of the thalamus remains to be thoroughly investigated.



Chapter 3

Methods

3.1 Subjects

3.1.1 Alzheimer’s disease neuroimaging initiative (ADNI)

Data used in chapters 4, 7 and 9 were downloaded from the ADNI database

(adni.loni.usc.edu). The ADNI was launched in 2003 as a public-private part-

nership, led by Principal Investigator Michael W. Weiner, MD. The primary

goal of ADNI has been to test whether serial magnetic resonance imaging

(MRI), positron emission tomography (PET), other biological markers, and

clinical and neuropsychological assessment can be combined to measure the

progression of mild cognitive impairment (MCI) and early Alzheimer’s disease

(AD). For up-to-date information, see www.adni-info.org. Participants

underwent baseline and periodically repeated clinical and neuropsychomet-

ric assessments and MRI. Detailed inclusion criteria for the ADNI study can

be found at http://www.adni-info.org/Scientists/doc/ADNI_

Protocol_Extension_A2_091908.pdf.

There are several phases to the ADNI study. ADNI-1 was the first phase of

the ADNI study. Participants with mild AD, MCI and controls were enrolled

in this phase of the study and most subjects recruited in this phase of the study

were scanned on 1.5T MRI scanners. ADNI-GO was the second phase of the

ADNI study. In this phase, as well as continuing to collect data from subjects

recruited as part of ADNI-1, 200 subjects with early mild cognitive impairment

www.adni-info.org
http://www.adni-info.org/Scientists/doc/ADNI_Protocol_Extension_A2_091908.pdf
http://www.adni-info.org/Scientists/doc/ADNI_Protocol_Extension_A2_091908.pdf
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(EMCI) were recruited and were scanned using 3T MRI scanners. ADNI-2

was the third phase of the ADNI study. In this phase new controls, EMCI,

late mild cognitive impairment (LMCI) and mild AD subjects were recruited

and scanned on 3T scanners. Wechsler Memory Scale Logical Memory II

scores (adjusted for years of education) were used to define individuals with

MCI as early or late MCI. For details see http://www.adni-info.org/

Scientists/doc/ADNI2_Protocol_A3_17Oct2014_CLEAN.pdf.

3.1.2 Young onset Alzheimer’s disease (YOAD)

The patients in this cohort were recruited prospectively from a specialist Cog-

nitive Disorders clinic between 2013 to 2015. A total of 45 patients, who all

had a symptom onset at less than 65 years and who met consensus criteria for

probable AD [McKhann et al., 2011] were recruited. None had a known muta-

tion or family history suggestive of autosomal dominant inheritance. Patients

were classified as having a typical [McKhann et al., 2011] or atypical (pos-

terior cortical atrophy) [Tang-Wai et al., 2004]) AD phenotype according to

published criteria. One patient had an atypical frontal variant of Alzheimer’s

disease. 24 age- and gender- matched control subjects were also recruited.

3.1.3 AVID cohort

The patients in this cohort were recruited as part of a pilot study to demon-

strate brain amyloid using Florbetapir F18, between 2012 and 2013. A total

of 22 participants were recruited, with a range of pathologies: 5 with seman-

tic dementia (SD), 5 with posterior cortical atrophy (PCA), 3 with logopenic

aphasia (LPA), 4 with progressive nonfluent aphasia (PNFA) and 5 healthy

age-matched controls.

3.1.4 Posterior Cortical Atrophy cohort

124 subjects were identified retrospectively from a clinical database at the De-

mentia Research Centre (PCA (n=47), typical AD (tAD; n=29), and control

subjects (n=48)). All subjects have been described in a previous study of grey

matter volume and cortical thickness in PCA and typical Alzheimer’s disease

http://www.adni-info.org/Scientists/doc/ADNI2_Protocol_A3_17Oct2014_CLEAN.pdf
http://www.adni-info.org/Scientists/doc/ADNI2_Protocol_A3_17Oct2014_CLEAN.pdf
emilymanning
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(tAD) [Lehmann et al., 2011]. Subjects required at least one T1 weighted

volumetric MRI scan to be included in the study. All PCA patients fulfilled

the clinical criteria for posterior cortical atrophy proposed by [Mendez et al.,

2002] and [Tang-Wai et al., 2004] and more recent [Dubois et al., 2014a] cri-

teria for atypical AD, including evidence of posterior cortical dysfunction on

neuropsychological assessment and atrophy on MRI. In addition subjects were

only included in the PCA group if there was no indication of another un-

derlying pathology (such as dementia with Lewy bodies (DLB)). Although the

neuropsychological tests completed were not identical across all individuals, all

PCA patients showed evidence of deficits (scored <5th percentile) in at least

two tasks sensitive to parietal dysfunction - object perception (VOSP Object

Decision test [Warrington and James, 1991b,Warrington and James, 1991a]),

spelling (Graded Difficulty Spelling test [Baxter and Warrington, 1994]), space

perception (VOSP Number Location test [Warrington and James, 1991b]) and

calculation (Graded Difficulty Arithmetic test [Jackson and Warrington, 1986])

- and had relatively preserved episodic memory (>5th percentile on verbal and

or visual Recognition Memory Tests [Tosun et al., 2016, Warrington, 1996]).

Those included in the typical AD group fulfilled revised NINCDS-ADRDA cri-

teria for probable AD [Dubois et al., 2007,McKhann et al., 1984] and had sig-

nificant episodic memory impairments (namely gradual and progressive change

in memory function, objective evidence of significantly impaired episodic mem-

ory, and presence of medial temporal lobe atrophy) with episodic memory im-

pairments quantified as performance <5th percentile on the verbal and visual

Recognition Memory Tests [Tosun et al., 2016,Warrington, 1996]).

3.2 MRI acquisition

3.2.1 ADNI

3.2.1.1 ADNI-1

The ADNI-1 MRI protocol used in this study is described elsewhere [Jack

et al., 2008]. Most participants in this phase of the study were scanned on
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1.5T scanners. Two (unaccelerated) T1-weighted MRI scans (Magnetization

Prepared RApid Gradient Echo (MPRAGE)) were acquired at each session.

The image of highest quality (as assessed by a single quality control centre)

was selected. Pre-processing corrections were then applied depending on the

scanner manufacturer and head coil used: 1) correction for image geometry

distortion due to gradient non-linearity (gradwarp) [Jovicich et al., 2006], 2)

B1 non-uniformity correction [Narayana et al., 1988] and 3) intensity non-

uniformity correction (N3 histogram peak sharpening) [Sled et al., 1998]. All

pre-processing was performed by the Mayo clinic before being downloaded

locally. After pre-processing, the scans were additionally visually inspected at

the Dementia Research Centre for motion artefacts.

3.2.1.2 ADNI-GO/2

Some changes to the imaging protocol used were made in the ADNI-GO and

-2 phases of the ADNI study. Participants enrolled in this phase of the study

were scanned on 3T scanners. All participants had both accelerated and non-

accelerated T1-weighted MRI scans acquired at each session. Those who were

scanned on GE scanners also had diffusion weighted imaging scans acquired.

Details of imaging protocols can be found at http://adni.loni.usc.

edu/methods/documents/mri-protocols/. The same pre-processing

corrections applied to ADNI-1 scans, described above, were applied to ADNI-

GO and -2 scans.

3.2.2 YOAD

All subjects were scanned on a single Siemens Magnetom Trio 3T MRI scan-

ner using a 32-channel phased array head coil. 3D MPRAGE T1-weighted

volumetric MRI was acquired for each participant (acquisition time 9min 23s,

echo time (TE)/TR/TI = 2.9/2200/900ms, dimensions 256 x 256 x 208, voxel

size 1.1 x 1.1 x 1.1mm). Two identical diffusion-weighted imaging acquisitions

were performed using a single-shot, spin-echo echo planar imaging sequence

(64 diffusion-weighted directions, b = 1000 s/mm2; 9 b = 0 s/mm2 images

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
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(referred to as ‘b0’ images); 55 slices; voxel size 2.5 × 2.5 × 2.5 mm3; TR/TE

= 6900/91 ms; ).

3.2.3 AVID

MRI scans were acquired on a single 3T Siemens TIM Trio scanner using

a 32-channel phased array head-coil. Anatomical data included a sagit-

tal 3D MPRAGE T1-weighted volumetric MRI (acquisition time 9min 23s,

TE/TR/TI = 2.9/2200/900ms, dimensions 256 x 256 x 208, voxel size 1.1 x 1.1

x 1.1mm) and a coronal T2 Fluid-Attenuated Inversion Recovery (FLAIR) se-

quence (TE/TR/TI = 87/9000/2500ms, voxel size of 0.9375 x 0.9375 x 5mm).

Two identical diffusion-weighted imaging acquisitions were performed using a

single-shot, spin-echo echo planar imaging sequence (64 diffusion-weighted di-

rections, b = 1000 s/mm2; 9 b = 0 s/mm2 images (referred to as ‘b0’ images);

55 slices; voxel size 2.5 × 2.5 × 2.5 mm3; TR/TE = 6900/91 ms; ).

3.2.4 Posterior cortical atrophy

T1 weighted volumetric MR scans were acquired for all subjects on 1.5T Signa

scanners (General Electric, Milwaukee). All scans used an inversion recovery

sequence and all but 7 of the scans consisted of 124 contiguous 1.5 mm coronal

slices through the head. The remaining 7 consisted of 120 contiguous 1.5

mm coronal slices (5 PCA subjects and 2 tAD subjects). Since this was a

retrospective cohort, there was some variation in the scan parameters and

in-plane resolutions of the MRI scans; See Table 3.1 for a breakdown of the

imaging parameters by diagnostic group. The majority of subjects in each

diagnostic group had an in-plane resolution of 0.9 mm x 0.9 mm (including all

7 subjects with 120 coronal slices).
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Table 3.1: MRI scan parameters by diagnostic group

MRI parameters Controlsa (n=48) PCA (n=47) tAD (n=29)

field of view (FOV) (mm) 200 - 280 200 - 280 200 - 280

TR(ms) 11.7 - 15 11.7 - 15 13.6 - 15

TE (ms) 4.2 - 5.4 4.2 - 6.4 4.2 - 5.4

TI (ms) 650 650 650

Flip angle (degree) 13 - 20 13 - 20 15 - 20

% Phase FOV 75 - 100 75 - 100 75 - 100

Slice thickness (mm) 1.5 1.5 1.5

No. of subjects by
in-plane resolution (mm)

0.9 x 0.9 35 31 21

1.1 x 1.1 4 1 3

0.8 x 1.0 7 14 5

0.8 x 1.3 0 1 0

a Scan parameters not available for 2 subjects.

3.3 Image processing

3.3.1 Diffusion processing pipeline

In order to generate fractional anisotropy and mean diffusivity maps from the

acquired diffusion weighted images (diffusion weighted imaging (DWI)s) the

following steps were taken. An iterative groupwise registration and averaging

of the B=0 images was performed using NiftyReg [Modat et al., 2010], followed

by registration of individual DWIs to the average B=0 image (for motion/eddy

current correction) and B vectors adjusted for rotation. Echo-planar imaging

(EPI) susceptibility distortion correction was performed using the field map

images [Daga et al., 2013], and all DWI and B=0 images resampled to the

average B=0 space in a single step using a composition of the registration

and susceptibility correction transforms. Finally, tensor fitting was performed

using weighted least squares fitting implemented in NiftyFit [Melbourne et al.,

2016].

An intracranial mask was generated for the T1-weighted scans using

SPM12’s segmentation toolbox and combining grey matter, white matter and

cerebrospinal fluid classes. This was propagated to the average B=0 space by
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affine registration of the T1 and the B=0 image upsampled to 1.5mm isotropic

using NiftyFit, followed by nonlinear registration of the mask to the average B0

and combination of the affine and non-linearly transformed masks (to ensure

complete brain coverage before and after susceptibility correction). This mask

was then used during the susceptibility correction and tensor fitting steps.

To produce diffusion images matching the T1 image, the fitted diffusion

tensor and average B=0 images were resampled using the inverse of the T1 to

B=0 affine registration. Diffusion metrics for the T1 space were derived from

the resampled tensor volume.

3.4 Brain region segmentation

3.4.1 Brains

Brain regions were delineated by Multi-Atlas Propagation and Segmenta-

tion (Multi-Atlas Propagation and Segmentation (MAPS)) [Leung et al.,

2011]. The whole-brain MAPS technique uses a template library of semi-

automatically segmented whole-brain regions (comprised of grey and white

matter containing voxels with the brain-stem included up until the most infe-

rior slice containing cerebellum). The MAPS technique works by comparing

the target image to these templates and the best-matched templates are then

combined to generate the segmentation of the target image. Segmentations

were performed in native space.

3.4.2 Ventricles

Ventricles (including the temporal horn and excluding the third and fourth

ventricles) were segmented using a semi-automated technique. First the scans

were registered to standard space (using a 9-dof-6 approach: 9 degrees of free-

dom (dof) registration from which the rigid body transform is extracted and

applied to image). An upper threshold of 60% of the mean brain intensity

was then applied to separate brain tissue from the cerebrospinal fluid. Man-

ual editing was then performed to delineate the ventricular boundaries where

required.
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3.4.3 Hippocampi

Two methods were used for automatic hippocampal segmentation in this the-

sis. Both methods use the same template library of 110 manually segmented

hippocampi (right and left from 55 subjects), unless otherwise stated. Details

of the template library used is given in [Barnes et al., 2008]. In both methods,

baseline scans are first registered to standard space and any follow-up scans

are then affinely registered to their baseline.

3.4.3.1 hippocampal multi-atlas propagation and segmentation

(HMAPS)

HMAPS [Leung et al., 2010a], or hippocampal multi-atlas propagation and

segmentation, then uses non-linear registration of the best matched templates

from the template library to generate multiple segmentations, and combines

them using the STAPLE [Warfield et al., 2004] algorithm.

3.4.3.2 Similarity and Truth Estimation for Propagated Seg-

mentations (STEPS)

The STEPS, or similarity and truth estimation for propagated segmentations,

pipeline is an improvement to the HMAPS pipeline described above [Cardoso

et al., 2013]. Rather than using a global metric for ranking similarity, as

HMAPS does, a local similarity metric on a voxel-by-voxel basis is used for

improved segmentation accuracy.

3.4.4 Total intracranial volume

Total intra-cranial volume (total intracranial volume (TIV)) was esti-

mated by summing the volumes of grey matter, white matter, and cere-

brospinal fluid (cerebrospinal fluid (CSF)) segmentations using SPM8

(http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Brain-to-TIV ratio was

calculated by dividing the extracted whole-brain volumes by the extracted

TIVs.
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3.5 Volume change measurement

3.5.1 Brains

For whole brain volume change, follow-up scans were registered to the baseline

scans using affine registration (12dof) and differential bias correction was ap-

plied. Volume change between follow-up and baseline was calculated using the

robust boundary shift integral (robust boundary shift integral (KN-BSI)) [Le-

ung et al., 2010b].

3.5.2 Ventricles

Likewise, for measuring ventricular volume change, follow-up scans were reg-

istered to the baseline scans (which were registered to standard space prior

to segmentation) using affine registration (12dof). Volume change between

follow-up and baseline was calculated using the fixed window boundary shift

integral (BSI) for the ventricles [Freeborough et al., 1997].

3.5.3 Hippocampi

Local 6-dof registration was performed separately for left and right side hip-

pocampi after segmentation using the hippocampus regions dilated by 2 voxels.

Volume change between follow-up and baseline was calculated using the double

window BSI for the hippocampi [Leung et al., 2010b].

3.6 Software

3.6.1 For manual or semi-automated region segmentation

MIDAS (Medical Information Display and Analysis System) software [Free-

borough et al., 1997] was used for manual segmentations of brains, ventricles

and hippocampi used in some of the chapters in this thesis. This software

allows for the simultaneous multi-planer display of 3D data.

NiftyMIDAS, a new software tool under development by the Centre for

Medical Image Computing at UCL, was used for the manual segmentation of

the thalami in this thesis. In addition to being able to view 3D data in all 3

planes, this software also allows for the simultaneous segmentation of multi-
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modal data. This feature was utilised for the manual thalamic segmentations,

where T1-weighted and fractional anisotropy maps were simultaneously dis-

played and segmented.

3.6.2 Stata

Stata version 12 (Stata Corporation, College Station, TX, USA) was used for

most of the statistical analyses performed in this thesis.

3.6.3 Matlab

Matlab (matrix laboratory) was used, in conjunction with the SurfStat [Wors-

ley et al., 2009] toolbox for statistical shape analysis in chapter 6.



Chapter 4

Assessment of image quality in

accelerated T1-weighted scans

4.1 Introduction

Atrophy rates, as measured using the boundary shift integral (BSI) have been

shown to be sensitive biomarkers of Alzheimer’s disease (AD) and have been

used as outcome measures in a number of clinical trials [Fox et al., 2005,Jack

et al., 2008, Salloway et al., 2014]. However, the quality of each scan in the

longitudinal series is important to provide robust and accurate results. Poor

quality scans can be caused by patient-related factors such as movement during

the scanning process.

A typical 3T 3D structural brain magnetic resonance imaging (MRI) with

1 mm resolution takes approximately 9 minutes but some subjects have dif-

ficulty remaining still for this time period, often resulting in unusable scans.

Acquisition times can be reduced by employing parallel imaging techniques

(e.g. with scan times 5 minutes), potentially reducing motion artefacts, scan-

ning costs, as well as increasing patient comfort and compliance. Reducing

scanning time may mean that a higher proportion of subjects recruited to a

study or clinical trial have usable MRI scans.

However, accelerated acquisitions alter scan characteristics such as signal-

to-noise ratio, noise distribution and tissue contrast. Before accelerated T1
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scans can be used in place of unaccelerated T1 scans in clinical trials, it is

essential that we understand how accelerated acquisitions may affect cross-

sectional volumes and longitudinal atrophy rate measures. In addition, despite

poor quality MRI scans routinely being excluded from studies (for reasons such

as head coil failure, geometric distortions or patient motion), the question of

whether subject characteristics differ between those who have usable MRI

scans with those who have poor quality scans (due to patient motion) needs

to be evaluated.

Therefore, the aims in this study were to: 1) compare whole brain, ven-

tricular and hippocampal volumes at baseline and atrophy rates (measured

using the BSI) over 6-month and 12-month intervals in accelerated and unac-

celerated scans, 2) investigate whether there was a difference in the number

of good quality accelerated and unaccelerated scans, 3) assess whether subject

characteristics differed between subjects whose scans were considered unusable

due to motion compared with those whose scans were of good quality and 4)

compare estimated sample size requirements for a hypothetical clinical trial

when using accelerated and unaccelerated scans.

4.2 Materials and Methods

4.2.1 Image data and acquisition

Data used in this chapter were downloaded from Alzheimer’s disease neu-

roimaging initiative (ADNI) (as described in 3). ADNI-GO and ADNI-2 in-

cluded both accelerated and non-accelerated acquisition protocols for each par-

ticipant. At the time of downloading baseline MRI scans were available for

a total of 884 subjects, 6 month scans for 572 subjects, and 12 month scans

for 384 subjects. All subjects used in the preparation of this chapter were

scanned on 3T scanners and were new recruits to ADNI-GO/2. Image pre-

processing included post-acquisition correction of gradient warping [Jovicich

et al., 2006] and intensity non-uniformity correction using N3 [Sled et al.,

1998] and SPM5 with tissue priors from a custom template consisting of 400
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elderly subjects (200 NC and 200 AD) from the first phase of ADNI. Scanners

from three different manufacturers (Philips, Siemens and General Electric)

were in use across the different sites. The three different scanner manufactur-

ers use different acceleration protocols; details of the various MRI protocols

are listed on the ADNI website (http://adni.loni.usc.edu/methods/

documents/mri-protocols/). Non-accelerated scans were always ac-

quired prior to the accelerated scans during the same scanning session. Subject

demographics for all subjects with both accelerated and non-accelerated scans

available at baseline, 6- and 12- months are shown in Table 4.1.

4.2.2 Quality control (quality control (QC)) of MRI scans

First, imaging sites were instructed to immediately assess the quality of T1

weighted scans and to re-acquire if necessary; therefore in some cases more

than one accelerated or non-accelerated T1 weighted scan was acquired in a

particular session. QC was performed on all MRI scans at the Mayo Clinic

before being released for download. This QC procedure entailed assessment of

MRI scans for adherence to the ADNI scanning protocol, medical abnormalities

and severe artefacts (such as metal-induced artefacts, head-coil failure etc.).

Only scans that passed this initial QC are available for download and so all

analyses in this paper were only performed on the subset that passed initial

QC by Mayo. At the dementia research centre (DRC), UCL, further quality

assessment of the MRI scans available to download was performed: individual

scans were assessed visually for artefacts and very poor quality scans were

excluded from further analysis (e.g. due to severe motion artefacts); once the

scans were segmented and scan pairs registered (as detailed below), a single

rater (EM), blinded to BSI values, assessed the quality of registered scan pairs.

If a scan failed at this QC stage (from here on referred to as DRC QC), it was

considered as failed for all BSI measures.

The BSI measures how much the boundary of a brain region has shifted

between successive scans using normalised voxel intensities of co-registered

images. Blurring due to patient motion can change the intensities of voxels

http://adni.loni.usc.edu/methods/documents/mri-protocols/
http://adni.loni.usc.edu/methods/documents/mri-protocols/
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Table 4.1: Subject Demographics

cogni-
tively
normal
(CN)

early
mild
cognitive
impair-
ment
(EMCI)

late mild
cognitive
impair-
ment
(LMCI)

AD

Baseline

Subjects, n 231 310 173 126

Age, years
73.1
(6.1)

70.8
(7.3)

72.2
(7.5)

75.1
(7.7)

MMSE score/30 29 (1) 28 (2) 28 (2) 23 (2)

Education, years 17 (3) 16 (3) 17 (2) 16 (3)

% female 54% 46% 46% 43%

% apolipoprotein (APOE) 4
carriers

31% 46% 61% 71%

Baseline to 6 months

Subjects, n 157 235 129 52

Age, years
73.6
(6.1)

71.0
(7.2)

72.0
(7.6)

75.6
(8.0)

MMSE score/30 29 (1) 28 (2) 28 (2) 23 (2)

Education, years 17 (3) 16 (3) 17 (2) 15 (3)

% female 50% 45% 48% 38%

% APOE 4 carriers 29% 42% 57% 77%

Baseline to 12 months

Subjects, n 122 122 103 37

Age, years
74.0
(6.0)

70.7
(7.1)

71.9
(7.4)

75.9
(7.9)

MMSE score/30 29 (1) 28 (2) 28 (2) 23 (2)

Education, years 17 (3) 16 (3) 17 (2) 15 (3)

% female 52% 44% 47% 27%

% APOE 4 carriers 27% 44% 56% 78%

Note: mean (sd) shown unless otherwise indicated
CN = cognitively normal, EMCI = early mild cognitive impairment, LCMI
= late mild cognitive impairment, AD = Alzheimer’s disease, MMSE = mini-
mental state examination (at baseline)

emilymanning
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at the brain boundary and may therefore render the BSI measure unreliable

[Preboske et al., 2006]. Since subjects had more opportunity to move during

the longer non-accelerated scan a strict quality control process was used (i.e.

erring on the side of excluding scans) as the first aim was to investigate whether

the image acquisition, rather than differences in motion, might influence BSI

measures. If motion, geometric distortions (due to different positioning in

the scanner) or significant quality differences between baseline and follow-up

scans were found, they were rated as unusable. In addition, any subjects whose

follow-up scans were performed on a different scanner from the baseline scans

were excluded.

4.2.3 Quality Comparison of accelerated and unaccelerated

scans

To evaluate quality the proportion of scan pairs that passed DRC QC was

examined. Patient motion is one of the major reasons a registered scan pair

may fail but other reasons, such as geometric distortions due to positional

differences may occur. It was hypothesised that there may be more motion

artefacts in non-accelerated scans than accelerated due to the longer time re-

quired for the non-accelerated scan, but that other reasons for failing QC such

as geometric distortions due to positional differences would be independent of

acquisition type. Therefore, in order to compare scan quality both the non-

accelerated and accelerated scan pair were excluded if either were failed for

reasons other than motion. Within the remaining scan pairs, a paired compar-

ison of the proportion of accelerated scan pairs that passed DRC QC and the

proportion of non-accelerated scan pairs that passed DRC QC was conducted

using the McNemar test [McNemar, 1947]. Where more than one scan was

acquired per session, the first scan to be acquired was used in this comparison

(in the BSI comparisons the best scan acquired was used).
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4.2.4 Segmentation and volume measurement

Whole-brains were segmented using Multi-Atlas Propagation and Segmenta-

tion (MAPS) as described in chapter 3. They were visually checked and man-

ually edited if necessary (edits included removing skull inclusions, spillages

into non-brain tissue around the temporal lobes and cutting-off the brain stem

at the most inferior slice of the cerebellum). Differences in the numbers of

scans with brain, ventricle and hippocampal volumes available were due to

the work-flow at the Dementia Research Centre, whereby scans are released

for segmentation in batches and all regions are manually checked and edited

where necessary. This means that not all available scans had hippocampal

regions segmented and checked at the time of writing. All available scans were

included to maximise the numbers for the analyses.

4.2.5 Volume Change Measurement

Whole brain, ventricular and hippocampal volume change in 6- and 12- month

follow-up scans was calculated using the methods described in chapter 3.

4.2.6 Comparison of accelerated and unaccelerated volumes and

atrophy rates

Paired t-tests were used to compare baseline mean volumes and 6- and 12-

month atrophy rates between accelerated and unaccelerated scans. Differences

in variances were tested for using Pitman’s test for equality of variance in

paired samples.

To compare atrophy rates between accelerated and non-accelerated scan

pairs a family of linear mixed models developed for the analysis of repeated

measures of direct change [Frost et al., 2004] were used. Only scans that

passed DRC QC were included in this analysis. These models account for

the correlation between repeated atrophy measures and permit inclusion of all

available atrophy measures in the analysis under the assumption that missing

values are missing at random. The dependent variables in separate models

were the ml loss of brains, ventricles and hippocampi as calculated by the BSI
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(see equation below). Time (years) between baseline and follow-up scans was

included as a fixed-effect. Interactions terms between scan type and time were

included to allow atrophy rate to vary with scan type. Random effects for

visit were included to allow participants to have visit specific deviations from

a linear trajectory, and random effect for time allow for participant specific

differences from the mean rate of atrophy. The random effect of time was

allowed to differ by diagnostic group to allow for differing between subject

heterogeneity in atrophy rate. The model can be written as equation (1):

yi jk = (β0 + β1scantype + β2EMCI + β3LMCI + β4AD + bi,C + bi,EMCI

+bi,LMCI + bi,AD)ti jk −ui j + uik + εa,i jk + εna,i jk

bi,C ∼ N(0,σ2
b,C),bi,EMCI ∼ N(0,σ2

b,EMCI),

bi,LMCI ∼ N(0,σ2
b,LMCI),bi,AD ∼ N(0,σ2

b,AD)

ui j ∼ N(0,σ2
u ),uik ∼ N(0,σ2

u ),εa,i jk ∼ N(0,σ2
a,ε),εna,i jk ∼ N(0,σ2

na,ε)

Where yi jk is the measured change between the j-th and k-th visit for the

i-th individual, ti jk is the time interval between visits j and k, scantype is a cat-

egorical variable representing scan type (0 if accelerated, 1 if non-accelerated),

EMCI is a categorical variable representing EMCI status (0 if not diagnosed

as EMCI, 1 if diagnosis = EMCI) and likewise for LMCI and AD, β0 is the

mean atrophy rate in accelerated scans in controls, is the difference in mean

atrophy rate between accelerated and non-accelerated scans and are the fixed

effects coefficients corresponding to a diagnosis of EMCI, LMCI or AD, terms

are the random effect slope for subject i in the relevant diagnostic group and

εa,i jk and εna,i jk are the error terms for accelerated and non-accelerated scans

respectively. I hypothesised the residual error (εi jk ) may be differ between

non-accelerated scans and accelerated scans, as this represents the measure-

ment error introduced in making the direct BSI measurement of atrophy. It
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was assumed that all other variance components, such as between subject het-

erogeneity in their atrophy rates could not be plausibly influenced by the scan

type. Therefore, in order to test for differences in variance between accelerated

and non-accelerated scans the likelihood ratio test on nested models was used,

differing only in that one model specified with common residual variance (εi jk

) and one model had separate residual variances by scan type (εa,i jk ;εna,i jk ).

4.2.7 Comparison of subject characteristics between passed and

failed scans

Baseline mini-mental state exam (MMSE), age and vascular burden- white

matter hyperintensities (WMH) volumes (segmented on the Fluid-Attenuated

Inversion Recovery (FLAIR) scans at UC Davis using an automated tech-

nique) [DeCarli et al., 1999] were compared in subjects with scan pairs that

failed QC (where one or both of the 0-6 and 0-12 month scan pairs failed DRC

QC due to motion) with those who had only passing scan pairs (either 0-6

or 0-12 months or both if available) using linear regression. For the MMSE

score comparison age, gender, years of education and diagnosis were adjusted

for. For the WMH volume comparison age, baseline diagnosis and head size

were adjusted for. Since WMH volumes and MMSE scores are not normally

distributed bootstrapping (with 2000 iterations) was used to calculate bias-

corrected and accelerated 95% confidence intervals (confidence interval (CI))

for both of these analyses. For the age comparison baseline diagnosis was

adjusted for as the AD subjects were older than the EMCI subjects. The

proportion of subjects with cognitive impairment (EMCI, LMCI or AD) was

compared between the groups (failed vs non-failed scans) using logistic regres-

sion and calculated risk ratios.

4.2.8 Sample size estimates

Sample size requirements for a clinical trial to measure a 25% reduction in

whole-brain atrophy rates in accelerated and unaccelerated scans were esti-

mated using the standard formula: sample size per arm = (u + v)2 × (σ12
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+ σ22 )/(µ1−µ2)2 , where u = 0.84 to provide 80% power and v = 1.96 to

test at the 5% level; µ and σ are the mean and SDs of rates of atrophy in the

treatment and placebo groups (assumes µ1 ≈ µ2). In order to directly com-

pare the sample size requirements using accelerated and unaccelerated scans,

all 0-6 and 0-12 month scan pairs were included, whether or not they failed

DRC QC.

4.3 Results

4.3.1 Quality Control

The majority of scans failed by Mayo were failed due to non-adherence to the

ADNI protocol, incomplete coverage of the brain, metal induced artefacts or

pathology. Only one subject had scans failed by Mayo due to severe motion.

A total of 861 subjects had baseline accelerated and non-accelerated scans

available to download from LONI. Of these 840 subjects had both a baseline

accelerated and non-accelerated scan that passed DRC first pass QC. See Fig-

ure 4.1 for a detailed breakdown of the number of subjects at each stage of the

DRC QC.

Of the 576 subjects who had scans available at 6 months, scan pairs from

29 subjects were rated as unusable due to geometrical distortions due to po-

sitioning differences in the scanner being detected on either or both of the

accelerated and unaccelerated scans. A further 138 subjects had either an

accelerated or unaccelerated scan pair rated as unusable due to motion. Of

the 385 subjects who had scans available at 12 months, geometric distortion

was detected on either the accelerated or unaccelerated scan pairs or both

for 5 subjects and were therefore rated as unusable and a further 99 subjects

had either an accelerated or unaccelerated scan pair rated as unusable due to

motion.
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Figure 4.1: Breakdown of no. of subjects at each stage (NA = non-accelerated scan,
A = accelerated scan)
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4.3.2 Scan quality differences between accelerated and unaccel-

erated T1 MRI scans

At both 6- and 12- month intervals, significantly more (twice as many) un-

accelerated than accelerated scan pairs failed quality control due to motion

artefacts (in one or other of the pairs); at 6 months 14% of unaccelerated scan

pairs were failed due to motion vs 7% of accelerated scan pairs (p≤0.001);

at 12 months 20% of unaccelerated scan pairs failed due to motion vs 9% of

accelerated scan pairs (p≤0.001).

4.3.3 Baseline volumes

Table 4.2 summarises the mean baseline brain, ventricular and hippocampal

volumes measured from the baseline MRI scans. There were no differences in

the mean baseline brain or hippocampal volumes measured using accelerated

scans as compared with unaccelerated scans. The measured baseline ventricu-

lar volume was on average 0.09ml lower for unaccelerated compared to accel-

erated scans. Although this difference was statistically significant (p<0.001)

it was very small at only 0.2% of the mean ventricular volume. There were no

significant differences in variances of any of any of the measures.

Table 4.2: Baseline volumes (mean (sd) unless otherwise stated)

n=
Non-
accelerated

Acceler-
ated

Mean difference
(non-accelerated -
accelerated) [95%

CI]

Limits of
agreement

(accelerated
- non-

accelerated)

Brain volume
(ml)

840 1066 (106) 1066 (106)
0.3 [-0.03, 0.6],

p=0.07
-9.22 to 9.83

Ventricular
volume (ml)

840 39.2 (22.8) 39.3 (22.8)
-0.09 [-0.1, -0.06],

p<0.001
-0.81 to 0.63

Hippocampal
volume (ml)

645 5.2 (0.03) 5.2 (0.03)
-0.002 [-0.004,
0.008], p = 0.5

-0.15 to 0.15
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4.3.4 Atrophy rates

The results of the comparison of annualised brain, ventricular and hippocampal

atrophy rates calculated using the BSI from accelerated and non-accelerated

MRI scan pairs are shown in Table 4.3. No significant differences in whole-

brain, ventricular or hippocampal atrophy rates were found in any of the com-

parisons. Residual errors were generally slightly higher for non-accelerated

scans, although the difference only reached statistical significance in the hip-

pocampal comparison in Philips scanners.
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Table 4.3: Comparison of whole-brain ventricular and hippocampal atrophy rates calculated from accelerated and non-accelerated scan
pairs using the boundary shift integral in subjects whose accelerated and non-accelerated scan pairs both passed QC, mean (se)
shown unless otherwise indicated

No. scan
pairs

Mean adjusted
atrophy rate*
in accelerated
scans, ml/year

Mean adjusted
atrophy rate* in
non-accelerated
scans, ml/year

Mean difference in atrophy
rates* (non-accelerated -

accelerated) [95% CI]

Residual error:
accelerated
scans

Residual error:
non-accelerated
scans

p-value of
likelihood
ratio test

Brains

All 487 5.81 (0.88) 5.85 (0.88)
0.04 [-0.28 to 0.36],

p=0.802
5.41 (0.57) 6.66 (0.60) p=0.153

GE 91 6.52 (1.99) 7.12 (2.01)
0.60 [-0.65 to 1.86],

p=0.347
12.71 (2.68) 19.16 (3.53) p=0.153

Siemens 289 6.44 (1.23) 6.44 (1.23)
0.00 [-0.36 to 0.36],

p=0.986
0.48 (0.90) 1.11 (0.95) p=0.358

Philips 107 4.61 (1.99) 4.31 (1.99)
-0.30 [-0.72 to 0.13],

p=0.168
2.25 (0.58) 2.91 (0.60) p=0.506

Ventricles

All 487 1.30 (0.22) 1.30 (0.22)
0.01 [-0.02 to 0.03],

p=0.619
0.01 (0.01) 0.01 (0.01) p=0.589

GE 91 0.86 (0.52) 0.92 (0.52)
0.06 [-0.03 to 0.15],

p=0.225
0.01 (0.03) 0.04 (0.03) p=0.483

Siemens 289 1.57 (0.27) 1.57 (0.27)
0.00 [-0.03 to 0.03],

p=0.998
0.001 (0.005) 0.01 (0.01) p=0.450

Philips 107 0.92 (0.53) 0.91 (0.53)
-0.01 [-0.07 to 0.04],

p=0.647
0.02 (0.01) 0.00 (0.01) p=0.492

Hippocampi

All 227 0.05 (0.02) 0.04 (0.02)
-0.01 [-0.02 to 0.00],

p=0.262
0.004 (0.000) 0.004 (0.0005) p=0.795

GE 45 -0.06 (0.09) -0.08 (0.09)
-0.02 [-0.05 to 0.00],

p=0.100
0.003 (0.002) 0.002 (0.002) p=0.347

Siemens 126 0.07 (0.01) 0.06 (0.01)
-0.01 [-0.02 to 0.00],

p=0.125
0.001 (0.001) 0.002 (0.001) p=0.381

Philips 56 0.03 (0.02) 0.04 (0.02)
0.01 [-0.00 to 0.03],

p=0.121
0.002 (0.000) 0.003 (0.001) p=0.045

* results are from the model with two separate residual errors by scan type



4.3. Results 63

4.3.5 Comparison of subject characteristics between those with

failed scan pairs due to motion and those with passed scan

pairs

Unadjusted baseline WMH volumes, age, MMSE scores and change in MMSE

over 12 months along with the results of the regression analyses comparing

these variables in subjects who had one or more scan pairs that failed DRC

QC due to motion with those whose scan pairs passed DRC QC are shown in

table 4.4.

4.3.5.1 In accelerated scan pairs

Subjects who had a failed 0-6 or 0-12 month accelerated scan pair (due to

motion) had a lower mean adjusted WMH volume (adjusted for age, diagnosis

and head-size) and had a higher mean adjusted age (adjusted for diagnosis).

There was no significant association between the proportion of cognitively

impaired subjects and QC failure due to motion, nor was an association found

between baseline MMSE score and QC scan pair failure.

4.3.5.2 In unaccelerated scan pairs

A higher proportion (11% higher) of subjects who had a failed 0-6 or 0-12

month unaccelerated scan pair (due to motion) were cognitively impaired com-

pared with those whose scan pairs passed QC (p=0.01). Subjects who had a

failed 0-6 or 0-12 month unaccelerated scan pair (due to motion) also had a

lower mean adjusted MMSE score (adjusted for age, gender, education and

diagnosis) (p ≤ 0.05). No significant difference in WMH volumes or age was

found.

4.3.6 Sample size estimates

Mean annualised brain atrophy rates by diagnostic group are shown in Table

4.5 and estimated sample sizes for subjects with LMCI and AD are shown in

Table 4.6. No significant differences in sample size requirements were found

when comparing accelerated and unaccelerated scan pairs for any of the atro-
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phy measures.

Table 4.4: Comparison of subject characteristics between those with failed scan pairs
due to motion and those with passed scan pairs

Both (if available)
0-6 and 0-12 month
scan pairs passed
QC

One or both of the
0-6 and 0-12 month
scan pairs failed QC

Adjusted
difference [95%

CI]

Accelerated scan
pairs

WMH volume
(mm3)

6.55 (8.96), n=498 9.40 (9.71), n=66
2.01a [0.01, 4.62],

p≤0.05

Age (years) 72.2 (7.4), n=513 74.3 (6.7), n=66
2.2b [0.4, 4.0],

p=0.02

Baseline MMSE/30 27.8 (2.4), n=513 27.7 (2.1), n=66
0.1c [-0.3, 0.4],

p>0.05

% Subjects
cognitively
impaired

73% 78%
4% [-6, 15],

p=0.45

Non-accelerated
scan pairs

WMH volume
(mm3)

6.85 (9.28), n=444 7.01 (8.40), n=120
-0.32a [-1.82,
1.49], p>0.05

Age (years) 72.3 (7.2), n=455 72.9 (7.6), n=124
0.9b [-0.6, 2.3],

p=0.24

Baseline MMSE/30 27.9 (2.3), n=455 27.3 (2.5), n=124
-0.3c [-0.6, -0.1],

p≤0.05

% Subjects
cognitively
impaired

71% 82%
11% [19, 3],

p=0.01

a Difference in mean WMH volume adjusted for age, diagnosis and headsize using linear re-
gression analysis. CI calculated using bootstrapping. b Difference in baseline age adjusted
for diagnosis using linear regression analysis c Difference in baseline MMSE score adjusted
for age, education and diagnosis. CI calculated using bootstrapping.
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Table 4.5: Atrophy rates by diagnosis in all subjects (regardless of whether scan pairs passed or failed QC)

0-6 month atrophy rates 0-12 month atrophy rates

n=
Non-accelerated
scans

Accelerated
scans

n=
Non-accelerated
scans

Accelerated
scans

Annualised whole-brain atrophy rates ml/year
CN 157 7.21 (14.65) 6.74 (13.71) 122 7.18 (7.7) 7.37 (7.48)
EMCI 234 7.44 (13.89) 7.52 (14.15) 122 7.82 (8.92) 7.5 (8.35)
LMCI 129 11.48 (15.01) 11.16 (14.25) 103 10.84 (9.68) 11.01 (9.18)
AD 52 16 (15.97) 16.06 (15.06) 37 14.89 (8.24) 14.94 (9.2)

Annualised ventricular expansion rates ml/year
CN 157 1.31 (2.45) 1.42 (2.59) 122 1.43 (1.54) 1.41 (1.52)
EMCI 234 1.4 (2.47) 1.39 (2.51) 122 1.77 (1.81) 1.76 (1.79)
LMCI 129 2.7 (3.17) 2.7 (3.09) 103 2.94 (2.59) 2.91 (2.59)
AD 52 4.2 (4.21) 4.39 (4.17) 37 4.14 (3.01) 4.16 (2.95)

Annualised hippocampal atrophy rates ml/year
CN 115 0.08 (0.22) 0.08 (0.22) 92 0.06 (0.11) 0.07 (0.11)
EMCI 180 0.06 (0.17) 0.07 (0.17) 85 0.09 (0.14) 0.1 (0.14)
LMCI 95 0.15 (0.23) 0.14 (0.22) 76 0.13 (0.15) 0.14 (0.14)
AD 38 0.2 (0.16) 0.21 (0.21) 25 0.18 (0.12) 0.18 (0.11)

Note: mean (sd) shown unless otherwise indicated
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Table 4.6: Sample size estimates for a 25% reduction in atrophy rate (with bootstrap
95% CIs and 80% power)

non-
accelerated
scans, n [95%
CI]

Accelerated
scans, n [95%
CI]

Difference
(non-
accelerated -
accelerated), n
[95% CI]

Baseline to 6 months

LMCI Brains 420 [257, 858] 414 [258, 759] 6 [-100, 146]

LMCI Ventricles 349 [241, 692] 334 [226, 633] 15 [-38, 50]

LMCI Hippocampi 673 [342, 1851] 612 [340, 1707] 61 [-226, 763]

AD Brains 252 [146, 606] 223 [127, 529] 29 [-65, 248]

AD Ventricles 254 [160, 466] 228 [145, 427] 26 [-3, 75]

AD Hippocampi 145 [89, 270] 236 [136, 576] -91 [-153, 19]

Baseline to 12 months

LMCI Brains 204 [139, 371] 177 [127, 277] 27 [-14, 76]

LMCI Ventricles 202 [148, 320] 205 [149, 329] -3 [-16, 10]

LMCI Hippocampi 361 [221, 853] 234 [160, 415] 127 [-16, 435]

AD Brains 77 [53, 126] 96 [56, 203] -19 [-47, 23]

AD Ventricles 134 [89, 244] 127 [85, 232] 7 [-1, 20]

AD Hippocampi 110 [58, 328] 93 [40, 621] 17 [-64, 172]

4.4 Discussion

A significantly lower proportion of accelerated scan pairs than unaccelerated

were found to suffer from poorer quality due to motion artefacts. Further

whole-brain, ventricular and hippocampal volumes and atrophy rates calcu-

lated from accelerated MRI scans were shown to be comparable to those cal-

culated from unaccelerated MRI scan pairs in a large cohort of control, MCI

and AD subjects. Differences were also found in the characteristics of those

who failed the accelerated and unaccelerated scan pairs: those who had failed

unaccelerated scan pairs had a lower MMSEs at baseline (more severe) and

a higher proportion of them were cognitively impaired whereas those whose
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accelerated scan pairs failed DRC QC were older and had greater WMH vol-

umes. The difference in WMH volumes remained even after adjustment for

age suggesting that subjects with more extensive white matter damage are

less able to remain sufficiently motionless even at the shorter scanning times.

Therefore, disregarding data from subjects with unusable scans due to motion

changes the characteristics of the participants included in any analysis, mean-

ing that they may have different characteristics from those who were originally

recruited to the study.

One previous study investigated the influence of parallel imaging acqui-

sition on brain volume measurements in 4 healthy control subjects [Krueger

et al., 2012]. They acquired 12 Magnetization Prepared RApid Gradient Echo

(MPRAGE) volumes in each session with a range of acceleration factors. They

then repeated the same sequences 8 weeks later in each of the 4 subjects and

found no significant differences in BSI measures even at high acceleration fac-

tors.

A further two previous studies investigated the influence of using acceler-

ated T1 acquisitions on different measures of brain atrophy rate [Ching et al.,

2015, Vemuri et al., 2015]. Both of these studies used data from ADNI. One

study found that measures of atrophy rate derived from tensor based mor-

phometry were very similar between accelerated and unaccelerated acquisi-

tions [Ching et al., 2015]. Another study [Vemuri et al., 2015], which used a

different atrophy rate measure based on symmetric diffeomorphic image nor-

malisation and tensor based morphometry (TBM-Syn), did find some signifi-

cant differences, with accelerated scan pairs tending to show higher TBM-Syn

scores (or lower rates of atrophy) compared with unaccelerated pairs.

There are some limitations to this study. First, subjects always had the

unaccelerated scan prior to the accelerated scan. It could be that the finding

of more motion artefacts in the unaccelerated scans was due to the ordering

of the scans rather than the longer scan time. Secondly, the motion artefacts

were visually rated and the rater was not blinded to the type of scan per-
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formed, which may have introduced some bias. Thirdly, although the results

of this study indicate that atrophy rates measured using the BSI in acceler-

ated scans are not markedly different from those measured in unaccelerated

scans, it may be that different techniques for measuring brain atrophy rates are

more susceptible to the changes in scan characteristics introduced by parallel

imaging techniques. Notably, a small, but statistically significant difference in

hippocampal atrophy rates between accelerated and unaccelerated scan pairs

at 12 months was found. The signal-to-noise ratio (SNR) ratios in accelerated

scans are highest near the head coils, on the surface of the brain and get pro-

gressively worse, as the distance from the coils increases [Krueger et al., 2012].

The hippocampal BSI may therefore be more sensitive to the differences in

accelerated and unaccelerated scans due to their location deep in the brain. It

may be that with longer time intervals, these differences become more apparent

and further studies would be required to investigate this.

In summary, the shorter scan time of accelerated scans may reduce the

proportion of scans rendered unusable due to motion artefacts. Importantly,

the use of accelerated T1 structural MRI scans in place of unaccelerated scans

does not appear to have an impact on whole-brain, ventricular and hippocam-

pal volume and atrophy rate (BSI) measures. Therefore it may be advanta-

geous to use accelerated T1 MRI scans rather than unaccelerated scans for

assessing brain volumes and atrophy rates (BSI) in clinical trials. In addition,

the use of accelerated T1 instead of unaccelerated would permit more time to

be devoted to other imaging types without having a negative impact on the

derived metrics. Finally, differences in subject characteristics were observed in

those subjects whose scan pairs passed DRC QC from those whose scan pairs

failed DRC QC due to motion in both accelerated and unaccelerated scans.

Disregarding data from subjects who are unable to keep sufficiently still dur-

ing an MRI scan to produce quality data ultimately biases the characteristics

of the subject group in some way, possibly excluding those subjects who are

more severe or have a more vascular form of the disease. However, the use
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of accelerated T1 volumetric scans rather than unaccelerated T1 volumetric

scans means that higher quality longitudinal image can be obtained on a larger

proportion of the original study population.



Chapter 5

Investigation into hippocampal atrophy

in apolipoprotein (APOE) ε4 carriers

5.1 Introduction

Hippocampal atrophy rate has been proposed as an imaging biomarker for

Alzheimer’s disease (AD) progression [Barnes et al., 2004, van der Flier and

Scheltens, 2009]. However, it is essential to understand how factors might affect

hippocampal atrophy rates if this biomarker is to be used most effectively in

clinical trials.

Numerous publications have attempted to elucidate whether APOE mod-

ifies hippocampal atrophy rates [Chiang et al., 2011,Cohen et al., 2001,Crivello

et al., 2010,Hashimoto et al., 2009,Jack et al., 1998,Lo et al., 2011,Moffat et al.,

2000, Mori et al., 2002, Morra et al., 2009, Risacher et al., 2010, Schuff et al.,

2009,Spampinato et al., 2011,Van De Pol et al., 2007,Wang et al., 2009,Wolz

et al., 2010]. Although some studies reported elevated hippocampal atrophy

rates in ε4+ in AD, mild cognitive impairment (mild cognitive impairment

(MCI)) and control groups, it is possible that the greater hippocampal rates

observed could have been attributed to higher concurrent whole-brain atrophy

rates and therefore faster disease progression.

To better understand the effect of the APOE ε4 allele on the progression

of structural brain changes the aim of this study was to investigate whether
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different whole-brain and hippocampal atrophy rates were observed in ε4+

compared with ε4- in AD, MCI and controls. Further, to investigate if there

is evidence of higher hippocampal atrophy rates in ε4+ when adjusting for

concurrent whole-brain atrophy rates, which has not been examined previously.

5.2 Methods

5.2.1 Subjects

Subjects from Alzheimer’s disease neuroimaging initiative (ADNI)-1 who had

a baseline magnetic resonance imaging (MRI) scan and at least 1 follow-up

scan were included in this study. Details of the ADNI cohort are given in

3.1.1. Each subject underwent APOE genotyping at the screening visit. All

demographic information, diagnoses, neuropsychological test scores and APOE

genotype data were downloaded from the ADNI clinical data repository.

Since a proportion of MCI subjects will likely not progress to dementia

caused by AD, this group is likely to be quite heterogeneous with respect to

underlying pathology. As a result, the MCI subjects were dichotomised into

those who were observed to progress to a clinical diagnosis of AD within 36

months of baseline and maintained that diagnosis (MCI-P) and those who were

stable over the follow-up period (MCI-S). Subjects whose diagnosis changed

from MCI to AD and subsequently reverted to MCI during the study were

excluded as were subjects whose diagnosis changed from MCI to normal. ε2

carriers (i.e. ε2/ε2, ε2/ε3 and ε2/ε4 subjects) were also excluded from the

study as they may have lower hippocampal atrophy rates [Chiang et al., 2010].

There were a total of 840 ADNI-1 subjects available at the time of this study,

after exclusions this number reduced to 622 subjects. The number of subjects

excluded at each exclusion stage is summarised in Figure 5.1.

5.2.2 Image acquisition and analysis

The ADNI-1 MRI protocol used in this study is described in 3.2.1.1. Those

scans with significant motion artefacts were excluded from the current

study. Whole-brain and hippocampi were automatically delineated using the
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Figure 5.1: Subject selection process

Multi-Atlas Propagation and Segmentation (MAPS) technique from the pre-

processed 1.5-T T1-weighted MRI scans at all available time-points [Leung

et al., 2010a, Leung et al., 2011]. For details on the MAPS method used see

3.4.1 and 3.4.3.1. The change in the volumes of the whole-brain and hip-

pocampi between follow-up and baseline were calculated using the methods

described in chapter 3. Total intra-cranial volume (total intracranial volume

(TIV)) was estimated by summing the volumes of grey matter, white mat-

ter, and cerebrospinal fluid (cerebrospinal fluid (CSF)) segmentations using

SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8). Brain-to-TIV ratio

was calculated by dividing the extracted whole-brain volumes by the extracted
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TIVs.

5.2.3 Statistical Analysis

APOE ε4 carrier status was coded as 1 for carriers of 1 or 2 ε4 alleles and

0 for those who did not carry an ε4 allele. The effect of APOE ε4 carrier-

status on the volume of the sum of the left and right hippocampi at baseline

adjusting for the level of overall whole-brain atrophy was investigated. To do

this a linear regression was performed within each clinical group with bilateral

hippocampal volume as the dependent variable and APOE ε4 carrier-status,

age, gender, mini-mental state exam (MMSE) score, TIV and brain-to-TIV

ratio included as covariates. Age was included as a covariate as normal aging

is associated with brain volume loss, TIV to control for variation in head size

and gender to control for any differences in male-to-female ratio between the

different genotype groups. MMSE score and brain-to-TIV ratio were included

as covariates in order to assess the effect of the APOE ε4 carrier-status above

and beyond any global differences in cognitive impairment and whole-brain

atrophy.

To analyse the effect of the APOE ε4 carrier-status on the rate of atro-

phy of the hippocampi and whole-brain (as measured using the boundary shift

integral (BSI)), joint linear mixed models were used. These models allow the

random-effects dictating the trajectories of hippocampal and whole-brain at-

rophy to be correlated, thus permitting estimates of hippocampal atrophy rate

adjusted for true whole-brain atrophy rate. They allow for repeated measures

and accommodate missing values under the missing at random assumption.

The dependent variables were the ml loss of hippocampi as calculated by the

hippocampal-BSI and brain as calculated by the brain-BSI.

Interval (years) between baseline and follow-up scans was included as a

fixed-effect and interactions terms between APOE ε4 carrier-status and scan

interval were included to allow hippocampal atrophy rate to vary with APOE

ε4 carrier-status. Interactions of interval with age, MMSE score, brain-to-TIV

ratio, gender and TIV (all measured at baseline) were also included as fixed-
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effects in the model. Interval was also included as a random-effect, to allow

for between subject heterogeneity in atrophy rate. No constant terms (fixed or

random) were included, consistent with the assumption that true (as opposed

to measured) atrophy between two scans from the same time-point is zero.

A single joint model was fitted to both hippocampal and whole brain losses,

allowing distinct fixed and random effect parameters for the two processes.

The two trajectories were linked through a correlation between the two random

slopes. The difference in mean hippocampal rates between ε4+ and ε4- after

adjustment for concurrent brain atrophy rate was then estimated. This was

calculated as the difference in hippocampal rates (unadjusted for brain atrophy

rate), minus the difference attributable due to differences in brain rates (based

on the standard deviations of the random-slopes and their correlation in the

joint model). See the appendix for the expressions of the statistical models

used.

Since gender was included as a binary categorical variable in the analyses

the mean adjusted values for a 50/50 split of males: females is presented in

the Figures and Tables (adjusted for disease-group specific mean age, baseline

brain-to-total intracranial volume ratio, MMSE score and total intracranial

volume). The mean adjusted values for a 50/50 gender split were calculated

by multiplying the coefficients for males and females by 0.5 and adding them

together. Given that an interaction term between ε4 carrier-status and gender

was not included in the analyses, the differences in whole-brain and hippocam-

pal atrophy rates are the same for males and females.

5.3 Results

Table 1 shows demographics and imaging summary statistics for each clinical

group used in this study. As previously shown [Leung et al., 2010b], the AD

subjects had smaller mean hippocampal volumes at baseline than MCI subjects

whose hippocampi were in turn smaller than control subjects (Table 5.1); the

mean hippocampal volume for the AD subjects was 20% smaller than the
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Table 5.1: Baseline demographics and image summary statistics by clinical group.
Mean(SD) unless otherwise stated)

Controls
MCI
stable

MCI pro-
gressors

AD

No. Subjects (at 6m, at 12m, at
18m, at 24m, at 36m)

167 (165,
153, 0,
137, 115)

169 (157,
147, 125,
103, 66)

138 (133,
131, 116,
102, 69)

148 (143,
124, 1, 93,
1)

No. ε4 non-carriers (% total),
No. ε4 heterozygotes (% total),
No. ε4 homozygotes (% total)

118 (71%),
44 (26%),
5 (3%)

86 (51%),
68 (40%),
15 (9%)

42 (30%),
70 (51%),
26 (19%)

44 (30%),
70 (47%),
34 (23%)

% male 54% 66% 59% 55%

Age [years] 76.0 (5.1) 75.5 (7.2) 74.2 (6.9) 75.0 (7.6)

MMSE score 29.2 (0.9) 27.2 (1.8) 26.6 (1.7) 23.4 (1.9)

TIV [cm3] 1548 (143) 1558 (142) 1552 (156) 1537 (167)

Unadjusted mean bilateral
baseline hippocampal volume
[cm3]

5.2 (0.7) 4.6 (0.8) 4.2 (0.8) 3.9 (0.9)

controls with the MCI-P and MCI-S subjects having intermediate volumes.

5.3.1 Baseline cross-sectional results

Table 2 and Figure 5.2 show the results of the cross-sectional analysis of hip-

pocampal volumes. In AD, after adjustment for age, gender, MMSE score,

brain-to-TIV ratio and TIV, the mean baseline hippocampal volume of ε4+

was significantly smaller than that of ε4- (by 8%). There was no evidence of a

difference in mean adjusted baseline hippocampal volume between ε4 carriers

and non-carriers in MCI-P, MCI-S or controls.

5.3.2 Longitudinal Results

Table 3 and Figure 5.3, Figure 5.4 and Figure 5.5 show the results of the

longitudinal analyses of the differences in mean adjusted atrophy rates between

ε4+ and ε4- in all subject groups.
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Table 5.2: Adjusted mean baseline hippocampal volumes for ε4 non-carriers and
adjusted mean differences in total (left and right summed) baseline hip-
pocampal volumes between ε4 carriers and non-carriers in controls, stable
MCI, MCI progressors and AD (-ve sign means ε4+ < ε4-).

Controls
(ε4- =118,
ε4+ = 49)

MCI-S
(ε4- = 86,
ε4+ = 83)

MCI-P
(ε4- = 42,
ε4+ = 96)

AD
(ε4- = 44,

ε4+ = 104)

Mean adjusted* baseline
hippocampal volume**
in ε4- (cm3) [95% CI]

5.19
[5.08, 5.29]

4.58
[4.44, 4.72]

4.19
[4.00, 4.39]

4.15
[3.93, 4.37]

Difference in mean
adjusted* baseline
hippocampal volume**
between ε4+ and ε4-
(cm3) [95% CI]

-0.02
[-0.21, 0.16]

p=0.811

-0.06
[-0.26, 0.13]

p=0.508

-0.03
[-0.27, 0.20]

p=0.772

-0.33
[-0.59, -0.07]

p=0.015

* all values are for a 50/50 gender split and are adjusted for disease-group specific mean age,
baseline brain-to-total intracranial volume ratio, MMSE score, and total intracranial volume
** average of left and right

Figure 5.2: Effect of APOE ε4 on baseline hippocampal volumes.*
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Table 5.3: Adjusted mean difference in whole-brain and hippocampal atrophy rate (ml) [95% CI] for ε4 carriers compared with non-carriers
in controls, stable MCI, MCI progressors and AD (+ve means atrophy rate is higher in ε4+).

ε4 carrier status
Controls (ε4-
=118, ε4+ =49)

MCI stable (ε4-
= 86, ε4+ = 83)

MCI progressors
(ε4- =42, ε4+ =
96)

AD (ε4- =44,
ε4+ = 104)

Whole-
brain

Mean adjusted* atrophy rate
(ml/year)

ε4- 6.54 [5.88, 7.20] 7.91 [6.90, 8.93]
12.24 [10.47,
14.02]

14.11 [12.26,
15.96]

Difference in mean adjusted*
atrophy rate (ml/year)

ε4+ vs ε4-
0.05 [-1.15 1.25]
p=0.938

2.57 [1.14, 4.00]
p¡0.001

1.62 [-0.54, 3.77]
p=0.142

1.58 [-0.65, 3.81]
p=0.165

Hippocam-
pus**

Mean adjusted* atrophy rate
(ml/year)

ε4-
0.069 [0.058,
0.079]

0.102 [0.085,
0.120]

0.151 [0.125,
0.177]

0.173 [0.145,
0.200]

Difference in mean adjusted*
atrophy rate (ml/year)

ε4+ vs ε4-
0.001 [-0.018,
0.021] p=0.881

0.036 [0.011,
0.061] p=0.005

0.045 [0.014,
0.076] p=0.004

0.043 [0.010,
0.076] p=0.011

Difference in mean adjusted*
atrophy rate after adjustment for
concurrent whole-brain atrophy
rate (ml/year)

ε4+ vs ε4-
0.001 [-0.014,
0.016] p=0.897

0.013 [-0.009,
0.036] p=0.250

0.031 [0.006,
0.056] p=0.014

0.029 [0.002,
0.057] p=0.037

* all values are for a 50/50 gender split and are adjusted for disease-group specific mean age, baseline brain-to-total intracranial volume ratio, MMSE
score, and total intracranial volume ** average of left and right
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There was statistically significant evidence that in AD, MCI-P and MCI-S

subjects, after adjusting for age, gender, TIV, MMSE score and brain-to-TIV

ratio, the mean hippocampal atrophy rates were higher in ε4+ compared with

ε4- (see Figure 5.3). Mean adjusted brain atrophy rates were also higher in ε4+

compared with ε4-, but only significantly so in the MCI-S group (see Figure

5.4). After adjustment for concurrent whole-brain atrophy, the difference in

atrophy rate between ε4+ and ε4-was reduced by 25% in AD, by 40%

in MCI-P and by 75% in MCI-S (see Figure 5.5). Although the differences

in mean adjusted hippocampal atrophy rates were reduced when additionally

adjusting for concurrent whole-brain loss, differences between ε4+ and ε4-

remained statistically significant in AD and MCI-P. In the control group there

was no evidence that hippocampal or whole-brain atrophy rate differed between

ε4+ and ε4- (p>0.8 for both).

5.4 Discussion

This study examined the effect of APOE genotype on hippocampal volumes

and hippocampal atrophy rates in AD, MCI and in controls, with and without

adjusting for concurrent brain atrophy rates.

Cross-sectionally it was found that AD ε4+ had smaller ( 8%) mean hip-

pocampal volumes at baseline than ε4- after adjusting for age, TIV, gender,

MMSE score and brain-to-TIV ratio. There was no evidence that ε4+ had

smaller hippocampal volumes than non-carriers in MCI-P, MCI-S or controls.

Longitudinally, mean adjusted hippocampal atrophy rates were found to

be higher in ε4+ in AD, MCI-P and MCI-S but not in controls. There was also

evidence that mean adjusted hippocampal atrophy rates were higher in ε4+ in

AD and MCI-P after adjusting for concurrent whole-brain atrophy rates. The

difference in hippocampal atrophy rates in MCI-S was no longer significant

after adjustment for concurrent brain atrophy rate.

Taken together these results demonstrate that ε4 carriers with a clinical

diagnosis of AD or of progressive MCI have a different pattern of atrophy - dis-
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Figure 5.3: Effect of APOE ε4 on hippocampal atrophy rates.*

proportionately greater hippocampal loss - than non-carriers. Cross-sectional

studies have shown reduced hippocampal volumes in ε4+ compared with ε4-

in AD. However, without investigating longitudinal changes in hippocampal

volume, it is not possible to tell whether these findings could be perhaps ex-

plained by developmental differences. Indeed, there is evidence that there are

some developmental differences with one study reporting higher Mental De-

velopment Index scores in 24 month old babies who were ε4+ compared with

those who were ε4- [Wright et al., 2003]. There are few studies in healthy

young people comparing hippocampal volumes in ε4+ and ε4-. One study in

a large cohort of adolescents reported no significant difference in hippocampal

volumes between ε4+ and ε4- [Khan et al., 2013] whilst another smaller study
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Figure 5.4: Effect of APOE ε4 on whole-brain atrophy rates

Effect of APOE ε4 on whole-brain atrophy rates.*

in young adults reported significantly smaller hippocampi in ε4+ [O’Dwyer

et al., 2012]. However, the study in adolescents did not adjust for head size

whilst the study in young adults did, which makes comparisons between the

studies difficult. Further studies would be required to understand the devel-

opmental differences between ε4+ and ε4-.

In older adults previous longitudinal studies have reported higher hip-

pocampal rates in ε4+ compared with ε4-. However, higher rates of hip-

pocampal atrophy in ε4+ could be potentially explained by higher rates of

whole-brain atrophy (i.e. a more aggressive disease course with a more rapid

loss of whole-brain tissue). In order to disentangle the effects of the ε4 allele

on global and local hippocampal atrophy it is necessary to adjust hippocampal
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Figure 5.5: Difference in hippocampal atrophy rates*: ε4+ vs ε4-.

atrophy rates for global atrophy rates (whole-brain). In this study it was found

that hippocampal atrophy rates were still higher in ε4+ in AD and progres-

sive MCI following adjustment for whole-brain atrophy rates. This suggests

that higher hippocampal atrophy rates found in ε4+ are unlikely to be simply

due to a more aggressive disease with faster disease progression (as measured

by generalised brain tissue loss) alone. It may be that AD associated with

the ε4 allele is a different anatomical disease to AD without this allele, which

should be considered when assessing the effect of potentially disease modifying

treatments.

The finding of a lack of substantive differences between ε4+ and ε4- in
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hippocampal volume and atrophy rate in healthy control subjects is in agree-

ment with some previous findings [Jack et al., 1998, Lo et al., 2011, Schuff

et al., 2009,Wang et al., 2009]. Conversely, a number of previous studies have

reported increased hippocampal atrophy rates for ε4+ compared with ε4- con-

trols [Chiang et al., 2011,Cohen et al., 2001,Crivello et al., 2010,Moffat et al.,

2000, Morra et al., 2009, Risacher et al., 2010, Wolz et al., 2010, Jak et al.,

2007,Lu et al., 2011]. However, inconsistencies in findings between this study

and that of some of the others may be due to different recruitment strate-

gies: some studies had less stringent inclusion criteria than ADNI by including

some MCI subjects with controls [Moffat et al., 2000, Jak et al., 2007]; some

had a majority of subjects with a 1st degree relative with a history of AD [Co-

hen et al., 2001]. Differences in study design may also explain inconsistencies:

some studies measured atrophy over a longer period, thus increasing the power

with which to estimate differences in atrophy rates [Crivello et al., 2010,Moffat

et al., 2000, Lu et al., 2011]. In the largest longitudinal study to date, with

over 200 ε4 heterozygotes, no evidence of a difference in rates between het-

erozygotes and non-carriers was found [Crivello et al., 2010], consistent with

the findings of this study.

Interestingly, different studies using subsets of the controls in the ADNI

cohort have reported conflicting findings. Some reported significant evidence

of an association between APOE genotype and bilateral hippocampal atrophy

rate [Chiang et al., 2011, Risacher et al., 2010]. One study that analysed the

left and right sides separately reported a significantly higher rate of hippocam-

pal atrophy on the right side hippocampus in ε4+ compared with ε4- [Wolz

et al., 2010] another reported a significantly higher atrophy rate in the left

hippocampi in ε4+ compared to ε4- [Morra et al., 2009]. Others found no

such association [Lo et al., 2011,Schuff et al., 2009]. Differences between find-

ings of these studies and this study may be due to inclusion of ε2 carriers in

most studies since ε2 carriers have shown lower hippocampal atrophy rates

compared with non-carriers [Chiang et al., 2010].
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Reported results in MCI subjects are also mixed; a number of publications

have shown a significantly greater hippocampal atrophy rate in ε4+ compared

with ε4- [Chiang et al., 2011, Lo et al., 2011, Spampinato et al., 2011, Wolz

et al., 2010]. One study reported a significantly greater atrophy rate in the

left hippocampus [Morra et al., 2009]. Conversely other studies reported no

significant difference between ε4+ and ε4- in hippocampal atrophy rate in

MCI [Schuff et al., 2009,Wang et al., 2009].

In the majority of the studies using data from ADNI an association has

been found between ε4 carrier-status and higher hippocampal atrophy rates

in MCI much like this study. This is unsurprising in many ways since the

MCI group has a high proportion of subjects who will progress to clinical AD;

these subjects are more likely to be ε4+ and more likely to have increased hip-

pocampal atrophy when compared with the MCI subjects who remain stable

and may be less likely to have underlying AD pathology and less likely to be

an ε4 carrier.

Other studies have examined hippocampal atrophy rates in MCI-S and

MCI-P separately. One study, using voxel based morphometry (VBM) found

increased hippocampal atrophy rates in MCI-P ε4+ compared with ε4- but not

in MCI-S [Spampinato et al., 2011]. Another study, which used a number of

hippocampal measures, found significantly higher rates in ε4+ in all measures

in the MCI stable group [Risacher et al., 2010]. In MCI-P they only found

significantly increased loss of hippocampal grey matter (grey matter (GM))

density and GM volume in ε4+ but not hippocampal volume (as measured

by FreeSurfer). No evidence of a difference in hippocampal atrophy rates in

the MCI-S group after adjusting for concurrent whole-brain atrophy rate was

found.

The finding in this study in AD of smaller hippocampi in ε4+ at baseline

compared with ε4- is in keeping with a previous study which reported evi-

dence of a negative association between ε4 dose and normalised hippocampal

volume in AD subjects when adjusting for other covariates such as MMSE
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score [Hashimoto et al., 2009]. Further, the longitudinal findings in this study

in AD of increased hippocampal atrophy rates in ε4+ compared with ε4- are in

line with some previous studies [Lo et al., 2011,Mori et al., 2002,Schuff et al.,

2009]. Other studies report mixed or negative results for this comparison which

may depend on the image analysis methodology: one study reported increased

hippocampal GM atrophy in ε4+ but no significant increase in hippocampal

atrophy (as measured with FreeSurfer) or GM density changes [Risacher et al.,

2010]; Others found no significant difference in hippocampal loss rates between

ε4+ and ε4- in AD [Chiang et al., 2011,Morra et al., 2009].

A strength of this study was the relatively large number of subjects with

data from multiple time-points (up to 36 months from baseline). ADNI has the

advantage of being a prospective study with standardised follow-up times and

high quality MRI imaging. The MAPS hippocampal segmentation technique

was used which has been shown to have good accuracy when compared with

manual segmentations [Leung et al., 2010b]. In addition, the analysis method

has the advantage of a robust and direct longitudinal measure of hippocampal

and whole brain change, the BSI.

This study also has a number of limitations. Much like in the previous

chapter, the ADNI clinical diagnoses have not been pathologically confirmed

and it may be that some AD diagnoses will prove to be caused by non-AD

pathology at autopsy. Secondly, since the segmentation method used in this

study (hippocampal-MAPS) excludes the hippocampal tail, and it is possible

that atrophy rates differ across hippocampal sub-regions, early changes in con-

trol subjects positive for the ε4 allele could potentially have been missed and

including this region in all subject groups may change the results. Thirdly,

the longitudinal model assumes that the missing observations were missing at

random, an assumption which cannot be empirically verified. Finally, subjects

with an ε2 allele were excluded in order not to confound the results. It would

be of particular interest to investigate hippocampal atrophy rates in ε2/ε4

subjects as compared with other genotypes to evaluate whether ε2 or ε4 has



5.4. Discussion 85

greater influence on rates; however this genotype was rare in this dataset (only

3 controls, 2 MCI-S, 5 MCI-P and 2 ADs had the ε2/ε4 genotype).

In summary, the association of hippocampal volume and hippocampal at-

rophy rate with APOE genotype was investigated, while adjusting for age,

gender, cognitive impairment (MMSE score), baseline atrophy level (brain-to-

TIV ratio) and for head size in the case of cross-sectional analysis and longitu-

dinal analysis modelling atrophy in terms of absolute volume loss. There was

evidence that within the AD group ε4+ had lower mean adjusted hippocam-

pal volumes at baseline compared with ε4-. AD, MCI-P and MCI-S ε4+

had higher mean adjusted hippocampal atrophy rates compared with ε4- and

furthermore AD and MCI-P ε4 carriers still showed higher mean adjusted hip-

pocampal atrophy rates after adjustment for concurrent whole-brain atrophy

rates (which, to my knowledge, has not be previously shown). Higher atrophy

rates in ε4+ suggest that the patterns of atrophy are not merely manifesta-

tions of developmental differences according to genotype. These results thus

support the hypothesis that in AD the ε4 allele influences disease phenotype

with greater hippocampal involvement compared with non-carriers.



Chapter 6

Investigation into hippocampal shape

and volume in Posterior Cortical

Atrophy

6.1 Introduction

The hippocampus, known to play an important role in the formation of long-

term, consciously accessible memories [Mayes et al., 2007,Squire et al., 2007],

is one of the earliest structures to atrophy in typical Alzheimer’s disease

(tAD). Recently, hippocampal atrophy, visually or volumetrically assessed us-

ing magnetic resonance imaging, has been included in diagnostic criteria for

Alzheimer’s disease (AD) [Dubois et al., 2007, Hyman et al., 2012]. In addi-

tion, lower hippocampal volumes have been proposed as an enrichment strat-

egy to select individuals at risk of developing clinical AD for trials of putative

treatments [Hill et al., 2014]. Hippocampal atrophy has not been extensively

studied in posterior cortical atrophy (PCA); one previous study reported re-

duced grey matter volume in the right hippocampus (but not left) in PCA

as compared with controls using voxel-based morphometry [Whitwell et al.,

2007]. Evaluating the extent to which the hippocampus is affected in PCA

may contribute to efforts to improve our understanding of the factors driv-

ing phenotypic heterogeneity in AD. More practically, the value of biomarkers
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such as hippocampal atrophy may also differ in PCA compared with typical

Alzheimer’s disease, and have a bearing upon the question of whether to in-

clude individuals with PCA in clinical trials in which study outcome measures

have been selected for patients with more typical amnestic or global clinical

presentations [Crutch et al., 2012]. In this study, the aims were to: investigate

hippocampal volume differences between PCA, tAD and healthy controls; lo-

calise areas of hippocampal tissue loss; and investigate whether shape metrics

give any additional group separation information above volume alone.

6.2 Methods

6.2.1 Subjects

This study included data from 124 subjects who were identified retrospectively

from a clinical database at the Dementia Research Centre (PCA (n=47), typ-

ical AD (tAD; n=29), and control subjects (n=48)). The subjects included in

this chapter are described in detail in 3.1.4.

6.2.2 Image acquisition

The magnetic resonance imaging (MRI) acquisition protocols used in this chap-

ter are described in detail in 3.2.4.

6.2.3 Image processing

In-house segmentation software [Freeborough et al., 1997] was used to segment

whole-brains and hippocampi.

Whole-brain regions were segmented in native space using a semi-

automated technique [Freeborough et al., 1997] and were manually edited

where necessary. These whole brain regions were used to generate a volume,

and also to use in the subsequent registration step.

The MRI scans were then aligned to Montreal Neurological Institute

(MNI) space and resampled to produce isotropic voxels of 1 mm x 1 mm x 1

mm. The left and right hippocampi were manually segmented by experienced

image analysts. The hippocampi were manually delineated (by other image

emilymanning
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analysts) using every coronal slice referencing a standard neuroanatomical at-

las [Duvernoy, 2005] using a protocol that was largely similar to the EADC-

ADNI Harmonized Hippocampal Protocol (HarP) [Boccardi et al., 2015a]. The

protocol used in this study includes the head, body and full extent of the hip-

pocampal tail. Two key differences between our protocol and HarP were 1)

The white matter that separates the lateral ventricles from the grey matter

of the hippocampus at the level of the hippocampal tail was excluded and 2)

vertical digitations were excluded from the hippocampal head. In addition, a

minimum threshold of 70% of the mean whole brain intensity (using the whole

brain region transformed into MNI space) was used to determine the boundary

between the cerebrospinal fluid (CSF) and hippocampus for improved consis-

tency.

Estimated total intracranial volume (etotal intracranial volume (TIV))

was measured using Freesurfer [Buckner et al., 2004].

6.2.4 Hippocampal shape analysis

The hippocampal regions generated by manual segmentation were used to

analyse differences in shape between the subject groups. In this study spher-

ical harmonic (SPHARM) decomposition was used to represent hippocampal

shape. Arbitrarily shaped but simply connected objects can be decomposed

into a weighted series of SPHerical HARMonics (SPHARM) basis functions.

SPHARM shape decompositions have the advantage of encapsulating both

global and local shape features compactly. The SPHerical HARMonics - Point

Distribution Models (SPHARM-PDM) (Spherical Harmonics-Point Distribu-

tion Model) toolbox was used to calculate the coefficients of the SPHARM

basis functions of the hippocampi [Styner et al., 2006]. Any structure with

spherical topology can be represented by a weighted sum of spherical harmonic

(SPHARM) functions. For a perfect representation of the original shape an

infinite number of SPHARM basis functions would be required. In practice,

the number of SPHARM basis functions used to represent the original shape

is determined by a user-defined parameter “Lmax,” the maximum degree of
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the SPHARM expansion. The greater Lmax is, more basis functions will be

used in the representation and the finer the surface representation becomes.

Various values of Lmax were tested on a subset of hippocampi and visually

inspected. We chose to set Lmax=12 as we felt that this provided a sufficient

amount of detail.

The processing steps were as follows:

1. The hippocampi, that had been manually segmented in MNI space

at an isotropic resolution of 1 mm, were binarized and resampled to

an isotropic resolution of 0.5 mm. Interior holes were filled and a

minimal smoothing operation was applied to ensure spherical topol-

ogy (Fig 6.1a) [Styner et al., 2006]. As described by [Styner et al.,

2006], the smoothing was a two-step process: first a binary closing

operation was applied followed by anti-aliasing smoothing. The anti-

aliasing smoothing operation used in the SPHARM-PDM package (ITK

filter itk::AntiAliasBinaryImageFilter) smooths out jagged boundaries

but uses the original binary surface as a constraint ensuring minimal

loss in detail or structure (the smoothed surface is guaranteed to be

within ±3 voxels of the original surface) [Whitaker, 2000].

2. These pre-processed binary segmentations were then transformed into

raw surface meshes and spherical parametrisations for each of the hip-

pocampal meshes were computed (Fig 6.1b).

3. From the raw surface meshes and their spherical parametrisations,

SPHARM (spherical harmonic) descriptions were computed and corre-

sponding triangulated surface meshes were generated (Fig 6.1c). These

were all visually checked against the original manual segmentations to

ensure that the segmentations were well represented by their SPHARM

decompositions.

4. The triangulated surface meshes were then aligned to one (randomly

selected) individual’s hippocampal mesh using Procrustes alignment
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(translation and rotation only) and the triangulated surface meshes were

then regenerated such that the vertices corresponded between each in-

dividual’s mesh and the chosen reference mesh of the single subject

(Fig 6.1d). This was done for left and right sides separately.

5. A mean mesh was calculated from the aligned meshes (including the

individual reference mesh used for alignment in the previous step) and the

meshes were then aligned to the mean mesh using Procrustes alignment

and again the individual meshes were regenerated such that the vertices

corresponded between this mean mesh and each subject’s meshes. Again,

this was done for the left and right sides separately.

6. The meshes were loaded up side by side and the alignment was visually

checked for alignment failures.

7. Finally, the triangulated surfaces meshes were converted from Visual-

ization ToolKit (VTK) format to MNI object format and imported into

Matlab.

6.2.5 Statistics: demographics

Linear regression analysis was used to compare age (at the time of the scan)

between the diagnostic groups with age as the dependent variable and diagnos-

tic group (PCA, tAD or controls) as the independent variable. Fisher’s exact

test was used to compare the gender distributions between the groups. An

unpaired t-test was used to compare mini-mental state exam (MMSE) scores

between tAD and PCA subjects.

6.2.6 Statistics: brain and hippocampal volume analyses

Linear regression analysis was used to compare whole brain and hippocampal

volumes between the diagnostic groups. Brain or hippocampal volume was

the dependent variable, diagnostic group (PCA, tAD or controls) was the

independent variable and mean-centred age, gender and mean-centred head

size were adjusted for.
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Figure 6.1: Summary of shape analysis procedure: (a) Hippocampi are segmented,
holes filled and minimal smoothing applied, (b) raw surface meshes gen-
erated and spherical parametrisations are computed, (c) triangulated
surface meshes are computed from spherical parametrisations, (d) sur-
face meshes aligned (translation and rotation), (e) distance between
mean mesh and individual meshes at each vertice is calculated, (f) sta-
tistical comparisons performed.

6.2.7 Statistics: hippocampal shape analysis

The SurfStat toolbox for Matlab was used to perform statistical comparisons

on the hippocampal shapes [Worsley et al., 2009]. Two analyses on the hip-

pocampal shapes were performed. In the first analysis, the distance between

the surface of individual meshes and the mean mesh was the dependent vari-

able, disease group was the independent variable and mean-centred age, gender

and mean-centred head size were adjusted for. This was in order to visualise

where there were any shape or volume differences in PCA subjects as compared

to controls and typical AD. The second analysis was like the first analysis, but

mean-centred hippocampal volume was adjusted for, instead of mean-centred

head size. This was in order to visualise shape differences that were not due to

volume differences. Additional analyses were run adjusting for mean-centred

MMSE score and mean-centred disease duration as well as mean-centred age,

gender and mean-centred head size for the PCA v tAD comparisons in order
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to determine whether the differences observed in these comparisons were inde-

pendent of these measures of disease severity. All comparisons were corrected

for multiple comparisons (family wise error (FWE) correction). Maps showing

where there were significant differences in hippocampal surface morphology

were generated along with effect size maps.

6.2.8 Classification of subjects using hippocampal shape fea-

tures

To quantify the extent to which hippocampal shape differences described group

differences soft-margin support vector machine (SVM)s [Cortes and Vapnik,

1995] were used. The python package sci-kit learn, was used for this pur-

pose [Pedregosa et al., 2011]. To find out whether SPHARM coefficients were

better able to distinguish groups than hippocampal volume alone two SVMs

were used for each group-wise comparison, one with the SPHARM coefficients

as features and the other using just the left and right hippocampal volumes as

features. Each subject had a total of 1014 SPHARM coefficients (from both the

left and right hippocampi) since decomposition up to degree 12 was used. A

nested cross-validation approach was taken whereby the sample was split into

10 mutually exclusive stratified sets of approximately equal size. Figure 6.2

summarizes the nested cross-validation process used. The classifier was trained

and evaluated 10 times, once with each of the folds (data splits) as the test

set and the remaining data used for training. In order to determine the best

kernel (linear or radial basis function (RBF)) and kernel parameters, a grid

search and stratified 10-fold cross-validation was used (experimental evidence

suggests 10-fold cross-validation is the best method for model selection [Ko-

havi, 1995] on the training data each time. This sample splitting for kernel

parameter choice was performed in order to avoid over-fitting the data. Once

the kernel and hyperparameters were tuned, the resulting SVM was fitted to

the training data. Finally, the SVM was used to predict the labels of the test

set on which the SVM was not trained. This process was repeated for each

of the 10 folds. The same folds for the SVM with SPHARM coefficients were
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used as features and for the SVM with hippocampal volumes in order to be

able to make comparisons. The accuracy (proportion of correctly classified

subjects), sensitivity (proportion of true positives), and specificity (proportion

of true negatives) were then calculated. The area under the receiver operator

curve (ROC) curve (AUC) and f-score statistics are reported since they both

have advantages over accuracy when assessing the performance of a classifier.

The area under the curve (AUC) takes into account the decision value of the

classifier which accuracy ignores. The f-score is appropriate for imbalanced

classes (where one class is under-represented compared to another) and so is

a better measure of the performance of a classifier than accuracy. Accuracy,

sensitivity, and specificity are the same whether computing across all folds

or whether taking the average of each of the folds. The AUC and f-measure

are different however when computing across all folds or when averaging over

the folds. Previous work suggests that taking the mean AUC of each of the

cross-validation folds and computing the f-score across all folds (as opposed to

averaging) are less biased [Forman and Scholz, 2010]. Therefore, mean AUC

and f-score over all folds are reported in this study. Finally, in order to de-

termine whether the SVM using the SPHARM coefficients was significantly

better or worse at classification than the SVM using hippocampal volumes as

features, the McNemar test [McNemar, 1947] was used since it has been shown

to have a low type-1 error [Dietterich, 1998]

6.3 Results

6.3.1 Participant demographics

A total of 124 subjects were included in this study. See table 6.1 for a sum-

mary of participant demographics. The mean age of tAD subjects was higher

by approximately 5 years than in controls and PCA subjects (p<0.02 in both

comparisons). The mean MMSE scores was lower in tAD subjects than PCA

subjects (p=0.01). There was no difference in disease duration or gender dis-

tributions between the diagnostic groups (p>0.4, both tests).
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Figure 6.2: Nested 10-fold cross-validation procedure used for model tuning and
evaluation.

Table 6.1: Participant Demographics

Controls (n=48) PCA (n=47) tAD (n=29) P-value

Age (years) 63.6 (9.7) 63.0 (7.0) 68.3 (8.4) 0.02 a

% Male 31% 40% 45% 0.5 b

MMSE score/30 N/A 21.2 (4.6) 18.3 (4.5) 0.01 c

Disease duration (years) N/A 4.9 (2.7) 5.3 (3.1) 0.6 c

a Regression analysis. b Fisher’s Exact Test. c Unpaired t-test.
Mean(SD) unless otherwise stated.
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6.3.2 Brain and hippocampal volume analysis

Both PCA subjects and tAD subjects had significantly smaller mean adjusted

brain volumes than the controls (p<0.001) but there was no significant differ-

ence in mean adjusted brain volume between the PCA subjects and the tADs

(p=0.3). PCA subjects were found to have significantly smaller mean adjusted

hippocampal volumes on both the right and left sides as compared to controls

(p ≤ 0.002, both comparisons) (see table 6.2). They were however significantly

larger than those seen in tAD subjects (p ≤ 0.001, both comparisons).

6.3.3 Hippocampal shape analysis

6.3.3.1 Comparison of PCA and controls

Significant differences in surface morphology were seen between PCA subjects

and controls when adjusting for age, gender and head size: these were largely

confined to the posterior hippocampus with inward deformations in the hip-

pocampal tail region on both the right and left sides of the PCA subjects

compared to controls (see the blue regions in Figure 1a). Significant inward

deformations remained in the hippocampal tail regions of PCA subjects when

adjusting for hippocampal volume rather than head size effectively identify-

Table 6.2: Brain and hippocampal volumes (adjusted for age, gender and head-size)

Controls (n=48) PCA (n=47) tAD (n=29)

Mean adjusted
brain volume
(cm3)

1131.7 [1111.5,
1151.9]

1005.8 [9851.0,
1026.5]

1021.9 [9957.5,
1048.1]

Mean adjusted
left hippocampal
volume (cm3)

3.2 [3.1, 3.3] 3.0 [2.8, 3.1] 2.5 [2.3, 2.6]

Mean adjusted
right
hippocampal
volume (cm3)

3.3 [3.2, 3.4] 3.0 [2.9, 3.2] 2.6 [2.4, 2.7]

a p≤0.001 as compared with controls. b p≤0.001 as compared with PCA.
Mean [Confidence Interval]
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ing areas of focal loss or deformation over and above the global hippocampal

volume loss (see blue regions in Figure 2a).

6.3.3.2 Comparison of PCA and tAD

Outward deformations in the mean right and left hippocampal surfaces of PCA

subjects were seen compared with tAD in large areas across the whole of the

hippocampus (see yellow/red regions in Figure 1c). There were only very small

regions where the mean surface of the tAD subjects had a significant outward

deformation compared to PCA (see blue regions in Figure 1c). When adjusting

for hippocampal volume rather than TIV no significant differences remained on

the right side but significant differences in hippocampal shape were still seen in

the left hippocampus in the left superior body with PCA outwardly deformed

compared to tAD (see Figure 2c). The hippocampal shape differences observed

between PCA and tAD subjects appear to be independent of disease severity

as adjusting for MMSE score and disease duration made very little difference

to the deformation patterns observed (see Figure 3).

6.3.3.3 Comparison of tAD and controls

In tAD, large areas of the mean left and right hippocampal surfaces were

inwardly deformed as compared to controls when adjusting for age, gender and

head size (see Figure 1b). The mean tAD hippocampal surface was inwardly

deformed with respect to controls in most areas (see the blue regions in Figure

1b) with some small regions where there was an outward deformation of the

mean surface in tAD compared to controls (see the red/yellow regions in Figure

1b). When adjusted for hippocampal volume however, only a small region of

significant difference survived in the superior medial left hippocampal tail (see

Figure 2b) and there were no significant differences on the right side.

6.4 Disease classification using SPHARM coefficients

The accuracies, sensitivities, specificities, mean AUCs, f-scores for each of

the SVMs are shown in table 6.3. In the PCA-control comparison, by us-

ing SPHARM coefficients only a classification accuracy of 77% was achieved
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Figure 6.3: Hippocampal shape difference after adjusting for age, gender, and TIV
in (a) PCA vs. controls, (b) tAD vs. Controls, (c) PCA vs. tAD. The
colour scale for statistical difference represents the FWE-error corrected
P-values at a threshold of P=0.05. Blue indicates areas where there was
an inward deformation in (a) PCA as compared to tAD, (b) tAD as
compared to controls, (c) PCA as compared to tAD whereas red/yellow
indicates areas where there was an outward deformation. A=anterior,
P=Posterior.



6.4. Disease classification using SPHARM coefficients 98

Figure 6.4: Hippocampal shape difference after adjusting for age, gender, and hip-
pocampal volume in (a) PCA vs. controls, (b) tAD vs. Controls, (c)
PCA vs. tAD. The colour scale for statistical difference represents the
FWE-error corrected P-values at a threshold of P=0.05. Blue indicates
areas where there was an inward deformation in (a) PCA as compared
to tAD, (b) tAD as compared to controls, (c) PCA as compared to tAD
whereas red/yellow indicates areas where there was an outward defor-
mation. A=anterior, P=Posterior.
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Figure 6.5: Hippocampal shape difference in PCA vs. tAD after adjusting for (a)
age, gender, MMSE score, disease duration, and head size and (b) age,
gender, MMSE score, disease duration, and hippocampal volume. The
colour scale for statistical difference represents the FWE-error corrected
P-values at a threshold of P=0.05. Blue indicates areas where there was
an inward deformation in PCA as compared to tAD whereas red/yellow
indicates areas where there was an outward deformation. A=anterior,
P=Posterior.
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compared to 56% when using hippocampal volume information alone. McNe-

mar’s test showed that the SVM classifier using SPHARM coefficients signif-

icantly outperformed the classifier using hippocampal volumes (p=0.002). In

the Controls-tAD and PCA-tAD comparisons hippocampal volume alone was

able to classify subjects as accurately as the SPHARM coefficients.

Table 6.3: Comparison of performance of SVM classifer using SPHARM coefficients
vs SVM classifier using left and right hippocampal volumes as features)

SVM features Sensitivity Specificity
Accu-
racy

Mean
AUC

f-
score

P-value
(McNe-
mar’s
test)

PCA vs.
Controls

SPHARM
coefficients
only

0.74 0.8 0.77 0.84 0.76 0.002

Hippocampal
volumes only

0.59 0.55 0.56 0.57 0.56

PCA vs.
tAD

SPHARM
coefficients
only

0.68 0.82 0.77 0.82 0.69 0.819

Hippocampal
volumes only

0.67 0.81 0.76 0.83 0.67

Controls
vs. tAD

SPHARM
coefficients
only

0.77 0.91 0.86 0.93 0.80 0.763

Hippocampal
volumes only

0.77 0.94 0.87 0.91 0.81

6.5 Discussion

PCA subjects had significantly reduced (8% lower) mean adjusted hippocam-

pal volumes (adjusted for age, gender and head size) compared to controls; It

is interesting to note that the PCA subjects had relatively preserved episodic

memory function despite this volume loss. The shape analyses pointed to the

differences in surface morphology in PCA being relatively localised posteriorly

with inward deformations seen in the hippocampal tail regions in comparison

with controls.

The loss of hippocampal volume in PCA was much lower than that seen in

typical amnestic AD (25% smaller hippocampi than controls). PCA subjects

had significantly larger hippocampal volumes than tAD subjects and that was
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reflected in the shape differences reported. When adjusting for age, gender and

head size, large areas of outward deformations, likely representing regions of

relatively preserved hippocampal tissue, were found in PCA subjects compared

to tAD; these were mostly seen in the superior hippocampal body with some

more minor differences in the tail and the head portion of the subiculum.

When hippocampal volume was adjusted for rather than head size, some

significant shape differences were still seen in PCA subjects as compared to

tAD (PCA>tAD) over a small area in the left hippocampus. Given that the

majority of difference was removed by adjusting for hippocampal volume it

is unsurprising that SPHARM coefficients did not aid in the classification of

PCA subjects from tAD.

To my knowledge, this is the first study to report shape differences in

the hippocampi of PCA subjects. These results suggest that although the

hippocampi in PCA subjects are relatively preserved as compared to tAD,

there is some tissue loss occurring in the hippocampi of PCA subjects compared

with controls. The tissue loss appears to be most significant in the superior

lateral hippocampal tail region, fitting with the posterior pattern (or gradient)

of atrophy seen in these subjects. In addition, when adjusting for hippocampal

volume, significant differences in surface morphology were still seen in PCA

subjects. Consistent with this, the hippocampal SPHARM coefficients were

better able to classify PCA subjects from controls than volume alone. Taken

together these data indicate that there is a distortion of the shape of the

hippocampi in PCA, which could be due to focal atrophy in the hippocampus

as well as the tissue to which it is connected. Although the exact functional

organisation of the hippocampus remains unclear, it has been suggested that

the posterior hippocampus supports detailed, context-rich spatial [Hirshhorn

et al., 2012] and autobiographical [Addis et al., 2004] memories, whilst the

anterior hippocampus supports more ‘gist’-like memories [Strange et al., 2014].

To date there has been no detailed characterization of memory function in

PCA, but the present findings of a posterior-anterior gradient of hippocampal
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volume loss and shape change may predict qualitative as well as quantitative

distinctions between memory processes in PCA and tAD.

As expected, significantly reduced hippocampal volumes were found in the

tAD subjects as compared to controls: widespread significant inward deforma-

tions were seen across large areas of both the right and left hippocampi in tAD.

Although it is difficult to precisely locate these inward deformations with re-

spect to hippocampal subfields, in tAD these seem to approximate to the CA1

subfield as well as the anterior and posterior subiculum. A number of previ-

ous studies have compared hippocampal shapes in tAD and controls [Gerardin

et al., 2009, Li et al., 2007, Lindberg et al., 2012, Shen et al., 2012, Thompson

et al., 2004]. These findings are in keeping with two previous studies that found

inward deformations in tAD subjects across large areas of the both the left and

right hippocampi [Gerardin et al., 2009, Shen et al., 2012]. One study found

large areas of inward deformations on the left hippocampus, particularly in the

hippocampal head as well as the superior tail region but found no differences

in the right hippocampus [Li et al., 2007]; another study reported localised in-

wards deformations in the hippocampal head in tAD subjects, particularly on

the left side [Thompson et al., 2004] whilst another study found some inward

deformations in the body of the left hippocampus and a small area of inward

deformation on the medial part of the right hippocampal head [Lindberg et al.,

2012]. Differences in the numbers of subjects, disease severities, shape analysis

methods and hippocampal segmentation methods used may account for some

of the different findings in these studies. When adjusting for hippocampal vol-

ume, no significant differences in shape were found on the right hippocampus

and only a small region in the superior medial portion of the hippocampal

tail on the left hippocampus. One other study [Shen et al., 2012] also inves-

tigated shape differences where the effect of volume was removed and, as in

this study, found significant shape differences in the posterior hippocampus.

The fact that most of the differences in shape were removed when adjusting

for hippocampal volume suggests that in tAD there was generalized, diffuse
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tissue loss across the whole of the hippocampus. Indeed, in this comparison,

the SPHARM coefficients did not aid in the classification of tAD subjects from

controls.

The fact that shape metrics helped separate PCA patients from controls

suggests that they may be useful in addition to volume and could be explored

in other diseases where diagnosis is difficult and subtle differences in atrophy

patterns exist. In this study, shape metrics were no better than hippocampal

volumes at distinguishing tAD subjects from controls. However, it is possi-

ble that the hippocampus does not atrophy uniformly during the tAD disease

course. Indeed, previous studies have shown that the CA1 subfield is dis-

proportionately affected in early AD [Chételat et al., 2008, Csernansky et al.,

2005, La Joie et al., 2013, Mueller et al., 2010, Pluta et al., 2012, Wang et al.,

2006] and that hippocampal subfields or hippocampal shape may be more

sensitive at distinguishing mild cognitive impairment (MCI) or very mild AD

subjects from controls than whole-hippocampal volume [Csernansky et al.,

2005, La Joie et al., 2013, Mueller et al., 2010, Pluta et al., 2012]. Therefore

SPHARM coefficients may prove to be more useful at distinguishing controls

from tAD an earlier disease stage.

This study has a number of strengths. First the hippocampi were seg-

mented manually, including the full extent of the structure from tail to head.

Secondly, although PCA is an atypical variant of AD, there were a reasonable

number of cases to include in these analyses. The mean MMSE score was lower

in the tAD subjects than in the PCA subjects, this reflects the weighting of the

questions towards memory and orientation and the relative lack of questions

relating the visual deficits experienced by PCA subjects. Brain volumes in

the PCA and tAD subjects were not significantly different however suggesting

similar levels of overall brain atrophy between the groups.

There were several limitations to this study that warrant discussion. First,

the SPHARM-PDM pipeline requires that the shapes being analysed have

spherical topology. In the case of one of the hippocampi from one of the sub-
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jects with tAD, the SPHARM-PDM processing failed, perhaps because this

hippocampus did not have spherical topology (this subject was therefore ex-

cluded from all analyses and from the demographics table). It could be that the

failure rate is higher when comparing subjects with particularly pronounced

atrophy or by use of automated techniques where borders of the hippocam-

pal masks may not adhere to the spherical topological description. Secondly,

some smoothing was applied to the segmented regions before the spherical pa-

rameterization. Therefore, it may be that some of the differences that do in

fact exist are not found using this method since they have been attenuated.

Thirdly, pathological confirmation of AD was only available in 5 of the PCA

subjects and it may be that some of the remaining PCA subjects actually

have a different underlying disease [Crutch et al., 2012]. Fourthly, the type of

registration is an important consideration in interpreting the results regarding

localisation of tissue loss in any comparison. Other registration methods may

align hippocampi differently and therefore localise deformations in other ar-

eas. Fifthly, the MRI scans used in this study were from a retrospective cohort

with some variety in the scan parameters and in-plane resolutions; ideally, all

subjects would have identical imaging parameters. Although it is unlikely that

this would materially affect the results presented here, it cannot be excluded

as a possibility and further studies using consistant imaging parameters would

be required to confirm these findings. Sixthly, the images used were of limited

resolution compared with the high-resolution temporal lobe imaging which is

achievable [Winterburn et al., 2013]. Given that the hippocampi are relatively

small structures it may be that using higher resolution scans would enable the

detection of more subtle shape differences between groups. Finally, caution

is required when interpreting the results from shape analysis studies - a re-

cent study indicated that the SPHARM-PDM method of shape analysis might

overestimate regions of significant difference [Gao et al., 2014]. Stringent sta-

tistical methods (family-wise error correction) were used in order to minimise

false detection of differences where there were in fact none.
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In conclusion, the hippocampal region is affected in PCA at a relatively

early stage of the disease when memory is relatively preserved and produces

posterior shape changes. Reduced hippocampal volumes were found in PCA

subjects as compared to controls - intermediate between controls and tAD.

Whereas the macroscopic differences between tAD and control subjects were

governed by volume rather than shape, as were the differences between PCA

and tAD, most of the differences between PCA and controls are governed

by shape differences (PCA smaller in the tail). This was further evidenced

by shape (SPHARM) coefficients that were better able to distinguish healthy

controls from PCA subjects than hippocampal volume alone suggesting that

shape metrics are important descriptors of hippocampal differences in PCA as

compared with controls.



Chapter 7

Hippocampal template library

comparison

7.1 Introduction

The automated hippocampal segmentation methods used to segment the hip-

pocampi in chapters 4 and 5 both utilized the same template library of man-

ually segmented hippocampi, described in detail in [Barnes et al., 2008]. The

use of this template library in combination with the Similarity and Truth Es-

timation for Propagated Segmentations (STEPS) algorithm has been shown

to have a good mean segmentation accuracy as compared to gold standard

manually-segmented regions [Cardoso et al., 2015] with a mean dice score of

0.925 achieved using leave-one-out cross-validation. Details of the STEPS al-

gorithm are given in chapter 3.

One limitation of this template library is that the protocol used for the

manual hippocampal segmentations did not include the hippocampal tail re-

gion. The quality of segmentations in the tail region varies significantly when

using this template library for automated segmentations (see figure 7.1). There

is no biological plausibility for the volumes on these slices so this variation can

only add noise to the volume measurements. There is evidence to suggest

that at least some parts of the hippocampal tail [Frankó and Joly, 2013,Tang

et al., 2015] are affected by atrophy in typical Alzheimer’s disease and that
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it is particularly affected in atypical forms of Alzheimer’s disease (AD) such

as posterior cortical atrophy (PCA) (see chapter 6). Using a template library

that includes the full extent of the hippocampal tail in the manual segmenta-

tion protocol may improve the sensitivity of automated hippocampal volumes

as a marker of disease. In addition, a recent international initiative, the hip-

pocampal harmonization project, aimed to define a standard protocol for the

manual segmentation of the hippocampus. Expert collaborators from around

the world were involved in this project and agreed that the hippocampal tail

should be included in the standard segmentation protocol [Boccardi et al.,

2015b].

The aim of this study was therefore to investigate whether disease group

classification (AD vs controls and mild cognitive impairment (MCI) vs con-

trols) could be improved with the use of an alternative template library which

included the full extent of the hippocampal tail.
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Figure 7.1: Example of the first three coronal slices of an automated hippocampal segmentation generated from the template library
without tails illustrating the arbitrary nature of the starting slices.
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7.2 Methods

7.2.1 Subjects

7.2.1.1 Template library 1

Template library 1 consisted of the manual segmentations described in [Barnes

et al., 2008] and used in [Cardoso et al., 2015], those which did not include the

full extent of the hippocampal tail. Manual segmentations of both right and

left hippocampi (on T1-weighted magnetic resonance imaging (MRI) scans) for

a total of 55 subjects were included in this template library: 33 with clinically

diagnosed sporadic AD and 19 age matched healthy controls. See table 7.1

for a breakdown of the ages and genders of subjects used in template library

1. All manual segmentations were performed on scans registered to standard

space.

Table 7.1: Demographics of subjects included in template library 1

Controls (n = 19) AD (n = 36)

Mean (SD) age in years 69 (7) 70 (7)
Sex (M:F) 9:10 14:22

All subjects were scanned on a 1.5T Signa MRI scanner (General Elec-

tric, Milwaukee) using an inversion recovery sequence. All the scans used in

template library 1 had a voxel size of 0.9mm3.

7.2.1.2 Template library 2

Template library 2 consisted of manual segmentations which included the full

extent of the hippocampal tail. Manual segmentations of the hippocampi (on

T1-weighted MRI scans) for a total of 128 subjects were included in this tem-

plate library: 30 with sporadic typical amnestic AD, 47 with PCA, 1 with fa-

milial AD, 2 with subjective memory complaints (worried well) and 48 healthy

controls. Details of this cohort of subjects are given in 3.1.4. All manual

segmentations were performed on scans registered to standard space.

The controls and the subjects with amnestic AD and PCA were included

in the study in chapter 6. All subjects included in this template library were
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Table 7.2: Demographics of subjects included in template library 2

Controls
(n=48)

Typical
AD
(n=30)

PCA
(n=47)

Worried
Well
(n=2)

Familial
AD
(n=1)

Mean (SD)
age in
years

64 (10) 69 (9) 63 (7) 63 (N/A) 77 (N/A)

Sex (M:F) 15:33 13:17 19:28 2:0 1:0

N/A not applicable

scanned on a 1.5T Signa MRI scanner (General Electric, Milwaukee). There

was a range of voxel sizes for the scans used in template library 2 (see chapter

3), but the majority had a voxel size of 0.9mm3.

7.2.1.3 Test data

To test for differences in the ability of the two template libraries to dis-

criminate between controls and subjects with AD and MCI, baseline ac-

celerated T1-weighted scans from a total of 834 subjects from Alzheimer’s

disease neuroimaging initiative (ADNI)-2/GO were used (192 controls, 320

early mild cognitive impairment (EMCI), 172 late mild cognitive impairment

(LMCI) and 150 AD subjects). Accelerated scans were chosen over the non-

accelerated scans due to the finding, reported in chapter 4, that acceler-

ated scans suffer less from motion artefacts. All subjects in this study were

scanned on a 3T scanner (details of MRI protocols used can be found here:

http://adni.loni.usc.edu/methods/documents/mri-protocols/). See chapter 3

for details on the ADNI-2/GO cohort.

7.2.2 Hippocampal segmentation

7.2.2.1 Manual protocol used for template library 1

The segmentation protocol used for template library 1 is described in detail

in [Barnes et al., 2008]. Importantly the posterior limit of the hippocampus in

this protocol was defined as the coronal slice where the longest length of the
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crus of the fornix was visible. All scans and their flipped mirror images (in the

coronal plane such that the right side appeared on the left) were included as

templates along with their associated segmentations, resulting in a template

library of 110 hippocampal segmentations.

7.2.2.2 Manual protocol used for template library 2

A modification to the protocol used for template library 1 was made such

that the full extent of the hippocampal tail was included in the segmentation.

Briefly, the segmentation was continued on coronal slices posterior to coronal

slice where the longest length of the crus of the fornix was visible, follow-

ing the boundary between the grey and white matter inferiorly. Any visible

white matter of the fornix was excluded and care was taken not to include

the thalamus when it came into view. The most posterior slice was where

the hippocampal tail was still clearly visible as an ovoid shaped grey matter

mass. Segmentations were then checked and edited using the sagittal view.

All scans and their flipped mirror images (in the coronal plane such that the

right side appeared on the left) were included as templates along with their

associated segmentations, resulting in a template library of 256 hippocampal

segmentations.

An example of a hippocampus manually segmented using protocol 1 and

protocol 2 is shown in figure 7.2.

7.2.2.3 Automatic segmentation

The STEPS algorithm was used to segment the hippocampi of the ADNI-2/GO

subjects using each template library. This resulted in a segmentation for each

hippocampus using template library 1 and using template library 2.

7.2.3 Validation of template library 2

In order to test the reproducibility of template library 2, a leave-one-out cross

validation was performed. The scans (original and flipped) and corresponding

segmentations for each subject were removed from the template library in

turn, and the remaining scans used to automatically segment the hippocampi
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(a) (b)

Figure 7.2: Sagittal cross-section through a hippocampus segmented manually using
(a) the protocol used in template library 1 and (b) the protocol used in
template library 2.

for that individual.

7.2.4 Statistical analyses

To compare the classification performance when using template library 2 vs

template library 1, logistic regression and receiver operator curve (ROC) curve

analyses was used.

In the first model the automatically segmented left and right hippocampal

volumes generated from the template library 1 (without tails) normalized for

head-size, (by dividing hippocampal volume by head-size), were included as

covariates. In the second model, the automatically segmented left and right

hippocampal volumes generated from the template library two (normalized for

head-size), were included as covariates.
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7.3 Results

7.3.1 Leave-one-out cross validation of template library 2

When using a leave-one-out cross validation approach, a mean dice score of

0.918 (min: 0.838, max: 0.945) was achieved.

7.3.2 Disease group classification comparison

Figure 7.3 shows the ROC curves for the comparison of template libraries 1

and 2 for disease group classification. The area under the ROC curve was

greater when using hippocampal volumes from template library 2 compared

with template library 1 for AD vs controls (p=0.02) and LMCI vs controls

(p=0.001). There was no evidence of a difference in the area under the ROC

curve when comparing the two template libraries for classification of EMCI vs

controls.
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Figure 7.3: Receiver operator curves for disease group classification using template
library 1 and template library 2. ROC area [95% confidence interval]
shown in legend. AD: Alzheimer’s disease, LMCI: late mild cognitive
impairment, EMCI: early mild cognitive impairment.



7.4. Discussion 115

7.4 Discussion

Cross-validation showed that template library 2 (which included the full extent

of the hippocampal tail) had a good mean segmentation accuracy when com-

paring automated to manually-segmented regions. The mean dice score was

0.918 for template library 2, marginally lower than that achieved with tem-

plate library 1 (0.925), but these are arguably not 100% comparable as each

were tested within their respective template libraries. Despite this, the use of

template library 2 had a higher classification accuracy of AD subjects from

controls and LMCI subjects from controls compared with the use of template

library 1. There was no difference between the two in terms of discriminative

ability in EMCI from controls.

Reasons for the improved ability of template library 2 to distinguish be-

tween AD and controls and LMCI and controls could be due to a number of

reasons. Firstly, the inclusion of the hippocampal tail in template library 2

may have reduced the noise of resultant segmentations. Secondly, the wider

variety of morphologies used in template library 2 (due to the increased num-

ber of subjects and a wider variety of disease phenotypes) could have meant

that for each new hippocampus to segmented, better matches could be made.

Finally, differences in scan quality between the two template libraries could

in part explain the improved results. Should scan quality be improved or a

better match to the ADNI-GO/2 scans, then this might have an impact on the

quality of the resultant segmentations..

This assessment has a number of limitations. The main limitation is that

conclusions as to whether the inclusion of the tail or the quality or morphologies

represented in the second template library, cannot be ascertained. In order to

establish this, a comparison using the same set of template scans with two

different sets of segmentations (with and without the hippocampal tail) would

be required.

However, it can be concluded that a significant improvement in disease

group classification was achieved by using template library 2 over template
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library 1.

In addition to improving disease group classification, the segmentations

used in template library 2 more closely match the segmentation protocol de-

scribed by the recent hippocampal harmonization project [Boccardi et al.,

2015b], where experts from around the globe came to a consensus on what

should be included in hippocampal segmentations. The findings in this chapter

suggest that template library 2 may be more appropriate for use in Alzheimer’s

disease studies than template library 1.
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Chapter 8

Manual and automated thalamic

segmentation

8.1 Introduction

This thesis has so far focussed on the hippocampus and hippocampal atrophy,

a widely-established marker of Alzheimer’s disease.

The hippocampus, part of the limbic system, is important for the forma-

tion of long-term memories [Scoville and Milner, 1957]. Other structures in the

limbic system, such as the anterior thalamic nucleus, are also known to play

an important role in episodic memory [Child and Benarroch, 2013] and there

is evidence to suggest that the anterior thalamic nucleus is also affected by

Alzheimer’s disease pathology; Braak and Braak found that at post-mortem,

whilst most of the thalamic nuclei were relatively mildy affected by Alzheimer’s

disease pathology, the limbic nuclei contained numerous neurofibrillary tangles

and neurophil threads with the antero-dorsal nucleus severely affected [Braak

and Braak, 1991]. Previous imaging studies have shown reduced thalamic

volumes in subjects with Alzheimer’s disease [De Jong et al., 2008].

The thalamus is an important hub in the brain, relaying information from

different subcortical areas to the cortex. It is an ovoid structure in the dien-

cephalon, mostly consisting of grey matter. The internal medullary lamina, a

Y-shaped sheet of white matter, separates the thalamus into three main parts:
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the anterior nuclei, the medial nuclei and the lateral nuclei. The superior sur-

face of the thalamus is covered by a layer of white matter called the stratum

zonale and the lateral surface by the external medullary lamina.

As discussed in chapter 2, thalamic segmentation from T1-weighted im-

ages is challenging due to the typically poor image contrast between the tha-

lamus and some of its surrounding structures. Diffusion tensor imaging allows

for the visualisation of white matter tracts, and may provide complimentary

structural information with regards to thalamic boundaries.

The aims of this study were: 1) to investigate whether manual segmen-

tation reproducibility could be improved by using both coloured fractional

anisotropy maps and T1-weighted magnetic resonance imaging (MRI) scans

together as opposed to T1-weighted MRI scans alone, 2) to generate a tem-

plate library of manually-segmented thalami based on the segmentation proto-

col developed, for use in automated segmentation pipelines and 3) to test the

ability of an automated pipeline [Cardoso et al., 2015] to accurately segment

thalami using the generated manual template library.
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8.2 Methods

8.2.1 Subjects

In order to generate a template library with a variety of brain morphologies a

range of subjects with a mixture of pathologies was selected. For this purpose,

data from the AVID and young onset Alzheimer’s disease (YOAD) studies

described in chapter 3 were used. A total of 73 subjects were included: 57

subjects from the YOAD cohort and 16 from the AVID cohort. Demographic

information by cohort and diagnostic group is given in table 8.1.

Table 8.1: Demographics of subjects used in template library

Diagnosis
No.

subjects
Mean age
(min,max)

Mean mini-mental state exam (MMSE)
score [min, max]

Gender
(M:F)

AVID1 Controls 3 68 [65,72] 30†[30,30] 2:1
SD 4 68 [57,79] 23†[18,26] 2:2
PNFA 4 68 [64,70] 15†[6,30] 1:3
PCA 3 59 [57,62] 17 [13,23] 1:2
LPA 2 65 [59,72] 28† 2:0

YOAD Controls 20 60 [48,68] 30 [28, 30] 8:12
PCA 11 61 [53,70] 22 [13, 29] 3:8
tAD 25 61 [51,73] 21 [13, 28] 10:15
FvAD 1 53 15 1:0

73 62 [48,79] 73 [6,30] 30:43

SD: semantic dementia, PNFA: progressive nonfluent aphasia, posterior cortical atro-
phy (PCA): posterior cortical atrophy, LPA: logopenic aphasia, typical Alzheimer’s
disease (tAD): typical amnestic Alzheimer’s disease, FvAD: subject with atypical
Alzheimer’s disease with a frontal presentation.
† MMSE score not available for one subject.

8.2.2 MRI scan acquisition and processing

For details on the MRI scan protocols used in this study see chapter 3. For

details on the diffusion tensor imaging processing pipeline used to generate the

coloured fractional anisotropy (FA) maps, see chapter 3.

All subjects included in this study had both T1-weighted and diffusion

tensor imaging scans acquired in the same session. All T1-weighted scans were
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aligned to Montreal Neurological Institute (MNI) space and FA maps were

resampled in the space of the T1-weighted scans.

8.2.3 Manual segmentation protocol

A manual segmentation protocol of the thalamus was developed with refer-

ence to atlases [Duvernoy, 2005, Mori et al., 2002] and a previously published

thalamic segmentation protocol [Power et al., 2015].

A coronal section through the thalamus with the surrounding structures

labelled is shown in figure 8.1, fiigure 8.2 shows an axial section. The thalamus

is bounded medially by cerebrospinal fluid, laterally by the internal capsule and

inferiorly by the red nucleus.

Figure 8.1: Coronal slice showing the location of the thalamus and it’s surrounding
structures. Photographed and labelled by Dr. Bruce Crawford and Kurt
McBurney at the University of Victoria. This photograph is licensed
under a Creative Commons Attribution-Noncommercial-Share Alike 2.5
Canada License.

All manual segmentations were performed using the NiftyMidas software

tool (see chapter 3). This tool allows for the simultaneous visualization in all
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Figure 8.2: Axial slice showing the location of the thalamus and it’s surrounding
structures.Photographed and labelled by Dr. Bruce Crawford and Kurt
McBurney at the University of Victoria. This photograph is licensed
under a Creative Commons Attribution-Noncommercial-Share Alike 2.5
Canada License.

three planes whilst segmenting.

The anatomical landmarks used in the protocol developed in this study

were largely similar to those described in the protocol developed by [Power

et al., 2015]. In contrast to the protocol described in Power et al., the seg-

mentation was initiated in the axial plane in the protocol developed in this

study. In addition, a threshold of 70% of the mean brain intensity (derived

from whole brain segmentations) was used to delineate the cerebrospinal fluid

(CSF) from the thalamus.
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8.2.3.1 Practical guide to thalamic segmentation when using T1-

weighted scans only

In the most superior axial slices of the thalamus, the boundaries are defined

by the internal capsule laterally and CSF medially (see figure 8.3).

Figure 8.3: Three most superior axial slices through the thalamus (outlined in red).
The most superior slice is on the left through to the most inferior on the
right.

Moving inferiorly, the fornix comes into view, posterior to the thalamus.

Care was taken to exclude the most posterior white matter visible posterior to

the thalamus, which belongs to the fornix (using multiple views helped with

this) see figure 8.5.

Figure 8.4: Axial slice through the thalamus (outlined in red) where white matter
of fornix is visible posterior to the thalamus.
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Figure 8.5: Coronal, sagittal and axial view through an example brain with cross-
hairs indicating the fornix appearing as white matter posterior to tha-
lamus.

Segmentation was continued, following the CSF boundary medially and

the white matter boundary of the internal capsule laterally, on subsequent

inferior axial slices. When the habenula came in to view (figure 8.6) on the

medial side of the thalamus care was taken to exclude it from the segmentation.

Figure 8.6 shows the habenula in all 3 views.
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Figure 8.6: Coronal, sagittal and axial view through the thalamus with cross-hairs
indicating the habenula appearing as white matter medial to thalamus.

Soon after the habenula is visible, the superior colliculus, medial to the

thalamus, becomes visible, and care was taken to exclude this as well (see

figure 8.7).

Moving inferiorly, the red nuclei become visible (see figure 8.8). In slices

where the red nucleus was present, the top of the red nucleus, in coronal view,

served as a landmark for the inferior boundary of the portion of the thalamus

that is superior to the internal capsule.
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Figure 8.7: Axial section through brain showing location of superior colliculus with
respect to the thalamus (outlined in red).

Figure 8.8: Coronal, sagittal and axial view through thalamus with cross-hairs in-
dicating the top of the red nucleus, inferior to the thalamus.
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Moving inferiorly, the lateral geniculate body is still visible as a grey mass,

adjacent to the the cerebral peduncle in axial view (see figure 8.9). The lateral

geniculate nuclei are inferior to the internal capsule/cerebral peduncle and may

appear separated from the main mass of the thalamus in coronal view.

Figure 8.9: Axial slice through the brain at the level of the cerebral peduncle (indi-
cated by a white arrow). The lateral geniculate nuclei of the thalamus
are outlined in red.

Visualisation of the boundary between the internal capsule and thalamus

can be challenging in some scans and on some scan slices. Increasing the con-

trast between grey and white matter on the T1-weighted scans helps with the

visualisation of the boundary between the internal capsule and the thalamus.

Where the boundary is not clearly visible, slices superior and inferior to the

slice in question can be used to guide the placement of the boundary.

8.2.3.2 Practical guide to thalamic segmentation when using

coloured FA maps in addition to T1-weighted scans

When using coloured fractional anisotropy maps in addition to T1-weighted

scans, T1-weighted and coloured FA maps were overlaid in the window. In each

slice, the thalamus was first segmented using the T1-weighted map according to

the protocol outlined above, then the coloured FA map was used for refining

the internal capsule/thalamic boundary. An example of a T1-weighted and
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coloured FA map showing the boundary between the internal capsule and

thalamus on both is shown in figure 8.10. The coloured FA map was found

to be particularly useful for this purpose, but did not particularly aid in other

areas.

Figure 8.10: Axial slice through thalamus on T1-weighted scan (left) and coloured
FA map (right). The left thalamus is outlined in red and arrows indicate
the boundary between the internal capsule and thalamus, which can be
more easily visualised on coloured FA maps than on T1-weighted scans.

8.2.4 Testing reliability of manual segmentations

In order to test the reliability of the manual segmentation protocol, a subset

of 30 subjects from the YOAD dataset (10 with tAD, 10 with PCA and 10

controls) was selected. The left thalamus was segmented 4 times per subject;

twice using T1-weighted scans only and twice using T1 and FA maps. This

was performed in a random order and blinded to subject ID and diagnosis.

For half of the subjects, only the T1-weighted scan was presented first. For

the other half, both the FA map and T1-weighted scans were presented first.
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Scans were presented in such a way that the scans for a particular subject did

not get segmented more than once in the same day in order to prevent learning

bias. To compare the reliability of the segmentations, dice overlap scores, mean

surface distances and Hausdorff distances were calculated [Prados et al., 2017].

8.2.5 Testing reliability of automated segmentations

A leave-one-out cross-validation was performed using the template library of

manual segmentations generated and their associated MRI scans. The scans

(original and left-right flipped) and associated segmentations for each subject

were excluded from the template library in turn, and the remaining scans and

segmentations used to automatically segment the scan in question using the

Similarity and Truth Estimation for Propagated Segmentations (STEPS) algo-

rithm [Cardoso et al., 2015]. A brief description of how the STEPS algorithm

works is given in chapter 3. Dice overlap scores, mean surface distances and

Hausdorff distances between the manual segmentations for each subject and

the automatically segmented regions were calculated.

To test whether the automated segmentation pipeline performed better

with the inclusion of FA maps as compared with T1-weighted scans alone,

two separate leave-one-out cross-validations were performed. The first used

the labels with the T1-weighted scans only in the STEPS pipeline, the second

used the labels with the T1-weighted scans and the FA maps in the STEPS

pipeline.

8.3 Results

8.3.1 Reliability of manual segmentations

The mean dice score, mean surface distance and Hausdorff distance are shown

in table 8.2. In none of the comparisons was there a statistically significant

difference. When looking at all subjects combined, the use of FA maps in

combination with T1-weighted scans resulted in a marginally better mean dice

score and mean surface distance but a slightly worse Hausdorff distance com-

pared with T1-weighted scans alone. Higher dice scores and lower mean surface
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Table 8.2: Similarity metrics for repeated manual segmentations. Mean [95% confi-
dence interval] shown.

T1 only T1 & diffusion p-value

Dice

All subjects (n=30)
0.940

[0.935, 0.945]
0.942

[0.936, 0.948]
0.7

Controls (n=10)
0.950

[0.946, 0.954]
0.953

[0.946, 0.960]
0.7

PCA (n=10)
0.936

[0.926, 0.946]
0.944

[0.938, 0.950]
0.9

AD (n=10)
0.934

[0.926, 0.942]
0.929

[0.915, 0.943]
0.3

Mean
surface
distance

All subjects (n=30)
0.346

[0.324, 0.369]
0.332

[0.307, 0.357]
0.2

Controls (n=10)
0.304

[0.284, 0.325]
0.285

[0.254, 0.316]
0.2

PCA (n=10)
0.361

[0.315, 0.407]
0.326

[0.298, 0.354]
0.1

AD (n=10)
0.374

[0.332, 0.416]
0.385

[0.332, 0.439]
0.6

Hausdorff
distance

All subjects (n=30)
2.455

[2.268, 2.641]
2.486

[2.240, 2.732]
0.6

Controls (n=10)
2.192

[1.961, 2.424]
2.141

[1.715, 2.566]
0.4

PCA (n=10)
2.475

[2.080, 2.870]
2.619

[2.179, 3.059]
0.7

AD (n=10)
2.697

[2.337, 3.056]
2.699

[2.212, 3.186]
0.5

and Hausdorff distances were achieved in the control subjects than in either the

PCA or tAD groups, none of these differences reached statistical significance

however.

8.3.2 Reliability of automated segmentations

A summary of the results of the leave-one-out cross validation are shown in

table 8.3. The use of both T1-weighted scans along with FA maps resulted in

higher mean dice scores on both the right and left sides. The differences were

subtle, but reached statistical significance.



8.3. Results 130

Table 8.3: Similarity metrics for automated segmentations using T1-weighted scans
only vs manual segmentations and automated segmentations using FA
maps in addition to T1-weighted scans vs manual segmentations. Mean
[95% confidence interval] shown

T1 only T1 & FA map p-value

Left Dice 0.940 [0.937, 0.944] 0.942 [0.939, 0.945] 0.02

Mean surface
distance

0.334 [0.32, 0.348] 0.329 [0.316, 0.342] 0.02

Hausdorff
distance

2.295 [2.153, 2.437] 2.302 [2.141, 2.463] 0.87

Right Dice 0.941 [0.938, 0.944] 0.949 [0.947, 0.951] <0.001

Mean surface
distance

0.329 [0.317, 0.341] 0.299 [0.289, 0.308] <0.001

Hausdorff
distance

2.220 [2.105, 2.335] 2.081 [1.944, 2.218] 0.01

Examples of the best and worst automatic segmentation (according to the

dice overlap score) when using T1-weighted scans only is shown in figure 8.3.2

and when using FA maps in addition to T1-weighted scans is shown in figure

8.12. The scan with the biggest difference in dice overlap scores between the

region automatically segmented using T1-weighted scans only and the region

automatically segmented using both FA-maps and T1-weighted scans is shown

in figure 8.13.
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Figure 8.11: Best (top row) and worst (bottom row) automated segmentation (ac-
cording to dice score) when using T1-weighted scans only. Blue: in-
cluded in manual segmentation only, green: included in both manual
and automated segmentations, yellow: included in automated segmen-
tation only. The best segmentation had a dice score of 0.96 and the
worst had a dice score of 0.89.
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Figure 8.12: Best (top row) and worst (bottom row) automated segmentation (ac-
cording to dice score) when using FA maps and T1-weighted scans.
Blue: included in manual segmentation only, green: included in both
manual and automated segmentations, yellow: included in automated
segmentation only. The best segmentation had a dice score of 0.96 and
the worst had a dice score of 0.90.
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Figure 8.13: Scan with the biggest difference in dice scores between the automat-
ically generated thalamic region using T1-weighted scans (shown in
blue) and the automatically generated thalamic region using both FA
maps and T1-weighted scans (shown in yellow). The manually seg-
mented region is shown in green. The dice overlap between the man-
ually segmented region and the region automatically segmented using
T1-weighted scans only was 0.91 whilst for the manually segmented
region and the automatically segmented region using both FA and T1-
weighted scans it was 0.95.
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8.4 Discussion

Good levels of reproducibility were achieved when segmenting thalami us-

ing T1-weighted scans only and when using coloured FA maps in addition to

T1-weighted scans. Modest, but non-significant improvements in dice scores

and mean surface distance were seen when comparing the manual segmenta-

tions based on T1-weighted scans alone with those based on T1-weighted and

coloured FA maps.

The dice scores achieved from the automated segmentations in this study

(0.94 when using T1-weighted scans only and 0.95 when using FA maps in

addition to T1-weighed scans) were higher than dice scores reported in the

literature for the thalamus. The most widely used thalamic segmentation

method in AD studies, FIRST, reported a mean dice score of approximately

0.88 (number taken from graphical representation) [Patenaude et al., 2011].

The template library used by the FIRST algorithm includes scans from 336

subjects with range of pathologies, including Alzheimer’s diease, as well as

healthy controls. No information is given about the manual thalamic segmen-

tation protocol that was followed nor the field strength of the MRI scanners

used making comparisons difficult. The dice scores presented in this chap-

ter were also higher than those achieved when using the STEPS algorithm in

combination with a different template library 0.89 [Cardoso et al., 2015]. The

template library used in [Cardoso et al., 2015] was a set of 30 manually-labelled

brain scans from healthy volunteers aged between 20 and 54 years of age, de-

scribed in detail in [Hammers et al., 2003,Hammers et al., 2007]. A description

of the thalamic region definition used is given in [Hammers et al., 2003] and is

accordance with what was included in the protocol developed in this chapter.

Possible reasons for the superior dice score achieved in the study in this chap-

ter could be the larger size of the template library used, better scan quality

and tissue contrast (scans were acquired on 3T scanners in this study whilst

those used in [Cardoso et al., 2015] were acquired on a 1.5T scanner [Hammers

et al., 2003]) or more reliable manual segmentations (an example of one of the
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manually labelled brains is given in [Cardoso et al., 2015] and although the

slice shown does not include the thalamus, the regions shown appear to have

somewhat irregular and biologically implausible boundaries). In addition, a

modest, but statistically significant improvement in the mean dice score was

observed when using both FA maps and T1-weighted maps in the automated

pipeline as opposed to T1-weighted maps alone.

One recent study also utilized data from diffusion scans, in addition

to T1-weighted and T2-weighted scans, to automatically segment the tha-

lamus [Glaister et al., 2017]. In the method described by Glaister et al., a

thalamic region of interest is first obtained, by using a multi-atlas segmenta-

tion approach. A set of features, incorporating information from diffusion, T1

and T2-weighted scans is then computed at each voxel within the ROI. This

is then used to classify voxels as belonging to the thalamus, or not. Using this

technique, the authors reported mean dice scores of 0.88 and 0.89 for the left

and right thalami respectively, using leave-one-out cross validation. The dice

scores achieved in leave-one-out cross-validation in this chapter were higher

(0.94 using T1-weighted imaging only and 0.95 using FA-maps in addition to

T1-weighted imaging), although a head-to-head comparison of the two tech-

niques has not been performed.

In this study, a manual segmentation protocol with good reproducibil-

ity was developed. A template library of thalamic segmentations in subjects

with a range of pathologies was generated based on this protocol. The use of

this template library in combination with the STEPS algorithm was shown to

produce good quality automatic thalamic segmentations.

emilymanning
Highlight



Chapter 9

Investigation into thalamic volume and

diffusion metrics in mild cognitive

impairment and Alzheimer’s disease

9.1 Introduction

As discussed in chapter 8, there is evidence that the thalamus may be affected

by Alzheimer’s disease pathology. Braak and Braak found that the antero-

dorsal nucleus was severely affected by Alzheimer’s disease pathology post-

mortem [Braak and Braak, 1991]. Imaging studies have shown reduced tha-

lamic volumes in subjects with Alzheimer’s disease [De Jong et al., 2008] and

studies in pre-symptomatic mutation carriers for familial Alzheimer’s disease

have shown diffusion changes in the thalamus prior to symptom onset [Ryan

et al., 2013]..

What is not known is at what stage in the disease process the thalami

are affected in sporadic Alzheimer’s disease, if there are thalamic diffusion dif-

ferences in subjects with sporadic Alzheimer’s disease (AD) and if diffusion

metrics are predictive of subsequent atrophy. This may aid early diagnosis of

disease and have implications for outcome measures of trials in early (preclin-

ical) AD.

The aims of this study were to:
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1. Investigate thalamic and hippocampal volumes in subjects with subjec-

tive memory complaints, early mild cognitive impairment, late mild cog-

nitive impairment and established Alzheimer’s disease. Hippocampal

volumes were used as a comparator to assess whether the thalamus is

affected at a similar stage to the hippocampus.

2. Investigate whether thalamic and hippocampal diffusion metrics can aid

in group differentiation above volumetric measures.

3. Investigate whether diffusion metrics are predictive of subsequent whole-

brain and hippocampal atrophy rates.

9.2 Methods

9.2.1 Study Participants

In this study, data from participants recruited to the the Alzheimer’s disease

neuroimaging initiative (ADNI)-GO and ADNI-2 phase of the ADNI study

(described in chapter 3) were used. All newly-enrolled subjects in the ADNI-

GO and ADNI-2 phases of the study were scanned on 3T magnetic resonance

imaging (MRI) scanners. All newly-enrolled subjects with T1-weighted imag-

ing were included in this study. A total of 973 subjects had accelerated T1-

weighted MRI scans available at baseline. Accelerated scans were chosen over

non-accelerated due to the findings reported in chapter 4. Subjects who were

scanned on General Electric (GE) scanners had diffusion imaging available in

addition to T1-weighted scans. A total of 218 subjects had both diffusion-

weighted and T1-weighted imaging available at baseline.

9.2.2 MRI Acquisition

Details of the MRI protocol used in this study can be found in chapter 3.

Diffusion weighted MRI scans were acquired in the same scanning session as

T1-weighted volumetric images for subjects scanned on GE scanners. Details

of the diffusion protocol and processing steps can be found in chapter 3.
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9.2.3 Quality control

All scans were assessed for motion and any with severe motion were excluded

from analyses.

9.2.4 Total intracranial volume, whole-brain, hippocampal and

thalamic region segmentation

total intracranial volume (TIV)’s were calculated using the method described

in chapter 3. Brains were segmented in native space using an automated

method described in chapter 3.4.1. Hippocampi were automatically segmented

using template library 2 as described in chapter 7. Thalami were automatically

segmented using the method described in chapter 8.

9.2.5 Extraction of diffusion metrics within regions-of-interest (

region of interest (ROI)s)

Both the thalamus and the hippocampus have boundaries with cerebrospinal

fluid (CSF). In order to ensure that the diffusion metrics in the regions-of-

interest were not biased by the inclusion of some CSF in the boundary voxels,

all regions were eroded once using a 3x3x3 voxel kernel, the smallest possible

sized kernel for symmetric erosion. All of the thalamic and hippocampal dif-

fusion metrics reported in this chapter are the mean diffusion metrics in those

eroded regions.

9.2.6 Whole-brain and hippocampal atrophy rates

Whole-brain and hippocampal atrophy rates were calculated using the methods

described in chapter 3.

9.2.7 Statistical Analyses

All statistical analyses were performed in Stata (version 12).

9.2.7.1 Baseline demographics

Linear regression with age as the dependent variable and diagnostic group as

the independent variable was used to compare age across diagnostic groups.

emilymanning
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Linear regression with bootstrapping was used to compare mini-mental state

exam (MMSE) scores across the diagnostic groups. Bootstrapping was used as

MMSE is not normally distributed and has a maximum value of 30. Differences

in the the proportions of male participants and apolipoprotein (APOE) ε4

carriers were compared across the diagnositic groups using chi-square tests.

9.2.7.2 Comparison of subjects in diffusion subset with full

ADNI-2/GO cohort

In order to acertain whether the group with diffusion imaging were a repre-

sentative subset of the whole dataset group characteristics between those who

had diffusion imaging available at baseline and those who did not were as-

sessed. Linear regression analyses were used to compare baseline age, brain,

hippocampal and thalamic volumes. Logistic regression was used to compare

percentages of males and APOE ε4 carriers and linear regression with boot-

strapping to compare baseline MMSE scores as this score has a ceiling effect

(subjects can score a maximum of 30).

9.2.7.3 Comparison of baseline volumes

In order to compare baseline whole-brain, thalamic and hippocampal volumes

between diagnostic groups linear regression analyses were used. The dependent

variable was the volume of interest with diagnostic group diagnostic group, age,

gender and head-size ( TIV) as independent variables.

9.2.7.4 Comparison of baseline hippocampal and thalamic dif-

fusion metrics

Linear regression analyses were used to compare baseline diffusion metrics

where the dependent variable was the mean diffusivity or fractional anisotropy

in the ROI with the independent variable being diagnostic group and the

models adjusted for age and gender. A second set of regression analyses were

fitted, additionally adjusting for the (non-eroded) volume of the ROI. This

was in order to see whether any significant differences by diagnostic group

remained after accounting for volume differences.
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9.2.7.5 Classification performance using diffusion metrics in ad-

dition to volumes

To investigate whether diffusion metrics improve diagnostic classification, lo-

gistic regression analyses were performed. Four binary variables were generated

for the different disease group comparisons: AD vs controls, LMCI vs controls,

early mild cognitive impairment (EMCI) vs controls and subjective memory

complaints (SMC) vs controls. These were then used as the dependent vari-

ables in the logistic regression analyses. In order to elucidate whether the use

of diffusion metrics in addition to volumetric measures improves diagnostic ac-

curacy two logistic regression models for each disease group comparison were

fitted, one with left and right hippocampal and thalamic volumes (divided

by TIV) and the other with left and right hippocampal and thalamic mean

diffusivity and fractional anisotropy metrics in addition to the normalised hip-

pocampal and thalamic volumes. To compare the ability of the models to

discriminate between cases and controls receiver operator curve (ROC) curves

were plotted and the area under the ROC curve for each model compared.

9.2.7.6 Predictors of subsequent atrophy

To investigate whether baseline diffusion metrics in the thalami and hip-

pocampi were associated with atrophy rates measured between baseline and

12 months, linear regression models were fitted with annualised whole-brain

or hippocampal atrophy rate (as a percentage of the baseline volume) as the

dependent variable, the diffusion metric of interest (mean diffusivity (MD) or

fractional anisotropy (FA) in the bilateral thalami or hippocampi) as the in-

dependent variable and adjusted for age and gender and diagnostic group. An

interaction term between diagnostic group and the diffusion metric of interest

was included to allow for differences in the effect of the diffusion metric on

atrophy rates between the diagnostic groups.

To investigate whether baseline hippocampal and thalamic volumes were

associated with atrophy rates measured between baseline and 12 months, linear

regression analyses were fitted with annualised whole-brain or hippocampal
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atrophy rate as the dependent variable, the volume of interest (left or right

hippocampal or thalamic volume) as the independent variable and adjusted for

age, gender, diagnostic group and TIV. An interaction term between diagnostic

group and the volume of interest was included to allow for differences in the

effect of baseline volume on atrophy rates between the diagnostic groups.

9.3 Results

9.3.1 Quality control

Of the 973 subjects who had data available for download at baseline, 943

had T1-weighted scans that passed internal dementia research centre (DRC)

quality control (QC) with 218 of these subjects having additional diffusion

weighted scans available.

Examples of scans which had levels of motion deemed unacceptable for

analysis are shown in figure 9.1. Examples of passing scans are shown in figure

9.2.

Figure 9.1: Examples of scans with motion artefacts severe enough for exclusion
from the study.

Figure 9.2: Examples of scans of good quality with little motion evident.
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One control subject was excluded from analyses as pathology was noted

in the left thalamus. This subject likely had an incidental thalamic arachnoid

cyst (see figure 9.3).

Figure 9.3: Subject with likely incidental arachnoid cyst in left thalamus. Arrows
indicate location of arachnoid cyst.
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9.3.2 Participant Demographics

Table 9.1 shows baseline characteristics by diagnostic group for all the ADNI-

2/GO subjects with T1-weighted scans available at baseline.

Table 9.1: Baseline characteristics of ADNI-2/GO cohort.
Mean (sd) shown unless otherwise indicated.

N Age
(years)

MMSE
(/30)

Percent
male

Percent
APOE ε4
carriers

NL 193 73.2 (6.3) 29.0 (1.2) 54 29
SMC 105 72.2 (5.6) 29.0 (1.3) 58 33
EMCI 321 71.0 (7.4) 28.3 (1.5) 47 42
LMCI 173 72.2 (7.6) 27.6 (1.8) 46 58
AD 150 74.9 (8.0) 23.1 (2.1) 42 67
P-value <0.001a <0.001b 0.05c <0.001d

NL: controls, SMC: subjective memory complaints, EMCI: early mild
cognitive impairment, LMCI: late mild cognitive impairment, AD:
Alzheimer’s disease.
a linear regression
b linear regression with bootstrapping
c chi-square test
d chi-square test

218 subjects had diffusion available (32 NL, 26 SMC, 65 EMCI, 36 LMCI

and 48 AD). Figure9.4 shows a comparison of the baseline characteristics and

brain volumes between those who had diffusion imaging available at baseline

and those who did not. Those who had diffusion imaging available and were

diagnosed as EMCI were significantly older than those who did not have diffu-

sion imaging available at baseline. There was a significantly higher percentage

of APOE ε4 carriers in the late mild cognitive impairment (LMCI) group who

had diffusion imaging compared with those who did not. There were no signif-

icant differences in baseline MMSE scores or gender ratios between any of the

groups. Mean adjusted brain volumes were significantly smaller in the subset

of subjects with diffusion imaging available in controls, SMC, EMCI and AD

subjects than in those without, whilst there was no difference in baseline brain

volume in LMCI subjects between the two groups.
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Figure 9.4: Comparison of baseline characteristics and volumes between those who
had diffusion imaging available at baseline and those who did not.
NL: controls, SMC: subjective memory complainers, EMCI: early mild
cognitive impairment, LMCI: late mild cognitive impairment, AD:
Alzheimer’s disease.

9.3.3 Baseline volumes

9.3.3.1 In the whole dataset

When comparing volumes in the whole group, mean adjusted whole-brain vol-

umes were found to be significantly smaller in LMCI and AD subjects as com-

pared to controls, whilst there was no significant difference in brain volume
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in EMCI subjects or SMC subjects with respect to controls. Mean adjusted

hippocampal volumes were significantly smaller in EMCI, LMCI and AD sub-

jects with respect to controls on both the right and left sides. Mean adjusted

thalamic volumes were also smaller in EMCI, LMCI and AD on the left side

and in LMCI and AD on the right side. Figure 9.5 shows the mean adjusted

baseline volumes in the full ADNI-2/GO cohort.
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Figure 9.5: Baseline mean adjusted volumes in the full ADNI-2/GO cohort. Volumes
are adjusted for mean age, mean head-size and assume an equal gender
split. Error bars show 95% confidence intervals. Statistically significant
differences are represented by asterisks and represent differences with
respect to NL subjects. *p≤0.05, **p≤0.01, ***p≤0.001. NL=controls,
SMC=subjective memory complaints, EMCI=early mild cognitive im-
pairment, LMCI=late mild cognitive impairment, AD=Alzheimer’s dis-
ease.
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9.3.3.2 In the subset with diffusion imaging

In the subset of subjects who had diffusion imaging available at baseline, mean

adjusted whole-brain volumes were lower in the LMCI and AD subjects. Lower

hippocampal volumes were observed bilaterally in EMCI, LMCI and AD whilst

lower thalamic volumes were only observed in the AD group compared with

controls and no significant difference in volume was found between the LMCI,

EMCI or SMC groups and controls. Figure 9.6 shows the baseline volumes in

ADNI-2/GO subset with diffusion tensor imaging (DTI) imaging. Given the

imbalance in APOE ε4 carriers in the group with LMCI compared with the

whole dataset, post-hoc adjustment for APOE ε4 carrier status was performed,

but no significant differences to the findings were observed. The results pre-

sented in figure 9.6 are without adjustment for APOE ε4 as fewer subjects had

APOE ε4 carrier status available.
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Figure 9.6: Baseline mean adjusted volumes in the subset of subjects with diffusion
imaging available. Volumes are adjusted for mean age, mean head-size
and assume an equal gender split. Error bars show 95% confidence
intervals. Statistically significant differences are represented by aster-
isks and represent differences with respect to NL subjects. *p≤0.05,
**p≤0.01, ***p≤0.001. NL=controls, SMC=subjective memory com-
plaints, EMCI=early mild cognitive impairment, LMCI=late mild cog-
nitive impairment, AD=Alzheimer’s disease.
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9.3.4 Diffusion metrics

Significantly higher mean adjusted (for age and gender) MD values were ob-

served in the left hippocampus in EMCI and LMCI subjects as compared with

controls and in both the left and right hippocampi in AD subjects as compared

with controls. When adjusting for hippocampal volume in addition to age and

gender, EMCI subjects had significantly higher hippocampal mean diffusivity

on left-side as compared with controls and AD subjects had significantly higher

mean diffusivity in the left and right hippocampi. See figure 9.7.
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Figure 9.7: Mean MD in left and right hippocampus. Error bars show 95% confi-
dence intervals.



9.3. Results 150

Subjects with SMC had slightly elevated mean adjusted MD in both the

left and right thalami compared with controls, although the differences did not

reach statistical significance. EMCI subjects had an elevated mean adjusted

MD in the thalami and the difference was statistically significant on the right

side and borderline significant on the left side (p=0.055). LMCI subjects had

slightly elevated MD values as compared to controls, although the differences

were smaller than in EMCI subjects and were not statistically significant. AD

subjects again had slightly elevated MD values as compared with controls, and

the differences again were not statistically significant. See figure 9.8.
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Figure 9.8: Mean MD in left and right thalamus. Error bars show 95% confidence
intervals.

There was no significant difference in mean adjusted FA values in the

left or right side hippocampi in any diagnostic group (see figure 9.9). In the

thalamus, AD subjects had significantly increased mean adjusted FA values

compared with controls (see figure 9.10).
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Figure 9.9: Mean FA in left and right hippocampus. Error bars show 95% confidence
intervals.
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Figure 9.10: Mean FA in left and right thalamus. Error bars show 95% confidence
intervals.
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9.3.5 Disease classification using diffusion metrics in addition to

volumetric metrics

When comparing classification performance of hippocampal and thalamic vol-

umes alone or with additional diffusion metrics, it was found that classification

performance was improved with diffusion metrics (hippocampal and thalamic

FA and MD). This was significant in EMCI vs. controls and AD vs. controls.

A comparison of the ROC curves with and without diffusion metrics are shown

in figure 9.11. Table 9.2 summarizes the mean area under the ROC curve for

each comparison.

p2cmC2cmC2cmC2cmC2cmC0.9cmC0.9cmC0.9cm
SMC vs controls EMCI vs controls LMCI vs controls AD vs controls

Model 1
0.58

[0.44, 0.73]
0.69

[0.59 ,0.79]
0.88

[0.820, 0.96]
0.91

[0.85, 0.97]

Model 2
0.72

[0.59, 0.85]
0.81*

[0.73, 0.89]
0.92*

[0.86, 0.99]
0.96*

[0.93 ,0.99]

Table 9.2: Area under ROC curves [95% confidence intervals]. *p≤0.05 as compared
with Model 1. Model 1: variables included left and right hippocampal
and thalamic volumes (normalised for head-size). Model 2: variables
included left and right hippocampal and thalamic MD and FA values in
addition to volumes normalised for head-size.
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Figure 9.11: ROC curve comparison for disease group classification. Model 1, shown
in blue, used left and right hippocampal and thalamic volumes (nor-
malised for head-size) as predictor variables. Model 2, shown in red,
included left and right hippocampal and thalamic diffusion metrics (FA
and MD) in addition to the volumetric metrics included in Model 1.
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9.3.6 Predictors of atrophy rate

In controls, increased bilateral hippocampal MD at baseline was associated

with higher rates of hippocampal atrophy (an increase in hippocampal MD of

1 standard deviation was associated with a 2.2%/year increase in hippocam-

pal atrophy rate, p=0.04). No significant association was found in the other

diagnostic groups (p>0.2 for all other comparisons)).
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Figure 9.12: Baseline hippocampal MD vs hippocampal atrophy rate

In EMCI subjects, there was borderline evidence that increased baseline

bilateral thalamic MD values were associated with lower rates of whole-brain

atrophy (an increase in thalamic MD of 1 standard deviation was associated

with a 0.25% decrease in whole-brain atrophy, p=0.051). See figure 9.13. No

significant associations were found in the other diagnostic groups (p>0.5).

Increased bilateral thalamic FA at baseline was associated with increased

subsequent whole-brain atrophy in subjects with EMCI (an increase in thala-

mic FA of 1 standard deviation was associated with an increase of 0.28%/year

whole-brain atrophy rate, p=0.009), but not in any of the other disease groups

(p>0.1). Baseline hippocampal FA metrics were not associated with whole-

brain atrophy rates in any disease group (p>0.2).

Lower baseline left and right hippocampal volumes were associated with

higher rates of whole-brain atrophy in LMCI subjects and there was borderline
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Figure 9.13: Baseline thalamic MD and whole-brain atrophy rate
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Figure 9.14: Baseline thalamic FA vs whole-brain atrophy rate

evidence that lower baseline left and right hippocampal volumes were associ-

ated with higher rates of hippocampal atrophy in EMCI and LMCI subjects

(p=0.06 for both). Baseline thalamic volumes were not associated with either

hippocampal or whole-brain atrophy rates in any of the disease groups.

9.4 Discussion

In this chapter thalamic and hippocampal volume and diffusion differences in

subjects with SMC, EMCI, LMCI and AD were investigated using the ADNI-
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2/GO dataset.

In the whole dataset, as expected, reduced hippocampal volumes were

found in AD, LMCI and EMCI subjects. Thalamic volumes were significantly

smaller in AD and LMCI subjects than in controls on both left and right sides

and were significantly smaller than controls on the left side in EMCI subjects.

In the subset with diffusion imaging, hippocampal MD values were higher

in AD, LMCI and EMCI than controls on the left side and higher in AD than

controls on the right side. In the thalamus, MD values were slightly higher in

EMCI and LMCI on the left side (trend level p<0.1) and in EMCI subjects on

the right side (trend level p< 0.1). When adjusting for volume, some of the MD

diffusion differences remained, suggesting that diffusion is providing different

information compared with macroscopic T1-weighted volume differences. FA

appeared to be a less promising measure in terms of group differentiation: there

were no significant differences in the hippocampi and or the thalami (although

thalamic FA values were slightly higher in AD subjects compared with controls

on the left side, p=0.06). In terms of diagnostic value, there was evidence

that diffusion metrics aided group differentiation in EMCI, LMCI and AD.

Diffusion metrics also aided in group differentiation in SMC compared with

controls although the difference in the area under the ROC curve did not reach

statistical significance. Higher baseline MD in the hippocampi was associated

with increased hippocampal atrophy rates in controls. It may be that the this

represents the effects of normal ageing in this group of individuals, or possibly

it could be an indication of very early dementia in those with higher baseline

hippocampal MD, although further studies would be required to confirm this

hypothesis. In EMCI subjects higher baseline thalamic FA was associated

with higher whole-brain atrophy rates and there was borderline evidence that

lower baseline thalamic MD was associated with higher rates of whole-brain

atrophy whereas baseline thalamic volumes were not. These findings suggest

that diffusion markers are useful prognostic markers early in the disease course.

As expected, we found hippocampal volume to predict volume loss in LMCI



9.4. Discussion 159

and EMCI subjects. However, extrapolating results from the diffusion subset

to the whole of ADNI is problematic since there was also evidence that this was

not a random subset: age differed in EMCI, APOE carrier numbers differed

in LMCI.

There were some discrepancies in thalamic volume findings between the

subset and the full ADNI2/GO cohort. Only the AD group showed signifi-

cantly reduced mean adjusted thalamic volumes at baseline in the diffusion

subset whilst reduced thalamic volumes were also seen in mild cognitive im-

pairment (MCI) subjects in the full ADNI2/GO cohort. Only subjects who

were scanned on GE scanners had DTI imaging available. Differences in base-

line volumes between those scanned on GE scanners and those scanned on

other scanners were found. This suggests that the subset with DTI imaging is

not a random sample of the full the full ADNI2/GO cohort and results must

be treated with necessary caution.

A number of previous studies have also reported reduced thalamic volumes

in AD [Stěpán-Buksakowska et al., 2013,Yi et al., 2015,Möller et al., 2015,De

Jong et al., 2008]. In terms of thalamic volumes in MCI, two studies with

relatively small numbers of subjects (14 MCI subjects each) found singificantly

reduced thalamic volumes in MCI as compared with controls [Eustache et al.,

2016, Karas et al., 2004] as well a much larger, more recent study, with 201

MCI subjects [Yi et al., 2015]. The findings in this chapter are in keeping with

these previous studies.

In the hippocampi, mean diffusivity was significantly higher in all disease

groups as compared with controls whilst in the thalamus mean diffusivity was

significantly higher in EMCI as compared with controls. Qualitatively, the

relationship between disease stage and MD in the hippocampus and thalamus

differ. MD in the hippocampus was higher with increased disease severity.

MD in the thalamus was slightly higher in the early disease stages and rela-

tively lower at later disease stages. These qualitative differences contrast with

the largely similar volume patterns in both the hippocampus and thalamus
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(later disease stages were associated with lower volumes). One previous study

reported increased MD in the thalamus in AD compared to MCI (but they

found no difference in MD between AD and controls nor between controls and

MCI) [Cherubini et al., 2010]. Another previous study found no significant

difference in thalamic MD between MCI and controls [Eustache et al., 2016].

The finding that thalamic FA was slightly higher in AD subjects as com-

pared to controls (on the left side), but not significantly different in SMC,

EMCI or LMCI subjects, was in keeping with the literature. Previous studies

in familial AD have found increased FA in the thalamus in presymptomatic

mutation carriers [Ryan et al., 2013]. The thalamus is organised into distinct

nuclei with differing fibre orientations [Wiegell et al., 2003a]. If only specific

nuclei are affected, as suggested in the literature [Aggleton et al., 2016], it is

possible that the mean FA in the the thalamus as a whole actually increases.

Since a proportion of the individuals included in the SMC, EMCI and LMCI

groups will not go on to develop AD, it may be that the increased thalamic

FA in these disease groups is attenuated.

Increased baseline left and right thalamic FA was associated with in-

creased whole-brain atrophy at 12 months in subjects with EMCI and in-

creased baseline hippocampal MD was associated with higher hippocampal

atrophy rates in controls subjects. Previous longitudinal studies in subjects

with MCI have found those who went on to convert to a diagnosis of AD

had significantly higher MD in the hippocampi at baseline than those who did

not [Müller et al., 2007,Kantarci et al., 2010,Douaud et al., 2011]. It is possible

that increased baseline hippocampal MD could reflect a reduction in cellular

integrity and be a very early indication of neurodegeneration in these controls,

although to confirm this, a longer follow-up would be required in order to see

who goes on to convert to a diagnosis of MCI or AD.

There were a number of limitations to this study. Firstly, the diffusion

scans in the ADNI-2/GO cohort did not have field maps available, which may

have had an impact on the quality of the registration with the T1 weighted
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MRI scans. Secondly, this study was largely (apart from atrophy rates) cross-

sectional in nature. In order to get a better insight into the dynamic changes

occurring, in structures like the thalamus, a longitudinal study would be re-

quired. Thirdly, since the literature suggests that the anterior thalamic nuclei

are more severely affected than the medial or lateral thalamic nuclei, it would

be interesting to segment the thalami into sub-regions and investigate differ-

ences between the nuclei. This was not possible with the contrasts available

on the T1-weighted scans and the FA maps from this study. Finally, in order

to extract diffusion metrics that were not contaminated by voxels potentially

containing some CSF, thalamic and hippocampal regions were eroded by a

3x3x3 kernel. This may have had differential effects in the thalamus and hip-

pocampus; the thalamus is a relatively large ’bulb’ shaped structure, whilst

the hippocampus has a relatively thin body region. An erosion kernel of this

size may mean that the diffusion metrics obtained from the body region of the

hippocampus may only be coming from a limited number of voxels as a re-

sult. In order to overcome this limitation, it might be advantageous to instead

take a partial volumes approach, such as that described in [Eaton-Rosen et al.,

2016].

This study had a number of strengths. It was the largest study to date to

investigate thalamic volumes and diffusion metrics in AD and MCI subjects,

including EMCI subjects. In addition, a validated protocol for thalamic seg-

mentation was used, which had better segmentation reliability than methods

used in previous studies.

In summary, these findings give support to the hypothesis that the thala-

mus is implicated in Alzheimer’s disease relatively early in the disease course

and that diffusion metrics provide useful complimentary information to vol-

ume measures and may prove to be valuable in early diagnosis in Alzheimer’s

disease. In EMCI subjects, the inclusion of thalamic and hippocampal diffu-

sion metrics significantly increased the ability to classify EMCI subjects from

controls compared with volumetric measures alone.
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Chapter 10

Investigation in to thalamic and

hippocampal volumes and diffusion

metrics in early-onset Alzheimer’s

disease

10.1 Introduction

As discussed in chapter 2, approximately 5% of those with dementia have an

age of onset below 65 years of age, with Alzheimer’s disease pathology being

the underlying cause in about a third of those with young-onset dementia.

Non-amnestic presentations are more common in young-onset Alzheimer’s dis-

ease (AD), including posterior cortical atrophy (PCA) and logopenic aphasia

(LPA) [Mendez et al., 2012]. Relatively little is known about the effects of

AD on subcortical regions in younger onset cases. Studying different presen-

tations gives better information about the different disease presentations of

young-onset AD. In addition to macrostructural differences, microstructural

differences may exist. This may lead to better biomarkers in the future for

these different presentations.

There is evidence to suggest that amyloid deposition is greater in the

thalami in young-onset Alzheimer’s disease than in late-onset Alzheimer’s dis-
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ease [Cho et al., 2013b] and that young-onset Alzheimer’s disease subjects

have increased glucose hypometabolism in the thalamus compared with con-

trols [Kim et al., 2005]. Lower thalamic volumes have been found in late-onset

Alzheimer’s disease [De Jong et al., 2008], and there is increasing evidence

that the thalamus may play an important role in early stages of late-onset

Alzheimer’s disease [Aggleton et al., 2016].

The aim of this study was therefore to investigate thalamic and hippocam-

pal volumes and diffusion metrics in subjects with young-onset Alzheimer’s

disease.

10.1.1 Methods

10.1.1.1 Subjects

The patients included in this chapter are described in chapter 3. Patients

were classified as having a typical [McKhann et al., 2011] (herein referred to as

typical Alzheimer’s disease (tAD) or atypical (posterior cortical atrophy [Tang-

Wai et al., 2004]) AD phenotype (herein referred to as PCA) according to

published criteria. Twenty-four age and gender matched control subjects were

also recruited.

10.1.1.2 Imaging

For details of the imaging protocol followed see chapter 3. Fractional

anisotropy (fractional anisotropy (FA)) maps and mean diffusivity (mean dif-

fusivity (MD)) maps were generated using the pipeline described in chapter

3.3.1.

10.1.1.3 Brain, thalamic, hippocampal and total-intracranial

volume segmentation

Brains were segmented using an automated method as described in chapter

3.4.1. Hippocampi were segmented using the automated method described

in chapter 7 with the template library which included the full extent of the

hippocampal tail. Thalami were segmented manually, with reference to both

the T1-weighted and registered colour FA maps, using the protocol described
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in chapter 8. Total intracranial volume (TIV) was extracted automatically

using the method described in chapter 3.

10.1.1.4 Extraction of thalamic and hippocampal diffusion met-

rics

The thalamic and hippocampal regions were eroded by a 3x3x3 voxel kernel

and mean diffusivity and fractional anisotropy scores were calculated within

the eroded regions. This was performed to ensure that boundary voxels which

included cerebrospinal fluid were excluded.

10.1.1.5 Statistical Analyses

Linear regression was used to compare baseline ages between the disease

groups. Linear regression with bootstrapping (200 repetitions) was used to

compare baseline mini-mental state exam (MMSE) scores. A chi-squared test

was used to compare gender ratios and t-test was used to compare disease

duration between the PCA and tAD groups.

To compare baseline volumes, linear regression analyses were used with

the volume of interest as the dependent variable and adjusting for diagnostic

group, age, gender and head-size (TIV ).

To compare baseline diffusion metrics, linear regression analyses were

used with the diffusion metric of interest (thalamic or hippocampal fractional

anisotropy (FA) or mean diffusivity (MD)) as the dependent variable and ad-

justing for diagnostic group, age and gender.

10.1.2 Results

10.1.2.1 Demographics

Table 10.1 shows the baseline characteristics of the subjects included in this

study.
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N Age MMSE % female Disease duration
Controls 20 59.8 (6.1) 29.5 (0.7) 60 n/a
PCA 11 61.4 (6.0) 22.1†(5.1) 73 4.3 (4.9)
tAD 25 61.2 (5.2) 20.7†(4.4) 60 5.0 (2.8)

Table 10.1: Baseline characteristic of local young-onset AD cohort. Mean (standard
deviation (SD) ) shown. †Significant difference with respect to controls
(p<0.05).

10.1.2.2 Brain, thalamic and hippocampal volume differences

Table 10.2 shows the mean-adjusted whole-brain volumes were significantly

smaller in the PCA and tAD groups as compared with controls. Mean-adjusted

right and left thalamic and hippocampal volumes were significantly smaller in

the tAD group compared with controls. Hippocampal and thalamic volumes

were intermediate to those in controls and in tAD on the right side in PCA

subjects, but the difference did not reach statistical significance. There was no

difference in hippocampal or thalamic volume on the left side in PCA subjects.
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Controls PCA tAD

Brain volume (ml)
1131

[1107, 1156]
.

1036
[1002, 1070]

p<0.001

1034
[1012, 1056]

p<0.001

Left hippocampal
volume (ml)

2.99
[2.84, 3.14]

.

2.98
[2.78, 3.18]

p=0.9

2.62
[2.49, 2.75]
p<0.001

Right hippocampal
volume (ml)

3.15
[3.01, 3.29]

.

2.95
[2.76, 3.14]

p=0.1

2.78
[2.66, 2.90]
p<0.001

Left thalamic
volume (ml)

6.95
[6.75, 7.15]

.

7.00
[6.71, 7.28]

p=0.8

6.65
[6.46, 6.83]

p=0.03

Right thalamic
volume (ml)

6.94
[6.76, 7.12]

.

6.77
[6.52, 7.03]

p=0.3

6.55
[6.38, 6.71]
p=0.003

Table 10.2: Mean adjusted baseline volumes [95% confidence interval] by diagnostic
group. Volumes are adjusted for mean age, mean head-size and assume
an equal gender split.

10.1.2.3 Thalamic and hippocampal diffusion differences

Table 10.3 shows the results from diffusion imaging reporting the microstruc-

trual differences in the three groups. The PCA subjects had significantly

higher mean adjusted fractional anisotropy in both the left and right thalami

compared with control subjects but there was no difference in the left or right

hippocampal FA. Subjects with tAD had a significantly increased mean ad-

justed FA in the left thalamus but not in the right, and a significantly reduced

mean adjusted FA in both the left and right hippocampi as compared with

controls. Those with tAD also had significantly increased mean adjusted MD

scores in both the left and right hippocampi as compared with controls.
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Controls PCA tAD

Mean adjusted MD
(10−3mm2/s−1)

Left
hippocampus

0.85
[0.83, 0.85]

.

0.88
[0.85, 0.91]
p=0.140

0.92
[0.90, 0.94]

p<0.001

Right
hippocampus

0.86
[0.85, 0.88]

.

0.89
[0.87, 0.92]
p=0.038

0.90
[0.89, 0.92]

p=0.002

Left
thalamus

0.72
[0.71, 0.73]

.

0.72
[0.71, 0.74]
p=0.999

0.73
[0.72, 0.74]

p=0.340

Right
thalamus

0.71
[0.70, 0.72]

.

0.70
[0.69, 0.72]
p=0.581

0.71
[0.70, 0.72]

p=0.725

FA

Left
hippocampus

0.111
[0.106, 0.115]

.

0.105
[0.098, 0.111]

p=0.117

0.104
[0.100, 0.108]

p=0.040

Right
hippocampus

0.113
[0.107, 0.118]

.

0.114
[0.107, 0.122]

p=0.714

0.110
[0.105, 0.115]

p=0.505

Left
thalamus

0.334
[0.325, 0.342]

.

0.359
[0.347, 0.37]

p=0.001

0.346
[0.338, 0.353]

p=0.045

Right
thalamus

0.341
[0.332, 0.35]

.

0.372
[0.359, 0.384]

p<0.001

0.349
[0.341, 0.357]

p=0.218

Table 10.3: Mean adjusted [95% confidence interval] FA and MD metrics in the left
and right thalamus and hippocampus. Metrics were adjusted for mean
age and assume an equal gender split.

10.2 Discussion

In this study, thalamic and hippocampal volumes were found to be significantly

smaller in young-onset AD subjects who presented with typical amnestic symp-

toms compared to controls. These subjects also had evidence of microstruc-

tural differences, with significantly higher left thalamic FA, significantly lower

right and left hippocampal FA and significantly higher right and left hippocam-

pal MD scores as compared with controls.
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In the early-onset AD subjects who presented with PCA, mean-adjusted

volumes in the right thalamus and right hippocampus were intermediate to

those seen in controls and those who presented with typical AD, but the dif-

ferences did not reach statistical significance. There was no evidence of volume

differences between controls and those with PCA in the left hippocampus or

thalamus. Although there was no statistically significant difference in hip-

pocampal or thalamic volumes in those with PCA compared with controls,

there was evidence of microstructural diffferences in both the left and right

thalami and the right hippocampus. Increased FA was observed in both the

right and left thalami and decreased FA in the right hippocampus.

Whilst a number of studies have investigated thalamic volumes in typical

late-onset Alzheimer’s disease (see chapter 9) only one study to date has specif-

ically investigated thalamic volumes in subjects with young-onset Alzheimer’s

disease. They found no difference at baseline between those with young-onset

AD and controls [Cho et al., 2013a]. Although they did not specify the dis-

ease presentation of the participants with young-onset AD in their study, there

were no statistically significant differences between the neuropsychological tests

scores of those with young-onset AD and those with late-onset AD in their

study, suggesting the majority of their young-onset AD cohort had an amnes-

tic presentation. The study had a relatively small number of participants with

early-onset AD (n=14) and may have been underpowered to find a difference

at baseline. However, they did find that thalamic volumes declined with time

in those with young-onset AD.

Although no statistically significant difference in hippocampal volume be-

tween PCA and control subjects was found in this study, they were somewhat

reduced on the right side. In chapter 6, PCA subjects were found to have

significantly lower mean adjusted hippocampal volumes than control subjects

on both the right and left sides and hippocampal volumes that were interme-

diate to those seen in controls and in typical AD. It may be that there was not

enough power in this study to find a difference as there were only 14 individu-
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als with PCA in this chapter, whilst in chapter 6 there were far more (n=47).

In addition, the subjects included in this study had a slightly higher mean

MMSE score and slightly lower mean disease duration than those included in

the study in chapter 6, so it may be that they were less advanced in their

disease course.

The findings in this chapter are also largely in accordance with those

in the Alzheimer’s disease neuroimaging initiative (ADNI) study reported in

chapter 9. The only groups that are truly comparable in a qualitative sense

are the control subjects and those with tAD. Similar to the findings in the

ADNI subjects reported in chapter 9, when the volume of the thalamus is

significantly lower in tAD, then there is some evidence of FA being higher. As

with the AD subjects in the ADNI cohort, there was no significant difference

in thalamic MD values in the tAD subjects. There are some differences in the

hippocampal diffusion findings between the two studies. Hippocampal FA was

not found to be significantly lower in the AD group in the ADNI study (who

had significantly atrophied hippocampi); in the tAD subjects in this study

hippocampal FA was lower on the left side. However, the hippocampal MD

values were significantly higher than in controls in both the AD subjects in

the ADNI study and in the tAD subjects in this study. The PCA subjects

cannot feasibly compared with any of the disease groups in the ADNI study.

They had higher thalamic FA values and higher right hippocampal MD values,

which does not fit with the patterns seen in any of the disease groups studied

in the ADNI cohort. FA and MD values were more similar to those seen

in the ADNI AD group than any of the disease groups, despite the lack of

thalamic volume differences in the PCA group. In other words - PCA is a

unique entity and understanding disease progression in this group will inform

us about AD in its variant forms. Further this will aid those with PCA through

better monitoring and prognostic information. Longitudinal studies would be

required to understand the dynamic diffusion and volumetric changes in PCA.

This is the first study to date to specifically investigate thalamic and
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hippocampal diffusion metrics in early-onset sporadic AD and the largest study

to date to investigate thalamic volumes in those with young-onset AD.

This study has a number of limitations. First, although MMSE scores

and disease durations were not significantly different between those with PCA

and tAD, neither are particularly good measures of disease severity in subjects

with PCA. Mean-adjusted brain volumes were similar in the PCA and tAD

groups however, suggesting similar levels of overall baseline atrophy. In this

study, only FA and MD differences were investigated. Participants in this study

also had neurite orientation dispersion and density imaging (NODDI) imaging

performed and NODDI metrics may provide greater insight into the diffusion

differences detected [Zhang et al., 2012]. This study was cross-sectional in

nature and longitudinal imaging would be required in order to verify that the

differences in volume and diffusion metrics are indeed pathological changes.

Finally, as mentioned in chapter 9 both the hippocampus and the thalamus

are complex structures making differences in diffusion metrics, particularly FA,

hard to interpret.

In summary, this study has shown reduced thalamic and hippocampal

volumes in subjects with amnestic young-onset AD as compared to controls

and microstructural changes in the thalamus and hippocampus in both amnes-

tic and PCA variants of young-onset AD. These findings give support to the

hypothesis that thalamus is affected by Alzheimer’s disease, even in the ab-

sence of significant thalamic atrophy and may provide both insight into disease

processes in differing variants and ultimately biomarkers to track progression.
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General Conclusions

This thesis has investigated, in depth, the effects of Alzheimer’s disease on the

hippocampus and thalamus in various disease presentations and at different

disease stages.

Accelerated T1-weighted scans were found to be equivalent to unaccel-

erated T1-weighted scans for assessing brain, ventricular and hippocampal

volumes and atrophy rates and fewer accelerated scans suffered from motion

artefacts than unaccelerated. This is important as it allows for more valu-

able time in the scanner for other sequences which may provide additional

information.

The hippocampus was found to be disproportionately affected by atro-

phy in apolipoprotein (APOE) ε4 carriers. This has implications for clinical

trials as it means that APOE ε4 status should be considered when using hip-

pocampal atrophy rates as outcome measures; APOE ε4 carrier status should

be adjusted for in statistical analyses. The hippocampus was also found to

be reduced in volume in the posterior cortical atrophy variant of Alzheimer’s

disease, despite a lack of memory deficits in these individuals. Atrophy was

found to be localised in the most posterior portion of the hippocampal tail in

these individuals. Hippocampal shape metrics were also found to be valuable

for disease classification and were superior to hippocampal volumes alone for

this disease group.

A new hippocampal template library, including the full extent of the hip-
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pocampal tail, for use in automated segmentation pipelines, was compared to

an existing, widely used hippocampal template library. The new template li-

brary achieved a good mean dice score in leave-one-out cross validation and

was better able to separate diseased subjects from controls than the existing

template library to which it was compared.

A set of manually-segmented thalamic regions were generated, using

multi-modal imaging, for use in automated segmentation pipelines. The

thalami and hippocampi of the Alzheimer’s disease neuroimaging initiative

(ADNI)-GO/-2 cohort were segmented using both the new thalamic and hip-

pocampal template libraries. Reduced thalamic volumes were observed in

those with Alzheimer’s disease, late mild cognitive impairment and in those

with early mild cognitive impairment (on the left side). This was the first

study to date to find lower thalamic volumes at the early mild cognitive im-

pairment stage, suggesting that in addition to the hippocampus, the thalamus

is implicated in Alzheimer’s disease early on in the disease course. Thala-

mic volumes in a cohort of young-onset Alzheimer’s disease subjects were also

investigated. This cohort included individuals with both posterior cortical at-

rophy and with typical amnestic Alzheimer’s disease. Thalamic volumes, in

addition to hippocampal volumes, were found to be significantly reduced in

those with amnestic Alzheimer’s disease. There was no evidence of thalamic

volume reductions in those with posterior cortical atrophy (PCA).

Hippocampal and thalamic diffusion metrics were also investigated in the

subset of ADNI-GO/-2 subjects that had diffusion imaging available and in

the young-onset Alzheimer’s disease (AD) cohort. No significant differences

in thalamic diffusion metrics were found between the disease groups in the

ADNI-GO/-2 cohort and controls, although there was borderline evidence for

higher mean diffusivity in the thalamus in early and late mild cognitive impair-

ment (MCI) subjects and borderline evidence for increased thalamic fractional

anisotropy (FA) values in subjects with AD. Hippocampal mean diffusivity

(MD) values were significantly higher in early MCI, late MCI and AD subjects
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on the left side and in AD subjects on the right side, compared with controls.

Diffusion metrics were found to significantly improve disease classification in

combination with volumetric measures, as compared to volumetric measures

alone when classifying early MCI vs controls, late MCI vs controls and AD vs

controls. There was also evidence that some diffusion metrics were predictive

of subsequent atrophy rates in control subjects and subjects with early mild

cognitive impairment (EMCI). In the young-onset AD cohort, the PCA group,

who had no evidence of thalamic atrophy, had significantly higher thalamic FA

than controls. Those with typical AD had increased FA in the left thalamus,

decreased FA in the left hippocampus and increased MD in both the left and

right hippocampi. Taken together these findings suggest that thalamic MD

may possibly increase before atrophy occurs and decreases as the thalamus

atrophies. Further MD in the hippocampus appears to increase with increas-

ing levels of atrophy. Longitudinal studies would be required to confirm these

hypotheses however.

In order for accurate early diagnoses, beneficial to both patients and car-

ers, there is a real need for multi-modal markers. Metrics such as those de-

scribed in this thesis may be useful in identifying those who are likely to

progress to a diagnosis of AD, when they are in the early MCI stage and lit-

tle cognitive function is lost. This may have implications in terms of either

inclusion criteria and/or outcome measures in clinical trials of very early dis-

ease. The thalamic and hippocampal segmentation libraries may be of use for

diagnosis and disease tracking.

In summary, the studies described in this thesis have extended current

knowledge of hippocampal and thalamic atrophy patterns and diffusion differ-

ences in Alzheimer’s disease and it’s variants, with important implications for

clinical trials of putative Alzheimer’s disease therapies.
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Chapter 13

Appendix: Statistical models used in

APOE ε4 study

13.1 Cross-sectional analysis

For the analysis examining the influence of the APOE ε4 allele on baseline

hippocampal volumes, the following linear regression model was used:

Yi=β0 + β1e4carrieri + β2agei + β3 f emalei + β4mmsei + β0T IVi + εi

and

εi ∼ N(0,σ2
ε1)

Yi is the hippocampal volume for subject i, e4carrier is a categorical vari-

able representing the APOE epsilon4 carrier status (0 if non-carrier, 1 if car-

rier), age is the mean centred age, female is a categorical variable for gender

(0 if male, 1 if female), mmse is the mean centred MMSE score, brainTIVra-

tio is the mean centred brain to total intracranial volume ratio, TIV is the

mean centred total intracranial volume, εiis the error term, β0is the baseline

hippocampal volume in non 4-carriers, β1is the difference in volume between

non-carriers and carriers and β2,β3, ...,β6 are the fixed effects coefficients cor-

responding to the other covariates.
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13.2 Longitudinal analysis

For the analysis examining the influence of the APOE ε4 allele on rates of

hippocampal and whole brain atrophy the following joint mixed model was

used:

Y (1)
i j = (β

(1)
0 + β

(1)
1 e4carrieri + β

(1)
2 agei + β

(1)
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(1)
4 mmsei

+β
(1)
5 brainT IV ratioi + β

(1)
6 T IVi + b(1)

i )ti j + ε
(1)
i j
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(2)
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Here Y (1)
i j denotes the jth measurement of brain loss between baseline

and time ti j for subject i, and Y (2)
i j the corresponding measure of hippocampal

loss. β
(1)
0 is the mean adjusted brain atrophy rate in non 4 -carrier males with

mean age, mean mmse score, mean brain-to-TIV ratio and mean headsize,

β
(1)
1 is the difference in mean adjusted brain atrophy rate between 4 carriers

and non-carriers, β
(1)
2 ,β

(1)
3 , ...,β

(1)
6 are the fixed effect coefficients for the other

covariates (age, gender, MMSE score, brain-to-TIV ratio and TIV) for brain

loss and b1
i is the random effect slope for subject i, likewise β

(2)
0 is the mean

adjusted hippocampal atrophy rate in non 4-carrier males with mean age,

mean mmse score, mean brain-to-TIV ratio and mean headsize, β
(2)
(1)

is the

difference in mean adjusted hippocampal atrophy rate between 4 carriers and

non-carriers, β
(2)
2 ,β

(2)
3 , ...,β

(2)
6 are the fixed effect coefficients for hippocampal

loss, and b(2)
i is the random slope for subject i.

We assumed the random slopes satisfy b(1)
i

b(2)
i

∼ N

 0

0

 ,

 σ
(2)
b1 σb1b2

σb1b2 σ
(
b22)



and
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The covariance σ
ε1ε2 allows the residual errors within visits to be corre-

lated for the two measures and the covariance σb1b2 allows the random slopes

to be correlated. This enables us to adjust the difference in hippocampal at-

rophy rates between ε4 carriers and non-carriers for concurrent whole brain

atrophy rate.



Acronyms

AD Alzheimer’s disease.

ADNI Alzheimer’s disease neuroimaging initiative.

APOE apolipoprotein.

AUC area under the curve.

BSI boundary shift integral.

CI confidence interval.

CN cognitively normal.

CSF cerebrospinal fluid.

CT computer tomography.

DLB dementia with Lewy bodies.

DRC dementia research centre.

DTI diffusion tensor imaging.

DWI diffusion weighted imaging.

EMCI early mild cognitive impairment.

FA fractional anisotropy.

FLAIR Fluid-Attenuated Inversion Recovery.
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FOV field of view.

FWE family wise error.

GE General Electric.

GM grey matter.

HMAPS hippocampal multi-atlas propagation and segmentation.

KN-BSI robust boundary shift integral.

LMCI late mild cognitive impairment.

LPA logopenic aphasia.

MAPS Multi-Atlas Propagation and Segmentation.

MCI mild cognitive impairment.

MD mean diffusivity.

MMSE mini-mental state exam.

MNI Montreal Neurological Institute.

MPRAGE Magnetization Prepared RApid Gradient Echo.

MRI magnetic resonance imaging.

NODDI neurite orientation dispersion and density imaging.

PCA posterior cortical atrophy.

PET positron emission tomography.

PNFA progressive nonfluent aphasia.

QC quality control.
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ROC receiver operator curve.

ROI region of interest.

SD standard deviation.

SMC subjective memory complaints.

SNR signal-to-noise ratio.

SPHARM SPHerical HARMonics.

SPHARM-PDM SPHerical HARMonics - Point Distribution Models.

STEPS Similarity and Truth Estimation for Propagated Segmentations.

SVM support vector machine.

tAD typical Alzheimer’s disease.

TIV total intracranial volume.

WMH white matter hyperintensities.

YOAD young onset Alzheimer’s disease.
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