
Analysis and Synthesis of

Interactive Video Sprites

Corneliu Ilisescu

Department of Computer Science

University College London

This thesis is submitted for the degree of

Doctor of Philosophy

mailto:c.ilisescu@cs.ucl.ac.uk
http://www.cs.ucl.ac.uk
http://www.ucl.ac.uk

i

Declaration

I, Corneliu Ilisescu, confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has

been indicated in the work.

Corneliu Ilisescu

January 2018

ii

iii

Abstract

In this thesis, we explore how video, an extremely compelling medium that

is traditionally consumed passively, can be transformed into interactive

experiences and what is preventing content creators from using it for this

purpose.

Film captures extremely rich and dynamic information but, due to the sheer

amount of data and the drastic change in content appearance over time, it

is problematic to work with. Content creators are willing to invest time

and effort to design and capture video so why not for manipulating and

interacting with it? We hypothesize that people can help and be helped by

automatic video processing and synthesis algorithms when they are given

the right tools.

Computer games are a very popular interactive media where players engage

with dynamic content in compelling and intuitive ways. The first contribu-

tion of this thesis is an in-depth exploration of the modes of interaction that

enable game-like video experiences. Through active discussions with game

developers, we identify both how to assist content creators and how their

creation can be dynamically interacted with by players. We present con-

cepts, explore algorithms and design tools that together enable interactive

video experiences.

Our findings concerning processing videos and interacting with filmed

content come together in this thesis’ second major contribution. We present

a new medium of expression where video elements can be looped, merged

and triggered interactively. Static-camera videos are converted into loopable

sequences that can be controlled in real time in response to simple end-user

requests. We present novel algorithms and interactive tools that enable our

new medium of expression. Our human-in-the-loop system gives the user

progressively more creative control over the video content as they invest

more effort and artists help us evaluate it.

Monocular, static-camera videos are a good fit for looping algorithms

but they have been limited to two-dimensional applications as pixels are

reshuffled in space and time on the image plane. The final contribution of

this thesis breaks through this barrier by allowing users to interact with

filmed objects in a three-dimensional manner. Our novel object tracking

algorithm extends existing 2D bounding box trackers with 3D information,

such as a well-fitting bounding volume, which in turn enables a new breed

of interactive video experiences. The filmed content becomes a three-

dimensional playground as users are free to move the virtual camera or the

tracked objects and see them from novel viewpoints.

Acknowledgements

First of all, I would like to thank my advisor, Dr. Gabriel Brostow, for his

invaluable advice, positive attitude and guidance throughout my studies. He has

always inspired me and shown me the right way. I would also like to thank my

second supervisor, Dr. Neill Campbell, for his fresh ideas and endless enthusiasm.

I am very grateful to my collaborators, Aytac and Matteo, for being there

when they were needed most. Thank you to CR-Play for funding this PhD

and to all the people involved with the project for the great insight and great

attitude. Thank you to all past and present members of the Prism group at UCL,

as well as all the 5th floor officemates, for the endless discussions over lunch and

for just being a pleasure to be around.

I would like to thank my family and friends. My parents and sister for

supporting me and always being there especially in the darkest of times. Peter

for his undeniable genius, hours upon hours of brainstorming and the late night

discussions about anything and everything. Moos and Clement for being the

greatest of friends and pushing me to be my best self. Lucy, Tracy, Clement

and Carolina for being great people and always making me feel happier. Charlie,

Frank, Dennis, Dee and Mac for bringing light into my life in the hard last months.

Last but definitely not least, Tara. You are the best thing that happened to

me. Words cannot describe how much you mean to me. This is for you.

vi

vii

Contents

Contents viii

List of Figures xii

List of Tables xiv

1 Introduction 2

1.1 Research questions . 3

1.2 Brief Overview . 4

1.3 Contributions of this thesis . 6

2 Literature Review 8

2.1 Video Looping . 8

2.2 Video Editing and Authoring . 11

2.2.1 Video-based animation . 15

2.3 Multi-view from Single view . 16

2.3.1 Image-based Rendering . 20

2.4 Conclusions . 22

3 Problem Analysis 24

3.1 Indefinite Video Playback . 27

3.1.1 Objective Distances . 29

3.1.2 Perceptual Distances . 32

3.1.3 Considerations . 36

3.2 Controlling Video Output . 37

3.2.1 Semantic Looping . 38

viii

CONTENTS

3.2.2 Speed Normalization . 42

3.2.3 Considerations . 46

3.3 Real-time Interaction . 47

3.3.1 Video Fields . 47

3.3.2 Considerations . 52

3.4 Foreground Segmentation . 53

3.4.1 Example-based Segmentation 54

3.4.2 Intensity-based Segmentation 55

3.4.3 Considerations . 56

3.5 Video Authoring . 57

3.5.1 Creating Video Textures for Video Games 58

3.5.2 Considerations . 61

3.6 Multiview Interaction . 62

3.6.1 Generating 3D Visuals from 2D Video 63

3.6.2 Considerations . 66

3.7 Conclusions . 66

4 Responsive Action-based Video Synthesis 68

4.1 System Overview . 70

4.2 Actor Preparation . 73

4.2.1 Tracking . 73

4.2.2 Segmentation . 74

4.2.3 Action Definition . 75

4.3 Video Performance . 78

4.3.1 Frame Compatibility . 79

4.3.2 Action-based Video Synthesis 81

4.4 Practicalities . 82

4.4.1 Real-time Performance . 83

4.4.2 Optimization Compression 84

4.4.3 Post-Processing Rendering 84

4.4.4 Precomputing Loops . 84

4.5 Creative Synthesis . 85

4.6 Results . 87

ix

CONTENTS

4.6.1 Counter Loop . 89

4.7 Empowerment Evaluation . 90

4.8 Discussions with Artists . 92

4.9 Conclusions . 93

5 Multi-view from single-view 96

5.1 Camera Estimation . 97

5.1.1 User-in-the-loop estimation 101

5.2 Well-grounded Tracking . 103

5.2.1 Multiple objects 2D Tracks 104

5.2.2 Estimating and Tracking Cuboids on the Ground 104

5.3 Applications . 110

5.3.1 From Tracked Cuboids to Textured Models 110

5.3.2 Video-Based Rendering . 114

5.4 Results . 116

5.4.1 Tracking . 117

5.4.2 Interactive 3D Video Experiences 120

5.5 Conclusions . 122

5.5.1 Limitations and future work 123

6 Conclusion 126

6.1 Possible Future Directions . 128

References 131

x

CONTENTS

xi

List of Figures

3.1 Video-based game asset of a candle flame 25

3.2 Distance metric differences . 28

3.3 Foreground/background grid encoding 31

3.4 HOG features . 33

3.5 Weighted L2 Distance . 36

3.6 Label propagation results . 37

3.7 Ribbon dataset . 39

3.8 Label Propagation Training . 41

3.9 Regularly sampling a 2D trajectory 43

3.10 Speed normalization software . 45

3.11 The effect of γ on video looping 50

3.12 The effect of γ on video field traversal 52

3.13 Example-based segmentation UI 55

3.14 Intensity-based segmentation UI 56

3.15 Video texture creation UI . 58

3.16 Pendulum dynamics . 59

3.17 Flag video texture in game levels 62

3.18 Generating 3D Visuals from 2D Video 64

4.1 Responsive Action-based Video Synthesis concept pipeline 69

4.2 Overview of our interactive video synthesis pipeline 71

4.3 Actor preparation user interface 73

4.4 User-in-the-loop segmentation and compositing 74

4.5 Action definition through label propagation 76

4.6 Label propagation vs . manual annotations 77

xii

LIST OF FIGURES

4.7 Video synthesis user interface . 78

4.8 Frame compatibility illustration 80

4.9 Visual representation of the energy terms in Equation 4.5 82

4.10 Precomputed control graph . 85

4.11 Creative action triggers . 86

4.12 Sample frames from our output videos 87

4.13 Our video game prototype: Counter Loop 90

4.14 Video synthesis user study timings 92

5.1 Line segments . 99

5.2 Camera pose estimation based on horizon line and ground plane . 101

5.3 Tool for manually estimating camera pose and scene geometry . . 102

5.4 Spline-based trajectory smoothing 106

5.5 Well-grounded tracking energy terms 108

5.6 3D reconstruction cost volume . 112

5.7 Free-viewpoint interactive video 115

5.8 Manual vs automatic bounding volume tracking 119

5.9 Reconstruction and 3D VBR results 121

5.10 3D Reconstruction and VBR limitations 123

xiii

List of Tables

4.1 Our Responsive Action-based Video synthesis datasets 88

5.1 Tracking and 3D reconstruction datasets 116

5.2 Tracking accuracy of our automatic algorithm compared to manu-

ally tracked objects in a variety of input videos 118

xiv

LIST OF TABLES

1

Chapter 1

Introduction

Films and video games are two extremely appreciated entertainment media and

two of the biggest earning businesses worldwide, generating billions yearly. While

both are enjoyed by millions of people, they are inherently different. Films are

essentially consumed passively while video games are highly interactive and users

play an active role in what they are presented with. In recent years, big video

game companies have invested much effort into producing more refined film-like

experiences where, along with more complex and involving stories, visual fidelity

has played a very important role.

Photo-realism has long been a central goal to the video game industry. While

big leaps have been made towards achieving it, it still eludes us. Additionally,

massive amounts of resources and hundreds of talented people are required to

create ever more visually striking and technically complex video games. Recently,

a new breed of algorithms have become available to game developers. Never

before seen levels of realism are achieved with less effort by directly replicating

the real-world appearance of single objects or full environments captured through

photography. On the one hand, photogrammetry methods such as [FG14] allow

people to capture the appearance of objects and use them as traditional video

game assets by simply taking photos of them from multiple viewpoints. On the

other hand, image-based rendering (IBR) methods such as [LH96, BBM∗01] and

more recently [CDSHD13, HRDB16, HASK17] can synthesize new views of a

photographed scene by interpolating between captured ones and thus allowing

users to move freely in a photo-realistic 3D environment.

2

While incredibly successful, all the methods above make the critical assumption

that the scenes or objects captured in the input photos are static. As a consequence,

one is presented with a completely static environment. While it looks photo-

realistic, it also feels fake as the movement present in everyday life, such as the

subtle movement of trees in the wind, clouds in the sky or even passersby, are

missing from the experience. Moreover, there are no easy ways to manipulate IBR

or photogrammetry assets as shape and appearance are baked-in to replicate the

captured images. In contrast to photos, videos can capture dynamic elements and

effects over time, so it stands to reason that a realistic experience would benefit

from using this type of media.

In this thesis, we explore how dynamic elements that can only be captured

with a video camera, can be re-introduced into otherwise static experiences such

as those produced by traditional IBR methods or even into video game engines

to be used alongside traditional and image-based assets. We are also concerned

with devising techniques that give users the ability to manipulate and be creative

when making video assets. In parallel, we investigate how videos can be used for

interactive experiences, whether standalone or from within a video game setting.

These are aimed at actively engaging end-users as opposed to treating them as

passive consumers of an immutable medium such as film.

1.1 Research questions

As mentioned above, stills have long been used for photo-realistic interactive

content (e.g . photogrammetry [FG14]) but they are inherently static. In contrast,

videos capture dynamic events that happen over time but, as such, are harder to

work with. In this thesis, we hypothesize that interactive tools and automation

can assist content creators in the creation of video experiences to engage audiences

in new ways.

We test this hypothesis mainly by addressing the following research question:

in what ways can watching videos become a more interactive experience if content

creators are actively involved in the process of reasoning about and synthesizing

videos. Practically speaking, we are interested in going beyond simple infinite

playback (e.g . [SSSE00]) and identifying meaningful ways in which videos can

3

1. INTRODUCTION

react to human action. Moreover, we would like to define the type of information

that needs to be inferred from a simple sequence of stills to enable real-time

interaction between humans and video content. Finally, we are concerned with

devising techniques that support content creators to ensure efficient processing

and building of interactive video experiences.

1.2 Brief Overview

We now give a brief overview of how this thesis is organized. In Chapter 3, we take

a close look at the data we capture when recording dynamic elements over time.

In particular we seek a better understanding of what are desirable qualities of

interactive videos and how they can be accomplished. We find that there are two

main limitations inherent to traditional film experiences: a) their limited duration

and b) the lack of information to leverage for meaningful real-time interaction.

In an interactive setting, such as video games, players are free to interact with

and enjoy the experience for as long as they like. Since we cannot capture and

store an infinite amount of video frames or even efficiently process large quantities

of images, we must find ways to give the impression the video is playing indefinitely.

In 2000, Schödl et al . introduced the Video Texture [SSSE00], a seemingly endless

stream of images created from a finite length video. Videos are played back

indefinitely without visible cuts, such as those seen when a video reaches its end and

starts over, by jumping around the original time-line wherever seamless transitions

are possible. This concept is commonly know as video looping and many researched

it extensively over the years such as [SSSE00, KSE∗03, LJH13, SLWSS15] to name

just a few. The core idea behind all of these methods is to find visually similar

pairs of frames or patches that can be used interchangeably. Finding said pairs

becomes quickly troublesome when we widen the range of videos we tackle beyond

those that are easy to loop. Simply comparing the appearance of two frames

by, for instance, taking the difference between their pixels’ intensity, can prove

inaccurate. We therefore explore alternatives in Section 3.1.

While an indefinitely looping video can be entertaining on its own, we believe

interactivity is crucial to immersing audiences into a video experience, giving it a

more game-like appeal. This could take the shape of a fluttering flag correctly

4

reacting to the player changing the direction or intensity of the wind. Or it could

look like a street crossing where players are given the ability to select which cars

should move and how. Or it could even mean giving users the power to control

which drums a drummer is seen hitting in a video by simply pressing buttons on

a keyboard. In Sections 3.2 and 3.3 we explore ways of introducing additional

information into the process of creating new video content and how to make this

reactive to users in real time. The remainder of Chapter 3 explores additional

research problems we believe are important to making interactive videos a reality,

such as effective authoring tools for content creators (Sec. 3.5) and multi-view

capabilities similar to IBR (Sec. 3.6).

In Chapter 4 we take some of the ideas discussed in our problem analysis

chapter, improve upon and package them in an end-to-end software package that

enables the creation of interactive video experiences. Informed by numerous

discussions with game developers that were actively involved in the development

of some of the ideas presented in this thesis, we make the conscious choice to

cater for both content creators and content consumers. As content creators, game

developers generally expect better results if they invest more effort. Therefore, our

system is designed to enable users’ active involvement in helping and being helped

by otherwise automatic algorithms throughout the “interactive videos creation

pipeline”. We also informally explore and discuss the human-computer interaction

(HCI) side of the coin. This includes investigating how our system helps content

creators but also how casual users can create new videos in real time with just a

few button presses.

Finally, we dedicate Chapter 5 to the next step towards turning traditional

videos into a game-like interactive medium. As we discuss in Section 3.6, we

would like to reason about videos in terms of a 3D world, as opposed to the

purely 2-dimensional images discussed in Chapter 4. This reasoning brings us

closer to modern day video game scenarios. We show in Section 4.6.1 how we

can let players decide when cars should move through a street crossing but what

if we wanted to let them change how the car moves? We would have to know

how the car looks like when it’s seen from a different viewpoint, how it moves

in the real world and how it changes appearance based on how far away from

the camera it is. We make strides towards recovering this type of information by

5

1. INTRODUCTION

devising a new method for tracking 3-dimensional objects given 2-dimensional

boxes tracked over time in the input video. This informs us about how the object

looks like from different viewpoints and how it gets occluded by and occludes

other objects present in the filmed scene. It can also help automate some of the

painfully manual processes described in Chapter 4 such as tracking moving objects

and separating them from the background, thus reducing necessary user effort

while keeping quality high. Finally, we show how it enables novel applications

such as 3D reconstruction (Section 5.3.1) and revealing more information through

novel view synthesis (Section 5.3.2).

1.3 Contributions of this thesis

In this thesis we have made strides towards a better understanding of how video

data can be used in interactive and real-time settings. Our contributions are as

follows:

• an in-depth exploration of the problems surrounding the processing and

packaging of video data for interactive use cases, along with an investigation

of potential research directions;

• a new medium of expression, akin to audio live looping, that allows one

to create new videos in real-time by simply requesting filmed subjects to

perform user-defined visually distinct actions;

• an end-to-end system that enables the above mentioned medium of expression

by providing content creators the tools to process, annotate and synthesize

video content;

• a novel object tracking algorithm that extends existing 2D bounding box

trackers by estimating a 3D bounding volume and placing it on the 3D world-

space ground plane which enables new applications such as reconstructing

the three-dimensional shape of the tracked objects.

6

Publications

Parts of this thesis have been published in the following publication:

Ilisescu, C., Kanaci, H. A., Romagnoli, M., Campbell, N.

D., Brostow, G. J.: Responsive Action-based Video Synthesis. Proceedings

of the 2017 CHI Conference on Human Factors in Computing Systems, (2017),

ACM, pp. 6569-6580.

7

Chapter 2

Literature Review

In this chapter, we present the related literature to the topics central to this thesis.

Each section tackles a different topic and several inspirational works and current

state of the art approaches are discussed. In Section 2.1 we discuss video looping,

the difficulties it presents and proposed solutions. Section 2.2 is concerned with

authoring video content, algorithms for synthesizing and editing videos and the

interactive tools they are part of. Issues related to creating multi-view outputs

from monocular static or moving cameras are presented in Section 2.3 and to

briefly exploring the image- and video- based rendering literature and how they

enable interactive experiences.

2.1 Video Looping

Looping a video refers to the ability to play back a finite-length video for an

indefinite amount of time without visible cuts or transitions. When a video

reaches its end, playing it back from the start results in a disturbing jitter effect

as a clear jump or transition occurs. This is due to the fact that images at the

beginning and the end of a filmed sequence do not typically look alike. The key

technique that makes video looping possible is the ability to find frames within a

video corpus that have a similar appearance.

The pioneering work by Schödl et al . [SSSE00] introduced the concept of

video texture: a middle-ground between image and video where dynamic events

8

happen indefinitely without visible cuts. It worked by finding interchangeable

pairs of frames and using them to jump across the original time-line seamlessly.

Given the similarity between every possible pair of frames, which was defined

as the Euclidean distance between each pixel’s color intensity, Schödl et al . pre-

compute finite-length seamless loops. They could be combined to create a longer,

more varied looping video using dynamic programming. Similar work had been

previously presented by Bregler et al . in Video Rewrite [BCS97] where video

sequences of people speaking were re-composited to match a given arbitrary audio

track. Unfortunately, assuming that similar pairs of frames exist limits the types

of videos drastically to ones showing a single subject or depicting repetitive or

stochastic motion. In fact, such methods struggle with videos containing multiple

independent subjects or complex motions.

In order to cater for a wider range of videos that may contain large or non-

repetitive motions and, more generally, large changes in appearance over time,

some have attempted to treat groups of pixels separately from one another. For

instance, one could group pixels based on whether they contain the same object

over time or whether they show similar motion. These patches are commonly know

as video sprites and are often used in the literature to break a sequence of images

into contained regions of similar appearance or behavior. This term was originally

introduced by Pollard et al . to represent an alpha matted region of a video in

their work about view interpolation [PPHL98]. However, a similar concept, called

video clip-art, was used by Finkelstein et al . to allow alpha-matted video regions

to be freely composited together in their spatial and temporal multi-resolution

work [FJS96].

Generally speaking, the process of defining temporally-coherent patches corre-

sponds to segmentation as evidenced by the work on texture synthesis by Kwatra et

al . [KSE∗03]. Their Graphcut Textures work enables the creation of larger pic-

tures or looping videos by shuffling in space and time patches of pixels using an

energy minimization approach. A Markov Random Field (MRF) is defined over

the pixel grid, and in the case of video over the three-dimensional pixel volume,

and the best matching seams are found using graph cuts [BVZ99]. Extensions

for panoramic videos [AZP∗05] and stereo panoramic videos [CLR11] where also

explored. In [AZP∗05], Agarwala et al . first find video loops in dynamic regions

9

2. LITERATURE REVIEW

of the input video which are manually defined by users. They then merge looped

dynamic regions with static regions using a two step process that uses dynamic

programming to prune the search space for a full MRF. In contrast, Couture et

al . [CLR11] choose to use full frames and focus on the additional registration

issues introduced by their stereo input videos. They do not need a graph cut-based

solution and show they can reach good results by simply blending looped video

blocks that overlap in time.

Similar to video textures, cinemagraphs [BB12] are still images that contain

minor repetitive motions. While traditionally they were manually created using

image and video editing software, a number of automatic and semi-automatic

methods to simplify this tedious process have been devised in recent years. Often,

methods derived from [SSSE00] are used to loop spatio-temporal patches of pixels.

In [TPSK11], Tompkin et al . find motion in a stabilized input video automati-

cally and allow users to manually select which regions to loop. They interpolate

frames around visible jumps using bi-directional SIFT flow [LYT∗08]. Joshi et

al . [JMD∗12] present a similar system but give users more control over the final

video composition and use feathering to disguise temporal discontinuities. Bai et

al . [BAAR12] use graph cuts to define video segments dynamically, loop them indi-

vidually or de-animate them using warps, while in their follow-up work [BAAR13]

focus specifically on portraits. Finally, Sevilla-Lara et al . [SLWSS15] focus on

videos exhibiting camera motion which significantly increases the looping com-

plexity and thus limit themselves to single dominant subjects.

Liao et al . present a more generic system in [LJH13, LFH15] where cinema-

graphs are created by automatically finding video loops using a 2D MRF over the

pixel grid. Their energy function is designed to ensure that pixel neighborhoods

are spatially and temporally consistent while static pixels remain so if they are in a

static region of the video. The goal of the optimization is to find, for each pixel in

the MRF, a starting time sx and a time period px over which the looping happens.

Moreover, each pixel is assigned an activation threshold ax ∈ [0, 1] that indicates

at which level of dynamism the pixel switches from being static to looping. The

per-pixel activation thresholds and time periods define a segmentation of the video

scene based on level of dynamism. Neighboring pixels are assigned to the same

dynamic region if they have the same looping period and activation level and their

10

temporal extent overlaps. Users can interactively scribble over the segmented

video to decide which areas to loop in the result.

All the techniques suffer from a number of limitations. First of all, all

but [SLWSS15] assume the camera is static. Moreover, they assume there is only

one [SSSE00, BAAR12, SLWSS15] or few [TPSK11, JMD∗12] non-overlapping

filmed objects. Even when no assumptions are made about the number of moving

subjects [KSE∗03, LJH13], they struggle with large motions such as when objects

move across the video frame and even come in and go out of sight over time.

Crucially, none of the presented systems give users the opportunity to correct mis-

takes such as when the looping or jump disguising algorithms struggle. Moreover,

existing methods give little to no control over the synthesis process and only focus

on finding jumps or disguising them. Users are usually limited to selecting patches

of pixels as seen in [TPSK11, BAAR12, LJH13] or very specialized control such

as controlling where a fish goes in a tank as shown in [SSSE00].

2.2 Video Editing and Authoring

Video looping is a powerful tool and allows new and interesting outcomes to be

synthesized. However, most of the methods described in Section 2.1 can sometimes

produce unexpected results and users have little to no way of intervening and

correcting or controlling the synthesis process.

The first attempt at reintroducing user control over video synthesis comes from

the original Video Textures paper by Schödl et al . [SSSE00]. In this paper, they

allow videos to be used for animation by selecting frames based on other criteria

other than whether they create a good looking loop. One such criteria is the

range of frames to loop over which allows users to show different parts of a video

such as a runner running at different speeds on a treadmill. In contrast, Bhat et

al . [BSHK04] propose using particles to represent and synthesize phenomena such

as waterfalls, smoke and fire. Users are required to draw lines (called flow lines)

on the input video over the moving parts that they want to edit (such as water).

Particles are then simulated along these lines and appearance at each time step

is learned. To create a new video, the flow lines are arbitrarily rearranged and

modified and are used to simulate new particles which are in turn used to render

11

2. LITERATURE REVIEW

the appearance of the moving phenomena. Examples of edited waterfalls and

smoke are shown in their paper.

A number of techniques and associated tools have been developed to en-

able users to easily create cinemagraphs [TPSK11, BAAR12, JMD∗12, LJH13].

In [TPSK11], Tompkin et al . allow users to click on regions they have automatically

segmented based on amount of motion to decide whether they should be frozen in

time or show an animation. In contrast, Joshi et al . [JMD∗12] present a simple

and intuitive non-linear video editor where users can quickly segment moving

elements and animate them using one of three idioms: loop, mirror and playback.

Many layers of moving and static elements can be composited together by using

the provided user interface. Liao et al . [LJH13, LFH15] allows users to control

which parts of the final video to loop by scribbling over the automatically found

clusters of pixels. Bai et al . [BAAR12] allow users to guide their video synthesis

algorithm by scribbling over pixels they want to control. Each scribble brush

indicates to the system whether areas should be synthesized static, de-animated

or looped.

The techniques described above are very powerful but present two major

limitations. First, they only allow very specialized or limited control. For in-

stance [BSHK04] assumes motion can be described by a particle simulation,

[SSSE00] assume motion variations are filmed sequentially while the remaining

only give users a binary choice of “(not) animate”. Second, all the presented

methods but [SSSE00] do not allow for real-time interaction. Videos are processed

and edited using the provided tools but, once the choices of what and how to loop

are made, they are recorded and rendered into a final video which can be simply

enjoyed as traditional content.

A separate research thread in video editing methods is called re-timing and

consists in reordering filmed events for new and interesting effects. Pritch et

al . [PRAP08] focus on condensing large amounts of video into short animations.

They track moving objects such as cars at a road crossing and composite them

together to minimize the length of the final video while avoiding collisions. Klein et

al . [KSC∗01] represent videos as a spatio-temporal volume and allow artists to

semi-automatically slice it to produce interesting artistic effects such as cubism.

Similarly, Lu et al . [LZW∗13] track moving objects to produce bendy tubes of

12

pixels in the video volume. Users are given the tools to manipulate these so-called

video sprites by cutting, stretching and repositioning them in order to rearrange

the original objects in the input video. Similarly, Shah and Narayanan [SN13] allow

users to navigate the input video by scrubbing a cursor over an object’s trajectory

in the video volume and manipulate them by reordering, re-timing, cloning,

removing or reversing them. Their system also deals with moving cameras, for

which they can create wide field of view videos or synopses. DuctTake [RWSG13]

performs spatio-temporal video compositing by finding seams in the video volume

in a similar manner to [KSE∗03]. Events filmed in the same scene but at different

times can be composited together by scribbling over the input video frames.

Liao et al . [LYGC15] build on this by allowing music to drive event re-ordering.

Finally, Rav-Acha et al . [RAPLP05] bend time for image patches by projecting

their pixels onto evolving time fronts.

Once again, the methods presented above suffer from the crucial limitation

that the interactions with the content creator happen off-line, so they are not

suitable to game-like scenarios. Often they also require a non-indifferent amount

of user effort such as in the case of [LZW∗13] where the manipulation of the bendy

tubes mentioned above, while intuitive, require expertise and careful planning

to avoid undesirable effects such as colliding cars. Moreover, the techniques

above are limited to interactions with moving objects (e.g . cars) and the frame

re-arrangement is only able to manipulate the time at which events happen. One

could not, for instance, change the way a car moves.

Goldman et al . [GGC∗08] argue that many interesting video editing appli-

cations can be made possible if we provide object tracking, annotations and

compositions. Their system allows users to select objects in a video and directly

control them by manipulating sets of tracked feature points. A sparse set of

points are tracked over time and grouped together based on motion similarity.

Users can then select subsets of them and use the mouse cursors to drag and drop

points which in turn traverses the video timeline to show the associated motion.

In [CPW∗11], Chen et al . go the extra mile by providing intuitive tools for image-

based modeling. They allow users to manually specify rough geometric shapes

which in turn are used to constrain their 2.5-dimensional video representation,

the “Video Mesh”. Moving elements can be copied and placed consistently in the

13

2. LITERATURE REVIEW

scene and special effects such as smoke and depth of field can be added by using

the depth information. Other systems focus on smart ways of navigating video

content such as the Direct Manipulation Player by Dragicevic et al . [DRB∗08]

where users can drag filmed objects in the image plane as their point trajectories

are associated to traversal of the video time-line. In [NNL14], Nguyen et al . allow

similar functionality on mobile devices while in [NNL13], they allow users to

intuitively navigate a video by dragging a cursor over 2-dimensional trajectories

visualized in a 3-dimensional space-time volume.

The importance of tracking and segmentation

As previously mentioned, complex videos showing multiple objects moving inde-

pendently, do not lend themselves to video looping techniques that use full frame

statistics such as the original video textures paper [SSSE00]. As seen above, it

is common to track objects or sets of pixels over time and segment them from

the background. This simplifies the problem by dividing the input footage into

multiple moving elements that can be treated separately. There are many methods

to tackle this problem found in the literature.

Lu et al . [LZW∗13] adopt a user-centric approach by allowing them to define

ellipsoids encompassing the filmed objects at key frames and interpolating between

them. The objects are then segmented based on their difference to the background.

In [GGC∗08], Goldman et al . track a large number of image points using [ST06]

and grouping them into clusters based on motion similarity using a K-affines

motion model. The moving objects in the final videos can then be composited

using graph cuts. In contrast, Dragicevic et al . [DRB∗08] use a feature-based

optical flow estimation scheme to estimate object motion. A different approach

is taken by Chen et al . [CPW∗11] where, in addition to tracking sparse feature

points like above, they define a mesh based on a Delaunay triangulation of said

points. Users then define occlusion boundaries at a few key frames while the

remaining frames are interpolated based on the tracked mesh.

As discussed in the following chapters, segmentation and tracking play a very

important role in many video editing and synthesis applications and they are

equally important in the interactive video experience scenario we strive for.

14

2.2.1 Video-based animation

A field of research that employs looping and jump disguise techniques but does

not use video data is data-driven character animation. Unlike video textures,

where the data is made of sequences of video frames, animation systems typically

use motion capture data, i.e. a 3D skeleton of a tracked character with positions

and orientations of joints over time. A new animation can be created, similarly to

video looping, by reordering the captured data and jumping around the originally

captured time-line. There has been much research in how to use this data to control

the captured performance in real time. Arguably, the most important methods

used to date are graph-based such as Motion Graphs by Kovar et al . [KGP02]

and the similar works from the same year of Lee et al . [LCR∗02] and Arikan

and Forsyth [AF02]. These methods define a graph structure where nodes are

sequences of motion data and edges represent transitions between them much

like they were defined in Video Textures [SSSE00] as pointed out by Lee et al .

in [LCR∗02]. Once the graph is constructed, it is traversed based on user-defined

constraints and requirements (e.g . follow this direction using this specific gait)

to create new animations such as indefinitely looping specific ones or seamlessly

transition between them.

Based on similar concepts, video-based character animation methods emerged

over the years. In the original video textures paper [SSSE00], Schödl et al . adapted

their looping technology to allow users to control the path of a filmed fish by simply

using a mouse. The video of the fish is segmented, a sprite is extracted and is

annotated with a velocity vector denoting where the fish is going. This information

is then used to rearrange the video frames such that the fish goes towards the

user-defined destination. In their follow-up paper Schödl and Essa [SE02] facilitate

the animation of characters, specifically animals (e.g . hamsters and flies), given a

video showing them naturally moving in front of a green screen. A video sprite of

the filmed character is extracted from the background using chroma keying and

corrections for perspective distortions are applied. Features, such as sprite velocity,

area and color, are extracted and, following methods outlined in their previous

work [SE01], a distance metric is learned using a linear classifier. It is then used

to define transition costs between different frames in the sprite sequence which

15

2. LITERATURE REVIEW

are finally animated by optimizing a cost function using repeated subsequence

replacement. The cost function is defined based on a set of constraints that users

might want to be able to control such as location, path to follow, collisions and

range of frames. Finally, the sprite sequence can be composited onto different

backgrounds and projected into a virtual camera to get the desired perspective

effect.

More recently, the very relevant “Human Video Textures” by Flagg et al . [FNZ∗09]

introduces video-based character animation of humans in a manner much similar

to [SSSE00] while Casas et al . [CVCH14] achieve similar results in free-viewpoint

interactive settings. They introduce a novel compression technique to cope with

large amounts of input data and a new rendering technique based on optical flow

for aligning texture from multiple viewpoints to avoid ghosting artefacts.

The methods above have been proven very successful given enough input

data [SE02]. They excel at what they were specifically designed to do, i.e. perform

character animation where users are interested in making the character move from

a point A to a point B. It is unclear however if they would lend themselves to

different types of interactions with video content. Moreover, they do not support

active user or content creator involvement for fine-grained creative control or to

correct mistakes.

2.3 Multi-view from Single view

The majority of the methods presented in the previous sections reason about

filmed content in a two-dimensional sense. In some, time represents the third

dimension, but the input videos are almost always manipulated as representations

of a 2D world. In reality of course, videos are two-dimensional projections of

a 3D world changing over time. By reasoning this way, many new ways of

interacting with filmed content become available, such as intuitive and seamless

object manipulation and new view synthesis. In this section, we present a number

of works found in the literature that enable this more accurate kind of reasoning

and, eventually, the more immersive and compelling interactive video experiences

that we discuss in Chapter 5.

16

Single image-based new view synthesis

There are generally two distinct ways of generating a new view from a single

image. The first one is concerned with finding geometric representations of the

captured scene and using it to approximate how the scene or object would look

like from a novel view. Horry et al . [HAA97] rely on the user to solve this problem

by providing a tool that allows them to quickly define a rough approximation

of the scene geometry. They define vanishing points, a set of planes for the

background and billboards for the foreground objects and the resulting mesh is

used to render a new, user-specified view point. Oh et al . [OCDD01] take a similar

user-heavy approach, but in addition to geometric primitives such as planes, they

allow users to also directly “paint depth” using a brush. In Automatic Photo

Pop-up [HEH05], Hoiem et al . construct a 3D representation of outdoor scenes

by classifying each super-pixel in an over-segmentation of the input image as

one of three classes: ground plane, orthogonal walls and sky. A novel view can

be rendered by texture mapping a three-dimensional mesh built on top of the

classified set of super-pixels. Zheng et al . [ZCC∗12] assume that most objects

in a scene can be represented using cuboids. They can fit these simple shapes

semi-automatically to objects in the scene and allow their manipulation directly

in the image space. In contrast, Chen et al . [CZS∗13] allow users to quickly model

objects in an image by constraining it to fit to the image edges. This allows

shapes to be defined very quickly using only a few strokes. Finally, Kholgade et

al . [KSES14] can render new views of objects in a single image by selecting a

suitably similar 3D model from a database and semi-automatically aligning it

to the object itself. Similarly, Rematas et al . [RNR∗17] present a method that

can generate plausible new viewpoints of a photographed object by using the 3D

information of and aligned 3D template to in-paint dis-occluded regions.

The methods above balance between detailed shape representations and neces-

sary user effort. On the one hand, there are methods such as [ZCC∗12, HEH05]

which assume a simplistic representation but only require limited user input. On

the other, [KSES14] require users to invest more effort but the shape represen-

tation is extremely detailed. Moreover, various assumptions are made such as

the image only having a single vanishing point [HAA97] or having and finding a

suitable model in a database [KSES14]. It is clear then that there is a need for

17

2. LITERATURE REVIEW

more robust and generic methods.

The second type of methods used to tackle the view synthesis problem from

a single image is based on learning. The assumption is that one can learn a

parametric model of a certain type of objects or scenes and use it at test time

to generate a new view given an input image. An emerging technology used in

learning problems are Convolutional Neural Networks (CNN). For instance, Eigen

and Fergus [EF15] use a CNN to infer depth and surface normals which can be

used to render a novel view of a scene. Tatarchenko et al . [TDB15] also use a

similar approach but are able to render a novel view of a previously unseen car

from just a single example image. Zhou et al . [ZTS∗16] improve on their result

by generating a flow image to displace pixels from the input image rather than

directly inferring pixel colors. Not specifically designed for novel view synthesis,

[MAFK17] by Mousavian et al . uses CNNs to estimate the bounding volume

placed in the 3D world given a photo and a bounding box showing where the

object of interest is in image space. This information could then be used given

multiple observations of the same object to reconstruct and render it from novel

view points.

The methods above have been proven to reach very impressive results. However,

while [TDB15, ZTS∗16] allow for high customization of captured objects in the

shape of novel view synthesis, they only operate at very low resolutions. On the

other hand, systems such as [MAFK17] are mostly designed for and evaluated on

tracking benchmarks and, as such, may simply become a piece in the puzzle for

an interactive video experience system.

Multi image and video-based new view synthesis

The papers described above suffer from being severely under-constrained. As such,

multiple assumptions must be made and often one must rely on user input. One

way to counteract this issue is to capture more data in order to introduce more

information and potentially reduce observation noise through redundancy. Two

ways to do this found in the literatures are to i) use a single but moving camera

and ii) use multiple synchronized static cameras.

Casas et al . [CVCH14] introduce a method for creating free viewpoint anima-

tions of people performing various actions. They capture synchronized footage

18

from multiple static locations and use them to reconstruct the 3D shape of people.

They can create new animations by interpolating between captured shapes which

are textured by blending colors from multiple input viewpoints using an on-line

optical flow-based rendering technique. In contrast, van den Hengel et al . use

a moving camera to film a static scene in [vdHDT∗07]. Objects present in the

captured video can be modeled by manually drawing lines on the video frames

using their user interface. This results in a static textured mesh that can be

rendered from any viewpoint.

Different approaches are based on tracking clouds of feature points over time.

Their 3D location can be triangulated as part of a process called Structure from

Motion (SfM). For instance, Lebeda et al . [LHB15] reconstruct objects, such as

cars, filmed with a single moving camera by tracking features and camera pose in

time to produce a probabilistic model of shape. This shape is improved upon as

more of the object is seen over time and results in a textured model which can

be viewed from any viewpoint. In [CCM16], Chang et al . render novel views of

filmed objects using a novel image-based rendering algorithm. They first model

the scene using a set of sparse structured points which are grouped interactively

by an user. Optionally, they can define primitives to better model objects. They

can then define new paths for the object to follow in the captured (or a new)

scene.

Unfortunately, the methods presented above suffer from a number of limita-

tions. Methods such as [CVCH14, CCM16] require specialized capture setups

and therefore are not suitable to casual scenarios and require careful planning.

Additionally, [vdHDT∗07, CVCH14] expect users to invest significant effort to

model objects and to guide synthesis. Moreover, all methods but [CVCH14] result

in static representations of an object. Thanks to their image-based rendering

approach, Chang et al . [CCM16] can render view-dependent effects such as spec-

ularities given the right capture setup, but they cannot retain object-specific

details such as the spinning wheels of a car. Finally, methods based on feature

tracking such as [LHB15, CCM16] rely on the ability to match points in different

views based on their appearance. While Lebeda et al . show in [LHB15] that this

can be done for relatively small objects that occupy between 1% and 10% of the

frame area, point-based features may not be as successful for smaller objects that

19

2. LITERATURE REVIEW

frequently occur in surveillance-type scenarios (which we will see make for great

interactive video experiences in Chapter 4).

2.3.1 Image-based Rendering

In this section, we briefly introduce concepts and seminal papers in the field of

Image-based Rendering (IBR). While the aim of this thesis is not to innovate in

this field, IBR enables new and compelling interactive video experiences which we

describe in Section 5.3.2. For this reason, we only focus on what we believe is nec-

essary for a basic understanding and defer the reader to [FH∗15] for reconstruction

and the excellent image based rendering survey [SCK08].

The core idea behind IBR is the fact that photos of an object capture their

appearance from a number of viewpoints. Given the shape of a scene, one can then

interpolate between the input views to look at it from a novel viewing location.

Roughly speaking, the difference between various IBR methods consists in the

choice of reconstruction method which infers the shape of what is filmed and

the choice of how to use this information to infer the appearance from a novel

viewpoint.

The aim of the reconstruction stage in an IBR system is twofold: i) recover the

pose of the cameras that took the photos and ii) construct a detailed representation

of the scene geometry. Typically, Structure from Motion (SfM) is used to compute

the camera parameters, i.e. location, orientation and intrinsics parameters. The

SfM process consists of first finding 2D feature points in ever input image and

matching them with one another. This results in a set of 2D tracks that show

how points move between input viewpoints in the image plane. Finally, camera

parameters and the triangulated 3D locations w.r.t. the cameras for all the matched

points are recovered using geometric solvers and RANSAC [FB81]. An additional

Bundle Adjustment stage may be performed to refine the initial estimates by

minimizing the re-projection error of tracked points into the input image. Many

SfM methods have been devised over the years, most notably [SSS08, MMMO,

SF16].

Given the camera parameters and the sparse set of points recovered through

SfM, the detailed dense geometry of the captured scene is constructed using

20

algorithms collectively known as Multi-view Stereo (MVS). The goal of this

sections is not to discuss the in-depth intricacies of MVS, so we will limit ourselves

to saying that the biggest difference between Multi-view Stereo algorithms is in

the type of output. As mentioned previously, this is a dense representation of

the scene geometry and it can take the form of per-pixel depth maps, clouds of

3D points with color, signed distance functions over a three-dimensional grid of

voxels or triangular (textured) meshes. For more information, please consult the

great practical introduction to MVS by Furukawa and Hernandez [FH∗15].

Image-based Rendering (IBR) algorithms aim to render the appearance of a

scene from a novel view point by only using the information captured by real

photographs. The most common way to perform IBR is to use the camera

parameters inferred through SfM and the dense reconstruction from MVS to infer

the color at each 3D world point as a combination of their color in the input views.

The amount each image contributes to the final color depends on the relationship

between the input viewpoints and the new viewing location, e.g . the angle between

the rays going from each input camera to a given point and the ray from it to

the target camera. The main difference between IBR methods lay in how they

balance geometry quality with the number of input images used for rendering. At

one extreme of the spectrum, method such as [GGSC96] require a large number

of images to blend between and can cope with very approximate geometry. At

the other extreme, methods such as [HASK17] rely on very accurate geometry

but only use few images to render a new viewpoint by texture mapping a mesh.

Most other methods are somewhere in-between and attempt to compensate for

inaccurate geometry by blending between multiple images [CDSHD13, HRDB16].

Other differences include the way input images are captured (e.g . narrow baseline

and structured [GGSC96] or wide baseline and unstructured [BBM∗01]), the type

of scenes (e.g . outdoors [CDSHD13] or indoors [HRDB16]), the type of scene

geometry (e.g . global [HASK17] or per-image [HRDB16]) and the supported

amount of deviation from input views (e.g . little in-between views [GGSC96] or

completely free [HRDB16]). For more details, please the comprehensive analysis

of IBR techniques in [SCK08].

21

2. LITERATURE REVIEW

2.4 Conclusions

Given the vast literature presented in the previous sections, we believe there are

two common limitations that need addressing.

The first limitation is the fact that the majority of the previous work has made

assumptions on the type of input videos, e.g . static monocular cameras, and filmed

objects, e.g . one [SSSE00, BAAR12] or few [TPSK11, JMD∗12] non-overlapping

ones or presenting little in-frame movement [KSE∗03, LJH13]. While multi-camera

or multi-sensor footage is not the focus of this thesis, by relaxing the assumptions

made on the type of filmed objects we can cater for a wider variety of video types.

We tackle this limitation mainly in Chapter 4 by introducing interactive tools

for processing videos and using generic and abstract information to describe the

filmed content.

The second, crucial limitation evident in existing literature is the lack of

interactivity. This is present at two levels. On the one hand, often there is

no means for people to correct automatic algorithms such as the video looping

from [SSSE00, LJH13]. We tackle this in, for instance, Chapter 4 by providing

user-in-the-loop procedures for tracking and segmenting objects and by defining

incompatibilities between actions performed by different filmed subjects. On

the other hand, consumers are generally limited to being simple spectators. For

instance, once a loop is created in [SSSE00], we can merely watch the infinite video

or in the case of [LJH13] use a slider to define the amount of motion. Even when

more manual control is allowed by means of specialized tools [TPSK11, LZW∗13],

modifications are recorded and videos are rendered offline after the fact. In

Chapter 4, we introduce the action as a generic user-defined abstraction, which

we leverage to make the final video react in real time to a player’s action. In

Chapter 5, we introduce even more control over an input video by allowing the

virtual camera to move in 3D or tracked objects to be actively controlled.

22

Chapter 3

Problem Analysis

Films and photos are traditionally passive mediums. People are merely spectators

limited to seeing what the content creators envisioned and captured. In contrast,

video games are an interactive medium where the players are an active part of

how the content is enjoyed. In this chapter, we are interested in exploring ways

to make traditional videos more similar to video games by instilling interactivity

into them.

Over the years, many have explored ways to make photos more interactive.

Typically, this is done by allowing users to move the virtual camera through a

technique called image-based rendering (IBR). Techniques such as [CDSHD13,

HRDB16] take multiple images of a scene, reconstruct it using Structure from

Motion and Multi-view Stereo [FH∗15] methods and are able to change the view

point in real time by interpolating between captured ones. This allows them to

virtually fly through the captured scene. Arguably, the biggest limitation of IBR

methods is that they rely on scenes being static which, as a result, make them

look fake even though they are technically photo-realistic.

In contrast to photos, videos capture dynamic events that happen over time

which make them more compelling and immersive. However, videos are notoriously

hard to work with due to the larger amount of data and the (sometimes) drastic

appearance changes over time. For these reasons, traditional methods designed

to work with photos of static scenes, such as the ones mentioned above, cannot

typically cope with video data. Moreover, while moving the camera to reveal new

parts of the scene is certainly appealing, there may be other ways to make videos

24

interactive and more engaging.

(a) Original video frame (b) In-game asset

Figure 3.1: Given a video of a candle (a), we can create a controllable video-
based computer game asset (b). Note how the direction in which the flame flickers
changes according to the game’s wind simulation.

That said, we set out to achieve two main goals in this chapter. First, we aim

to define well what interactivity means in the context of filmed content. Thanks

to this PhD’s setting 1, many conversations were had with game developers, the

masters of designing engaging interactions. In a similar manner to how video-

games are created, we asked how would we like players to interact with a video.

Let us use the Candle video, of which we show a frame in Figure 3.1a, as a

didactic example. The first, very practical issue highlighted by our conversations

with game developers was the fact that, unlike video games, videos must have a

finite length. It would be unfeasible to capture, store and process an infinitely

long sequence of images. As a result, we would like to make the finite length video

of the candle in Figure 3.1a appear seemingly infinite, through a process called

looping . Moreover, looking at a video for a long time is not very engaging so we

would like to give players some means of interacting with it. For instance, maybe

we could let players blow on the candle and see the flame react realistically by

flickering violently to the point of it even going out. As content creators, the

game developers also highlighted the fact that they would like to be given the

opportunity to manipulate and modify a video in similar ways to how they deal

with traditional assets. It is crucial then to provide tools that creators can use

while creating an interactive experience. Finally, modern video games are often

1This PhD was funded by CR-Play which aims to introduce IBR and VBR techniques
into traditional game development pipelines (http://www.cr-play.eu/).

25

http://www.cr-play.eu/

3. PROBLEM ANALYSIS

set in a three-dimensional world and players interact with them accordingly. We

would like videos to behave as a 3D entity as well, despite them being simple

two-dimensional representations of the real world. For instance, we would like to

let players look at the candle from a different view point or maybe move it around

convincingly (as shown in Figure 3.1b).

Given the wish list above, the second goal of this chapter is to introduce and

investigate ways to make each item a reality. We dedicate the following sections to

presenting techniques we have experimented with. Most are tailored to concrete

needs but they proved instrumental in informing the decisions made in the later

chapters of this thesis. For instance, in Section 3.1, we introduce the concept of

looping which makes finite length videos such as the candle flame in Figure 3.1a

seamlessly play back for an indefinite amount of time. In Section 3.2, we discuss

how extra information, such as semantic knowledge about what video subjects

are doing while filmed, can be leveraged to give players the power to influence

what is happening on screen. We then discuss how to create new visuals from

video frames in real time in Section 3.3 which is crucial for being reactive to

user input and provide immediate feedback. We dedicate Sections 3.4 and 3.5

to showing how to get content creators involved in making videos interactive,

while Section 3.6.1 introduces the third dimension into the traditionally 2D video

synthesis pipeline. In each section, we also dive deep into some of the aspects that

enable the technologies we suggest investigating for making our interactive video

wish list come true.

Motivation

As previously mentioned, the choices made in this thesis often have very practical

motivations as game developers were actively involved in many discussions. As

such, clearly identifying a number of desirable qualities of a game asset based

on filmed video content was very important. In this chapter, we introduce the

features that we identified as critical for a successful “video-based game asset” or

interactive video experience. We believe that without them the video medium

would be confined to a more traditional, passive setting, as opposed to the highly

interactive video game applications we strive for. The process through which

we identified such properties along with the in-depth exploration of the issues

26

they rise were instrumental in informing and guiding the research presented in

Chapters 4 and 5.

3.1 Indefinite Video Playback

One of the main limitations of traditional videos is that they have a finite length.

In contrast, video games can be enjoyed for as long as one wishes as new events

occur automatically or in response to user actions. As we cannot predict or do

not wish to limit how long users might look at a video in a game-like scenario, it

stands to reason that we must be able to present them with filmed content for

an indefinite amount of time. Clearly, we cannot film an infinitely long video

and long frame sequences are impractical as they cannot be trivially stored or

processed.

Since the early days of the video games industry, one way to deal with memory

constraints when presenting users with animations was to loop short clips, i.e. play

them back from the beginning once their end is reached. For instance, a character’s

walking animation might be only a few frames long but, through clever planning,

the last frame seamlessly transitions to the first one, giving the impression of

an infinitely long sequence of frames. Traditionally, such animations are created

manually by expert artists however, in 2000, Schödl et al . [SSSE00] introduced

an automatic technique called Video Textures. It relies on the assumption that,

given a corpus of video frames, similarly looking pairs can be found and used

interchangeably. If that is the case, one can automatically and seamlessly jump to

different places in the video’s original time-line, giving thus the impression that it

is infinitely long and varied events happen randomly.

Arguably, the most crucial part of a successful video texture is finding pairs

of frames that are sufficiently similar to result in seamless transitions. To do so,

we need to define a measure of similarity which returns a large number if two

frames look alike and a small number otherwise. Unfortunately, finding such a

measure is a hard problem. First, a distance measure may behave unpredictably

such as demonstrated using our Ribbon dataset in Figure 3.2, where only one

of the shown measures agrees with the arguably true statement “frame A is more

similar to frame B than it is to frame C”. Second, as we discuss in Section 3.1.2,

27

3. PROBLEM ANALYSIS

A

B C

(A, B) = 0.862
(A, B) = 0.112
(A, B) = 0.725

(A, C) = 0.441
(A, C) = 0.749
(A, C) = 0.507

L2 dist
2D EMD dist
Hist cos dist

Figure 3.2: Similarity according to different distance metrics (lower is better).
It is clear that A and B should be more similar than A and C but only the 2D
EMD metric agrees.

there may be pairs of dissimilar frames that result in seamless transitions as

witnessed by the Ribbon dataset video1 where movement is fast and erratic.

Not being able to find such pairs may prevent us from successfully looping a video.

Lastly, videos may not have any similar pairs of frames such as when they capture

complex moving subjects or multiple independent elements. In these cases, finding

the best matching frames and morphing between them [SLWSS15] or separating

them into independent groups of pixels [LJH13] may be the only way to create a

successful video texture.

As it is one of the most important aspects of video looping, we now investigate

a variety of similarity measures that we believe may be suitable for finding seamless

transition points in arbitrary sequences. In Section 3.1.1 we focus on objective

distances. They come mainly from mathematics and are usually defined in terms

of a topological space such as the three-dimensional RGB-color space. Their

strength lies in the fact that they are simple to compute and generic. One such

measure is the Euclidean or L2 distance which has been successfully used by

Schödl et al . [SSSE00] and many others. However, as mentioned above and shown

in Figure 3.2 they may behave unpredictably and not agree with human perception.

In Section 3.1.2 we investigate perceptual distances which try to model how humans

perceive images and therefore match their expectation more closely. Arguably,

the best known measure is the Structural Similarity Index (SSIM) developed

by Wang et al . [WBSS04]. We focus on a special family of similarity measures

1https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

28

https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

that rely on supervised learning methods such as Random Forests [Bre01] and

user-defined examples.

3.1.1 Objective Distances

Distance metrics such as the Euclidean Distance are commonly used in the

literature (e.g . [SSSE00, KSE∗03, TPSK11]) thanks to their relative simplicity

and ability to usually just work out of the box without complicated parameter

tweaking or additional user input. Many metrics have been explored and used for

a variety of purposes over the years, suggesting that they are more or less suitable

depending on the application and that choosing one is an ongoing question. After

a short note on memory constraints, we present below the distance metrics we

have explored and evaluated.

Memory constraints Videos can be comprised of thousands of frames, so it

stands to reason that we must always carefully consider memory requirements. In

order to seamlessly jump between sections of a video, we must find similar pairs of

frames which involves computing an N×N distance matrix D. Our ribbon dataset

for instance, is made of N = 1280 frames each containing 1280×720×3 = 2764800

pixel values. Each frame, stored as a 64-bit double array, requires approximately

22MB so we would need about 1280× 22MB ≈ 28GB to keep the full dataset in

memory. Conversely, we could read each frame from disk when needed (on average

N/2 = 640 times). However, this means reading 640× 1280× 22MB ≈ 18TB of

data from disk.

To avoid such a large amount of slow disk accesses and reduce memory

requirements altogether, we divide our data into blocks of size S = N/K. To

process the ribbon dataset for instance, we need only read 7040 images from

disk when K = 8, i.e. an over 100× reduction in disk accesses from ≈ 18TB to

≈ 155GB. Algorithm 1 is then used to compute the distance matrix.

Euclidean Distance

The Euclidean distance is commonly used in the literature because of its simplicity

and represents the distance between two points in an Euclidean N -space. Given

29

3. PROBLEM ANALYSIS

Data: Block size S, number of images in dataset N ,
images I = {Ii, i ∈

[
0, N

)
}

forall the images P ∈ {Ii, Ii+1, ..., IS(i+1), i ∈ [0, K)} do
Compute distance matrix d(P, P);
forall the images Q ∈ {Ij, Ij+1, ..., IS(j+1), j ∈ [i,K)} do

Compute distance matrix d(P, Q);
end

end
Algorithm 1: Computing the distance matrix by filling the memory with one
block of frames at a time.

images P = {pi|i ∈ [1, N]} and Q = {qi|i ∈ [1, N]}, represented as concatenated

pixel intensities pi and qi respectively, we define the Euclidean distance

dE(P, Q) =

√√√√ N∑
i=1

(qi − pi)2 (3.1)

between them, where N = Width× Height× Channels.

Cosine Distance

The cosine distance dC is defined as the cosine of the angle θ between two vectors.

If they are the concatenated pixel intensities of images P and Q as defined above,

we compute

dC(P, Q) = cos(θ) =
P · Q
‖P‖‖Q‖

. (3.2)

While this approach can suffice in certain cases, it is hard to predict the per-

formance of the cosine distance for very high dimensional vectors such as our

images. Moreover, as witnessed by the large areas of pink background present in

the Ribbon dataset (Fig. 3.2), often only parts of an image are informative.

Based on these observations, we explore a different representation for the contents

of an image.

Assuming a foreground-background segmentation mask is provided (such as

described in Section 3.4), we first divide each segmented image I into a grid of

size N ×M (shown in Fig. 3.3a). For each grid section si, we count the number

of foreground pixels and normalize by the total number of foreground pixels so

30

that they sum up to 1. This gives us an N ×M -dimensional vector

IG =
[
ci, i ∈ [1, N ×M]

]
, ci =

count(si)∑N×M
i=1 count(si)

, (3.3)

where count(·) indicates the aforementioned number of foreground pixels, which

gives us a histogram of foreground pixels binned by grid section (Fig. 3.3c). We

then define the cosine distance between images P and Q in terms of their new

representations, PG and QG respectively, as

dC(PG, QG) =
PG · QG
‖PG‖‖QG‖

. (3.4)

We have experimented with 4× 4, 16× 16 and 32× 48 grid sizes and found the

(a) Grid division of input image
with foreground mask overlayed

(b) Number of foreground pix-
els per grid section (red means
higher)

0 50 100 150 200 250

4

8

12

%
 o

f
FG

 t
o
ta

l

Grid cell index

(c) 1D histogram representation of
the pixel counts

Figure 3.3: Visualization of the grid representation IG from Equation 3.3.

first to be too low resolution to accurately describe the ribbon movement and the

last to give little improvement over a 16× 16 grid size (shown in Figure 3.3) while

increasing computation time and memory requirements substantially.

It is worth noting that this approach is only suitable for cases where an object’s

movement can be characterized by its segmentation silhouette. Objects such as

the pendulum in [SSSE00] that do not move as a whole w.r.t. the background

would not benefit from this representation as only parts of the foreground change

appearance over time. A pixel-wise color comparison would be more suitable for

such cases.

2D Earth Mover’s Distance

The Earth Mover’s Distance (EMD) was first proposed by Rubner et al . [RTG98]

as a similarity measure between two multi-dimensional probability distributions.

31

3. PROBLEM ANALYSIS

The name derives from the fact that the first distribution can be seen as “piles”

of earth and the second one as “holes” to be filled. We assume that the number

of “piles” and “holes” is the same and that the amount of earth and the capacity

of each “hole” are proportional to the corresponding distributions. The goal is to

minimize the effort needed to move the earth from “piles” i to fill the “holes” j

which is determined based on i) the amount of earth that needs moving, i.e. the

flow F = [fij], and ii) the so called ground distance between them D = [dij].

In our case, we define the EMD on the 2D grid representation defined in

Equation 3.3. We follow the solution detailed by Rubner et al . [RTG98] by first

solving a transportation problem [Hit41] to find the flow F that minimizes both

the amount of displaced earth and the traveled distance. We then compute the

2D EMD distance

dM(PG, QG) =

∑N×M
i=1

∑N×M
i=1 fijdij∑N×M

i=1

∑N×M
i=1 fij

, (3.5)

where the ground distance D is the L2 distance and an example of PG and QG can

be seen in Figure 3.3b.

3.1.2 Perceptual Distances

We have previously mentioned and illustrated in Figure 3.2 that different metrics

can work well in some cases and less well in others. Moreover, we are interested in

the specific case of finding pairs of frames (i, j) that, when used interchangeably,

result in seamless transitions between different parts of a video. While it is

generally true that when frames i and j are similar, showing frames i and j + 1 in

sequence is seamless, we believe it is not a pre-requisite. This is especially true of

videos depicting subjects with complex moving patterns such as our Ribbon

dataset. It is then clear that our metric should be robust and flexible enough to

correctly model both situations.

It is unclear how to measure the “seamlessness” of a jump accurately. Instead,

we turn to the user, and while it would be ideal to ask them which exact pairs

of frames result in invisible jumps when used interchangeably, the task would be

prohibitive given the number of possible pair combinations. In this section, we

32

explore two different approaches to take only a few user-given examples and learn

a distance measure that can predict what the user would think of a pair of frames

they have not seen.

Random Forest Regressor

Inspired by Xiong et al . [XJXC12], we use a Random Forest Regressor (RFR) [Bre01]

to model the user perceived similarity and predict the distance dF (P, Q) between

each pair of frames P and Q. We define the mapping function

φ(xP,xQ) = ||xP − xQ||2, (3.6)

which gives us a frame-pair feature representation. Here, xP and xQ are Histogram

of Oriented Gradients (HOG) descriptors of their corresponding frames. First

described by Dalal and Triggs [DT05], HOG features describe an image using

histograms of gradient directions computed at pixels within small connected

regions called cells. We set the cell size to 16 × 16 pixels and bin the gradient

directions into b = 8 discrete bins (see Figure 3.4 for an example matted image

from our Ribbon dataset and corresponding HOG features).

Figure 3.4: Left: Zoomed-in matted frame for our Ribbon dataset. Right:
HOG features for the given frame. We use 16× 16 cells and bin gradients into 8
orientations. Warmer colors, signify higher numbers of a certain orientation.

We then use Fisher Vector Encoding (FVE) [PD07] on the resulting mapping

φ(xP,xQ) which clusters the feature vectors using a Gaussian Mixture Model

(GMM) trained on a set of labeled frame-pair features that defines a dictionary of

visual words. The new frame-pair feature representation φFPQ resulting from the

soft association to each word (i.e. Gaussian in the GMM) is a 2b× c = 16× 10-

dimensional vector where c = 10 is the number of Gaussian components.

In parallel, users label random pairs of frames (Ii, Ij) as either compatible

33

3. PROBLEM ANALYSIS

or incompatible. Instead of a more traditional side-by-side comparison, users

inspect sequences of frames {Ii−k, ..., Ii−1, Ii, Ij+1, Ij+2, ..., Ij+k} to more easily

decide whether a transition is noticeable. Active Learning approaches such

as [MACKB14] could be used to predict which pairs are most informative at

any time and to minimize the number of pairs that need to be labeled manually

(approx. 150 in our experiments). We then train the RFR using these examples

and the corresponding φFPQ frame-pair feature representation to regress dF (P, Q).

Weighted L2 Distance

Up until now, we have assumed every region of an image, whether a single pixel

or a patch, is equally informative to a measure of similarity. Typically, there are

many dynamic elements in a video frame, such as the fluttering flag, the people

passing by or the clouds moving in the sky seen in Figure 3.15. Clearly, many

distinct elements, or features, can influence the measure of similarity between two

frames. For the metrics described above, we have manually chosen the features we

were interested in (e.g . how much of a certain region is part of the foreground) with

varying success. What if we could choose what to “care about” automatically?

Given the above intuition, we propose a metric that roughly falls under the

category of feature selection methods but with a twist. If we represent each video

frame by a number of representative features, we postulate that the L2 distance

in Equation 3.1 is expressive enough for our purposes but only a subset of these

features are relevant. Intuitively, if a frame is represented by concatenated pixel

intensity values, we would like to find which are more informative for judging

similarity.

We approach this problem from a linear regression standpoint and aim to

estimate a world state w given observed measurements y. In our case, w represents

the measure of similarity and y is the feature representation of a pair of frames.

As before, we define a mapping function

f(xP,xQ) =
[
(xP − xQ)

2
]

= y, (3.7)

where again xP and xQ are feature descriptors of frames P and Q such as concate-

nated pixel intensity values. We then define the linear regression-based distance

34

as

dW (P, Q) =
√
φy, (3.8)

where φ weighs the importance of each feature y. Crucially, when there are little

training examples and we are unsure of how similar frames should look like, φ is

mainly composed of 1s and dW (P, Q) reduces to the original L2 distance.

To find φ, we use Linear Regression to maximize

φ = arg max
φ

[
I∏
i=1

Pr(wi|yi,φ)Pr(φ|α, β)

]
, (3.9)

where the likelihood Pr(wi|yi,φ) = Nwi(yTi φ, σ2) is modeled using a normal

distribution while the prior Pr(φ|α, β) = Gφ(α, β) is a gamma distribution with

α = 5, β = 6. Intuitively, the prior favors weights φ = 1 as we want dW (P, Q) to

return the L2 distance when few examples are available. Writing down the full

normal and gamma distributions definition, the function to maximize becomes

φ = arg max
φ

[
1

2σ2

I∑
i=1

(wi − yTi φ)2 +
D∑
d=1

[(α− 1) log(φd)− βφd]

]
, (3.10)

where we took the logarithm of the probabilities in 3.9 to turn the products into

sums. We then use an off-the-shelf gradient descent implementation to solve for φ.

Figure 3.5a shows the resulting values of φ regressed using the same 150 examples

we used to train the Random Forests Regressor in the previous section. It is worth

noting how the pixels showing the tip of the ribbon are assigned a higher weight,

while the pixels showing the background, which is not changing in the original

footage are assigned a value of 1 as their L2 distance is close to 0 so changing

their associated weights does not influence the maximum value of φ in Eq. 3.9.

As previously mentioned, for this experiment, we have used the concatenated

pixel intensity values as a feature descriptor x for each input image. It would be

interesting to test more diverse features such as HOG, optical flow and others. We

have not however tested this further as the Euclidean distance proved successful

for our use cases as we will see in Chapter 4.

35

3. PROBLEM ANALYSIS

1

0

(a) Reshaped values of φ

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b
ili

ty

Frame index

(b) Propagated label probabilities

Figure 3.5: In (a), we show the values of φ ∈ [0, 1] from Equation 3.10 regressed
for the Ribbon dataset. We use the same user-given examples used for training
the RFR metric to regress φ which we have reshaped to the input image size
for visualization purposes. The propagated action label probabilities in (b) can
be compared to the ground truth labels in Figure 3.7 for qualitatively assessing
accuracy.

3.1.3 Considerations

In this section, we have presented a number of similarity metrics. In order to

gauge their effectiveness at finding similar pairs of frames, we have tested them

on the task of label propagation as described in Section 4.2.3. The reason for

this choice is twofold: i) defining ground truth association between labels and

video frames ;-is much more reliable than defining seamless jumps and ii) the two

problems are essentially equivalent as they are designed to find visually similar

pairs of frames. We perform all the tests on our Ribbon dataset as it is simple

to define ground truth labels (see Figure 3.7) while still being challenging as

witnessed by the example in Figure 3.2 and the visual ambiguity of the orange

and cyan classes from Figure 3.7. We run label propagation [ZGL∗03] using each

similarity metric and the same 17 examples per class as input and show qualitative

comparisons in Figures 3.6 and 3.5.

The Random Forest Regressor measure dF , shown in Figure 3.6d, proves best

when compared to the manually defined ground truth shown in Figure 3.7. It

shows much less noise than the alternatives and as discussed previously it is the

most general as it is agnostic to the type of data they are given. On the other

hand, the weighted L2 measure is by far the least successful when comparing the

results in Figure 3.5 to the provided ground truth (Fig. 3.7). We believe this is

36

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(a) Euclidean distance

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(b) Cosine distance

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(c) 2D EMD

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(d) Random Forests

Figure 3.6: Label propagation results given the same labeled training examples
(colored vertical lines) and different distance metrics. Qualitatively comparing
these results to the ground truth labels in Figure 3.7 suggests the Random Forests
metric in (d) is the most accurate.

due to our choice of feature descriptor (i.e. concatenated pixel intensities) which

is very high dimensional and perhaps not informative enough for our task. Future

investigation into different descriptors such as the HOG features we used for the

RFR-based dF measure may lead to more accurate labeling. Finally, the EMD

distance dM and the cosine distance dC show promise, however they are rather

specific to the Ribbon dataset due to the grid features we define in Section 3.1.1,

so may not adapt well to different videos. Despite the promising results shown by

dF , like many others before us, we choose to use the simpler Euclidean distance

for our system described in Chapter 4 as it does not require training examples or

any other user input. Instead, we choose to design a responsive user interface to

make it as easy and fast as possible for users to define as many examples as it

takes to overcome the limitations of the L2 distance.

3.2 Controlling Video Output

The introduction of video textures by Schödl et al . [SSSE00] was a very important

step towards accomplishing the goals of this thesis. However, one of the main

reasons that has kept content creators from actively using this technology is the

37

3. PROBLEM ANALYSIS

lack of control over the synthesis process (e.g . to correct mistakes or influence

the result). Moreover, users are still passively enjoying a video, albeit randomly

varying and seemingly infinite, without any way of interacting with it. It is

clear then that we need some way of influencing or guiding a video synthesis

process such as video textures. This would allow content creators to build custom

experiences such as, for instance, synchronizing a video to music and, if the process

is real time (such as described in Section 3.3), users to feel more engaged as they

receive immediate visual feedback based on their active input.

In the original video textures paper [SSSE00], without any additional informa-

tion, the output video can only be completely randomized (as long as seamless

transitions are guaranteed). It turns out that, in order to enable more control

over the output, it is crucial to add extra information into the mix. For instance,

Schödl et al . add the knowledge that variations of a dynamic event are filmed

sequentially so the output can be forced to only contain a subset of the input

frames. This allows them to, for instance, change the speed at which a person

is running on a treadmill. Many other attempts have been made over the years

with interesting applications to character animation [SE02, FNZ∗09] or video

editing [BSHK04, BAAR12, JMD∗12] and they all rely on introducing additional

information other than time progression. We now discuss two distinct types of

information we can introduce into video synthesis for more meaningful interactive

video experiences.

3.2.1 Semantic Looping

As mentioned above, there are ways to add control to video synthesis but we

argue they are either too specialized, such as [FNZ∗09], or too abstract as seen

in [JMD∗12]. We believe we need an abstraction from the video frames that

is flexible and robust but at the same time intuitive and easy to define. This

abstraction must be flexible to cater for a variety of videos and simple to enable

new and creative ways of guiding synthesis. For instance, we might want to control

synthesis using a traditional keyboard and mouse pair. Or we might want to

change the synthesized sequence based on events triggered by gameplay such as

the candle in Figure 3.1b. We might even want to synthesize a new video based

38

on another video by using the texture-by-numbers paradigm as in [HJO∗01] or

the innovative makeymakey [Joy12].

In order to reach our goal, we introduce the concept of semantics which we use

to constrain the looping algorithm. As previously mentioned, looping amounts to

reshuffling the input video frames, but, in addition to ensuring seamless transitions,

we want to enable transitions to semantically meaningful sections of the input

video. This concept can be better understood with an example. Figure 3.7 shows

four frames of a video showing a Ribbon fluttering as the “wind” blows. For

0 400 800 1200

Figure 3.7: Sample frames of the Ribbon video dataset with annotated time-
line. Each color represents one of four different classes of motion: ribbon fluttering
away, right of , towards and left of the camera.

a more interesting outcome, we move the fan used to create the air flow in a

circular manner around the ribbon. This results in video frames showing the

ribbon fluttering in four distinct directions: away from the camera, from left to

right, towards the camera and from right to left. Please see the full input video

on our supplemental website1. At the bottom of Figure 3.7, we marked where in

the time-line the visualized frames come from and color coded the four classes

of motion as orange, green, cyan and purple respectively. If we were to loop

the sequence using [SSSE00], we could randomly reshuffle the frames or, since

we moved the fan around the ribbon in a sequential manner, we could manually

select between the handful of subsets of frames showing the different motions.

But what if we wanted a more realistic scenario and filmed the ribbon in the wild

where we would not have direct control over the unpredictable wind direction?

The time-line in Figure 3.7 would suddenly not look as neat and there would be

1https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

39

https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

3. PROBLEM ANALYSIS

colors everywhere, making the method in [SSSE00] unsuitable.

For a more intuitive interaction, we note that we associate frames to one another

not based on how close in time they have been captured (as done by [SSSE00])

but based on whether the ribbon is performing the same semantic action, in this

example fluttering in the same direction. Here, we do not mean semantic in the

more commonly accepted meaning of the word, but rather we refer to the fact

that the visual appearance of the ribbon is comparable in frames where it is seen

performing the same action. If we can associate an abstract meaning to every

frame, we are suddenly free from the constraints of filming events sequentially

and have a very powerful and intuitive way of controlling what we want to show

in the output video.

We believe that associating abstract semantic meaning to a filmed sequence

is the key to having better control over the synthesis process. It can be easily

understood and leveraged by content creators for creative video editing and

synthesis. It also gives us the flexibility we strive for as it can be applied to

multiple scenarios despite its simplicity. In fact, not only flags and ribbons lend

themselves to semantic actions. We could apply the same reasoning to the intensity

of a flame, people sitting or standing, cars crossing intersections and stopping at

traffic lights. There are many other dynamic events that can associated to a finite

number of semantically meaningful and visually distinct actions, but how can we

practically leverage this abstraction?

Our goal is to associate a label corresponding to an action to each video frame.

We would also like to do this in an interactive way as we can ensure better and more

meaningful results by involving the user in the process. On the one hand, if we were

to assume actions were filmed sequentially, we could easily manually mark subsets

of frames as done in motion capture systems such as [KGP02, LCR∗02, AF02],

but this would preclude us from using casually captured videos and require careful

planning. On the other hand, we would like to avoid having users manually

label each frame as it would quickly become impractical for videos containing

hundreds or thousands of stills. To reduce the required amount of manual labor

while maintaining flexibility and catering for a large variety of videos we adopt a

semi-supervised learning approach. The basic idea is to have users manually label

only a few frames per action class and label the remaining frames automatically

40

based on visual similarity. We further discuss the technical side of this process

called label propagation [ZGL∗03] in Section 4.2.3, but for now it is important to

realize that it groups the set of input frames into clusters of visually similar images.

We can leverage this information to constrain the video synthesis process and

introduce the type of control we strive for. For a full frame-to-action association

example for a similar dataset to the Ribbon discussed in this section, please

see the Candle dataset from Figure 3.1 on our supplemental website1.

Choosing the right frames One critical aspect in involving the user in

the process of action definition, is the choice of frames we ask them to label. If

they are chosen randomly, classes might be sampled in different ways, so there

would be more examples for some of them and less for others, requiring users to

label a large number of frames for acceptable results. Figure 3.8 shows that, given

the same number of labeled examples, we can get much better class separation if

we carefully choose our examples (Fig. 3.8b) as opposed to presenting users with

randomly selected frames (3.8a). To prove this point, we cheated by choosing

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(a) Randomly chosen training examples

0.0

0.2

0.4

0.6

0.8

1.0

0 200 400 600 800 1000 1200

P
ro

b
a
b

ili
ty

Frame index

(b) Training examples chosen from known intervals

Figure 3.8: The effect of better training examples. In (a), training examples
(vertical colored lines) are chosen randomly resulting in 5, 24, 6 and 5 examples for
the four classes (orange, green, cyan and purple) respectively. In (b), examples
are chosen from known intervals resulting in 10 examples for each class. It is clear
that by training on better examples, the purple class can be better distinguished
from the rest and the orange class is better distinguished from the green and
cyan ones. Note that these results were produced using the Euclidean distance in
Equation 3.1 and ground truth labels for a qualitative assessment of accuracy are
shown in Figure 3.7

the same amount of frames for each class as we already know where they are in

the input video (see Fig 3.7). Active learning methods such as [MACKB14] can

1https://corneliu.co.uk/phdresults/chapter3/index.html#candle

41

https://corneliu.co.uk/phdresults/chapter3/index.html#candle

3. PROBLEM ANALYSIS

automatically select the most informative examples to label, However, we show

in Chapter 4 that a responsive user interfaces is a viable alternative where users

select the frames interactively based on immediate visual feedback from speedy

label propagation methods such as [ZGL∗03].

Choosing the right similarity measure Another aspect that we need to

consider is which measure of similarity to use. The Euclidean distance used by

video textures [SSSE00] seems to sometimes struggle distinguishing even between

clearly different classes. Moreover, such a metric might not be appropriate for

class labeling making finding an ad hoc one necessary. We dedicate Section 3.1 to

finding alternative distance measures.

3.2.2 Speed Normalization

The visually distinct semantics-based manipulation described in the previous

section is very well suited for representing a discrete set of actions (and to some

extent continuous transitions between them as we show in Section 4.2.3). However,

it is not as well suited to describing continuous properties of dynamic elements

such as moving direction or speed. For instance, given a video of a road crossing

where multiple cars are passing by, could we give users control over a car’s speed,

when to stop at a traffic light or when and by how much to turn?

In this section, we investigate a different way of giving users control over the

synthesis process of a new video. We allow them to control the movement speed of

objects filmed in a scene. This enables the creation of our video-based computer

game prototype called Counter Loop described in detail in Section 4.6.1. We

assume that the input video is filmed with a static camera, that the objects of

interest are moving on a planar surface and that they are associated to a two-

dimensional bounding box tracked over time. The simplest way to give players

control over the moving cars filmed in our Havana dataset (see Fig. 3.10) and

used to create Counter Loop would be to segment them from the background

using the tracked boxes as a cue and then let the users manipulate the speed at

which we play back the frames. However, the resulting animations would likely

show the cars unpredictably slowing down or speeding up depending on their

42

movement in the filmed footage. Since we had no control over the cars during

filming, the relationship between their speed and the passing of time (i.e. what

players can effectively manipulate) is not constant.

To tackle the above problem, we must remove the time independent effects

and synthesize sequences of frames for each car where their speed appears to be

constant, the same way time passes. We call this process speed normalization as

it effectively normalizes the speed of every moving object to the same arbitrary

constant in a similar manner to how we capture an image every 33 milliseconds

when filming a 30 frames-per-second video. To better understand the problem

at hand, take the example in Figure 3.9. The trajectory T =
[
xt,∀t

]
is a set of

t

i

j

Figure 3.9: Trajectory consisting of a set of 2D points shown as black dots. It
is regularly sampled into equally-sized segments by the red circles. Please see the
text where we discuss the highlighted point in the re-sampled trajectory t and its
two closest points in the original trajectory i and j.

two-dimensional points represented as column vectors xt =

[
x

y

]
(black dots in

Fig. 3.9) defined at each video frame t. It is clear to see that, the slower the object

moves the more packed the trajectory points are. One option for defining the

points xt is to take the center of the tracked 2D box we have for an object at time

t. However, due to the perspective transformation that occurs when capturing the

3D world through a video camera, the amount of movement of an object in image

space does not necessarily correspond to their speed in the real world. In fact, the

amount of space an object appears to move in an image is proportional not only

to their speed but also to their distance to the camera. Slow objects that are close

to the camera could appear to be moving faster than fast objects that are very far

away. It stands to reason then that we must model the perspective transformation

that filmed objects are subjected to in order to be able to correctly estimate their

speed and realistically depict their movement when players control them.

43

3. PROBLEM ANALYSIS

The simplest way to model a perspective transformation between two planar

surfaces (the ground and image planes) is by means of a homography H. To

estimate the 3×3 matrix H we follow the closed form solution described in [Pri12]

which can robustly map a rectangle to any other rectangle. The transformed

trajectory T′ = HT then consists of 2D points x′ (the z-axis coordinate is set to

0) on the real-world three-dimensional ground plane the object moves on. This

removes the perspective projection effects described above and gives us a more

accurate depiction of an object’s movement.

Given the trajectory T′, we regularly sample it to yield the constant speed

trajectory T̂′ shown in Figure 3.9 as red circles. We are now almost ready to

synthesize a car traveling at a constant speed. At each time step, we could

compute the position of the car on the 3D-world ground plane (e.g . red circle

denoted by t in Fig. 3.9) and show the original frame where the car is found

closest to the desired location (black dot denoted by i in Fig. 3.9). In cases where

there are no such frames, especially when the car moves faster than the desired

speed as visible at the extremes of the trajectory in Figure 3.9, the result will

look unnatural. To prevent this from happening, we estimate the appearance

of the car as if it was filmed at time t by interpolating between the two closest

original frames (black dots denoted by i and j in Fig. 3.9). Similar to [Wol90],

we first compute the forward and backwards optical flow at each pixel location s,

Fi→j(s) and Fi←j(s) respectively, between frames i and j. We then compute the

appearance of the object at location t by defining the color X(s) at pixel location

s as

X(s) =
dit
dij
Fi→j(s) +

dtj
dij
Fi←j(s), (3.11)

where dij is the distance between locations i and j and dit and dtj are defined in a

similar manner. An example input sequence1 and resulting constant speed video2

can be seen on our website.

Note on implementation: In order to create the Counter Loop video

game described in Section 4.6.1 we involved game developers in the processing

1https://corneliu.co.uk/phdresults/chapter3/index.html#inputspeednorm
2https://corneliu.co.uk/phdresults/chapter3/index.html#outputspeednorm

44

https://corneliu.co.uk/phdresults/chapter3/index.html#inputspeednorm
https://corneliu.co.uk/phdresults/chapter3/index.html#outputspeednorm

of the input video and creation of the necessary video assets (i.e. segmented

car sprites tracked over time and with their speed normalized). To achieve this,

we implemented a purpose-built tool (see Figure 3.10) which integrates all the

algorithms described above. The content creators are able to quickly define the

1 2

3

4
5

Figure 3.10: Our camera parameter estimation and speed normalization tool.
(1) main viewer : users place the two pairs of blue lines by dragging the circular
handles at their extremes; the camera parameters are defined by estimating the
homography H between the red image-space intersection rectangle between the
lines and its 3D world counterpart (shown in the top-down view); users can gauge
the correctness of the estimated camera pose using the ground plane (visualized as
a grid of yellow dots), the red horizon line and the top-down view; (2) top-down
viewer : the image is projected onto the ground plane and shown from a top-down
perspective; the red rectangle is used to estimate the camera pose; (3) object
orientation: the x axis represents time passing while y axis represents orientation
angles ∈

[
− π, π

)
of the tracked object; (4) manual parameters: user-defined

parameters such as metric scale of the red rectangle and object footprint, camera
distortion parameters, smoothing coefficients for the object’s trajectory points
and orientations; (5) object time-line: users can use the slider to verify the quality
of the tracked object’s trajectory over time; the trajectory is shown in (1), (2)
and along with the segmented object in the zoomed-in view below as a green
curve; the object’s footprint is highlighted in white.

homography H by placing two pairs of parallel lines on the ground plane. The

45

3. PROBLEM ANALYSIS

trajectory used to define a tracked object’s normalized speed is formed by the

center points of the input tracked 2D bounding boxes (obtained as describe in

Section 4.2.1). The set of points can be smoothed using a 1D Gaussian kernel

convolution and users can manually move and stretch the result to better match

the object movement. Additionally, a footprint can be defined (dashed line in inset)

to more accurately describe the space occupied by a car

(compare to the solid line image-space bounding box in

the inset). Our Counter Loop game prototype uses this

information to perform collision detection. While the

tool in Figure 3.10 works well in practice, we show in

Sections 5.1 and 5.2 new algorithms that can perform

these steps automatically, eliminating the need for users

to invest their time and effort and allowing them to focus

on the creative process instead.

3.2.3 Considerations

In this section we have explored ways of enabling users to interact with, tradi-

tionally passive, video content. We do this by introducing additional information

alongside time progression which we can leverage to meaningfully constrain the

way we reshuffle the input video frames. The visually distinctive semantic infor-

mation described in Section 3.2.1 shows great promise and is at the core of our

end-to-end interactive video system from Chapter 4. We will show how, despite

being a very simple and intuitive abstraction, it is very flexible and easy to define

interactively. We believe it represents a great step towards engaging, interactive

video experiences and enables a new medium of expression that would be otherwise

impossible (see Chapter 4). The speed normalization technique on the other hand,

is less abstract and more tailor made to a surveillance camera scenario such as our

Havana dataset. While we discuss, arguably prohibitive, requirements for the

user, such as tracking objects through time and manually estimating camera pose,

it is the reason that the Counter Loop game prototype from Section 4.6.1 has

been possible. Moreover, in Chapter 5 we discuss how to ease the burden on the

user and automatically recover the information needed by the speed normalization

46

technique.

3.3 Real-time Interaction

In the previous sections we discussed how to generate video sequences indefinitely

and how to allow external factors, such as users or video game logic, to control

and guide the video synthesis. These capabilities enable the creation of compelling

video experiences that are always new and engaging. However, for them to be

interactive and reactive to user input, we need to tackle the issue of synthesizing

new video sequences in real time. The illusion of interacting with what’s happening

on the screen is in fact quickly broken if there is no instant reaction to a user’s

input.

In this section, we draw a parallel between video synthesis and the world

of character animation. Schödl and Essa [SE02] tackle this same problem by

adapting their video texture technology to allow users to control the animation

of small animals such as mice. The input data to video synthesis and character

animation is very different, as the first consists of images while the second typically

represents a skeleton in terms of joint orientations and positions. However, they

are very similar in the sense that there is time progression and the change from

frame to frame is incremental. Similar to Video Textures, character animation

technologies, such as [KGP02, LCR∗02, AF02], reshuffle their input frames or

full sequences to create something new based on some guidance. For instance,

this could mean telling a character to move from a point A to a point B while

running and then jumping once reaching the destination. The final animation

is built by finding the correct sets of frames, showing the desired actions and

concatenating them together seamlessly, just like Video Textures and what we

described in Section 3.2.

3.3.1 Video Fields

In this section, we borrow concepts from Motion Fields by Lee et al . [LWB∗10]

and adapt them to video synthesis. We choose this method instead of existing

alternatives as it is specifically designed for immediate response to user input,

47

3. PROBLEM ANALYSIS

which is critical in an interactive scenario such as what we are aiming for. The main

difference to their method is that joints locations and orientations can be easily

interpolated when transitioning between input frames while we currently have no

way of doing the same between video frames. As such, their continuous “field” of

motion capture frames becomes effectively a discrete “graph” representation in

the case of our Video Fields.

Field set-up

Following the example of Motion Fields by Lee et al . [LWB∗10], we define states,

actions, transitions and rewards. Video states s are defined as a tuple s = (f, θT)

where f is a frame state and θT are task parameters.

Unlike Lee et al . where f = (x, v) is defined in terms of pose x and velocity v, we

set the frame state f to the index of the frame in the original input video. We could

have defined feature points (e.g . SIFT [Low04]) and kept track of their positions

and velocities instead. However, while interpolating poses and velocities in a

motion field is trivial, image interpolation is still actively researched [SLWSS15].

Here, we are most interested in the real-time control features of the field and thus

focus on them.

The task parameters θT keep track of how well a task is performed and we

define it as a combination of the following two:

1. show frame states belonging to a certain semantic action as defined in

Sections 3.2 and 4.2.3, meaning θT = [li, i ∈ [0, C)] where li is the probability

of the frame state f of showing label i of the C user-defined action classes

2. show a randomly selected frame f within a certain semantic class, meaning

θT = f

To traverse a Video Field F starting from state s, we choose one action

a ∈ F(s) out of k predefined ones. As seen in Lee et al . [LWB∗10], we define each

action a to favor one of the k neighbors of s as

a = { ai
‖ai‖
|ai = w0, ..., wi−1, 1, wi+1, ..., wk−1]}, (3.12)

where wi is a similarity weight indicating how similar the frame state f is to its

48

ith neighbor fi. We define wi = 1
η

1
d(f,fi)2

where η normalizes the vector of weights

to sum up to 1 and d(f, fi) is some measure of similarity.

Given state s and action a, we use the integration function Is(s, a) = s′ to

transition to state s′ = (I(f, a), θ′T), where I(f, a) = f ′ returns the neighbor f ′ of

f favored by a and θ′T are the task parameters of f ′.

Finally, we define a reward function

R(s, a) = λRT (s, a) + (1− λ)RA(s, a), (3.13)

where λ balances the task versus appearance reward contributions and we set it

to 0.7. The task reward RT (s, a) ∈ [0, 1] is defined as

RT (s, a) =
2− |θT − θdT |

2
(3.14)

with θdT denoting the desired task parameters while the appearance reward RA ∈
[0, 1] is

RA(s, a) =
p(f, fi)

max
fi∈N

[p(f, fi)]
, (3.15)

where p(f, fi) denotes the probability of going to the neighboring frame state fi

from f and is defined as a zero-mean Gaussian based on the similarity measure

defined in [SSSE00].

Action choice policy

A new video is synthesized by traversing the video field. An action a ∈ F(s)

associated to the current state s is chosen which results in moving to the neighbor

s′ it favors. A trivial way to choose an action is by selecting the one that gives

the highest reward R(s, a). Lee et al . call this the greedy choice policy

πG(s) = argmax
a∈F(s)

[R(s, a)]. (3.16)

Unfortunately, as Schödl et al . [SSSE00] point out, a greedy policy cannot

ensure that traversal will not reach dead-ends, i.e. regions where there are little or

no good transitions between other parts of the video. Moreover, the greedy policy

49

3. PROBLEM ANALYSIS

0 200 400 600 800 1000 1200
Frame Index

1

3

5

7

9

11

13

R
e
p

e
ti

ti
o
n
s

0.0

0.2

0.4

0.6

0.8

1.0

A
ct

io
n
 p

ro
b

a
b

ili
ty

gamma = 0.0

gamma = 0.8

gamma = 0.999

Figure 3.11: We visualize the effect γ has on looping videos. We run video
fields starting from frame 100 and request a semantic action. Yellow frames have
higher probability of showing this desired action, i.e. they should be shown more
often as they yield higher task rewards. With low values of γ, focus is mostly on
immediate reward and the traversal follows the input time-line to get stuck in
a short loop. If γ is set to a high value, the traversal takes into account future
reward which results in jumping across the time-line more often to reach longer
loops.

does not guarantee we will ever reach video states that agree with the desired task

parameters θdT . The solution, first proposed in Video Textures and then adapted

by Lee et al ., is to estimate the future reward that a certain chosen neighbor leads

to (which will be low if it leads to a dead end). We define the lookahead policy as

πL(s) = argmax
a∈F(s)

[
R(s, a) + max

{at}

∞∑
t=1

γR(st, at)

]
, (3.17)

where the right-hand side of argmax[·] takes into account the reward given by the

future choices if action a is chosen and γ balances how much we focus on short

versus long term rewards. Figure 3.11 shows the effect of γ on looping. By putting

more emphasis on long term rewards (i.e. γ is closer to 1), we avoid following the

time-line and getting stuck in short loops. Instead, the algorithm is willing to

jump across the input time-line to reach better, longer loops.

As computing all possible rewards from a on is infeasible, we use Q-learning [Wat89]

50

and redefine πL in terms of a value function V (s)

πL(s) = argmax
a∈F(s)

[R(s, a) + V (Is(s, a))] , (3.18)

where Is(s, a) = s′ is the integration function as before and the value function is

V (s′) = max
a∈F(s′)

∞∑
t=1

γR(st, at). (3.19)

We can then define V (s′) recursively in terms of the value of V (s) at other video

states s such as for instance

V (si) = R(si, πL(si)) + V (Is(si, πL(si))), (3.20)

where the value function at video state si depends on the reward of taking action

πL(si) and the value of V (s) at the video state we reach by taking that action.

This allows us to use Q-learning and iteratively update the value of V (s) and πL(s)

until convergence. Following the example of Lee et al . we initialize V (si) = 0 for

each video state si in the field and optimize a different version of V (s) for each

possible set of task parameters θdT .

Field traversal

Once we define a video field F and an action choice policy πL(s) we can create

and control a video texture in real time. We choose a starting video state s

and desired task parameters θdT and at each time step we use Equation 3.18 to

choose the best action a and the integration function Is(s, a) to get the next video

state. Figure 3.12 shows the effect γ has on the traversal. Higher values, meaning

there is more focus on long term rewards, results in the ability to switch between

semantic actions faster with little to no penalty in visual fidelity (i.e. the amount

of appearance reward is comparable with lower values of γ). Moreover, there is

more variability as more of the input frames are shown and the desired semantic

action is shown for longer. We show a result video demonstrating meaningful real

time control of video synthesis on our website1.

1https://corneliu.co.uk/phdresults/chapter3/index.html#ribboncontrol

51

https://corneliu.co.uk/phdresults/chapter3/index.html#ribboncontrol

3. PROBLEM ANALYSIS

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.999
Gamma

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
 o

f
fr

a
m

e
s.

..

... showing desired task

... of desired task visited

... used to reach task

0.0

0.2

0.4

0.6

0.8

1.0

Im
m

e
d

ia
te

 R
e
w

a
rd

Appearance

Task

Figure 3.12: We visualize the effect γ has on traversing the video field for 50000
frames. The blue line represents accuracy as it shows how often a chosen frame is
showing the desired semantic action (higher is better). The green line represents
speed as it shows how many frames are necessary to reach frames showing the
desired task (lower is better). The orange line represents exhaustiveness by
counting how many frames showing the desired semantic action have been visited
during looping (higher is better). The bar graphs indicate the average immediate
reward yielded by each shown frame during looping (higher is better). More focus
on long term rewards, i.e. higher values of γ, results in higher accuracy, speed
and exhaustiveness. Higher values of γ also result in much larger task rewards at
the expense of slightly smaller appearance rewards.

3.3.2 Considerations

In this section, we have made the point that for a successful interactive video

experience, the algorithm in charge of synthesizing frames by, for instance, reshuf-

fling the input ones, should perform at real time rates. This is necessary because

users need to immediately receive feedback regarding their input or the illusion of

interacting with the video and that there is consequence to their action is broken.

The graph-based method described in Section 3.3.1 draws a parallel to character

animation systems and, as such, is able to react to user input instantly. This allows

us to control the direction in which the Ribbon from Figure 3.7 flutters. There

is direct reaction to the user changing the wind direction, making for an engaging

experience very dissimilar from simply watching the input video1. However, the

system we describe in Chapter 4 highlights (and addresses) the limitations of

1https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

52

https://corneliu.co.uk/phdresults/chapter3/index.html#ribbon

such a graph-based approach. First, there is no straightforward extension to

enable controlling multiple objects at the same time (e.g . multiple candle flames

in Figures 3.1b and 4.12a). Second, even if we could somehow extend the method

to support multiple objects, there would be no way to ensure visual compatibility

between separate objects, such as guaranteeing that all candles in Figure 4.12a

flicker in the same direction (see Section 4.3.1 for more details). Finally, even with

the lookahead action choice policy in Equation 3.17, we have still experienced

dead-ends using our Ribbon dataset, likely due to the imperfect similarity

measure (please see our result video online1).

3.4 Foreground Segmentation

In the previous sections, we have discussed three of the ingredients necessary to

creating compelling and interactive video experiences. Key to introducing them

into the mix is the ability to meaningfully reorder the input video frames. However,

a simple reshuffle drastically limits the possible outputs because of two reasons.

First, videos often contain multiple dynamic elements performing different actions

at the same time so they would be forced to interact with each other or move

at the same time as they did when originally filmed. Second, even if the video

only contained one dynamic object, we would be forced to always show it moving

against the same background and there would be no way to convincingly place

it in a different environment such as for instance a video game level (see flag in

Figure 3.17).

To overcome these limitations, we need to be able to reason about movement at

single or groups of pixels as opposed to at the full video frame level, a process called

segmentation. For instance, pixels can be grouped together into patches based

on how similar their colors are (a.k.a. super pixels such as [ASS∗12]), whether

they belong to the same object (a.k.a. semantic segmentation such as [LSD15]) or

even whether they are considered to be foreground or background (e.g . [Pic04]).

The choice of segmentation depends largely on the application. For instance, in

Figure 3.15, we could perform foreground-background segmentation to separate

the fluttering flag from the rest of the scene or we could do object segmentation

1https://corneliu.co.uk/phdresults/chapter3/index.html#ribboncontrol

53

https://corneliu.co.uk/phdresults/chapter3/index.html#ribboncontrol

3. PROBLEM ANALYSIS

to separate each moving element (such as the flag and the people walking by)

from one another and from the background.

In this Section, we briefly explore two methods for performing accurate (as op-

posed to the approximate results we aim for in Chapter 4) foreground-background

segmentation. They were both instrumental in enabling two video game proto-

types that demonstrate how videos can be transformed into interactive assets

usable from within a game engine. The differences between them are due to the

nature of the input video. Therefore, in Section 3.4.1 we discuss methodology

for segmenting opaque objects such as the flag in Figure 3.17 and in our first

game prototype1 where a binary mask is enough. In contrast, in Section 3.4.2

we show how to perform alpha matting of semi-transparent objects such as the

flame in Figure 3.1b and our second game prototype2, where pixels are assigned a

continuous value of “foregroundiness”.

3.4.1 Example-based Segmentation

The first foreground segmentation algorithm we experimented with learns a model

of appearance from user-given examples. We have chosen it for its simplicity,

speed and the fact that users can quickly improve results if they are willing to

invest the time and effort.

First, users use our tool, shown in Figure 3.13, to manually segment a few

frames. Instead of asking for a full frame mask, which would require considerably

more effort, we allow users to scribble over foreground pixels with a red brush

and over background pixels with a blue brush (as shown for the example frame

in Fig. 3.13). We automatically propagate the scribbles to the remaining pixels

in the same frame using the Watershed algorithm [Mey92]. The Canny edge

detector [Can86] is used to find the transition between foreground and background

areas, which are then inflated by a user-defined number of pixels. This results

into the trimap shown in Figure 3.13 where blue pixels are definitely background,

red pixels are definitely foreground and green pixels are undefined.

Traditionally, optical flow-based methods are used to propagate the user

1https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame
2https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

54

https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame
https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

3

2
1

Figure 3.13: Example-based segmentation tool. (1) work area: users can scribble
onto a frame (middle bottom) using various brushes to define a trimap (shown
top left) that is used to train an RFR to regress the segmentation mask for each
frame (shown top right); (2) scribble controls : users can select the type of brush
to scribble with (red for foreground and blue for background) or whether to erase
parts of or all scribbles; (3) matting controls : shows which frames the user defined
a trimap for which can be selected and modified as desired.

annotations to the remaining video frames (e.g . Chuang et al . [CAC∗02] propagate

the trimaps while Lang et al . [LWA∗12] directly propagate the scribbles). Instead,

we use the definitely foreground and background pixels to learn a model of

appearance of the foreground object. The model we have chosen is a Random Forest

Regressor (RFR) [Bre01] which is trained to distinguish foreground pixels from

background ones based on their three-channel color and image-space coordinates.

As the object changes appearance or position drastically, the RFR predictions

become noisy. However, users can use our intuitive tool (see Fig. 3.13 and our

supplemental website1) to quickly scribble over bad frames and correct mistakes

by adding them to the pool of learning examples used to train the RFR.

3.4.2 Intensity-based Segmentation

The second segmentation technique we experimented with, was specifically de-

signed to deal with the use case of filming light emitting elements such as the

1https://corneliu.co.uk/phdresults/chapter3/index.html#flagsegment

55

https://corneliu.co.uk/phdresults/chapter3/index.html#flagsegment

3. PROBLEM ANALYSIS

flame in our Candle dataset (see left image in Fig. 3.14). Provided they are

filmed in a dark environment against a black background, the pixel intensity values

can be used as a proxy for the alpha matte separating the flame from the rest of

the scene. We use the standard RGB-to-Gray formula to define the alpha values

A = 0.21R+ 0.72G+ 0.07B. While we could use A directly to create the flame asset

we used in our game prototype shown in Figure 3.14, we have found that small

tweaks can improve quality drastically For this reason, we built the tool shown in

Figure 3.14: An input video such as the the Candle dataset (left) can be
segmented and cropped using our intensity-based segmentation tool (right). The
controls visible on the left side of the tool can be used to manipulate the final
result as described in the text.

Figure 3.14, which users can use to adjust the alpha matte in three ways. First, a

high-pass filter can remove undesirable highlights such as seen on the candle in

Figure 3.14. Second, blurring A using a Gaussian filter can improve the quality

of the transition between foreground and background. Finally, passing the alpha

values through a sigmoid function can further tweak the appearance of the flame.

If necessary, users can also crop and recenter the segmented video (compare the

input frame on the left to the output frame on the right in Figure 3.14) to prepare

it for usage from within a game engine as discussed in Section 3.5.1. Please see

the controllable candle flame game asset on our supplemental website1.

3.4.3 Considerations

We have dedicated the above sections to exploring video segmentation in the

context of enabling new video experiences. The RFR-based method is the most

1https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

56

https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

general of the two and it performs well for our use case. It does however make

a set of assumptions such as the fact that the object is mostly stationary, has

distinctive appearance w.r.t. the background and users are willing to put effort

into annotating examples if the results are not satisfactory. The intensity-based

method on the other hand, while less demanding in terms of user effort, it is

tailor made for our use case and would likely not generalize well to other videos.

However, both methods have proven instrumental in enabling the creation of the

two game prototypes shown in Figures 3.1b and 3.17 and our website1. Moreover,

they highlighted issues about generalization and required user effort which we

address in later chapters (e.g . Section 4.2.2 and Chapter 5).

3.5 Video Authoring

In the previous sections, we have described the properties that a compelling and

engaging interactive video experience should have along with methods that make

such properties a reality. We have also shown that it is often desirable to involve

users, both for assisting imperfect automatic algorithms (e.g . segmentation in

Sec. 3.4) and providing creative input (e.g . Section 3.2.1). It stands to reason

then, that it is crucial to design effective tools that facilitate the human-computer

interactions needed to both support content creators in making video experiences

and enable consumers to enjoy them.

The field of Human-Computer Interaction (HCI) raises very important ques-

tions about how we interact with machines. We believe we must strive to build

tools that are enabling, easy to learn but most importantly cohesive and self

contained by providing all the needed functionality. In Chapter 4 we will describe

such a tool in detail and carefully analyze its HCI merits. For completeness, we

now briefly describe another tool which was instrumental in demonstrating how

videos can be processed and integrated within traditional video game engines

adding extra detail to the experience (please see our game prototype video2). We

believe it shows how clever algorithms and intuitive user interactions can come

together in an end-to-end setting to enable new ways of enjoying video content.

1https://corneliu.co.uk/phdresults/chapter3/index.html
2https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame

57

https://corneliu.co.uk/phdresults/chapter3/index.html
https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame

3. PROBLEM ANALYSIS

3.5.1 Creating Video Textures for Video Games

The tool we now describe gives content creators the ability to take an arbitrary

video, such as the flag in Figure 3.13, segment it from its original background

as shown in Section 3.4.1, loop it indefinitely using the Video Textures tech-

nique [SSSE00] and easily export the result as a video asset to the Unity3D game

engine. While we discuss the segmentation capabilities of the tool and show them

in Figure 3.13, we here present and show in Figure 3.15, the more creative side of

3

2

1

Figure 3.15: Video textures creation tool. (1) main viewer : the left hand side
shows the currently selected anchor frame S and the start and end frames of the
frame interval highlighted in red in (2); the right hand side shows the current
looping video texture; (2) video time-line: the anchor frame is highlighted by a
black bar while the subset of input frames to loop through is highlighted in red;
(3) user controls: manually defined parameters such as the length of the video
texture and the frame subset size.

the process. A video showcasing a typical session using our tool can be found on

our website1.

Video Textures

For completeness, we first describe how video textures [SSSE00] work. As we

briefly mentioned in Section 3.1, the main idea behind seamlessly playing back

a finite length video for an indefinite amount of time is to find similarly looking

1https://corneliu.co.uk/phdresults/chapter3/index.html#flagauthor

58

https://corneliu.co.uk/phdresults/chapter3/index.html#flagauthor

frames that can be used interchangeably and are thus suitable locations for jumping

around the original video’s time-line. To do so, we define an N × N distance

matrix D. Each element (i, j) in D represents the similarity between frames Ii

and Ij and is defined as

Dij = dE(AiIi, AjIj), (3.21)

where dE is the euclidean distance in Equation 3.1 and Ai and Aj are alpha mattes

associated to each frame as defined in Section 3.4.

Schödl et al . [SSSE00] note that preserving dynamics is crucial when jumping

to different locations in the input video. This is best explained with the example

in Figure 3.16, where both frames pointed to by the red and blue arrows are very

Figure 3.16: The importance of preserving dynamics. While the middle yellow
frame is similar to both the middle red and blue ones, only jumping between the
yellow and red frames preserves the correct movement of the pendulum.

similar to the central yellow frame. If we were to use the yellow frame inter-

changeably with the blue one however, the result would be the clearly mistaken

sequence of frames highlighted in blue. To avoid such situations and ensure the

red frame is always picked, Schödl et al . suggest taking into consideration the

similarity between neighborhoods when defining the distance between two frames

i and j. They define the new distance D′ such that

D′ij =
m−1∑
k=−m

wkDi+k, j+k, (3.22)

where m denotes the size of the neighborhood and wk weighs the importance of

each neighboring frame. In Figure 3.16, k would be set to 1 and it becomes clear

that the new distance measure correctly identifies the yellow set of frames as

being more similar to the red sequence than the blue one.

The distance D′ can now be used to find similar looking frames (i.e. low

59

3. PROBLEM ANALYSIS

distance) and randomly use them interchangeably to jump to different locations of

the input video. However, doing so may lead us to unique parts of the input video

where there are no seamless jumps. Therefore, we would be forced to use badly

visible jumps and breaking the illusion of watching an infinitely long video. In

order to predict whether a good jump leads to a dead ended section of the input

video, Schödl et al . [SSSE00] propose a very elegant solution. They manipulate

D′ to associate higher values to seemingly low cost jumps if they are likely to lead

to dead ends. To this purpose, we define D′′ with

D′′ij = (D′ij)
p + αmin

k
D′′jk, (3.23)

which intuitively means that the distance between frames i and j depends on how

similar their appearance is but also how good the jumps will be in the future if

i and j are used interchangeably. Here, p controls the trade off between using

multiple low cost jumps (i.e. similar pairs of frames) and using a single high cost

one. To compute D′′, we follow [SSSE00] and define mj = minkD
′′
jk, initialize

it using the values of D′ and iteratively update the values of mj and D′′ until

convergence (a process known as Q-learning [Wat89]).

Loop finding

To create a video texture, we use the random choice-based method described

in [SSSE00] which consists of randomly showing frame j after frame i based on

the probability

Pij = exp−
D′′i+1, j

σ
(3.24)

where σ controls how much we are willing to tolerate bad jumps. The tool in

Figure 3.15 also allows users to select a subset of the input frames to favor during

looping. They manually choose an anchor frame S and a neighborhood size

(visually marked by the black bar and red highlight in the time-line slider at the

bottom of Figure 3.15 respectively). The probability of showing frame j after

frame i then becomes

Pij = exp−
[
D′′i+1, j

σ
+ fS(|j − S|)

]
(3.25)

60

where fS is the sigmoid-like smooth step function. Users have manual control

over the steepness of fS which we indicate visually by feathering the red highlight

in Figure 3.15. Intuitively, the further a frame j is from the anchor frame S, the

more unlikely it is to be used despite it potentially producing a seamless transition

from frame i.

Unity3D integration

Using the loop finding technique described above, we can generate an arbitrarily

long sequence of frames with no visible transitions. In order to integrate such a

seemingly infinite video into a game engine such as Unity3D, we have chosen a well

known technique known as billboarding. It consists of placing two-dimensional

rectangular meshes in a three-dimensional virtual scene and actively changing

their orientation in response to the user-controlled camera. This method was

originally designed as a way to represent complex 3D geometry such as entire tree

branches with leaves by means of appropriately placed and textured simple planes.

It is perfect for our use case, as we have filmed complex animated geometry such

as our Flag dataset and can approximate it with a simple rectangular billboard

which effectively acts as a television screen. The tool presented in this section can

automatically export the necessary Unity3D assets which can then be carefully

placed within a 3D game level together with additional geometry such as a flag

pole, resulting in the convincingly animated flag shown in Figure 3.17 and our

supplemental video1.

3.5.2 Considerations

The section above describes a tool that assists content creators in producing video

textures [SSSE00] and export them as game assets usable from within the Unity3D

engine. We believe that having an end-to-end tool is crucial to enabling interactive

video experiences because of two reasons. First, no matter how clever automatic

algorithms are, such as the video looping technique by Schödl et al . [SSSE00],

their performance will depend upon the input data. We believe that, having the

ability to involve the user is critical for achieving the best results. Second, in

1https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame

61

https://corneliu.co.uk/phdresults/chapter3/index.html#arrowgame

3. PROBLEM ANALYSIS

Figure 3.17: Example of final video texture used in a game level in the Unity
3D engine. The flag is derived from real video footage whereas the remaining
elements are traditional assets (left) or IBR assets (right).

the context of creative experiences such as the ones described in Chapter 4, it is

always important to give the content creator the ability to express themselves and

influence the output. As we will further discuss in the next chapters, this is one

of the reasons that motivated our choices throughout this thesis.

3.6 Multiview Interaction

In the previous section, we have discussed a simple way of showing traditionally

two-dimensional video content in a 3D video game world by means of flat billboards.

As visible in Figure 3.17, the effect can be quite convincing, provided we do not

stray away from the input view too much and the filmed object is roughly planar.

As soon as either of these prerequisites is not satisfied by, for instance, looking at

the flag billboard from a grazing angle, the illusion breaks. Our goal is to enable

the creation of new interactive video experiences that immerse and engage users

so maintaining the illusion at all times is crucial.

So far in this Chapter, we have defined videos as sequences of flat grids of

pixels and manipulated them as such. However, a more accurate way of looking

at videos is as a sequence of projections of a three-dimensional world onto a 2D

image plane. If we can reason directly about the 3D world, we can have a more

accurate representation of the movement captured by the video and, as a result,

design more natural and intuitive interactions. Take the example of the car from

our Havana dataset moving across the road crossing in Figure 3.18: if we think

62

of the video in terms of a sequence of images, all we can do convincingly is to

manipulate the way we play back the frames and manipulate the speed at which

the car is moving (as discussed in Section 3.2.2). Crucially, we could not for

instance, make the car follow a different path convincingly as we would not know

how it looks from a different point of view or how its size changes as it moves

closer to or further away from the camera.

There are two reasons we cannot yet enable such natural and intuitive in-

teractions: i) we do not know how an object moves through the scene and how

consequently its appearance changes and ii) we do not have any three-dimensional

information about the world and how it is projected onto the 2D video frames

and as such we cannot synthesize new visuals by leveraging this more natural

representation. To tackle the above issues we need ways of inferring additional in-

formation about the world visible through the video frames and ways of leveraging

such information to create 3D visuals by manipulating two-dimensional photos.

We dedicate Chapter 5 to exploring automatic methods for inferring the extra

information we need, while we discuss our experimental way of leveraging it for

rendering 3D visuals in the next Section 3.6.1.

3.6.1 Generating 3D Visuals from 2D Video

In this Section, we present a real-time 3D viewer that leverages video data to create

its visuals. We assume the input videos are captured using a static calibrated

camera with known pose (e.g . by using the tool from Section 3.2.2) and that

filmed objects are tracked over time and their position in the 3D world is know at

each step. We discuss how to automatically infer this information in Chapter 5.

Our 3D viewer shown in Figure 3.18 and on our supplemental website1 is

implemented using OpenGL which defines a virtual camera in terms of a view

matrix V and a camera projection matrix C. In contrast, our calibrated camera is

defined in terms of its internal parameter matrix K and camera pose P =
[
Ω τ

]
as detailed in Section 5.1. To simulate such camera using the OpenGL conventions

1https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis

63

https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis

3. PROBLEM ANALYSIS

Figure 3.18: Left, we show a cropped input video frame of a tracked object.
Right, we show the same object rendered in our 3D visualizer from a novel view
point. Note how the car still looks realistic despite looking at it from a never-before
seen viewpoint.

we set

V =

[
Ω τ

0T 1

]
1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 1

 (3.26)

where Ω is the camera rotation and τ is the column vector representing the

camera’s center of projection. The camera projection matrix

C =

2
r−l 0 0 − r+l

r−l

0 2
t−b 0 − t+b

t−b

0 0 2
n−f −

f+n
f−n

0 0 0 1

φx γ δx 0

0 φy δy 0

0 0 n+ f nf

0 0 0 1

 , (3.27)

where φx, φy (x and y focal lengths), γ (skew) δx and δy (x and y image center

offsets) are the internal camera parameters defined in the intrinsics matrix

K =

 φx γ δx

0 φy δy

0 0 1

 , (3.28)

and n and f are the near and far clipping planes respectively. The left-most

64

matrix on the right-hand side of Eq. 3.27 maps the camera space points (i.e. after

they are multiplied to the view matrix) to the
[
− 1, 1

]
interval so we set l = 0,

r = width, b = height and t = 0 according to the viewport size.

Rendering filmed objects

After setting up the OpenGL environment as described above, we are ready to

render the filmed scene. The static background is rendered by projective-texturing

the approximate scene mesh we manually define using the tool described in

Section 5.1.1. Filmed objects such as the car in Figure 3.18 are rendered by

placing flat billboards aligned to the tracked footprint we are given as an input (as

showcased in our supplemental video1) and texturing them using the patches from

the input video segmented from the static background by, for instance, using the

interactive method described in Section 4.2.2. Users can manually control a filmed

object and place it in the 3D scene as they please, so we choose the patch from the

video frame where the object is seen from the most similar viewpoint to the one

expected by the user given the pose of the virtual camera and the location of the

object. We do this automatically by comparing the user-defined object pose w.r.t.

the virtual camera to its pose w.r.t. the camera that captured the input video

at each frame and picking the best match. Clearly, if the user chooses to place

the car on its original trajectory and the virtual camera where the camera was

when capturing the input frame sequence (i.e. using Equations 3.27 and 3.26),

the result would replicate the input video faithfully.

In many ways, the technique we describe above is similar to Unstructured

Lumigraph Rendering (ULR) [BBM∗01] with notable differences being the simpler

shape proxy (i.e. the flat billboard) and rendering a chosen patch as a whole as

opposed to selecting the best matching patch per pixel. We have chosen this path

because results would likely be similar given that we represent each object with

such simple geometry and drastic changes in pose and location would result in

poor results either way. However, we explore better geometry proxies in Chapter 5

and discuss extending our viewer to ULR in Section 5.3.2.

1https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis

65

https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis

3. PROBLEM ANALYSIS

3.6.2 Considerations

We have presented a real time 3D viewer which can leverage knowledge about the

real world (e.g . the camera pose) to manipulate 2D video frames in meaningful

ways. We make a set of critical assumptions about the scenes and objects we are

dealing with, such as having a static camera and a roughly planar ground surface.

Despite these, we believe it sets the basis to more natural interaction with video

content and brings us closer to our goal of making the act of watching a video

more game-like1. While reasoning about the 3D world is not a prerequisite to

interactivity (as demonstrated by our new medium of expression in Chapter 4), it

can lead to more immersive experiences as witnessed by the fact that the most

successful modern video games emulate the three-dimensionality of the real world.

3.7 Conclusions

In this chapter we sought out to identify the properties that a successful interactive

video experience should exhibit. In particular, we were interested in clearly defining

desirable ways of interacting with video content that is traditionally consumed

passively and what making them a reality would entail. Through extensive

discussions with actively involved game developers, we have found that, in order

to make the activity of watching a video more game-like, we must have the

ability to synthesize visuals indefinitely from a finite length sequence of frames

and that we must give content creators and players the ability to influence the

synthesis process in meaningful ways. In addition to these two main abilities,

game developers also pointed out that they need the synthesis process to be able

to instantly react to user input and that they want the video content to live in a

three-dimensional world (as opposed to the 2D video frames) that most modern

video games emulate. Finally, it became apparent that, as they are content

creators, game developers need to be able to express their creativity so automatic

algorithms to make the above a reality are just one side of the coin. In fact, we

find that it is crucial to support users with automatic algorithms rather than

1See our result video at https://corneliu.co.uk/phdresults/chapter3/index.html#

3dvis

66

https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis
https://corneliu.co.uk/phdresults/chapter3/index.html#3dvis

replace them, so designing intuitive and responsive human-computer interactions

becomes crucial.

In addition to defining the above desirable properties of interactive video

experiences, we set out to identify and explore techniques that enable them. For

instance, we believe looping is the best way to create visuals from video indefinitely,

so in Section 3.1 we discuss how to do this and explore one of the most pressing

issues, i.e. choosing a measure of similarity that can robustly identify seamless

jumps within the input video’s time-line. We find that semi-supervised perceptual

measures such as the Random Forest Regressor in Section 3.1.2 are better suited

than traditional objective distances (Sec. 3.1.1). However, they require additional

user effort making them undesirable in certain cases, such as shown in Chapter 4,

where we choose to focus manual intervention elsewhere (i.e. defining actions in

Section 4.2.3). We introduce the concept of semantic looping in Section 3.2.1

which will allow us in Chapter 4 to enable users to interact with engaging video

experiences. We also experiment with a character animation technique [LWB∗10]

which we adapted to synthesize video content in real time. While promising,

we have found it was not flexible enough for our purposes so will introduce an

alternative in Section 4.3.2. Further, we identified segmentation (Sec. 3.4) as

indispensable for integrating video content into game engines such as Unity3D

(Sec. 3.5) and experimented with a number of techniques. While reasonably

successful for our practical needs, they are unlikely to generalize well to other use

cases so they were not developed further. Finally, we have shown that 2D video

content can be leveraged to generate three-dimensional visuals akin to modern

video games. The prototype 3D viewer presented in Section 3.6.1 is promising

and is further developed and extended in Chapter 5.

In Chapter 4, we take some of the most promising techniques such as the

semantic looping from Section 3.2.1 and the most pressing requirements such as

real time video synthesis (Sec. 3.3) and effective authoring tools (Sec 3.5) and

combine them in an end-to-end system that enables a novel medium of expression.

Content creators are given the tools to efficiently prepare video content and users

the ability to directly interact with the resulting video experience which reacts to

their inputs instantly.

67

Chapter 4

Responsive Action-based Video

Synthesis

In the previous chapter, we have presented a number of features that we have

identified, together with game developers, as crucial for creating interactive

experiences based on video content. Some are more obvious, such as the ability to

loop a video indefinitely in order to not put a time limit on how long consumers

can enjoy the experience. Some are, perhaps, less straight-forward such as devising

simple and intuitive ways that can engage players by giving them power over the

output, while at the same time are powerful and generic to cater for a wide-variety

of input videos. In this chapter, we take ideas from Chapter 3 and adapt and

integrate them into an end-to-end system, which as discussed in Section 3.5 is

important to ensure the efficiency of content creators.

Given our initial hypothesis, we design our system to allow and encourage

content creators to improve upon and interactively change automatically inferred

information (e.g . tracking and segmentation in Fig. 4.3). Crucially, our interactive

system enables a new responsive medium of expression by facilitating the creation

of compelling interactive experiences that engage audiences with video content that

instantly reacts to their actions. As Dan Olsen outlined in his SIGCHI acceptance

speech [Ols12], a great medium of expression is characterized by three properties:

Range, Empowerment, and a Balanced Structure. Good range indicates a wide

variety of possible expressions, empowering mediums lower the required skills and

68

Figure 4.1: Illustration of how content creators prepare videos into liver per-
formance for audiences to interact with. Our end-to-end technology assists with
finding and segmenting loopable actions in video inputs (orange, blue, red).
Then, discrete but compatible actions can easily be triggered during a live show.

cost to reach excellent results while a balanced structure constrains the user to

make new outputs possible. By these measures, we find Live Looping [Pet16],

where music is recorded and played back in real-time, to be an inspirational

medium for authoring music. Present-day musicians like Reggie Watts1 and

Kimbra2 can easily accumulate simple sounds, faithful to the original audio-clips,

yet they have the flexibility and precise control to overlay and repeat clips to

compose complex music that transcends their solo-musician appearance. In this

chapter, we describe a novel end-to-end system that enables the existence of a

“cousin” of Live Looping for the video domain3, as illustrated in Fig. 4.1.

Presently, technologies for video-authoring have good Range [Ols12], meaning

that they are flexible and accurate in depicting many subjects. But they lack

a Balanced Structure and Empowerment, which require confining flexibility to

ensure even novices succeed, without curtailing what experts can create. Our

goal is to develop a tool that enables end-users to express themselves through

a new medium characterized by all of these three properties. In particular, we

aim to i) “lower the floor” so that novices can participate, ii) “raise the ceiling”

so that a single artist can compose expressive pieces and performances while

iii) catering for the widest range of inputs possible. We do this by building an

end-to-end system to create, iteratively repair, and control video sprites thanks to

1https://youtu.be/0gKWfvd-chA?t=123s
2https://youtu.be/DgmoHtnoi7k?t=27
3YouTube’s MysteryGuitarMan uses labor-intensive methods and has almost 3M followers:

https://youtu.be/EQXA7ErL708

69

https://youtu.be/0gKWfvd-chA?t=123s
https://youtu.be/DgmoHtnoi7k?t=27
https://youtu.be/EQXA7ErL708

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

a constrained optimization algorithm wrapped inside our expressive new interface.

Content creators can quickly improve clips that are hard to segment or loop, and

check their quality live without jumping between disjoint tool-chains.

We adapt the live looping concepts to video in a prepare- and perform-structure

(see Fig. 4.1). In the preparation stage (Sec. 4.2), we treat all moving elements

as video sprites, i.e. a bendy tube of pixels in a stack of sequenced images, like

Lu et al . [LZW∗13]. We call these actors. If a video features only one actor, this

is simply a whole-frame sprite. Each tube is then manipulated in time, while

maintaining the original spatial properties, to create the output. This is done

by splitting a sprite’s frames into clusters of actions by borrowing from concepts

presented in Section 3.2. Content creators and novice audiences can then choose

which subset of frames to show during the second part of our approach: the live

performance (Sec. 4.3). We show in Section 4.5 how one can request actions

through a wide range of trigger interfaces, such as tangible widgets, keyboard,

or paint-by-numbers, while our system ensures smooth loops within clusters and

transitions between them. If necessary, content creators can also edit synthesis

constraints to ensure sensible actor behavior (see Section 4.3.1).

We assume the input videos to our system adhere to the following criteria:

a) the camera is stationary, b) there are no large differences in lighting over

the sequence, c) the background is mostly stationary, d) the filmed actors are

mostly well separated from each other and e) the actions they perform are visually

distinct. We show in Section 4.6 how, despite these assumptions, our system

has good range and can cater for widely different videos featuring various types

of actors and actions and produce rich and diverse results. In Section 4.7 we

demonstrate that our new medium of expression is empowering as it allows novice

audiences to reach great results in a short time. Finally, in Section 4.8 we present

informal interviews with several video-artists to determine the balanced structure

of the live video performance.

4.1 System Overview

We design our end-to-end interface to allow content creators to quickly prototype

their ideas. The more effort they are willing to invest, the higher the quality and

70

(a) Track and Segment (b) Action Definition

Input

Compatibility

(c) Responsive Synthesis (d) Rendered Output

Figure 4.2: Overview of our interactive video synthesis pipeline: (a) The first,
optional, step is to track and segment the actors we wish to control, such as
the two sticks and foot of the drummer in this example. (b) The user defines
a set of actions for each actor by tagging example frames. Here, actions are
hitting a specific drum or cymbal and resting. (c) A new video is synthesized
given input commands mapped to actions and, optionally, frame compatibility
information. The compatibility knowledge is learned over time, as the user tags
pairs of frames, and the output is changed accordingly. (d) The synthesized
sequence is composited and rendered seamlessly (using Poisson Blending [PGB03]
and our custom compositing algorithm).

complexity their results can achieve. We recruited six different technical artists

(game developers and visual effects artists) to help define which features in our

prototype system we should focus on to best assist them in creating live video

performances. Interactivity (as opposed to automation) and responsiveness were

identified as crucial so we emphasize these aspects in our tool.

Broadly, videos are prepared before being used in one or more performances.

With this in mind, we start by providing the necessary tools to define elements of

interest which we call actors. These can be full-frame video sequences, such as

our Toy and Candle datasets (see Fig. 4.12 and Tab. 4.1), or localized objects,

such as the cars in Havana or hands in Drumming.

For the objects, we provide semi-automatic tracking and segmentation capa-

bilities (Fig. 4.2a). We enable the user to correct any mistakes in the bounding

box tracks interactively. Similarly, for separating the tracked object from the

background, our tool provides previews of generated action video clips, together

or in isolation. Users can then correct and influence the quality of the final

segmentation by scribbling over the resulting masks.

The next step is the most critical and represents the core of our new medium

71

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

of expression. Using our simple UI (Fig. 4.2b), users associate a set of actions to

each actor, specifying the moment in the video timeline when these are performed.

For instance, each musical note in Toy, or drum hit in Drumming, represent

semantically and visually distinct actions. Users define these by tagging a few

example frames while the remaining ones are labeled automatically, based on

visual similarity, using a machine learning approach. This reduces the required

user input and provides almost instant feedback, allowing users to validate the

automatic action association and, if necessary, refine it by tagging more examples.

A new video performance synthesizes a number of output layers, each of which

corresponds to an actor. Without further guidance, our algorithm can seamlessly

loop through the actor input frames by finding visually smooth transitions (similar

to [SSSE00]). Users can, however, guide the live video performance by pressing

keys mapped to actors’ actions (Fig. 4.2c), requesting what to see and when. As we

show later, this simple but powerful interaction mechanism enables more creative

input methods such as MakeyMakey [Joy12], synthesis-by-numbers [HJO∗01] or

custom videogame logic.

Our novel and fast synthesis algorithm balances the importance of meeting

users’ requests with maintaining the visual quality of loop transitions, to create a

new video interactively. Users can further refine the output by tagging incompatible

frames or actions, so that actors interact only in desirable ways; for example,

diggers should only load parked trucks (see Digger in Fig. 4.8). Our synthesis

algorithm uses this information to improve the resulting output, completing the

human-machine feedback loop that makes results possible, in response to high

level triggers.

Finally, we can perform an optional post-processing step (Fig. 4.2d) to improve

the quality of the output sequence recorded during the interactive phase described

above. We use seamless blending to remove artifacts due to illumination changes

and then merge the actor patches together with the background ensuring that the

overlapping regions are handled correctly.

The following sections provide the technical and implementation details re-

quired to reproduce our system; these are followed by the results and evaluation.

72

Figure 4.3: Our actor preparation user interface: (1) actions associated to
each frame of a tracked object (e.g . the closest person is shown “sitting” in each
red frame and “standing” in each purple frame, with in-between frames shown
as a combination of the two colors); (2) two example frames with associated
actions (above each and denoted by marker), bounding box and segmentation
with corrective strokes (blue = BG, green = FG); (3) input video timeline: the
black vertical line indicates the current frame and the colored horizontal lines
indicate frames where each actor (in this case people) has been tracked; (4) list of
tracked actors (identified by their unique color also used in (3)).

4.2 Actor Preparation

We now describe the steps and tools (see Figure 4.3) used to prepare a raw video

for use during a live performance. The result of this stage is a set of actor

sequences: video sprites associated to actions, as shown in Section 4.2.3, that

can be interactively triggered during synthesis. Optionally, actors can be tracked

(Sec. 4.2.1) and segmented (Sec. 4.2.2) to improve looping and increase output

variability.

4.2.1 Tracking

Critical to looping algorithms is the ability to find similar frames or patches,

at different points in the timeline, that can be used interchangeably to “jump”

between different parts of the video. This is impossible for complex videos, such

as ones with multiple, independently moving objects (see Havana). Methods

such as [LJH13] partially address this problem by adapting their patch shape

73

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

(a) On BG (b) Ours final (c) Thresholded (d) Mix clone

Figure 4.4: Result of our user-in-the-loop segmentation procedure and post-
process compositing: the raw image patch is placed on the original background
(a) and composited using seamless cloning [PGB03] to remove lighting changes
w.r.t. BG (red arrows in (a)) and our custom algorithm to resolve occlusions (b).
Thresholding the BG difference introduces artifacts (c), while the “mixed seamless
cloning” in [PGB03] does not resolve occlusions (d). Input c© Brooks Sherman.

to best suit looping, but are prone to cutting objects, introducing visible seams.

We choose to let users decide interactively which elements they may want at

showtime.

In our system, objects of interest are defined by placing bounding boxes around

them and tracking them over time. Tracking is a difficult problem and completely

automated methods are prone to mistakes (e.g . drift), especially in crowded scenes

like Havana. To overcome this, alongside the automatic CMT tracker [NP15],

our system also provides users the tools they need to assist it when necessary (see

our UI in Fig. 4.3). We chose the CMT tracker because a) it is easy and quick

to correct in an interactive setting and b) it estimates both scale and orientation

along with the position of the bounding box.

4.2.2 Segmentation

We then use the bounding box to constrain our custom, graphcut-based fore-

ground (FG) segmentation algorithm. Unlike traditional approaches, we aim to

composite the patches on their original background (BG). We therefore allow BG

pixels to belong to the FG patch as long as all FG pixels are correctly classified

(see Fig. 4.4a). To ensure this, users can correct any errors in the labeling by

interactively scribbling over patches (the colored strokes in (2) in Fig. 4.3).

74

After estimating the static background as the per-pixel median of all input

frames, we use the seam-finding algorithm in Graphcut textures [KSE∗03] to

separate FG from BG pixels. We use their pairwise term to conceal seams, and a

novel unary term that enforces seam consistency over time and FG pixels to be

within the bounding box. Formally, the unary term U for pixel s at position X(s)

belonging to the FG in frame t is defined as

U (s,X) = (1− α)

[
− 1

2σ2

∥∥∥X(s)−Xc

∥∥∥2
]

+

α
[
1−Mt−1

(
F←t

(
X(s)

))]
,

(4.1)

where Xc = (xc, yc) are the coordinates of the center of the bounding box in

image space, F←t(·) is the optical flow function that maps a pixel to its location

in the previous frame [Far03] and Mt−1 ∈ {0, 1} is the pixel mask (FG/BG) of the

previous frame t−1. We use α = 0.35 against a fixed cost to the BG. User-defined

scribbles fix pixels’ unary cost depending on their association; see Fig. 4.4 for an

example output.

4.2.3 Action Definition

The main innovation of our system is the direct mapping between arbitrary,

user-defined, semantic actions and video synthesis commands. Users quickly

and intuitively guide our synthesis algorithm towards their goal by issuing these

commands; for instance, requesting a candle flame to flicker to the right. In

contrast, traditional approaches expect users to manipulate the timelines of

several clips by cutting, re-arranging and synchronizing them [JMD∗12, LZW∗13];

we believe this makes for far less intuitive and powerful video synthesis.

Action recognition is a well studied problem in the literature. However, existing

methods focus on specific use cases, e.g . human actions [WRB11]. Not wanting

to impose restrictions, we allow users to indicate actions of interest “by example”,

using our responsive interactive tool (Fig. 4.3). To define actions, users inspect

actor sequences (potentially tracked and segmented) and indicate example frames

for each action with the press of a button. Users receive immediate feedback on

the quality of the frame-to-action association of the remaining input frames, as

75

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

0.0

0.5

1.0

frame number

manual example frames

0 200 400 600 800 1000 1200

GT

OUR

0 0 1

a) b) c) d)

.5 .5 0 1 0 0at=at=at= at= 0 1 0

Figure 4.5: We show the automatically propagated action assignments (OUR)
as opposed to the ground truth (GT). Two examples are given manually (vertical
lines) for each one of the three actions (denoted with different colors). The values
of the action vector at are shown for 4 example frames. Note how frame b) is
correctly “softly” assigned to an action between “left” and “rest” (not present
in GT).

they are automatically compared to the user-given examples.

We can view this as a fuzzy clustering problem, where each action (e.g . “sit”

and “stand” for Wave in Fig. 4.3) is a cluster. In practice, we represent the action

visible in frame t of actor sequence S for which l distinct actions have been defined

as an l-dimensional vector at. It represents a probability distribution over the

action space, so ||at|| = 1. Intuitively, the higher the value of the lth element of

at, the more representative is frame t of the lth action. For frames indicated as

examples of a given action, at takes the form of a binary vector with a 1 for the

specified action and 0’s elsewhere. For instance, given the l = 3 actions defined

for Candle (i.e. “rest”, “left” and “right” in Fig. 4.5 and in the supplemental

video1), a confident example frame showing the flame flickering to the left would

be associated the action vector at = [0, 1, 0] (Fig. 4.5d).

We then quickly propagate the user-given information to the remaining frames

using [ZGL∗03]. Action vectors at, with ||at|| = 1, are assigned to all frames,

softly clustering them into different actions based on similarity to example frames.

1https://corneliu.co.uk/phdresults/chapter4/index.html#candleactions

76

https://corneliu.co.uk/phdresults/chapter4/index.html#candleactions

The distance between each frame pair (t, t′) is defined as

D (t, t′) =
1

NO

N∑
n=1

[
I
(
t,X(n)

)
− I
(
t′,X(n)

)]2

, (4.2)

where we take the L2 distance between color intensities I
(
t,X(n)

)
and I

(
t′,X(n)

)
of every pixel n. If the actor sequence has been tracked, we first place the

frame’s segmented patch onto the static background as shown in Fig. 4.4a. This

ensures Eq. 4.2 can be used for both tracked and full frame sequences, and spatial

relationships are preserved. To avoid bias due to camera-related effects, such as

foreshortening, we normalize the distance measure by the number of overlapping

pixels NO between each frame’s bounding box. We set NO to the whole frame area

if no bounding box is defined. For space reasons we do not discuss the propagation

further. Please see [ZGL∗03] and specifically their Eq.(5) for more details.

0 100 200 300 400 500 600 700 800
Time[secs]

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ec

is
io

n

US Toy
ANVIL Toy
US Candle
ANVIL Candle

Figure 4.6: Time we spent labeling actions for datasets Toy (700 frames) with
9 different actions and Candle (4000 frames) with 3 different actions using our
system or ANVIL [Kip14]. Precision computed w.r.t ANVIL labels.

Each input frame is associated to an action-cluster “softly” as shown in Fig. 4.5.

This is critical, as frames for which no clear association exists (e.g . (Fig. 4.5b)), are

used as in-between transitions by our synthesis algorithm. In contrast, traditional

video annotation tools, such as ANVIL [Kip14], enable a similar partitioning of

video sequences but with hard boundaries between manually defined intervals

(see Fig. 4.5 GT), losing the expressiveness of fuzzy assignments in the process.

Moreover, as shown in Fig. 4.6, we experienced a 2× to 3× speed-up in reaching

77

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

1

2

4

3

Frames of actor bordeaux_car1

Frames of actor black_car1

Figure 4.7: Our video synthesis user interface: (1) output timeline: lists the
used actor sequences (e.g . 1 bordeaux car and 2 black cars) and the color coded
user-given commands (e.g . red for the car to stay hidden and purple for it to drive
through the crossing); (2) frame compatibility tagging interface: pairs of frames
(previewed to the right of the compatibility info) can be tagged as compatible or
incompatible; (3) compatibility info for the two selected actors (i and j): frame
association to compabtibility clusters per actor (ctii→j and c

tj
j→i), the cluster-pair

compatibility (B(i, j,m, n), see Eq.4.3), for instance, here, the 3rd cluster of each
actor (dark cyan above) are incompatible as denoted by red in the cell (2, 2)
and the frame compatibility measure χ

(
ti, tj

)
from Eq 4.4 (blue denotes a low

cost and red denotes a high cost) (4) list of available actor sequences (added to
the output timeline shown in (1)) and synthesis parameters. Input c© Brooks
Sherman

the accuracy permitted by ANVIL (and ignoring in-between frames) thanks to

the automatic label propagation from [ZGL∗03].

4.3 Video Performance

In this section, we show how we synthesize a live video performance given a set

of input actor sequences. During rehearsal (i.e. before the live performance),

content creators are given the ability to interactively define the frame compatibility

measure (Sec. 4.3.1), which is later used to avoid implausible outputs. Then, our

optimization strategy (Sec. 4.3.2) balances user commands, frame compatibility

and transition quality information to synthesize new videos in real time. Figure 4.7

shows the GUI users are presented with during the video performance stage.

78

4.3.1 Frame Compatibility

As we will see in Section 4.3.2, users guide the video synthesis by requesting when

actors should perform actions. When multiple actors are present in the same

frame however, outputs can exhibit implausible situations depending on when

users issue their commands. For instance, Candle flames could flicker in different

directions at the same time (Fig. 4.12a), a Digger could start loading a moving

truck (Fig. 4.8a) or cars could collide in Havana (Fig. 4.7). In our system, these

incompatibilities take the form of two actors’ frames being composited together

onto the background in the same output video frame.ravstrack

In essence, we again want to assign frames to a set of clusters fuzzily, as we

did for our action definition. These clusters further decompose the actions into

sub-sequences. Users mark them as (in)compatible w.r.t. the sub-sequences of

other actors, indicating which sets of frames should be allowed to co-exist in

the output video. Given actor sequences Si and Sj, we define the compatibility

between their respective clusters m and n as

B(i, j,m, n) =

 1 if compatible

100 if incompatible
. (4.3)

Initially, there is one sub-sequence cluster for each user-defined action, so m and

n are in the range [0, l). Later, we discuss how users marking (in)compatibilities

changes the number of clusters. We initialize B(i, j,m, n) = 1 for all combinations

of m and n. We use ctii→j to denote the vector containing the probability that

frame ti of actor Si belongs to clusters compatible with actor Sj. Similarly, we

define c
tj
j→i for frames of actor Sj . We initialize ctii→j = ati as it provides an initial

division of the input frames, the combination of which could be incompatible.

The compatibility between frame ti of Si and frame tj of Sj is then defined as

χ
(
ti, tj

)
=
∑
m

∑
n

ctii→j[m] c
tj
j→i[n] B(i, j,m, n) , (4.4)

where ctii→j[m] denotes the mth element of ctii→j. Intuitively, the higher the proba-

bility that two frames belong to two compatible clusters, the lower the value of

79

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

(a) Without (b) With

Figure 4.8: Compatibility illustration. Here, the digger is requested to “load” a
truck while the truck is asked to “drive” away in both cases. (a) Without frame
compatibility, the two actors are free to perform these incompatible actions, with
obvious artifacts. (b) With it, the digger is forced by our algorithm to “load” only
when the truck actor is “parked”. Input c© Perfect Lazybones/Shutterstock.com

χ
(
ti, tj

)
, denoting a low compatibility cost.

Using our GUI (Fig. 4.7) at synthesis time, users can tag pairs of frames as

compatible or incompatible. Given the pair (ti, tj) we allow two options, which

we illustrate for ti only, as they are analogous for tj:

1. specialize the compatibility by using ti as an example for a new cluster m̃,

re-running label propagation using the extended set of examples to compute

(the now 1D larger) ctii→j for all frames of Si, extending B by one row, setting

B(i, j, {m | m 6= m̃}, n) = 1 and B(i, j, m̃, n) according to the user input;

2. refine the compatibility measure by leaving B unchanged, setting ti as a

new example for the cluster m = argmax
m

[
ctii→j

]
it most likely belongs to

and, again, re-running label propagation to re-compute ctii→j.

If the compatibility of (ti, tj) is changed, we assume option 1, otherwise, the user

is asked to decide.

Intuitively, using the example of the two cars at the crossing in Fig. 4.7, if

one chooses to specialize, each cluster will contain frames showing the car in

different parts of the intersection. All frames showing the cars in the middle of the

crossing can then be marked as incompatible and avoided in the output, making

our synthesis continuously smarter.

80

4.3.2 Action-based Video Synthesis

An output video is composed of the frames of one or more actor sequences,

re-arranged to infinitely loop showing specific actions and the transitions be-

tween them. We phrase our synthesis process as a labeling problem over a

two-dimensional graph with D rows and K columns (see Figure 4.9). Each d row

is an output layer that contains the frames {ti} of a specific actor sequence Si,
re-arranged to adapt to the user’s commands. Each k column represents a final

output frame as the union of the frames chosen for each layer. For instance, the

Toy result has one row with output frames straight from the input, while the

Havana output has as many rows as controllable cars. The label assigned to each

(d, k) node is the index of an actor’s frame.

Users control the output video by selecting one output layer at a time (see

output timeline in Fig. 4.7) and pressing the key associated to the action they

want the actor to perform. This in turn defines for each output frame k a D-

dimensional requested action vector {rkd}, d ∈ [1, D]. We use a smooth-step

function to automatically switch from the currently shown action to the one

associated to the user-pressed key stroke.

Formally, our optimization strategy minimizes the energy function

E =
K∑
k=1

D∑
d=1

αEA + (1− α)
(
β EC + (1− β)ET

)
, (4.5)

where EA, EC and ET are action, compatibility and transition costs respectively.

Intuitively, the higher the value of α, the more responsive the synthesis is to the

requested actions (as EA counts more towards total energy) at the expense of

looping quality. This is in turn controlled by the other two terms, balanced by β.

The higher its value, the more important it is to show compatible frames (EC) at

the expense of smooth transitions (ET). Both parameters are user-tuned.

We now define the three components of our energy function. For output layer

d, EA is the cost of showing a frame tki of actor sequence Si, in output frame k,

based on whether the action it shows at
k
i matches the requested action rkd and is

defined as

EA

(
d, tki

)
=

1

2σ2
A

∥∥∥atki − rkd

∥∥∥2

. (4.6)

81

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

1 2 i K

1

2

D

Figure 4.9: Visual representation of the energy terms in Equation 4.5 and how
they relate to the synthesized video sequence. On the right, we show situations in
the output video each term is designed to avoid and which to favor.

This term is designed to ensure that the candle flame in Figure 4.9 always flickers

in the desired direction (i.e. right in the example). EC is the cost of showing a

pair of frames tki and tkj , from output layers d and d′ respectively, in the same

output frame k based on the compatibility cost χ(·, ·) from Eq. 4.4 and is defined

as

EC

(
d, tki

)
=

∑
j∈[1,D]\d

χ
(
tki , t

k
j

)
. (4.7)

In the example in Figure 4.9, EC ensures the two cars do not collide with one

another. Finally, ET is the cost of showing actor Si’s frame tki in output frame k

after showing a frame t
(k−1)
i in the previous output frame (k − 1) and is defined

as

ET

(
d, tki

)
= exp

[
1

σ2
T

D
(
t
(k−1)
i , tki

)]
, (4.8)

where D(·, ·) is defined in Equation 4.2. ET ensures that the person sitting down

in Figure 4.9 does so smoothly without visible jumps between a standing up pose

and a sitting down one.

4.4 Practicalities

In this section we present a number of implementation details and practical issues

that make our system successful in enabling interactive video experiences.

82

4.4.1 Real-time Performance

The objective in Eq. 4.5 can be solved using any discrete energy minimization

solver that supports multi-label nodes and arbitrary cost functions, e.g . TRW-

S [Kol06]. Unfortunately, TRW-S fails to converge in our experiments and our

system requires immediate feedback to enable live performances.

Instead, we use an iterative approach similar to the block coordinate descent

seen in [CK14] that minimizes our objective function locally. We define the new

energy function

E ′(d) =
K∑
k=1

EU + EP, (4.9)

and solve it using dynamic programming, one row d at a time, to synthesize K

output frames showing the actor associated to the given row. The only inter-row

energy is EC (Eq. 4.7), that ensures compatibility between frames of different

actors, which we “bake” into the unary term EU. We define it and pairwise term

EP as

EU = αEA + (1− α)βEC,

EP = (1− α)(1− β)ET,
(4.10)

respectively. At each iteration we minimize Eq. 4.9 for each row in the order the

output layers are defined and update EU to consider the already computed rows.

We have found that, one iteration is enough to satisfy our three constraints and

enables real-time synthesis. Note that, the result seen during a live performance

might differ from the one synthesized using the full set of action requests recorded

during it. This is due to the fact that, we can better optimize frame compatibilities

and transitions between actions, once we exactly know what each actor will be

requested to do and when. In our experiments, even long (see Table 4.1) actor

sequences such as the people in Wave or the flame in Candle never require more

than 500ms to synthesize 400 frames. We further drastically reduce these timings

(10× to 30×) by using our compression strategy described below. Typically, we

synthesize less than 100 frames in < 20ms every 2-3 seconds in a live performance

scenario, making our system very reactive.

83

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

4.4.2 Optimization Compression

Jumps are rarely perfect, as pointed out by [SSSE00], so higher quality outputs

involve fewer jumps (i.e. the original timeline is followed for as long as possible).

With this insight, we speed up our optimization further by synthesizing a subset

of the output frames using a subset of the input frames, and “filling in the blanks”

using subsequent frames. For instance, we can optimize for half the output frames

using only every other input frame and gain a 10× speed-up. We experimented

with up to 4× compression, meaning we optimize for every 4th frame, with no

visible quality penalty.

4.4.3 Post-Processing Rendering

Our optional post-process first uses seamless cloning by Pérez et al . [PGB03], to

merge each patch to the static background and remove artifacts (red arrows in

Fig. 4.4a) due to illumination changes. Then, our custom compositing algorithm

resolves occlusions between overlapping segmented actor patches.

As shown in Fig. 4.4a, our segmented patches often contain background pixels.

This was deliberate as it allows us to retain small details such as soft shadows, and

works well when patches are placed on their original background. When patches

of different actors overlap in the synthesized frame (Fig. 4.4b), BG pixels may

obscure FG pixels. For each pixel where this happens, we dynamically decide

which patch is most likely to be FG based on its color intensity difference to the

BG. This approach is more flexible and gives better results than setting a global

threshold on the background difference, as shown in Fig. 4.4c. It is also more

suited to our problem than the “mixed seamless cloning” in [PGB03] which does

not perform well with complex backgrounds or occlusions, and introduces ghosting

(Fig. 4.4d).

4.4.4 Precomputing Loops

In addition to the example output video in Figure 4.12a, we have created a

controllable video-based computer game asset to use in a real game prototype.

84

As shown in Figure 3.1 and our results website1, the Candle flame is composited

within a real game level and carefully placed on top of a traditional 3D model of

a candle. The game logic can also control which action the flame is showing in

real time (visible in Figure 3.1b). To make this possible we have used our system

to create a graph representation of the candle animation, a simplified example of

which can be seen in Figure 4.10. The directed graph is composed of a number of

Loop rest Loop left

Figure 4.10: Simplified example graph used to control the candle flame video-
based game asset shown in Figure 3.1

loops for each action type (green and red in the example figure) and a number of

chains leading from frames in a loop to frames in the other loops. Each node in

each loop is associated with the action type of the frame they are showing, while

each node in the transition chains take the label of the action of the loop they

lead to. The game logic can thus simply request an action type and traverse the

graph to show one of the precomputed loops. When the action type changes, it

can find the closest transition chain and reach a corresponding loop seamlessly.

4.5 Creative Synthesis

In contrast to existing tools, our system accepts high-level, user-defined commands

that guide our video synthesis algorithm. Users need simply request when they

want an actor to perform an action, enabling many alternative and fun ways of

creating videos, which we now present.

Keyboard and MakeyMakey The simplest way to create a video with our

system is by using a keyboard. An action for each actor can be mapped to a

1https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

85

https://corneliu.co.uk/phdresults/chapter3/index.html#candlegame

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

(a) MakeyMakey [Joy12] (b) By numbers

(c) Game logic

Figure 4.11: Using actions as an abstraction for synthesis commands enables
new and creative ways of creating videos. Trigger commands can be given through
touching a keyboard or Play-doh figurines (a), animated color bars (b) or context
specific game logic (c).

specific key stroke which, when pressed, signals our synthesis algorithm to show

frames from that category. Given the simplicity of our mapping process, we

can use more creative input methods too. For instance, in Fig. 4.11a and in

our supplemental video1, an artist uses MakeyMakey [Joy12] and some Play-doh

figurines to create a video using our Drumming dataset, where specific drums or

cymbals are hit when the associated figurine is touched.

Synthesis by numbers Our system enables creation of video analogous to

image synthesis [HJO∗01]. We associate actions to solid colors, and create an

animated control sequence showing those colors using any paint tool. Actions

are then triggered according to the colors shown by the control sequence. For

instance, Fig. 4.11b, shows an animated black bar crossing the screen from left

to right. At each output frame, people in Wave are asked to “stand” if they

are under the black bar and “sit” otherwise. This allows us to quickly create a

Mexican Wave. In our supplemental video2 we show that we can easily change

the control sequence to quickly synthesize completely different waves.

1https://corneliu.co.uk/phdresults/chapter4/index.html#drumming
2https://corneliu.co.uk/phdresults/chapter4/index.html#comparisons

86

https://corneliu.co.uk/phdresults/chapter4/index.html#drumming
https://corneliu.co.uk/phdresults/chapter4/index.html#comparisons

(a) Candle (b) Toy (c) Wave (d) Havana

(e) Drumming (f) Digger (g) Windows (h) Planes

Figure 4.12: Sample output frames. Inputs to (d) c© Brooks Sherman, (f) c© Per-
fect Lazybones/Shutterstock.com, (g) c© Pavel L/Shutterstock.com, (h) c© Cysfilm.
Results sequences shown on our supplemental results website2.

Game Logic Our system also allows external factors to drive video synthesis.

In particular, custom video-game logic can be programmed to issue commands to

our synthesis algorithm based on dynamic game-related events. For instance, we

have embedded a pre-computed set of outputs of our controllable Candle into a

game level (see Fig. 4.11c and supplemental video1). Then, the game logic decides

how the candle should react to its own wind simulation, by for instance, making

it flicker to the left or to the right.

4.6 Results

The new medium of expression described in this chapter enables the creation of a

wide variety of video performances. To stimulate the reader’s creativity, we have

produced a number of output videos using the system. They can be seen in our

supplemental results website2, as stills in Fig. 4.12, and are briefly described here.

1https://corneliu.co.uk/phdresults/chapter4/index.html#candle
2Visit our website http://corneliu.co.uk/phdresults/chapter4/

87

https://corneliu.co.uk/phdresults/chapter4/index.html#candle
https://corneliu.co.uk/phdresults/chapter4/index.html

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

Dataset Actors Actions
Average

#frames

Avg Prep

[s/actor]

Output

layers

Candle 1 {3} 1168 60 8
Toy 1 {9} 702 210 1
Wave 18 {2} 1124 1320 15
Havana 13 {2} 587 1257
Theme Park 13 {1, 2} 630 820 21
Digger 2 {2} 160 405 2
Windows 23 {2} 115 60 54
Planes 7 {2} 105 917 10
Drumming 3 {2, 4, 5} 506 2440 3

Table 4.1: Example input videos. Note how some datasets contain actors with
different numbers of actions. For each dataset, we show the average number of
frames per actor, average number of seconds necessary to prepare them and the
number of layers in the corresponding output video.

In Table 4.1, we provide information about the actors defined for each dataset

and the needed user effort.

We use Candle as a didactic example. After segmenting the flame using pixel

intensity, we define three actions (“left”, “right”, “rest”) and thus are able to have

it react according to a hypothetical breeze. Given multiple copies of a candle, as

shown in our supplemental video1, we also tag pairs of frames showing distinct

actions as incompatible, such that our synthesis algorithm can ensure they all

react to the breeze randomly, but in the same manner, without having to manually

ensure it for each flame. Similar results are achieved from within a video-game

level, as shown in Fig. 4.11c.

Range Havana and Theme Park show the flexibility of our method and its

ability to avoid incompatibilities. These and the subsequent examples differ from

Candle because they cannot or would be very hard to make using existing tools.

Multiple moving elements were tracked and segmented, and associated to the

actions “visible” and “invisible”. Thanks to our frame compatibility measure,

we are able to avoid collisions between cars and people when they are visible

1https://corneliu.co.uk/phdresults/chapter4/index.html#candle

88

https://corneliu.co.uk/phdresults/chapter4/index.html#candle

at the same time in the output video. Similarly, in Digger the user ensured a

digger only loads a truck when it is parked, by tagging a few incompatible pairs

of actor-frames where the truck is moving while the digger tries to load it.

With the remaining datasets, we showcase further creative interactions with

our system. Using Wave, we create a Mexican Wave simply by creating a control

animation as seen in Fig. 4.11b. We can then quickly alter the result by simply

changing the control sequence, to add a second subsequent wave, one in the

opposite direction, or even an interlaced one. In Drumming, we can control a

drummer playing his instrument by simply touching play doh figurines representing

funny sounds, while with Toy we can create a video showing specific songs being

played onto a colorful xylophone after filming random notes being hit. Windows

allows us to map windows on a building facade to pixels in a grid, and render

a compelling game of Tetris by manipulating the light switches. With Planes,

airplanes take off in sync with a user hitting the spacebar to the rhythm of

a well known videogame theme-song. Finally, we used Havana to create the

CounterLoop videogame (see Section 4.6.1). All these outputs and use-cases are

prepared with the same workflow, qualitatively demonstrating its range.

4.6.1 Counter Loop

As described throughout this thesis, one overarching goal is to make the experience

of watching a video more game-like. We took this idea to the extreme and built

an actual video game called Counter Loop as shown in Figure 4.13 and on our

supplemental video1. In this game, the goal of the player is to control a number

of cars and help them safely cross an intersection. At each level (shown in the

top left corner in Figure 4.13), the player controls the car marked by the golden

arrow. They can decide when to let the car drive across the screen and when

to stop by pressing the space bar on the keyboard. Once a car has crossed the

intersection, the next car appears and can be controlled while the game plays

back the recorded animation of the previously controlled ones. The higher the

level, the larger the number of cars on screen and thus the harder it is to cross the

intersection. The user receives points based on how fast she can control the cars to

1https://corneliu.co.uk/phdresults/chapter4/index.html#counterloop

89

https://corneliu.co.uk/phdresults/chapter4/index.html#counterloop

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

Figure 4.13: Counter Loop: a videogame using video sprite assets made using
the system described in this chapter. The player must traverse the crossing using
the marked car as quickly as possible without crashing against the other cars.

safety through the intersection, so there is a push to rarely stop the controlled car

to let others pass. While the logic and the UI have been created using a traditional

game engine, the controllable cars have been created using our system, showing

how video-based game assets can be used in traditional computer games. They

have been tracked and segmented using the procedures described in Sections 4.2.1

and 4.2.2 and their speed has been normalized as described in Section 3.2.2.

4.7 Empowerment Evaluation

In this section, we aim to evaluate whether our new medium of expression is

empowering, i.e. whether end-users (both content creators that processed the

input video and novice audiences) can quickly and easily express their creativity

by creating novel videos. We have chosen to only focus on the live performance

part of our system as that is the focus of our medium of expression and where

creativity comes most into play. Initially, we looked at our our closest competitors

[LJH13, LZW∗13, JMD∗12] and attempted to recreate our Mexican Wave output

(Fig. 4.12c). Liao et al . [LJH13] can deal with complicated scenes but it merely

finds the best possible looping patches. It does not allow the user to choose

where to loop or when people should sit and when to stand. The system of Lu et

al . [LZW∗13] can allow us to splice together different sub-clips and re-arrange

90

them. However, they create unnatural speed-ups or slow-downs when people

need to sit for longer or less than the input video, because of their time scaling

algorithm, and do not account for transitions between the clips as our looping

does automatically.

We informally compare our system to Cliplets [JMD∗12] by recreating an

8-actor Mexican Wave (see supplemental video1) and one candle flame using

Candle. Similar to [LZW∗13], Cliplets works by defining, manipulating, and

arranging layers of video clips to create the output. Each layer shows one looping

animation (e.g . an actor performing one action) or input frames as captured

(which we used to transition between actions of the same actor). For instance, a

video of a flame flickering left and then right, requires three layers: a) “loop flame

left”, b) “playback flame going from left to right”, c) “loop flame right”. Users

must manually define when to show each loop and its length and find transition

frames in b) such that there is no visible jump when hiding layer a) to show b) and

when hiding b) to show c). This very time consuming process is slowed further if

the result needs changes, as changing looping time or animation order requires

carefully re-arranging layers and redefining transitions, effectively starting over.

In contrast, our system enables live performances after a one-off preparation stage.

The output is created as an endless stream and the user is free to play-act and

improvise in real time, an invaluable ability unique to our system. Using Cliplets,

it took us 4× and 9× longer to recreate Wave and Candle respectively. This is

mainly due to manually inspecting the video to find the right subset of frames to

loop through or use as transitions between animations.

For reasons discussed above, several methods [JMD∗12, LJH13, LZW∗13] were

not able to successfully recreate our outputs. Separately from range, we want

to assess whether our action-based synthesis empowers users’ creativity [Ols12]

and helps express it better and faster than baselines. We therefore compare

against Adobe After Effects (AE) because, with proper training, it gives users

commercially-accepted tools that should reproduce our results. We gathered 6

novice users, that had never used either system, and asked them to recreate the

Mexican Wave sequence. In particular, they were instructed to create a left-to-

right wave, some idle animation in the middle (i.e. sitting people) and a final

1https://corneliu.co.uk/phdresults/chapter4/index.html#comparisons

91

https://corneliu.co.uk/phdresults/chapter4/index.html#comparisons

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0
Tim e [S e cs]

Ou rs

Aft e rEffe c t s

Expe rt s

Figure 4.14: Average timings necessary to replicate a variation of our Mexican
Wave result. From top to bottom: expert users of NukeStudio, Blender, and
AfterEffects; novice users of AfterEffects ; novice users of our system.

right-to-left wave. After relevant training, half of the users used our system while

the remaining half performed the same task using AE. Both sets of users were

given the same 7 sprites as input that had already been tracked and segmented.

Figure 4.14 shows that users of our system were roughly twice as fast, indicating

that our system is indeed easy to use. In their words, they really enjoyed the

simplicity with which actions are defined, the responsive visualization (Fig. 4.3),

and the immediate video feedback that comes with action requests during synthesis.

In the supplemental videos1, we qualitatively show that the AE results are inferior

to ours. This is because our system automatically finds the best transitions

between actions, while the AE users need to manually align the clips showing

the sitting and standing actions and decide when to transition between them.

Finally, we also asked three expert Nuke Studio, Blender, and AE users to recreate

the same sequence. Their timings (also in Fig. 4.14) show a larger variability

depending on their willingness to find optimal-looking jumps. In fact, they were

given the same inputs and task as the novice AE users, but no further instructions,

and their results are of varying quality.

4.8 Discussions with Artists

To assess the balanced structure [Ols12] of our system, we informally inter-

viewed three digital artists, mostly involved with game development or live

1https://corneliu.co.uk/phdresults/chapter4/index.html

92

https://corneliu.co.uk/phdresults/chapter4/index.html

performance design, and introduced them to our system (see inset image using

our Drumming demo). They agreed that our system takes a large step toward

making “video composition more like playing a musical instrument”, enabling

live performances with immediate video feedback, such as seen in Drumming.

We were surprised that one asked to sacrifice

video quality for better responsiveness, especially

if sound feedback is present. As shown in our

supplemental video1, we were able to cater to this

request by favoring EA(Eq. 4.5) at the expense of

good looking transitions. The result can then be

improved, immediately after recording the user

commands, by re-synthesizing the sequence with

the default video settings.

Interestingly, artists saw our system as a “sketching tool” for quick prototyping,

such as seen using synthesis by numbers to create the variations of the Mexican

Wave. In fact, experimenting with choreographies was a suggested use case, such

as filming dancers improvising and re-arranging their moves using our system

after the fact. They also expressed the desire to have the synthesis algorithm

as part of game engines, as they feel it gives them important control over sprite

synthesis. When shown our Candle video, they immediately recognized its value

for game development and suggested further content, such as water drops into

puddles. Finally, they suggested a number of “shared experiences” for teaching

and training that our system would make possible. For example, a trainer could

decide which exercises people should perform and give them live video tutorials,

or could trigger traffic scenarios.

4.9 Conclusions

In this chapter, we have presented a system that facilitates a new medium of

expression, where videos are created much like live audio looping is composed.

Users define actors, optionally tracking and segmenting them, and associate actions

to triggers, which can take the form of multiple interfaces. Users can also flag

1https://corneliu.co.uk/phdresults/chapter4/index.html#instant

93

https://corneliu.co.uk/phdresults/chapter4/index.html#instant

4. RESPONSIVE ACTION-BASED VIDEO SYNTHESIS

combinations of actions they do not want actors to perform together and explicitly

handle them as part of our synthesis optimization. Our work-flow helps both

novices and advanced users to prepare their footage and, for the first time, turn it

into interactive live video performances.

We have successfully tackled some of the issues described in Chapter 3. At

the core of our system is the ability to show the input frames in any possible

order and therefore loop (Section 3.1) a video indefinitely. As discussed in

Section 3.2 however, looping is not interesting enough so we have added the

ability to interactively control the process of synthesizing a new sequence by

means of semantically meaningful actions. Our synthesis algorithm can run in

real time (Section 3.3) as demonstrated in our results section. In order to widen

the range of videos we can process and control, we provide users the ability to

track and segment individual filmed objects (as discussed in Section 3.4). Finally,

all these elements come together as an end-to-end interactive authoring system,

as described the necessity of in Section 3.5.

Limitations The quality of our results, ultimately depends on the input videos

and the users’ willingness to invest the necessary effort to process them. The

longer the actor sequences, the greater the variability and coverage of situations.

For instance, there are no clean transitions between hitting some notes in Toy

and the rest position, because the mallet hand rarely leaves the view in the input

video, resulting in occasional jumpy animation. In general, this holds for short

videos where there is too much variability but not enough coverage. This problem

could be tackled with interpolation and morphing techniques similar in spirit

to [SLWSS15]. Additionally, there is always a trade-off between how quickly the

synthesis shows the desired action, and how smooth the transition looks. Being

able to successfully camouflage bad jumps would reduce the time necessary to

transition between actions. It would also remove the input lag between the button

press and the on-screen response, critical for live performances such as Drumming.

Our system allows users to track and segment objects, a process which becomes

tedious and time consuming when the background changes or there are occlusions.

Although we don’t require these features and they could be performed outside of

our system, we aim at finding novel solutions to speeding them up and improve

94

robustness. Moreover, the techniques we develop in Chapter 5 could trivially

be integrated with our system to enable automatic tracking and segmentation.

Finally, this system can effectively only synthesize new 2-dimensional frames, but

as we discussed in Section 3.6, we would eventually like to introduce 3-dimensional

control of the created assets. Again, the solutions we devise in Chapter 5 aim to

tackle this limitation.

95

Chapter 5

Multi-view from single-view

In Chapter 4 we have described an end-to-end system that gives us the ability

to turn a static-camera video into a set of video assets that can be controlled

in real time by simply pressing buttons on a keyboard. It takes ideas from

Chapter 3 and improves upon them to enable compelling and new interactive

video experiences. It however has two important limitations which we would like to

address in this chapter. First, our tool was designed to encourage content creators

to help our automatic algorithms where necessary. Particularly during tracking

and segmentation, the amount of needed effort becomes occasionally prohibitive

so in this chapter we are interested in ways to avoid this issue. Second, we would

like to create video game-like experiences from traditional videos, however our

system is currently limited to a two-dimensional world as it can only manipulate

the pixels of 2D video frames. Could we infer information about the 3D world

from a sequence of images and if yes what new effects and interactions would it

enable?

In our Counter Loop game prototype described in Section 4.6.1, players are

given the ability to decide when cars passing through a road crossing should

move and when they should stop. As we can only reshuffle the frames of the

given video, the user input can only influence when we play back the images

where the cars have been tracked and segmented from the static background. In

modern video games, players can interact with on-screen objects in much more

compelling ways by, for instance, changing the path a car follows or moving the

virtual camera to see the scene from a different angle. Moreover, despite our best

96

efforts, there is still a considerable amount of effort involved in processing and

preparing each car before they can be used as assets in Counter Loop. Users need

to interactively track (Sec. 4.2.1) and segment (Sec. 4.2.2) each object separately

and then manually define camera properties to normalize their speed and define

their footprint (Sec. 3.2.2).

We dedicate this chapter to presenting our efforts towards mitigating these

limitations by both reducing necessary user effort while maintaining high quality

and enabling new types of interaction in video experiences by inferring knowledge

about the 3D world from sequences of 2D images. In Section 5.1 we describe a

completely automatic method for estimating the camera position and orientation

with respect to a planar surface placed in the 3D world. We then show in Section 5

how to extend a traditional image-space 2D bounding box multi-object tracker

with 3D information. We can automatically approximate the size of objects using

three-dimensional bounding volumes and track their position and orientation

as they move on the ground plane. In Section 5.3 we discuss two prototype

applications that are enabled by having tracked objects in 3D as opposed to the

traditional 2D image-space tracks. We end with Section 5.4 where we present our

results and discuss them in Section 5.5.

5.1 Camera Estimation

Given a sequence of images captured over time from a static camera, we want to

reason about the behavior of moving objects such as the cars in Havana. In order

to do this, we need to recover the transformation that points in the 3D world

are subjected to when they are projected to points on the 2D image plane. More

formally, we define the function P (x′) which projects 3D world-space points x′

into 2D image-space points x according to the following transformation:

P (x′) = KPx̃′ = x̃, (5.1)

where we use the tilde notation, such as in x̃, to represent homogeneous coordinates

of corresponding vectors. The intrinsics matrix K represents the internal camera

parameters such as focal length and principal point. We do not attempt to

97

5. MULTI-VIEW FROM SINGLE-VIEW

estimate K, a process known as camera calibration, and instead use the following

approximation introduced in [PVGV∗04]:

K =

w + h 0 w/2

0 w + h h/2

0 0 1

 , (5.2)

where w and h are the width and height of the video frames respectively. In the

absence of strong zoom, wide-angle lenses and random frame cropping, Pollefeys et

al . [PVGV∗04] show that images are quite well approximated by this formula. We

adopt their solution as it avoids an extra step in the camera estimation process.

This would be especially complicated as we often do not have access to the camera

used to film the footage such as Havana which was found on the Internet.

The 3 × 4 matrix P =
[
Ω τ

]
represents the camera pose in terms of its

position τ and orientation Ω with respect to the world coordinate system. The

most common way to recover P is through a process called Structure from Motion

(SfM) (e.g . [SSS08, MMMO, SF16]) which works by ingesting a set of images

of a static scene captured from multiple viewpoints. It then finds points visible

in multiple images and jointly triangulates their 3D positions and estimates the

camera pose that best explains the 2D location those points project to in the

image plane.

In our case, the camera is static, which means we can rely on a number

of alternatives to SfM. Point-based 3D modeling, such as the one we describe

in Section 3.2.2, estimate the camera pose w.r.t. some geometry proxy for the

captured scene (e.g . the ground plane). Methods such as [CRZ00] on the other

hand, find the camera pose based on the geometric properties of parallel lines

projected onto the image plane. Relying on the assumption of a Manhattan

world, they intersect image-space lines that are parallel in the real world to find

vanishing points. As seen in [Tar09], they can be seen as vanishing directions and

used to recover the camera pose. Typically, vanishing directions are found by

finding prominent edges in image space (e.g . [Can86]), fitting line segments to

them and grouping them based on whether they are parallel in the real world

to find orthogonal sets of lines. As shown in Figure 5.1, even for man-made

98

Figure 5.1: Line segments on the Havana static background found
by [vGJMR12]. Note how even for a human it is hard to find orthogonal pairs of
parallel lines.

environments such as seen in Havana, finding orthogonal vanishing directions can

be problematic due to noisy line segment proposals and broken Manhattan-world

assumption.

As pointed out in [WZJ16], making the crucial assumption that orthogonal

vanishing directions can be inferred from an image, has contributed to stagnating

the development of horizon line estimation methods. Moreover, the horizon line is

defined as the union of all vanishing points defined by parallel lines placed on the

ground plane, so finding orthogonal ones should not be a requirement. In fact,

methods such as [Tar09, ZWJ16] are relatively successful at finding the horizon

line even though they are not guaranteed to find orthogonal vanishing directions.

Moreover, recent methods based on deep learning such as [ZWJ16] do not rely on

vanishing direction at all. Based on this observation, we propose an automatic

method for recovering the camera pose with respect to a world-space plane given

only the image-space horizon line and without the need for orthogonal vanishing

directions.

Let us define the world-space ground plane G = (p′,ω) defined in terms of

its three-dimensional origin point p′ and orientation ω =
[
α β γ

]
. We set

p′ =
[
0 0 0

]
and its image-plane projection P (p′) = p =

[
w/2 h/2

]
. We can

99

5. MULTI-VIEW FROM SINGLE-VIEW

define the camera pose w.r.t. the plane by using

Ω =

 − cos β cos γ cos β sin γ − sin β

cosα sin γ + sinα sin β cos γ cosα cos γ − sinα sin β sin γ − sinα cos β

sinα sin γ − cosα sin β cos γ sinα cos γ + cosα sin β sin γ cosα cos β

(5.3)

and

τ =

 0

0

−λ

 (5.4)

where λ = 1 is a scaling factor which can be manually set to give a metric-scale

camera pose. While we do not need this for our use cases in the next sections, we

allow users to set λ in our tool described in Section 5.1.1. Finally, we define two

orthogonal pairs of parallel lines on the world-space ground plane (e.g . see red

and yellow lines in Figure 5.2) and project them into the image space using K

as defined in Eq. 5.2 and the current estimate of P defined in terms of Ω and τ

from Equations 5.3 and 5.4 respectively. The two orthogonal vanishing points

vX and vY are found by intersecting the image-space parallel lines (see Figure 5.2

for a visual example).

In order to estimate ω, we devised an algorithm that matches the estimated

horizon line defined by vX and vY to a target horizon line estimated by an off-the-

shelf method. We have chosen [Tar09] as it works well in our examples and code is

readily available however, any, more accurate, alternative would do (e.g . [ZWJ16]).

We use the Nelder-Mead simplex search algorithm [NM65] to minimize the energy

function

EH(ω) = λH

∣∣∣∣ vY − vX
||vY − vX ||

× v̆Y − v̆X
||v̆Y − v̆X ||

∣∣∣∣+ (1− λH)||v̆ − v̆⊥(vX ,vY)|| (5.5)

where v̆Y and v̆X are two points on the target horizon line and v̆⊥(vX ,vY) is

the perpendicular projection of an arbitrary point v̆ on the target horizon line

onto the estimated horizon line defined by vX and vY . Figure 5.2 shows a visual

representations of the terms in Equation 5.5. Intuitively, the left hand-side cross

product in EH(ω) represents the angular distance between the estimated and

100

1
4

32

1
2 3

4

vX

vY

p
p'

vY
vX

v T

Figure 5.2: Camera pose estimation based on horizon line and ground plane.
The two orthogonal pairs (marked in red and yellow) of parallel lines, can be
used to find the two vanishing points vX and vY (marked as a purple circles)
which in turn define the green horizon line. The rectangle defined by the four
numbered intersection points between the colored lines, can be used to define a
perspective transformation between the image and ground planes. On the right,
we show a birds-eye view of the image projected onto the world space ground
plane as evidenced by the arrows marking the three-dimensional axes. The origin
of the 3D coordinate system is denoted by p′ and its image-space projection by p.

target horizon lines while the right hand-side forces the two lines to be close

to one another. We set λH = 0.995 for all our experiments. Note that, for

visualization purposes, we flip the Z axis if the result of the optimization has it

pointing downwards in image space.

5.1.1 User-in-the-loop estimation

The automatic method described above is agnostic to scale, which means that a

unit in world space is completely arbitrary and does not correspond to metric

units. While it is not an issue for the use cases described in the following sections,

we briefly describe here the tool we developed for metric camera estimation and

point-based scene modeling.

Figures 5.3 and 5.2 give a brief overview of our tool. Users can define two

orthogonal pairs of parallel lines (shown in red and yellow in Figure 5.2) on the

ground plane by dragging handle points (not shown). We intersect each pair of

parallel lines with one another to find two orthogonal vanishing points vX and vY

(purple circles in Fig. 5.2). We found the green horizon line in Figure 5.2 which

connects them to be invaluable for visually gauging the correctness of the estimated

101

5. MULTI-VIEW FROM SINGLE-VIEW

1 2

3
Figure 5.3: Tool for manually estimating camera pose and scene geometry. (1)
work area: users can place the yellow points to define corners in the triangular
mesh (shown as red lines) that represents the scene geometry; (2) control panel :
manually defined parameters specific to one of three stages: Intrinsics stage
specifies camera intrinsics K and lens distortion parameters; Extrinsics stage
defines parallel lines on the ground plane used to estimate the camera pose P and
is shown in Figure 5.2; Scene stage is shown here and it defines the scene mesh
as shown in (1); (3) 3D viewer : preview of the scene geometry from a birds-eye
perspective. The capture camera viewpoint is shown as a green frustum.

camera pose. Given the four numbered corners of the blue rectangle in Figure 5.2

resulting from intersecting the four user-defined lines, we estimate the projective

transformation P using the perspective-three-point solution of [GHTC03]. As an

alternative, users can manually define a target horizon line (as seen in Figure 5.2)

and we can estimate the camera pose automatically using the method described

in Section 5.1. The tool gives users the option to define the metric scale of the

rectangle for a more meaningful calibration. Given K and P, we can project the

image-space points x onto the world-space ground plane

x̃′ = (K
[
Ω0 Ω1 τ

]
)−1x̃ (5.6)

where x̃′ is a two-dimensional point on the 3D ground plane represented in

homogeneous coordinates and we use Ωi to denote columns of the rotation matrix

Ω. This allows us to project the full image onto the ground plane to view the

102

scene in 3D. Moreover, we can quickly define a triangulated mesh representing

the scene by clicking on image-space corners (yellow points in Fig. 5.3) to form

a planar polygon on the ground plane and extruding its edges along the Z axis

to define the triangulated scene mesh shown in red in Figure 5.3. Please see our

supplemental video1 for a demo.

5.2 Well-grounded Tracking

Object tracking is an actively researched area of computer vision which aims to

find and track moving objects filmed over time. Specifically, trackers are tasked

with determining the pose of one or more objects in each frame of an input video.

The pose is most commonly an axis-aligned bounding box or in some cases an

oriented one, but it can vary from a single pixel location representing the center of

the object to a per-pixel segmentation mask. Despite many recent improvements in

recent years, visual object tracking is still a very challenging problems for a variety

of reasons. Most trackers rely on finding discriminative visual features, such as

texture, to detect and track objects. When they move across a scene, objects can

deform, be seen from different angles or get occluded (partially or completely),

which drastically changes their appearance and makes tracking unreliable.

One of the biggest reasons for appearance changes is the fact that video frames

are a heavily distorted and constrained view of the real world. The appearance of

a filmed object is view-dependent, and changes when the object changes position

and orientation with respect to the camera. If we could eliminate at least some of

the effects due to perspective projection, we would eliminate a number of issues

trackers are faced with. For instance, if we had a top-down view of a scene, we

would not have to worry about occlusions anymore (assuming all objects move

on the same plane). Moreover, the movement and scale of objects would not be

view-dependent anymore so a constant real-world change would correspond to a

constant change in our observations, which is not true for perspective cameras due

to foreshortening. As we show in Section 5.1, we can now model the perspective

transformation performed by a camera, so can we leverage this new information

to extend image-space tracking?

1https://corneliu.co.uk/phdresults/chapter5/index.html#camerapose

103

https://corneliu.co.uk/phdresults/chapter5/index.html#camerapose

5. MULTI-VIEW FROM SINGLE-VIEW

5.2.1 Multiple objects 2D Tracks

As previously mentioned, in this chapter we are interested in finding new ways

to infer more information about what objects look like and how they move in

order to enable new interactive video experiences. We choose to not focus on

designing a new 2D tracker and instead aim to use camera pose information to

extend and improve upon existing ones. As we discuss in Sections 5.3 and 5.4,

the output of our new algorithm described in Section 5.2.2 enables a number of

new applications by smoothing tracking results over time and inferring the shape

of the tracked objects.

In choosing a tracker to use as an input, we focused on three criteria: fast,

readily available and completely automatic. Traditionally, single object trackers

require a first manual step where users mark the object they want to track in the

first frame. Instead we look at multi-object trackers which by definition aim to first

detect objects they need to track. By these criteria, we have found [BES17] to be a

perfect fit to our needs. It has been proven successful at both [WDC∗15, MLTR∗16]

tracking challenges and it is extremely fast as it does not use any image information

and simply relies on the Intersection over Union (IoU) score between boxes

found in subsequent frames. Crucially, unlike some of its competitors, the IoU

Tracker [BES17] is completely agnostic to object type as it takes per-frame

bounding boxes from existing object detectors and rely on the assumption that

they are highly reliable and robust, which is ever more true thanks to recent

advances in Deep Learning. The object detector we have chosen is the very fast

state-of-the-art Evolving Boxes (EB) [WLW∗17] car detector. Crucially, in the

next sections, we do not make any assumption on the type of objects we are

tracking so our choices could be easily swapped out for something else. We show

the input tracks for all our datasets from Table 5.1 on our website1.

5.2.2 Estimating and Tracking Cuboids on the Ground

In this section, we describe an algorithm for estimating an object’s shape, defined

as a three-dimensional bounding volume (a.k.a. cuboid) and its pose over time.

Here, we parametrize the shape s =
[
sL sW sH

]
as a 3D vector of sizes (length,

1https://corneliu.co.uk/phdresults/chapter5/index.html

104

https://corneliu.co.uk/phdresults/chapter5/index.html

width and height respectively) as shown in Figure 5.5a. The pose at time t is

denoted by pt =
[
x′t θt

]
, where x′t =

[
x′t y′t 0

]
is the 3D position and θt the

orientation of the cuboid as it travels on the ground plane. The orientation θt is

defined as a rotation angle about the Z axis.

Initialization

The input to our algorithm are a set of N image-space 2D bounding boxes such

as the ones described in Section 5.2.1 and the result of camera calibration from

Section 5.1. Note that, as we mention in Table 5.1, we first discard frames where

the 2D bounding boxes are too close to the image frame as they are likely to

contain objects that are partially outside of the video frame. We initialize the

trajectory T =
[
xt, t ∈

[
1, N

]]
where the set of image-space points xt are defined

by taking the middle point of the bottom-most edge of the tracked box at each

time t. Using Equation 5.6, we recover the 3D-world trajectory on the ground

plane T′ =
[
x′t, t ∈

[
1, N

]
]. Before computing the initial value for all orientations

θt, we fit a two-dimensional (all values of the z-coordinate are set to 0) spline to

the trajectory T′ to yield a smooth trajectory T̂′ =
[
x̂′t, t ∈

[
1, N

]]
. We then

sample the spline at t + ε to yield x̂′t+ε =
[
x̂′t+ε ŷ′t+ε

]
. The orientation angle

at each point on the smooth trajectory is defined as θ̂t = arctan(−ŷ′d/x̂′d) where

x̂′d =
[
x̂′d ŷ′d

]
=
[x̂′t+ε−x̂′t

η

ŷ′t+ε−ŷ′t
η

]
is the direction in which the object has moved

and η normalizes x̂′d to unit length. The pose at each time step t is initialized

using the positions and orientations derived directly from the smooth trajectory

so we set pt =
[
x̂′t θ̂t

]
. Finally, we initialize the cuboid shape s to the shape that

best fits the input tracked 2D boxes while still maintaining car-like proportions.

In other words, we use the bounding volume size that minimizes the two energy

functions in Equations 5.11 and 5.12.

Spline-based smoothing

As mentioned above, in order to smooth out the potentially very noisy sequence

of points that defines an object’s trajectory T′, we fit a two-dimensional spline

which, when regularly sampled, yields a new set of points T̂′. In particular, we fit

the spline to the subset of points x′ in T′ where the curvature is below 10◦. The

reasoning behind this choice is that objects do not change their moving direction

105

5. MULTI-VIEW FROM SINGLE-VIEW

Figure 5.4: Top down view of smoothing a noisy trajectory using splines. The
input trajectory T′ is shown in red while the simplified curve by thresholding
based on curvature is shown in yellow. In blue we show the mapping between
the input red points and the smooth trajectory T̂′ while we show in green our
final smooth trajectory Ť′

drastically between subsequent frames so a steep curvature can only be due to

noise in the input trajectory. It is important to note that, even if the spline

correctly approximates T̂′, it does not guarantee points x′ to be close to their

counterpart on the spline x̂′. Figure 5.4 shows what we mean as the input points

in red are incorrectly assigned to blue points on the spline as evidenced by the

connecting blue lines. To counteract this, we sample the spline very finely and

assign the input points to the new points x̌′ ∈ Ť′ that are closest to them. In

Figure 5.4, we show Ť′ using green points and lines. Note how the green lines

are much more often parallel to one another and perpendicular to the spline than

the blue lines, meaning they approximate the input trajectory better.

As mentioned above, we now have an initialization for both the object shape s

and its pose pt at each time step t. We now want to modify these parameters to

better explain our observed data, i.e. the video frames. We designed the following

objective function:

E(s,pt) = λTET + λFEF + λAEA + λPEP + λSES, (5.7)

where the λ balancing terms are experimentally set to the following default values

106

for all our experiments unless otherwise specified: λT = λF = λP = 10, λS = 1

and λA = 2. Each term in Equation 5.7 is designed to accomplish different goals

and we show a visual representation of them in Figure 5.5. The transition ET and

foreground EF energies work together to ensure the bounding volume fits well

around the tracked object (see Figures 5.5b and 5.5c). We define the transition

energy as

ET (s,pt) =
∑
y∈H

ρ

(
e
− |∇CFB(y)|

σT

)
(5.8)

where y are locations of points regularly sampled on the convex hull H (shown in

Figure 5.5b as red dots) of the object’s bounding volume (defined by its shape

s and pose pt at time t) projected into image space. The Cauchy robust loss is

defined as ρ(s) = log(1 + s) while we use CFB(y) to denote the foreground-to-

background photo consistency at image-space location y and ∇CFB its image

gradients. For simplicity, we do not specify in which direction we compute the

gradient of CFB but, in our implementation, we define the numerator in the

exponential as the sum between the absolute values of the gradient in both X

and Y directions. Note that we bilinearly sample the discretized ∇CFB at the

continuous location y and we set σT = 1 for all our experiments. Intuitively and

as seen in Figure 5.5b, the transition energy favors configurations where the edges

of the bounding volume project to areas of transition between foreground and

background. We define the foreground-to-background photo consistency CFB as

follows:

CFB(x) = min
(
|Ĩx − B̃x|, |I′x − B′x|, τC

)
(5.9)

where I and B are the ith input frame and the background median image respec-

tively. I′ and B′ represent the respective images converted to gray from RGB

and blurred using a Gaussian filter of size 11 with a variance of 10. Intuitively,

these images contain the low frequency details captured by the camera. On the

other hand, Ĩ and B̃ are the original images from which we subtracted the low

frequency details and therefore contain the high frequency information. Finally,

the truncation threshold τC = 8 is aimed at robustifying the measure against

outliers. Intuitively, the higher the value of CFB(x), the bigger the appearance

change between the color at a pixel in the input frame and the median background

107

5. MULTI-VIEW FROM SINGLE-VIEW

X
Y

Z

S L

S
H

S W
(a) Shape and coordinate system (b) Transition energy ET (c) Foreground energy EF

(d) Area energy EA

xt

x

θ-θ

t

tt

(e) Smoothing energy ES

Figure 5.5: Visual representations of our energy terms from Equation 5.7. (a)
object coordinate system and sizes of cuboid shape s. (b) the transition energy
is computed at points shown as red dots which are regularly sampled on the
convex hull of the projected bounding volume. (c) the foreground energy is
computed at points shown as red dots which are regularly sampled on concentric
circles starting from the center of the projected bounding volume; shades of dark
blue represent low cost in both (b) and (c). (d) the area energy depends on
the distance between matching corners (as marked by the white arrows) of the
detected bounding box in red and the projected bounding volume’s AABB in
green (e) the smoothing energy depends on the distance between the estimated

position x′t and the predicted one x̂′t and the difference between the estimated
orientation angle θt and the predicted one θ̂t.

image, so it can be seen as a rough alpha matte (which we will use as such for

rendering in Section 5.3.2) telling us where a moving object is. The foreground

energy is defined as

EF (s,pt) =
∑
y∈R

ρ

(
e
−CFB(y)

σF

)
(5.10)

where the image-space points y belong to rings R radiating from the center of the

projected bounding volume (see red dots in Figure 5.5c) and we set σF = 5 for

all our experiments. Intuitively, the foreground energy EF favors configurations

where the bounding volume encompasses foreground objects. The area energy EA

serves two purposes: i) it ensures that the bounding volume projects inside the

108

tracked 2D bounding box from Section 5.2.1 and ii) it favors cuboids that fit well

within the given axis aligned boxes. We define

EA(s,pt) =
∑

yO∈Ot, yC∈Ct

ρ (||yO − yC||) (5.11)

where yO and yC are corresponding corners of the image-space, axis-aligned bound-

ing boxes (AABB) Ot given by the object tracker (red rectangle in Figure 5.5d)

and Ct encompassing the projected cuboid at time t respectively (green rectangle

in Figure 5.5d). The distance between points yO and yC are shown as white arrows

in Figure 5.5d. The shape prior energy EP ensures that the estimated bounding

volume does not collapse into flattened shapes. The prior consists of two Gaussian

distributions that represent the ratios between the three sizes of the cuboid learned

from object specific data. In our case, we computed the width-to-length and

height-to-length ratios of the “Car”, “Van” and “Truck” object types from the

ground truth training data for the 2017 KITTI 3D Object Detection Evaluation

benchmark [GLU12]. We then define EP as

EP (s) =
∑

m∈{W,H}

ρ

(
(sm/sL − µm)2

2σ2
m

)
(5.12)

where sL, sW and sH are the length, width and height of the bounding volume

respectively as defined in s and shown in Figure 5.5a. The parameters (µW , σW)

and (µH , σH) are the parameters of the width-to-length ratio and height-to-length

ratio Gaussians respectively. Finally, the smoothing energy ES favors smooth

trajectories by ensuring the position of the cuboid at each point in time does not

diverge from the spline-smooth trajectory. We define

ES(pt) = ||x′t − x̂′t||+ |θt − θ̂t| (5.13)

where x′t and θt are the current estimates of position and orientation and x̂′t and

θ̂t are the smoothed initialization. Figure 5.5e shows a visual example of the two

terms on the right hand-side of Equation 5.13.

To ensure a better convergence rate, we have adopted a two step optimization

process. In our experiments, optimizing all parameters {s,pt, t ∈
[
1, N

]
} at once

109

5. MULTI-VIEW FROM SINGLE-VIEW

proved problematic, likely due to bad initialization, the complexity of the energy

function in Eq. 5.7 and the high dimensional search space. To counteract these

issues, we first optimize a set of global parameters {s,x′G, θG,dG}, where s is the

global shape of the bounding volume as described above, x′G is the global (x, y)

position of the trajectory on the ground plane, θG is a global rotation and dG is a

global dilation parameter which stretches the trajectory along the x and y-axes.

We initialize x′G = x̂′0, θG = θ0 and dG =
[
1 1

]
. We optimize the energy in

Equation 5.7 using the Nelder-Mead algorithm [NM65] with λS = 0 as we are

optimizing for a global transformation of the already smooth trajectory T̂′.

In the second optimization step, we locally refine each pose pt at each time t

separately. Here, we set λP = 0 as the shape s remains fixed for the duration of

the local refinement. The aim of this step is to correct fine mistakes that occurred

during smoothing and cannot be solved by the global transformation found during

the first step. After local refinement, we smooth the resulting trajectory T′ once

again as adjusting the poses separately may introduce noise due to occlusions.

The smoothed trajectory is fed through the global optimization once again and

we repeat for 10 iterations.

5.3 Applications

At the beginning of this chapter, we have anticipated that the reason we have

decided to undertake the task of tracking object shapes in 3D given 2D tracks is

that it opens up a number of interesting applications. In the following sections we

will describe the ones we have had a try at.

5.3.1 From Tracked Cuboids to Textured Models

Given the tracked cuboids described in Section 5.2 and the camera calibration

from Section 5.1, we can reason about the way the appearance of the tracked

object changes over time as it changes position and orientation w.r.t. the static

camera. Multi-view stereo (MVS) algorithms aim to reconstruct the 3D shape of

static scenes or objects given a set of images and the poses of the camera when

it captured them [FH∗15]. In typical MVS scenarios, the images are captured

110

by the same camera over time as it moves in the scene. Since such algorithms

rely on finding point correspondences based on appearance, it is critical that the

scene does not change drastically. While the objects in our case are moving and

changing appearance over time, the camera is completely static, so if we reverse

the way we look at our data and consider the objects as being static and the

camera to be moving w.r.t. them, we can employ standard MVS reasoning to

reconstruct the shape and appearance of our filmed objects.

In this section, we aim to show that the tracks we recover in Section 5.2 are of

high quality enough to be usable in the context of 3D reconstruction. This in turn

has the potential to enable novel interactions with video content which we explore

in the next Section 5.3.2. As MVS is still a very active research field [FH∗15],

more recent and accurate methods are likely to produce better results. However,

we believe our choice of a reasonably simple but, crucially, easy to implement

method, is enough to show the usefulness of our tracking method.

Our chosen 3D reconstruction algorithm belongs to the Volumetric Data Fusion

family. We regularly sample the estimated cuboid volume to yield a set of 3D

points V(s) = {y′i}. We define image-space points

yti = P (pt,y
′
i), (5.14)

where P projects the ith 3D point y′i (see Figure 5.6a), as shown in Equation 5.1,

after placing it into world-space according to the cuboid’s pose pt at time t. We

then accumulate the photo consistency C from Equation 5.9 at each voxel over

time:

Φ(y′i) =
∑
t

wt(C(yti) + C(Rx(yti))), (5.15)

where wt is a weight defined in Equation 5.19 that signifies how much we trust

frame t and Rx returns the location of voxel yti reflected about the X axis, which

ensures symmetry as shown in Figure 5.6a. Intuitively, Φ(y′i) returns a high

value whenever the voxel y′i mostly projects to areas of high photo consistency

over time, meaning they belong to the foreground tracked object. We could

now threshold the values of Φ across the voxel grid and recover the shape of

the object by triangulating it using Marching Cubes [LLVT03]. However, the

111

5. MULTI-VIEW FROM SINGLE-VIEW

Φ(y'i)
Rx(y'i)

y'i
(a) Cost volume

low threshold

high threshold

medium threshold

graphcuts

(b) Reconstruction quality

Figure 5.6: Visual representation of the reconstruction cost and final quality.
(a) We sample the volume in and around the given object bounding volume
(magenta outline) at regular intervals, shown as colored dots. The color coding
signifies the probability that a voxel is part of the tracked object where shades of
yellow denote higher values. We also show sagittal and horizontal slices of the
cost volume Φ(y′i). We ensure symmetry along the magenta saggital plane by
summing over the photo consistency values of points y′i and their counterparts
reflected along the plane Rx(y

′
i). (b) The quality of the recovered geometry is

unpredictable if we simply threshold the values of Φ(y′i). Meshes can be too big
as shown by cyan arrows, or too small and with holes as shown for the car’s
windshield highlighted by yellow arrows. Using graphcuts we can avoid having
to select a threshold value and results are more consistent with the image data.

photo consistency measure tends to be noisy whenever the tracked object has

similar colors to the background, so a manually chosen threshold may either

introduce holes or estimate an inaccurately enlarged shape as evidenced by the

examples in Figure 5.6b. Moreover, the ideal threshold value may be different

depending on the object or even depending on the voxel, making choosing it

manually impractical. One workaround found in the literature is to use 3D graph

cuts [BVZ99] on the voxel grid to ensure smoothness. To this aim, we introduce

the smoothness pairwise term between neighboring voxels y′i and y′j:

Ψ(y′i,y
′
j) = min

[
0.05,

∑
t

wt
CI(pt,m

′
ij) + CI(pt, Rx(m

′
ij))

2

]
, (5.16)

where m′ij =
y′i−y′j

2
is the middle point between y′i and y′j and Rx(m

′
ij) is the

position of m′ij reflected about the X axis as before. The image color photo

112

consistency

CI(pt,x
′) = |I(P (pt,x

′))− Iµ(x′)|

penalizes 3D points x′ where the color changes over time so I(xt) ∈
[
0, 1
]

denotes

the color at image-space location xt while Iµ(x′) ∈
[
0, 1
]

indicates the mean color

at the image-space locations where the 3D point x′ projects to over time. We then

use standard binary Graph Cuts [BVZ99] to minimize the objective function:

E({y′i}) =
∑
i

Φ(y′i) +
∑
i,j∈N

Ψ(y′i,y
′
j). (5.17)

Minimizing the above energy yields a binary segmentation of the 3D voxel grid

into foreground and background voxels which we then triangulate using [LLVT03].

We show sample results in Figure 5.9 and on our website1.

Defining wt in Equations 5.15 and 5.16. Given the triangular mesh resulting

from [LLVT03] as a set of verticesM = {v′i, i ∈
[
1,M

]
}, we compute a per vertex

color texture T as following:

T (v′i) =
∑
t

wt
I(vti) + I(Rx(vti))

2
(5.18)

where vti is defined as in Equation 5.14 and Rx(vti) denotes vti reflected about the

X axis. While initially wt = 1/N where N is the number of frames, we compute a

new value for wt after computing T as

wt = e−
M−1 ∑

imin

[
0.1, |T (v′i)−I(vti)|

]
σw (5.19)

where we set σw = 0.0075 for all our experiments. Given the new weights wt, we

now iterate the triangulation-texturing-reweighting loop until convergence which

in our experiments is 6 iterations. Intuitively, wt will down-weight frames that do

not agree well with the reconstructed model which is due to noise in the tracked

cuboid.

1https://corneliu.co.uk/phdresults/chapter5/index.html

113

https://corneliu.co.uk/phdresults/chapter5/index.html

5. MULTI-VIEW FROM SINGLE-VIEW

5.3.2 Video-Based Rendering

Thanks to the techniques described above, we now have a fully calibrated camera

setup (i.e. intrinsics and extrinsics in Equations 5.2 and 5.3), a reconstructed

three-dimensional textured mesh per tracked object, as described in Section 5.3.1

and their pose in the 3D world as shown in Section 5.2. By extending our 3D

viewer described in Section 3.6.1 we can now synthesize even more compelling 3D

visuals from a monocular static camera video.

Briefly, image-based rendering (IBR) techniques aim to produce photo-realistic

3D visuals interactively (e.g . by giving users control over the virtual camera) by

leveraging the information captured through traditional photography. Typically,

this is done by reconstructing the scene geometry through methods such as

MVS [FH∗15] and use it to decide which color taken from the input images to

display at each 3D world point. In this section, we show that we can adopt the

same mindset. We did not aim to innovate in the field of IBR, so we here only

describe what is necessary to replicate our results. For more information on IBR,

we defer the reader to [SCK08].

For our demonstration purposes we adapted our 3D viewer from Section 3.6.1

to render multiple tracked objects, either using textured meshes or Unstructured

Lumigraph Rendering (ULR) [BBM∗01] (see Fig. 5.7). We chose ULR because it

has been shown to produce great quality visuals in constrained scenarios while still

being relatively simple and, crucially, fast. In a few words, ULR synthesizes a new

view of a 3D scene by casting rays from the center of projection through each pixel.

The color at each point hit by rays is set by alpha blending between the colors

seen at those points in multiple input images. The alpha blending weights are set

according to how close the requested view matches the input views. Intuitively,

the appearance of a point depends on its appearance in the input photos and, if

we are looking at it in the new virtual view from a similar viewpoint as one of the

input views, its appearance should remain the same. Formally, the color Os at a

pixel location s in the output image O is defined as the weighted sum

Os =
N∑
i=1

wiIsi (5.20)

114

(a) Top-down view (b) Off-trajectory pose

Figure 5.7: Free-viewpoint interactive video. (a) Using our real-time 3D viewer,
we can move the virtual camera to see the scene from any view, such as the shown
top-down view. Compare with the very different cropped original view point in
the inset. Users can show all the tracked objects with their trajectories, bounding
boxes and textured meshes and even control them manually to move them away
from the originally captured trajectory. (b) Close-up view of one tracked car at a
new location away from the original trajectory (green curve). Note the difference
in quality between using a textured model (top) and the ULR algorithm (bottom).
The details are much sharper and the over-inflated geometry is hidden. Please
see videos on our website mentioned in our results section 5.4.2 for demo videos
showing view-dependent effects such as specularities.

where Isi represents the color of the pixel location si in the ith input image I and

the weight wi = exp [−(y′ → s′ → y′i)/kC] is the angle between the vector defined

by the world-space points y′ and s′ and the one defined by y′i and s′. Here, s′

represents the world-space point that projects to pixel location s in the desired

view and si in the ith view, while y′ and y′i are the world-space locations of the

desired and ith cameras respectively. Intuitively, the bigger the angle between the

two vectors, the smaller the weight and that specific input camera contributes less

to the final color seen at a pixel. The parameter kC is user-tunable and the larger,

the more forgiving we are about whether the desired view matches a particular

input view. At each render call, we select the best N = 4 input views to blend

between based on how close they match the desired view. Note that, in our results

we also vary the alpha value of a 3D point based on the foreground-to-background

115

5. MULTI-VIEW FROM SINGLE-VIEW

Name # frames # objects
Max obj

per frame

Average

track length

Used

detections %

Havana 5400 86 9 168 43.2
Jackson 5050 52 6 256 45.8
AbbeyRoad 3000 32 5 203 61.0
SimpleCrossing 274 5 3 68 25.8
MVI40243 1265 165 17 81 64.5
MVI40732 2120 41 8 73 36.5
Auburn 2773 33 5 251 34.6
Grange 2860 75 5 127 26.1
Ross 2410 62 8 128 53.1
MVI40871 1720 77 15 123 20.2

Table 5.1: Our tracking and 3D reconstruction datasets. For each video we
provide the number of frames, the number of tracked objects, the max number of
objects in a single frame, the average track length (in frames) and the percentage
of used detections. The detections found by [WLW∗17] can be culled by the
tracker [BES17] and we remove all the tracked objects that are stationary and
the frames of moving objects where they are partially outside of the video frame.

photo consistency from Equation 5.9 which acts as an alpha mask. Figure 5.7b

shows the difference between simply using a textured model and the much higher

quality ULR result.

5.4 Results

Using the algorithms discussed in this chapter, we have processed a number of

input videos. We summarize them in Table 5.1 and present qualitative results

in Figures 5.8 and 5.9 and on our website1. We have found on the Internet and

processed with our pipeline 10 videos at varying resolutions, view points and

car density. We summarize our datasets in Table 5.1 where we provide various

statistics such as the total number of frames or the maximum object density in

a frame. All videos depict traffic intersections or similar scenarios where there

are plenty of moving vehicles that we can detect using [WLW∗17] and track

1 https://corneliu.co.uk/phdresults/chapter5/index.html

116

https://corneliu.co.uk/phdresults/chapter5/index.html

using [BES17]. We have chosen the videos to highlight the robustness of our

method to various scenarios:

1. Viewpoint: Havana and SimpleCrossing showcase top-down like view-

points, whereas AbbeyRoad and Jackson present street-level viewpoints

and, as such, objects suffer from heavy occlusions at times;

2. Object density: the amount of objects present on screen at once varies

widely with SimpleCrossing only containing a few objects that barely

interact with one another, while Havana and MVI40243 contain tens of

objects at once;

3. Video quality: AbbeyRoad and Ross are low resolution videos while

Havana and Jackson are HD videos. Moreover, there are various amounts

of noise and compression artefacts in live-streaming webcameras such as

Jackson and Grange while AbbeyRoad and Ross contain skipped or

repeated frames;

4. Miscellaneous: other challenging factors include motion blur due to fast

moving vehicles (MVI40243), non-planar ground (MVI40732), extreme

weather conditions (e.g . rain in Auburn) and heavily cluttered background

where a clean median image cannot be obtained (MVI40871).

We now discuss in more details the results for our two scenarios. In Section 5.4.1,

we present our tracking results and the ways our algorithm is consistently under-

performing in our wide range of videos described in Table 5.1. In Section 5.4.2 we

present our 3D reconstruction and 3D VBR results and discuss the interactive

video experience that they enable.

5.4.1 Tracking

Visually inspecting the result videos 1 reveals that our tracking results are generally

very stable and the estimated bounding volume sizes encompass the tracked

cars very tightly. Our goal in this chapter was not to necessarily improve on

object tracking but rather augment the two-dimensional information provided

1https://corneliu.co.uk/phdresults/chapter5/index.html

117

https://corneliu.co.uk/phdresults/chapter5/index.html

5. MULTI-VIEW FROM SINGLE-VIEW

Name # frames # tracks 3D IoU Missing % Time [m]

RedCar 489 1 0.755 4.3 143
BlueCar 274 1 0.714 18.6 82
GreyCar 792 1 0.515 60.2 210
GreenCar 264 1 0.787 24.6 79
BlackTruck 251 2 0.304 32.3 106
WhiteBus 1270 3 0.438 26.7 342

Table 5.2: Tracking accuracy of our automatic algorithm compared to manually
tracked objects in a variety of input videos. From left to right: name of the
sequence, number of manually tracked frames, number of automatically found
tracks for each object, intersection over union (closer to 1 is better), percentage of
frames that have not been tracked automatically (due to the detector [WLW∗17]
not detecting the object), time in minutes necessary to manually track each object.

by traditional trackers with additional data that can enable more compelling

video interactions such as described in Section 5.3. For this reason, we do not

evaluate on traditional 2D multi-object tracking benchmarks such as [MLTR∗16].

Instead, we show that the augmentations we automatically infer, i.e. the size

of the bounding volume and its pose over time, are accurate w.r.t. manually

annotated sequences of frames. In Table 5.2 we present 6 sequences in which we

manually tracked a bounding volume following a given car. Note how the user

effort in terms of minutes spent tracking an object manually is considerable while

our method is completely automatic and leaves the user time to focus on the

creative side instead. The 3D Intersection-over-Union (IoU) measure shown in

Table 5.2 is defined as follows

3DIoU =
1

N

N∑
i=1

area(Fi ∩ F ′i)
area(Fi ∪ F ′i)

min(Hi, H
′
i)

max(Hi, H ′i)
(5.21)

where Fi and F ′i are the automatically and manually defined footprints in the ith

frame respectively and similarly Hi and H ′i are the heights of the object. We only

compute the 3D IoU for the frames where the object has been detected by the

car detector [WLW∗17]. Multiple automatic tracks may correspond to the same

manually tracked object as the tracker we have chosen [BES17] splits tracks if

118

(a) WhiteBus (b) GreyCar

Figure 5.8: Manual vs automatic bounding volume tracking. In red we show
the manually defined trajectory and oriented 3D cuboid, while in yellow we show
the automatically inferred ones using our algorithm from Section 5.2. Note that
some objects have been split into multiple individual tracks as a result of the
tracker [BES17]. Also, note how the manually defined tracks may not approximate
well the shape and pose of the object (especially in (a)) despite spending hours
manually tuning the result (see Table 5.2) due to the inherent difficulty of 3D
tracking in image space. The full videos for all the evaluated sequences can be
seen on our website.

the object is not detected in subsequent frames. Note that the WhiteBus object

has a very low IoU score for two reason: i) the automatic tracker has mistakenly

assigned a small bounding volume to the object, likely due to a combination of

bad detection 2D boxes and the shape prior’s (Eq. 5.12) inability to represent

the shape of a bus and ii) the fact that the manual track does not represent the

bus well as seen in Figure 5.8a and result videos 1. We have chosen to show this

faulty track nonetheless as it clearly shows that despite large user effort (more

than 4 hours in Table 5.2) the results can still be not satisfactory and the need

for automatic, robust and accurate algorithms, such as presented in this chapter,

becomes evident.

Qualitatively speaking, the result videos highlight the two ways our tracker

consistently under-performs. First, a number of frames at the beginning or at the

end of an object’s track may not represent the trajectory accurately. This does

not influence the reconstruction of the object’s 3D shape thanks to our iterative

1https://corneliu.co.uk/phdresults/chapter5/index.html

119

https://corneliu.co.uk/phdresults/chapter5/index.html

5. MULTI-VIEW FROM SINGLE-VIEW

process described in Section 5.3.1 which dynamically down-weighs frames that do

not agree with the estimated textured mesh. It does however introduce artefacts

when performing ULR as the incorrect pose of the object results in inaccurate

color blending (as we discuss in Section 5.4.2). Second, the scale of an object can

be incorrect and may not encompass the object tightly when projected into image

space especially if i) it is found far away from the camera or at grazing angles (e.g .

object 178 in Havana in Figure 5.10c and on our website1) or ii) it moves parallel

to the camera due to the inherent ambiguity in our photo consistency costs (e.g .

object 51 in Grange in Figure 5.10b and on our website2). We discuss reasons

and potential solutions in the Limitations and Future Work section (5.5.1).

5.4.2 Interactive 3D Video Experiences

After tracking vehicles in the videos described in Table 5.1, we reconstructed the

shape of each object using the algorithm presented in Section 5.3.1. We show the

estimated mesh both with and without texture in Figure 5.9 and on our website3

along with sample cropped video frames. Qualitatively, the recovered meshes

present artefacts due to the discretization of the object volume into a grid of voxels

and the graph cut-based segmentation described in Section 5.3.1 (see Fig. 5.9).

Moreover, the quality of the meshes vastly depends on the number of viewpoints

and their diversity. In extreme cases, such as the third row in Figure 5.9 and 5.10g,

they present typical voxel carving artefacts, such as an elongated shape in the

directions that are not clearly visible in the input video. Finally, reconstructed

meshes degenerate when the tracking has failed or objects look similar to the

background colors as shown in Figure 5.10f. This is due to the fact that the

carving cost (Eq. 5.15), used to separate foreground voxels from background ones,

depends on photo consistency (Eq. 5.9).

Despite the arguably mediocre reconstructions shown in Figure 5.9, the ULR

technique we describe in Section 5.3.2 is successful at rendering tracked objects

from novel view points. As we show in our result videos4, we allow users to interact

1https://corneliu.co.uk/phdresults/chapter5/havana/tracking.html
2https://corneliu.co.uk/phdresults/chapter5/grange/tracking.html
3https://corneliu.co.uk/phdresults/chapter5/index.html
4https://corneliu.co.uk/phdresults/chapter5/index.html

120

https://corneliu.co.uk/phdresults/chapter5/havana/tracking.html
https://corneliu.co.uk/phdresults/chapter5/grange/tracking.html
https://corneliu.co.uk/phdresults/chapter5/index.html
https://corneliu.co.uk/phdresults/chapter5/index.html

Figure 5.9: Reconstruction and 3D VBR results. From left to right: sample
cropped input frame, front mesh, front textured mesh, back mesh, back textured
mesh, ULR example. Please see our supplemental website for more results.

with objects filmed by a static camera in very compelling ways. Thanks to the

algorithms presented in this chapter, we can now turn videos into interactive

playgrounds, where users are given the ability to not only change the speed at

which cars move (such as is possible in our Counter Loop game prototype from

Section 4.6.1) but also make them follow a different lane to the one they were

filmed following and even change the trajectory completely. We show this ability

in a variety of videos as a testament of the fact that videos can become fully

interactive media. Users are no longer limited to passively consuming the recorded

content and can actively influence what happens on screen in the intuitive ways

121

5. MULTI-VIEW FROM SINGLE-VIEW

previously only possible in video games.

5.5 Conclusions

In this chapter, we presented novel algorithms for inferring 3D information about

the real world from monocular static camera videos. In Section 5.1 we show that

simply using the location of the horizon line in an image is enough to estimate the

location of a ground plane and the camera’s pose w.r.t. it. Finding the horizon

line is a much easier problem [WZJ16] than a set of orthogonal vanishing points,

especially when the Manhattan-world assumption is broken, which is traditionally

used for single view camera pose estimation such as seen in [OSGO12]. We also

describe a manual tool which requires very little user input to estimate camera pose

and even reconstruct a rough mesh for representing the mostly static background

present in static-camera videos.

We then use the camera parameters and an off-the-shelf multi-object tracker

to estimate object shape and pose over time (Sec. 5.2) as they move on the

ground plane and use it to recover “good enough” meshes (Sec. 5.3.1) to use

for photo-realistic novel-view rendering (Sec. 5.3.2). All these elements come

together to allow one to interact with videos in new and compelling ways, as

users are given the ability to move the input camera to see the scene from a

new viewpoint and even directly control how objects move across the world. In

our effort to create compelling interactive video experiences, we have shown that

traditional filmed content can be enjoyed in a game-like scenario where users

have full control over what they see. Additionally, we have made great strides

towards enabling ever more compelling and intuitive ways of interacting with

video content without requiring prohibitive user effort or even none at all for

processing it. While automatisms have been introduced in this chapter, we still

believe users should be given control over both quality-related issues and creative

decisions and we now discuss them.

122

178

(a) The cuboid pose may be inaccurate at trajectory
extremities as the spline over-fits to noisy estimates due
to other nearby foreground objects.

(b) Multiple cuboids may correspond to a low (darker
colors) foreground-to-background cost if the object
moves parallel to the camera.

(c) Bad calibration may lead to an estimated bounding volume that fits the object well at mid range but not
when far away (box too big) or at grazing angles (box too small).

(d) Mixing colors from views where object is
occluded, results in artefacts.

(e) Ghosting due to
misalignment.

(f) Bad mesh due to
similar background.

(g) ULR (top) hides
bad carve (bottom).

Figure 5.10: We show a number of limitations of the algorithms presented in
this chapter. Please see the text for more details.

5.5.1 Limitations and future work

In Section 5.4 we presented and discussed our results along with mentioning a

number of issues manifesting themselves at both the tracking and the reconstruc-

tion level. In terms of tracking accuracy, there are two prominent issues. First,

the recovered tracks are noisy at the extremes and exhibit unpredictable behavior

that does not well match the tracked objects. We believe this is mainly due to

poor photo consistency quality, which is largely affected by occlusions and similar

appearance of the object to the background. This manifests itself as noise in the

pose of the object at the local refinement stage where the spline-based smoothing

we employ fails to recover the clean trajectory typical of moving vehicles (see

Fig. 5.10a). While our photo consistency measure is defined in terms of appearance

123

5. MULTI-VIEW FROM SINGLE-VIEW

difference between a given video frame and the static background, a more accurate

definition would be in terms of the appearance of the tracked object itself. A

future extension could attempt to learn a model of appearance that accurately

describes a given object [CET01] which would give a more consistent measure of

photo consistency as nearby foreground objects would be ignored despite them

not being background. Another future direction to investigate is to introduce

temporal consistency into the photo consistency computation as by definition the

appearance of an object would not change drastically in subsequent frames.

The second issue with the tracker’s performance, concerns mistaken estimated

object shape which may happen due to the way we estimate camera pose. First,

if the estimated plane is not well aligned with the real world, the projection

of the bounding volume is inaccurate at grazing angles and far away from the

camera. This results in the issues highlighted in Figure 5.10c where the estimated

bounding volume fits the vehicle well at mid range but it does not when it is

far away or close to the camera. Second, similar artefacts can be seen when our

assumption that the ground on which the objects move is planar such as in our

MVI40871 dataset1. These issues could be addressed by iteratively refining the

estimate of the ground plane to better fit the movement of objects as part of

our optimization from Section 5.2.2. Another option would be to not assume

the ground is completely planar and instead fit a triangular mesh to the initial

plane and manipulate its vertices to better explain the way the tracked objects

move. A different reason for incorrect object shape is an inherent ambiguity in

our foreground-to-background photo consistency cost in Equation 5.10. As seen in

Figure 5.10b, if an object moves parallel to the camera, there are multiple low-cost

solutions and the optimizer may get stuck in local minima.

In terms of reconstructing the tracked objects and rendering them from novel

viewpoints, the algorithms we described and employed are rather simplistic. We

believe they demonstrate our proof of concept use-case very well but could be

improved on. Better reconstruction could be achieved by improving on the quality

of the photo consistency measure as mentioned above. The shape would better fit

the object when projected into the image space and there would be less degenerate

meshes (see Fig. 5.10f) as objects would be distinguishable from the background

1https://corneliu.co.uk/phdresults/chapter5/MVI_40871/tracking.html

124

https://corneliu.co.uk/phdresults/chapter5/MVI_40871/tracking.html

even if they have similar appearance. Moreover, having better photo consistency

would improve the quality of the tracks which in turn would result in more

views aligning well with the reconstructed shape. Our iterative optimization from

Section 5.3.1 would thus be able to use more viewpoints for carving the voxel

volume. Finally, better alignment between the object, the tracked volume and the

reconstructed shape would result in better novel-view rendering as more views

can be blended together without ghosting artefacts (see Figure 5.10e). Rendering

could be improved further by dynamically choosing the best views based on how

well they match the reconstructed mesh and by leveraging its appearance to detect

occluders (e.g . see the light pole in Havana which gets blended with a car’s

appearance in Figure 5.10d) and inpainting them away.

A future direction to be researched is related to addressing one of the main

limitation of the 2D box tracker we have chosen. The IoU tracker [BES17] detects

objects simply by grouping object detections in subsequent frames. If the detector

skips even one frame because of, for instance, the object getting partially occluded,

the tracker will create two separate tracks for the same real-world object. This

can be seen in our Havana dataset1 where objects 232 and 249 refer to the same

car. We could address this by using the estimated track to predict an object’s

pose in frames it was not tracked in and merge tracks if they are predicted to

occupy the same space. Finally, the same reasoning can be used to extend a track

beyond what was tracked using [BES17] and use our local refinement optimization

to correct inaccurate predictions which would address the current limitation of

discarding frames where an object is partially outside the video frame.

1https://corneliu.co.uk/phdresults/chapter5/havana/tracking.html

125

https://corneliu.co.uk/phdresults/chapter5/havana/tracking.html

Chapter 6

Conclusion

In this thesis, we explored issues and bottlenecks that prevent content creators

from converting videos into interactive experiences. Traditionally, videos are

consumed passively by viewers who can simply watch what the creator envisioned.

In contrast, video games are a highly interactive medium where players are in

full control over how they enjoy the experience. We hypothesized that content

creators are willing to spend the time and effort to make watching videos a more

game-like experience. This is a hard problem for several reasons. First, filmed

dynamic events can vary widely so identifying desirable and meaningful ways to

interact with them becomes problematic. Second, the subjects of a video can be

very different and their appearance can vary drastically over time. It therefore

becomes crucial to design algorithms that are generic and robust enough to cope

with such variations. Finally, fully automatic algorithms can become brittle so

it is important to design the tools that integrate them to enable users to correct

and improve upon results in order to reach the quality levels they seek. At the

same time, automatisms should help users reach their goals efficiently while not

hindering the creative process as, ultimately, it is the creator that knows how the

experience should engage users.

We started this thesis by asking how videos could become more engaging

and go beyond simple infinite seamless playback. In Chapter 3 we focus on the

engagement factor and present an in-depth exploration of modes of interaction

between users and filmed content along with the techniques necessary to make

them reality. We identify video looping as seen in Video Textures by Schödl et

126

al . [SSSE00] as the core idea behind making videos into interactive experiences.

We then explore what has prevented loopable videos from actively being used by

content creators in practical settings. Lack of control over the synthesized output

and the fact that mistakes cannot be easily corrected were identified as the most

important limitations. The chapter goes on to present novel ideas and algorithms

that are designed to overcome these limitations, such as our appearance-based

semantic action grouping of video frames which can be used to influence the

output video in meaningful ways. Our discussions with content creators (e.g .

video game developers) also highlighted the need for efficient authoring tools so

we place great emphasis on enabling users to preview and manipulate the results

of automatic algorithms.

The concepts and techniques we envisioned come together in the end-to-end

system we present in Chapter 4. Our tool is designed to support content creators

as they convert videos into a library of loopable elements. They can then be

combined together and controlled in real time as part of our new medium of

expression: the live video performance. On-screen elements instantly react in

meaningful ways to simple and intuitive end-user requests. For the first time,

videos are not consumed in a fully passive way and instead, people can actively

influence what happens in the video and when. Finally, a number of artists

and end-users helped us evaluate our novel system and how our new interaction

paradigm can be used for authoring of videos.

A further step was taken towards understanding the type of information one

can infer from video to enable real-time interactivity. In Chapter 5 we explored the

ability to manipulate video content in 3D. Our discussions with game developers

highlighted that modern video games have become more appealing to the masses

thanks to their ability to emulate the three-dimensional real world. Our end-to-end

system from Chapter 4 can only manipulate pixels in image space so end-user can

only interact with the experience in a two-dimensional manner. However, filmed

events and subjects are recorded interacting with a three-dimensional world so

enabling end-users to interact with them in 3D would result in a more compelling

and engaging experience. We dedicated Chapter 5 to presenting a 2D-to-3D

tracker that enables new applications such as reconstructing the three-dimensional

shape of filmed objects and viewing them from novel viewpoints that were not

127

6. CONCLUSION

filmed in the input video.

Our original hypothesis stated that interactive tools and automation can assist

content creators in the creation of video experiences to engage audiences in new

ways. Throughout the thesis, it became evident that different videos vary greatly,

both in how they are captured and the nature of their content. Because of this,

the way videos are processed and the modes of interactions designed to engage

audiences are tightly interconnected. Assumptions must inevitably be made to

cope with input variation; this, in turn, reduces the potential impact of a tool

or technique because generalisation is traded for specialisation. For instance,

not all videos capture actors performing actions. In such cases, the methods

described in Chapter 4 would not be appropriate. Although these assumptions

seem limiting at first, they perform the vital role of constraining a problem to

make it tractable. Thinking about rapid prototyping in the manner described by

the artists in Section 4.8 would perhaps not be possible without first limiting the

video domain.

The techniques described in this thesis make video content reactive to user

input. However, bringing these experiences to broader audiences still poses

great challenges. From the perspective of professional users, such as visual

effect artists, robustness and particularly visual quality are paramount. On the

other hand, casual users may be more interested in the final product (e.g . using

the MakeyMakey as shown in Chapter 4 or playing a driving game built with

techniques described in Chapter 5), so designing fun and engaging interactions

is more important. As mentioned above, making assumptions on characteristics

exhibited by input videos makes a problem tractable but limits use cases. However,

these assumption can be interchanged or combined to make new use cases become

apparent, possibly opening the door to more varied modes of interaction.

6.1 Possible Future Directions

In this section, we present a number of possible future research directions that

improve upon and extend the topics discussed in this thesis. We discuss both

technical improvements that are likely to increase quality and robustness as well

as significant extensions that may enable ever more compelling interactive video

128

experiences.

Throughout this thesis, we have made an important assumption about the

input data: they are monocular, static-camera videos. On the one hand, this

limits our use cases but on the other hand we do not require specific capture setups

such as multi-camera rigs or depth sensors so any casually captured video on the

Internet is potentially usable. One interesting research direction is to do away

with such an assumption and leverage the extra information in moving-camera

videos for more immersive experiences. If the camera is moving, we could employ

3D reasoning on both filmed subjects and on the background scene such as done

in MVS pipelines.

The system we describe in Chapter 4 provides the tools necessary to interac-

tively prepare footage for live video performances. While we made the preparation

process as streamlined and efficient as possible, some sequences such as Havana

still require considerable user effort because of the sheer amount of moving ele-

ments and their complex interactions with one another. One interesting avenue

for research would be to employ the reasoning described in Chapter 5 to more

efficiently assist users in accurately tracking and segmenting moving elements.

This would require more effort in adapting the algorithms we described to be

more efficient and suitable for a user-in-the-loop setting.

In Chapter 4 we described a novel way to intuitively influence video synthesis

by leveraging essentially semantic knowledge that users can easily define and

interpret. The interactions described in Chapter 5 on the other hand, are more

traditional as they replicate what is usually done in video games, i.e. moving

the virtual camera and revealing new views of interactive objects by moving

them across the scene. It would be very interesting to combine the two types of

interactions for ever more engaging experiences. For instance, we could film a

tennis match, track the players using the techniques from Chapter 5 and assign

semantic knowledge to their movement using the system from Chpater 4. We could

then enable players to move the players across the tennis court and requesting

them to perform specific shots that were filmed in the input video. Moreover, 3D

information could be used to define better looping in a similar fashion to character

animation techniques such as [PKC∗16, CVCH14] or more meaningful actions and

the compatibility between them. For instance, we could define compatibility in

129

6. CONCLUSION

such a way that the second player would always counteract what the first player

does. This may result in the second player going to the correct place on the tennis

court to hit the ball at the right time and present a challenge for the human

player.

Finally, there are multiple research directions that could improve upon and

expand our results in Chapter 5. First, it would be interesting to do away with

our assumption that tracked objects are mostly rigid and relatively well explained

by cuboids. Moreover, the tracking (as is or for non-rigid shapes) would benefit

from better photo consistency measures as discussed in Section 5.5 but also if

we were to add a motion model to the equation. A future in-depth performance

evaluation of the numerous steps in our pipeline may shed light on suitable

extensions. Performance may improve if tracking and reconstruction were to

be performed jointly in a similar manner to what is seen in [LHB15], although

feature-based tracking may not perform well on our datasets as the moving objects

are typically below 1% of the whole frame area. Finally, in Section 5.3.2 we

show that we can synthesize novel views of the scene and the filmed moving

objects. Our implementation is a proof of concept aimed at demonstrating that

our contributions enable this new way of interacting with videos. The rendering

quality could be improved upon by researching new ways of optimizing tracking

and reconstruction for the purpose of minimizing visual artefacts such as ghosting.

130

References

[AF02] Arikan O., Forsyth D. A.: Interactive motion generation from

examples. In Proceedings of the 29th Annual Conference on Computer

Graphics and Interactive Techniques (New York, NY, USA, 2002),

SIGGRAPH ’02, ACM, pp. 483–490. 15, 40, 47

[ASS∗12] Achanta R., Shaji A., Smith K., Lucchi A., Fua P., Süsstrunk

S.: Slic superpixels compared to state-of-the-art superpixel methods.

IEEE transactions on pattern analysis and machine intelligence 34,

11 (2012), 2274–2282. 53

[AZP∗05] Agarwala A., Zheng K. C., Pal C., Agrawala M., Cohen M.,

Curless B., Salesin D., Szeliski R.: Panoramic video textures.

In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),

SIGGRAPH ’05, ACM, pp. 821–827. 9

[BAAR12] Bai J., Agarwala A., Agrawala M., Ramamoorthi R.: Selectively

de-animating video. ACM Transactions on Graphics (2012). 10, 11,

12, 22, 38

[BAAR13] Bai J., Agarwala A., Agrawala M., Ramamoorthi R.: Automatic

cinemagraph portraits. Computer Graphics Forum (EGSR 2013)

(2013). 10

[BB12] Beck J., Burg K.: http://cinemagraphs.com. 10

[BBM∗01] Buehler C., Bosse M., McMillan L., Gortler S., Cohen M.:

Unstructured lumigraph rendering. In Proceedings of the 28th Annual

Conference on Computer Graphics and Interactive Techniques (New

131

REFERENCES

York, NY, USA, 2001), SIGGRAPH ’01, ACM, pp. 425–432. 2, 21,

65, 114

[BCS97] Bregler C., Covell M., Slaney M.: Video rewrite: Driving visual

speech with audio. In Proceedings of the 24th Annual Conference on

Computer Graphics and Interactive Techniques (New York, NY, USA,

1997), SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing Co.,

pp. 353–360. 9

[BES17] Bochinski E., Eiselein V., Sikora T.: High-speed tracking-by-

detection without using image information. In Advanced Video and

Signal Based Surveillance (AVSS), 2017 14th IEEE International

Conference on (2017), IEEE, pp. 1–6. 104, 116, 117, 118, 119, 125

[Bre01] Breiman L.: Random forests. Machine learning 45, 1 (2001), 5–32.

29, 33, 55

[BSHK04] Bhat K. S., Seitz S. M., Hodgins J. K., Khosla P. K.: Flow-based

video synthesis and editing. In ACM SIGGRAPH 2004 Papers (New

York, NY, USA, 2004), SIGGRAPH ’04, ACM, pp. 360–363. 11, 12,

38

[BVZ99] Boykov Y., Veksler O., Zabih R.: Fast approximate energy

minimization via graph cuts. In ICCV (1999), pp. 377–384. 9, 112,

113

[CAC∗02] Chuang Y.-Y., Agarwala A., Curless B., Salesin D. H., Szeliski

R.: Video matting of complex scenes. ACM Transactions on

Graphics 21, 3 (July 2002), 243–248. Sepcial Issue of the SIGGRAPH

2002 Proceedings. 55

[Can86] Canny J.: A computational approach to edge detection. Pattern

Analysis and Machine Intelligence, IEEE Transactions on PAMI-8,

6 (Nov 1986), 679–698. 54, 98

132

REFERENCES

[CCM16] Chang C.-S., Chu H.-K., Mitra N. J.: Interactive videos: Plausible

video editing using sparse structure points. Computer Graphics

Forum (Proc. Eurographics) 35 (2016). 19

[CDSHD13] Chaurasia G., Duchene S., Sorkine-Hornung O., Drettakis G.:

Depth synthesis and local warps for plausible image-based navigation.

ACM Trans. Graph. 32, 3 (July 2013), 30:1–30:12. 2, 21, 24

[CET01] Cootes T. F., Edwards G. J., Taylor C. J.: Active appear-

ance models. IEEE Transactions on pattern analysis and machine

intelligence 23, 6 (2001), 681–685. 124

[CK14] Chen Q., Koltun V.: Fast mrf optimization with application to

depth reconstruction. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (2014), pp. 3914–3921. 83

[CLR11] Couture V., Langer M., Roy S.: Panoramic stereo video textures.

In Computer Vision (ICCV), 2011 IEEE International Conference

on (Nov 2011), pp. 1251–1258. 9, 10

[CPW∗11] Chen J., Paris S., Wang J., Matusik W., Cohen M., Durand F.:

The video mesh: A data structure for image-based three-dimensional

video editing. In Computational Photography (ICCP), 2011 IEEE

International Conference on (2011), IEEE, pp. 1–8. 13, 14

[CRZ00] Criminisi A., Reid I., Zisserman A.: Single view metrology. Inter-

national Journal of Computer Vision 40, 2 (2000), 123–148. 98

[CVCH14] Casas D., Volino M., Collomosse J., Hilton A.: 4d video textures

for interactive character appearance. Computer Graphics Forum

(Proc. Eurographics 2014) 33, 2 (2014). 16, 18, 19, 129

[CZS∗13] Chen T., Zhu Z., Shamir A., Hu S.-M., Cohen-Or D.: 3-sweep:

extracting editable objects from a single photo. ACM Transactions

on Graphics (TOG) 32, 6 (2013), 195. 17

133

REFERENCES

[DRB∗08] Dragicevic P., Ramos G., Bibliowitcz J., Nowrouzezahrai D.,

Balakrishnan R., Singh K.: Video browsing by direct manipulation.

In Proceedings of the SIGCHI Conference on Human Factors in

Computing Systems (New York, NY, USA, 2008), CHI ’08, ACM,

pp. 237–246. 14

[DT05] Dalal N., Triggs B.: Histograms of oriented gradients for human

detection. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on (June 2005), vol. 1,

pp. 886–893 vol. 1. 33

[EF15] Eigen D., Fergus R.: Predicting depth, surface normals and

semantic labels with a common multi-scale convolutional architecture.

In Proceedings of the IEEE International Conference on Computer

Vision (2015), pp. 2650–2658. 18

[Far03] Farnebäck G.: Two-frame motion estimation based on polynomial

expansion. In Image Analysis. Springer, 2003, pp. 363–370. 75

[FB81] Fischler M. A., Bolles R. C.: Random sample consensus: a

paradigm for model fitting with applications to image analysis and

automated cartography. Communications of the ACM 24, 6 (1981),

381–395. 20

[FG14] Fuhrmann S., Goesele M.: Floating scale surface reconstruction.

ACM Transactions on Graphics (TOG) 33, 4 (2014), 46. 2, 3

[FH∗15] Furukawa Y., Hernández C., et al.: Multi-view stereo: A tutorial.

Foundations and Trends R© in Computer Graphics and Vision 9, 1-2

(2015), 1–148. 20, 21, 24, 110, 111, 114

[FJS96] Finkelstein A., Jacobs C. E., Salesin D. H.: Multiresolution

video. In Proceedings of the 23rd Annual Conference on Computer

Graphics and Interactive Techniques (New York, NY, USA, 1996),

SIGGRAPH ’96, ACM, pp. 281–290. 9

134

REFERENCES

[FNZ∗09] Flagg M., Nakazawa A., Zhang Q., Kang S. B., Ryu Y. K., Essa

I., Rehg J. M.: Human video textures. In Proceedings of the 2009

Symposium on Interactive 3D Graphics and Games (New York, NY,

USA, 2009), I3D ’09, ACM, pp. 199–206. 16, 38

[GGC∗08] Goldman D. B., Gonterman C., Curless B., Salesin D., Seitz

S. M.: Video object annotation, navigation, and composition. In

Proceedings of the 21st Annual ACM Symposium on User Interface

Software and Technology (New York, NY, USA, 2008), UIST ’08,

ACM, pp. 3–12. 13, 14

[GGSC96] Gortler S. J., Grzeszczuk R., Szeliski R., Cohen M. F.: The

lumigraph. In Proceedings of the 23rd annual conference on Computer

graphics and interactive techniques (1996), ACM, pp. 43–54. 21

[GHTC03] Gao X.-S., Hou X.-R., Tang J., Cheng H.-F.: Complete solution

classification for the perspective-three-point problem. IEEE Trans.

Pattern Anal. Mach. Intell. 25, 8 (Aug. 2003), 930–943. 102

[GLU12] Geiger A., Lenz P., Urtasun R.: Are we ready for autonomous driv-

ing? the kitti vision benchmark suite. In Conference on Computer

Vision and Pattern Recognition (CVPR) (2012). 109

[HAA97] Horry Y., Anjyo K.-I., Arai K.: Tour into the picture: Using a

spidery mesh interface to make animation from a single image. In

Proceedings of the 24th Annual Conference on Computer Graphics

and Interactive Techniques (New York, NY, USA, 1997), SIGGRAPH

’97, ACM Press/Addison-Wesley Publishing Co., pp. 225–232. 17

[HASK17] Hedman P., Alsisan S., Szeliski R., Kopf J.: Casual 3D Photog-

raphy. 234:1–234:15. 2, 21

[HEH05] Hoiem D., Efros A. A., Hebert M.: Automatic photo pop-up.

In ACM SIGGRAPH 2005 Papers (New York, NY, USA, 2005),

SIGGRAPH ’05, ACM, pp. 577–584. 17

135

REFERENCES

[Hit41] Hitchcock F. L.: The distribution of a product from several sources

to numerous localities. 32

[HJO∗01] Hertzmann A., Jacobs C. E., Oliver N., Curless B., Salesin

D. H.: Image analogies. In Proceedings of the 28th annual confer-

ence on Computer graphics and interactive techniques (2001), ACM,

pp. 327–340. 39, 72, 86

[HRDB16] Hedman P., Ritschel T., Drettakis G., Brostow G.: Scalable

inside-out image-based rendering. ACM Trans. Graph. 35, 6 (Nov.

2016), 231:1–231:11. 2, 21, 24

[JMD∗12] Joshi N., Mehta S., Drucker S., Stollnitz E., Hoppe H., Uyt-

tendaele M., Cohen M.: Cliplets: Juxtaposing still and dynamic

imagery. UIST. 10, 11, 12, 22, 38, 75, 90, 91

[Joy12] JoyLabz: http://makeymakey.com. 39, 72, 86

[KGP02] Kovar L., Gleicher M., Pighin F.: Motion graphs. In Proceedings

of the 29th Annual Conference on Computer Graphics and Interactive

Techniques (New York, NY, USA, 2002), SIGGRAPH ’02, ACM,

pp. 473–482. 15, 40, 47

[Kip14] Kipp M.: Anvil: A universal video research tool. In Handbook of

Corpus Phonology. Oxford University Press. 2014, ch. 21, pp. 420–436.

77

[Kol06] Kolmogorov V.: Convergent tree-reweighted message passing for

energy minimization. Pattern Analysis and Machine Intelligence,

IEEE Transactions on 28, 10 (2006), 1568–1583. 83

[KSC∗01] Klein A., Sloan P., Colburn A., Finkelstein A., Cohen M. F.:

Video cubism. Technical Report MSR-TR-2001-45 (2001). 12

[KSE∗03] Kwatra V., Schödl A., Essa I., Turk G., Bobick A.: Graphcut

textures: Image and video synthesis using graph cuts. ACM Trans-

actions on Graphics, SIGGRAPH 2003 22, 3 (July 2003), 277–286.

4, 9, 11, 13, 22, 29, 75

136

REFERENCES

[KSES14] Kholgade N., Simon T., Efros A., Sheikh Y.: 3d object ma-

nipulation in a single photograph using stock 3d models. ACM

Transactions on Computer Graphics 33, 4 (2014). 17

[LCR∗02] Lee J., Chai J., Reitsma P. S. A., Hodgins J. K., Pollard N. S.:

Interactive control of avatars animated with human motion data. In

Proceedings of the 29th Annual Conference on Computer Graphics

and Interactive Techniques (New York, NY, USA, 2002), SIGGRAPH

’02, ACM, pp. 491–500. 15, 40, 47

[LFH15] Liao J., Finch M., Hoppe H.: Fast computation of seamless video

loops. ACM Trans. Graph. 34, 6 (Oct. 2015), 197:1–197:10. 10, 12

[LH96] Levoy M., Hanrahan P.: Light field rendering. In Proceedings of

the 23rd Annual Conference on Computer Graphics and Interactive

Techniques (New York, NY, USA, 1996), SIGGRAPH ’96, ACM,

pp. 31–42. 2

[LHB15] Lebeda K., Hadfield S., Bowden R.: Dense rigid reconstruction

from unstructured discontinuous video. In Proceedings of the ICCV

workshop on 3D Representation and Recognition (December 2015).

19, 130

[LJH13] Liao Z., Joshi N., Hoppe H.: Automated video looping with

progressive dynamism. ACM Trans. Graph. 32, 4 (July 2013), 77:1–

77:10. 4, 10, 11, 12, 22, 28, 73, 90, 91

[LLVT03] Lewiner T., Lopes H., Vieira A. W., Tavares G.: Efficient

implementation of marching cubes’ cases with topological guarantees.

Journal of graphics tools 8, 2 (2003), 1–15. 111, 113

[Low04] Lowe D. G.: Distinctive image features from scale-invariant key-

points. International journal of computer vision 60, 2 (2004), 91–110.

48

[LSD15] Long J., Shelhamer E., Darrell T.: Fully convolutional networks

for semantic segmentation. In Proceedings of the IEEE Conference

137

REFERENCES

on Computer Vision and Pattern Recognition (2015), pp. 3431–3440.

53

[LWA∗12] Lang M., Wang O., Aydin T. O., Smolic A., Gross M. H.: Prac-

tical temporal consistency for image-based graphics applications.

ACM Trans. Graph. 31, 4 (2012), 34–1. 55

[LWB∗10] Lee Y., Wampler K., Bernstein G., Popović J., Popović Z.: Mo-

tion fields for interactive character locomotion. In ACM SIGGRAPH

Asia 2010 Papers (New York, NY, USA, 2010), SIGGRAPH ASIA

’10, ACM, pp. 138:1–138:8. 47, 48, 67

[LYGC15] Liao Z., Yu Y., Gong B., Cheng L.: Audeosynth: Music-driven

video montage. ACM Trans. Graph. 34, 4 (July 2015), 68:1–68:10.

13

[LYT∗08] Liu C., Yuen J., Torralba A., Sivic J., Freeman W. T.: Sift

flow: Dense correspondence across different scenes. In Computer

Vision–ECCV 2008. Springer, 2008, pp. 28–42. 10

[LZW∗13] Lu S.-P., Zhang S.-H., Wei J., Hu S.-M., Martin R. R.: Timeline

editing of objects in video. IEEE Transactions on Visualization and

Computer Graphics 19, 7 (2013), 1218–1227. 12, 13, 14, 22, 70, 75,

90, 91

[MACKB14] Mac Aodha O., Campbell N. D., Kautz J., Brostow G. J.:

Hierarchical Subquery Evaluation for Active Learning on a Graph.

In CVPR (2014). 34, 41

[MAFK17] Mousavian A., Anguelov D., Flynn J., Kosecka J.: 3d bounding

box estimation using deep learning and geometry. In CVPR (2017).

18

[Mey92] Meyer F.: Color image segmentation. In Image Processing and its

Applications, 1992., International Conference on (1992), pp. 303–306.

54

138

REFERENCES

[MLTR∗16] Milan A., Leal-Taixé L., Reid I., Roth S., Schindler K.: MOT16:

A benchmark for multi-object tracking. arXiv:1603.00831 [cs] (Mar.

2016). arXiv: 1603.00831. 104, 118

[MMMO] Moulon P., Monasse P., Marlet R., Others: Openmvg. an open

multiple view geometry library. https://github.com/openMVG/

openMVG. 20, 98

[NM65] Nelder J. A., Mead R.: A simplex method for function minimiza-

tion. The computer journal 7, 4 (1965), 308–313. 100, 110

[NNL13] Nguyen C., Niu Y., Liu F.: Direct manipulation video navigation

in 3d. In Proceedings of the SIGCHI Conference on Human Factors

in Computing Systems (New York, NY, USA, 2013), CHI ’13, ACM,

pp. 1169–1172. 14

[NNL14] Nguyen C., Niu Y., Liu F.: Direct manipulation video navigation on

touch screens. In Proceedings of the 16th international conference on

Human-computer interaction with mobile devices & services (2014),

ACM, pp. 273–282. 14

[NP15] Nebehay G., Pflugfelder R.: Clustering of Static-Adaptive corre-

spondences for deformable object tracking. In Computer Vision and

Pattern Recognition (June 2015), IEEE. 74

[OCDD01] Oh B. M., Chen M., Dorsey J., Durand F.: Image-based modeling

and photo editing. In Proceedings of the 28th Annual Conference

on Computer Graphics and Interactive Techniques (New York, NY,

USA, 2001), SIGGRAPH ’01, ACM, pp. 433–442. 17

[Ols12] Olsen D.: CHI 2012 Lifetime Achievement in Research Award. 68,

69, 91, 92

[OSGO12] Orghidan R., Salvi J., Gordan M., Orza B.: Camera calibration

using two or three vanishing points. In Computer Science and Infor-

mation Systems (FedCSIS), 2012 Federated Conference on (2012),

IEEE, pp. 123–130. 122

139

https://github.com/openMVG/openMVG
https://github.com/openMVG/openMVG

REFERENCES

[PD07] Perronnin F., Dance C.: Fisher kernels on visual vocabularies for

image categorization. In Computer Vision and Pattern Recognition,

2007. CVPR ’07. IEEE Conference on (June 2007), pp. 1–8. 33

[Pet16] Peters M.: The Birth of Loop. 69

[PGB03] Pérez P., Gangnet M., Blake A.: Poisson image editing. In ACM

Transactions on Graphics (TOG) (2003), vol. 22, ACM, pp. 313–318.

71, 74, 84

[Pic04] Piccardi M.: Background subtraction techniques: a review. In

Systems, man and cybernetics, 2004 IEEE international conference

on (2004), vol. 4, IEEE, pp. 3099–3104. 53

[PKC∗16] Prada F., Kazhdan M., Chuang M., Collet A., Hoppe H.: Motion

graphs for unstructured textured meshes. ACM Trans. Graph. 35, 4

(July 2016), 108:1–108:14. 129

[PPHL98] Pollard S., Pilu M., Hayes S., Lorusso A.: View synthesis by

trinocular edge matching and transfer. In Proceedings of the 4th

IEEE Workshop on Applications of Computer Vision (WACV’98)

(Washington, DC, USA, 1998), WACV ’98, IEEE Computer Society,

pp. 168–. 9

[PRAP08] Pritch Y., Rav-Acha A., Peleg S.: Nonchronological video syn-

opsis and indexing. IEEE Transactions on Pattern Analysis and

Machine Intelligence 30, 11 (2008), 1971–1984. 12

[Pri12] Prince S. J.: Computer vision: models, learning, and inference.

Cambridge University Press, 2012. 44

[PVGV∗04] Pollefeys M., Van Gool L., Vergauwen M., Verbiest F., Cor-

nelis K., Tops J., Koch R.: Visual modeling with a hand-held

camera. International Journal of Computer Vision 59, 3 (2004),

207–232. 98

140

REFERENCES

[RAPLP05] Rav-Acha A., Pritch Y., Lischinski D., Peleg S.: Evolving time

fronts: Spatio-temporal video warping. In SIGGRAPH’05 (2005).

13

[RNR∗17] Rematas K., Nguyen C. H., Ritschel T., Fritz M., Tuytelaars

T.: Novel views of objects from a single image. IEEE Transactions

on Pattern Analysis and Machine Intelligence 39, 8 (Aug 2017),

1576–1590. 17

[RTG98] Rubner Y., Tomasi C., Guibas L. J.: A metric for distributions

with applications to image databases. In Proceedings of the Sixth

International Conference on Computer Vision (Washington, DC,

USA, 1998), ICCV ’98, IEEE Computer Society, pp. 59–. 31, 32

[RWSG13] Rüegg J., Wang O., Smolic A., Gross M.: Ducttake: Spatiotempo-

ral video compositing. In Computer Graphics Forum (2013), vol. 32,

Wiley Online Library, pp. 51–61. 13

[SCK08] Shum H.-Y., Chan S.-C., Kang S. B.: Image-based rendering.

Springer Science & Business Media, 2008. 20, 21, 114

[SE01] Schödl A., Essa I. A.: Machine learning for video-based rendering.

In Advances in Neural Information Processing Systems 13, Leen T.,

Dietterich T., Tresp V., (Eds.). MIT Press, 2001, pp. 1002–1008. 15

[SE02] Schödl A., Essa I. A.: Controlled animation of video sprites. In

Proceedings of the 2002 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation (New York, NY, USA, 2002), SCA ’02,

ACM, pp. 121–127. 15, 16, 38, 47

[SF16] Schönberger J. L., Frahm J.-M.: Structure-from-motion revisited.

In IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (2016). 20, 98

[SLWSS15] Sevilla-Lara L., Wulff J., Sunkavalli K., Shechtman E.:

Smooth loops from unconstrained video. In Proceedings of the 26th

Eurographics Symposium on Rendering (Aire-la-Ville, Switzerland,

141

REFERENCES

Switzerland, 2015), EGSR ’15, Eurographics Association, pp. 99–107.

4, 10, 11, 28, 48, 94

[SN13] Shah R., Narayanan P.: Interactive video manipulation using

object trajectories and scene backgrounds. Circuits and Systems

for Video Technology, IEEE Transactions on 23, 9 (Sept 2013),

1565–1576. 13

[SSS08] Snavely N., Seitz S. M., Szeliski R.: Modeling the world from

Internet photo collections. International Journal of Computer Vision

80, 2 (November 2008), 189–210. 20, 98

[SSSE00] Schödl A., Szeliski R., Salesin D. H., Essa I.: Video textures. In

Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques (New York, NY, USA, 2000), SIGGRAPH

’00, ACM Press/Addison-Wesley Publishing Co., pp. 489–498. 3, 4,

8, 10, 11, 12, 14, 15, 16, 22, 27, 28, 29, 31, 37, 38, 39, 40, 42, 49, 58,

59, 60, 61, 72, 84, 127

[ST06] Sand P., Teller S.: Particle video: Long-range motion estimation

using point trajectories. In 2006 IEEE Computer Society Conference

on Computer Vision and Pattern Recognition (CVPR’06) (2006),

vol. 2, pp. 2195–2202. 14

[Tar09] Tardif J.-P.: Non-iterative approach for fast and accurate vanishing

point detection. In Computer Vision, 2009 IEEE 12th International

Conference on (2009), IEEE, pp. 1250–1257. 98, 99, 100

[TDB15] Tatarchenko M., Dosovitskiy A., Brox T.: Single-view to multi-

view: Reconstructing unseen views with a convolutional network.

arXiv preprint arXiv:1511.06702 (2015). 18

[TPSK11] Tompkin J., Pece F., Subr K., Kautz J.: Towards moment images:

Automatic cinemagraphs. In Visual Media Production (CVMP),

2011 Conference for (November 2011), pp. 87–93. 10, 11, 12, 22, 29

142

REFERENCES

[vdHDT∗07] van den Hengel A., Dick A., Thormählen T., Ward B., Torr

P. H. S.: Videotrace: Rapid interactive scene modelling from video.

In ACM SIGGRAPH 2007 Papers (New York, NY, USA, 2007),

SIGGRAPH ’07, ACM. 19

[vGJMR12] von Gioi R. G., Jakubowicz J., Morel J.-M., Randall G.: Lsd:

a line segment detector. Image Processing On Line 2 (2012), 35–55.

99

[Wat89] Watkins C. J. C. H.: Learning from delayed rewards. PhD thesis,

King’s College, Cambridge, 1989. 50, 60

[WBSS04] Wang Z., Bovik A. C., Sheikh H. R., Simoncelli E. P.: Image

quality assessment: from error visibility to structural similarity.

Image Processing, IEEE Transactions on 13, 4 (2004), 600–612. 28

[WDC∗15] Wen L., Du D., Cai Z., Lei Z., Chang M., Qi H., Lim J., Yang M.,

Lyu S.: DETRAC: A new benchmark and protocol for multi-object

detection and tracking. arXiv CoRR abs/1511.04136 (2015). 104

[WLW∗17] Wang L., Lu Y., Wang H., Zheng Y., Ye H., Xue X.: Evolving

boxes for fast vehicle detection. In IEEE International Conference

on Multimedia and Expo (ICME) (2017), pp. 1135–1140. 104, 116,

118

[Wol90] Wolberg G.: Digital image warping, vol. 10662. IEEE computer

society press Los Alamitos, CA, 1990. 44

[WRB11] Weinland D., Ronfard R., Boyer E.: A survey of vision-based

methods for action representation, segmentation and recognition.

Computer vision and image understanding 115, 2 (2011), 224–241.

75

[WZJ16] Workman S., Zhai M., Jacobs N.: Horizon lines in the wild. In

British Machine Vision Conference (BMVC) (2016). 99, 122

143

REFERENCES

[XJXC12] Xiong C., Johnson D., Xu R., Corso J. J.: Random forests

for metric learning with implicit pairwise position dependence. In

Proceedings of the 18th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (New York, NY, USA, 2012),

KDD ’12, ACM, pp. 958–966. 33

[ZCC∗12] Zheng Y., Chen X., Cheng M.-M., Zhou K., Hu S.-M., Mitra N. J.:

Interactive images: Cuboid proxies for smart image manipulation.

ACM Transactions on Graphics 31, 4 (2012), 99:1–99:11. 17

[ZGL∗03] Zhu X., Ghahramani Z., Lafferty J., et al.: Semi-supervised

learning using gaussian fields and harmonic functions. In ICML

(2003), vol. 3, pp. 912–919. 36, 41, 42, 76, 77, 78

[ZTS∗16] Zhou T., Tulsiani S., Sun W., Malik J., Efros A. A.: View

synthesis by appearance flow. CoRR abs/1605.03557 (2016). 18

[ZWJ16] Zhai M., Workman S., Jacobs N.: Detecting vanishing points using

global image context in a non-manhattan world. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition

(2016), pp. 5657–5665. 99, 100

144

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Research questions
	1.2 Brief Overview
	1.3 Contributions of this thesis

	2 Literature Review
	2.1 Video Looping
	2.2 Video Editing and Authoring
	2.2.1 Video-based animation

	2.3 Multi-view from Single view
	2.3.1 Image-based Rendering

	2.4 Conclusions

	3 Problem Analysis
	3.1 Indefinite Video Playback
	3.1.1 Objective Distances
	3.1.2 Perceptual Distances
	3.1.3 Considerations

	3.2 Controlling Video Output
	3.2.1 Semantic Looping
	3.2.2 Speed Normalization
	3.2.3 Considerations

	3.3 Real-time Interaction
	3.3.1 Video Fields
	3.3.2 Considerations

	3.4 Foreground Segmentation
	3.4.1 Example-based Segmentation
	3.4.2 Intensity-based Segmentation
	3.4.3 Considerations

	3.5 Video Authoring
	3.5.1 Creating Video Textures for Video Games
	3.5.2 Considerations

	3.6 Multiview Interaction
	3.6.1 Generating 3D Visuals from 2D Video
	3.6.2 Considerations

	3.7 Conclusions

	4 Responsive Action-based Video Synthesis
	4.1 System Overview
	4.2 Actor Preparation
	4.2.1 Tracking
	4.2.2 Segmentation
	4.2.3 Action Definition

	4.3 Video Performance
	4.3.1 Frame Compatibility
	4.3.2 Action-based Video Synthesis

	4.4 Practicalities
	4.4.1 Real-time Performance
	4.4.2 Optimization Compression
	4.4.3 Post-Processing Rendering
	4.4.4 Precomputing Loops

	4.5 Creative Synthesis
	4.6 Results
	4.6.1 Counter Loop

	4.7 Empowerment Evaluation
	4.8 Discussions with Artists
	4.9 Conclusions

	5 Multi-view from single-view
	5.1 Camera Estimation
	5.1.1 User-in-the-loop estimation

	5.2 Well-grounded Tracking
	5.2.1 Multiple objects 2D Tracks
	5.2.2 Estimating and Tracking Cuboids on the Ground

	5.3 Applications
	5.3.1 From Tracked Cuboids to Textured Models
	5.3.2 Video-Based Rendering

	5.4 Results
	5.4.1 Tracking
	5.4.2 Interactive 3D Video Experiences

	5.5 Conclusions
	5.5.1 Limitations and future work

	6 Conclusion
	6.1 Possible Future Directions

	References

