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Abstract

As one of the fastest growing technologies in modern telecommunications, wire-

less networking has become a very important and indispensable part in our life. A

good understanding of the wireless channel and its key physical parameters are ex-

tremely useful when we want to apply them into practical applications. In wireless

communications, the wireless channel refers to the propagation of electromagnetic

radiation from a transmitter to a receiver. The estimation of multipath channel pa-

rameters, such as angle of depature (AoD), angle of arrival (AoA), and time differ-

ence of arrival (TDoA), is an active research problem and its typical applications

are radar, communication, vehicle navigation and localization in the indoor envi-

ronment where the GPS service is impractical.

However, the performance of the parameter estimation deteriorates signifi-

cantly in the presence of array imperfections, which include the mutual coupling,

antenna location error, phase uncertainty and so on. These array imperfections are

hardly to be calibrated completely via antenna design. In this thesis, we experimen-

tally evaluate an B matrix method to cope with these array imperfection, our results

shows a great improvement of AoA estimation results.
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Chapter 1

Introduction

As one of the fastest growing technologies in modern telecommunications, wireless

networking has become a very important and indispensable part in our life. Com-

pared with wired networks, wireless networks are easy to install and provide high

mobility for users, creating a wide range of applications for enterprise and home

networking. Meanwhile, new wireless standards have also brought many types of

wireless devices to market, for example, mobile terminals, laptops, and cellular

phones. All of these devices not only make our life more convenient but also trigger

a lot of practical wireless applications. Thus, a good understanding of the wireless

channel and its key physical parameters are extremely useful when we want to ap-

ply them into practical applications.

In wireless communications, the wireless channel refers to the propagation of

electromagnetic radiation from a transmitter to a receiver [1]. When radio signals

arrive at the receivers via a number of paths, we call this phenomenon multipath.

Multipath is caused by the reflection, scattering and diffraction from the objects

such as walls and people in the vicinity of the transmitter and receiver. A typi-

cal wireless multipath channel is illustrated in Figure 1.1. A transmitter with one

antenna sends a signal to a receiver with one antenna, and the transmitted signal

travels over a number of paths before arriving the receiver.

Depending on the transmission bandwidth of the channel as compared to the

coherence bandwidth, wireless channels can be categorized into two main groups:

narrowband and wideband. In narrowband channels, the channel frequency re-
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Figure 1.1: Basic concept of multipath wireless channel: signals arrive at the receiver
through different paths

sponse can be considered flat over the transmission bandwidth. Though there is no

perfect flat fading, the analysis can be greatly simplified if the flat fading can be

assumed. However, for wideband channels, this is not the case. A wideband system

has a frequency bandwidth that is significantly larger than the coherence bandwidth,

thus the frequency response is not flat across the transmission bandwidth. Normally,

a wideband system is needed when a high data rate is required.

Due to the existence of multipath, each signal copy will experience differences

in attenuation, delay, and phase shift as it travels from the transmitter to the re-

ceiver. Depending on the phase shift of each propagation path, signals arriving

at receiver antennas can be constructively or destructively combined. When con-

structively combined, the overall signal strength increases, while if destructively

combined, the signal strength is greatly reduced. Strong destructive interference is

frequently referred to as a deep fade: such a deep fade may result in temporary fail-

ure of communication due to a severe drop in the channel signal-to-noise ratio. In

wireless systems, multipath induced fading can cause errors and affect the quality

of communications. To reduce fading and increase data rates and channel capacity,

systems with multiple antennas are often used.

Multiple-input Multiple-output (MIMO): Multiple-input Multiple-output

(MIMO) significantly increases channel capacity by using multiple antennas at both
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of transmitter and receiver. It has become an important part of modern wireless

communication. The technique that MIMO relies on to improve the capacity is spa-

tial multiplexing: making use of spatial dimension to multiplex independent data

streams. The spatial dimension of a channel is the dimension of the received signal

space, also called degree of freedom.

The capacity of a MIMO system with i.i.d. Rayleigh fading channel H is given

by [1]:

C = E
[

logdet
(

Inr +
SNR

nt
HH∗

)]
bits/s/Hz (1.1)

Where nr is the number of receiver antennas, nt is the number of transmitter anten-

nas, SNR is the signal to noise ratio at the receiver antennas, and H∗ denotes the

conjugate transpose of the channel matrix H . The standard 2 *2 MIMO example is

shown in Fig. 2: Where the transmitter sends packets x1and x2 simultaneously to

11h

21h
12h

22h
Tx Rx

x1

x2

y1

y2

Figure 1.2: Standard 2*2 MIMO system

the receiver, and the receiver hears the following signal:

y1 = h11x1+h21x2

y2 = h12x1+h22x2

The channel matrix is H =

h11 h21

h12 h22

 . In the wireless MIMO multipath envior-

ment, each of the channel parameters in the channel matrix needs to be estimated.

Though it seems more difficult than the signal antenna system to acquire this infor-

mation, the multiple antennas actually provide us an useful foundation to use many

high resolution spectral analysis techniques.

The estimation of multipath channel parameters, such as angle of depature

(AoD), angle of arrival (AoA), and time difference of arrival (TDoA), is an ac-
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tive research problem and its typical applications are radar, communication, vehicle

navigation and localization in the indoor environment where the GPS service is im-

practical. The performance of the parameter estimation deteriorates significantly

in the presence of array imperfections, which include the mutual coupling, antenna

location error, phase uncertainty and so on. These array imperfections are hardly to

be calibrated completely via antenna design. Mutual coupling in particular can af-

fect the system in various ways. Mutual coupling is the interactions among antenna

elements of an multi element antenna array, one bad effect of the interactions is the

distortion of the beam patterns. [2] reports that the mutual coupling at the receive

array antennas causes additional correlation between spatial channels and reduces

the MIMO system capacity. Besides the mutual coupling, some other impairments

such as manufacturing inaccuracies, edge effects of the array and electrical toler-

ances can also influence the individual antenna elements, making them show up

non-uniform amplitude and phase characteristics of the radiation patterns.

In the next chapter, we present the literature review of the technologies that are

used to estimate wireless channel parameters and also discuss the different phys-

ical array structures and array imperfections. In Chapter 3 we present the system

experimental setup and steps used to measure array imperfection. Also a path can-

cellation technique is used to further improve the parameter estimation results. Then

in Chapter 4 we evaluate the B matrix method using our setup in real wireless chan-

nel environment and give some experimental results. The conclusion of this thesis

is presented in Chapter 5.



Chapter 2

Literature Review

In this chapter, we first survey the different technologies that are used to estimate

wireless channel parameters. These channel parameter estimation algorithms can

be divided into three basic categories: beamforming-based, subspace-based and

maximum likelihood, based on their fundamental principles. We then focus on the

discussion of different antenna array designs to see how the physical array structure

affects the performance of different estimation techniques.

2.1 Beamforming-based methods
Beamforming-based DoA estimation methods also can be called spatial filter based

estimator, because beamforming-based methods form a conventional beam, scan it

over the appropriate region and plot the magnitude of the output. The conventional

beamformer (BF) or the delay-and-sum beamformer is the simplest method for DoA

estimation, the typical estimator is referred to as Bartlett beamformer [3].

The minimum variance distortionless response (MVDR) estimator [4] belongs

to beamforming-based estimators, and is also known as the optimum beamformer.

It provides an estimation of the power density spectrum over the field of view of an

array. To suppress the interference, MVDR uses the adaptively linear filter weights

to make sure the signal of interest is undistorted. During the process of optimal

weight computation, the two important steps are the computation of inverse corre-

lation matrix and its multiplication with a steering vector. The array correlation ma-

trix is used to determine the spatial filter weights. Compared with the conventional
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beamformer, if there is a position error in the antenna, the performance degrades.

In [4], the authors study DoA estimation separately for finite sample effects and for

small random perturbations in both signal and noise model. The results showed that

under certain conditions reducing the dimension of the observation space does not

affect the performance of estimator. Also, when the number of snapshots is small,

it can also be advantageous.

Though beamforming-based methods are easy and simple to use, they have

many limitations. Their estimation accuracy and resolution rely on the physical

antenna size, because the antenna main-lobe width is proportional to the physical

antenna size.

2.2 Subspace-based methods
Subspace-based methods make use of phased antenna arrays to detect signals. A

phased array is an array of antennas in which the relative phases of the respective

signals at the antennas is fixed according to the array structure. Relying on the

phased antenna array receiver output, these subspace-based methods perform an

eigen-analysis of the cross spectral matrix of the output signals and partition the

space spanned by the eigenvectors into two subspaces: a signal subspace and a

noise subspace. The steering vectors corresponding to the signal sources in signal

subspace are orthogonal to the noise subspace.

2.2.1 MUSIC

Among the subspace-based AoA estimation methods, Multiple Signal Classifica-

tion [5] (MUSIC) is probably the most studied method. The MUSIC method was

first proposed by Schmidt in 1979, and is known as a super resolution method com-

pared with traditional beamforming technique whose resolution was limited on the

array structure. To understand the idea behind MUSIC, we briefly introduce the

data model that MUSIC uses.

Data model: Consider an array of M antenna elements receiving a set of wave-

forms emitted by D ( D <M) sources in the far field of the array. Here a narrow-band

propagation model is assumed, i.e., the signal envelopes do not change during the
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time it takes for the waveforms to travel from one antenna to another. Suppose that

the signals have a common frequency of f0; then, the wavelength λ = c/ f0 where c

is the speed of propagation. The received M-vector X is
X1

X2
...

XM

=
[
a(θ1) a(θ2) · · · a(θD)

]


S1

S2
...

SD

+


N1

N2
...

NM

 (2.1)

or

X = AS+N (2.2)

where X is the received signal at M antenna elements, {S1,S2, . . . ,SD} are the in-

cident signals and N represents noise, including the internal noise associated with

the radios and external noise coming from the environment. D is the number of

source signals, θi is the bearing of incident signal i. A is the array steering matrix,

which represents the relative phase difference between the first antenna (chosen as

the reference antenna) and other antennas, as a function of the bearings of incident

signals. For example, an uniform linear array (antenna spacing λ/2), the array

steering matrix is:

[
a(θ1) · · · a(θD)

]
=


1 · · · 1

exp(− jπ sinθ1) · · · exp(− jπ sinθD))
...

...
...

exp(− j(M−1)π sinθ1) · · · exp(− j(M−1)π sinθD)


(2.3)

The array covariance matrix R for the received signal X is a M × M matrix as

below:

Rxx = E [XX∗]

= E [(AS+N)(S∗A∗+N)]

= AE [SS∗]A∗+E [NN∗] .

(2.4)
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In order to further simplify Equation 2.4, MUSIC assumes:

• The incident signals are not correlated with the noise.

• The noise is zero mean and σ2 variance.

• The number of incident signals D is less than the number of antennas M.

Based on the above assumption, Equation 2.4 becomes:

Rxx = ARssA∗+σ
2I, (2.5)

Where Rss is the source signal covariance matrix. Eigenvalue decomposition of the

array covariance matrix Rxx results in M eigenvectors [e1,e2, . . . ,eM] and M corre-

sponding eigenvalues λ1,λ2, . . . ,λM. Sorting the M eigenvalues in non-decreasing

order, the first D eigenvalues correspond to the incident signals, and the M−D

eigenvalues correspond to noise. This separates [e1,e2, . . . ,eM] into two subspaces:

the signal subspace and the noise subspace. Since the signal subspace is spanned by

the array steering vector of the received signals, the signal subspace is orthogonal

to the noise subspace.

AoA spectrum generation: In [5], the MUSIC AoA spectrum is obtained by con-

verting the Euclidean distance between a steering vector and the signal subspace

into a function of θ :

P(θ) =
1

a∗(θ)ENE∗Na(θ)
(2.6)

The denominator of Equation 2.6 becomes zero when θ is the direction of incident

signal, and this will yield sharp peaks along the directions of the incident signals

when plot the spectrum across all the directions, through the searching for the sharp

peaks, AoA of the incident signals can be obtained.

Above is the standard form of the MUSIC method, known as spectral MU-

SIC. it is relatively simple and efficient, but also has limitations, such as a high

requirement for the signal-to-noise ratio (SNR), and degraded performance when

the incident signals are correlated. Based on this standard form, researchers have



2.2. Subspace-based methods 17

developed many variations to overcome these limitations. We will illustrate them in

the following.

2.2.1.1 Root-MUSIC

The standard MUSIC requires high SNR to achieve a good resolution, also it in-

volves a spectral search step which increases the computational complexity. To

solve these problems, Arthur [6] presents the Root-MUSIC algorithm which finds

the roots of the spectrum polynomial and converts the peaks in the spectrum space

to the roots of the polynomial lying close to the unit circle.

The steering vector of ULA (suppose the antenna spacing is d ) can be written

as:

a(θ) = e− j2πm(d/λ )sinθ ; m = 1, · · · ,M (2.7)

Substituting Equation 2.7 into Equation 2.6, the denominator becomes:

P−1(θ) =
M

∑
m=1

M

∑
n=1

e− j2πm(d/λ )sinθ Amne− j2πn(d/λ )sinθ

=
l=M−1

∑
l=−M+1

cle− j2πl(d/λ )sinθ

(2.8)

Where A = ENE∗N , Amn is the entry in the mth row and nth column of A, cl is the sum

of entries of A along the lth diagonal. Then the lth diagonal polynomial representa-

tion D(z) is:

D(z) =
l=M+1

∑
l=−M+1

clz−1 (2.9)

Now, the evaluation of the MUSIC spectrum P(θ) is equivalent to the evaluation of

the polynomial D(z) on the unit circle. The peaks of the spectrum correspond to the

roots of the polynomial D(z). Ideally, the roots of D(z) are located on the positions

that are determined by the directions of the incoming signals.

The above process works on a uniformly spaced linear antenna array (ULA).

Previous work [6] proved that in low SNR, Root-MUSIC has a higher resolution

performance than MUSIC using the example that for two closely-spaced emitters

when the SNR is low, the peaks merged together and only showed as one in the
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spectrum of MUSIC, thus cannot differentiate the locations of these two emitters.

While using the roots of D(z), the roots properly correspond to the correct locations

of the emitters. The main limitation of Root-MUSIC is that it only works with uni-

form linear antenna arrays. This has greatly restricted its usefulness.

To extend to arbitrary non uniform antenna arrays, researchers have designed

different methods based on the above process. In [7], the authors propose inter-

polated Root-MUSIC. The main idea is to create a virtual ULA for the non uni-

form antenna array using linear interpolation, then apply the standard Root-MUSIC

method to the output of a virtual ULA. The interpolator coefficients are selected to

minimize the interpolation error for signals coming from a given sectors. Through

performance evaluation of the interpolated array using both analysis and computer

simulation, they find that the interpolation process does not seem to degrade the

DoA estimation accuracy when the virtual array is sufficiently close to the real

array. However, although this interpolation technique makes it possible to apply

Root-MUSIC to arbitrary non-uniform linear antenna arrays, it will make the gen-

eral two-dimensional array lose the ability to estimate the DoAs in both the azimuth

and elevation directions.

A relevant problem of extension to arbitrary antenna arrays is what kind of ar-

ray geometries will be preferable when using interpolated Root-MUSIC to do DoA

estimates. Some papers [8, 9] study the performance of mapped Root-MUSIC. [8]

used the approaches called experimental design in statistics, they find that for some

realizable nonuniform linear array geometries, applying interpolated Root-MUSIC

to virtual ULA will provide better performance than using standard Root-MUSIC

to the real ULA with the same aperture length. This finding shows that the perfor-

mance of interpolated Root-MUSIC is determined by the real antenna array geome-

try rather than the by the virtual one. They use computer simulations to verify their

results.

In [10], the authors study the array mapping (interpolation) combined error,

termed as DoA estimate mean-square error (MSE) by taking both bias squared and

variance due to noise into account. Compared with [8, 9], it assumes that the inter-
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polation errors are negligible compared with the finite sample effects due to noise,

extending [11]. In [11], the authors design an algorithm for the mapping matrix is

derived by which the resulting MSE could be minimized. They make use of the

gradient of a Taylor expansion of the derivative of the DoA estimation cost func-

tion. This gradient is used as a tool to quantify, analyze and minimized the bias and

variance. They show that DoA bias was not reduced by minimizing the mapping

error, but reduced by rotating them into orthogonal to the above gradient. Rotating

the mapped noise subspace into an optimal orientation relative to the same gradient

can minimize the DoA variance. In [10], the authors derive the first-order expres-

sions for DoA bias, error variance and MSE, formulate a new design algorithm for

the mapping matrix to minimize the resulting DoA MSE. A number of simulations

are done to study the performance of their proposed MSE-minimizing design al-

gorithm, the results show the MSE minimizing design can be very efficient over a

wide range of SNR.

Other extensions of of Root-MUSIC to arbitrary arrays can been found in

[12, 13, 14, 15], termed the manifold separation technique. This technique is de-

veloped from wave field modeling formalism for array processing. The main idea

of this technique is to model the steering vector of antenna arrays with arbitrary

2-D or 3-D geometry to be the product of a sampling matrix and a Vandermonde

structured coefficient vector. The sampling matrix is only dependent on the antenna

array, and the Vandermonde structured coefficient vector is only dependent on the

wavefield. Compared with interpolation techniques, MST doesn’t need to divide the

array into different angular sectors, and has a significantly smaller fitting error over

the whole 3600 area. In addition, MST processes the data directly in element space,

so can avoid any transformation or interpolation error. It computes the sampling ma-

trix from array calibration data, which contains information on array imperfections,

such as mutual coupling and antenna manufacturing error. However, the calibration

data can easily be effected by measurement noise, and so in order to reduce the

impact of the noise on the MST, they use effective aperture distribution function,

which have been presented in previous papers [16, 17]. The error due to the cali-
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bration noise in the modeling of the array steering vector is analyzed, and this error

becomes an error floor in the DoA estimates, and dominates over the other random

errors. The authors only consider azimuthal angular estimation with the assumption

that the noncoherent sources are located in the same elevation angle. In order to

verify the proposed error analysis, they simulate these algorithm. The simulation

results show that it is possible to predict the performance that can be achieved by

subspace-based methods using MST with noisy calibration data.

In [18], the authors present Fourier-domain (FD) Root-MUSIC, an approach

that is applicable to arrays with arbitrary geometry. Fourier-domain (FD) Root-

MUSIC is based on the fact that the null-spectrum MUSIC function is periodic

in angle, and reformulates the DoA estimation using the truncated Fourier series

expansion of this periodic function. Because the truncation step can determine

the order of FD Root-MUSIC polynomial, the resulting DoA performance is re-

lated to truncation errors. High orders of the FD Root-MUSIC polynomial can

have the smaller estimation error, but their computation cost may be substantial.

Applying the inverse Fourier transform to the FD Root-MUSIC polynomial could

avoid this potentially costly computation step. They also propose the further refine-

ment of FD Root-MUSIC using a weighted least-squares approximation of MUSIC

null-spectrum to compute the values of Fourier series coefficients. Through sim-

ulations with different array configurations, it shows the demonstration that these

proposed FD Root-MUSIC algorithms offer attractive alternatives to the above dis-

cussed DoA estimation methods applicable to arrays with arbitrary geometries.

2.2.1.2 Spatially-smoothed MUSIC

When the sources are highly correlated due to multipath propagation in practice,

MUSIC-based methods can’t correctly find the DoA of the each source. The rea-

son why MUSIC-based methods fail when the sources are highly correlated is that

the signal covariance matrix becomes singular, and eigen-structure decomposition

will fail. Motivated by this problem, researchers introduced the spatial smoothing

[19] technique into MUSIC, called Spatially-smoothed MUSIC. This technique is

discussed further in [20, 21]. Spatial smoothing is a preprocessing technique which
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makes sure the signal covariance matrix will still be nonsingular when the sources

are coherent.

The spatial smoothing technique discussed in [19, 20, 21] is designed for

an uniformly spaced linear antenna array. Take a M uniformly spaced linear ar-

ray for example, the M sensors is divided into overlapping subarrays of size M0,

the first subarray has sensors {1, . . . ,M0}, and the second subarray has sensors

{2, . . . ,M0 + 1}. Denote the kth subarray received signal vector as Xk(t). Then

according to Equation 2.2, we can write:

Xk(t) = ADkS(t)+Nk(t) (2.10)

Where Dk represents the N x N diagonal matrix

Dk = diag{e jπd(k−1)sinθ1, . . . ,e jπd(k−1)sinθN} (2.11)

Then, the coviance matrix of the kth subarray is

R f
k = ADkRsD∗kA∗+E [NN∗] (2.12)

The spatially-smoothed covariance matrix is defined as the average of the subarray

covariances

R f =
1
K

K

∑
k=1

R f
k (2.13)

where K = M−M0 +1 is the number of subarrays.

It has been proved [19] that if the number of subarrays is no less than the num-

ber of signals (K ≥ N), then the spatially-smoothed covariance matrix R will be

nonsingular even when there are some sources are highly coherent or correlated.

Since the spatially-smoothed covariance matrix R now has the same form as the

covariance matrix before preprocessing, the MUSIC-type methods can be success-

fully applied regardless of the coherence of the sources. The above process is called

forward spatial smoothing. However, as discussed [19], there is a trade off between

this robustness of spatial smoothed MUSIC and the effective array aperture. With
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M sensors array, forward spatially smoothed MUSIC can only resolve M/2 signals.

In [20], the authors propose an extension of spatial smoothing, called for-

ward/backward spatial smoothing. With forward/backward spatial smoothing, the

number of resolved coherent signal can be increased to 2M/3 with M element an-

tenna arrays. Besides the forward subarrays, it also makes use of another additional

K complex conjugated backward subarrays from the same set of arrays to get supe-

rior performance. By grouping the sensors at {M,M− 1, . . . ,M−M0 + 1} to form

the first backward subarray, and the second one is {M−1,M−2, . . . ,M−M0}, etc.

Denote X∗k(t) as the complex conjugate of the received signal of the kth backward

subarray for k = 1,2, . . . ,K. Therefore

Xb
k(t) = [X∗M−k+1,X

∗
M−k, . . . ,X

∗
K−k+1]

T

= ADk(DMS(t))∗+Nk(t).
(2.14)

The covariance matrix of the kth backward subarray is given by

Rb
k = E[Xb

k(t)(X
b
k(t))

∗]

= ADkRsD∗kA∗+E [NN∗] .
(2.15)

Where Rs = D−MR∗s (D
−M)∗.

The spatially-smoothed backward subarray covariance matrix Rb is defined as the

mean of these backward subarray covariance matrices:

Rb =
1
K

K

∑
k=1

Rb
k (2.16)

Then the forward/backward smoothed covariance matrix is defined as the average

of R f and Rb:

R =
1
2
(R f +Rb) (2.17)

Because this smoothed covariance matrix R has the exact same form as the covari-

ance matrix for standard MUSIC, it can use the subspace-based techniques irrespec-

tive of the coherence of the signals. And the authors also give the proof that with at



2.2. Subspace-based methods 23

least 3K/2 sensors, the directions of arrival of K signal sources can be successfully

estimated.

In [22], the authors examine the spatial smoothing technique in detail and re-

veal that the spatial smoothing described above is actually not limited to a uniformly

spaced linear array. It can also be applied on arrays which can be divided into sub-

arrays which all have the same structure, but are only shifted with respect to each

other, such as a square array. But this is also a strict requirement for the geometries

of the arrays. In order to generalize the spatial smoothing technique to arbitrary

antenna arrays, [22] proposes to use the output virtual array which is created us-

ing linear interpolation. Because one can choose the number and configuration of

the interpolated arrays, it will have many possible ways to arrange the subarrays

to do spatial smoothing. By choosing the suitable number and configuration, the

performance can be improved compared with other choices of numbers and con-

figurations. From their analysis, single linear uniformly spaced interpolated array

gives the best performance among all three ways of antenna configuration: (a) In-

terpolated arrays as the shifted versions of real array. (b) Multiple linear uniformly

spaced interpolated arrays. (c) Single linear uniformly spaced interpolated array.

This interpolation spatial smoothing MUSIC can extend the use of MUSIC-type

methods to arbitrary arrays, but its efficiency is not statistical, its performance can

be worse in some cases like: the sources are closely spaced. One needs to care-

fully choose the degree of smoothing, as spatial smoothing inevitably decreases the

number of signals it can detect.

2.2.1.3 Beamspace MUSIC

When the array snapshots are passed through a beamforming preprocessor be-

fore using MUSIC, the processing technique is called as beamspace MUSIC [23].

Beamspace MUSIC has several advantages compared with the standard MUSIC,

such as lower computation, more robust to the system errors and improved resolu-

tion. The advantages come from the fact that a number of beams are formed by a

beam former, and the number of beams is less than the number of sensors in the

array, thus the computation cost is reduced, with less data to be processed.
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The signal after the beamspace processor becomes

y(t) = W∗x(t) (2.18)

Where W is the beamforming matrix. This beamforming matrix consists of beam-

forming vectors, which form beams toward the expected directions. The beamspace

covariance matrix is:

Ry = E[y(t)y∗(t)]

= W∗E[x(t)x∗(t)]W
(2.19)

Then beamspace MUSIC spatial spectrum can be written as

PBSMUSIC =
a∗(θ)WW∗a∗(θ)

a∗(θ)WTNT∗NW∗a∗(θ)
(2.20)

Where TN is the beamspace noise subspace eigenvector matrix.

In [24], the authors use Root Mean Square Error (RMSE) to evaluate the per-

formance of beamspace MUSIC with the inter-beam angle and source angle.

RMSE =

√
1
N

N

∑
i=1

(θi−θ)2 (2.21)

Where θi represents the estimated result at i-th trial. They did the evaluation in two

cases, one case was that two sources were inside the beamforming angle, the other

one was one source was outside the beamforming angle. The results showed that

the RMSE in case 1 is better than case 2.

In [25], the authors study the resolution threshold of beamspace MUSIC for

two closely spaced emitters in different scenarios. It is an extension work of [26], It

extends the threshold expression in [26] to a more general class of problems, such as

arbitrary emitter power level and arbitrary array geometry, then uses the generalized

expression to assess the performance of beamspace MUSIC. They demonstrate via

analysis that a suitable beamforming preprocessor can significantly reduce the res-

olution threshold of MUSIC for different two emitter scenarios. Specifically, they
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have the conclusions: 1) Using appropriate beamforming preprocessor, the resolu-

tion threshold can be reduced by a factor of (L− 2), where L denotes the number

of sensors. 2) There is no minimum threshold for resolving two closely spaced

emitter using the conventional MinNorm algorithm. 3) The beamspace MUSIC and

beamspace MinNorm algorithm have the same performance when used with a L= 3

beamformer for two closely spaced emitters.

2.2.1.4 Frequency-domain MUSIC

The above descriptions of MUSIC operate in the time-domain, which provides a

good estimate of DoA. Besides the research of super-resolution techniques in time-

domain, researchers have also attempted to use super-resolution techniques in the

frequency-domain to estimate other parameters [27, 28, 29].

In [29], the authors propose to apply the super-resolution frequency-domain

MUSIC to perform Time-of-Arrival (ToA) estimation for indoor localization. The

indoor radio propagation channel is characterized by multiple paths and modeled as

a complex low-pass impulse response given by

h(t) =
D

∑
k=1

αkδ (t− τk), (2.22)

where D is the number of incident signals, αk and τk are the complex attenuation

and propagation delay of the kth path. Taking the Fourier transform of Equation

2.22, the channel response in frequency domain can be expressed as

H( f ) =
D

∑
k=1

αke− j2π f τk . (2.23)

αk and τk can be treated as time-invariant in one time snapshot of the measurement.

In practice, a multicarrier modulation technique, such as OFDM (orthogonal

frequency-division multiplexing), is used to obtain the discrete samples of the chan-

nel in the frequency domain. Then equation 2.23 becomes:

H( fl) =
D

∑
k=1

αke− j2π( f0+l∆ f )τk , (2.24)
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where l = 0,1, . . . ,L− 1, L is the total number of subcarriers, fl is the carrier fre-

quency, and ∆ f is the size of the subcarrier bandwidth. Since noise is present, the

measured channel response in frequency domain is given by

H( fl) = H( fl)+wl =
D

∑
k=1

αke− j2π( f0+l∆ f )τk +wl, (2.25)

wl denotes the measured additive white noise. Writing equation 2.25 in vector form,

the channel response becomes

H = H+W = Vα +W. (2.26)

Where V = [v(τ1),v(τ2), . . . ,v(τD)]
T , v(τk) = [1,e− j2π∆ f τk , . . . ,e− j2π(L−1)∆ f τk ]T ,

and the superscipt T is the matrix transpose operation.

To get the phase changes between different subcarriers, MUSIC needs to do

the eigendecomposition of the subcarrier correlation matrix which is computed as

RHH = E{H( fl)H∗( fl)}. (2.27)

The eigenvectors of RHH after eigendecomposition are E = [e1,e2, . . . ,eL]: E is di-

vided into a signal subspace Es and a noise subspace En. The time steering vector

v(τk) lies in the signal subspace and orthogonal to the noise subspace along the di-

rections of the time of arrival of multipath signals. Then the MUSIC ToA spectrum

is

P(τ) =
1

α(τ)∗EnE∗nα(τ)
, (2.28)

which measures the distance between the time steering vector and the noise sub-

space.

There are some limitations with this super-resolution MUSIC ToA estimation

technique. Although we can decrease τ by choosing a smaller sampling period to

increase the resolution of MUSIC, differentiating different paths, resolution is also

restricted by the frequency bandwidth of the received transmission and background

noise. To overcome this limitation, [30] proposes to combine multiple frequency-
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agile transmissions to create a virtual, wider bandwidth transmission, while keep

the sampling rate unchanged. Because the resolution of MUSIC ToA estimation is

proportional to the bandwidth, the time resolution should scale with the increased

bandwidth. Their experimental results show that the resolution of ToA estimation

improves significantly.

2.2.2 ESPRIT

ESPRIT [31] stands for Estimation of Signal Parameter via Rotational Invari-

ance Technique, it was proposed in 1985 by Roy [32], compared with MUSIC, it

is more robust in terms of array imperfections and has less computational complex-

ity since it does not require the extensive search throughout all steering vectors. It

requires the sensor array posses displacement invariance, specifically, the sensors

in matched pairs need to have identical displacement vectors. ESPRIT not only

can estimate the signal parameters efficiently, but also can obtain the optimal signal

copy of vectors for reconstructing the signals.

Like MUISC, ESPRIT also assumes that the signals are narrow-band signals,

whose signal bandwidth is small compared with the inverse of the transit time of

a wavefront across the array, and the array response doesn’t depend on frequency

over the signal bandwidth. For simplicity, single dimensional parameter space is

consider and the sources are far-field. ESPRIT has a constraint on the structure of

the sensor array, a planar array of arbitrary geometry was used in [31] to describe

this constraint. The elements in each group have identical sensitivity patterns and

are separated by a known constant displacement. There are no restrictions on the

sensor patterns and positions, each group can have different sensor patterns and its

position can be arbitrary.

Data model: Assume D far-field narrow-band sources, an array with M

(D < M) sensors. The array is composed of two subarrays, ZX and ZY , which are

identical expect they are physically displaced from each other by a known displace-

ment vector ∆. The signals received at the i-th group are expressed as

xi(t) =
d

∑
k=1

sk(t)ai(θk)+nxi(t) (2.29)
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yi(t) =
d

∑
k=1

sk(t)e jω0∆sin(θk)/cai(θk)+nyi(t) (2.30)

Where θk is the DoA of k-th source relative to the direction of the displacement

vector, which is a reference direction.

The receive data vector can be written as following if combing the outputs of

each of the sensors in two subarrays ZX and ZY

x(t) = As(t)+nx(t) (2.31)

y(t) = Aφs(t)+ny(t) (2.32)

Where the vector s(t) is the signals of the reference sensor of subarray ZX , the

matrix φ is a diagonal matrix of the phase delays between the group sensor for the

D signals, and is expressed as

φ = diag{e jγ1, . . . ,e jγD} (2.33)

Where γk = ω0∆sinθk/c. Because the signals are assumed to be narrow-band. φ is

a unitary matrix, which relates the measurements from subarray ZX to those from

ZY .

The total array output Z(t) is obtained by combing the output of the two subar-

rays ZX and ZY

Z(t) =

x(t)

y(t)

= As(t)+nz(t) (2.34)

A =

 A

Aφ

 ,nz(t) =

nx(t)

ny(t)

 (2.35)

The structure of A makes it possible to obtain the diagonal elements of φ with

unknown A. The covariance matrix for Z(t)

Rz = E[Z(t)Z∗(t)] = ARsA
∗
+σ

2
0 I (2.36)
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Since there are D sources, the D eigenvectors of Rz corresponding to the D largest

eigenvalues form the signal subspace Es, the remaining 2M−D eigenvectors form

the noise subspace En. Since the span of Es is the same as the span of A, there exists

a unique nonsingular matrix T such that

Es = AT (2.37)

Also, because of the invariance structure of the array, the signal subspace Es can be

partitioned into

Es =

EX

EY

=

 AT

AφT

 (2.38)

EX and EY share the same column space since they are both linear combination of

A. Define an matrix, which has rank D

Exy = [Ux Uy] (2.39)

This implies there exists a unique rank D matrix F such that

ExyF = 0↔ ExFx +EyFy = 0

= ATFx +AφTFy = 0
(2.40)

Based on Equation 2.40,

φ = TFxF−1
x T−1. (2.41)

Define ψ = FxF−1
x , then

φ = TψT−1 (2.42)

Because in practice the measurement is noisy and also includes calibration

error, [31] uses a total least-squares (TLS) criterion to estimate the subspace rotation

operator ψ . The key relationship in ESPRIT is that: the eigenvalues of ψ are equal

to the diagonal elements of φ , and the columns of T are the eigenvectors of ψ . The

DoA estimation

θk = sin−1(c×arg(φk)/(w0∆)) (2.43)
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Where φk is an eigenvalue of ψ .

The above process is an introduction of TLS ESPRIT algorithm in [31]. Com-

pared with [33, 34], [31] uses TLS instead of the standard least-squares (LS) cri-

terion, LS estimators has a restriction on the number of dimensional subspace and

potentially has difficulties to extend to generalized eigenproblem. Also, the LS esti-

mators are biased, while TLS estimators are relatively unbiased. However, in some

cases when the SNR is sufficiently large, the difference between LS and TLS pa-

rameter estimates becomes small. In [31], the authors perform some simulations to

compare the performance of ESPRIT with MUSIC. The results show that a bias was

presented in the conventional MUSIC, in contrast, ESPRIT estimates are unbiased,

but with larger estimate variances because of less information about the array ge-

ometry. The estimate variance of ESPRIT decreases when the subarray separation

increases and approach as that of MUSIC.

In the original ESPRIT formulation, only one invariance in the array asso-

ciated with each dimension of the parameter space was assumed, while in many

applications, such as a uniform linear array, the array normally has multiple in-

variance, so which invariance to choose becomes an important question. In [35],

the authors present a multiple invariance (MI) ESPRIT algorithm, give a subspace-

fitting formulation of the ESPRIT to extend the original ESPRIT to arrays with

multiple invariance. With an initial estimate from the standard single invariance

ESPRIT, a Gauss-Newton search technique can converge quickly to the desired so-

lution, their results show that normally only one or two iterations is sufficiently to

give a solution that is close to the global minimum. They also derive the asymptotic

distribution of the estimation error for the MI ESPRIT algorithm and proposed an

optimal weighting which can have a asymptotically efficient parameter estimates

under certain conditions. Through the simulation, they prove that MI ESPRIT has

performance superior to MUSIC, Root-MUSIC and standard ESPRIT, especially in

the cases when the sources are highly correlated. MI ESPRIT can also be used in

multidimensional parameter spaces problems, such as: the problems with the inter-

est of estimating the azimuth and elevation angles.
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In [36], the authors study the problem of extending ESPRIT to sparse array

such as nonuniform linear arrays (NLA) which also have multiple invariance. They

propose to use a coupled Canonical Polyadic Decomposition (CPD) [37] to reduce

the multi-source NLA problems into decoupled single-source NLA problems. By

considering the given NLA as a set of superimposed ULA, they can adapt some of

the ULA results to NLA. For problems of DoA estimation based on sparse arrays

embedded with multiple baselines, the coupled CPD model provided an algebraic

framework for sparse array processing. Through their numerical experiments, the

results indicate that a good trade off between performance, identifiability, complex-

ity can be obtained by using the multiresolution property of sparse arrays.

2.2.3 JADE

MUSIC and ESPRIT both require that the number of array elements exceeds the

number of multipath components. When the number of mulitpath components is

larger than the number of array elements, they can not properly estimate the pa-

rameters. Also, sometimes, in a multipath scenario, source localization requires not

only the DoA, but also the relative delays of each multipath. To solve these prob-

lem, Joint Angle and Delay Estimation (JADE) [38] exploits the stationarity of the

angles and delays, as well as the independence of fading over many time-slots in a

time slotted mobile system, by combining multiple estimates of the channel impulse

response over many time slots.

Data model: Just as [38], we start with a single source in a multipath sce-

nario. Let si denotes the symbols emitted by the sources with symbol period T, the

received baseband data at the i-th element of an array with m sensors.

xi(t) =
L

∑
l=1

αi(θl)βl(t)r(t− τl)+ni(t) (2.44)

Where L is the number of multipaths, αi(θl) is the response of the ith sensor to the

lth path with the angle θl , βl(t) is the fading coefficient of lth path, τl is the lth path

delay, r(t) = ∑i big(t− iT ), g(t) is the modulated waveform. The received signal
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vector x(t) can be written as

x(t) =
L

∑
l=1

α(θl)βl(t)r(t− τl)+n(t) (2.45)

Where α(θl) = [α1(θl), . . . ,αm(θl)]
T . If sample x(t) at the symbol rate, we obtain

x(k) = Hs(k)+n(k) (2.46)

H is the channel matrix including the effects of the array response: delay, symbol

waveform and the path fading, it has the form

H = [α(θ1), . . . ,α(θl)]


β1 0

. . .

0 βl




g(τ1)
...

g(τl)

=: A(θ)BG(τ)T (2.47)

Where g(τi) is a row vector of samples of g(t− τi). Here, the number of multipaths

L is assumed to be known, also complex fading is assumed to be constant within a

data burst, this is the channel model that JADE uses.

Define h=vec(H) be a vector obtained by taking the transpose of each row of

the matrix H and stacking it below the transpose of the previous row, also let u(θ ,τ)

be the space-time vector for a single path of unit amplitude arriving at angle θ with

delay τ , given by

u(θ ,τ) =: α(θ)⊗g(τi) (2.48)

Where⊗ denotes the Kronecker product. If apply the vec(·) operation to 2.47 yields

h = (A(θ)◦G(τ))β =: U(θ ,τ)β (2.49)

Where ◦ represents the Khatri-Rao product. U(θ ,τ) is the space-time manifold

matrix and is parametrized by the AoAs and the path delays. In [38], the channel H

is assumed to be constant over each time slot, but varies from one time slot to the

next. The complex fading βl changes across different time slots, but the AoAs θl
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and delays τl do not change significantly, so the space-time manifold matrix U(θ ,τ)

stays constant over a few slots. The first step of JADE is to estimate the channel

response, which can be achieved using training bits and the least-squares method.

Let Ĥ be the estimates of the channel response H, then

Ĥ = H+V (2.50)

Where V is the estimation noise matrix. And obtain

Ĥ = U(θ ,τ)β +V (2.51)

The second step of JADE is estimating the 2L parameters θl and τl . Given the

matrix Ĥ and the known structure of the space-time matrix U(θ ,τ), then seek the

desired parameters. There are many methods that can be used in the second step,

including Maximum Likelihood and Weighted Subspace Fitting. The reason why

JADE can work on the case that the number of antenna is less than the number of

the multipath given by [38] is: That U(θ ,τ) is a tall matrix is required. Their simu-

lations results using JADE-MUSIC and JADE-WSF demonstrate that JADE-based

algorithm work successfully in the case that the number of antenna is less than the

number of the multipaths.

In [39], the authors propose JADE using shift-invariance techniques. Their

algorithm is based on several conditions: 1) The multipaths can be modeled by a

discrete number of rays, each parameterized by a delay, complex amplitude and an-

gle. 2) The channel estimate is available. 3) There are no appreciable Doppler shifts

and residual carriers of sources. 4) The receiving array is a narrowband phased ar-

ray, consisting of at least two antennas spaced no more than half wavelength. 5)

The received data is sampled at no less than Nyquist rate. There are mainly two

steps to estimate the angle and delays, the first step is estimating the channel im-

pulse response from the antenna array, the second step is estimating the angle and

delay information using the result of the first step. Shift-invariance techniques were

used in the second step, it is much like the 2D ESPRIT algorithm.When they pair
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the estimate angle with its corresponding delay, they base on the fact that two ma-

trix of angle and delay have the same eigenvectors, because they share the common

factor. The authors find that if two rays have the same delays, then the common fac-

tor will become deficient, which leading to the wrong estimation of angles, regards

to this problem, they propose to integrate “spatial smoothing” technique with their

approach and another method they use is forward-backward averaging, these two

approaches are used to extend the data in order to be able to estimate the angles of

arrival correctly.

2.3 Maximum-likelihood based Methods

Maximum-likelihood based Methods (MLM) approach the problem as a search for

optimal parameters. They estimate DoAs by maximizing a log-likelihood function

[40], which is a joint probability density function of the sampled data and is a func-

tion of the desired variables, such as DoAs. The maximization of log-likelihood

function is a nonlinear optimization problem and requires iterative schemes because

it lacks a closed-form solution. The MLM has better performance especially when

the SNR is low, the number of samples is small, or the sources are correlated.

In 1968, Kasienski and MsGhee [41] first applied the Maximum-likelihood

method to estimate the directions of two plane waves. The results presented show

that it is possible to estimate the parameters of targets spaced as closely as a quarter

of 3-dB beamwidth, and the accuracy of the estimates depends on the SNR and error

level. In [42], Jaffe and Ziskind and Wax propose ML technique for DoA estimation

of multiple signals by utilizing the projection matrix to reduce the computational

cost. Their simulation results demonstrate that ML has better performance than

eigenvector decomposition technique and the Minimum-Energy technique.

Since the maximization of the log-likelihood function requires iterative

schemes, followed the previous work on MLM method, researchers present many

iterative schemes to make the MLM computationally efficient. These include

the well-known gradient descent algorithm [43], alternating projection method

[44], the Expectation-Maximization (EM)[40] and Space-Alternating Generalized
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Expectation-Maximization (SAGE) [45].

2.3.1 Gradient Descent Method

In [43], the authors extend ML processing to the general case of multiple sources,

and derive the Cramer-Rao lower bound on the error covariance matrix. The

Cramer-Rao lower bound (CRLB) is an important tool in evaluating the perfor-

mance of an estimator. The iterative algorithms they propose are gradient descent

algorithm which uses the estimated gradient of the function at each iteration as well

as the standard Newton-Raphson method. The ML processor consists of beam-

formers, each focused to a different source, then uses a variable matrix filter which

is controlled by the assumed location of the sources. Their results show that when

the sources are uncorrelated and the SNR is very low, the processor is simplified

greatly and could be seen as the aggregate of ML processors for a single source

where each processor is matched to a different source.

2.3.2 Alternating Projection Method (AP)

To reduce the complexity, some works [46, 47] decompose the multidimensional

search problem into a sequence of smaller dimensional search problems, and alter-

nating projection (AP) algorithm is one of them.

The AP algorithm is based on an Alternating Maximization (AM) which is a

conceptually simple technique for multidimensional maximization. At every itera-

tion, the maximization of AM is performed on a single parameter while all the other

parameters are held fixed. Since there exist matrix inversions and multiplications at

every iteration, the AM algorithm still has a large computation load. Therefore, AP

introduces a projection-matrix update formula into AM to reduce the matrix com-

putation burden. However, since in every iteration, it still needs to compute two

Hermitian forms per search point, and normally the number of search points per

iteration is far larger when compared to the number of sensor, the complexity per

iteration in the AP algorithm is still considerable.

To further reduce the complexity per iteration in the AP algorithm, in [44], the

authors present two simple computational algorithms, one is recursive projection
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(RP) algorithm, the other is a maximum eigenvector approximation (MEA) algo-

rithm. RP algorithm utilizes the projection matrix update formula to transform the

computation of two Hermitian forms into that of only four inner products. MEA al-

gorithm approximates the Hermitian maximization problem to the problem of max-

imizing the modulus of the projection onto the maximum eigenvector subspace,

because of this approximation, the computation of two Heritian forms reduces to

only three inner products of vectors, and this doesn’t come with any recognizable

loss in the performance of estimation and convergence.

2.3.3 Expectation-Maximization (EM)

EM is an iterative approach to Maximum Likelihood estimation. Each iteration is

composed of two steps: an Expectation (E) step and a Maximization (M) step. The

aim is to maximize the log likelihood in terms of unknown channel parameters of

the channel and the receive data. In [48], Feder and Weinstein first introduce the

use of EM to find the DoA. The idea is to decompose the observe data into its

signal components and then to separately estimate the parameters of each signal

component. Below is the an introduction of EM algorithm:

Let Y denote the observed (incomplete) data with the probability density fY (y;θ),

and X denote the ”complete” data, related to Y by

H(X) = Y (2.52)

Where H(·) is a nonivertible transformation.

fX(x;θ) = fX/Y=y(y;θ) · fY (y;θ) (2.53)

Where fX(x;θ) is the probability density of X and fX/Y=y(y;θ) is the conditional

probability density of X given Y = y, the logarithm of 2.53 is

log fY (y;θ) = log fX(x;θ)− log fX/Y=y(y;θ) (2.54)
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Then taking the conditional expectation given Y = y at parameter θ
′

log fY (y;θ) = E{log fX(x;θ)/Y = y;θ
′
}−E{log fX/Y=y(y;θ)/Y = y;θ

′
} (2.55)

For simplicity, define

L(θ) = log fY (y;θ) (2.56)

U(θ ,θ
′
) = E{log fX(x;θ)/Y = y;θ

′
} (2.57)

and

V(θ ,θ
′
) = E{log fX/Y=y(y;θ)/Y = y;θ

′
} (2.58)

Then Eq. 2.55 becomes

L(θ) = U(θ ,θ
′
)−V(θ ,θ

′
) (2.59)

Using Jensen’s inequality

V(θ ,θ
′
)≤ V(θ

′
,θ
′
) (2.60)

if

U(θ ,θ
′
)> U(θ

′
,θ
′
) (2.61)

Then

L(θ))> L(θ
′
) (2.62)

2.62 forms the basis for the EM algorithm. The EM algorithm starts with an arbi-

trary initial guess θ
(0), and denotes θ

(n) as the estimate of θ after n iterations. Then

the next iteration cycle can be described as follows:

E step: compute

U(θ ,θ
(n)
) (2.63)

M step: compute

max
θ

U(θ ,θ
(n)
)→ θ

(n+1) (2.64)
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If U(θ ,θ
′
) is continuous in both θ and θ

′
, the iteration converges to a stationary

point of the log-likelihood function. The convergence point may not be the global

maximum of the likelihood function, hence, several starting points may be needed.

The convergence of the algorithm increases exponentially. There are several un-

certainties of EM algorithm, such as, multiple choices of transformation H(·) and

many possible “complete” data X. The choice of X will critically affect the com-

plexity and the rate of convergence.

Based on EM algorithm, in [48], the authors show that for superimposed sig-

nals, there is a natural choice of X, and it decouples the full multidimensional search

associated with the direct ML approach into searches in smaller dimensional pa-

rameter subspace, significantly reduces the computation cost that is involved. Their

results of multipath time-delay and multiple source location estimation demonstrate

the performance and the convergence to the exact ML estimate of all the unknown

parameters simultaneously.

In [40], the authors propose a generalized expectation-maximization (EM) al-

gorithm for the maximum-likelihood estimation of DoAs of multiple narrow-band

signals in noise. Two signal models (deterministic and stochastic) are considered.

Their work was an extension work of [48], but differs in the following ways: 1)

They focus on narrow-band case and assume the signal waveforms are unknown,

thus need to jointly estimate the directions and the signals. 2) They generalize the

EM algorithm for solution of the deterministic signal model. 3) They show through

simulation that convergence is achievable when the initial angle estimate are within

about one bandwidth of the global maximum. Their results also demonstrate EM

algorithm is not sensitive to initial conditions on the signal powers, but the initial

angle values are the crucial parameters. In addition, they incorporate prior knowl-

edge of the signal structure, which has a significant effect on the angle estimator

performance under the deterministic signal model.
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2.3.4 Space-Alternating Generalized Expectation-Maximization

(SAGE)

Classical EM maximizes the conditional log likelihood of the unobservable com-

plete data space, rather than for the measured or incomplete data, it updates all

the parameters at the same time, causing slow convergence and difficult maximiza-

tion steps. To improve these drawbacks of EM, the authors [45] propose SAGE. The

SAGE algorithm updates parameters sequentially by replacing the high dimensional

optimization process necessary to compute the joint maximum likelihood estimate

of the parameters, by several separate, low dimensional maximization procedures,

which are performed sequentially. SAGE is suited to problems where one can se-

quentially update small groups of the elements of the parameter vector, instead of

using one large complete-data space. Each group of parameters is associated with

a hidden data space which shows as a complete-data space if all the other parame-

ters are known. However, compared with EM, SAGE is less amenable to a parallel

implementation because it is coordinate wise method. They also demonstrated that

SAGE algorithm improved the asymptotic convergence rate, although the actual

convergence rate depended on how close the initial estimate is to a fixed-point.

In [49], the authors use a linear array to evaluate SAGE through extensive

Monte-Carlo simulations and in real propagation environment. Their simulation

results show that SAGE can rapidly converges in synthetic discrete propagation en-

vironment given that the waves are well resolvable with respect to their delays and

incidence directions. If they are not well resolvable, the convergence is slower. In a

real environment, the experiment results also demonstrate the feasibility of SAGE.

2.4 Antenna array structure
When we review the methods to estimate the multipath parameters, we cannot ig-

nore the effects of the arrays with different geometries. Antenna arrays are becom-

ing increasingly important in wireless communication. A signal wavefront which

propagates across the array of antennas is picked up by all antennas. Thus, we have

many outputs which constitute an array signal. Sometimes, all components of the
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array signals are simply delayed replicas of a signal waveform. but sometimes, each

individual antenna outputs is strongly corrupted with noise and other interference,

making the signals are quite different among them. Array processing now involves

combining all sensor outputs in some optimal manner so that the coherent signal

emitted by the source is received and all other inputs are maximally discarded. The

aperture of an array (that is, the spatial extent of the array distribution) is a limiting

factor on resolution.

2.4.1 Uniformly spaced antenna array

Uniformly spaced antenna arrays mean arrays have a constant spacing among el-

ements, includes 1D, 2D or 3D arrays. In application, the maximum spacing is a

half wavelength to avoid grating lobes, which means two distinct DoAs produce

the same set of phases across the array. The most commonly used array geometries

are uniform linear array (ULA) and uniform circular array (UCA). The ULA has

excellent directivity and it can form the least main-lobe in a given direction, but it

is difficult to be kept consistent in large range and do not treat equally all azimuths

[50]. UCA is high side-lobe geometry so the distance of array antenna should be

small and the basic symmetry of circular arrays offers a great ability to compensate

for the effects of mutual coupling.

2.4.1.1 Uniform Linear Array (ULA)

Uniform linear arrays are arrays that have the same array elements and these array

elements align along a straight line with equal spacing. The array weight vector

Figure 2.1: Uniform Linear Array (ULA)

(supposing the amplitude is I and the phase difference between adjacent elements
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is β ) is

W =


w1

w2
...

wN

=


Ie jβ

Ie j2β

...

Ie j(N−1)β

 (2.65)

The array factor (AF) for this array specified on the plane θ = π/2 is

AF = farray(θ = π/2,φ)

=
N

∑
i=1

wie jbi

=
sin(N ψ

2 )

sin(ψ

2 )
e j(N−1 ψ

2 )

(2.66)

where ψ = kdcosφ +β and 0≤ φ ,β ≤ 2π . |AF | is the normalized antenna factor,

it is a periodic function of ψ , with a period of 2π , also is symmetric about the line

of the array.

ULA has the simplest antenna array geometry, many super resolution DoA

estimation method are developed based on it. But because of the symmetry of |AF |,

it can only provide a 180-degree angle scan.

2.4.1.2 Rectangular Array (RA)

If N ULA arrays are placed next to each other in the y direction, a rectangular array

will be formed. Assume that they are equally spaced at a distance of dy and there is a

Figure 2.2: Rectangular Array (RA)

progressive phase difference along each row of βy, also assume that the normalized
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current distribution along each of the x-directed array is the same but the absolute

values correspond to a factor of I1n (n=1,· · ·,N). Then the array factor (AF) of the

rectangular array is

AF =
N

∑
n=1

I1n[
N

∑
m=1

Im1e j(m−1)(kdxsinθcosφ+βx)]e j(n−1)(kdysinθcosφ+βy) (2.67)

For simplicity, 2.67 can be written as

AF = SxM ·SyN (2.68)

Where SxM =∑
N
m=1 Im1e j(m−1)(kdxsinθcosφ+βx) and SyN =∑

N
n=1 I1ne j(n−1)(kdysinθcosφ+βy)

The pattern of a rectangular array is the product of the array factors of the linear

arrays in the x and y directions. To avoid grating lobes, the spacing between the

elements must be less than λ (dx < λ and dy < λ ).

2.4.1.3 Uniform Circular Array (UCA)

Uniform circular arrays are commonly used when 360 degree coverage is required

in the plane of the array. Compared with ULA, UCA can provide a 2D angular scan,

both horizontal and vertical scans. In addition, distortions in the array pattern of a

circular array due to mutual coupling effect are same for each element, so it would

be easier than ULA to deal with the mutual coupling effect.

For a uniform circular array with N elements and equal amplitude I and a

Figure 2.3: Uniform Circular Array (UCA)

current phase of βn (reference to the central point of the array) for the nth element

(φn = 2πn/N), the array factor is

AF =
N

∑
1

e j[kasinθcos(φ−φn)+βn] (2.69)
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In UCA, a desired maximum radiation direction is first chosen, then we compute

the excitation phase for each element. The computed phase may not be equally

increasing from one element to the next, which is different from the case of a linear

array.

However, since they are non uniform linear arrays, many high resolution DoA

estimation methods like the methods discussed above can not be directly used on

UCA. Researchers have presented many methods to convert a UCA into a virtual

ULA in order to apply high resolution DoA estimation methods.

2.4.2 Non-uniformly spaced antenna arrays

Non-uniformly spaced antenna arrays can be arrays with the arbitrary geometry.

The location of the nth antenna element can be described by the vector dn, where

dn = [xn,yn,zn] (2.70)

The set of locations of an N-element antenna array will be described by a N-by-3

matrix D, where

D =


d1

d2
...

dN

 (2.71)

For non-uniform spaced antenna array, it is generally more difficult to estimate the

DoAs using super high resolution. But researchers have developed many variations

of these super high resolution methods to meet the requirement of estimating DoAs

for arrays with arbitrary geometry.

2.4.3 Array Imperfections

Compared with ULA (uniform linear array), UCA(uniform circular array) can pro-

vide a 360 degree angular scan, thus it is a natural choice for our system. However,

in realistic cases, UCAs usually suffer from mutual coupling and geometrical per-

turbations. All these array imperfections can decrease the accuracy of AoA estima-

tion.
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Mutual coupling: When the antenna spacing of UCAs is less than half of the wave-

length, the mutual coupling is usually present. Mutual coupling in an antenna array

is the electromagnetic interaction between the antenna elements. It will be serious

when the element spacing is small. The mutual coupling can affect the antenna

parameters like input impedance, reflection coefficients, hence these effects will

change the array radiation pattern (for transmit antenna array) and the array receive

manifold (the received signal at the receive antenna array). Because the estimation

of AoA of UCA is based on the received signal at all antennas, the estimation results

will be inevitably affected.

Other array imperfections can also have a bad effect on the AoA estimation,

such as non-omnidirection, non-identical elements, and deviations of the array el-

ements from their nonminal locations. To cope with these array imperfections, in

[51], the authors propose to use a preprocessing technique, which can be referred

as a B matrix method:

Bα (θ)≈ α̃ (θ) (2.72)

To estimate B, let A and Ã denote, respectively, the matrices of the steering vectors

of the actual and ideal array manifolds,

A =
[
α

(
θ
(1)
)
, . . . ,α

(
θ
(L)
)]

(2.73)

and

Ã =
[
α̃

(
θ
(1)
)
, . . . , α̃

(
θ
(L)
)]

(2.74)

The estimation of B is based on the least squares criterion and B as the matrix that

minimizes the following expression:

min||Ã−BA||2 (2.75)

The solution is:

B̂H = (AAH)−1AÃH (2.76)
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After obtaining B, we can use it to compensate the imperfections, the receive signals

after compensation are given by:

x(t) = B̂x(t) (2.77)



Chapter 3

Methodology

The goal of our work is to find the accurate B matrix and use it to deal with array

imperfections, in order to improve the estimation of path parameters including An-

gle of Arrival (AoA). The system setup includes one client with two antennas and

one AP with 8 element Uniform Circular Antennas. At the receiver side, we use

MUSIC to estimate the Angle of Arrival (AoA) of the paths.

3.1 Hardware
The hardware platform we use is Rice WARP [52] with WARPLab version 7.3.

One WARP is used as the transmitter, and two WARPs are synchronized to act

as a receiver (AP). Each WARP is attached with the FMC-RF-2X245 module to

enable four radios on each board. So in order to make an eight radios system, two

WARPs need to be synchronized use time and frequency synchronization module.

For receiver, the antenna array we use is a fidelity UCA with 8 antennas as shown in

Figure 3.1. Coaxial cables are used to connect the antennas to the WARP radios. All

the data received at the APs are transmitted to server through Ethernet connection

between the WARPs and the server. The AoA estimation algorithm is implemented

at the server.

3.2 B matrix measurement
For measurement of actual array manifold, the antenna array has to be placed in-

side an anechoic chamber as shown in Figure 3.2 to avoid the interferences from
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Figure 3.1: UCA

reflected paths. Anechoic chamber is a room designed to absorb the reflections

of sound and electromagnetic waves and insulated from exterior sources of noise.

There are different sources of error that may come up if we don’t take care of it,

such as: the device in the anechoic chamber, the unshutted door. Also, the cali-

bration of WARP before measurement may cause the potential estimation error. In

order to get the most accurate result, we did the following thing to eliminate the

error. (a) We cover every device which was placed in anechoic chamber with the

absorbing materials. (b) For the wires that need to be pulled out to connect the

computer outside the anechoic chamber, we use the holes in anechoic chamber wall

insteading of directly pulling them out from the door, in this way, we can make sure

the door will be shut properly. (c) For receiving WARP, we did multiple calibrations

to verify that we have correctly done the calibration. The setup of the experiment

is: one antenna transmits signal and an 8 element uniform circular array shown in

Figure 3.3 receives signal. The detailed steps are as below:

(1). Do wired calibration for two receiving warps (for both phase and magnitude)

to eliminate the phase and magnitude differences among different antennas at the

receiving antenna array.

(2). After the calibration, start to transmit and receive data in wireless environment.

In order to get the full 360 degree position data, the transmit antenna has been put
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Figure 3.2: anechoic chamber

Figure 3.3: 8 antenna UCA in anechoic chamber
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on the turning table, and the turning table will move in every 1 degree step from 1

degree to 180 degree. To get 180 degree to 360 degree, we need to flip the receiving

UCA.

(3). For the receive signal at each position: (a) Apply phase and magnitude com-

pensation to the raw receive data. (b) Save the raw receive data.

(4). Repeat step (3) for each position, now total we have 360 position data. For

every position data, compute the relative receive data (divide the reference antenna

receive data), then put all these data into a matrix to form A according to the above

method. The dimension of A is 8*360.

(5). Compute B matrix and compensate the receive signals.

We use the method in [51] to compute B matrix method:

B̂H = (AAH)−1AÃH (3.1)

Where A and Ã denote, respectively, the matrices of the steering vectors of the

actual and ideal array manifolds,

A =
[
α

(
θ
(1)
)
, . . . ,α

(
θ
(L)
)]

(3.2)

and

Ã =
[
α̃

(
θ
(1)
)
, . . . , α̃

(
θ
(L)
)]

(3.3)

3.3 Interference cancellation

In order to get a better estimation result for each path when we perform the experi-

ments in real enviroments, we also use interference cancellation technique to cancel

all the other paths expect the one we are interested in. In order to do the cancella-

tion, we first use MUSIC to get all the AoAs, then we pick up the angle we want

to keep, and use Gram-Schmidt orthogonalization to project the raw receive signal

to the signal space which is orthogonal to the angle we keep. We can repeat this

method for each path that we are interested in. After the cancellation of all the other

paths from the raw receive signal, we can apply MUSIC on this more cleaned signal
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to get a more accurate AoA results.



Chapter 4

Evaluation

To show how well the results are, we present some experimental results and sim-

ulation results as below. First, to evaluate the accuracy of the B matrix, we apply

the B matrix back to the raw receive data we gathered at the anechoic chamer, this

way can make sure the results won’t be affected by the reflected paths. We present

the improved AoA results of B matrix compensation for uniform circular array im-

perfection. After that, we demonstrate that the interference cancellation technique

is robust against the different signal strength levels, also show good results for real

experiments.

4.1 B matrix compensation
We first show the AoA results for some positions before using B matrix to compen-

sate the array imperfection. Fig 4.1 and Fig 4.2 are the AoA results of position 1

to 110 at every 10 degree and position 120 to 230 at every 10 degree. We can see

that the angle estimations are roughly accurate, with the estimation error less than

2 degree, but the width of the peaks are wide, which could be caused by the array

imperfections. Wide peak can seriously make the AoA estimation results wrong

when there are more than peaks appear in real wireless environment, because these

peaks will start to merge together if each of them is wide.

Next, we will show some AoA results after the B matrix compensation. To

evaluate the B matrix, we first apply the B matrix back to the raw received signals

which are used to compute the B matrix, we expect to see that there is a great im-



4.1. B matrix compensation 52

  0.4

  0.6

  0.8

 1

30

60120

150

AoA=1

  0.4

  0.6

  0.8

 1

30

60120

150

AoA=10

  0.4

  0.6

  0.8

  1

30

60

90

120

150

AoA=20

  0.4

  0.6

  0.8

 1

30

60120

150

AoA=30

  0.2

210 330

180 0

  0.2

210 330

180 0

  0.2

210 330

180 0

  0.2

210 330

180 0

240

270

300 240

270

300 240

270

300 240

270

300

  0.8

 1
60120

AoA=40

 0.8

 1
60120

AoA=50

0 8

  1
60120

AoA=60

0 8
60120

AoA=70

  0.2

  0.4

  0.6
30150

180 0

  0.2

  0.4

  0.6
30150

180 0

  0.2

  0.4

  0.6

  0.8

30150

180 0

  0.2

  0.4

  0.6

 0.8

30150

180 0

210

240

270

300

330 210

240

270

300

330 210

240

270

300

330 210

240

270

300

330

0 2

  0.4

  0.6

  0.8

30

60120

150

AoA=80

0 2

  0.4

  0.6

  0.8

 1

30

60120

150

AoA=90

0 2

  0.4

  0.6

  0.8

  1

30

60120

150

AoA=100

  0.4

  0.6

  0.8

 1

30

60

90

120

150

AoA=110

 0.2

210 330

180 0

 0.2

210 330

180 0

 0.2

210 330

180 0

  0.2

210 330

180 0

240

270

300 240

270

300
240

270

300
240

270

300

Figure 4.1: AoA results before using B matrix compensation (Position 1 to 110 at every 10
degree)

provement for every position. Fig 4.3 and Fig 4.4 are the AoA results of position 1

to 110 at every 10 degree and position 140 to 250 at every 10 degree. It is obvious

that the width of the peak has become smaller than before. However, we also find

that after B matrix compensation works better for some positions than some other

positions. For position 25 degree, Figure 4.5 is the AoA result before using B ma-

trix, and Figure 4.6 is the AoA result after using B matrix, It is clearly that the AoA

after B matrix compensation has become sharper than the AoA before applying B

matrix. For position 264 degree, Figure 4.7 is the AoA result before using B matrix,

and Figure 4.8 is the AoA result after using B matrix, we can see that the angle has

improved, but the width of the peak doesn’t have much improvement as position 25

degree.

The reason of the difference between different positions could be the hard-

ware imperfection. Because the B matrix is computed using the data at all the
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Figure 4.2: AoA results before using B matrix compensation (Position 120 to 230 at every
10 degree)
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Figure 4.3: AoA results after using B matrix compensation (Position 1 to 110 at every 10
degree)



4.1. B matrix compensation 54

0 4

  0.6

  0.8

  1

30

60

90

120

150

AoA=140

0 4

  0.6

  0.8

  1

30

60

90

120

150

AoA=150

0 4

  0.6

  0.8

  1

30

60

90

120

150

 AoA=160

0 4

  0.6

  0.8

  1

30

60

90

120

150

 AoA=170

  0.2

 0.4

210 330

180 0

  0.2

 0.4

210 330

180 0

  0.2

  0.4

210 330

180 0

  0.2

 0.4

210 330

180 0

210

240

270

300

330 210

240

270

300

330 210

240

270

300

330 210

240

270

300

330

0 8

  1
60

90

120

 AoA=180

0 8

  1
60

90

120

 AoA=190

0 8

  1
60

90

120

AoA=200

0 8

  1
60

90

120

 AoA=210

  0.2

  0.4

  0.6

 0.8

30150

180 0

  0.2

  0.4

  0.6

 0.8

30150

180 0

  0.2

  0.4

  0.6

  0.8

30150

180 0

  0.2

  0.4

  0.6

 0.8

30150

180 0

210

240

270

300

330 210

240

270

300

330 210

240

270

300

330 210

240

270

300

330

AoA=220 AoA=230 AoA=240 AoA=250

  0.2

  0.4

  0.6

  0.8

  1

30

60

90

120

150

AoA 220

  0.2

  0.4

  0.6

  0.8

  1

30

60

90

120

150

AoA 230

  0.2

  0.4

  0.6

  0.8

  1

30

60

90

120

150

AoA 240

  0.2

  0.4

  0.6

  0.8

  1

30

60

90

120

150

210 330

180 0

210 330

180 0

210 330

180 0

210 330

180 0

240

270

300 240

270

300 240

270

300 240

270

300

Figure 4.4: AoA results after using B matrix compensation (Position 140 to 250 at every
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Figure 4.5: AoA=25 before using B matrix
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Figure 4.6: AoA=25 after using B matrix
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Figure 4.7: AoA=264 before using B matrix
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Figure 4.8: AoA=264 after using B matrix
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positions, if some positions are not good enough, it will affect the result of B ma-

trix. In order to find these not good enough positions, we use η -score. The purpose

of η -score is to show that the score increases in the presence of peaks towards

the true angle bearing , and decreases in the presence of peaks at bearing that is

away from the true bearing. Here, Gaussian mask is used to compute the η -score,

since Gaussian ensures that the AoA peaks close to the true bearing also get high

η -score, which can tolerate small AoA estimation inaccuracies. In the experiment,

we choose σ2 = 0.1 for the Gaussian mask. The result of η -score for different

positions is shown in Figure 4.9. It is clearly to see that positions around 250 de-

gree have lower η -score than other positions. So we discard these positions, and

use the remaining data to compute a new B matrix. Figure 4.10 and Figure 4.11

0 50 100 150 200 250 300 350 400
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0.005

0.01

0.015
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sc
or

e

Figure 4.9: Score vs. Position

results show the AoA peak result before B matrix usage and after a new B matrix

compensation. Figure 4.10 Before using B matrix, the AoA peak is wide and slight

inaccurate. Figure 4.11 is the AoA result after using the new B matrix compensa-

tion, we can see now the peak is much sharper and angle is more accurate.

4.2 path cancellation
To evaluate the path cancellation method, we first run some simulations to see how

the cancellation performs under different signal strength levels. We created two
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Figure 4.10: AoA before using B matrix
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Figure 4.11: AoA after using new B matrix

signals from 30 and 60 degrees, and change their magnitude ratio in db. We would

like to cancel 30 degree signal and keep 60 degree signal. From these results,we

can see that even when the 60 degree is very weak (with a large magnitude ratio),

the method still can cancel the much stronger signal and detect the weaker one. We
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Figure 4.12: simulation Interference cancellation different signal strength level

also applied the method on real experiments. With one antenna transmits signal, a 8

element uniform circular array receives in indoor environment. Figure 4.13 shows

that MUSIC detected two peaks, the large one is the direct path and the small one

is the reflected path. Figure 4.14 is the result after we cancel the direct path, the
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Figure 4.13: Before direct path cancel
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Figure 4.14: After direct path cancel

result is normalized. The result shows that the path cancellation method works well

even when the reflected path signal strength is relatively small. This matches the

simulation results.



Chapter 5

Conclusions

In this thesis, I have firstly comprehensively reviewed the existing wireless channel

parameter estimate methods and discussed how the performance of the parameter

estimate methods deteriorates significantly in the presence of array imperfections.

To more accurately characterise wireless channel parameters, I have presented an

experimental evaluation of an B matrix technique to compensate the effect of im-

perfection of the receiving antennas and radio hardwares, also a path cancellation

technique has been combined to further improve the parameter estimation results.

The array imperfection effects are modeled in a radio anechoic chamber and

B matrix result from experimental measurements in the anechoic chamber are then

processed outside the anechoic chamber. Our AoA results show great improve-

ment after the B matrix compensation. The efficacy of path cancellation technique

has also been validated through Matlab simulation and experimental results in real-

world environments, our results show that even in the situation that the signal which

needs to be canceled is much stronger than the signal which needs to be keep, this

path cancellation method can still successfully detects the weaker signal while can-

cels the stronger one.

Many practical applications, such as indoor localization, require the accurate

parameter estimation results, thus this work has taken the array imperfection factors

into account and shows how these parameter estimation results can be improved

using a B matrix technique and path cancellation method.
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