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Abstract 

Distal femoral and proximal tibial joint-sparing bone tumour implants allow to 

preserve the knee, in limb salvage surgery. The aim of this thesis was to compare 

implant survival, functional outcomes, acceptance, proprioception and gait in patients 

with knee sparing implants and conventional knee sacrificing implants. Using FEA, a 

distal femoral implant and cadaver bone were modelled and parametrised to find the 

design that improves implant fixation. 

A survivorship study of 104 consecutive patients following knee sparing surgery 

(mean follow-up 36.1 ± 11.0 months) found an implant survival rate of 78% and this 

is comparable to the reported survival for joint sacrificing prostheses. Younger patients 

showed improved implant survival compared to older individuals. Plate fracture was 

not observed and aseptic loosening was the main reason for revision. Radiographic 

analysis indicated that implantation accuracy increased implant survival. 

Patient questionnaires showed that patients with knee sparing implants had more 

normal functional outcome and acceptance compared with patients with knee 

sacrificing implants. However,  proprioception (joint position sense) was reduced in 

these patients.   

Using optoelectronic gait analysis system, hip, knee and ankle joint angle in 19 patients 

and 3 healthy subjects were measured. Ground reaction force and time in stance were 

also investigated. Joint symmetry in the joint sacrificing group was improved 

compared to the joint-sparing group, however overall, the joint-sparing tibial group 

demonstrated a more normal gait pattern. 
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FEA results indicated that lower resection levels, reduced plate thickness and implant 

materials with lower modulus, decreased the stresses in the bone adjacent to the 

implant while loaded the bone more to reduce risk of stress shielding.  

To conclude, knee sparing endoprostheses provide a reliable alternative to knee 

sacrificing implants in limb reconstruction in selected patients. However, the current 

design of joint-sparing implants can be optimised to potentially improve bone 

remodelling and implant fixation.     
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Chapter 1 Introduction   

Massive bone tumour implants are commonly used for reconstruction of the limb 

following removal of a tumour. A joint-sparing massive bone tumour implant is a 

design that allows the knee joint to be spared. Additional potential advantages  of joint-

sparing implants include preservation of the knee and natural range of motion as well 

as eliminating failures associated with artificial joint replacements. 

Knee joint-sparing endoprostheses are unique to the orthopaedic manufacturing 

company Stanmore Implants (Elstree, UK). During the last 13 years, over 100 patients 

have been treated with this implant, however no study has investigated survivorship 

greater than 5 years follow up. This thesis is therefore the largest follow up study 

investigating within this unique cohort of patients. No other study has investigated 

limb function and gait in patients with a joint-sparing implant.  

This thesis examined  the different design approaches  used  for joint sparing implants, 

investigated the survivorship, function, proprioception and gait in patients with these 

designs. Using Finite Element Analysis (FEA) the final part of this thesis investigated 
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the optimum design parameters and material properties required to ensure long-term 

fixation.  

The following literature review evaluates the published information relevant to 

massive bone tumour implants and develops the rationale for the use and development 

of knee joint-sparing implants that were investigated in this thesis.  

1.1  Bone Tumours and Bone Lesions  

The term ‘bone tumour’ includes both malignant and benign lesions. The malignant 

bone tumour may be primary in origin or secondary where tumours develop at remote 

sites following metastasis from other non-osseous tissue sites to bone.  Benign lesions 

remain localized within the bone and do not metastasize to other tissues or organs, but 

can limit joint function (Tsuchiya et al. 2007) or cause pathological fractures (Mattos 

et al. 2012). Although benign lesions can invade and destroy normal bone tissue, they 

do not metastasize to other anatomical sites and prognosis for this group of patients, 

with or without surgery, is usually favourable (Schwartz 2007).   

1.1.1 Primary Malignant Tumours  

Primary bone cancer is one of the most common types of cancer in children, teenagers 

and adolescents, occurring in the long bones of the upper and lower limb (Dorfman 

and Czerniak 1995). Bone cancer accounts for 10.6% of all cancers in 10 to 14 year 

olds and 8.1% of all cancers in 15 to 19 year olds (Bosetti et al. 2010).  Osteosarcoma 

(56%) and Ewing’s sarcoma (24%) are the most common bone cancers diagnosed in 

patients under the age of 29 (Kent and Trafton 2013) with a reported incidence of 4.8 

(Gorlick et al. 2013) and 3 (Esiashvili, Goodman, and Marcus 2008) cases per million 

individuals per year. Bone cancers are relatively rare and occur predominantly before 
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the third decade of life (Teo and Peh 2004; Boffetta et al. 2014). An epidemiological 

study published by Siegel et al., reported that less than 0.2% of all cancers diagnosed 

yearly originated within bone, causing an estimated 1,440 deaths in 2013 (Siegel et al. 

2013). 

In adults, over 40% of primary sarcomas of the long bone are chondrosarcomas, 

followed by osteosarcomas (28%) and Ewing’s sarcoma (8%). (‘American Cancer 

Society  Information and Resources for Cancer: Breast, Colon, Lung, Prostate, Skin’ 

2014). Despite the low incidence rates of osteosarcoma reported in individuals 

between 25 and 59 years of age, its prevalence rises again in individuals over 60 years 

of age with a frequency similar  to that seen during adolescence (Mirabello  et al. 2009; 

Gorlick and Khanna 2010). A study that compared the prevalence of osteosarcoma in 

adults and adolescent patients showed that a greater proportion of older individuals 

had tumours in axial sites, low-grade tumours, surface lesions, and rare presentations 

such as at extra-osseous sites (Gorlick and Khanna 2010). These differences in 

presentation of the disease suggest that the underlying pathogenesis of osteosarcoma 

in adults and adolescents is not identical. Factors such as Paget’s disease or prior 

radiation exposure have been identified as risk factors particular to older patients 

(Mirabello et al 2009).  

Other types of skeletal sarcomas occur less frequently in adults including, 

Fibrosarcoma (5%), Fibrous Histiocytoma (1-5%) and Angiosarcoma (less than 1%) 

(Schwartz 2007). Figure 1.1 shows the incidence rate of primary bone cancer relative 

to all other cancer types by age.   
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Figure 1.1 Incidence of primary bone tumours relative to all cancers by age. Source: 

(‘Cancer of the Bones and Joints - SEER Stat Fact Sheets’ 2011) 

Although bone tumours can develop in any part of the body, they commonly occur in 

the lower (68%) and upper (10%) extremities (Kent and Trafton 2013), in particular in 

the metaphyseal portion of bone around the knee. Around half of all osteosarcomas 

develop around the knee (Gorlick and Khanna 2010); 36% in the distal femur and 17% 

in the proximal tibia (Geller and Gorlick 2010; Kent and Trafton 2013). Ewing’s 

sarcoma can also affect any bone in the body, but the pelvis and femur are mostly 

affected (Rana et al. 2015), with the tumour often occurring  in the diaphysis or 

occasionally in the metaphysis of long bones (Hefti 2015).  

Secondary malignant bone tumours are more common than primary bone cancers 

(Weber et al. 2008). Cancers that most commonly metastasize to bone are breast and 

prostate cancers. Seventy to 85% of all secondary bone tumours are reported to have 

started in one of these soft tissue sites (Coleman 2001; Coleman 2006; Galasko 1982). 
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1.2 Diagnosis and Treatment 

Initial symptoms of bone cancer often appear as prolonged and progressive but non-

specific aches and pains which often occur at rest or at night (Weber et al. 2008). 

Characteristics such as swelling or decreased joint range of motion are other indicators 

of bone tumours (Weber et al. 2008). Radiographic assessment of the affected area is 

the first step towards diagnosis with over 80% of cases correctly diagnosed following 

radiographic review (Jan van der Woude and Smithuis 2014). Needle biopsies are 

performed to confirm the diagnosis and open biopsies are sometimes necessary in 

order to obtain an adequate quantity of biopsy material (Kent and Trafton 2013). 

Treatment for bone cancer often includes preoperative neoadjuvant chemotherapy and 

radiotherapy followed by definitive surgery and adjuvant chemotherapy (Arpaci et al. 

2005; Marina et al. 2004). Although improvements in the chemotherapeutic agents 

used has significantly increased patient survival rates, surgical resection of the tumour 

and the surrounding tissue remains an essential part of the treatment (Grimer 2005). 

Bone cancer does not have a clearly defined cause. However some studies have 

reported that exposure to high doses of radiation can increase the risk of developing 

osteosarcoma, particularly in children (Le Vu et al. 1998). Underlying bone 

abnormalities, such as the Paget’s disease, and genetic predisposition are other causes 

of osteosarcoma (Qureshi et al. 2013). Ewing’s sarcoma has not been associated with 

any heredity, congenital or previous radiation exposure (Pizzo and Poplack 2006).   

1.2.1 Amputation  

In the past, amputation was the standard method of treatment for patients with 

sarcomas of the extremities (Refaat et al. 2002). In the 1970s, with advances in 

chemotherapy and improved diagnostic methods, orthopaedic surgeons embarked on 
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limb-salvage procedures instead of amputation. By the early 1980s, pre-operative or 

neoadjuvant chemotherapy was introduced and the positive response of primary 

lesions led to introduction of many limb-salvage protocols (Enneking 2000). 

Although limb-salvage procedures are the common method of treatment of bone 

tumours, amputation may still be necessary in cases where a wide excision is not 

possible without the limb becoming non-functional (Nagarajan et al. 2002). 

Progression of the tumour during chemotherapy, tumour recurrence and the failure of 

limb reconstruction are other indications for amputation (Schwartz 2007).  

1.2.2 Rotationplasty 

Rotationplasty is an alternative surgical technique to primary amputation in patients 

with bone deficiency in the lower limb, particularly in the distal femur or proximal 

tibia (Gupta et al. 2012). It is more commonly carried out in adolescent patients with 

remaining growth potential, (Fuchs and Sim 2004) where limb reconstruction can 

result in a leg length discrepancy over time, due to growth of the non-affected limb.  

This technique involves an intercalary resection, followed by 180° rotation of the distal 

limb to allow the ankle to function as a knee joint when fitted with a modified below-

knee amputation prosthesis (Nagarajan et al. 2002). The major requirements for 

optimal prosthetic function in this type of surgery is an intact major nerve, such as the 

sciatic nerve (Gupta et al. 2012; Fuchs and Sim 2004; Heise and Minet-Sommer 1993), 

a sensate foot that has an adequate plantar flexion strength and a good range of motion 

of the ankle (Gupta et al. 2012). Figure 1.2 shows a patient who has undergone 

rotationplasty surgery. 
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Rotationplasty is less common compared to other treatment methods, due to major 

concerns regarding the post-operative psychological effect of this procedure. Many 

studies have reported mixed results with regards to the quality of life and psycho-social 

outcomes of these patients in terms of body image and appearance (Veenstra et al. 

2000; Gupta et al. 2012; Akahane et al. 2007). Limb salvage surgery where a wide 

resection of the tumour and surrounding tissues followed by reconstruction using a 

metal implant with the aim of retaining function of the affected limb, is currently the 

most common treatment for patients with bone tumours of the extremities (Grimer et 

al. 1997; Orlic et al. 2006). Over 85% of patients diagnosed with osteosarcoma in the 

UK are treated using limb salvage surgery (Grimer 2005). 

In the past concerns were reported when performing limb salvage surgery, over a 

conceivable increase in local tumour recurrence leading to metastasis and a decrease 

in patient survival when the affected limb was retained. However, studies have since 

Figure 1.2 Rotationplasty; the tumour and knee have been removed and the lower 

leg is connected to the thigh. The foot (now rotated 180°) replaces the knee joint, 

resulting in similar function to a below-knee amputation. Source: (Grimer 2005) 
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shown that limb salvage procedures do not shorten the disease-free interval or 

compromise the long-term survival of patients (Simon et al. 2005; Plötz et al. 2002). 

Results have also shown that preservation of the limb produced improved 

psychological and functional outcomes in patients (Jeys et al. 2003). 

Improvements in surgical techniques, anaesthesia, neo-adjuvant chemotherapy and 

innovative imaging techniques such as Computer Tomography (CT) scans and 

Magnetic Resonance Imaging (MRI), have made the ability to accurately determine  

the disease free margins of bone adjacent to the tumour (Veth et al. 2003). Neo-

adjuvant chemotherapy, is a treatment given as a first step to reduce the size of a 

tumour before the surgery and prevents the development of metastases (Wodajo et al. 

2003). This is important,  because it reduces the amount of bone and soft tissue resected 

during the limb salvage procedure (Grimer 2005).  

Many surgical techniques are used during limb salvage reconstruction including 

endoprosthetic metallic implants, osteoarticular or intercalary allografts and composite 

endoprosthetic allografts where the resected joint and bone are replaced with an 

allograft from a donor individually or in combination with a massive endoprosthesis 

(Nagarajan et al. 2002). With most sarcomas of the bone involving the knee joint 

(Lietman and Joyce 2010), limb reconstruction that provides sufficient soft tissue 

coverage while restoring the extensor mechanism of the knee can be challenging, due 

to the knee’s complicated anatomy (Ek et al. 2011). In cases where active mobility of 

the artificial joint cannot be achieved due to major muscle excision, a resection 

arthrodesis also known as joint fusion, may be inevitable (Veth et al. 2003). 
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1.3 Biological Reconstruction Methods  

Osteoarticular and intercalary allografts are biological reconstruction methods used in 

reconstructive limb salvage surgery.  Frozen and irradiated allografts are obtained from 

tissue bank facilities and can be used alone or combined with vascularised fibular (VF) 

autografts to fill the defect caused by tumour resection (Puri et al. 2009). In this 

method, an intercalary segment of the fibular with intact nutrient vessels and its 

periosteal cuff is harvested at a larger length than the gap that requires filling. The  

autogenous fibula is then inserted into the medullary canal of the tibial stump, distally 

and at the centre of the metaphysis or epiphysis, proximally. The graft is then secured 

in place using screws before a massive allograft is placed around it longitudinally 

(Figure 1.3) (Capanna et al. 2007). Massive allografts can be used for reconstruction 

without the vascularised fibular autograft. Although massive allografts with strong 

cortical bone provide a rigid fixation and excellent functional results, there is a risk of 

non-union at the allograft-host junction and subsequent fracture of the allograft (Li et 

al . 2010). This is due to the time required for revascularization of the allograft (Berrey 

et al. 1990). On the other hand, although the VF graft contains the essential blood 

supply and living cells to offer an alternative to the allograft (Taylor et al. 1975), it is 

a thin and weak bone that does not provide the structural strength for the weight 

bearing lower limb reconstructions and has high fracture rates (de Boer and Wood 

1989). Combining the two methods that was first described by Capanna et al., utilises 

the advantages of both reconstruction methods (Capanna et al. 1993). The allograft 

provides early mechanical stability and bone stock and the VF graft enhances the 

biological properties of the reconstruction (Li et al. 2010). Although use of massive 

allograft and vascularised fibular autograft is an established method of reconstruction, 

studies have reported high early failure rates. Complications include; infection (8.6%), 
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fracture (34.3%) and non-union (25.7%) of the construct at the mean follow up of 7.2 

years (Deijkers et al. 2005). This is believed to be associated with  poor  bone 

remodelling of the allograft  leaving dead bone which is then susceptible to these 

failure modes.  

 

Figure 1.3 [A] Vascularized fibular flap, harvested to be placed into the medullary 

canal of the allograft. [B] Ipsilateral pedicle vascularized fibula being placed into the 

medullary canal of the allograft (Li et al. 2010). 

Extracorporeal irradiation and re-implantation of bone is another reconstructive 

method of choice (Davidson et al. 2005). During this technique, bone is stripped from 

the soft tissues, washed with saline and wrapped in sterile towels before it is sterilised 

and re-implanted. The various methods of sterilization reported in the literature are 

boiling, autoclaving, gamma irradiation, microwave, pasteurization and the use of 

liquid nitrogen (Sharma et al. 2013; Singh et al. 2010). Various fixation methods, such 

as conventional or custom plates, nails and segmental metal prostheses may be used to 

securely attach the bone graft to the non-affected segments of bone (Agarwal et al. 

2010).   

These segmental, intercalary bone allografts or autografts, are sometimes combined 

with use of implants, to retain the natural limb function (Figure 1.4) (Capanna et al. 

2007; Chang and Weber 2005; Agarwal et al. 2010). 
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Irradiation can increase the risk of fracture. There are reports that irradiation of more 

than 30,000 Gy reduces torsion and bending strength to 65% of normal, while breaking 

strength remains at 80% to 90% with radiation of less than 30,000 G (Rödl et al. 2000) 

One of the main disadvantages in using devitalized autograft such as autoclaved, 

pasteurized, or irradiated bone is that it takes a long time for revascularisation and 

incorporation into the surrounding bone (Ogura et al. 2015). Bone graft healing has a 

similar mechanism to fracture healing and is initiated by an inflammatory response 

followed by vascular invasion from the host that facilitates the recruitment of 

mesenchymal stem cells (MSCs) (Zhang et al. 2005). In the case of autograft, both 

graft and host bone contribute osteogenic cells (Burchardt 1987), however as allograft 

does not contain any live cells, healing relies on invasion of the graft by host cells and 

tissues (Koefoed et al. 2005). Vascularization and remodelling of cancellous bone 

occurs rapidly due to its porous texture, with osteoblastic bone formation occurring 

first on the surface of necrotic trabeculae followed by osteoclastic bone remodelling. 

This process gradually resorbs the entrapped dead trabeculae and eventually replaces 

the entire graft with new living bone (Zhang et al. 2005). In contrast, vascularization 

of cortical bone is slow and requires an initial phase of bone resorption. Union of 

cortical graft begins at the host–graft junction and gradually spreads toward the mid-

shaft of the structural graft. Any imbalance between resorption and bone formation 

can lead to bone loss and graft failure (Zhang et al. 2005). In the case of large structural 

allografts, remodelling along the allograft is limited. Failure rates of 25 to 35% failure 

rate due to non-union and fracture have been directly associated with this limited 

remodelling (Burchardt 1987; Berrey et al. 1990). Complications that required revision 

surgery or amputation were as high as 27.7% at a mean follow up of 9 years (Capanna 

et al. 2007). Forty-five percent of patients experienced complications related that did 
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not require further surgery at a mean follow up of 2 years and 10 months (Li et al. 

2010).  

The use of allograft for reconstruction is not always possible as obtaining bone graft 

may require ethical approval and is subject to availability. In addition, in vascularised 

fibular autograft reconstructions, instability and valgus deformity of the ankle joint can 

be caused if the fibular osteotomy is too close to the ankle joint (Capanna et al. 2007). 

 

 

 

 

 

 

 

1.4 Use of Metal Endoprostheses in Limb Salvage Surgery  

The earliest published example of an endoprosthetic reconstruction following 

treatment of a giant-cell tumour dates to the 1940’s, where a custom proximal femoral 

component manufactured from Vitallium, a Cobalt-Chromium-Molybdenum alloy, 

was implanted into a patient (Hwang et al. 2014). Since then, custom-made massive 

A B 

Figure 1.4 A combined allograft and vascularized fibula in a diaphyseal 

defect in the AP view [A] and the ML view [B]. An L-plate was used to 

stabilise the construct. Source: (Agarwal et al. 2010). 
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endoprostheses manufactured from metal, have been widely and successfully used in 

reconstructive surgery for bone tumours (Henshaw and Malawer 2001). 

Early implants used to treat bone sarcomas were custom made, designed and 

manufactured to suit patients' skeletal size and planned surgical resection levels. They 

have been developed to safely and reliably reconstruct all major anatomical joints and 

adjacent bone (Schwartz 2007).  

Concerns have been raised over the time required between diagnosis and manufacture 

of a custom implant, which can be several weeks and may have a negative impact on 

patient survival (Henshaw and Malawer 2001). Custom implants have also been 

criticised for their lack of intra-operative flexibility. The planned resection levels 

cannot be fully controlled and dimensions may need revising during the surgical 

procedure as tumour size may have increased during the time required for implant 

manufacture. Additionally, there may be a difference between the images provided to 

the design team for measurement preoperatively and the patient’s actual anatomical 

dimensions. These errors can result in inaccurate manufacture of the implant (Henshaw 

and Malawer 2001) and can occur due to an inaccurately placed calibration device, 

producing magnification errors when imaged (Personal communication with Stanmore 

Implants, Elstree, UK).  

These issues led to the introduction of modular, off-the-shelf endoprostheses in the 

mid-1980s. The Howmedica Modular Replacement System (HMRS, Howmedica 

International) was the first generation of modular endoprostheses that included an 

uncemented intramedullary (IM) stem supported by external flanges and trans-cortical 

fixation screws with a simple hinge mechanism to mimic the knee joint (Wiesel 2012).  
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The current designs of modular endoprosthetic systems are composed of a series of 

component combinations, designed for a wide variety of resection levels and sizes to 

be selected and combined to allow for the most suitable reconstruction (Croci et al. 

2000). Modular systems provide flexibility during the operation. They include  trial 

components that allow the surgeon to create the best reconstruction option prior to 

selecting and assembly of the actual, definitive endoprosthesis (Malawer et al. 2001).    

Standardization of components in modular systems enables the manufacturers to 

increase the level of quality control greatly, while reducing the overall costs. As a 

result manufacturers can reduce overall inventory and time to delivery while providing 

a large choice of prosthetic shapes and sizes. Modular systems permit hospitals to 

maintain an on-site inventory that has allowed these systems to be available 

immediately as a backup option for selected non-oncologic patients, such as those 

undergoing difficult joint revision surgery or patients with significant peri-articular 

fractures (Malawer et al. 2001). However, retaining a full inventory of modular 

implants can be costly for hospitals due to the large number of components and the 

storage space required. Although the use of modular implants provides flexibility at 

the time of surgery, it can also increase the complexity of the mechanical construct 

thereby increasing the risk of failure associated with the individual components or the 

sum of all components (Croci et al. 2000). Disassociation and wear of the components 

are examples of failures that have occurred at the modular junctions (Henshaw and 

Malawer 2001). 

Modular implants, cannot completely replace the use of custom implants. The aim of 

limb-salvage surgery is not only to obtain oncological clearance but to also preserve 

the maximum amount of bone and limb function following tumour resection. The 
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requirement of individual patients varies and modular implants cannot always address 

all specifications. Modular implants are only available to treat tumours located at 

common sites, such as the femur and reconstruction that involves bone of irregular 

geometry is only achievable with custom-made prostheses. Custom implants are 

fabricated for patients’ exact size and resection levels, whereas a modular implant is 

only a close match. A study that evaluated the suitability of modular implants for use 

in a group of bone tumour patients reported that only 24% of all patients would be 

suitable for implantation of a modular implant without a compromise in design 

requirements (Unwin 2006).   

1.4.1 Fixation of Massive Endoprostheses 

Limb reconstruction using metallic endoprostheses is the preferred method of choice 

for limb salvage procedures in the UK (Jeys et al. 2008). The use of massive bone 

tumour implants allows full weight-bearing post-surgery which enables the patient to 

return to their daily physical activities rapidly (Jeys et al. 2005). Additional advantages 

when compared to allograft and composite endoprosthetic allografts include 

availability, reliability and cost-effectiveness (Grimer et al. 1997).  

Stanmore Implants (Elstree, UK), previously part of the John Scales Centre for 

Biomedical Engineering, University College London has been designing and 

manufacturing custom-made massive implants since 1949 (Unwin et al. 1996). 

Implants are designed and manufactured on a case-by-case basis. The current design 

of implants that replace the knee joint, such as the distal femoral and the proximal 

tibial endoprostheses include a cemented or un-cemented intramedullary stem that is 

fixed within the medullary bone canal. Based on the anatomy of the patient, the  

required resection levels and the surgeon’s opinion the stem is shaped to follow the 
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natural curvature of the intramedullary (IM) canal. The IM stem and the shaft of the 

implant are made from titanium alloy (Ti 318, Ti6Al4V). Titanium and its alloys have 

been reported to  be  more biocompatibility than other alloys which have suitable 

strengths. Titanium oxide, which is present on all titanium surfaces, allows absorption 

of proteins. It is thought that the immune system recognises the proteins covering the 

implant surface and so identifies the implant as part of the body. This reduces the risk 

of the immune response to the implant (Jansson et al. 2001). Cemented IM stems are 

fixed using polymethylmethacrylate (PMMA) bone cement. The chosen method of 

fixation must provide implant longevity and meet the patient’s short and long term 

needs (Farfalli et al. 2009). Although a cemented stem may provide immediate post-

operative recovery by means of a stable load bearing fixation, its long-term durability 

is often compromised by aseptic loosening. On the other hand, uncemented stems 

provide a durable biological fixation through potential bone growth and have a lower 

risk of aseptic loosening in the long term providing the implant is initially well fixed. 

However, they have a longer recovery period and can cause stress shielding of the 

cortical bone (Wyatt et al. 2014; Coathup et al. 2013).  

 The Compress® Compliant Pre-Stress Implant (Zimmer Biomet, Warsaw, IN) (Figure 

1.5) is a novel bone tumour implant that generates a compressive force using a series 

of spring washers, which  compresses the implant at the transection site onto the bone 

surface (O’Donnell 2009). The self-adjusting compression forces produced, promote 

biologic fixation at the interface while simultaneously transmitting stress to the cortex, 

inducing bone hypertrophy and minimizing stress shielding (Farfalli et al. 2009). 

Compression also seals the IM canal from inflammatory particulate debris thereby 

avoiding osteolysis (Blunn and Coathup 2014). In a retrospective study of 124 patients 

fixation of a traditional press-fit uncemented implant and Compress endoprostheses 
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were compared. All patients were treated for primary tumours of the distal femur or 

for revision of failed distal femoral tumour reconstruction at a minimum follow up 

time of 2 years (Farfalli et al. 2009). Implant survival was estimated at 85% and 88% 

at 5 years for the uncemented press-fit and Compress implants respectively. While 

aseptic loosening was the major cause of failure in the uncemented press-fit group, the 

main mode of failure in the Compress group was fracture of the femoral bone, 

followed by failure of the mechanism (Farfalli et al. 2009). A matched-case study of 

the Compress implant with traditional cemented IM implants described the early 

results of using the Compress as safe and effective (Bhangu et al. 2006), however 

the long term outcomes remain unclear.   

 

Figure 1.5 [A] Schematic diagram of the Compress® implant. [B] Antero-posterior 

radiograph of a distal femoral Compress® device (Bhangu et al. 2006)  

A B 
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1.4.2 Fixed and Rotating Hinged Knee Designs  

Until 1992, the Stanmore fixed hinged knee was used for reconstruction of the joint. 

The Stanmore knee is a first generation highly constrained hinged total knee 

replacement that only allowed for simple flexion and extension of the joint. On 

loading, highly constrained knee designs transfer high stresses, particularly torque,  on 

the stem-cement interface resulting in early aseptic loosening of the implant. Other 

designs of constrained knee replacements include the Wallidius and Guepar knee that 

were introduced in 1951 and 1969 respectively (Manning et al. 2005). Second 

generation hinged knees followed with design modifications that decreased prosthetic 

constraint by including varus/valgus motion and axial rotation to a linked design of the 

hinge, similar to that of the natural knee joint. These less constrained designs include 

the Sheehan, Herbert, Attenborough, Spherocentric, Noiles, and 

Kinematic rotating hinge prostheses (Sheehan 1979; Murray et al. 1977; Kershaw 

and Themen 1988; Kester et al. 1988; Matthews et al. 1986; Shindell et al. 1986; Shaw 

et al. 1989).  

Although modern-generation rotating-hinge knee implants mitigate complications 

related to pain and range of movement (Biswas et al. 2013), aseptic loosening, 

infection, peri-prosthetic fractures and failure of the hinge mechanism are failures 

related to the hinge mechanism (Springer et al. 2004; Pour et al. 2007; Schwarzkopf 

et al. 2011). Third generation modifications include modularity of the endoprosthesis, 

deepening of the anterior femoral groove to improve patellar tracking, variable 

metaphyseal sizing for an improved fit and the use of bony ingrowth collars (Manning 

et al. 2005). 
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Since 1992, the Stanmore Modular Individualised Lower Extremity System (SMILES) 

rotating hinge knee replacement, a third generation hinged knee, made from cast 

cobalt-chromium-molybdenum alloy, has been used following resection of the joint 

(Coathup et al. 2013). The rotating hinge knee articulation includes a bevelled 

polyethylene bearing surface that is placed on the tibial plate and limits rotational 

movement to ±5°. Hyperextension of the knee is constrained by a bumper that acts as 

a secondary bearing surface (Maruthainar et al. 2006). Since introduction of the 

rotating hinge knee, a significant reduction in aseptic loosening (3-24% in 10 years) 

has been reported when compared with the fixed hinge knee design (46% in femoral 

replacements at 10 years follow-up) (Myers et al. 2007a, 2007b; Maruthainar et al. 

2006; Unwin et al. 1996). This reduction in aseptic loosening is thought to have 

occurred due to a more physiological load distribution and a reduction in stresses 

within the IM fixation. Other third generation total hinged knee replacements include 

the Finn (Biomet Inc, Warsaw, IN), NexGen THK (Zimmer, Warsaw, IN) and S-

ROM, which is a modified version of the Noils knee (DePuy Orthopaedics Inc, 

Warsaw, IN)  (Manning  et al. 2005). Figure 1.6  shows a distal femoral and a proximal 

tibial massive modular prostheses with a SMILES knee.   

Although the rotating hinged knee provides a near normal range of motion and 

improved implant survival, fixed hinged knee replacements are still used in certain 

limb salvage operations. Removal of significant amounts of soft tissue around the joint, 

during wide resection of a tumour reduces stability and in these cases use of a 

constrained hinge is often more suitable (Merchán et al. 1994). 
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Figure 1.6 [A] A distal femoral and [B] a proximal tibial modular bone tumour 

endoprostheses. Both manufactured with a SMILES rotating hinge knee. 

 

1.4.3 Complications of Massive Bone Tumour Endoprostheses  

Although endoprosthetic reconstruction can provide good physiological and functional 

outcomes, there are a number of complications and high revision rates associated with 

this method of reconstruction. Complications may either be biological in origin, such 

as deep infection or mechanical in origin, such as implant fracture (6.1%) (Jeys et al. 

2008). Aseptic loosening accounts for over 28% of failures and in massive implants  

is usually associated with adverse loading and failure of the cement mantle. In total 

hip replacements aseptic loosening is attributed to a biological reaction linked to the 

generation of wear particles and the subsequent cellular reaction leading to bone 
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resorption. It is not clear whether debris particles contribute significantly to the 

loosening of massive implants.   

1.4.3.1 Infection 

Deep infection is a major complication associated with the use of massive implants.  

Infection causes pain, a longer rehabilitation period, poor functional outcome, bone 

loss leading to repeat surgical procedures and often amputation (Jeys et al. 2003; Jeys 

et al. 2005). Risk of infection varies depending on the site of surgery. Some locations 

such as the tibia, have a reported higher infection rates when compared to distal or 

proximal femoral replacements (Pala et al. 2013) due to inadequate soft tissue 

coverage (Hay 2006). However, studies have shown a 50-75% reduction in risk of 

infection in proximal tibial replacements, when the “gastrocnemius flap” technique 

was used for reconstruction (Grimer et al. 1999; Myers et al. 2007b).  

The most common pathogenic organisms known to cause deep infection following 

limb salvage surgery are coagulase-negative Staphylococcus and Staphylococcus 

Aureus respectively (Jeys and Grimer 2009). Although the risk of infection has been 

reduced in recent years with the aid of antibiotic loaded cement and silver coated 

megaprostheses (Hardes et al. 2010), infection remains one of the major challenges of 

limb salvage surgery (Jeys and Grimer 2009). A recent study reported an infection rate 

of 3.5% at a mean follow up of 6.6 years after a limb-salvage procedure using a 

massive endoprosthesis. The study also reported that 30.6% of amputations following 

a limb salvage procedure were caused by infection (Schwartz et al. 2014). Another 

retrospective study with a mean follow up period of 5.8 years, reported a higher 

infection rate of 11% and a higher amputation rate following limb salvage surgery due 

to infection (37%) (Jeys et al. 2005).  
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Peri-prosthetic infection rates following limb-salvage surgery using massive implants 

are considerably higher than those reported for typical total knee and hip arthroplasty.  

Studies have reported infection rates ranging from 0.46% to 1.90% (Amin et al. 2015; 

Gehrke et al. 2015; Kurtz et al. 2009) following primary total knee arthroplasty (TKA) 

with risk of infection reducing after 2 years (Kurtz et al. 2009). Similarly, the incidents 

of peri-prosthetic infection following hip replacement surgery have been reported 

between 0.67% and 2.4% (Kurtz et al. 2012; Bozic et al. 2014). Immunological 

deficiency in patients undergoing limb-salvage caused by the neo-adjuvant 

chemotherapy, absence of adequate soft tissue surrounding the affected area, the long 

operation time and the size of the implant are suggested to be possible causes of 

increased infection rates in bone tumour patients when compared with conventional 

arthroplasty (Morii et al. 2010). These factors may promote the formation of biofilms 

that can also increase the risk of infection following massive tumour surgery 

(Mavrogenis et al. 2011).  

1.4.3.2 Wear of the Bearing Surfaces in the Joint 

Another complication related to use of conventional knee-replacing massive implants, 

is wear of the prosthetic’s bearing surface. The surgery to replace the bearing surfaces 

without revising the implant is known as rebushing (Myers et al. 2007b). Rebushing 

is often required when the implant has been in situ for an extended period of time and 

the polyethylene bushes have worn. As a result, rebushing is more commonly carried 

out in younger, more active patients. Failure of bushes can cause varus-valgus 

instability and locking and clicking in some cases, however it is often painless 

(Capanna et al. 1994). Rebushing replaces the worn plastic components and the 

metallic alloy axle that form the bearing surfaces with new components. Although 

surgically simple, this procedure still carries the risk of introducing infection (Myers 
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et al. 2007b). A rebushing rate of 10% has been reported in custom distal femoral 

replacements with a rotating hinge knee in a retrospective follow up study by Myers 

et al. (2007a). In this study, the mean time from implantation to rebushing was 11 years 

(range: 1 to 15 years) with some patients undergoing multiple rebushing procedures 

(Myers et al. 2007a). Capanna et al. reported a rebushing rate of 42% at an average of 

64 months in patients treated with the KMFTR fixed hinge modular tumour 

endoprosthesis by Kotz (Capanna et al. 1994). The reduced rate of rebushing required 

in the Stanmore SMILES knee has been associated with use of rotating hinge knee 

implants (Myers et al. 2007a). This rate was higher (16%) in proximal tibial 

replacements with a fixed hinge knee than in the rotating hinge knee design. The time 

from implantation to rebushing ranged between 3.7 and 17.7 years (Myers et al. 

2007b). Replacement of the polyethylene bushes also reduced the incidence of 

mechanical failure and revision of the implant (Maruthainar et al. 2006). 

1.4.3.3 Aseptic Loosening 

Aseptic loosening is a principal mode of failure of the IM stem in massive implants, 

in particular in distal femoral replacements (Unwin et al. 1993). Aseptic loosening is 

defined as failure of the bond between an implant and bone in the absence of infection 

(Cedars-Sinai 2015). It often initiates with cortical bone loss at the bone-implant 

junction adjacent to the shoulder of the implant (Blunn and Wait 1991; Blunn et al. 

2000). Osteolysis progresses over time and can be recognised in radiographic images 

by the presence of radiolucent lines adjacent to the IM stem or at the interface of the 

cement and bone. This can eventually lead to aseptic loosening and failure of the 

implant (Ward et al. 1997, 1993; Coathup et al. 2015).   
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Over the years, changes to the design of conventional implants such as the introduction 

of a grooved hydroxyapatite (HA) coated collar located at the shoulder of the implant, 

and use of a rotating hinge knee, have dramatically reduced the incidence of aseptic 

loosening (Myers et al. 2007a, 2007b; Coathup et al. 2015; Coathup et al. 2013). 

Variable revision rates (10% to 24% in 12 years),  have been reported for custom distal 

femoral replacements with a rotating hinge knee joint (Maruthainar et al. 2006; Myers 

et al. 2007a). Revision rates due to aseptic loosening of proximal tibial replacements 

with a rotating hinged knee was reduced to 3% in 10 years from 46% in implants with 

fixed hinge knees (Myers et al. 2007b). The age of the patient at the time of operation 

and resection levels have both been indicated as major contributing factors to aseptic 

loosening (Unwin et al. 1996). Unwin et al., investigated 1001 patients with custom 

massive bone tumour implants and showed that younger patients with distal femoral 

and proximal tibial replacements were more likely to experience aseptic loosening. 

Aseptic loosening rates of 13.6% and 6.4% in patients under the age of 20 with distal 

femoral and proximal tibial replacements, respectively were reported in this study.  In 

comparison, patients aged between 20 and 60 years, had loosening revision rates of 

7.3% and 5.5%. The study by Unwin et al also found that aseptic loosening increased 

in relation to the percentage of the bone resected. Patients with over 60% of their tibia 

or femur removed were at higher risk of aseptic loosening. 

Studies have reported that other factors may contribute to the incidence of aseptic 

loosening. Ward et al. (1997) suggested that aseptic loosening is associated with 

osteolysis caused by the presence of wear debris generated at the artificial bearing 

surfaces. Design modifications that promote extra-cortical bone bridging at the bone-

implant junction with osteointegration may seal the interface and prevent the migration 

of wear particles (Rahbek et al. 2005) thereby reducing the risk of aseptic loosening 
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(Ward et al. 1997; Revell 2008). Other studies showed that extra-cortical bone bridging 

with ingrowth to the implant shaft reduced stresses on the IM stem by preserving load 

transfer at the shoulder thereby reducing aseptic loosening (Blunn and Wait 1991; 

Taylor et al. 1997; Chao et al. 2004; Coathup et al. 2015). A telemetric study by Taylor 

et al. (1997) showed that load distribution over the post-operative period gradually 

reduced within the shaft of the implant and gradually  increased at  the stem tip. Aseptic 

loosening is known to begin at the shoulder of the implant where bone loss is seen 

radiographically as radiolucent lines, and slowly progress towards the tip of the stem. 

Finite Element analysis has shown that the stresses on the IM stem and the cement 

mantle are reduced where there is extra-cortical bone bridging and integration of bone 

with the implant surface (Chao and Sim 1990; Fromme et al. 2017). This stress transfer 

at the cortical bone-implant junction and consequently, the reduction of resultant 

forces within the stem-cement interface has been associated with significant 

improvements in long-term implant fixation to bone and reducing the risk of aseptic 

loosening (Chao and Sim 1992). These findings suggest that bony ingrowth at the 

shoulder of the implant may maintain load distribution at the shaft of the implant, 

thereby reducing risk of aseptic loosening of the stem (Taylor et al. 1997). 

1.5 Extra Cortical Bony Bridging 

Various methods, such as HA coated ingrowth collars and porous coated implant shafts 

have been introduced to achieve osteointegration of extra-cortical bone in order to 

improve long term survival of the implant (Coathup et al. 2013). These composite 

implants were designed to encourage bone growth at the shoulder of the implant with 

direct contact and integration at the implant surface. Extra cortical bone formation at 

the shoulder of the implant is dependent on the immediate stability of the implant as 

provided by a cemented IM stem, while osteointegration and long-term fixation is 
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achieved through the ingrowth onto the collar positioned at the shoulder of the implant 

(Chao, 1989). Extra-cortical bone bridging has been reported to be enhanced by 

autogenous bone-grafting, which was shown to induce the formation of extra-cortical 

bone across a porous-coated implant shoulder (Chao et al. 2004). 

Several radiographic analysis and histological studies of extra-cortical bone formation 

reported that bone bridging occurs consistently, however evidence of direct 

osteointegration of the ingrowth collar is limited (Blunn and Coathup, 2016; Unwin et 

al. 1995; Meirelles et al. 2015; Heck et al. 1986). Tanzer et al. compared bone growth 

to an ingrowth collar both radiographically and histologically in five implants retrieved 

from patients. Although the radiographs appeared to show osteointegration into the 

porous segment of all implants, histological analysis of the prostheses revealed that 

none of the extra-cortical bone had grown into the porous-coated segment of the 

implant but the porous surface was instead ingrown with fibrous tissue (Tanzer et al. 

2003). 

1.5.1 Hydroxyapatite Coated Collar  

Many massive endoprosthetic replacements are manufactured from titanium alloy; 

however, osteointegration of titanium alloy is limited. Osteointegration is the direct 

contact between living bone and an implant. Histologically it is defined as the direct 

anchorage of an implant by the formation of bony tissue around the implant without 

the growth of fibrous tissue at the bone–implant interface (Albrektsson and Johansson 

2001). Studies have reported limited direct bone-implant contact to titanium 

(Brånemark et al. 1983; Meirelles et al. 2015), and mechanical and chemical surface 

modifications are required to increase osteointegration and promote the bone-implant 

bond (Matena et al. 2015; Huang et al. 2015). Modifications include; surface 
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roughening (Barfeie et al. 2015; Hacking et al. 2012), the application of a porous 

coating (Bellemans 1999) and in the case of custom joint-sparing implants, grooved 

hydroxyapatite coated collars (Sanghrajka et al. 2005; Coathup et al. 2013).  

The application of a hydroxyapatite (Ca5(OH)(PO4)3) coating onto the implant surface 

has shown to significantly augment osteointegration (Drnovsek et al. 2012). 

Hydroxyapatite (HA) coatings, that have commonly been used in clinical practice, are 

osteoconductive due to its similar chemical composition to natural bone (Drnovsek et 

al. 2012). An osteoconductive compound is one that promotes bone  growth  on  its  

surface (Albrektsson and Johansson 2001).   

The HA collar located at the shoulder of the implant, was introduced by the Centre for 

Biomedical Engineering, UCL, Stanmore, during the early 1990’s to improve bone-

implant fixation (Unwin et al 1995; Blunn et al. 2000). The surface of the collar is 

grooved to facilitate extra-cortical bone growth and osteointegration of the implant 

surface. This ingrowth collar has circumferential and longitudinal grooves 1.5mm 

deep, 1.0mm apart, and 1.0mm wide (Figure 1.6). The surface of the collar is plasma 

sprayed with a 50μm thick highly crystalline hydroxyapatite coating (>85% 

crystallinity) (Plasma Biotal, Plasma Coatings, Tideswell, United Kingdom).   

A recent study showed that bone ingrowth and osteointegration into the HA coated 

collar increased implant survival from 75% to 98% at 18 years (Coathup et al. 2013). 

A study by Myers et al. showed that HA collars reduced the incidence of aseptic 

loosening in patients with distal femoral prostheses. This retrospective study of 192 

patients at a mean follow-up of 12 years, investigated and compared aseptic loosening 

in custom-made distal femoral replacements with HA collars to earlier designs of distal 
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femoral replacements without a HA collar at the shoulder of the implant. The study 

showed that the rate of aseptic loosening was reduced to 0% in implants with a HA 

collar from 24% in implants without a HA collar over a 10 year period (Myers et al. 

2007a). Coathup et al. radiographically investigated 22 pair-matched patients with two 

types of implants, with and without a HA collar. The authors reported that nine of 11 

patients had osteointegrated HA collars, whereas only one patient in the non-collar 

group had osteointegration. The study also reported fewer radiolucent lines, that can 

result in aseptic loosening, in the HA collar group when compared with the non-collar 

group (Coathup et al. 2015). In another study that histologically investigated the 

correlation between osteointegration and aseptic loosening, Coathup et al. (2013) 

found that when a grooved hydroxyapatite-coated structure was used, direct bone 

contact with the surface of the implant was seen whereas when no collar was present, 

the extra-cortical bone that formed at the shoulder did not osteointegrate but was 

instead separated from the surface of the implant by a layer of fibrous tissue. The study 

also showed that distal femoral massive bone tumour prostheses with a hydroxyapatite 

coated collar located at the shoulder of the implant had a lower revision rate due to 

aseptic loosening compared to those without a HA collar (Coathup et al. 2013).    

1.6 Extra-Cortical Plate Fixation 

Metallic plates are commonly used in orthopaedic surgery, particularly for the internal 

fixation of bone used for alignment and healing after fracture (Pakula et al. 2013). Use 

of plates for the fixation of massive bone tumour implants was first reported in the 

1950s, before the development of bone cement for fixation of an IM stem (Burrows et 

al. 1975). In cases where extensive resection of bone is required, the remaining 

segment of bone is small and the IM stem has to be fixed within a wide-diverging canal 

and surrounded by relatively weak cancellous bone. In such cases, fixation of the IM 
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stem may be enhanced by use of extra-cortical plates which are fixed to the periosteal 

surface of the bone with screws (Cobb et al. 2005).   

The natural growth of long bone is accompanied by remodelling and centrifugal 

growth with bone formation on the periosteal surface such that the intramedullary 

cavity increases in diameter as does the overall bone diameter. This remodelling is 

continuous throughout life and in older individuals this increase in girth is 

accompanied with thinning of the cortex. This natural remodelling can further facilitate 

extra-cortical plate fixation (Blunn and Coathup 2016).    

Design of the extra-cortical plates used by Stanmore Implants was based on the results 

of a study by Coathup et al. that investigated the optimal geometric and surface 

properties that encouraged ingrowth and bonding of bone to an extra-cortical plate in 

an in vivo animal model (Coathup et al. 1999). The surface modifications investigated 

included a roughened titanium alloy surface, a plasma sprayed HA coating of low 

crystallinity, a solution precipitated calcium phosphate coating and a plasma sprayed 

highly crystalline hydroxyapatite. The results of this study indicated that a highly 

crystalline plasma sprayed hydroxyapatite coating, encouraged significantly greater 

bone-implant contact when compared to the other surfaces investigated. Additionally 

and for optimal bone ingrowth into the plates, the presence of either holes or slots 

along the length of the plate was required (Coathup et al. 1999).  

As a result of this initial study, extra cortical plate fixation was further investigated in 

a caprine model where plates were used to fix a massive segmental implant to bone 

following the removal of a 50mm mid-tibial segment of bone (Coathup et al. 2000). 

Bone apposition on the external surface of the plates occurred through a combination 
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of periosteal bone production, invasion of bone through slots in the plate, and bone 

growth over the ends of the plates. The presence of slots within the plates improved 

bone ingrowth onto the plates. Finite element analysis demonstrated that extra-cortical 

plate fixation to the bone surface altered the stresses locally. In models with 3 or 6 

plates, the second moment of area that indicated stiffness was increased, leading to 

stress shielding of the bone adjacent to the plate. The least amount of stress shielding 

was seen in response to the 2-plate design (Coathup et al. 2000).   

The extra-cortical plate design developed for fixing massive bone tumour implants to 

longer segments of bone in patients, was later implemented in the design of joint-

sparing implants where  bone  length was limited. 

1.7 Joint-Sparing Diaphyseal Resection   

Resection of the tumour and the surrounding bone with a wide margin, free from 

invasion of the tumour, is the first principle of limb salvage surgery. The recommended 

margin is 3cm from the bony extent as seen on the MRI scan (Kawaguchi et al. 2004). 

As described earlier in this chapter, the majority of bone tumours occur within the 

metaphysis of long bones close to the articulating joint. When the distal femur or the 

proximal tibia is affected, resection often includes the knee joint in order to obtain 

satisfactory surgical margins (Malawer and Sugarbaker 2001). 

In some patients tumours localise to the metaphysis without involving the joint.  These 

situations allow the surgeon to resect the tumour within an adequate margin without 

sacrificing the joint or the growth plate (Agarwal et al. 2010). With the aid of more 

accurate imaging techniques and surgical advances surgeons have been able to achieve 

closer tumour margins with confidence (Gillespy et al. 1988). This has increased the 
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options available to the surgeon who may wish to avoid resection of the joint. This is 

particularly advantageous around the knee due to the high failure rates reported in 

distal femoral and proximal tibial replacements (Sharma et al. 2006) and with the 

complications involved in achieving a successful extensor mechanism, especially 

following a proximal tibial replacement (Titus and Clayer 2008). Reconstruction of 

the proximal tibia is particularly challenging due to its anatomical limitations (Puri 

2014). The close proximity of the neurovascular structures in the popliteal fossa and 

peroneal nerve at the lateral aspect of the leg, insufficient soft tissue coverage and the 

need to reattach the extensor mechanism following resection of the tibial tuberosity 

involved with the tumour, are complications involved with the reconstruction of tibia 

(Mavrogenis et al. 2012). The patella tendon is attached to the tibial tuberosity and 

passes through the anterior aspect of the knee. It is also embedded in the quadriceps 

tendon that is responsible for extension of the knee joint (Martini 2006). Failure to 

achieve appropriate reattachment of the patellar tendon will lead to lack of an extensor 

mechanism which will alter the biomechanics of the knee and can result in patella alta, 

atrophy of the quadriceps and altered gait with an extensor lag (Oddy et al. 2005).     

Numerous options for the reconstruction of the extensor mechanism of the knee 

following proximal tibial and extra-articular knee resections have been reported 

(Mavrogenis et al. 2012). These include direct reattachment of the patellar tendon to a 

megaprosthesis (Oddy et al. 2005; Pendegrass et al. 2004), osteoarticular allografts or 

allograft prosthesis composites (Ek et al. 2011; Clatworthy and Gross 2001), and 

augmentation techniques with synthetic materials, autologous bone graft or synthetic 

substitutes, tendon transfers and muscle flaps, and combined techniques.  
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In some cases, during a joint-sparing reconstruction, the growth plate can also be 

spared. Saving the distal femoral and proximal tibial growth plates in adolescent 

patients are especially beneficial allowing normal growth of the affected limb 

(Agarwal et al. 2010). However, limb-reconstruction near the knee and achieving 

secure implant fixation to small segments of bone is a challenging procedure with 

limited reconstruction options. Custom, knee sparing metallic endoprostheses preserve 

the  knee joint and have the potential to preserve gait and in young patients retain the 

growth plate. 

1.8 Custom Knee Joint-Sparing Implants  

Preservation of the natural joint can eliminate the issues related to joint replacements, 

such as limited range of motion (Frink et al. 2005) and wear of the artificial knee 

(Henshaw and Malawer 2001; Myers et al. 2007b; Maruthainar et al. 2006; Myers et 

al. 2007a). Achieving a normal ROM in conventional massive implants has been one 

of the challenging areas in limb salvage surgery using massive implants that replace 

the joint (Frink et al. 2005; Tsauo et al. 2006). In addition and where possible, any 

future leg length discrepancy caused by removal of the epiphyseal plate in adolescent 

patients can be avoided (Agarwal et al. 2010), provided that the physis is not damaged 

by extra-cortical plate and screw fixation. 

Knee sparing massive endoprostheses were introduced in the late 1990s by Stanmore 

Implants, Elstree, UK. They allowed for intercalary, metaphyseal reconstruction where 

the implant is fixed to the remaining segment of bone using extra-cortical plates. Joint-

sparing prostheses provide an alternative method of fixation in cases where insufficient 

bone is available for fixation using IM stems (Agarwal et al. 2010). Another advantage 

of using a knee joint-sparing implant is that fixation of the implant is limited to the 
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affected bone only. When conventional knee sacrificing implants are inserted, surgery 

requires not only removal of the affected bone and joint but additional bone is removed 

in the tibia for a distal femoral replacement and in the femur for a proximal tibial 

replacement, for  fixing the rotating hinge.   

To achieve a secure initial fixation, extra-cortical plates are fixed to bone using either 

uni-cortical or bi-cortical screws. Bi-cortical screws lock the plates to both cortices 

and improve fixation especially in cases where the cortical bone is deficient, as is the 

case in many revision cases. The optimum number of screws required to achieve a 

long lasting successful fixation is dependent on the shape and size of the implant and 

the amount of residual bone, which often varies from patient to patient. Failure to 

obtain a secure primary fixation can result in loosening of the implant (Cobb et al. 

2005). Figure 1.7A shows an A/P radiographic image obtained from a 43 year old 

female patient at 62 months follow-up, with a proximal tibial joint-sparing implant in 

her left leg. The radiograph shows plate fixation with uni-cortical screws and slotted 

cutting fins on the plateau of the implant. Figure 1.75B is an A/P radiograph obtained 

from a 23 year old male patient at 46 months follow-up, with a distal femoral joint-

sparing implant in his right leg. The plateau of the implant includes spikes for 

improved fixation in addition to extra-cortical plate fixation with screws.  

A knee sparing implant can only be used if there is no involvement of the popliteal 

neurovascular structures or invasion of the joint by the tumour to allow safe plate 

fixation of the prosthesis (Gupta et al. 2006). The remaining segment of bone after the 

resection must be long enough to secure the implant using extra-cortical plates. The 

resection level must be clearly planned using MRI scans preoperatively to ensure no 
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interference with the tumour and to verify that a joint-sparing implant is suitable for 

use (Gupta et al. 2006).  

 

Figure 1.7 [A] An A/P radiographic image of a 43 year old female patient at 62 months 

follow-up, with a proximal tibial joint-sparing implant. The radiograph shows plate 

fixation with uni-cortical screws and slotted cutting fins on the plateau of the implant. 

[B] An A/P radiograph obtained from a 23 year old male patient at 46 months follow-

up, with a distal femoral joint-sparing implant. The plateau of the implant includes 

spikes for additional fixation.  

 

1.8.1 Resection Accuracy   

Creating a construct that can reliably grip and hold the remaining small segment of 

bone with anatomically accurate dimensions and good function of the limb 

postoperatively, are the major challenges in knee sparing implant surgery (Agarwal et 

al. 2010, Wong et al. 2012). 

As knee sparing implants are custom-made, their success is dependent on correct 

resection of the diseased bone prior to insertion of the implant. Resection of the bone 
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is technically demanding as the surgeon is required to ensure the surgical margin is 

sufficiently wide for complete removal of the tumour, and that the plane and 

orientation of the resection match that of the custom prosthesis precisely (Wong and 

Kumta 2013).  

While most surgeons rely on various imaging techniques such as MRI and CT-scans 

combined with their knowledge and experience to make an accurate cut, others use 

computer assisted navigation methods to obtain a precise resection (Lin et al. 2015; 

Wong and Kumta 2014). In computer aided surgery, MRI and CT images are fused, 

allowing the surgeon to produce a pre-operative surgical plan by defining the extent of 

the tumour and resection levels (Wong and Kumta 2014). Intra-operatively, a tracker 

is attached to the bone for registration. This means that the operative anatomy is 

matched precisely with the images of the pre-operative surgical plans and involves 

matching selected bony landmarks and points chosen on the exposed surface of the 

bone. Once the accuracy of the registration is confirmed, the “navigation” probe and 

the instruments mounted with the navigation trackers are calibrated to allow for real-

time spatial location of the instruments in relation to the patient’s anatomy and to 

create accurate resections according to the preoperative surgical plans (Wong et al. 

2007). 

A simpler technique to help achieve resection accuracy is by using a patient-specific 

computer-aided designed/computer-aided-manufactured (CAD/CAM) surgical jig. 

The jig, identifies both the distal and proximal resection points using distal and 

proximal cutting blocks that are positioned on the bone surface at the planned resection 

sites without translation. The slits on the cutting blocks have the same orientation as 
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the resection planes on the joint-sparing implant, allowing the surgeon to create a cut 

that matches the implant precisely (Wong et al. 2012).   

1.8.2 Clinical Outcomes of Joint-Sparing Implants  

The first study to report on the clinical use of joint-sparing implants and extra-cortical 

plates in four anatomical locations; proximal tibia, distal femur, distal humerus and 

mid-shaft humerus, was by Cobb et al. in 2005. Tri-plate endoprostheses were 

implanted into 14 patients who either underwent revision surgery following failure of 

the intramedullary (IM) stem fixation or in primary surgery, where the remaining 

segment of bone was too small for fixation using an IM stem. All patients undergoing 

revision surgery had previously been treated for bone tumours and as a result had poor 

bone stock, making implant fixation more challenging. In such cases revision to 

another cemented device was only a viable option if sufficient bone stock remained 

for adequate fixation. The success rate of a revised implant is often lower than primary 

implants (Cobb et al. 2005). This is due to osteolysis at the bone-implant junction 

resulting in the reduced Young’s modulus of the bone surrounding the cemented stem 

(Blunn and Wait 1991) that gradually progresses along the bone-cement interface 

resulting in aseptic  loosening (Coathup et al. 2015). This bone loss means that the 

quantity and quality of bone is reduced and therefore the revised implant is more likely 

to fail. Use of extra cortical plates, not only makes implant fixation to short bone 

segments possible, but by altering the stress distribution on the bone, can strengthen 

the bone that has previously been weakened (Cobb et al. 2005). All implants 

investigated in the study were designed and manufactured by Stanmore Implants 

Worldwide Ltd (Elstree, UK). The extra-cortical plates were manufactured 12mm 

wide, with a tapering thickness of 3mm to 2mm and were of variable length depending 

on their location. Patients were followed up prospectively and their functional 
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outcomes were measured. Functional scores showed that all patients regained their 

original level of function within 5 months of surgery. In addition, radiographic analysis 

showed bone remodelling with bone growth seen over the plates and integration at the 

bone-plate interface. Cobb et al., reported a survival probability of 89% at a follow-up 

period of 99 months. With the high survival probability and good functional and 

surgical outcomes, this study further encouraged the use of extra-cortical plate fixation 

and joint-sparing surgery using massive implants.   

Following the promising results reported by Cobb et al., a prospective study of 8 

patients who met all criteria for receiving a distal femoral knee joint-sparing implant 

was carried out by Gupta et al. (2006). All patients were diagnosed with a malignant 

bone tumour that had not crossed the physis of the distal femur. Implants were custom-

made distal femoral joint-sparing implants with intramedullary stems that were either 

cemented or uncemented within the femoral bone. Implants were fixed to the 

remaining small segment of distal femur using 2 or 3 extra-cortical plates attached to 

bone using screws. Postoperatively all patients were followed up and assessed 

radiographically and limb function was semi-quantified using the Musculoskeletal 

Tumour Society Score (MSTS) (Enneking et al. 1993).  Although the functional results 

reported by Gupta et al. 2006 were promising (mean score: 80%, range 57-97%), knee 

stiffness in flexion (only 20°) was observed in one patient (12.5%). Good overall 

function was reported for all other patients, with no reports of fracture, infection, 

recurrence, aseptic loosening or amputation at the 2 year follow-up (mean: 24 months, 

Range: 20-31 months). Radiographic evidence of new bone formation and plate 

incorporation was also reported, suggesting that extra-cortical plate fixation is a viable 

alternative to IM stem fixation in massive implants (Gupta et al. 2006).  
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Another follow up study by Spiegelberg et al. (2009), investigated 6 patients with 

joint-sparing tibial replacements. Range of motion (ROM) and overall function was 

assessed using the MSTS and revised Oxford Knee Score (OKS) (Murray et al. 2007) 

at a mean follow-up of 35 months. Results showed that the prosthesis allowed 

preservation of the knee joint with good overall function (Mean: MSTS= 79%, OKS= 

40 out of 48) and with no early evidence of aseptic loosening (Spiegelberg et al. 2009).  

When knee sparing implants were compared to bone graft as a method of preserving 

the knee joint, custom prostheses with plate fixation were found to produce an 

improved function, durability and recovery time (Agarwal et al. 2010).  

While there are a number of studies that have assessed functional outcomes in patients 

with a joint-sparing implant using questionnaires, no investigation using more 

objective methods such as gait analysis has been made to quantifiably assess and 

compare their function with that of the joint sacrificing endoprostheses.  

1.9 Gait Analysis and Applications 

Gait Analysis is the systematic review of human walking, using the eye and brain of 

experienced observers, augmented by instrumentation for measuring body 

movements, body mechanics and the activity of the muscles (Levine et al. 2012). The 

most commonly known clinical application of gait analysis is in the treatment of 

neuromuscular disorders such as cerebral palsy (Gage et al. 1996). Precise examination 

of gait in patients with cerebral palsy can enable the surgeon to assess the pathological 

components and to carry out all corrections during one surgical operation. This reduces 

the risk of post-operative complications due to a fewer number of procedures and 

consequently avoids unnecessary pain to the patient. Identifying the pathological 
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components of the gait prior to surgery can also reduce the post-operative 

rehabilitation period (Gage et al. 1996). Gait or motion analysis has applications 

beyond investigating gait in individuals with cerebral palsy. Other medical 

pathologies, such as those related to upper extremities or reconstructive surgery of the 

lower extremities may benefit in a similar manner (‘Research Council’ 2015).  

Computerized gait analysis is used as a functional outcome assessment tool instead of 

or in combination with traditional clinical evaluations or questionnaires (Kilgore 

2005). Historically, most orthopaedic surgeons and rehabilitation specialists have 

relied primarily on static examination and observational gait analysis to assess 

outcomes. Computerized gait analysis is an accurate, precise and valid method of 

quantifying movement and therefore can be an effective functional outcome measure 

(‘Research Council’ 2015).  

The patellar tendon and the extensor mechanism that is often compromised in patients 

with knee-sacrificing implants, is preserved in patients with joint-sparing 

endoprostheses. Therefore a near normal gait in joint-sparing patients is expected, 

following their full post-operation recovery. This is the first study that investigated 

patients’ gait to establish whether an improved gait is achieved in lower limb 

reconstruction with joint-sparing endoprostheses.  

1.9.1 Normal Gait  

In order to identify gait pathology in patients, gait assessment often includes a 

comparison of pathologic gait with “normal gait”. Normal gait is a pattern which has 

been generalised from the general public across many variables, including age and sex 

(Fish and Nielsen 1993). A complete gait cycle is often divided into several phases, 
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however, it consist of two main phases; the stance, which is 60% of the cycle, and the 

swing phase that makes up the remaining 40% of the cycle. A complete gait cycle is 

from the heel strike to the next heel strike of the same foot (Gage 1993). The Initial 

Single support phase starts after the opposite toe off and at the start of the commonly 

known mid-stance phase. Terminal single support ends with the opposite initial contact 

where pre-swing phase starts (Figure 1.8

).  

 

Figure 1.8 Demonstration of  the gait cycle (‘Gait in Prosthetic Rehabilitation - 

Physiopedia, Universal Access to Physiotherapy Knowledge.’ 2016) 

 

  

1.10 Material Properties of Skeletal Tissue  

Any implant design must take into account bone remodelling  as  differences in 

Young’s modulus between the implant and the bone can affect  bone  formation  an 
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resorption. In order to understand  bone remodelling the  material properties of the 

bone need to be  understood and the  way that bone remodels and the stimuli associated 

with remodelling need to be comprehended.  

Bone consists of living cells, organic collagen fibres and inorganic hydroxyapatite 

crystals. The bone cells include osteoblasts (bone-building cells), osteoclasts (bone-

resorbing cells) and osteocytes (bone-maintaining cells). The combination of 

hydroxyapatite crystals and collagen fibrils gives bone its compression and tension 

characteristics, respectively (Tortora and Grabowski 1993). For this reason bone tissue 

has biphasic characteristics; it is both flexible and stiff. Cortical bone is denser and 

less porous than cancellous bone, has a high Young’s modulus, and is stronger in 

compression than in tension (Hench and Jones 2005). Thicker regions of cortical bone 

are usually found in areas where stresses are applied in relatively few directions and 

are therefore heavily stressed. Cancellous bone is weaker compared to cortical bone 

and due to its low density, reduces the overall weight of bone. Regions of cancellous 

bone are usually not heavily stressed or are subject to stresses from many directions 

(Tortora and Grabowski 1993). 

Bone tissue is inhomogeneous, which means that its material properties vary with 

location. The material properties of bone also vary with direction (anisotropic) and the 

load magnitude (nonlinear) (Carter 2008). 

1.10.1 Bone Modelling and Remodelling 

Bone is a living organ that undergoes remodelling throughout life. Bone modelling 

and remodelling is an adaptive process resulting in a change in the geometry or 

material properties of bone (Carter 2008). Bone modelling incurs a change in geometry 
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or density of bones and refers to the dependent action of osteoclasts and osteoblasts, 

whereby new bone is added along some surfaces and removed from others. The 

adaptation of a bone’s shape and size is important in long bones as well as in response 

to varying mechanical loads throughout life (Office of the Surgeon General (US) 

2004). Bone remodelling, on the other hand, refers to the combined action of 

osteoclasts and osteoblasts to repair or replace old or damaged bone. The process of 

bone remodelling serves to maintain bone health as it undergoes repetitive loading 

throughout life (Feng and McDonald 2011). Defects such as micro cracks are repaired 

by the coupling of osteoclasts and osteoblasts. In a homeostatic equilibrium resorption 

and formation are balanced so that old bone is continuously replaced by new tissue so 

that it adapts to mechanical load and strain (Frost 1990).  

Osteoclasts and osteoblasts closely  linked in the remodelling process in what is called 

a basic multicellular unit (BMU). The osteocytes which are osteoblasts that have 

become  embedded in  bone are believed to  have a role in the control of remodelling, 

supressing osteoblastic action  by the secretion of sclerostin. The organization of the 

BMUs in cortical and trabecular bone differs, but these differences are mainly 

morphological rather than biological (Hadjidakis and Androulakis 2006). The 

remodelling cycle consists of three consecutive phases: resorption, reversal, and 

formation. Resorption begins with the migration of partially differentiated 

mononuclear preosteoclasts to the bone surface where they form multinucleated 

osteoclasts. After the completion of osteoclastic resorption, there is a reversal phase 

when mononuclear cells appear on the bone surface. These cells prepare the surface 

for new osteoblasts to begin depositing bone and provide signals for osteoblast 

differentiation and migration. The formation phase follows with osteoblasts laying 

down bone until the resorbed bone is completely replaced by new. When this phase is 
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complete, the surface is covered with flattened lining cells and a prolonged resting 

period begins until a new remodelling cycle is initiated (Hadjidakis and Androulakis 

2006).    

1.10.1.1 Strain as a Bone Remodelling Stimulus  

Bone cells, like many other cell types, respond to alterations in their external 

environment. The physiological mechanism by which the mechanical loading applied 

to bone is sensed by the tissue and the mechanism by which the sensed signal is 

transmitted to the cells, have not been fully identified. In 1873, Wolff who researched 

the structure of the bone, stated “The law of bone remodelling is that mathematical 

law according to which observed alterations in the internal architecture and external 

form of bone occur as a consequence of the change in shape and/or stressing of bone” 

(Wolff 2012) and established the concept of bone adaptation occurring in response to 

mechanical stress (Brand 2010).  

Strain refers to the relative change in length or deformation in bone tissue when a bone 

is loaded in compression, tension, or torsion. Frost's mechanostat theory describes the 

relationship between bone remodelling and mechanical environment (Frost 1987). It 

describes a window of strain which is considered physiological and maintains the bone 

in homeostasis. In the disuse window (DW), where strains are below the physiological 

threshold, bone is resorbed by increased  remodelling thereby  increasing strain. In the 

overuse window (OW), where strains exceed the upper boundary of the physiological 

domain, bone is formed (Liedert et al. 2005; Jang et al. 2008) and becomes stiffer, 

reducing strain. The remodelling threshold (1000-1500 microstrain) is known as the 

lazy zone (Dunlop et al. 2009) in which a uniform stable strain state is achieved and 

bone mass is maintained. Outside this zone, bone resorption or bone apposition will 
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occur. It has been stated that for long bones, bone formation occurs primarily on the 

periosteal (outer) surface of the cortical bone and bone resorption occurs primarily on 

the endosteal (inner) surface. Many quantitative studies in the simulation of bone 

remodelling have used a strain energy density based approach to bone remodelling for 

the characterization of internal bone morphology (Huiskes et al. 1987; Tsili 2000; 

Fyhrie and Carter 1986).  

In healthy adults, bone homeostasis occurs when osteoblasts form new bone and 

osteoclasts resorb existing bone maintaining a constant rate of remodelling. In the 

absence or reduction of mechanical stimuli, bone mass is decreased (Liedert et al. 

2005). Fracture healing, where bone is renewed from soft tissue, is also subject to 

mechanical regulation. The stiffness of the fixation influences the healing process in 

which ossification occurs (Goodship et al. 1998). Interfragmentary micromotion 

during flexible fixation can stimulate callus formation improving the healing process, 

whereas unstable fixation can prevent the repair process (Aspenberg et al. 1992). The 

direction of loading is also an important factor is fracture repair; moderate axial 

loading stimulates bone formation (Larsson et al. 2001). Computational methods such 

as Finite Element Analysis (FEA) have been utilised to predict bone reaction to 

materials of different moduli, forces and direction of loading to improve fracture 

healing and design of orthopaedic implants and associated bone remodelling. FEA is 

also used to  investigate stress and strains in implants  to predict if they lead to  failure.   

In this thesis FEA was used to investigate the effect of using extracortical plates in 

joint-sparing implants on the strain distribution in the surrounding bone and the  

stresses in the implant.     
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1.10.2 Finite Element Analysis  

 Finite element methods (FEM) are numerical techniques for approximating the 

solutions of mathematical problems that are usually formulated in order to precisely 

state an idea of some aspect of physical reality. FEM was originally developed for 

solving structural analysis problems relating to mechanics, civil and aeronautical 

engineering and it is best understood from its practical application, known as Finite 

Element Analysis (FEA) (Turner et al. 1956). FEA is a computational tool for 

performing engineering analysis and predicting how a complex geometry reacts to 

real-world forces such as, vibration, heat and other physical effects. FEA uses mesh 

generation techniques where the geometry is divided into finite number of small 

elements that are called ‘finite elements’. In addition to geometry in FEA, loads  and  

constraints, as well as material  properties of the structures and their  combinations are 

specified to achieve accurate solutions. Powerful FEA software programs, coded with 

FEM algorithms are widely used in almost all engineering disciplines (Saurabh and 

Yadav 2016). FE simulations have become a powerful tool in the field of orthopaedic 

surgery and traumatology, enabling surgeons to have a better understanding of the 

biomechanics, both in healthy and pathological conditions. FE simulations predict the 

biomechanical changes and bone responses to these changes that occur following the 

implantation of endoprostheses. It can also calculate the changes in the stress 

distribution around the implant and can predict subsequent bone remodelling.  FE can 

be used  to simulate the effects of  different material properties  of implants, the effect 

of implant position, design of implant on both the adjacent bone and stresses within 

the implant (Herrera et al. 2012). This information can be used when creating novel 

implant designs.  
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1.10.3 Orthopaedic Materials   

1.10.3.1  Titanium Alloy 

Titanium alloy (6% aluminium ,4% vanadium) also known as Ti 6-4 is important in 

the context of joint-sparing prostheses as this alloy is used for the construction of the  

implant shaft and extra-cortical plates. Trabecular bone has a stiffness between 10.4 ± 

3.5GPa  and 14.8 ± 1.4GPa, while the stiffness measured for cortical bone is between 

18.6 ± 3.5GPa  and 20.7 ± 1.9GPa (Rho, Ashman, and Turner 1993). Titanium has a 

stiffness approximately half of stainless steel (E=200 ± 20GPa) or cobalt chrome 

(E=250 ± 10GPa) which are often used for manufacture of prosthetic hips and knees, 

(Ganesh et al. 2005) and therefore it is less likely to cause stress shielding. Titanium, 

in its commercially pure form is relatively soft and weak. Therefore, for many 

biomedical applications titanium alloys that include aluminium and vanadium 

(Ti6Al4V) and have similar biocompatibility to pure Ti but are stronger, are used 

(Ratner et al. 2012). Titanium and its alloys are relatively soft when compared to 

stainless steel and cobalt chrome alloys and for this reason are not  used as bearing 

materials.     

1.10.3.2  Porous Titanium   

Conventionally stiff metal implants can induce bone atrophy and stress shielding due 

to the absence of mechanical stress (Sumitomo et al. 2008) associated with 

inappropriate load transfer. Stress shielding causes loosening of implants such as 

massive endoprostheses and joint replacements and can cause fracture as part of the 

bone resorbs and becomes weaker. Therefore the Young’s modulus of metallic 

implants in contact with bone should emulate the stiffness of the bone as closely as 

possible (Niinomi 2011). Although titanium and its alloys possess a lower modulus 

than some other metallic biomaterials commonly used in orthopaedic applications, 
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research into low modulus materials to replace the conventional metallic implants is 

an important area (Niinomi 2011). However, Young’s modulus is not the most 

important mechanical properties of the implants. Fatigue strength, tensile properties, 

wear resistance, fracture toughness and biological compatibility are also important 

factors for the practical medical application of the alloys (Niinomi 2008).  

Changing the structural design of the titanium alloys by introducing porosity into the 

alloys is an effective method for reducing the Young’s modulus. This method provides 

control of the Young’s modulus by variation of the porosity. The Young’s modulus of 

approximately 30% porous titanium made from powdered titanium is reported to be 

equal to Young’s modulus of cortical bone (Oh et al. 2002). Additionally pores of 

appropriate size could enhance bone ingrowth. The disadvantage of using porous 

implant is that both fatigue strength and the  ultimate  strength  are reduced. Titanium 

alloy is classified as being a notch sensitive material and the introduction of porosity  

where  notches are introduced  may affect its fatigue performance.    

Surface morphology is an important factor in determining the long-term implant 

stability. Many studies have reported improvement of bone-implant contact and 

promotion of initial and long term implant stability in using porous metals (Pilliar et 

al. 1986; Li et al. 2007). Porous materials provide biological anchorage for the bone 

tissue via the ingrowth of mineralized tissue into the pore spaces (Simmons et al. 

1999). 

1.10.3.3 PEEK 

Poly-ether-ether-ketone (PEEK) is one of the Polyaryletherketones (PAEK) group of 

polymers that has a stiffness similar to that of bone, which has made it an attractive 
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biomaterial for a bone implant. PEEK is used in trauma and spinal orthopaedic 

implants. Polyaromatic ketones are stable at high temperatures exceeding 300°C, are 

resistance to chemical and radiation damage and have the ability to be reinforced by 

other materials (May 2002; Kurtz 2011). PEEK has also shown to be resistant to 

degradation and damage caused by lipid exposure (Kurtz and Devine 2007). 

Viability and proliferation of normal human osteoblasts onto PEEK has been studied 

extensively. Researchers have concluded that pure PEEK is non-toxic and that cell 

proliferation was inhibited when β-TCP was present. This suggests that PEEK 

possesses good biological interaction even without the addition of traditionally 

bioactive components as enhancements (Petrovic et al. 2006). Due to interest in further 

improving implant fixation, PEEK biomaterials research has also focused on 

compatibility of the polymer with bioactive materials, including hydroxyapatite, either 

as a composite filler, or as a surface coating (Fan et al. 2004; Ha et al. 1997; Yu et al. 

2005). 

Despite the relatively rigid molecular chain structure, PEEK has considerable ductility 

and can accommodate large deformation plastic flow in both uniaxial tension and 

compression. At small strains and room-temperature PEEK displays a linear 

relationship between stress and strain in both tension and compression. Furthermore, 

the PEEK transition in compression is 30-40% higher than in tension. Beyond the yield 

transition, PEEK displays varying post-yield hardening or softening characteristics in 

tension and compression, depending upon the temperature and strain rate (Kurtz and 

Devine 2007). 
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Despite gradual changes in surgical technique and implant design, metallic locking 

plates and intramedullary nails continue to dominate the field of internal fracture 

fixation. The biomechanics of fracture fixation and presence of stress shielding 

depends upon the bending stiffness of the bone-implant complex, not simply the elastic 

modulus of the implant. The bending stiffness of an implant can be altered by changing 

its moment of inertia, as well as by modifying its elastic modulus, to improve these 

affects (Cordey et al. 2000). Stiffness will also dictate the shear strains at the interface; 

low stiffness means the increase of micromovement at the bone- implant contact.     

1.11 Aim and Hypotheses 

The aims of this thesis were to describe different design variables for joint-sparing 

prostheses and to investigate the perceived advantages and disadvantages regarding 

the implantation of knee-sparing endoprostheses such as, durability of the plate 

fixation and safety of bone resection with close margins.   

It is logical to assume that as joint-sparing implants retain the knee joint, the joint 

function will be more normal than with a replaced knee. However, no studies have 

quantified these differences. The objectives of this thesis were to investigate the 

functional outcomes, gait and proprioception in patients with knee sparing implants, 

joint sacrificing implants and healthy controls.    

As joint-sparing implants are customised for individuals, their design varies from one 

implant to another. However, the effect of these variations in design, on the bone 

adjacent to the extra-cortical plate and the implant are unknown. The aim of this thesis 

was also to investigate the strain and stresses generated within the bone and the implant 

using the Finite Element Analysis (FEA) method.  
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Therefore, it was hypothesised that:  

1. Following bone tumour surgery, knee joint-sparing implants have similar or 

reduced revision rates compared to conventional knee sacrificing implants.   

2. Extra-cortical plates are a durable method of attaching a knee joint-sparing 

prosthesis to the fragmental proximal tibia or distal femur.  

3. Patients with joint-sparing implants have improved proprioception due to the 

retention of soft tissues such as the  knee ligaments  which have been shown 

to contain  sensory nerve  endings . 

4. Patients with joint-sparing implants have improved function and acceptability 

of their implant compared to patients with knee sacrificing implants.    

5. Knee joint-sparing massive implants produce a more normal gait in 

comparison to conventional knee-sacrificing implants.  

6. FEA shows that extra-cortical plates do not cause stress shielding of the bone.   

7. Use of materials with lower Young’s modulus, such as porous titanium and 

PEEK do not increase risk of implant or plate fracture and can enhance bone 

formation adjacent to the prosthesis. 
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Chapter 2 The Design and Manufacture of Joint-Sparing 

Implants 

2.1 Introduction 

Patient-specific knee-sparing massive endoprostheses were introduced by Stanmore 

Implants (Elstree, UK) in 1997 to preserve joint function, wherever possible, by 

sparing the articulating segment of the bone and the related muscle attachments in 

patients undergoing a limb-salvage procedure (Figure 2.1). Advanced design and 

manufacturing technology is employed to create custom implants that closely match 

the patients’ anatomy, both in size and shape. Design considerations that specifically 

relate to individual needs, in relation to anatomy of the knee joint and the mechanics 

of the bone, are taken into account by the implant designers.  

2.2 Objectives 

The aim of this chapter is to review the design concepts used when manufacturing 

joint-sparing implants. This chapter will explain how various implant features aim to 

facilitate restoration of knee joint function and improve stability of the construct.  
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Figure 2.1 A photograph of a proximal tibial joint-sparing implant. The plateau of the 

implant is grooved and hydroxyapatite (HA) coated. Three grooved cutting fins on the 

plateau are also HA coated. The two extra-cortical plates have holes for screw fixation 

and are HA coated on the inside of the plate only. The anterior tendon attachment is 

also grooved and HA coated. The surface of the implant has been modified using 

Agluna® silver treatment to aid in reducing risk of infection.  

  

2.3 Method 

2.3.1 Medical Design Input 

The majority of patients who receive joint-sparing implants are young and active and 

are predicted to return to an active life style following surgery. The use of a joint-

sparing implant is decided by the surgeon, where the primary consideration is the 

resection of the tumour and of the bone so that an appropriate safe margin is achieved. 

Other considerations include; careful assessment of the patient’s survival probabilities, 

activity levels and the MRI and CT images of the affected site. MRI scans enable the 

surgeon to evaluate the neurovascular structures around the knee and any involvement 

of soft tissues with the tumour. Intact, tumour free popliteal neurovascular structures 

are crucial for patients to receive a joint-sparing implant (Gupta et al. 2006). The CT 

HA coated 
grooved plateau 
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images will allow the surgeon to decide (i) bone resection levels for each patient, (ii) 

whether the joint surface is intact and (iii) if a sufficient length of the bone is predicted 

to remain following resection, thereby allowing for extra-cortical attachment.   

Prior to implant design and manufacture, information such as the patient’s clinical 

history, growth rate and recent radiographic images of both the affected and 

unaffected, contralateral limb are considered by the implant designer. This information 

is used to create implants that will account for both current and future requirements 

needed by the patient. For example, extendible endoprostheses are commonly used in 

adolescent patients when the growth plate is removed during surgery and the 

contralateral limb has remaining growth potential. In order to prevent future leg length 

discrepancy, extendible implants are used that allow for reconstruction of the limb at 

the time of treatment and also address the issues associated with limb length as the 

patient grows.  

2.3.2 Design Objectives 

The main design objectives for a limb salvage implant are to create a stable construct 

following replacement of the affected site, and to preserve limb function for the 

lifetime of the patient. In custom design, objectives vary from case to case, however, 

the common objectives for joint-sparing implants are as follow;  

• Preservation of natural knee function through preserving the joint and soft 

tissue attachments.  

• Identifying the optimum location and geometry of extra-cortical plates in order 

to produce a stable initial fixation.  



Chapter 2 The Design and Manufacture of Joint-Sparing Implants 

79 

 

 
• Reduce stress shielding within bone adjacent to the extra-cortical plates by 

optimising plate thickness and adding slots and holes to decrease plate 

stiffness.  

• Designing an implant that is mechanically appropriate, where for example 

fatigue fracture of the extra-cortical plates does not occur.  

• Ensure the articulating surface of the joint is intact and not damaged by the 

implant to avoid pain in patients. 

• To use an appropriate implant size to ensure adequate soft tissue coverage.    

• Improve natural implant fixation by choosing the optimum resection level. 

• Ease of implantation and intraoperative flexibility, wherever possible 

2.3.3 Pre-Design Assessment   

Joint-sparing implants are designed using a Computer Assisted Design and 

manufacturing (CAD-CAM) method from Computer Tomography (CT) images 

obtained from patients pre-operatively. As the size of the tumour may change in a short 

period of time, it is essential that images are taken within one month of the proposed 

surgery. To begin with, a 3D model of bone from 2D CT images is developed using 

an image processing software (Mimics®, Materialise, Belgium). This software is used 

to design an implant that closely matches the geometry of the affected bone. The 

software contains in-built segmentation Hounsfield unit (HU) threshold ranges 

calibrated to a grey-level scale. Hounsfield units (HU) are standard numbers that 

originate from conventional multi-slice computed tomography (MSCT) imaging and 

represent the relative density of bodily tissues according to a calibrated grey-level 

scale, based on normalized HU for air (-1000 HU), water (0 HU) and dense bone 

(1000HU) (Nackaerts et al. 2011). The software operator can choose any one of the 
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built-in default HU threshold ranges available within the software or alternatively 

customise the HU threshold range to select the voxels belonging to a particular type of 

tissue to create a series of 2D images that only include the chosen voxels, called a 

“Mask”. Masks can also be edited manually to exclude any voxels that are not part of 

the desired geometry but have the same HU. Each mask can then be converted to a 3D 

model that can be exported to Computer Assisted Design (CAD) software. Figure 2.2 

shows a mask that was created by customising the HU threshold range, to include both 

cancellous and cortical bone tissue, and the 3D model created from the same mask.  

 

Figure 2.2 A photograph showing segmentation of CT images of a femoral bone shown 

in three planes; [A] transverse plane, [B] frontal plane, [C] sagittal plane and [D] the 

3D bone model created from the green mask.   

 

2.3.4 Determination of the Resection Plane  

Although the treating surgeon provides details of the measurements required for 

adequate resection of the bone tumour by combining the original CT and MRI images 
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and the 3D model created, the designers can also locate the appropriate resection that 

allows for sufficient tumour margins and ensures preservation of soft tissue and muscle 

attachments. 

Resection levels for knee joint-sparing implants can be categorised into three main 

zones, indicated in Figure 2.3. The ideal transection location for the insertion of a knee-

sparing implant is in Zone 2 as there is a sufficiently large cross sectional area of 

cancellous bone available for contact and fixation with the implant plateau. Adequate 

bone-implant contact in this region would result in a more physiological distribution 

of load within adjacent trabeculae (Ohyama et al. 2013). This region also has the 

optimum geometry for close positioning of the extra-cortical plates onto the bone 

surface.   

Resection of bone within zone 1, may result in a bone-implant construct that is less 

stable, due to a smaller cross sectional area of bone available for fixation and a lack of 

cancellous bone. Additionally, dense cortical bone can make the attachment of plates 

more challenging as the insertion of screws becomes more difficult. Implantation of 

the prosthesis is impossible in the proximal region above the femoral condyle 

eminence, as the extra-cortical plates will not follow the contour of the bone and 

adequate fixation is not possible. 

Due to the small amount of bone remaining, resections made in zone 3 often result in 

inadequate extra-cortical plate attachment. Joint-sparing implants requiring a resection 

in this zone are not recommended and patients often receive a conventional joint-

sacrificing endoprosthesis. Resection in zone 3 may result in the removal of essential 

muscle attachments and tendons. Additionally, short extra-cortical plates (no less than 
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1.00 mm) may not hold the remaining bone adequately which can result in an unstable 

implant fixation. If the plates are too long and exceed the length of the remaining bone, 

they can damage the joint’s surface and cause pain.      

A similar principle applies for resection of bone within the tibia; plate fixation 

becomes less optimal further away from the joint. The irregular shape of bone in this 

region results in the inability of the plate to locate fully onto the bone surface. 

However, in resections too close to the joint, there is a risk of removing the tibial 

tuberosity and compromising the knee function (Martini 2006). The quadriceps tendon 

attaches to the quadriceps femoris muscles to the superior aspect of the patella and is 

responsible for extending the knee. The patella tendon attaches the apex of the patella 

to the tibial tuberosity (Martini 2006). Failure to preserve the patellar tendon will lead 

to lack of an extensor mechanism which will alter the biomechanics of the knee and  

compromise its function gait (Oddy et al. 2005). 

 

Figure 2.3  Femoral resection zones in [A] Anterior-Posterior and [B] Medio-Lateral 

views and in the transvers plane [C]. 

A B C 
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During the design of most joint-sparing implants, the plane of resection is accurately 

measured as an offset of a datum plane. The datum plane is parallel to the plane that 

connects the two condyles of the respective bone and is tangential to both of them. The 

bone on the opposite side of the joint can be used to confirm the position and the 

orientation of the datum plane. The plane of resection furthest from the joint and any 

other planes required to form the body of the implant and match the shape of the bone 

are also parallel to the datum plane (Figure 2.4). The resection plane in proximal tibia, 

is horizontal and perpendicular to the shaft of the tibia, which anatomically lies almost 

completely vertical. However when inserting a femoral implant, the resection plane 

must allow for the 5 to 7° degree angle between the anatomical axis of the femur and 

the mechanical axis of the lower limb (Pickering and Armstrong 2015).     

 

Figure 2.4 Image showing the three planes that form the basis of the implant design 

 

2.3.5 Design of Extra-Cortical Plates 

Correct location of the extra-cortical plates is key in designing knee joint-sparing 

implants. Shorter (longitudinally), wider plates are usually used in shorter segments of 
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the bone to avoid contact of the plate with the articulating surface. Ideally, the extra-

cortical plates are positioned on a part of the cortex where there is a relatively flat 

surface. Such flat surfaces are usually found on the anterior-medial and anterior-lateral 

side of the femoral condyles and on the medial and anterior-lateral side of the tibial 

condyles, as marked on the transverse view of a right femoral and a left tibial condyle 

shown in Figure 2.5. These locations vary slightly depending on the resection level.       

 

Figure 2.5 Sketch showing the cross-sectional area of the femoral condyle [A] and tibial 

condyle [B], indicating areas most suitable for plate fixation. Green plates (lines) 

represent suitable areas while areas most unsuitable or less likely to be used for plate 

fixation are shown in red. 

Extra-cortical plates are designed to follow the shape of the bone, and to lie flush on  

the cortical surface. Maximal bone-plate contact is required for optimal initial implant 

stability following surgery. Using the 3D bone model created from the CT images, the 

implant designers can create a ‘sheet’ parallel to the line of resection on the cortex of 

the bone and the profile of the implant at the plateau to form the basis of the size and 

location of the plates. By trimming and thickening the sheet, the desired plate size can 

be created. Plates are usually 3mm thick with varying width and length. In some cases, 

extra-cortical plates are designed with tapering thickness, from 3mm at the plateau to 



Chapter 2 The Design and Manufacture of Joint-Sparing Implants 

85 

 

 
1.5mm at the tip in order to reduce bulkiness around the knee, and improve soft tissue 

coverage. The tapered plate design reduces plate stiffness and may in turn decrease 

bone loss in areas immediately adjacent to the plate (Cobb et al. 2005). As the plate 

becomes thinner the structural rigidity reduces. The relationship between plate 

thickness and rigidity is defines by the expression in Equation 2.1.   

𝑹𝒊𝒈𝒊𝒅𝒊𝒕𝒚 𝒐𝒇 𝒕𝒉𝒆 𝒑𝒍𝒂𝒕𝒆 = 𝑬𝒕𝟑     Equation 2.1   

Where E is the Young’s modulus of the material and t is the thickness of the plate.  

Critical contact stresses can inhibit bony incorporation of an implant. Rreducing plate 

thickness and therefore its stiffness can yield a more homogeneous stress distribution 

to the surrounding trabecular bone (Simon et al. 2003). Studies have also shown that 

less stiff implants yield better osseointegration (Huiskes et al. 2000). Additionally, 

extra-cortical plates are often manufactured with slots or holes to increase their 

flexibility and allow for greater vascularisation which may encourage bony integration 

such that the plates become incorporated within a remodelled cortex (Coathup et al. 

2000). Incorporation of the plates within the load bearing structure may provide better 

implant stability and achieve consistent longer term fixation (Cobb et al. 2005).   

The number of extra-cortical plates manufactured can vary between two and four 

plates per implant, depending on bone quality, length of the remaining bone and 

variations in bone geometry (Spiegelberg et al. 2009). Low quality and shorter 

segments of the bone often require more plates. Shorter and wider plates are used when 

the remaining segment of bone is greatly reduced and where plate fixation can still be 

used without the implant breaching the articulating surface. Prior to implantation, the 

inner surface of all extra-cortical plates are plasma-sprayed with a highly crystalline 



Chapter 2 The Design and Manufacture of Joint-Sparing Implants 

86 

 

 
(> 85%), thin (50 micron) hydroxyapatite (HA) coating. The extra-cortical plates also 

include grooves or holes that can be used for screw fixation. Grooves encourage bone 

ingrowth into the plate. Use of screws provide initial stability post-operatively and 

reduce micro-movements that decrease ossointegration (Søballe et al. 1992). In order 

to increase intraoperative flexibility, the number, type, length and direction of screws 

used can be decided by the surgeon at the time of operation. 

The earlier designs of knee joint-sparing implants included a shorter posterior plate to 

prevent implant rotation (Figure 2.6). However, this method of fixation has been 

replaced with other design features that augment a secure fixation. These design 

features include HA coated grooves (1mm in depth, width and length), spikes and 

cutting fins located on the plateau of the implant.    

 

Figure 2.6 [A] A design diagram of a distal femoral knee-sparing replacement with 

three extra-cortical plates. [B] The radiographic image of the same implant after 

implantation in a male patient, 8 years post-surgery. Proximally, the implant is fixed 

B A 

Posterior  plate 
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using a cemented IM stem and an extra-cortical plate. The shorter posterior plate and 

the uni-cortical screws are visible in the radiographic image. 

Following the introduction of extra-cortical plates in implant design by Stanmore 

Implants (Elstree, UK), other plate designs such as LISS® plates were designed and 

developed. LISS® plates that are anatomically shaped, reduce stress on the bone while 

optimising screw position.  

2.3.6 Design of the Implant Plateau  

The plateau of the implants include various features to improve implant stability.  

Since bone ingrowth onto the implant requires a rough surface (Coathup et al., 1999), 

the plateau at the bone-implant interface  has  grooves,  measuring 1 mm deep that are 

organised orthogonally to each other and plasma coated with HA. This pattern for 

organisation of the grooves is also used in the HA collars on the shoulder of the 

implant.      

As the increased mechanical interlock will promote and allow secondary bony 

ingrowth to the implant surface and osseointegration (Biemond et al. 2011), the plateau 

in some implants includes small, HA coated protrusions known as “cutting fins”. 

Cutting fins are smaller in length and width than the extra-cortical plates and have a 

sharp edge that is designed to provide anchorage for the implant for a more secure 

fixation by penetrating into the cancellous bone. This increases the bone-implant 

contact surface area, reduces micromotion and promotes the potential for bone 

attachment and implant fixation. The length of the cutting fins is dependent on the 

length of the remaining bone so that they do not penetrate the cortex and damage the 

joint surface, causing pain. Cutting fins are positioned in such way that they do not 

interfere or obstruct the insertion of the screws used for extra-cortical plate fixation. 
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The majority of implants reported in this thesis included three cutting fins (30%), 

however the number of cutting fins can vary between 2 and 4 (used in 21% and 1% of 

cases reported in this thesis) depending on the available surface area on the plateau. 

Figure 2.7 shows a diagram of a femoral joint-sparing implant that includes cutting 

fins and a radiographic image of the same implant after implantation. 

 

Figure 2.7 [A] A diagram of an extendible femoral joint-sparing implant with three 

cutting fins on the plateau. [B] A radiographic image of the same prosthesis after 

implantation.  

The grooved plateau with cutting fins is not designed and manufactured for all cases;  

56 of the implants reviewed in this thesis, had cutting fins.  

Between 1998 and 2013, 103 joint-sparing implants were designed, out of which five 

had 4 to 9 sharp “spikes” on their plateau, depending on the available surface. Spikes 

are typically 8mm long and are HA coated. Similar to cutting fins, spikes were 

Cutting fins 

Cutting fins 
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designed to anchor the implant into the bone and improve fixation. Figure 2.8 shows a 

diagram of a knee joint sparing implant with spikes. Due to the difficult and often time-

consuming manufacturing process involved in creating the spikes, their design is now 

obsolete.   

 

Figure 2.8 [A] A diagram of a split-shaft distal femoral joint-sparing implant with 

spikes located on the implant plateau. [B] An antero-posterior radiographic image of 

the same prosthesis in a male patient, 35 months post-implantation.  

Another fixation feature that is more commonly designed where resection levels are 

required further from the joint, is a short stem that is larger in diameter (typically 

18mm) than an intramedullary stem and is known as an “obturator stem”. The length 

of an obturator stem varies and depends on the length of the remaining bone. However, 

stems longer than 45mm are not used. The cross sectional shape of the stem is 

rectangular to limit implant rotation while anchoring the implant at the same time. 

B 

A B 

B 

Spike
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Obturator stems can be cemented or uncemented depending on the length of the 

remaining bone and the surgeon’s preference. Cemented stems have cement grooves 

while the uncemented stems are HA coated to promote bone growth and better fixation. 

This type of fixation is more commonly used in older patients where the growth has 

completed and the insertion of the obturator stem will not disrupt the fused and 

remodelled growth plate.  

2.3.7 Shaft of the Implant  

The cylindrical main body of the implant is known as the “shaft”, often comprises of 

two parts (split-shaft) that are bolted together and can be assembled and disassembled 

at the time of surgery (Figure 2.6 and Figure 2.8). The split-shaft feature facilitates 

partial revisions, allowing the surgeon to remove and replace the section of the implant 

that requires replacement while leaving the well-fixed section in situ. This minimise 

damage and disruption to the bone. In this way the surgeon could potentially replace 

the joint-sparing implant with a knee joint replacement, should a revision be required.  

All implants have a grooved “HA coated collar” located at the shoulder of the implant 

at the bone-implant junction.  

2.3.8 Intramedullary Stem Fixation 

Intramedullary (IM) stems are commonly used to attach massive bone tumour implants 

to the remaining segment of the bone. All cemented IM stems, have 4 longitudinal and 

parallel cement grooves, stretched along two thirds of the length of the stem. These 

grooves are manufactured in order to improve the mechanical bond between implant 

and cement and to reduce torsional motion. For cemented stems, an approximately 

2mm margin is allowed for the cement mantle (Malawer and Sugarbaker 2001). 
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However, this varies based on the size of a patient’s bone, with smaller margins 

allowed for smaller patients. The diameter of an IM stem is determined by the inner 

diameter of the cortex or the medullary canal and often has a tapering diameter of 13 

to 9mm in adults. The stem length, in femoral implants, provided sufficient length of 

the bone is remaining, is typically 150 mm. Massive endoprostheses with a cemented 

stem and a grooved HA coated collar have been reported to have low revision rates 

caused by aseptic loosening (Coathup et al. 2013).  In some cases, an uncemented stem 

is used where fixation relies on osteointegration and bone remodelling. The design of 

uncemented IM stems include cutting flutes of 1mm height and 15mm length (Figure 

2.7), located near the shaft of the implant that penetrate into the bone for improved 

initial fixation.    

When distal femoral implants are designed, the IM stem length is manufactured not 

too close to the greater trochanter in case a hip replacement is required in the future. 

In cases where inadequate stem length is available, one or more extra-cortical plates 

are designed to provide additional reinforcement of fixation (Figure 2.6). Figure 2.9 

shows a sketch of a joint-sparing implant with its various design features. In tibial 

replacements, the IM stem is often 140 mm in length. The stem must not be too close 

to the ankle joint to interfere with its structure and function. Extra-cortical plates can 

also be used in this type of prosthesis if a stem of inadequate length is designed.  



Chapter 2 The Design and Manufacture of Joint-Sparing Implants 

92 

 

 

 

Figure 2.9 A diagram of a split-shaft femoral joint-sparing implant, with a HA collar and 

cutting fins (Source of the image: Gupta et al., 2006).  

 

2.3.9 Manufacturing 

All parts of a joint-sparing implant are fabricated from medical grade 5 titanium alloy 

(Ti-6Al-4V). The main body of the implant and the extra-cortical plates are 

manufactured with a computer aided manufacturing method from individual pieces of 

titanium alloy.  The stem is made by conventional machining and is fitted into the main 

body of the implant using the shrink fit method at high temperatures before it is cleaned 

and sterilised. Less commonly, all parts are made from one solid bar.  
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In the majority of cases and at the surgeons’ request, the IM stem of the implant is 

curved to follow the natural arc of the bone, using a mechanical press. A 1:1 scale 

image of the patient’s leg in lateral view is used as reference for shaping the stem.   

The particle sizes used for the HA coating are 15, 30 and 50 micron and the nominal 

value of coating thickness is 50 to 200µm, however the actual thickness may vary 

depending on device geometry. The plasma spraying method involves ultrasonically 

cleaning and degreasing all surfaces of the implant using detergents prior to coating. 

Areas that are not HA coated are masked for protection while HA surfaces are grit 

blasted with white alumina grit and are passivated in nitric acid prior to plasma 

spraying (Tsui et al. 1998). HA-sprayed coatings are applied onto the implant using a 

Vacuum Plasma Spraying (VPS) technique. A mixture of gases such as Argon and 

Hydrogen is heated with a high energy arc up to 20,000°C and ionised. The heated gas 

is then ejected through a nozzle at a high speed and the powdered coating is melted in 

this high energy plasma jet and is deposited onto the implant surface (“Plasma Spray 

- Thermal Spray Coating Process” 2015).  

2.4  Conclusion  

To summarise, the key design objectives for knee-sparing implants are that:   

• The knee joint and soft tissue attachments are preserved by employing 

accurate imaging and image processing techniques in order to preserve 

natural joint function.   

• Positioning the extra-cortical plates on relatively flat surfaces of the bone 

and away from the curvature of the condyles provides a stable initial 

fixation which in turn will improve long term bone-implant attachment.   
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• Producing a tapered plate thickness will decrease the risk of stress shielding 

of the underlying bone.  

• Grooved extra-cortical plates, increase plate flexibility to encourage 

osteointegration and therefore initial stability and increased exposure to a 

vascular supply. 

• A suitable length of the fixation features on the plateau is used; such as 

spikes and cutting fins to ensure that the articulating surface of the joint is 

intact.  

• The HA coated grooved surface of the plateau, the spikes or the cutting 

fins, can increase initial fixation, reduce micromotion and improve implant 

fixation through increasing osteointegration.  

• Using several screw holes offers intraoperative flexibility, by allowing the 

surgeon to choose the location, orientation and type of screws, based on 

possible unforeseen circumstances.  

In this chapter the design objectives for knee-sparing implants was outlined and the 

design consideration and features that are implemented to meet these objectives were 

described. The design and manufacturing processes, from image processing to HA 

coating applied, aim to produce a reliable endoprostheses with a secure initial fixation 

and one that preserves natural knee function. Part of this thesis will investigate  

whether  the use of  these implants is a safe alternative to their knee sacrificing  

counterparts, and if the extra-cortical plates can securely fix the implant onto the 

remaining bone in order to preserved the natural knee function.
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Chapter 3 Joint-Sparing Implants: A Survivorship and 

Radiographic Study  

3.1 Introduction 

Although many studies have reported on the survivorship and complications of 

conventional joint sacrificing implants (Hardes 2013; Pala 2014; Pala 2013; Ahlman 

2006), there are only limited clinical studies that have reported on proximal tibial and 

distal femoral joint-sparing endoprostheses, all with follow-up of less than 4 years. 

Although these studies reported encouraging results in a small number of patients 

(Gupta et al. 2006; Spiegelberg et al. 2009; Wong and Kumta 2013; Agarwal et al. 

2010), there are no known studies that have investigated the mid- to long-term survival 

of joint-sparing megaprostheses. 

One of the major challenges of sarcoma surgery is to resect the tumour with an 

oncologically safe margin and to reconstruct the skeletal defect to the exact anatomical 

dimensions necessary for good function (Wong et al. 2012). Accurate bone resection 

that matches the dimensions of a custom endoprosthesis that fits the exact shape of the 

remaining bone, can ensure a suitable bone-implant alignment and provide a superior 

function (Wong et al. 2012). Various studies of reconstructive orthopaedic surgery, 
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particularly around the hip and the shoulder have shown improved radiological 

outcomes with increased surgical accuracy  (Anderson et al. 2005; Gregory et al. 2013, 

Baauw et al. 2015). In this chapter, the long-term survival of the knee joint-sparing 

implants and the complications associated with the use of these implants was assessed. 

The fixation and loosening of these prostheses was also investigated in a retrospective, 

post-operative radiographic analysis.   

3.2  Objectives  

The aim of this chapter was to evaluate patient and implant survival rates in surgical 

treatment with knee-sparing implants used to treat bone cancers. 104 patients, treated 

in 22 different centres, were investigated retrospectively. All patients were treated with 

knee joint-sparing implants designed and manufactured by Stanmore Implants 

(Elstree, UK). These implants were first introduced in 1998. This chapter also aimed 

to identify the common modes of failure of proximal tibial and distal femoral joint-

sparing implants and investigated whether failure rates vary with patients’ age, 

anatomical site and implant design. The relevant Clinical Audit approval was obtained 

for this investigation (Title: A Comprehensive audit of Joint Sparing Prostheses). A 

comprehensive list of all patients who were treated with distal femoral and proximal 

tibial knee joint-sparing endoprostheses was obtained and routed to their treatment 

institution. Patient medical files and post-operation radiographic images were 

reviewed for information including: age, diagnosis, treatment regime, date of surgery, 

complications and revisions. Information regarding the design of each implant such 

as, length of resection, number, size and location of extra-cortical plates and IM stem 

fixation was also obtained. Survival analysis was carried out for different patient 

outcomes and compared for different bony locations and patients’ age group, to 

establish whether the outcome of using knee-joint sparing implants was different 
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depending on patients’ groups. Using the sequential radiographic images available, an 

observational study was carried out to investigate the changes to the surrounding bone 

and fixation of knee joint-sparing implants.    

Additionally, this chapter aimed to correlate implantation accuracy and implant 

longevity by comparing the positional precision in failed endoprostheses and those that 

remained in situ. Accuracy of implantation was determined by quantifying bone-

implant alignment and comparing the amount of the remaining bone and implant 

position in pre-operative surgical plans with that achieved, measured on postoperative 

radiographs.    

3.3 Hypothesis  

It was hypothesized that;  

• Prostheses survival in joint-sparing implants is equivalent to those reported in 

the literature for conventional joint-sacrificing implants around the knee.  

• The rate of local recurrence in patients undergoing limb reconstruction using 

knee-sparing implants is no higher than those reported in the literature for 

conventional knee joint-sacrificing implants.   

• Inaccurate implantation of joint-sparing implants increases the risk of early 

mechanical failure such as implant fracture and loosing, such that implant 

duration is inversely correlated to implantation error.    
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3.4 Method  

3.4.1 Patient Follow-up 

A retrospective follow up of 104 patients undergoing primary or revision limb salvage 

surgery between September 1997 and January 2013, using knee-sparing implants 

designed and manufactured by Stanmore Implants Worldwide Ltd. (Elstree, UK) was 

carried out. All patients were treated for a bone tumour around the knee joint and one 

patient was treated bilaterally, resulting in a total of 105 implants investigated in this 

study. Seven patients were treated for failed intercalary endoprostheses or allografts. 

All the remaining patients underwent primary limb salvage surgery. Surgery was 

carried out in 22 centres worldwide and by 26 surgeons. The mean age of patients at 

the time of surgery was 22.8 ± 1.8 years (range: 3 to 72 years) where 41 patients were 

female and 63 male. No patients were recalled specifically for this study and data was 

obtained from the medical records and radiographs.  

This study investigated 59 distal femoral, 43 proximal tibial and three total femoral 

endoprostheses. Forty-six implants were fixed into the intramedullary canal with 

uncemented stems (26 femoral and 20 tibial implants) and 56 (33 femoral and 23 tibial) 

with cemented stems. The mean age of patients who received proximal tibial 

replacements was 28.8 ± 3.1 years (range: 7 to 72 years) and the mean age in patients 

with a distal femoral replacement, including the three with total femoral replacements, 

was 18.7 ± 2.0 years (range: 3 to 67 years). Forty eight (46.2%) patients were treated 

for osteosarcoma, 9 (8.7%) for Ewing’s sarcoma, 3 (3.0%) for chondrosarcoma, one 

for a bone metastasis and 37 (35.6%) for other rare types of bone and soft tissue 

tumours. Seven implants (6.7%) were inserted at revision surgery and their primary 

diagnosis was unknown. Thirty-five implants contained an extension mechanism as 
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these patients were skeletally immature with remaining bone growth potential. Of 

these growing prostheses, 27 implants were minimally-invasive extendible implants 

that required key-hole surgery for implant extension. Eight implants contained an 

extension mechanism where lengthening occurred non-invasively. These implants 

used an external electromagnetic field generated by a drive unit, to extend the 

prosthetic shaft in the outpatient department (Meswania et al. 2008). In addition to the 

extra-cortical plates, the implant fixation was augmented with additional design 

features: seventeen endoprostheses had obturator stems of varying lengths, ranging 

from 18mm to 40mm; 57 implants had cutting fins and 5 implants were manufactured 

with spikes on the plateau of the implant. The remaining 26 implants had no additional 

fixation feature on the plateau apart from the HA coated grooved surface.    

At the end of the follow-up period (mean= 36.1 ± 3.9 months, range: 3 to 151 months), 

8 patients (7.77%), 7 with femoral and 1 with proximal tibial endoprostheses, had died 

of causes unrelated to the implant. Seventeen patients were lost to follow-up; of these, 

9 patients had a femoral and 8 a tibial knee-sparing replacement. One patient 

underwent amputation due to infection.  

3.4.2 Implantation Accuracy 

Only a limited number of radiographs could be obtained for this study and therefore 

retrospective sequential radiographic images of 11 patients with a distal femoral joint-

sparing implant (4 female and 7 male) and 10 patients (5 female and 5 male) with a 

proximal tibial joint-sparing implant, were investigated. Radiographs were obtained 

from the archives of the Royal National Orthopaedic Hospital (Stanmore, UK) and 

University College Hospital (London, UK). All patients had been treated for primary 

bone tumours of the lower limb; eleven for osteosarcoma (6 with distal femoral and 5 
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with proximal tibial replacements), six for Ewing’s sarcoma (3 distal femoral and 3 

proximal tibial replacements) and the remaining four patients (2 distal femurs and 2 

proximal tibias) were treated for other rare types of bone tumours.    

All radiographic images were analysed for accuracy of the resection levels and implant 

orientation in order to establish whether there was a relationship between the accuracy 

of implantation and failure of extra-cortical plates, and compare that to those implants 

that remained in situ. The accuracy of the resection level was determined by measuring 

the length of the residual bone near the joint, from the earliest post operation 

radiographs and comparing this measurement with the length of the remaining bone 

stated necessary by the implant design engineers on the operational drawing for each 

patient (Figure 3.1). 

Radiographic images in the antero-posterior (AP) view, where the patients’ knee was 

fully extended and minimal rotation was detected, were used. Knee flexion and 

rotation of the leg in radiographs were detected by measuring the length and width of 

the implant’s image and comparing them to implant measurements in the operational 

drawings of the same endoprosthesis. Shorter length of the image of the implant and 

smaller width indicated knee flexion and leg rotation, respectively. Measurements 

were taken using a standard ruler with an accuracy of ±0.5mm and the diameter of the 

cylindrical implant shaft was used to calibrate each radiograph. The distance from the 

bottom of each condyle to the line of resection was measured and an average value 

was calculated for each patient. The difference between the actual resection length and 

the required value stated by the design engineer was calculated as the percentage error.  
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Figure 3.1 [A] Operational drawing that was provided by the implant design engineer, 

indicating the resection levels and the amount of remaining bone available for extra-

cortical fixation. [B] The post-surgery A/P radiograph used to quantify implantation 

accuracy. The length of the remaining bone was measured as shown. 

The angle between the mechanical and anatomical axes for both tibial and femoral 

endoprostheses was measured using AP view radiographic images. The anatomical 

axis of the femur creates an angle of 5˚ to 7˚ with the mechanical axis of the lower 

limb while the anatomical axis of tibia corresponds to the mechanical axis of the lower 

limb (Figure 3.2) (Cherian et al. 2014). Implant alignment was quantified by 

measuring the angle between the shaft of the implant and the line perpendicular to the 

line of the joint (Figure 3.3). As the anatomical axis of tibia corresponds to the 

mechanical axis of the lower limb, the tibial axis is almost completely vertical. The 

angle between the axis of the implant shaft and the line connecting the tibial condyles 

was measured to determine implant orientation and was expected to be approximately 

90°.  

Implant malalignment can be caused by incorrect fixation of the implant, 

mispositioned angle of the IM stem and incorrect position and angle of the resection. 

27 

mm 

A B 
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Figure 3.2 image showing the angle between the anatomical and mechanical axes in 

femur (“Biomechanics of the knee joint” 17 June 2015). 

 

 

Figure 3.3 An A/P radiograph showing the method used to measure the angle between 

the mechanical and anatomical axis of the femur. The red line indicates the line of 

resection, parallel to the line joining the tibial condyles. The blue line is the axis of the 

femur or shaft of the implant. The black line demonstrates the line perpendicular to the 

red line that anatomically would cross the centre of the femoral head. The angle formed 

by the blue and the black line, is the same as the angle between the mechanical and 

anatomical axis.  
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3.4.3 Statistics 

Endoprosthetic failure was defined as the need for complete revision of the component 

and conversion to a different prosthesis. Amputation due to locally recurrent disease 

was not included in the implant survivorship analysis as this was unrelated to the 

durability of the prosthesis. Loosening secondary to sepsis was classified as failure 

resulting from infection. The duration of follow-up was calculated from the time of 

surgery to the time of the latest evaluation. Implant survival was calculated using 

Kaplan-Meier analysis starting from the date of the original surgery with prosthesis 

failure, failure due to infection, fracture or aseptic loosening as the end point. Those 

without failure were censored either at patient death or date of last follow-up. Age at 

the time of surgery and duration of follow-up were univariately assessed for 

association with failure over the follow-up period using the chi-squared (χ2) test. The 

Spearman’s Rank coefficient was used to assess correlation between pairs of 

continuous variables. A p value < 0.05 was considered significant in all tests (version 

10.1; SPSS, Chicago, Illinois). 

3.5 Results  

3.5.1 Implant Modes of Failure and Complications  

3.5.1.1 Failure of the Endoprostheses 

A total of 24 implants were revised (22.86%) at a mean follow-up of 36.1 ± 11.0 

months (3 to 151 months). Seven (6.67%) implants were revised due to aseptic 

loosening of the intramedullary (IM) stem at a mean follow-up of 22.1 ± 8.5 months 

(3 to 61 months), four of which were uncemented stems. Five implants (4.76%) were 

revised for loosening of the extra-cortical plate fixation adjacent to the knee at a mean 

follow-up of 22.5 ± 14.2 months (4 to 69 months). Revision was necessary in five 



Chapter 3 Joint-Sparing Implants: A Survivorship and Radiographic Study 

104 

 

 
(4.76%) patients due to infection at 8, 12, 14, 29 and 151 months post-surgery (mean 

follow-up= 42.8 ± 27.3 months).   

One implant (0.95%) was revised due to local recurrence at 32 months post-operation 

and one patient with a proximal tibial replacement had various issues unrelated to the 

implant, including infection, an unhealed wound and a common peroneal nerve 

dysfunction, and underwent amputation. Limited knee flexion was also reported in one 

patient, however the implant was not revised. 

Fracture of a screw was reported in one case. The fracture resulted in loosening of the 

extra-cortical plate fixation around the knee at 47 months post-operation, necessitating 

the revision of the implant to a conventional joint sacrificing distal femoral implant. 

One patient had an accident while playing rugby and fractured the shaft of his joint-

sparing femoral implant at 77 months post-operation. As the patient’s physis had been 

spared in the initial operation, a significant growth was observed in this patient post-

operatively and therefore the fractured implant was replaced with a diaphyseal 

replacement. The telescopic shaft of a joint-sparing tibial replacement fractured at 144 

months post-operation (Figure 3.4). However, as the IM stem was well fixed into the 

medullary canal and the extra-cortical plates were incorporated within the bone, the 

endoprosthesis was not revised. Revising a well fixed implant is a complex procedure 

that can cause significant damage to a patient’s bone stock and can increase the risk of 

infection caused by the increased operation time and the size of incision. A cemented 

over-sleeve was provided by the implant manufacturer in order to fix the fractured 

shaft through a surgical procedure without revising the whole or part of the implant.  
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Figure 3.4 Fractured telescopic shaft of a proximal tibial joint-sparing implant at 144 

months post-operation. The IM stem and the extra-cortical plates are fixed firmly, 

therefore the implant was not revised.     

Implants with an obturator stem had the highest revision rate with 7 out of 17 (41.18%) 

implants being revised at a mean follow-up of 28.7 ± 9.1 months (5- 77 months). This 

was followed by implants with no additional fixation features on the plateau of the 

implant where 29.36% (8 out of 27) failed at a mean follow-up of 54.1 ± 19.5 months 

(3 to 151 months). 17.54% (10 out of 57) of implants with cutting fins failed at a mean 

follow-up of 37.3 ± 12.6 months (4 to 144 months). None of the implants with spikes 

were revised and all remained in situ at the end of the study period. A summary of the 

results is given in Table 3.1.   

3.5.1.2 Implant Complications 

Of the 27 patients with minimally invasive extendible prostheses, 5 implants collapsed 

(18.51% of minimally extendible implants) at 46, 52, 87, 119 and 139 months post 
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operation (mean= 79.6 ± 18.2 months), resulting in shortening of the limb following 

extension. None of the collapsed extendible prostheses were revised, however, surgical 

procedures were necessary to correct the leg length discrepancy. In all cases a C-

shaped titanium alloy component was placed on the telescopic shaft of the extendible 

implant to hold the shaft at the correct length and prevent it from collapsing.  

Five (4.76%) patients expressed discomfort around the knee caused by the screws used 

to fix the extra-cortical plates being too close to the skin or irritating the iliotibial band. 

In one case the lateral screw was removed due to the pain it was causing during knee 

flexion and in another case the implant was revised (Table 3.1).  
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Table 3.1 Summary of the patient follow-up results 

*Four implants did not include stem fixation; one implant was fixed using extra-cortical plates, both distally and proximally, and three are total femurs and 

include a hip replacement

    No of cases No of revisions Fractured 
implant or screw 

Aseptic loosening-
IM stem 

Loosening- Extra 
cortical plates 

Infection Collapsed 
extension 

Site  Femur 62 16 25.81% 3 4.84% 6 9.68% 2 3.23% 4 6.45%     

  Tibia 43 6 13.95% 1 2.33% 1 2.33% 3 6.98% 1 2.33%     

Age Adult 34 6 17.65% 1 2.94% 2 5.88% 3 8.82% 1 2.94%     

  Juvenile 71 16 22.54% 3 4.23% 5 7.04% 2 2.82% 4 5.63%     

Diagnosis Osteosarcoma 48 12 25.00% 3 6.25% 3 6.25% 1 2.08% 3 6.25%     

  Ewing's sarcoma 9 3 33.33% 0 0.00% 0 0.00% 1 11.11% 1 11.11%     

  
Other primary 
tumours 41 6 14.63% 0 0.00% 4 9.76% 3 7.32% 1 2.44%     

  Revision 7 1 14.29% 1 14.29% 0 0.00% 0 0.00% 0 0.00%     

Gender Female 41 7 17.07% 0 0.00% 4 9.76% 1 2.44% 2 4.88%     

  Male 64 15 23.44% 4 6.25% 3 4.69% 4 6.25% 3 4.69%     

Fixation 
features 

No fixation on 
plateau 27 8 29.63% 1 3.70% 2 7.41% 1 3.70% 2 7.41%     

  Cutting fins 57 8 14.04% 1 1.75% 3 5.26% 3 5.26% 2 3.51%     

  Spikes 4 0 0.00% 0 0.00% 0 0.00% 0 0.00% 0 0.00%     

  Obturator stem 17 6 35.29% 2 11.76% 2 11.76% 1 5.88% 1 5.88%     

Grower type None 71 16 22.54% 2 2.82% 5 7.04% 5 7.04% 4 5.63% n/a   

  Minimally invasive 26 5 19.23% 2 7.69% 1 3.85% 0 0.00% 1 3.85% 3 11.54% 

  Non-invasive 8 1 12.50% 0 0.00% 1 12.50% 0 0.00% 0 0.00% 0 0.00% 

Stem fixation Uncemented 48 12 25.00% 2 4.17% 4 8.33% 3 6.25% 2 4.17%     

  Cemented 56 10 17.86% 2 3.57% 3 5.36% 2 3.57% 3 5.36%     
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3.5.2 Implant Survivorship 

3.5.2.1  Age Groups: Juveniles and Adults 

Implant survival analysis was carried out in both adult and juvenile patients with 

various end point criteria, including implant revision for any reason, revision due to 

infection, aseptic loosening and fracture of the implant. Implant survival rate at 120 

months when fracture of the implant, extra-cortical plates or fixation screws was the 

end point was 100% and 90% for adults and juveniles, respectively. This rate 

decreased to 50% and 45% at 150 months post-surgery (Figure 3.5). When aseptic 

loosening of the IM was the end point, the probability of implant survival in adults and 

juvenile patients at 150 months was 92% and 89%, respectively (Figure 3.6) and 95% 

and 93% when infection was the end point (Figure 3.7). The overall probability of 

implant survival with failure for any reason as the end point in adults and juvenile 

patients, was 40% and 32% at 150 months (Figure 3.8). With death as the end point, 

survival was 87% and 77% in adults and juveniles at 150 months. No significant 

differences were found when the results of these two groups were compared. However, 

when survival was compared when loosening of the extra-cortical plates was the end 

point, results were significantly different at 150 months post-operatively; implant 

survival for adults and juveniles was 85% and 93%, respectively (p= 0.023) (Figure 

3.9).  

3.5.2.2 Anatomical location: Femoral and Tibial Replacements  

Implant survival rates were compared in the two anatomical sites. Probability of 

survival was 92% and 89% at 150 months, for the femoral and tibial replacements 

respectively when the end point was loosening of the extra-cortical plate fixation 

(Figure 3.10). Probability of survival was 83% and 91% at 150 months for femoral and 

tibial replacements when failure due to aseptic loosening of the IM stem was the end 
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point (Figure 3.11). Survival rates of 100% and 77% were found for tibial and femoral 

replacements when the end point was fracture of the implant or screws (Figure 3.12). 

The probability of survival was 92% and 96% at 150 months for the femoral and tibial 

implants, when the end point was infection. No significant difference in implant 

survival was found when the different end points were compared in the two anatomical 

locations. The probability of survival for revision of the implant for any reason was 

48% for femoral and 81% for the tibial replacements, at 150 months follow-up. Results 

were not significantly different (Figure 3.13). When the end point was patients’ death, 

the survival rate was 65% and 97% for the femoral and tibial groups at 150 months 

post-surgery. No significant difference was found.   

3.5.2.3 Gender 

Implant survival rate at 120 months when fracture of the implant, extra-cortical plates 

or fixation screws, was the end point was 100% and 70% for female and male patients 

respectively. This rate decreased in male patients to 35% while survival rate remained 

at 100% in female patients at 150 months post-surgery but was not significant (Figure 

3.14). When aseptic loosening of the IM was the end point, the probability of implant 

survival in female and male patients at 150 months was 93% and 87% respectively 

(Figure 3.15) and 95% and 93% when infection was the end point. The overall 

probability of implant survival with revision for any reason as the end point, for female 

and male patients was 80% and 24% at 150 months. With death as the end point, 

survival was 89% and 30% in female and male patients, at 150 months. Survival at 

150 months post-surgery was compared when failure occurred due to loosening of the 

extra-cortical plates; implant survival in female patients was 96% while in male 

patients was 87%  (Figure 3.16).  
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Although overall female patients presented improved probability of survival compared 

to male patient, no significant differences were found when the results of these two 

groups were compared. 

3.5.2.4 Overall Implant Survivorship  

The overall probability of survival for all implants and all age groups, when the 

fracture of the implant or screws was the end point was 54% at 150 months (Figure 

3.17). With an end point of aseptic loosening of the IM stem, survival was 88% at 150 

months (Figure 3.18). When failure of the extra-cortical plate fixation was 

investigated, the probability of survival was 91% at 150 months (Figure 3.19). The 

overall probability of survival for all implants, when the end point was total or partial 

revision of the implant for any reason was 39% at 120 months (Figure 3.20).  
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Figure 3.5 Kaplan-Meier survival curve for implant or screw fixation fracture in 

juvenile and adult patients. Survival rate was approximately halved for both groups at 

150 months. At 100 months post-surgery, 2 adult and 8 juvenile patients remained. 

Fracture of the implant occurred in one adult at 145 months, and in one juvenile 

patient at 144 months. 

 

Figure 3.6  Kaplan-Meier survival curve for adults and juvenile patients. The 

probability of survival was 92% in adults and 89% in juveniles for aseptic loosening of 

the IM stem as the end point. 
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Figure 3.7 Kaplan-Meier survival curve for adults and juveniles at 150 months. 

Probability of survival was 92% and 89%, respectively with infection as the end point. 

 

Figure 3.8 Kaplan-Meier survival curve for juvenile and adults when the end point was 

revision of the implant for any reason. Survival at 120 months was 40% in adults and 

65% in juvenile patients. 
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Figure 3.9 Kaplan-Meier survival curve for juvenile and adult patients when loosening 

of extra-cortical plates was the end point. The results were significantly different at 150 

months post-operation (p=0.023). 

 

Figure 3.10 Kaplan-Meier survival curve for femoral and tibial replacements when 

loosening of extra-cortical plates was the end point. Survival at 150 months was 

estimated to be 92% and 89%, respectively.  
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Figure 3.11 Probability of survival was 83% and 91% at 150 months for femoral and 

tibial replacements when aseptic loosening of the IM stem was the end point. 

 

Figure 3.12 Kaplan-Meier survival curve for femoral and tibial replacements when the 

end point was fracture of the extra-cortical plates or the screws. Survival rate was 77% 

and 100% at 150 months. 
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Figure 3.13 Kaplan-Meier survival curve for femoral and tibial replacements when the 

end point was revision of the implant for any reason. Probability of survival for the 

femoral and tibial replacements was 48% and 81%, respectively at 150 months. 

 

Figure 3.14 Kaplan-Meier survival curve in female and male patients when the end 

point was implant fracture. Survival rate in male patients reduced to 35% at 150 

months while it remained at 100% in female patients. However, this was not significant. 
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Figure 3.15 Kaplan-Meier survival curve for female and male patients when aseptic 

loosening of the IM stem was the end point. The probability of survival was 93% in 

female patients and 87% in male patients. 

 

Figure 3.16 Kaplan-Meier survival curve for female and male patients when failure due 

to loosening of the extra-cortical plates was the end point. Probability of survival was 

96% in female patients and 87% in male patients. 
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Figure 3.17  Kaplan-Meier survival curve; probability of survival for all implants was 

81% at 120 months and 54% at 150 months when end point was the fracture of the 

extra-cortical plates or the screws. 

 

Figure 3.18  Kaplan-Meier survival curve showing the probability of survival for all 

implants was 88% at 150 months when end point was aseptic loosening of the IM stem. 
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Figure 3.19  A Kaplan-Meier survival curve showing the probability of survival for all 

implants where failure of the extra-cortical plates was defined as the end point. 

Probability of survival was 88% at 120 and 150 months. 

 

Figure 3.20  Kaplan-Meier survival curve for all implants where the end point was 

revision or partial revision of the implant for any reason. Probability of survival at 10 

years was 39%. 
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3.5.3 Qualitative Analysis of Extra-Cortical Plate Fixation and Resection 

Length  

Loosening around the extra-cortical plates was observed in three tibial implants at 1, 

7 and 12 months post-operation. All three cases were later revised. The mean resection 

amount for the three failed implants was 32.5 ± 5.8% (range: 21- 41%) of the total 

tibial length; the mean resection length for the remaining 7 patients whose fixation 

remained stable was 52.9 ± 7.8% (range: 31- 86%). When the average resection 

amount in patients with a stable fixation and those that were revised were compared, 

no significant differences were found.  

One implant that included an obturator stem was leaning laterally, one month post 

operation. Twelve months post-operation, radiographic images of the implant showed 

that the prosthesis was not aligned with the tibial shaft and radiolucent lines were 

visible around the IM stem. Bone remodelling in form of increased bone diameter 

along the IM stem was visible and the plate fixation appeared unstable with the implant 

leaning laterally (Figure 3.21).  

In another patient that experienced instability of plate fixation, initial signs of 

loosening were visible at 7 months post-operation. A radiolucent line was visible 

between the posterior extra-cortical plate and the bone and the implant appeared to 

lean anteriorly. Fixation in this case was achieved with three extra-cortical plates and 

4 uni-cortical screws. As the resection in this case was close to the diaphysis, extra-

cortical plates were attached to the tibial shaft. Increased malalignment of the implant 

with the tibial bone was more apparent in 10 month post-operation radiographs, where 

the implant appeared to have leaned further anteriorly. At 12 months post-operation, 

radiographic images revealed instability of the implant; screw migration, implant 



Chapter 3 Joint-Sparing Implants: A Survivorship and Radiographic Study 

120 

 

 
malalignment and growth of the residual bone segment was evident (Figure 3.22). The 

implant was later revised and replaced with a diaphyseal replacement. Implant fixation 

to the residual proximal aspect of the tibial bone was achieved with an IM stem.  

The third case of extra-cortical plate fixation failure was in a proximal tibial implant 

that was secured using three extra-cortical plates and 5 uni-cortical screws. Although 

the immediate and 4 month post-operative radiographs showed a stable fixation, at 12 

months, migration of the implant was evident. The visible radiolucent area between 

the proximal residual segment of the tibia and the plateau of the implant that was noted 

in earlier images had disappeared at 12 months and 18 months post-operation. 

However, this was not due to bone growth as the distance between the tip of the medial 

plate and the line of the joint had decreased, suggesting that migration of the implant 

had occurred. The change in orientation of the screws indicated screw migration. 

Fracture of one of the screws through the medial plate was noted at 18 months post-

surgery (Figure 3.23). This implant was later revised and replaced with a diaphseal 

implant where fixation was achieved with IM stems.    
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Figure 3.21 A/P radiographs, showing a proximal tibial replacement at [A] 4 months 

post- operation and [B] at 12 months post-surgery. The implant is leaning laterally, 

causing malalignment of the knee joint.  

 

Figure 3.22 Radiographs of the implant at 5 months post-operation [A] in A/P and [B] 

M/L view. [C] and [D] show the same implant at 12 months post-operation in the A/P 

and M/L views, respectively. Screw migration and implant malalignment by leaning 

anteriorly are visible.   
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Figure 3.23 [A] A/P Radiographs of a tibial joint-sparing implant 4 months post- 

operation. A radiolucent line between the bone and the implant is visible. [B] Shows the 

same implant at 18 months post-operation where one of the screws was fractured and 

implant migration is visible. 

 

3.5.3.1 Aseptic loosening  

Aseptic loosening of the intramedullary stem of a distal femoral replacement in a 5 

years old male patient was the reason for revision. At three months post-operation, the 

IM stem had migrated laterally. After 12 months, radiographical signs of loosening 

became evident with proximal migration of the implant. At 36 months post-operation, 

fragmentation of the residual proximal femoral bone was detected and approximately 

48 months post-operation the IM stem of the implant was revised and replaced with 

triple-plate fixation (Figure 3.24).  

Although revision due to aseptic loosening of the IM stem was not observed in any of 

the other implants reviewed for this part of the study, radiolucent lines around the 
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cemented and uncemented IM stems that could indicate initiation of aseptic loosening 

were noted in eleven patients. Radiolucent lines were detected in post-operative 

radiographs in three cases, two tibial (both cemented) and one femoral implant 

(uncemented). During the first 3 months post-surgery, the presence of radiolucent lines 

was noted in 4 cases, one femoral (uncemented) and 3 tibial replacements (2 cemented 

and 1 uncemented). The remaining cases showed signs of radiolucency between 36 

and 60 months post-operation.  

 

Figure 3.24 Radiographs showing loosening of the IM stem in a patient with a distal 

femoral implant; [A] A/P view radiograph, 3 months post-surgery the IM stem had 

slightly migrated laterally. [B] A/P view radiograph at 12 months post-surgery, the 

implant had migrated proximally as well. [C] M/L view radiograph at 36 months post-

surgery, peri-prosthetic bone loss of the femoral bone is visible. 
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3.5.3.2 Bone remodelling  

Bone remodelling was observed in more than half of all cases reviewed 

radiographically. In five cases, bone growth had occurred within 12 months of 

implantation. Bone growth was detected after 12 months post-surgery and between 24 

and 60 months post-operation in 5 tibial and 4 femoral replacements. Extra-cortical 

bone growth around the HA collar was observed in 6 patients, 4 with a femoral and 2 

with a tibial implant (Figure 3.26). In four cases, where a gap between the implant and 

the bone was noted in earlier radiographic images, the gaps were filled in by bone 

formation in later radiographs (Figure 3.27). In addition to bone remodelling, 

heterotrophic ossification could be detected near the HA collar in 4 cases (Figure 3.28). 

Two femoral replacements displayed signs of bone loss at the bone-implant junction 

at the shoulder of the implant at 2 months and 12 months post operation (Figure 3.25). 

Cortical narrowing adjacent to the uncemented stems was observed in a tibial 

endoprosthesis at 10 months post-surgery (Figure 3.25). In later radiographs, 

hypertrophy on the opposite side of the narrowing was evident (Figure 3.29).  
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Figure 3.25 A/P radiographs [A] and [B] show two femoral joint-sparing implants with 

bone loss at the implant shoulder-bone junction at 12 months and 2 months post-

operation, respectively. [C] An A/P radiograph shows a tibial joint-sparing implant 

with cortical narrowing adjacent to the uncemented stem at 10 months post-operation.  

 

Figure 3.26 [A] An A/P radiograph of a distal femoral joint-sparing implant at 6 

months post-operation. [B] An A/P radiograph of a tibial joint-sparing implant at 12 

months post-operation. Arrows indicate extra-cortical bone growth onto the HA collar.  
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Figure 3.27 A/P radiographs of a proximal tibial implant at [A] 3 months post-surgery 

and [B] 30 months post-surgery. The gaps between the bone and the implant collar and 

the extra-cortical plate (arrows) appear to be filled at 30 months post-surgery. The gap 

closure could be a result of bone formation at the collar or the sinking of the implant 

into the bone. The disappearance of the gap between the bone and the extra-cortical 

plate could be a result of bone formation or caused by the angle of exposure (rotated 

leg).  

 

Figure 3.28 M/L radiographs of a joint-sparing tibial replacement [A] post-surgery and 

[B] at 2 months post-operation. Heterotrophic ossification adjacent to the HA collar is 

visible. [C] Shows extra-cortical bone growth into the HA collar, at 36 months post-

surgery.  
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Figure 3.29 A/P radiographs a proximal tibial implant at, [A] 60 months post-

operation, showing cortical narrowing adjacent to the stem. [B] At 96 months post-

surgery, extra-cortical bone growth into the HA collar and bone hypertrophy is visible. 

[C] At 132 months post-surgery further bone remodelling is visible.   

 

3.5.4 Implantation accuracy  

Mean percentage error for resection in failed implants was 3.7 ± 2.0% (range: 1 to 8%) 

and the mean alignment error was 2.5 ± 1.1° (range: 0.9 to 4.7°). The mean percentage 

error for resection in the non-failure implants was 13.9 ± 9.5% (range: 0 to 65%) and 

the mean alignment error was 3.0 ± 0.5° (range: 1.5 to 4.3°). 

The mean planned resection level in the femoral group was 37.5 ± 7.9mm (range: 14.5 

to 96.0mm), when measured from the articulating surface of the bone at the knee joint. 

The average percentage error in resection level for all femoral replacements was 28.1 

± 9.1% (range: 0.2 to 103.1%) and the mean error in angle between the mechanical 

and anatomical axes was 3.3 ± 0.6° degrees (range: 0° to 5.4°). The average time in 
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situ for all femoral replacements included in the radiographic analysis was 75 ± 9 

months (range: 28 to 118 months). At the end of the follow-up, 8 femoral implants 

remained in situ and 3 had been revised; the average implantation time for non-failure 

cases was 87 ± 7 months (range: 61 to 118 months). The reasons for revision in three 

implants were; infection, failure of the plate fixation adjacent to the knee and aseptic 

loosening of the IM stem. The average implantation time for the failed cases was 44 ± 

14 months (range: 29 to 71 months); the mean percentage error in resection level for 

the failed femoral implants was 47.0 ± 29.1% (range: 5.0 to 103.1%) and the mean 

error in alignment angle was 3.3 ± 1.6° (range: 0° to 5.0°). The mean percentage error 

in resection level for the implants in situ was 20.9 ± 7.7% (range: 0.2 to 64.0%) and 

the mean error for the inclination angle was 3.7 ± 0.8° degrees (range: 0° to 5.4°).  

The mean planned resection level in the tibial group was 38.3 ± 7.4mm (range: 12.0 to 

78.5mm). Average time in situ in tibial endoprostheses was 60 ± 13 months (range: 20 

to 144 months). At the end of the follow-up period, 7 implants remained in situ; the 

mean implantation time for non-failure cases was 76 ± 14 months (range: 28 to 151 

months). Three tibial implants were revised, all due to failure of the extra-cortical plate 

fixation. The mean implantation time for the failed implants was 23 ± 2 months (range: 

20 to 27 months). The average percentage error in resection level for all tibial 

replacements was 18.3 ± 6.8% (range: 1.3 to 65.3%) and the mean error in inclination 

angle was 2.8 ± 0.4° degrees (range: 0.9° to 4.7°). The average percentage error in 

resection level for the failed tibial implants was 4.6 ± 1.8% (range: 1.3 to 7.6%) and 

the mean error in the inclination angle was 2.5 ± 1.1° (range: 0.9° to 2.9°). The mean 

percentage error in resection level for the implants in situ was 24.1 ± 8.8% (range: 6.09 

to 65.3%) and the mean error for the inclination angle was 3.0 ± 0.5° degrees (range: 

1.5° to 4.3°).  
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Figure 3.30 to Figure 3.33 represent the relationship between the error in alignment 

angle and resection error and the time the implant was in situ at the time of 

radiographic analysis for two groups of patients. Results include those whose implants 

were revised and those whose implants were still in situ at the end of the follow-up 

period. The time that the implants were in situ was plotted against the percentage error 

in resection levels and the inclination angle for both femoral and tibial groups. 

Spearman’s Rank coefficient parameter was calculated to determine whether 

percentage error in the implantation is associated with the failure of the implant and 

the longevity of the construct. R2= 0.998 in failed femoral group for resection error 

was found but no correlation was found between the duration of implantation and 

resection error or alignment angle error in any of the other groups.   

When the error in alignment angle was plotted against the error in resection levels, no 

correlation was found. Figure 3.34 and Figure 3.35, show the relationship between the 

measured alignment error and the resection percentage error.  
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Figure 3.30 Scatter diagram showing femoral resection percentage error against the 

implantation time for failed fixations and stable fixations. 

 

Figure 3.31 Scatter diagram showing tibial resection percentage error against the 

implantation time for failed fixations and stable fixations. 
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Figure 3.32 Scatter diagram showing femoral alignment angle error against the 

implantation time for failed and stable fixations. 

 

Figure 3.33 Scatter diagram showing tibial alignment angle error against the 

implantation time for failed and stable fixations. 
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Figure 3.34 Scatter diagram shows the resection percentage error against the error in 

alignment angle for all femoral implants. 

 

Figure 3.35 Scatter diagram shows the resection percentage error against the error in 

alignment angle for all proximal tibial implants. 
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3.6 Discussion 

Bone tumours of the proximal tibia and distal femur are often treated by removal of 

the affected segment of bone and replaced with a conventional, knee sacrificing 

massive endoprosthesis. Although there are many studies that have investigated the 

outcomes of using conventional, knee joint sacrificing massive endoprostheses, there 

are few studies, each with small number of patients that have examined the outcomes 

of using knee joint-sparing implants that utilise extra-cortical plates. The aim of this 

chapter was to determine the survival and complication rate in patients treated with 

massive knee sparing implants and to identify possible contributing factors, such as 

age, gender and the affected site in implant failure. Post-operative radiographs were 

also examined to observe changes to the surrounding bone and fixation of the implants. 

The correlation between implantation accuracy and implant failure was also 

investigated by quantifying alignment and resection length accuracy in both failed and 

stable implants.    

The overall revision rate in this study was 22.86% at a mean follow-up of 36 ± 11 

months with aseptic loosening of the IM stem being the primary mode of failure 

(6.67%), followed by infection (4.76%) and failure of the extra-cortical plate fixation 

(4.76%). Probability of survival was estimated to be 39% at 120 months, where the 

end point was total or partial revision of the implant for any reason. Studies of joint-

sacrificing massive endoprostheses with a similar follow-up period have reported 

infection rates of 3 to 12.5% and aseptic loosening of 3 to 8% (Capanna et al. 2015; 

Hamilton et al. 2005; Coathup et al. 2013). In a recent study that investigated massive 

joint-sacrificing implants in the lower extremity, Capanna et al. (2005) reported a 66% 

survival rate at 120 months, an improved 7% survival rate at ten years when compared 

with the findings of this study. Although no fracture of the extra-cortical plate was 
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found in this study, fracture of a fixation screw in one case was a possible contributing 

factor in failure that resulted in implant revision. There are limited revision options 

available to patients with a joint sacrificing implants due to the loss of bone stock and 

the knee joint. However, in patients with a joint-sparing implant, if the joint-spring 

attachment fails, it can be revised to a conventional joint sacrificing implant. 

The overall revision rate was higher in the distal femoral replacements, with a four-

fold increase in aseptic loosening and double the number of implant fracture and 

implant infection when compared with tibial replacements. However, more tibial 

replacements were revised due to failure of the extra-cortical plate fixation. When 

patient age was compared, the overall failure rate at 150 months was higher in patients 

under 21 years of age at the time of surgery than those over the age of 21; this was not 

significant. A higher failure rate of the extra-cortical plate fixation was also noted in 

patients over 21 years of age compared with those younger than 21 years. The 

probability of survival was significant when these two age groups were compared with 

patients under the age of 21 having a better survival probability at 150 months. In 

contrast to the findings of this study, Unwin et al. (1996) investigated aseptic loosening 

in cemented massive bone tumour prostheses of the lower limb and reported that 

patients under 20 years of age had a worse probability of survival. When the patients 

age was investigated in combination with resection percentage, under 20 year old 

patients had the worst probability of survival when aseptic loosening was the end point 

for both femoral and tibial sites (Unwin et al. 1996). In joint-sparing implants and in 

juvenile and adolescent patients that the growth plate can be preserved, the affected 

leg can continue to grow naturally without a need for an extendible implant. This can 

eliminate failures associated with the extension mechanism and improve the risk of 

infection caused by key-hole or open surgeries required for extending the implant.  
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The rate of failures associated with the extra-cortical plate fixation around the knee 

was higher in male patients compared with the female patients. The probability of 

survival of the implants at 150 months was 65% higher in female patients than in 

males. Overall, probability of survival of the implant was higher for female patients 

for all failure modes, however it was not significant in any of the failure categories 

investigated.   

Aseptic loosening and failure of the extra-cortical plate fixation was more commonly 

associated with uncemented implants. Radiographic assessment indicated that the 

majority of the cases reviewed, had a stable extra-cortical plate fixation and bone 

remodelling that encouraged implant fixation was observed in most cases. However, 

no correlation between implant failure and implant fixation was found. In a study of 

eight joint-sparing proximal tibial endoprostheses, Spiegelberg et al. reported two 

complications, none of which were related to failure of extra-cortical plate fixation. In 

one case, the limb was amputated due to infection and in the other, the implant was 

revised to a knee-sacrificing implant due to patient’s fall, shortly after surgery 

(Spiegelberg et al. 2009). Gupta et al. reported on early outcomes following distal 

femoral joint-sparing surgery at the mean follow-up period of 24 months. This study 

reported no cases of stem fracture, failure of the implant, aseptic loosening, infection, 

recurrence of the tumour or amputation (Gupta et al. 2006). 

One of the most common complications associated with use of massive implants is 

infection (Kinkel et al. 2010; Orlic et al. 2006) that can have devastating outcomes for 

the patient (Racano et al. 2013). Deep infection is often treated by staged revision 

surgery and intravenous antibiotic treatment and if persistent, amputation may become 

inevitable (Jeys and Grimer 2009). In a retrospective review of 2174 patients who 
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received massive endoprostheses for tumour treatment, Henderson et al. reported 534 

failures, out of which 182 (34%) failures were due to infection, making infection the 

primary cause of failure (Henderson et al. 2011). Similarly Hardes et al. reported a 

37% infection rate in a follow-up study of patients who underwent extra articular 

resection of the bone around the knee (Hardes et al. 2013). The failure rate due to 

infection in our study was significantly lower with 4.7% at a mean follow-up of 48 

months. The infection rate reported in this study (4.67%) is comparable to those found 

in studies of other implant types with a similar follow-up period and patient numbers. 

Coathup et al. studied the outcome of using distal femoral endoprostheses with a 

rotating hinge knee and reported a 3% infection rate (Coathup et al. 2013). Sewell et 

al. reported an infection rate of 5.6% for tibial reconstruction using intercalary 

diaphyseal endoprosthetic implants after resection of the tumour (Sewell et al. 2011). 

In earlier studies, aseptic loosening of the intramedullary (IM) stem was reported as 

the primary cause of failure in conventional knee sacrificing implants (Unwin et al. 

1996). Although design improvements, such as the introduction of a rotating hinge 

knee design and a hydroxyapatite ingrowth collar have reduced aseptic loosening in 

megaprostheses (Myers et al. 2007), aseptic loosening remains one of the most 

common modes of failure in intra-articular massive endoprostheses with incident rates 

of 2.4% to 17% (Hardes et al. 2013; Pala et al. 2013; Ahlmann et al. 2006; Kinkel et 

al. 2010). In this study a loosening rate of 6.67% was found, which is within the range 

reported for massive conventional joint sacrificing implants. This comparable failure 

rate also indicates that implant attachment by means of extra-cortical plates, can 

provide a sufficiently secure fixation that does not increase the risk of aseptic 

loosening of the IM stem. 
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Local recurrence is considered a failure of local tumour control (Rong-Sen 2005) that 

has been a concern over the use of joint-sparing reconstruction methods (Agarwal et 

al. 2010). In our group of patients, one (<1%) patient had a local recurrence and three 

patients (2.88%) developed metastatic diseases and died. Some studies have indicated 

an approximately 10% rate of local recurrence amongst bone tumour patients who 

were treated with conventional massive endoprosthetic replacements (Hamilton et al. 

2005; Coathup et al. 2013). Other studies have reported a much higher local recurrence 

rate (26.14%) and developing metastasis (32.02%) (Fiorenza et al. 2002). Many factors 

such as aggressiveness of the tumour with wide extension and a poor response to 

chemotherapy may contribute in causing local recurrence (Rong-Sen 2004). However, 

careful preoperative planning and assessing individual patients for suitability of 

receiving a joint-sparing resection can decrease the incidence of local recurrence 

(Rong-Sen 2005). 

Other complications following limb-salvage operations using megaprostheses, such as 

bone or wound necrosis, dislodgement and dislocation, rotational deformity and 

periprosthectic fractures were not found in the group of patients studied here.  

However, the review of the patients’ notes and their post-operative radiographic 

images revealed other complications such as local osteolysis (3 cases), joint 

contracture (one case), discomfort and irritation caused by plate and screw fixation 

around the knee (5 cases) and implant fracture (3 cases).   

Studies of other intercalary reconstruction methods for treatment of bone tumours, 

such as devitalized autograft and allografts report similar infection and recurrence rates 

to those found in this study. However, an overall higher complication rate associated 

with and isolated to these methods has been reported (Muscolo et al. 2008; Ogura et 
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al. 2015; Aponte-Tinao et al. 2014). A follow-up study of a similar number of patients 

to the study presented here and treated for tumours of femur, reported a 17% fracture, 

22% non-union, 13% not healing at the host-donor junction and 1% fracture of the 

fixation implant (Aponte-Tinao et al. 2012). Agrawal et al. 2010, compared various 

intercalary reconstruction methods, including the use of joint-sparing implants and 

allografts and reported an improved complication rate and functional outcomes in 

patients treated with joint-sparing implants (Agarwal et al. 2010).    

Radiographic assessment of the femoral implants for accuracy in implantation showed 

a two-fold increase in resection percentage error in failed implants when compared 

with that of the stable constructs. The error in alignment angle was also increased in 

the failed constructs in comparison with the stable femoral fixations with an 

approximately one degree higher error value. However, a similar trend was not found 

in tibial implants where the resection percentage error was six-fold higher in implants 

that were still in situ in comparison to that of the failed implants. A Spearman’s Rank 

coefficient test did not indicate any relationship between duration of implantation and 

error in resection level or implant alignment. R2=0.998 was found for failed tibial 

implants, when the correlation between alignment angle error and duration of 

implantation was assessed, however this could be due to a type two error as a results 

of the small number of cases assessed. Although there are no studies that have 

measured accuracy of implantation in joint-sparing implants, there are studies that 

have used radiographic analysis to assess the success of other orthopaedic 

reconstruction methods. Freedman and Johnson (1995) radiographically assessed mal-

alignment after reconstruction of fractured tibiae following different methods that 

utilised intramedullary nailing (Freedman and Johnson 1995). Others have assessed 

stem alignment following hip replacement surgery and its correlation with patient 
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outcome and implant stability. The results from different studies have been mixed with 

some studies reporting a correlation between malalignment and success of the implant 

and others indicating no correlation between the two variables (Khalily and Lester 

2002; Min et al. 2008). Computer aided surgery that utilises MRI and CT image, and 

matches patients anatomy precisely with the pre-operative surgical plans (Wong et al. 

2007) can improved resection and implantation accuracy. 

This study had several limitations. Firstly, there was no control group with which to 

make direct comparisons regarding the complications and survival rates of implant 

fixation using extra-cortical plates and outcomes for patients treated with these 

implants. Secondly, this was a retrospective and observational analysis of patients 

treated over a long period of time in several different centres and operated on by 

different surgeons. Each surgical procedure differed from one patient to another due 

to variations in the amount of bone and soft tissue resected. The variation could affect 

the durability and function of each implant. In addition, there are wide variations in 

patients’ height, weight, age, diagnosis, type and dose of adjuvant therapies. When 

survival analysis was conducted, no confidence interval was calculated to assess the 

reliability of the results. The radiographic assessment of all cases was also not possible 

due to the retrospective nature of the study and unavailability of records for the 

majority of the patients. The radiographic measurement technique was also dependant 

on angulation and orientation of patients’ limbs at the time of imaging and was not 

controlled. Although all radiographs used were pre-examined for possible rotation, 

minor rotation or flexion of the knee may have gone undetected. Another limitation 

was the subjective measurement method used. Additionally, as the images available to 

us were a mixture of digital and hardcopy images, use of image processing software 
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was not an option. However, further studies are required to identify which method 

could provide more accurate results as some significant results were identified.   

3.7 Conclusion 

In this chapter it was hypothesised that joint-sparing endoprostheses have a 

comparable complication and local recurrence rate similar to those of conventional, 

knee sacrificing megaprostheses and other joint-sparing reconstruction methods. It 

was also hypothesised that inaccurate implantation of joint-sparing implants increased 

the risk of fixation failure and the duration of implantation is reversely correlated to 

the implantation error value. The results of the study presented in this chapter supports 

the hypotheses related to the complication rate of joint-sparing implants outlined 

earlier. Although there are complications that are isolated to use of joint-sparing 

implants, the overall patient and implant complication and survival rates are not higher 

than those treated with intra-articular endoprostheses and are improved compared to 

use of allografts.   

While the limitations of the study does not allow conclusions regarding the group of 

patients who have an improved response to treatment using joint-sparing implants, the 

evidence suggest that subjects under age of 21 at the time of surgery, have improved 

implant survival rates when compared to those over 21. While the younger group of 

patients respond better to extra-cortical plate fixation, a reduced survival rate after 120 

months post-operation requires further investigations. The results also suggested that 

use of extra-cortical plates may provide a more secure fixation in femoral replacements 

and female patients than in tibial implants and males patients. However, a longer 

follow-up period and randomised, controlled studies are required to establish these 

findings.  
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Although in this study some correlation between the accuracy of implantation and 

longevity of fixation in failed implants was determined, a controlled investigation with 

higher number of cases and improved measurement techniques is required to establish 

whether there is a relationship between implant durability and resection levels and 

angle of implantation.  

To conclude knee joint-sparing endoprostheses provide a reliable reconstruction 

method for tumour treatment in a carefully selected group of patients, whose joint can 

be spared while sufficient surgical margins are allowed. 



Chapter 4 Assessment of Knee Proprioception and Function  

142 

 

 
 

Chapter 4 Assessment of Knee Proprioception and Function 

in Patients with Knee Sparing and Knee Sacrificing 

Massive Bone Tumour Implants 

4.1 Introduction  

4.1.1 Proprioception 

Proprioception is the ability to sense the location, position and movement of the body 

and its parts (Felson et al. 2009). It has a crucial role in joint stability, postural and 

motor control (Riemann and Lephart 2002) and hence, it is essential for adequate 

functioning of the joint structures during day-to-day and sports activities (Safran et al. 

2001). Proprioception consists of two components; kinaesthesia and joint position 

sense (JPS). Kinaesthesia is the awareness of joint movement and is dynamic (Grob et 

al. 2002) while JPS is awareness of the joint position in space. JPS is a static 

phenomenon (Grob et al. 2002) that is often tested by examining the accuracy of 

achieving a previously specified target angle (Suprak et al. 2006; Li et al. 2005). 

Different measurement methods test different receptor types within the joint muscles 

and tendons, all of which contribute to proprioception. Kinaesthesia tests Pacinian 



Chapter 4 Assessment of Knee Proprioception and Function  

143 

 

 
corpuscles, which detect movement; whereas JPS tests the Ruffini end organ-like 

receptors and Golgi tendon organ-like receptors as these provide information 

regarding the relative position of muscles and joints (Grob et al. 2002).  

The  knee joint has a wide range of movements, and therefore an appropriate  

neuroanatomical organization is critical for knee stability and control of its 

movements. In a recent study, the four main ligaments in the knee, the anterior cruciate 

ligament (ACL), posterior cruciate ligament (PCL), medial collateral ligament (MCL) 

and the lateral collateral ligament (LCL) and four tendons, the semitendinosus, 

gracilis, popliteal, and patellar were harvested from eight fresh frozen cadavers to 

identify the mechanosensors in the knee. The study found that the  mechanoreceptors 

were usually located close to the bone insertion (Çabuk and Kuşku Çabuk 2016). Free 

nerve endings followed by Ruffini endings were the most common mechanoreceptors 

and no Pacini corpuscles were observed. Free nerve endings and Golgi-like endings 

were most frequent in the PCL and Ruffini endings in the popliteal tendon. 

The cruciate ligaments had more mechanoreceptors than patellar tendon (Çabuk and 

Kuşku Çabuk 2016). It is therefore not surprising that proprioception of ACL-injured 

knees was decreased compared with contralateral intact knees, as determined by both 

joint movement (kinaesthesia) and joint position(Kim et al. 2016). Proprioception after 

conventional knee replacement is also compromised and is worse in designs that resect  

both the ACL and the PCL (Warren et al. 1993).  

Treatment of intra-articular bone tumours around the knee by reconstruction of the 

affected area with conventional massive endoprostheses requires extensive removal of 

the soft tissues in and around the joint. These include the ligaments, menisci, 

surrounding muscles and often large sections of the affected bone due to invasion of 



Chapter 4 Assessment of Knee Proprioception and Function  

144 

 

 
the tumour (Stauffer and Ehrlich 1995). Therefore, it is expected that proprioception 

of the operated knee joint will deteriorate postoperatively (Li et al. 2005) and its  

alteration can result in poor functional joint stability (Godinho et al. 2014). 

Additionally, the design of massive intra-articular implants and absence of sufficient 

soft tissue surrounding the knee joint may reduce the range of motion (ROM) of the 

knee joint (Yu et al. 2010).  

 In comparison to a joint sacrificing implant surgical insertion of a knee sparing 

endoprosthesis can result in retention of the co-lateral ligaments, ACL, PCL, menisci 

and joint capsule. This may help to retain sensorimotor functions and the functional 

outcome (Swanik et al. 2004). By preserving the knee, joint-sparing implants may also 

maintain the pre-operative ROM. In this chapter proprioception and knee ROM in 

patients with knee joint-sparing implants were compared to healthy subjects and those 

with conventional knee sacrificing implants.  

4.1.2 Functional Assessment  

Healthcare professionals commonly use outcome measures in the form of 

questionnaires to assess the impact of illness on patients (Berber et al. 2011). 

Standardised questionnaires that are designed to be completed by the patient, minimise 

any unintentional potential bias by the assessor (“The Oxford Knee Score (OKS)” 

2015) and provide a common format for data collection and analysis (Berber et al. 

2011).  

There are several different functional score assessments available. In orthopaedics, 

specific measures exist for different anatomical sites and there are specific 

questionnaires for functional assessment of tumour patients. In this chapter, three 
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different questionnaires were used to assess patients’ function and emotional 

acceptance in different implant groups and the results were compared.   

 

4.2 Objectives  

The aim of this chapter was to investigate proprioception and passive ROM in patients 

with knee sparing and sacrificing implants and compare their results with healthy 

subjects. This chapter also aimed to assess and compare functional outcome and 

patient acceptance in knee joint-sparing patients and conventional joint sacrificing 

patients, using functional scores.   

4.3 Hypothesis  

In this chapter, it was hypothesised that:  

• Subjects with knee joint-sparing endoprostheses have closer to normal 

proprioception of the operated knee compare to those with conventional, knee 

sacrificing implants.  

• Knee proprioception in the operated leg is similar to the non-operated leg in 

patients with knee joint-sparing implants.  

• When assessing patients’ function using functional scoring systems and health 

questionnaires, patients with knee sparing endoprostheses produce higher 

scores compared to those with conventional knee sacrificing implants.     

• Passive knee ROM is improved in knee sparing patients compared to knee 

sacrificing patients.  
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4.4 Method 

4.4.1 Proprioception; Joint Position Sense  

The relevant Health Research Authority approval was obtained for this investigation 

(Reference: 12/LO/0178; Title: “Comparative Study of Gait Analysis and Difference 

in Balance and Proprioception of the Knee Joint in Patients Having Knee-sparing 

Prosthesis Against Patients Having Distal Femur or Proximal Tibia Salvaging 

Procedure”). 

Twenty oncology patients (10 female, 10 male) at a mean follow-up of 38 months (18 

to 84 months) participated. Six patients with a joint sacrificing proximal tibial 

replacement (PTR), 5 with a joint sacrificing distal femoral replacement (DFR), 4 

joint-sparing proximal tibial replacements (JST) and 5 joint-sparing femoral 

replacements (JSF) were investigated. Ten healthy subjects (7 female, 3 male), with 

no history of musculoskeletal disease or complications also participated. None of the 

patients reported any complications with their endoprostheses or any pain in either of 

their legs at the time of examination and none of the patients had undergone a partial 

or complete revision surgery. 

The subjects were seated in a raised chair, with the seat set at an angle of 15° and the 

back of the chair set at 105° from the seat of the chair. The depth and height of the 

chair was adjustable to accommodate for height difference in subjects and to allow for 

ease of knee movement. The angle of the shank was measured in relation to the 

horizontal plane using a Delsys EMGworks Trigno Wireless System Accelerometer 

(Delsys, Boston, USA) which measures acceleration in three planes (x and y axes – in 

relation to the horizontal, z axis – in relation to gravity). The data was collected and 

analysed using Delsys EMGworks Acquisition and Analysis software. The knee joint 
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angle, when at resting position, was measured for each patient and used as the baseline 

for individual’s measurements. The resting position was approximately 90° of knee 

flexion when the leg was in a ‘dangling’ position and perpendicular to the horizontal 

plane. Subjects were blindfolded for the duration of the test and were asked to remove 

their shoes. The accelerometer was attached to the lateral aspect of the lower shank, 

using double-sided sticky tape, just above the lateral malleolus, with the x-axis of the 

accelerometer in line with the tibia. In order to achieve more accurate and reproducible 

results, active joint movement was measured. Knee proprioceptive acuity was 

quantified and measured as the error in repositioning of the shank in relation to a 

previously determined reference angle. Each subject was asked to extend their knee to 

a set angle decided by the operator. Subjects were asked to hold their leg at the 

operator-determined angle for approximately 5 seconds and remember the position. 

Subjects were then asked to move their leg back to the resting position and hold for 

another 5 seconds. The subjects were then asked to actively repeat the same position, 

by extending their knee and holding for another 5s. Each set consisted of 6 repetitions; 

2 repetition of small angles (approx. 0-20°), 2 medium angles (approx. 25-45°) and 2 

large angles (over 45°), from the resting position in a random order. The test was 

carried out for both the operated and non-operated legs in both implant groups and 

both left and right legs for healthy subjects. The author carried out all the tests for all 

the subjects. 

4.4.2  Static Measurements; Knee Passive Range of Motion  

The same patients who participated in the joint position sense test, were examined for 

passive ROM of the knee.  

B 
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During this examination, all patients were asked to lie on a horizontal bed and the 

measurements were taken using a standard goniometer by a trained physiotherapist. 

The same person carried out all measurements for all patients. To measure the knee 

passive ROM, the upper arm of the goniometer was placed along the femur towards 

the greater trochanter, towards the back of the thigh. The lower arm of the goniometer 

pointed towards the outer ankle bone and the bottom of the fibula. Two measurements 

were taken; one with the knee fully extended and one with the knee flexed as much as 

possible. One set of measurement was taken for each limb of each patient and was 

recorded.  

4.4.3 Functional Assessment  

Patients’ function was evaluated using 3 different established functional score 

assessments:  

1. The Musculoskeletal Tumour Society scoring system for limb salvage 

(MSTS), evaluates the functional impairment following tumour treatments 

(Tunn et al. 2008). The questionnaire includes six scales evaluating pain, 

function, emotional acceptance, use of supports, walking ability and gait 

cosmetics with maximum score of 30 (Enneking 1986). Numerical values from 

0 to 5 points are assigned to each of the categories, with 0 being the worst and 

5 being the best score. These values were added and the functional score was 

presented as a percentage of the maximum possible score. 

2.  The revised Oxford Knee Score (OKS) is a patient self-completion 

questionnaire containing 12 questions on activities of daily living. Each 

question was assigned a numerical value of 0 to 4, with 0 indicating the poorest 

and 4 the best function. A maximum score of 48 could be obtained. The OKS 
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was developed and validated specifically to assess function and pain after total 

knee arthroplasty and covers pain, function and walking ability (“The Oxford 

Knee Score (OKS)” 2015).  

3. SF-36 (Short Form Health Survey) was developed in 1990 and is a 

multipurpose health survey with 36 questions (Berber et al. 2011). It provides 

an 8-scale functional health profile of both physical and mental health 

outcomes. The form can have various uses including a population survey, 

assessing the burden of disease, and determining the benefits produced by 

treatment (“The SF Community - SF-36® Health Survey Update” 2015).  

In all three questionnaires, higher scores represented a more improved function. 

Questionnaires were completed for each patient, either in person or over the telephone. 

Twenty two oncology patients at a mean follow-up of 63 months (18 to 94 months) 

participated: 6 patients with a PTR (5 female, 1 male), 5 with a DFR (2 female, 1 

male), 5 JST (5 female, 1 male) and 5 JSF (5 male). The scores were calculated using 

the scoring instruction for each of the questionnaires.  

6.1.1 Statistics  

The Spearman’s Rank coefficient was used to assess the correlation between pairs of 

continuous variables.  

Mann Whitney-U test was used to assess the statistical significance of the results. A p 

value < 0.05 was considered significant in all tests (version 22.0; IBM SPSS statistics, 

Chicago, Illinois).  
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4.5 Results 

4.5.1 Proprioception; Joint Position Sense  

For each subject the absolute error value in repositioning of the knee for each take was 

measured and the mean absolute error was calculated for each patient, for both the 

operated and non-operated legs. JPS for each patient was normalised against the non-

operated leg of the patient, resulting in one single value for each patient, called 

normalised error. In each implant group, the mean error was calculated for the operated 

and non-operated legs. The variables calculated were the absolute error, the mean 

absolute error for each leg for each subject, the normalised error, group mean error and 

standard error for each group.  

The group mean error for the operated and non-operated leg for the joint-sparing and 

sacrificing distal femoral and proximal tibial replacements and the control group are 

summarised in Figure 4.1. Since there was no significant difference in the mean 

absolute error values of the left and right legs in the healthy subjects, their results are 

represented as one set of data.  

The JSF group had the largest normalised error while the DFR group exhibited the 

smallest normalised error amongst the four implant groups. The PTR group had an 

improved normalised error compared with the JST group. The mean normalised error 

for the knee sparing proximal tibial implants was 2.11 ± 0.63° and 2.38 ± 0.65° in the 

knee sparing distal femoral group. The mean normalised error value for the PTRs and 

DFRs was 1.11 ± 0.39° and 0.82 ± 0.37°, respectively.   

The mean absolute error was greatest in the operated leg of the JST group, while the 

DFRs exhibited an almost identical mean absolute error in both legs and had the 
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smallest error value when compared with all other four groups examined. The non-

operated leg in the JST group and the operated leg in the PTR group presented similar 

mean errors when compared with the control group. Both the operated and the non-

operated legs in the DFR group had improved error values when compared with the 

control group. When the mean absolute error in the operated leg was compared with 

the non-operated leg for each group, no significant difference was found. No 

significant difference was found when normalised error in the knee sparing groups was 

compared to patients with knee sacrificing implants in the same anatomical location. 

No significant difference was found when the normalised error in both knee joint-

sparing proximal tibial and knee sacrificing PTR groups were compared with the 

control group. There was also no significant difference in normalised error when both 

knee sparing distal femoral group and the knee sacrificing DFR group were compared 

with the control group.  

 

Figure 4.1 Mean absolute error values for the operated and non-operated legs in the 

DFR, JSF, PTR and JST groups. The mean absolute error in the control group is also 

provided. Proprioception in the operated legs was the worst in the PTR group; this 

could be due to removal of the tibial tuberosity that can  lead to a poor extensor 

mechanism.   

0

1

2

3

4

5

6

DFR JSF PTR JST Control

Er
ro

r 
in

 R
e

-p
o

si
ti

o
n

in
g 

A
n

gl
e

 (
°)

 

Subject Groups
Operated Non-Operated



Chapter 4 Assessment of Knee Proprioception and Function  

152 

 

 
Data was combined into 2 implant types; joint-sparing and joint sacrificing, regardless 

of the anatomical location (Figure 4.2). When the mean absolute error in the operated 

leg was compared to the non-operated leg, no significant difference was found in either 

of the two groups. A significant difference in mean normalised error was found when 

the joint-sparing patients (2.24 ± 0.43°) were compared with the knee sacrificing 

conventional patients (0.98 ± 0.43°; p =0.022). The normalised mean error measured 

in joint-sparing implants was also significantly different when compared with the 

control group (p=0.041). There was no significant difference between knee sacrificing 

implant group and the control group.  

 

Figure 4.2 Mean absolute error in the operated and non-operated legs, in joint-sparing 

and conventional joint sacrificing implants. The mean absolute error in the control 

group was 3.43 ± 0.27° . 

A Spearman’s Rank coefficient parameter was used to assess the relationship between 

the mean absolute error in the operated and non-operated leg in each implant group. 

The R2 value obtained for each group is provided in Table 4.1. No correlation was 

found between the mean absolute error in the operated and non-operated legs in any 
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of the implant groups. The predetermined angle and the repositioned angle were 

directly related in both the operated and non-operated legs in all the groups (R2 > 0.85). 

However, there was no significant difference between the two legs in any of the groups 

and no differences were found between the groups of the same anatomical locations.   

Table 4.1 R2 values in each group; no correlation was found in the error value in 

repositioning of the joint in the operated and non-operated legs 

Type of EPR  Distal Femoral 

Replacements  

Joint-Sparing 

Femoral implants 

Proximal Tibial 

Replacements 

Joint-Sparing 

Tibial implants 

R2  0.247 0.148 0.288 0.218 

4.5.2 Knee Passive Range of Motion   

The mean flexion angle in the operated leg in patients with a DFR was 110° (range: 

50-145°) and in patients with a JSF implant was 125° (range: 120-135°). The mean 

knee flexion angle in the non-operated leg in both groups was 137° (DFR range: 120- 

155°, JSF range: 130-140°). The mean knee flexion angle in patients with a PTR was 

103° (range: 60-135°) and the JST group was mean 137° (range: 130-140°). Mean 

knee flexion angle in the non-operated leg in the PTR group was 142° (range: 135-

150°). However, in patients with a joint-sparing tibial replacement the operated leg 

had a similar ROM to the non-operated leg. All patients were able to achieve full knee 

extension. Five degrees of hyperextension of the operated knee was noted in one 

patient with a JST implant. Another two patients with a JSF implant presented 10 

degrees of hyperextension of the operated knee.   

Passive knee ROM in the operated and the non-operated legs were compared in each 

group. The knee flexion angle in the operated leg was decreased when compared with 

the non-operated leg in patients with a knee sacrificing proximal tibial replacement 
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(p=0.005). The passive knee ROM between the operated and non-operated legs was 

not significant in other implant groups.  

The difference in passive ROM in the operated and the non-operated legs was 

calculated for each patient and the mean value for each implant group was determined 

(Figure 4.3). Results for each of the joint-sparing proximal tibial and distal femoral 

groups were compared with the PTR and DFR groups, respectively. A significant 

decrease in ROM was measured when the PTRs were compared with the joint-sparing 

tibial group (p= 0.037). No significant difference was found when the joint sacrificing 

femoral implants were compared with the JSF group.  

 
Figure 4.3 Mean difference in knee flexion angle between the operated and the non-

operated legs for the DFR, JSF, PTR and JST groups. There was no difference in knee 

ROM in the operated and non-operated legs in the JST group. 
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6.1.2 Functional Assessment Questionnaires  

The mean functional scores obtained for the Oxford Knee Score (OKS), MSTS and 

SF-36 in all four implant groups are summarised in Figure 4.4 and Figure 4.5. The 

results are normalised against the maximum score values of each questionnaire in the 

form of a percentage. With the exception of the JST group scoring lower than the PTRs 

in the physical part of the SF-36 questions, both the proximal tibia and distal femoral 

knee joint-sparing implants scored higher than their corresponding joint sacrificing 

groups in all four questionnaires.  

The mean MSTS score for the JST group was 24.33 ± 2.80 (out of 30) and in the PTR 

group was 20.17 ± 2.02 (out of 30), the lowest MSTS score. The joint-sparing distal 

femoral group had the highest MSTS score (26.60 ± 1.75), when compared with the 

other three implant groups, and their score was 24% higher than the DFRs (20.50 ± 

2.11). The mean OK score for the JST group was 40.50 ± 2.79 (out of 48) and in the 

PTR this score was 36.17 ± 4.31. The JSF group had the highest OK score (42.60 ± 

2.77) when compared with the other three patient groups; 26% higher than the DFR 

group (33.80 ± 2.10), which had the lowest score amongst all four implant groups. The 

mean Short Form Health Survey Score (SF-36 M) for mental acceptance in the joint-

sparing femoral and the DFR groups was 54.50 ± 2.5% and 55.26 ± 1.86%, 

respectively. The mean score for the joint-sparing proximal tibial replacements was 

60.77 ± 2.72%, the highest of all groups, and for the conventional proximal tibial 

replacements was 52.42 ± 3.42%, the lowest score amongst all implant groups. The 

mean SF-36 for physical functioning was lower in patients with a joint-sparing tibial 

implant (45.32 ± 4.83%) when compared with the knee sacrificing proximal tibial 
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implants (49.13 ± 5.14%). No significant difference was found when the results of 

joint-sparing groups and the conventional joint sacrificing groups were compared.    

The mean score for the joint-sparing and the joint sacrificing groups, regardless of 

their anatomical location, are summarised in Table 4.2. A significant difference in 

results of Musculoskeletal Tumour Society Score (MSTS) was found when the two 

groups were compared (p=0.012). There were no other significant differences when 

the results of other questionnaires were compared. Overall the functional outcome 

results were reliable and consistent as the highest and the lowest scores belonged to 

the same patients in all questionnaires, consistently.   
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Figure 4.4 Patient functional outcome assessment results using Oxford Knee Score 

(OKS), SF-36 physical (SF-36 P), SF-36 mental acceptance (SF-36 M) and MSTS for 

the joint-sparing femoral group (light green) and the conventional joint sacrificing 

DFRs (dark green). The maximum achievable score for OKS and MSTS are 48 and 30, 

respectivly.   

 

Figure 4.5 Patient functional outcome assessment results using Oxford Knee Score 

(OKS), SF-36 Physical (SF-36 P), SF-36 Mental acceptance (SF-36 M) and MSTS for 

the JST (light blue) and the PTR (dark blue) groups. The maximum achievable score 

for OKS and MSTS are 48 and 30, respectivly. 
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Table 4.2 Mean scores for Oxford Knee Score (OKS), SF-36 and Musculoskeletal 

Tumour Society Functional Assessments for the knee joint-sparing and conventional 

knee sacrificing implant groups.   

Functional 

Assessment Type OKS  SF-36 (Physical) SF-36 (Mental) MSTS 

Joint-sparing  41.45 ± 1.90 47.60 ± 2.95 57.92 ± 2.04 25.36 ± 1.11 

Joint sacrificing  35.09 ± 3.24  45.30 ± 4.00 53.71 ± 2.00 20.30 ± 1.40 

 

 

4.6 Discussion  

This is the first study that has investigated the proprioception in knee joint-sparing 

endoprostheses. To my knowledge there is one other study that has investigated knee 

proprioception as an outcome in patients following limb-salvage bone tumour surgery 

and insertion of a massive endoprosthesis. The study investigated passive and active 

repositioning of the knee joint to an angle previously determined (Li et al. 2005). 

Similar to the study by Li et al. (2005) a non-weight bearing JPS test protocol was used 

in this chapter. Studies have suggested that weight bearing tests involve more receptors 

than non-weight bearing tests (Stillman and McMeeken 2001; Garsden and Bullock-

Saxton 1999) and can be confounded by the subject’s muscle strength and balance 

(Knoop et al. 2011). Li et al. (2005) reported an absolute error in active repositioning 

of 2.7 ± 2.1° in the operated knee, and 3.0 ± 1.9° in the contralateral non-operated 

knee. The mean repositioning error in the control group was 3.2 ± 2.1°. Results 

presented in this chapter were similar to those reported by Li et al; the mean absolute 

error value in the operated limb was 3.44 ± 0.46° and in the non-operated leg was 2.97 

± 0.30° in the conventional knee sacrificing group. These values were 3.55 ± 0.62° in 

the operated and 4.78 ± 0.45° in the non-operated legs in the joint-sparing group and 

3.43 ± 0.27° in the control group. However, other studies have reported smaller than 

one degree error in repositioning of the knee in healthy subjects (Lokhande et al. 2013). 

In this study it was found that the mean absolute error was higher in the non-operated 
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leg when compared with the operated leg in joint-sparing patients. Although Li et al. 

explained the improved proprioception in the operated knee compared with the non-

operated knee by a compensatory proprioceptive mechanism, this was not observed in 

the knee sacrificing group in this study. Other studies have investigated proprioception 

of the knee joint following tear or damage to knee ligaments that cause alteration in 

function of the joint using both JPS and threshold detection level methods (Pap et al. 

2000, 1999; Lokhande et al. 2013; Godinho et al. 2014; Dhillon et al. 2011). Knee 

proprioception in total knee arthroplasty (TKA) patients was reported between 4.33° 

± 1.52° in designs that preserve the posterior cruciate ligament (PCL) and 4.38° ± 

1.39° in implants that do not preserve the ligament, with no significant differences 

(Lattanzio 1998). Other studies that have compared the knee with injured ligaments 

with the contralateral intact knee, have found significant differences in proprioception 

(Godinho et al. 2014). Proprioception in patient groups I investigated in this chapter 

was improved considering the extent of impairment to the knee joint and the 

surrounding tissue in sarcoma patients in comparison with the patients undergoing 

TKA.  

Reliability and repeatability of several frequently used methods to quantify 

proprioception was investigated by Grob et al. (2000). Three commonly used JPS tests: 

a passive reproduction test, a relative reproduction test and a visual estimation test 

were investigated and compared for ability to detect passive movement (kinaesthesia) 

(Grob et al. 2002). However, there was no correlation between the tests for 

kinaesthesia and JPS or between the different JPS tests. The authors concluded that a 

subject with a given result in one test may not obtain a similar result in another test for 

proprioception and proprioceptive ability cannot be inferred from independent tests. 

Instead, proprioception can be used in combination with other functional tests to 
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establish patients’ ability. Overall, in this study proprioception was more impaired in 

joint-sparing endoprosthetic groups when compared with the joint sacrificing patients. 

Other proprioceptive tests are required to confirm this finding and other methods must 

be employed to assess function. Patients’ post-surgery rehabilitation plan, level of 

activity prior to and post- surgery can be factors that can influence proprioception. 

Grob et al indicated that different measurement methods, test different receptor types 

within the joint muscles and tendons, all of which contribute to proprioception (Grob 

et al. 2002). In sarcoma patients, due to variation in type, size and spread of the tumour, 

variable amounts of bone and soft tissue is resected in different patients. Therefore a 

particular test method may be testing the receptors in one patient that have been 

removed in another. Further study protocols should group patients not only based on 

the anatomical location and implant group but also based on the amount of soft tissue 

and bone resected.  

The passive range of motion was significantly reduced in the PTR group when 

compared with the joint-sparing proximal tibial group. This decrease could be 

associated with the lack of the extensor mechanism that was retained in the JST group 

and resulted in a reduced flexion/extension power. Other factors such as the extent of 

the scar tissue or the design of the implant could be contributing factors too. Despite 

the limited ROM in the operated knee in conventional joint sacrificing implants when 

compared with the joint-sparing implants of both sites, proprioception in the operated 

leg was improved in the joint sacrificing group. Li et al indicated that there was a 

tendency for the group with a smaller range of motion to have better proprioception 

that could be caused by improved sensory feedback from the stretched tissue 

surrounding the stiff joint (Li et al. 2005). Further testing and data analysis maybe 

required to confirm this hypothesis.  
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In this study overall, the joint-sparing tibial and femoral patients had improved 

functional outcomes when compared with the conventional implants. The mean 

Oxford Knee score for joint-sparing tibial replacements was 40.50 ± 2.79 points, and 

the mean MSTS score was 81.0 ± 1.4%. Spiegelberg et al. investigated the early results 

of joint-sparing proximal tibial replacements for primary bone tumours and reported 

similar results to those reported in this chapter; mean OK score of 40 points (36 to 46) 

and mean Musculoskeletal Tumour Society score of 79% (57% to 90%) (Spiegelberg 

et al. 2009). Gupta et al., in a follow-up study of knee sparing distal femoral 

endoprostheses in patients with malignant bone tumours, reported an MSTS score of 

80% (57% to 96.7%) (Gupta et al. 2006). The mean MSTS score in joint-sparing 

femoral replacements in this study was 88.7 ± 2.7%. The improved scores in patients 

in this study could be a result of the longer follow-up time (mean: 38 month) and a 

more stable construct compared with the 24 months follow-up in the study by Gupta 

et al. (2006). In this chapter results demonstrated a mean MSTS score of 20.30 ± 1.40 

(67.5%) for patients with joint-sacrificing femoral and tibial replacements. Hardes et 

al reported a similar MSTS score of 23 (76%) following an endoprosthetic replacement 

after extra-articular resection of bone and soft-tissue tumours around the knee (Hardes 

et al. 2013). Similar studies also reported mean MSTS scores of 70 to 89%, with scores 

ranging from 20% to 100% (Park et al. 2007; Asavamongkolkul et al. 2007; Ilyas et 

al. 2001; Tunn et al. 2008). Results obtained in this chapter are therefore comparable 

to those reported in the literature. 

The Oxford Knee Score is not commonly used in functional assessment of patients 

who undergo limb salvage operation following a tumour resection. In a study by 

Roberts et al., a mean OK score of 42.0 was reported following total knee replacement 

at five years (Roberts et al. 2015). The mean OK score in the PTR group was 36.17 ± 
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4.31 and in the DFR group was 33.80 ± 2.10. The lower scores found in the DFR and 

PTR groups in this chapter may be a result of extensive soft tissue and bone resection 

that is involved in limb salvage surgery in comparison with a TKA. However, the mean 

OK score in joint-sparing tibial (40.50 ± 2.79) and femoral (42.60± 2.77) replacements 

are similar to that reported by Roberts et al. (2015) and approximately 12% and 26% 

higher than the joint sacrificing endoprosthetic group of the same anatomical location 

in this study.  

Nguyen et al. used SF-36 to assess quality of life in oncology patients who underwent 

limb reconstruction of the lower limb and compared the results to those with primary 

and revision total knee replacements. The mean mental component score was 56.6 ± 

0.8 and the mean physical component score was 41.2 ± 25.2 at more than three years 

post-operation (Nguyen et al. 2011). In this chapter scores for the conventional joint 

sacrificing implants were 53.7 ± 2.0 and 45.3 ± 4.0 and for joint-sparing implants were 

57.92 ± 2.04 and 47.60 ± 2.95, respectively. Although overall improved scores were 

noted for the joint-sparing implants, when compared with the conventional implants 

in this study and with the study by Nguyen et al., the mental component score of the 

joint-sparing femoral replacements was lower than the DFRs. These differences, 

particularly in the mental component of the scores, may be due to the subjective nature 

of these questionnaires. While the functional scores are commonly used, their results 

must be analysed and combined with more objective methods to determine function. 

The treatment regime, such as the type and length of chemotherapy received by the 

patients may have affected the mental well-being of the patients. Additionally, patients 

who had received a joint-sparing implant were aware that there was an option for a 

joint sacrificing implant and this may have led to bias.  
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This study had various limitations. Small  number of patients was one of the main 

limitations. A sample size calculations indicated that an n number of 21, for each group 

is required to achieve a power of 0.80. The retrospective nature of the study was 

another limitation and therefore patients could not be assessed at the same follow-up 

time. A study that investigated patterns of quality of life improvement following an 

oncologic reconstruction of the lower limb, showed variable average SF-36 scores at 

different points of the follow up for the same group of patients (Nguyen et al. 2011). 

Inability to match the patients across groups by age, possible comorbidities, resection 

levels and time from surgery was another restriction of the study. This is difficult to 

correct due to the inherent differences in oncologic patients. Additionally there are 

limited numbers of patients who have received or are suitable to receive a joint-sparing 

endoprosthesis. The surgical procedure for the patients in this study was carried out by 

different surgeons; inconsistency in the surgical technique is an additional variable. 

Time from surgery can affect proprioception and function; a study has suggested that 

function improves over time (de Visser et al. 2003). A limitation of the proprioception 

test was that gravity was not eliminated; in future studies weight of the patients’ limb 

could be accounted for. Variability of the results obtained from different 

proprioception tests indicated that more than one proprioception test could be carried 

out for a more reliable conclusion (Grob et al. 2002).   

4.7 Conclusion  

The results presented in this chapter did not confirm the hypothesis that the knee 

proprioception is improved following insertion of a joint-sparing implant when 

compared with a conventional knee sacrificing implant. The results also did not 

confirm that proprioception is closer to that of healthy subjects in patients with a  joint-

sparing implant. The initial hypothesis that knee proprioception in the operated leg is 
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similar to the non-operated leg in patients with a knee joint-sparing implant was 

rejected. Overall, this study showed that proprioception in patients with a proximal 

tibial replacement, both joint-sparing and sacrificing, is worse when compared with 

patients with a femoral endoprosthesis. Further studies that investigate proprioception 

with increased number of patients and other analysis methods, such as balance 

assessment may be required to establish effects of different implant types on 

proprioception.  

The hypothesis regarding the improved patient outcome and ROM in joint-sparing 

implants was confirmed. Improvement in functional outcome and passive knee ROM 

was observed in patients whose limb was reconstructed using knee joint-sparing 

endoprostheses following tumour resection. Improved knee range of motion in joint-

sparing implants may be a possible contributing factor in better functional scores. 

More detailed investigation with larger numbers of patients is required to assess if 

there is a correlation between ROM and functional scores. In order to assess and 

compare function in joint-sparing and joint sacrificing patients, more objective 

methods such as computerised gait analysis is required. 
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Chapter 5 Functional Assessment of Patients Following 

Knee Sparing and Knee Sacrificing Bone Tumour 

Surgery: an Investigation into Gait Kinematics, 

Symmetry and Ground Reaction Force  

5.1 Introduction 

Limb salvage surgery is an invasive procedure that involves the removal of large 

sections of soft tissue and bone resulting in extended wounds and deep scars (Oren et 

al. 2004). During this procedure tissues such as muscles, bone, joint surfaces, skin, 

nerves, vessels and the lymphatic system can be damaged (Oren et al. 2004). 

Musculoskeletal damage following surgery leads to the sudden and irreversible 

disruption of gait and in all cases, the body must adapt to the change caused by mass 

and muscle power asymmetry (de Visser et al. 2003). For example, during a distal 

femoral replacement (DFR) surgery, often a part or all of the quadriceps are removed. 

In patients where there is extensive tissue loss, a hinged, fully constrained knee design 

is used to provide mechanical stability of the limb (Benedetti et al. 2000). Although 

satisfactory functional results have been reported following tumour resection and the 

consequent reconstruction of the distal femur using these implants (Capanna et al. 

2015; Coathup et al. 2013; Hardes et al. 2013; Orlic et al. 2006), the extensor power 
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at the knee joint can be substantially decreased when more than two heads of the 

quadriceps are resected (Capanna et al. 1991). In an experimental study based on a 

mathematical model, van Krieken et al. (1985) concluded that partial excision of the 

quadriceps allowed normal gait, whereas complete excision and prosthetic instability 

resulted in major changes in gait pattern and high joint loads (van Krieken et al. 1985). 

A study by Benedetti et al. showed that patients who underwent excision of the vastus 

lateralis and vastus intermedius have a gait pattern that is closer to normal and 

preservation of the vastus medialis seems to enhance motor control of the knee 

(Benedetti et al. 2000). In proximal tibial replacements, removal of the tibial tuberosity 

and inappropriate attachment of the patellar tendon can result in lack of an extensor 

mechanism which can lead to altered biomechanics of the knee and patient’s gait 

(Oddy et al. 2005).    

While questionnaire based functional scores do not provide an objective assessment of 

limb function in patients (Jang et al. 2012), high performance measuring instruments 

have enabled accurate kinetic and kinematic gait measurements (Lemoyne et al. 2008). 

Gait symmetry analysis is a common protocol that is used to evaluate lower limb 

function (Patterson et al. 2010a; Lythgo et al. 2011; Kim and Eng 2003). Most of these 

studies focused only on the terminal symmetry of the lower limb during gait motion; 

however, did not provide detailed information about motions of the whole leg (Lythgo, 

et al. 2009; Lugade et al. 2010; Patterson et al. 2010b). For a better understanding of 

changes in kinetics and kinematics of gait and accurate analysis of mutual symmetry 

of the left and right leg during gait motion, measurement of motion of both legs 

including the pelvis, hip, knee, and ankle is required (Astephen et al. 2008; Jang et al. 

2012). For this reason, in this thesis, the hip and ankle joints, as well as the knee joint 

were assessed.  
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While the results of the questionnaire based functional outcome study discussed in 

Chapter 4 suggested an improved function in the joint-sparing group of patients, 

patients with conventional knee sacrificing endoprostheses presented an improved 

proprioception, in terms of joint position sense when compared to patients with a joint-

sparing implant. The reason for this is unclear especially when a knee joint 

replacement associated with a distal femur or a proximal tibia resects all of the knee 

ligaments, which in the normal knee joint have been shown to provide a proprioception 

function. Hence a more objective and quantifiable method is required to further 

investigate the functional outcome of patients following joint-sparing surgery. In this 

chapter, the mean joint angle and joint symmetry in 8 phases of the gait cycle in three 

spatial planes, vertical ground reaction force, time in stance and leg length discrepancy 

in both legs were measured and compared to healthy controls. Increased length of the 

operated leg has been reported in patients following routine joint replacement surgeries 

(Perttunen et al. 2004; Lang et al. 2012; Clark et al. 2006) and has been associated 

with complications such as nerve palsy, lower back pain, and abnormal gait (Clark et 

al. 2006). It has been demonstrated that mechanical load and isometric torque placed 

on the longer limb are significantly greater than that of the shorter limb (Gurney 2002). 

However, there are no studies that have investigated the occurrence of leg length 

discrepancy following limb salvage surgery and its possible complications. 

5.1.1 Kinematics of Normal Gait and the Critical Joint Angles  

5.1.1.1 Hip Motion  

5.1.1.1.1 Flexion and Extension in Sagittal Plane 

At heel strike, the hip is flexed at approximately 25 to 30 degrees in healthy subjects. 

The hip remains in flexion throughout stance while it steadily extends towards the 
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neutral position and continues its extension to a position of approximately 10° until 

Pre-swing (PS). The direction of the movement is then reversed and hip flexion 

continues during Mid-swing (MSW). During Terminal Swing (TSW), the hip extends 

to a position of about 300 in flexion (Figure 5.1) (Koerner, University of Alberta, and 

Health Sciences Audiovisual Education 1984). 

 

Figure 5.1Trajectory of hip joint angle in [A] sagittal, [B] coronal and [C] horizontal 

planes in normal adults (http://www.clinicalgaitanalysis.com/data/, accessed on 21 

November 2016). 

5.1.1.1.2 Internal and External Rotation in Horizontal Plane 

The hip rotates ±8° from neutral in a monotonic fashion and peak internal rotation 

occurs during PS. Peak external rotation occurs at the end of Loading Response (LR) 

where the hip begins to internally rotate and continues to do so until PS. It then begins 

to externally rotate until the LR of the contralateral leg (Rancho Los Amigos National 

Rehabilitation Center 2001).  

5.1.1.1.3 Adduction and Abduction in Coronal Plane 

During LR, the hip adducts under the control of the gluteus medius and minimus. 

During mid-stance, the hip begins to abduct until it returns to a neutral position and 

becomes level with the pelvis by the onset of terminal stance and until the onset of PS. 

Thereafter, the hip rapidly abducts as the limb is unloaded (Figure 5.1) (Perry 1992).   

http://www.clinicalgaitanalysis.com/data/
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5.1.1.2 Knee motion  

5.1.1.2.1 Flexion and Extension in Sagittal Plane 

At initial heel contact the knee is in about 5° of flexion and continues to flex until it 

reaches approximately 20°. During LR the knee moves approximately 15° (mean joint 

angle of 10°). At mid-stance, flexion ceases and the knee extends to approximately 8° 

of flexion (Perry 1992). Knee extension continues at the start of terminal stance and 

reaches 5° of flexion, before the motion is reversed and the knee begins to flex. During 

this time the knee excursion is about 3° extending to 7° of flexion (mean angle of 10°). 

During PS the knee rapidly flexes to about 40° and continues to flex during the Initial 

Swing (ISW) phase to reach a peak of approximately 60° (Perry 1992). At the end of 

ISW the knee begins to extend until the end of Terminal Swing (TSW) where the knee 

reaches neutral position (zero degrees). At the end of TSW the motion is reversed and 

the knee begins to flex to a position of 5° (Figure 5.2) (Winter 1984). 

 

Figure 5.2 Trajectory of knee joint angle in [A] sagittal, [B] coronal and [C] horizontal 

planes in normal adults (http://www.clinicalgaitanalysis.com/data/, accessed on 21 

November 2016). 

5.1.1.2.2 Varus/Valgus in Frontal Plane and Rotation in Horizontal Plane 

Changes in knee joint angle in the horizontal and coronal planes are not often discussed 

in the literature as determinants of gait. The trajectory of knee varus and valgus motion 

in the coronal plane and internal and external rotation in the horizontal plane are 

http://www.clinicalgaitanalysis.com/data/
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presented in Figure 5.2B and Figure 5.2C, respectively. During normal gait and in the 

coronal plane, the knee remains close to neutral throughout stance. During ISW, valgus 

motion of the knee is expected and the knee moves in the varus direction throughout 

Mid-swing (MSW) until it reaches its peak varus position of approximately 8°. At the 

start of TSW, the motion is reversed and continues until it reaches a neutral position 

at the end of TSW. In the horizontal plane and while the direction of movement 

continually changes, the knee mainly remains externally rotated throughout the gait 

cycle (Merryweather et al. 2011).   

In assessment of patients treated with massive tumour implants around the knee, the 

most changes in normal gait are expected to be associated with the knee kinematics.   

5.1.1.3 Ankle Motion 

5.1.1.3.1 Plantarflexion and Dorsiflexion in Sagittal Plane 

At initial contact the ankle is in a neutral position to assist with initiation of heel 

contact. This position also places the ground reaction force behind the ankle creating 

a plantarflexion moment. During the loading response, the ankle plantar-flexes rapidly 

to about 8° resulting in a flat foot position, and then reverses and dorsiflexes to a 

neutral position at the end of the LR phase (mean of 0 degrees) (Gage et al. 1996). 

During mid-stance, the ankle steadily dorsiflexes to approximately 10°. This is the 

ankle rocker which allows progression over the weight bearing limb. During terminal 

stance, the heel begins to rise and the ankle continues to dorsiflex reaching a peak of 

about 12°. This motion then ceases and just before pre-swing the ankle begins to 

plantarflex to allow the heel to rise, reaching about 10° of dorsiflexion by the end of 

terminal stance. Raising the heel off the ground using plantarflexion provides for a 

more horizontal centre of gravity trajectory (Perry 1992).  During PS the ankle rapidly 
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plantarflexes from 10° in dorsiflexion to 20° of plantarflexion as the weight is shifted 

onto the contralateral limb. During initial swing, the ankle begins to dorsiflex to stop 

the contact of the toes with the ground and dorsiflexion is completed as the ankle 

reaches neutral and remains neutral at MSW and TSW (Figure 5.3A) (Perry 1992).   

 

Figure 5.3 Trajectory of ankle joint angles in [A] sagittal plane and [B] horizontal 

plane, throughout the gait cycle. (Kadaba et al. 1990). 

Throughout the gait cycle the ankle joint remains in an externally rotated position 

(Figure 5.3B). Following LR the ankle internally rotates until the end of PS before it 

starts to externally rotate. External rotation ceases at the beginning of TSW and the 

ankle remains relatively steady with slight internal rotation until the end of the cycle 

(Kadaba et al 1990). 

Gait analysis requires the use of markers and the trajectories of these markers when 

placed on the foot segment often present problems due to their relative proximity to 

each other. Therefore, often only two markers are placed on the foot and this limits the 

measurement of ankle joint motion to flexion-extension and internal-external rotation 

only. The addition of a marker to measure ankle eversion and inversion has been 

reported to complicate the measurements collected (Kadaba et al. 1990).    
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5.1.2 Ground Reaction Force 

The ground reaction force which acts through the foot during gait, is measured using 

force plates. Force plate output data provides three ground reaction force vector 

components; one vertical load and two shear loads acting along the force plate surface 

(Figure 5.4). The shear forces are resolved into anterior–posterior and medio–lateral 

directions (Marasovic et al. 2009). The vertical component of ground reaction force is 

the largest component and accounts for the acceleration of the body's centre of mass 

in vertical direction during walking (Tongen and Wunderlich 1994). As the heel 

contacts the ground, there is zero force between the foot and the floor. Immediately 

after heel strike, the force increases rapidly as the body begins to be supported by the 

foot. As the centre of mass moves downwards and decelerates, inertial force is added 

to gravitational force, which means that the vertical force applied to the foot exceeds 

body weight and peaks at approximately 107% of body weight (Winter 1991). As the 

gait cycle progresses and during single support, the ground reaction force becomes less 

than body weight as the centre of mass experiences a downwards acceleration. This 

gives an upwards inertial force that reduces the ground reaction force to approximately 

85% body weight (Marasovic et al. 2009). In the final stage of the stance phase and at 

push off, a propulsive action generates forces greater than body weight and a second 

peak appears near the middle of gait cycle. The vertical ground reaction force reaches 

105% of body weight. During toe off, the force rapidly decreases and reaches zero at 

the end of stance phase (Marasovic et al. 2009). 
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Figure 5.4 Diagram represents change in Vertical Ground Reaction Force (red line) 

during stance from Heel Contact (HC), through to Toe Off (TO). The black line 

represents body weight (BW). The blue line presents friction forces. Source: (“Kinetics 

Methodology Home Page” 2015). 

5.1.3 Stair Climbing  

Stair climbing is a complex activity that involves horizontal movement and vertical 

ascent at the same time, while keeping the body balanced (Park et al. 2015). Compared 

to level walking, higher loads, joint moments and power are generated in the knee 

during stair climbing (Mündermann et al. 2008; Riener et al. 2002). A study that 

utilised an instrumented knee prosthesis and simultaneous motion capture, measured 

the forces generated in the knee joint during walking, chair sit to stand and stand to sit, 

stair ascending and descending, squatting from a standing position, and golf swings. 

The results indicated that maximum total compressive load at the knee was highest 

during stair ascending and descending (Mündermann et al. 2008). During stair 

climbing the flexor-extensor muscles are also more activated and the absolute demand 

on the quadriceps muscle is higher (Fenner et al. 2014). 



Chapter 5 Gait Kinematics, Symmetry and Ground Reaction Force 

174 

 

 
Although limb-salvage surgery is a more complex operation and consists of the 

removal of a large amount of bone and soft tissue in comparison to routine TKA, a 

study of patients following TKA indicated no difference before and after operation 

during walking. However, more significant changes were noted during stair climbing 

and therefore, in this thesis stair climbing was investigated (Bade et al. 2010).   

5.2 Objectives  

The aim of this chapter was to determine whether an improved gait is achieved in 

patients with distal femoral and proximal tibial knee joint-sparing implants when 

compared with patients with corresponding knee sacrificing endoprostheses. 

Differences were assessed using computerised gait analysis and through comparison 

of Vertical Ground Reaction Force (VGRF). This study also aimed to determine if 

joint-sparing distal femoral and proximal tibial implants improved patient stability 

during stair climbing.  

5.3 Hypothesis 

The hypotheses of this chapter was that patients with joint-sparing implants, both 

proximal tibial and distal femoral, have more normal gait kinematics and force transfer 

in comparison to those with the corresponding conventional joint-sacrificing knee 

implants.  

Specifically in this chapter I investigated whether:   

•  There is improved hip, knee and ankle joint symmetry of the operated versus 

non-operated leg, following implantation of a joint-sparing endoprosthesis 

compared to a knee sacrificing implant?  
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• In patients with a joint-sparing implant and during stance, load transfer in both 

legs is similar to healthy subjects and load transfer in patients with joint-

sacrificing implants is more varied and less similar to healthy subjects?  

• The time in stance for both the operated and non-operated limb in patients with 

a joint-sparing implant is similar to healthy subjects and longer in the knee-

sacrificing patient group?   

• Knee-sparing endoprostheses provide increased overall stability than their 

knee-sacrificing counterparts during stair climbing? 

•  Leg length discrepancy is greater in patients with joint sacrificing implants 

compared to those with a proximal tibial or distal femoral joint-sparing 

endoprosthesis?   

5.4 Method  

5.4.1 Patients and Prostheses  

The relevant Health Research Authority approval was obtained for this investigation 

(Reference: 12/LO/0178; Title: Comparative Study of Gait Analysis and Difference In 

Balance and Proprioception of the Knee Joint in Patients Having Knee Sparing 

Prosthesis Against Patients Having Distal Femur or Proximal Tibia Salvaging 

Procedure). Nineteen oncology subjects were investigated at a mean follow-up of 33 

months (range: 12 to 84 months). Six patients with a proximal tibial replacement (5 

female, 1 male), 5 with a distal femoral replacement (2 female and 3 male), 4 with a 

joint-sparing tibial (JST) implant (3 female, 1 male) and 4 with a joint-sparing femoral 

(JSF) implant (all male) were investigated. Three healthy subjects (2 male, 1 female) 

with no history of musculoskeletal disease or complications also participated in the 

study. None of the patients in any of the implant groups reported pain in either leg at 
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the time of examination and had reported no complications associated with their 

endoprosthesis at least 12 months prior to gait analysis. None of the patients 

investigated had undergone any revision surgery.  

All implants were patient-specific endoprostheses, designed and manufactured by 

Stanmore Implants Worldwide Ltd (Elstree, UK). Implants were fabricated from 

medical grade titanium alloy (TiAl6V4). Proximal tibial replacements (PTR) and distal 

femoral replacements (DFR) were implanted into patients who had undergone intra-

articular resection of the knee. These implants included a cobalt chromium 

molybdenum alloy (Co-Cr-Mo) rotating hinge SMILES knee design on a UHMWPE 

bearing surface. All implants were fixed using a cemented intra-medullary stem. The 

design of joint-sparing tibial (JST) and femoral (JSF) endoprostheses are described in 

Chapters 2 and 3. 

5.4.2 Equipment  

The data presented in this chapter was collected at the Gait Lab in the Royal National 

Orthopaedic Hospital, Stanmore. The Gait Lab manager, Matt Thornton, a trained 

physiotherapist assisted with the data collection and analysis.   

5.4.2.1 Optoelectronic 3D Movement Analysis System 

The Coda Motion Optoelectronic Movement System (Charnwood Dynamics, UK) was 

used for data collection. The system included two CODA measurement units, placed 

on the sides of the walkway to capture the lights emitted by the markers attached to 

each limb. Each unit is a standalone measurement device capable of tracking 3D 

marker positions in real time. Three masked linear arrays (MLAs) in each unit, 

combine to measure X, Y and Z coordinates of each active marker.  
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The markers used to track movement were “active” markers. They consisted of 

miniaturized diodes that emit infra-red light that is captured by the measurement unit. 

All markers were allocated an ID number that was identified in the set up file and did 

not require post data collection labelling.   

An ODIN Software Suit was used for controlling the equipment, controlling the 

measurement system set-up and handling live streaming of data. The collected data 

was analysed and output data and reports were produced using this software.  

5.4.2.2 Ground Reaction Force  

Two force-plates were built into the walkway at approximately half of the length of 

the walkway and were disguised from the participants to avoid intentional alteration 

of gait as they approached it. In order to measure gait, a video recording of each 

participant was taken using four cameras placed at both ends and sides of the walkway. 

Force-plate data and captured video data was transmitted via the Video Vector System 

(VVS) software and was combined with the marker data.  
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5.4.3 Active Marker Placement Protocol for 3D Movement Analysis 

5.4.3.1 Static Measurements 

To create a 3D model from data collected from each marker, measurements obtained 

from several anatomical reference points were required. For each participant the 

following measuremnet were collected prior to marker placement:  

• Length of right and left femur, tibia and foot  

• Width of right and left knee and ankle  

• Range of motion of right and left hip, knee and ankle 

• Distance between the right and left anterior superior iliac spine (ASIS) and 

posterior superior iliac spine (PSIS)  

5.4.3.2 Marker Placement  

All participants were asked to wear shorts at least 20cm above the knee. Wherever 

possible, marker placement on clothing was avoided to reduce movement of the 

markers. For consistency and accuracy, marker placement was carried out by a single 

qualified physiotherapist. Markers were placed on the foot, tibia, knee and pelvis 

(Figure 5.5).   

5.4.3.2.1 Foot Marker Placement  

The foot segment was defined by the centre of the ankle joint, located on the lateral tip 

of the lateral malleolus of each ankle. The sole of the foot was determined by the 

position of toe and heel markers. Heel and toe markers were placed on the lateral aspect 

of the calcaneus and base of the fifth metatarsal respectively. Both markers were 

placed slightly superiorly to avoid being obscured from view and damage during 

excessive supination. The markers were attached using double sided sticky tape. Two 
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imaginary markers were created half an ankle width medial to the heel and toe markers. 

Imaginary markers are calculated within the acquisition software using the data 

received from actual markers and the segmental measurement input data for individual 

participants. 

5.4.3.2.2 Tibial Segment  

Special wands were used for placement of the tibial markers. Tibial wands were 

available in two lengths and the size chosen for each participant was based on the 

length of the shank with a view to avoid the major muscle bulk. The wand was placed 

perpendicular to the transverse projection of the ankle axis and was aligned by eyeing 

its direction as parallel to the edge of a customised jig. The jig was designed to align 

with the tip of the lateral and medial malleoli. The wand was attached to the patient 

using top and bottom elasticated straps.  

5.4.3.2.3 Knee Joint and Femoral Segment 

The femoral wand was adjusted with the participant seated. The wand was positioned 

vertically above the knee, avoiding contact with the major bulk of muscle and soft 

tissue.  

For the knee joint, a plane was defined between the two markers on the femoral wand.  

An imaginary marker was placed at half of the knee width lateral to the calculated hip 

joint centre. The knee joint centre was calculated as half the knee width medial to the 

lateral knee marker in a direction perpendicular to this plane. The lateral knee marker 

was located on the lateral aspect of the knee joint axis and the joint width was measured 

as twice the distance between the lateral knee markers to the estimated knee joint 
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centre. The knee joint marker and the femoral wands were fixed in place using a single 

elasticated strap. 

5.4.3.2.4 Pelvis Segment 

Prior to fixing the pelvis marker onto each participant, a Velcro belt of appropriate 

length was chosen to fit around the patient’s pelvic brim. With the belt firmly secured 

the pelvic frame that housed the pelvis markers and consisted of left and right parts 

was locked together and attached to the belt. In addition to the pelvis markers a pelvis 

wand, in some cases was used for additional data; this was however not necessary in 

all cases. 

 

Figure 5.5 Image indicates active marker placement: [A] A participant with markers 

placed on his legs, feet and pelvic. [B] Schematic of marker placement that form 

different segments. 
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5.4.4 Test Protocols Investigated 

5.4.4.1 Walking at a Self-Selected Speed   

Participants walked barefoot along a walkway approximately 8 meters in length and 

at a self-selected speed representative of their normal walking pace. The walkway was 

located between two sensor scanners that recorded the position of each of the attached 

markers on the participant. Prior to data recording, patients were given time to walk in 

the lab with the equipment attached to them to become familiar with the testing 

condition. Patients were asked to walk between 6 and 10 times until sufficient position 

and ground reaction force data was collected. A minimum of 6 repetitions of 

uninterrupted position data and 3 sets of data from the force-plates, for each leg were 

collected.  

5.4.4.2 Stability Step Exercise  

Patients and healthy controls were asked to participate in a step-up exercise. A 

plywood box measuring 15mm in thickness and commonly used in physiotherapy, was 

used. The box was a standard step height of 170mm, 490mm in width and 655mm 

long. Participants with implants were asked to step-up using their operated leg and 

step-down using their non-operated leg in a cyclical, continuous manner, at least 6 

times and their positional data was recorded by the sensor scanners. Healthy control 

subjects were asked to step-up with their less dominant leg and step-down with their 

dominant leg. The participants were given time to practice this routine prior to data 

collection. The test was repeated 3 times to ensure sufficient data was collected.  
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5.4.5 Data Analysis  

5.4.5.1 Joint Angle Measurement during Gait  

For the purpose of this thesis the gait cycle was divided into eight phases. The first 

phase, Loading Response (LR) was defined as the double support loading from initial 

contact to opposite toe off and was followed by single support phase. Single support 

was divided into 3 equal divisions, Initial Single Support (ISS), Mid-Single Support 

(MSS) and Total Single Support (TSS). The off-loading double support that followed 

single support, Pre-swing (PS), was followed by swing phase that was also divided 

into 3 equal divisions; Initial Swing (ISW), Mid-swing (MSW) and Terminal Swing 

(TSW) (Figure 1.8). Each division was defined by timings of ipsilateral and 

contralateral contact and lift-off events. This analysis is routinely carried out in the 

RNOH gait laboratory using a series of macros in Excel (Microsoft Corporation, 

USA). The mean joint position of the hip, knee and ankle joints in all phases were 

measured and calculated for the operated and non-operated limb in each participant. 

Mean joint position was measured in three spatial planes, sagittal, coronal and 

horizontal and data collected from joint-sparing and conventional joint sacrificing 

patient groups were compared. Results were also compared to healthy control 

participants.  

5.4.5.2 Measurement of Joint Angle Symmetry during Gait 

As a measure of symmetry between the operated and non-operated legs, the average 

joint position in the operated leg for each patient was normalised against the average 

joint position in the non-operated leg by calculating the difference. The average of the 

normalised value for each group was calculated and the distal femoral and proximal 

tibial joint-sparing and joint sacrificing groups and the control group were compared. 
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In healthy controls the mean joint position of the non-dominant leg was normalised 

against the dominant leg; the right leg was the dominant limb in all controls.  

5.4.5.3 Ground Reaction Force during Stance  

Vertical ground reaction force (VGRF) at 3 points during stance, Maximum Weight 

Acceptance (MWA), Mid-Stance (MS) and Push-Off (PO) were measured and the 

average for each leg, in each participant was calculated. The average ground reaction 

force at each point was normalised against the participant’s body weight (BW) and the 

percentage mean value in the operated and non-operated legs in each group were 

calculated. The results of proximal tibial and distal femoral joint-sparing implants were 

compared to the PTR, DFR and control groups.  

5.4.5.4 Time in Stance  

Time in stance was defined as the time between Heel Contact (HC) and Toe Off (TO). 

For each leg, a minimum of 3 readings was measured and the mean value was 

calculated. The average time in stance for the operated and non-operated leg for each 

implant group was calculated and compared with the equivalent implant group and 

with the control group.   

5.4.5.5 Step Exercise 

Patient stability during step exercise was assessed by mapping the trajectory of 

displacement of the sacrum marker against time in the horizontal (X) and vertical (Y) 

directions. The marker trajectory in each group, in each direction was examined 

visually to identify any common trends.      
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5.4.5.6 Leg Length  

The lengths of the operated and non-operated legs were measured using a standard 

tape measure. Leg length discrepancy was determined by normalising the length of the 

operated leg against the non-operated leg as a percentage. The average leg length 

discrepancy for the proximal tibial and distal femoral joint-sparing implants was 

compared with the corresponding joint sacrificing implants and the control group.   

5.4.6 Statistics   

A Mann Whitney-U test was used to compare results between groups where a p value 

< 0.05 was considered significant (version 10.1; SPSS, Chicago, Illinois). Results are 

presented as mean and standard error.   

5.5 Results  

5.5.1 Mean Joint Angle during Gait 

Due to the large amount of data generated in this study, only the results that were 

statistically significant are reported here. All other data is presented in Appendix. 

5.5.1.1 Hip Joint  

5.5.1.1.1 Sagittal Plane  

The mean hip extension angles measured in the operated and non-operated legs in the 

distal femoral and proximal tibial joint-sparing and joint sacrificing groups and in the 

control group are presented in Figure 5.6 and Figure 5.7. The mean hip joint angle 

measured in the operated leg in the DFR group, at TSS (3.67 ± 3.37°) indicated 

significantly more flexion of the hip when compared with the control group (-3.12 ± 

3.07°; p=0.045). Negative values indicated hip extension in the sagittal plane, while 

positive values identified hip flexion.  
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Figure 5.6 Mean hip angles in patients with a femoral replacement in the sagittal plane. 

The operated and non-operated legs were compared in 8 phases of the gait cycle; 

Loading Response (LR), Initial Single Support (ISS), Mid- Single Support (MSS), Total 

Single Support (TSS), Pre-swing (PS), Initial Swing (ISW), Mid- Swing (MSW) and 

Terminal Swing (TSW).  Blue columns represent the control group (C) and the non-

operated legs. Red columns represent the operated leg. 

 

Figure 5.7 Mean hip joint angles in patients with a tibial replacement in 8 phases of the 

gait cycle in the sagittal plane. The operated and non-operated legs are compared. 

Negative values indicate hip extension 

-20

-10

0

10

20

30

40

50

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

JS
F

D
FR C

LR ISS MSS TSS PS ISW MSW TSW

A
n

gl
e 

(°
)

Phases of the Gait Cycle

Non-operated Operated

-20

-10

0

10

20

30

40

50

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

JS
T

P
TR C

LR ISS MSS TSS PS ISW MSW TSW

A
n

gl
e 

(°
)

Phase of the Gait Cycle 

Non-operated Operated



Chapter 5 Gait Kinematics, Symmetry and Ground Reaction Force 

186 

 

 
5.5.1.1.2 Horizontal Plane  

The mean hip rotation angle in the non-operated leg at TSS, in the DFR group (5.21 ± 

1.26°) was significantly more internally rotated when compared with data obtained 

from the control group (-2.81 ± 2.23°; p=0.011). Negative values indicated external 

rotation, and positive values internal rotation of the hip.  

The mean hip angle in the horizontal plane measured for the operated leg in the JST 

implant group (6.93 ± 2.70°) at LR was significantly more internally rotated when 

compared with the PTRs (-5.57 ± 1.96; p=0.011). The mean hip rotation angles in the 

non-operated leg in the PTRs at MSS (5.97 ± 2.29°) and TSS (6.82 ± 3.03°) identified 

a significantly more internal rotation of the hip compared with the control group 

(p=0.037 and p=0.025, respectively). The mean hip rotation angles at MSS and TSS 

in the control group were -0.51 ± 2.64° and -2.81 ± 4.88°.  

5.5.1.1.3 Coronal Plane 

The mean hip abduction angles in the operated leg in the JSF group at MSS and TSS 

were significantly increased (4.44 ± 1.34° and 1.88 ± 0.39°), when compared with 

those in the DFR group (-1.30 ± 1.76°; p=0.027 and -1.37 ± 1.13°; p=0.014). Negative 

values indicated hip abduction in the coronal plane while positive values identified hip 

adduction.  

5.5.1.2 Knee Joint   

5.5.1.2.1 Sagittal Plane  

There was no significant difference in the mean knee joint angles in the sagittal plane 

in the operated and the non-operated legs when the distal femoral joint-sparing and 
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joint sacrificing groups were compared and when they were compared to data obtained 

from the control group (Figure 5.8).  

The mean knee angles measured in the sagittal plane in the operated leg in the JST 

group were significantly decreased when compared with the control group in all 5 

stance phases (Figure 5.9).  P- values are summarised in Table 5.1 

Table 5.1 Mean knee joint angles in the sagittal plane in the operated leg in the 

proximal tibial joint-sparing group and in the control group with associated p-values.   

Phase of the Gait 

Cycle 

JST  group Control    group P –value  

Loading Response  4.56 ± 7.39° 20.00 ± 1.27° P = 0.019 

Initial Single Support 6.84 ± 3.89° 25.65 ± 3.05° P = 0.011 

Mid- Single Support  3.31 ± 3.54° 18.10 ± 2.00° P = 0.011 

Total Single Support  4.26 ± 4.09° 17.42 ± 1.31° P = 0.019 

Pre-swing  20.49 ± 5.73° 35.55 ± 1.02° P = 0.011 

The mean knee flexion angle measured in the operated leg in the PTRs were 

significantly decreased when compared with the control groups at; ISS (11.08 ± 3.89°; 

p=0.016), PS (22.90 ± 5.11°; p=0.004) and MSW (43.12 ± 7.33°; p=0.045). The mean 

knee joint angle in the sagittal plane in the control group at MSW was 57.87 ± 3.41°. 

The mean non-operated knee flexion angle in the PTRs (21.19 ± 2.75°) at TSW was 

significantly increased when compared with the control group (13.56 ± 0.25°; 

p=0.025).  



Chapter 5 Gait Kinematics, Symmetry and Ground Reaction Force 

188 

 

 

 

Figure 5.8 Mean knee angles in distal femoral implant groups during the gait cycle in 

the sagittal plane (flexion-extension). There was no significant difference in knee flexion 

angles in all phases. Overall, the joint angle during the stance phases of the cycle is 

more similar in the operated and non-operated legs in the JSF group when compared 

with the DFRs. This was reversed during the swing phases of the gait cycle.   

 

Figure 5.9 Mean knee angles measured in the sagittal plane (flexion-extension), during 

the gait cycle in the proximal tibial groups. The operated knee in both groups 

hyperextended when compared with the control group.   
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5.5.1.2.2 Horizontal Plane 

There was no significant difference in the mean internal/external rotation angles 

measured in the operated and non-operated knees, when the distal femoral and 

proximal tibial joint-sparing and joint sacrificing groups and the control group were 

compared.    

5.5.1.2.3 Coronal Plane  

The mean knee varus/valgus angles measured in the non-operated leg at MSS and 

MSW, in the DFR group (2.23 ± 1.73° and 2.53 ± 1.3°) were significantly increased 

(varus) when compared with the JSF group (-1.68 ± 0.86;  p=0.027 and -1.68 ± 1.62°;  

p=0.014).   

The mean knee joint angles measured in the coronal plane in the non-operated leg in 

the JST group were significantly more in varus at MSS (1.09 ± 0.41°) and TSS (1.51 

± 0.42°) when compared with the control group (-0.40 ± 0.35°; p=0.019 and -0.07 ± 

0.53°; P=0.019). The mean knee varus angle, measured in the coronal plane in the 

non-operated leg of the PTRs (1.05± 0.73°) at ISW was significantly increased when 

compared with the control group (-4.97 ± 2.87°; p=0.033).   

5.5.1.3 Ankle Joint  

5.5.1.3.1 Sagittal Plane 

There was no significant difference in the mean dorsi/plantar flexion ankle joint angles 

measured in the operated and non-operated legs, in the distal femoral joint-sparing and 

joint sacrificing groups and the control group (Figure 5.10).  
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Figure 5.10 Mean ankle angles measured during the 8 phases of the gait cycle in the 

sagittal plane in the distal femoral groups and the control group. None of the joint 

angles were significantly different when each of the groups were compared. 

The mean ankle joint angles in the sagittal plane (Figure 5.11) measured in the 

operated leg at ISS and MSS, in the joint-sparing proximal tibial implants (-4.39 ± 

3.00° and 1.66 ± 3.65°) were significantly different when compared with the control 

group (5.21 ± 1.23° and 10.04 ± 0.77°; both p=0.033). At MSS, the mean ankle joint 

angle measured in the operated leg in the PTRs (5.52 ± 1.81°) was significantly 

decreased when compared with the control group (p=0.025).  

5.5.1.3.2 Horizontal Plane 

There was no significant difference in the mean ankle rotation angles measured in the 

operated and non-operated legs, in the distal femoral and proximal tibial joint-sparing 

groups where compared with the joint sacrificing and the control groups.   

5.5.1.3.3 Coronal Plane  

The mean ankle joint angles measured in the operated leg in the DFR group were 

significantly decreased at PS (4.11 ± 1.79°) and ISW (5.53 ± 1.47°) when compared 
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with the control group (9.35 ± 2.42° and 10.10 ± 1.18; both p= 0.045). The mean ankle 

joint angles measured in the non-operated leg were significantly decreased in the DFR 

group at PS (4.06 ± 0.66°; p=0.028), ISW (5.77 ± 0.90°; p=0.045) and TSW (6.61 ± 

0.90°; p=0.028) when compared with the control group. The mean ankle joint angle in 

the control group at TSW was 8.12 ± 1.48°. The mean ankle joint angle in the operated 

leg was significantly decreased in the DFR group (-1.90 ± 2.40°) at TSS when 

compared with the JSF group (2.93 ± 4.59°; p=0.027).   

The mean adduction/abduction ankle joint angles measured in the operated leg in the 

PTR group at LR (1.50 ± 1.90°; p=0.016), PS (1.50 ± 1.70°; p=0.016), ISW (1.55 ± 

1.02°; p=0.010), MSW (0.39 ± 1.40°; p=0.006) and TSW (1.31 ± 1.17°; p=0.004) were 

significantly decreased when compared with the control group. The mean ankle joint 

angles in the coronal plane in the control group at MSW and TSW were 8.16 ± 1.01° 

and 8.77 ± 1.46°, respectively.  

 

Figure 5.11 Mean ankle angles measured during the 8 phases of the gait cycle in the 

sagittal plane in proximal tibial groups and the control group. Negative values indicate 

plantarflexion of the ankle joint. 
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5.5.2 Joint Symmetry  

5.5.2.1 Hip Joint   

5.5.2.1.1 Sagittal Plane  

The difference between the mean hip joint angles in the operated and the non-operated 

legs (normalised joint angle), in the joint-sparing tibial replacements (2.84 ± 1.97°; 

p=0.034) at TSS and in the PTRs (4.77 ± 3.88°; p=0.039) at MSW were significantly 

increased when compared with the control group (-1.54 ± 0.80° and -3.02 ± 1.40°, 

respectively).  

5.5.2.1.2 Horizontal Plane  

The normalised mean hip angle in the JST group (-14.67± 9.60°) at LR indicated a 

significantly more internally rotated joint in the operated leg when compared with the 

PTR group (9.60 ± 3.23°; p=0.033). 

5.5.2.1.3 Coronal Plane  

The normalised mean hip adduction/abduction angles in the coronal plane were not 

significantly different when the distal femoral and proximal tibial joint-sparing and 

joint sacrificing groups were compared and when they were compared with the control 

group. 

5.5.2.2 Knee Joint Symmetry 

5.5.2.2.1 Sagittal Plane 

The normalised mean knee flexion angles in the sagittal plane were not significantly 

different when the distal femoral and proximal tibial joint-sparing and joint sacrificing 

groups were compared and when they were compared with the control group (Figure 

5.12). 
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Figure 5.12 Mean differences in knee joint angles in the sagittal plane for the DFF, 

PTR, JSF and JST groups and the control group. A mean angle difference of zero 

indicated the symmetry of the joint angles in both legs. In the patient groups the mean 

difference in joint angle between the operated and non-operated legs and in controls 

the mean difference in joint angles in the right and left legs are presented as a single 

value in each phase.    

5.5.2.2.2 Horizontal Plane 

The normalised mean knee angle measured in the horizontal plane in the PTR group 

(6.66 ± 7.57°) was significantly different at ISS when compared with the control group 

(-5.88 ± 7.62°; p=0.039). The results for normalised mean knee rotation angles in all 

the 5 groups are presented in Figure 5.13. 

5.5.2.2.3 Coronal Plane 

The normalised mean knee varus/valgus angles in the JST group (-1.83 ± 1.73°) was 

significantly different (less symmetrical), when compared with the control group (0.32 

± 0.32°; p=0.034) at TSW. The normalised mean knee angles in the coronal plane in 

the PTR group (-0.44 ± 1.34°) at MSS was also significantly different when compared 

with the control group (-1.12 ± 1.39°; p=0.033). 
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Figure 5.13 Mean differences in knee joint angles in the horizontal plane in the DFR, 

PTR, JSF, JST, and control groups. The operated knee in the PTR group rotates 

mainly internally, throughout the gait cycle.  

5.5.2.3 Ankle Joint Symmetry 

5.5.2.3.1 Sagittal Plane 

The normalised mean knee ankle joint angles measured in the sagittal plane were not 

significantly different when the distal femoral and proximal tibial joint-sparing and 

joint sacrificing groups were compared and when they were compared with the control 

group. The results for normalised mean ankle joint angles in the sagittal plane in all 

the 5 groups are presented in Figure 5.14.   

-20

-15

-10

-5

0

5

10

15

20

LR ISS MSS TSS PS ISW MSW TSW

M
ea

n
 D

if
fe

re
n

ce
 in

 A
n

gl
es

 (
°)

Phases of Gait Cycle 

Control DFR JSF JST PTR



Chapter 5 Gait Kinematics, Symmetry and Ground Reaction Force 

195 

 

 

 

Figure 5.14 Mean difference in ankle joint angles in the sagittal plane in the DFR, PTR, 

JSF, JST and control groups. 

5.5.2.3.2 Horizontal Plane 

The normalised mean internal/external rotation angles of the ankle joint were 

significantly less symmetrical in the JSF group (9.50± 10.21°) at LR when compared 

with the DFR group (-0.17± 1.50°; p=0.027). The normalised mean ankle joint angle 

in the horizontal plane in the DFR and PTR groups (3.32± 3.76°) were also 

significantly increased in LR when compared with the control group (1.00 ± 0.84°; 

p=0.034 and p=0.039, respectively). The results for normalised mean ankle rotation 

angles in all the 5 groups are presented in (Figure 5.15).  

5.5.2.3.3 Coronal Plane 

The normalised mean ankle joint angles in the coronal plane in the PTR group (4.22 ± 

1.93°) was significantly increased at ISW when compared with the control group (-

3.13 ± 1.58; p=0.020).  
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Figure 5.15 Mean difference in ankle joint angles in the horizontal plane in the DFR, 

PTR, JST, JSF and control groups. The difference in ankle joint angle during LR was 

significantly different when the JSF and the DFR groups were compared and when the  

DFR and PTR groups were compared to the control group. 

5.5.3 Ground Reaction Force 

The normalised mean vertical ground reaction force at the 3 stance points; MWA, MS 

and PO, in the operated and non-operated legs in the distal femoral and proximal tibial 

joint-sparing and joint sacrificing groups and in the control group are summarised in 

Figure 5.16 and Figure 5.17. The normalised mean VGRF in the control group at 

MWA, MS and PO, were 115.8 ± 3.53% BW, 74.82 ± 3.81% BW and 114.49 ± 4.81% 

BW, respectively. 

The normalised mean VGRF in the operated leg in the DFR group (100.14% BW), at 

MWA was significantly decreased when compared with the JSF group (111.02% BW; 

p= 0.025) and when compared with the control group (p=0.006). The normalised mean 

VGRF in the operated leg in patients the DFR group at MS (88.31 ± 4.39% BW; 

p=0.045) was significantly increased and was significantly decreased at PO (101.82 ± 
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2.27% BW; p=0.028) when compared with the control group. The normalised mean 

VGRT in the operated and the non-operated legs at MS in the JSF group (87.67 ± 

4.14% BW; p=0.039 and 87.26 ± 4.71% BW; p=0.020) were significantly increased 

when compared with the control group.  

The normalised mean VGRF in all three stance points was not significantly different 

in the JST group when compared with the PTR group. The normalised mean VGRF in 

the operated and non-operated legs at MWA, in the JST group (100.09 ± 1.71% BW 

and 97.75 ± 3.22% BW; p= 0.020 in both) and in the PTR group (100.10 ± 1.42% BW; 

p=0.006 and 103.20 ± 2.28% BW; p=0.016) were significantly reduced when 

compared with the control group. The normalised mean VGRF in the operated leg in 

the PTR group (85.83 ± 2.41% BW) was significantly increased at MS when compared 

with the control group (p=0.037).  
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Figure 5.16 Mean ground reaction force, normalised against body weight, in the 

operated and non-operated legs in the joint-sparing femoral replacements (red), distal 

femoral replacements (green) and the control group (blue).  

 

Figure 5.17 Mean ground reaction force normalised against body weight, in both the 

operated and non-operated legs in the joint-sparing tibial replacements (red) and 

proximal tibial replacements (green) and in the control group (blue).  
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5.5.4 Time in Stance  

The mean time in stance in the control group was 0.65 ± 0.02 seconds. The mean time 

in stance in the operated and the non-operated legs in the JSF group was 0.74 ± 0.07s 

and 0.74 ± 0.05s, and 0.76 ± 0.03s and 0.80 ± 0.09s in the DFR group, respectively. 

The mean stance time in the operated leg in the DFR group was significantly increased 

when compared with the control group (p=0.018). 

The mean stance time in the operated and the non-operated legs in the JST was 0.79 ± 

0.06s and 0.82 ± 0.07s, respectively. The mean stance time in both legs in the JST 

group was significantly increased when compared with the control group (both, 

p=0.020). The mean stance time in the operated and the non-operated legs in the PTR 

group was 0.68 ± 0.02s and 0.75 ± 0.06s, respectively.   

5.5.5 Step Exercise 

The trajectory of the displacement of the sacrum marker in all patients, during the step 

up/down exercise was plotted against time and was visually analysed. No particular 

trend in horizontal or vertical displacement of the sacrum marker in any of the groups 

was identified. The patients in all groups exhibited a similar displacement pattern in 

the horizontal (X) direction; however, displacement in the vertical (Y) direction was 

variable, with no specific pattern.       

5.5.6 Leg Length  

The mean difference between the right and the left leg length in the distal femoral and 

proximal tibial joint-sparing and joint sacrificing groups and in the control group is 

provided in Figure 5.18. The mean leg length discrepancy value was seen to be 
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increased in the DFR and PTR groups when compared with the JSF, the JST and the 

control groups however, the results were not significant.  

 

Figure 5.18 Leg length discrepancy values in each of the groups. No significant 

differences were seen.  

5.6   Discussion  

Motion analysis and use of kinetic and kinematic gait data is an established 

quantitative outcome measurement method for severe gait defects, however there are 

few studies that have utilised this method for assessment of patient outcomes following 

limb salvage surgery (Bruns et al. 2016; Ochs et al. 2007; De Visser et al. 2000; De 

Visser et al. 2003; Kawai et al. 2000). The majority of patients undergoing limb 

salvage surgery for treatment of tumours in the lower extremity are active juvenile or 

young adults that will be returning to normal life following recovery. Hence, gait 

assessment is an important component of functional outcome evaluation (Okita et al. 

2014). Currently there are no studies that have investigated functional outcome using 

gait analysis methods in patients following joint-sparing surgery. Measurement of joint 

angles during gait, symmetry of the operated and the non-operated legs and stance time 
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that were investigated in this chapter, are widely used to assess recovery following 

limb salvage surgery for trauma (Archer et al. 2006) and following a tumour resection 

(Kawamura et al. 1999; De Visser et al. 2003; Ochs et al. 2007). Previous studies have 

reported reduced function in patients treated with a PTR compared with those treated 

with a DFR implant (Skaliczki et al. 2005; Tunn et al. 2008). This has been associated 

with the difficulty to attach the patellar tendon to the implant following removal of the 

tibial tuberosity, alteration of musculature to provide adequate soft tissue coverage and 

possible injury to the neurovascular bundle (Ilyas et al. 2000; Anract et al. 2001; Kawai 

et al. 1999; Dickinson, et al. 2009). Patients treated with a PTR were reported to walk 

significantly more slowly than those treated with a DFR, however they did not exhibit 

a different gait pattern (Ochs et al. 2007).  

5.6.1 Joint Position in Distal Femoral and Proximal Tibial Replacements 

5.6.1.1 Hip  

In this chapter, the mean hip joint angle in the sagittal plane in the control group in all 

phases of the gait cycle were within the values stated in the literature (Winter 1984; 

Kadaba het al. 1990). The mean hip flexion angle in the sagittal plane, in the PTR and 

JST groups were similar to normal gait; however, the mean hip joint angle in both 

groups showed reduced flexion of the hip in the operated leg when compared with the 

non-operated leg during stance. For example, in the JST group and at the start of 

stance, the mean hip flexion angle in the operated leg was reduced by approximately 

2-folds compared with the non-operated leg. Throughout the gait cycle, the hip flexion 

angle in the JSF group was smaller than that of the control group and the DFR group. 

At PS and in the operated and non-operated legs, the mean hip extension angle was 

approximately 9°, while in normal gait the hip joint is in neutral position during this 

phase of the cycle. Rompen et al. that investigated hip flexion angle in patients with 
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massive femoral replacements, reported an overall shift in the flexion-extension 

pattern of the hip towards more extension throughout the gait cycle (Rompen et al. 

2002). However, this was not the case in the study presented here and  the mean flexion 

angle in DFR and PTR patients in both the operated and non-operated legs was 

increased when compared with the control group and their respective joint-sparing 

groups. In another study that investigated conventional, joint sacrificing DFRs, 

subjects exhibited the tendency to flex the hip in the non-operated leg following the 

initial contact, while the hip in the operated leg extended (Yusuke Okita et al. 2013). 

However, in this study the joint-sparing and joint sacrificing distal femoral and 

proximal tibial replacements exhibited less flexion of the operated leg, compared with 

the non-operated leg. Similarly, Bruns et al. also reported reduced hip ROM at the start 

of stance and throughout the swing, in both the operated and the non-operated legs in 

distal femoral implants (Bruns et al. 2016). 

In normal gait the peak hip internal rotation is expected to occur during PS (Kirkwood 

et al. 2007), however in both the operated and non-operated legs in the JSF group, the 

maximum internal rotation of the hip was reached at MSW. The mean hip angle in the 

horizontal plane in the JST and PTR groups showed that the hip joint rotated in 

opposite directions in the operated and non-operated legs at LR. The increased rotation 

at MSW in the JSF group could be a compensatory mechanism for enabling a more 

efficient toe-off, while the excessive internal rotation of the hip at LR in the JST and 

PTR groups could be due to poor control of knee flexion at heel contact. These could 

also be caused by reduced effectiveness of the extensor mechanism of the knee joint. 

Disruption to any part of the extensor mechanism, that is the quadriceps muscle and 

tendon, medial and lateral retinaculum, patellofemoral and patellotibial ligaments, 

patella, patellar tendon, and tibial tubercle (Vaishya et al. 2016), can be caused during 
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the removal of a tumour. The mean hip joint angle in the JSF group during stance 

showed external rotation of the hip, while in the DFR group, the hip joint was mainly 

internally rotated and close to neutral, however this was not significant.  

In the JSF group, the hip in the operated and non-operated legs adducted following LR 

and reached their maximum adduction angle at ISS, as expected in normal gait. 

However, the mean hip abduction angle in both legs at PS was over 2-folds higher than 

the mean hip abduction angle measured in the control group. In the DFR group, the 

mean hip joint angle in the operated leg, during stance and in the non-operated leg 

during swing, remained close to the neutral position. This result is in agreement with 

a study by Bruns et al. where reduced adduction from mid- to terminal stance in 

patients with a DFR implant and reduced abduction throughout swing in the operated 

and the non-operated legs was reported (Bruns et al. 2016). In this study and in the JSF 

and joint sacrificing groups, a similar mean hip joint angle in the coronal plane was 

measured. In proximal tibial joint-sparing and joint sacrificing groups, the overall joint 

symmetry was poor. In the PTR group while the hip joint in the operated leg abducted, 

the hip in the non-operated leg adducted during most of the gait cycle.  

In patients with a proximal femoral massive implant, the strength of hip abductor 

muscles were correlated with the net energy cost and gait symmetry; i.e. the gait in 

patients with  good  abductor  strength  was more symmetrical, and those patients had 

an improved energy expenditure (Kawai et al. 2000). Decreased strength in hip 

abduction can be caused by loss of muscle attachment to a metal prosthesis that is less 

stable (Gitelis et al. 1988; Zehr et al. 1996). In patients with a distal femoral 

replacement the hip abduction/adduction could be widely varied from one patient to 

another depending on the size and location of muscle resection, however it may not be 
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related to preservation of the knee joint and hence, the little difference that was 

observed in the two distal femoral implant groups investigated in this study.   

5.6.1.2 Knee 

An investigation of kinematic gait data in patients treated with conventional distal 

femoral and proximal tibial tumour prostheses revealed that the overall gait pattern in 

patients with a PTR, was predominantly characterised by a hyperextended knee during 

stance when compared with patients in the DFR group (Ochs et al. 2007). The mean 

knee flexion angle in the JST group was significantly different when compared with 

the PTR group, in several phases of the gait cycle, and with the control group during 

stance. In Chapter 4 of this thesis, it was established that patients with a JST implant 

had a normal knee ROM. In this chapter, no significant difference in mean knee flexion 

angle in the sagittal plane in the distal femoral joint-sparing and joint sacrificing 

groups was found. However, when the joint-sparing and joint sacrificing distal femoral 

groups and the control group were compared, the operated knee exhibited decreased 

flexion. In the JSF group, where the mean knee flexion angle in the operated leg was 

approximately halved when compared with the non-operated side during loading 

response until mid-single support. The artificial knee joint has various disadvantages, 

including a limited range of motion (ROM) (Frink et al. 2005). A study that compared 

ROM in twenty patients with massive bone tumour implants and twenty matched 

healthy controls showed that the mean knee flexion angle in the patients, following 

surgery, was significantly reduced (106.2 ± 13.0°) when compared with the 

contralateral limb (134.1 ± 7.5°) and with that of the healthy controls (137.7 ± 7.0°) 

(Tsauo et al. 2006). Okita et al. (2013) investigated gait in patients with a conventional 

distal femoral replacement and found that of the 8 patients investigated, 5 kept their 

operated knee extended during early stance, whereas 2 exhibited a normal knee 
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movement pattern. One patient flexed the ipsilateral knee after initial contact but 

extended it during late stance, similar to a normal knee ( Okita et al. 2013). Other 

studies have also reported a hyperextension of the knee during LR and mid-Stance in 

50% of patients with a DFR and 100% of the patients with a total femoral replacement. 

Some patients with a DFR, presented a flexed-knee gait pattern that is characterised 

by continuous flexion during mid-stance (Rompen et al. 2002). When large segments 

of soft tissue and bone are removed during limb salvage surgery, a substantial decrease 

in strength of knee extension can occur that is often compensated by the gluteus 

maximus, biceps femoris, and gastrocnemius muscles, during stance (Kawamura et al. 

1999). A simulation study of muscle and joint load transfers following resection of a 

tumour in the distal femur concluded that as long as the hip extensors and ankle plantar 

flexors are working, transfer of the forces through the patella tendon can be 

accommodated in level walking and the patients would have a near normal gait (Van 

Krieken et al. 1985). Studies that included electromyographic (EMG) analysis of the 

patients found that during pathologic gait, there is less muscular activity (Winter 1989; 

De Visser et al. 2000). Hence, in early stance, less knee flexion allows the transfer of 

weight without the requirement for normal muscle activity (Tsuboyama et al. 1994). 

This position would reduce the demands on the musculature needed to prevent the 

knee from collapsing, while full knee extension has the advantage of being the most 

stable weight-bearing position (Winter 1989; De Visser et al. 2000). In this study, it 

would have been interesting to also record and analyse EMG activity in order to 

investigate how the knee was being balanced and if there was a difference in the use 

of muscles around the knee in patients with a joint-sparing and a joint sacrificing 

implant. The extensive muscle resection can also cause a loss of proprioceptive 

feedback that is important for control of locomotion (Winter 1989; Lajoie et al. 1996; 
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De Visser et al. 2000). This loss of proprioceptive input may be the contributing factor 

in hyperextension of the knee during stance (De Visser et al. 2000). However, in 

Chapter 4 of this thesis, the results showed no difference in proprioception between 

patients with a joint sparing endoprosthesis and patients with a knee joint replacement. 

In the JSF group of patients, although some muscle attachments are preserved, a large 

amount of muscle may still be resected.  

The mean knee external rotation angle in the operated leg in the joint-sparing and joint 

sacrificing distal femoral implant groups was reduced at LR and TSW when compared 

with the non-operated leg and the control group. Throughout the gait cycle, the mean 

knee rotation angle in the non-operated leg was increased in the DFR group when 

compared with the control group, while this was decreased in the JSF group. When 

compared with control data and the PTR group, the mean knee rotation angle measured 

in the operated and non-operated legs decreased in the JST group, in all phases of the 

gait cycle. While in the JST group, the knee on the operated side exhibited reduced 

external rotation when compared with the knee on the non-operated side, the operated 

knee in the PTR group was more externally rotated compared with the knee on the 

non-operated side. The mean knee rotation angle, was not significantly different when 

the joint-sparing and joint sacrificing distal femoral, proximal tibial and control groups 

were compared. This could be related to subtle rotation of the knee joint during gait 

that was not detected by the equipment. In knee sacrificing procedures, the 

anterolateral ligament, as well as the posterior lateral corner (PLC) and posterior 

cruciate ligament (PCL) that are responsible for knee joint stability, are removed 

(Wang 2002). It could be argued that in joint-sparing implants these attachments 

remain intact, and therefore it is expected that in the JST and JSF groups, when 

compared with the conventional joint sacrificing implants with a rotating hinge knee, 
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that knee rotation is reduced and the joint is more stable. However, this does not 

explain the reduced external rotation of the operated knee when compared with the 

control group and the non-operated knee. While the absence of these ligaments can 

cause knee instability, most rotating hinge knee implants are designed to increase 

stability (Myers et al. 2007) in  the  presence  of  significant bony and/or soft tissue 

envelope defects (Morgan, et al. 2005). In the presence of significant instability, 

implants with more constraint become required. Varus/valgus constrained knee and 

rotating-hinge knee prostheses are often used to provide stability in the coronal and 

the sagittal planes when the ligamentous and soft tissue support are severely 

compromised (Malcolm et al. 2016). 

As expected in normal gait, the mean knee varus/valgus angles in the control group 

were close to neutral from LR to TSS (Winter 1984). In the proximal tibial joint-

sparing and joint sacrificing groups and the DFR group, increased knee varus angle in 

the operated and the non-operated legs was observed during stance, particularly in the 

operated leg of the JST group. The mean knee varus angle in the coronal plane in the 

non-operated leg was significantly different at MSS and MSW when the JSF and the 

DFR patient data were compared. The non-operated side of the JSF group showed 

valgus movement throughout stance as opposed to varus while the operated leg in the 

DFR group presented no valgus movement throughout the gait cycle. There is limited 

data available on knee movement in the coronal plane following limb salvage surgery, 

however, varus/valgus balance has been studied following total knee arthroplasty 

(TKA). The knee varus angle and adduction moments are reduced after TKA 

(Orishimo et al. 2012), though coronal laxity in certain implants can improve ROM 

and varus/valgus balance (Matsuda et al. 2005). In this study, an increase in varus 

angle in the DFR and PTR groups was observed and therefore the results are not in 
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agreement with the findings of studies of TKA patients. The increase in coronal motion 

of the knee compared with TKA, could be a result of extensive resection of muscles 

and soft tissue and needs further investigation.    

5.6.1.3 Ankle  

The mean ankle joint angle in the sagittal plane at each phase within the gait cycle in 

the control group, was as described in the literature for normal gait (Kadaba, et al. 

1990). In the joint-sparing and joint sacrificing distal femoral and proximal tibial 

groups, the overall mean ankle angle in the non-operated leg was similar to that 

measured in the control group, however the operated leg presented a different pattern. 

At LR, the operated leg in the JSF group demonstrated a 13° increase in plantar-flexion 

when compared with the control group and the non-operated leg. This is in agreement 

with the findings of gait kinematic studies in patients with conventional lower limb 

massive tumour implants, where the maximum plantar-flexion angle during early 

stance was greater in the operated leg compared with the healthy subjects (Okita et al. 

2013; Bruns et al. 2016). In this study, the patients in the DFR and JSF groups 

presented smaller dorsiflexion of the ankle throughout the stance phase of the cycle, 

as reported in similar studies (Bruns et al. 2016). Okita et al. (2013) reported that 

during stance, the mean negative ankle joint power of the patients in the operated side 

was greater than that of the healthy subjects. This implies greater load on the ankle 

dorsi-flexors during loading response and ankle plantar-flexors during mid-stance 

(Okita et al. 2013; Carty et al. 2009), as a compensatory mechanism for the decrease 

in knee flexion during early stance (Kawamura et al. 1999; Okita et al. 2013). 

Increased load in the ankle of the operated leg was also observed by the longer 

activation time of the gastrocnemius in patients who underwent endoprosthetic knee 

replacement, when compared with healthy subjects (Carty et al. 2010).  
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The ankle in the non-operated leg in the joint-sparing and the joint sacrificing tibial 

replacements, presented a similar rotation angle to that of the control group, however 

the symmetry of the ankle joint rotation was poor throughout the gait cycle. At LR and 

TSS the joint-sparing and joint sacrificing distal femoral replacement groups presented 

a 2- and 3-fold increase in external rotation of the ankle in the operated and the non-

operated legs, compared with the control group. At PS, ISW and MSW, while internal 

rotation of the ankle in the control group was observed, in the DFR group the ankle 

joint exhibited little to no rotation of the ankle in both legs and remained close to 

neutral position. The reduced internal rotation of the ankle in the operated leg in the 

DRF group cannot be related to damage to muscle and soft tissue structures below the 

knee and adjacent to the ankle joint as these are limited to fixation of the tibial 

component in the artificial rotating hinge knee. For fixation of the JSF implants, 

resection and subsequent reconstruction does not interfere structures in proximal tibial 

and therefore does not explain the changes in the ankle joint angle. The results of the 

study indicated poor symmetry of the ankle joint in both femoral replacements. This 

could be a compensatory mechanism for the reduced knee flexion to increase shock 

absorption at heel contact. In this study, the ankle rotation angle measured in the 

control group did not agree with those reported in literature as the ankle was in internal 

rotation at PS and throughout swing. However, Kadaba et al. reported that although 

the ankle rotates internally at PS, it remains in external rotation position for the 

remainder of the gait cycle (Kadaba et al. 1990). This discrepancy may be a result of 

the combined ankle and subtalar joint complex. The combination of the two joints 

allowed the transverse plane of rotation to take place proximally while the foot is in a 

fixed transverse plane position on the floor (Nester et al. 2003). Both the ankle joint 

and the subtalar joint are necessary parts of this mechanism (Lundberg et al. 1989).  
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Therefore, the results from one study may be presenting the resultant position of the 

subtalar and ankle joints while the other may only include the position of the ankle 

joint.  

In the coronal plane while a slight supination of the ankle is expected at LR (approx. 

2 degrees) in normal gait, the control group in this study exhibited an 8° mean ankle 

joint during this phase. As reported in the literature (Winter 1984, 1989), normal gait 

pronation of the foot is expected following LR and during stance. Results obtained in 

the control group agree with this. When compared with the DFR group, the overall 

mean ankle joint angle measured in the JSF group was more similar to the control 

group; however the DFR group presented a more symmetrical ankle movement. The 

result of the study presented here is contradictory to that reported in a similar study of 

patients who had conventional DFRs. In this study, the operated leg showed a 

significant reduction in pronation of the ankle in comparison to the non-operated leg 

and to the control group, resulting in a significantly reduced ROM (Bruns et al. 2016). 

These differences may be caused by the different implant designs investigated, thereby 

dictating different compensatory mechanisms. Furthermore, there is limited 

information regarding the kinematics of the ankle joint, particularly following limb 

salvage procedures. Further investigation with a larger number of patients is required 

form more conclusive results.   

5.6.2 Joint Symmetry  

In a study that investigated gait symmetry following limb-salvage surgery for 

treatment of bone tumours around the knee, Jang et al. (2012) investigated motion of 

the operated and non-operated legs in the pelvis, hip, knee and ankle in 8 patients and 

8 healthy subjects. The results showed that while the moving trajectory of the right 



Chapter 5 Gait Kinematics, Symmetry and Ground Reaction Force 

211 

 

 
and the left legs in healthy subjects were similar, the movement of the affected and 

non-affected legs in the patient group were different. The study also found that the 

moving trajectory of patients was significantly different from that of the healthy 

subjects (Jang et al. 2012). In  the study presented here, patients with a DFR followed 

by those in the JSF group presented the best joint symmetry in all of the three joints 

measured and amongst all implant groups investigated. While this result does not 

support the initial hypothesis, the JSF group exhibited the most symmetrical hip 

adduction and flexion and knee rotation. Therefore, a larger number of patients is 

required to assess this hypothesis. The PTR group consistently had the least 

symmetrical gait amongst all patient groups and the JST group had an improved joint 

symmetry in comparison. This result supports the initial hypothesis that gait symmetry 

is improved in patients with a joint-sparing implant when compared with patients with 

a joint sacrificing endoprosthesis.   

5.6.3 Vertical Ground Reaction Force 

In all implant groups, a reduced VGRF at MWA and TO, and increased VGRF at MS 

in the operated and the non-operated legs compared with the control group, was 

observed. A greater difference was measured in the operated leg in all cases. The distal 

femoral and proximal tibial joint-sparing groups presented more similar VGRF to the 

control group, in comparison with the DFR and PTR groups, confirming the 

hypothesis. Reduced VGRF following limb salvage procedures around the knee has 

been previously reported (Tsuboyama et al. 1994; Bruns et al. 2016; Okita et al. 2014; 

Benedetti et al. 2000; Carty et al. 2010, 2009). An evaluation of foot pressure patterns 

in patients with a DFR showed that the value of force-time integral at heel contact did 

not change when compared to healthy individuals. In patients with a DFR, the heel has 

been reported to support the load with a wider contact area and longer contact time 
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(Tsuboyama et al. 1994) and this may be associated with conservation of muscle 

energy and interpreted as cautiousness in patients (Bruns et al. 2016). In patients who 

present a flexed knee gait, the reduced hip abduction torque and changes in the sagittal 

joint moments have been related to changes in VGRFs (Okita et al. 2013; Carty et al. 

2009). Hip abductor muscles are thought to be the primary contributor to the VGRF in 

healthy individuals (Anderson and Pandy 2003). The reduction in VGRF in patients 

with a DFR and a PTR in this study, is likely to be related to the reduced knee flexion.   

5.6.4 Time in Stance  

The data presented in this thesis showed that the stance time in distal femoral and 

proximal tibial joint-sparing and joint sacrificing groups was increased in both the 

operated and non-operated sides when compared with the control group. The JST 

group spent significantly more time in stance when compared to the control and the 

PTR group, in both the operated and non-operated sides. This result does not support 

the hypothesis that joint-sparing implants provide a more normal gait than 

conventional joint sacrificing endoprostheses. In the JSF group, the mean stance time 

in the operated and non-operated legs was the same and more similar to the control 

group, while the mean stance time in the operated leg was shorter than in the non-

operated leg in the DFR group, thereby supporting the hypothesis. In the DFR, PTR 

and JST groups, the time in stance in the operated leg was shorter than in the non-

operated leg and this is supported by the literature. A study that investigated foot 

pressure pattern during gait in patients who underwent limb salvage surgery for 

treatment of bone tumours around the knee, found the duration of foot contact was 

shortened on the operated side compared to the non-operated side (Tsuboyama et al. 

1994). Several other studies have also confirmed the shortened stance time in the 

operated leg, compared with the non-operated leg that could be associated with 
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subconscious protection of the “affected” leg by the patients (De Visser et al. 2000; 

Carty et al. 2009; Kawai et al. 1998; Beebe et al. 2009). Tsauo et al. found that the 

ratio of extensor strength of the operated to the non-operated knee and isometric 

hamstring to quadriceps ratio of the operated knee was significantly correlated to the 

difference in stance time in the operated and non-operated sides (Tsauo et al. 2006). It 

has been confirmed that the time in stance and swing becomes more symmetrical in 

the operated and non-operated leg over time (De Visser et al 2003), and may be the 

reason for the more symmetrical stance time in the JSF group seen in this study. In this 

chapter, it was important to investigate patients that were pain free as pain can have a 

significant effect on patients’ gait and duration of stance and swing.  

5.6.5 Step Exercise  

The step exercise was designed to create a simple method to assess stability when 

using steps. This was done by assessing the trajectory of the sacrum marker. The aim 

was to create a more challenging scenario for the patients in contrast with the simple 

level walking. However, the results did not demonstrate any clear pattern. There are 

relatively few studies that have focused on stair climbing (Kennedy et al. 2007). 

Human motion analysis during stair climbing, requires more complicated modelling 

and calculations (Bhatt et al. 2017) and this was not within the capacity of this project. 

5.6.6 Leg Length  

Equality in leg length was improved in distal femoral and proximal tibial joint-sparing 

groups, confirming the hypothesis. While leg length discrepancy was not statistically 

significant when the JST, PTR, DFR and JSF groups were compared with the control 

group, larger leg length inequality was found in all implant groups in comparison with 

the healthy subjects. Tsuboyama et al. (1994) reported leg length discrepancy in 8 out 
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of 20 patients with a DFR. On average the operated leg was 6mm shorter and a positive 

correlation between the extent of shortening of the operated leg and peak pressure in 

the heel of the non-operated foot was found (Tsuboyama et al. 1994). Therefore, the 

greater leg length discrepancy measured in the joint sacrificing groups could be the 

cause of the poor load transfer in this groups of patients in this study.  

5.6.7 Limitations 

This study had a number of limitations. Firstly, the patient groups were not matched. 

Although the distal femoral and proximal tibial joint-sparing groups were compared 

with patients with a joint sacrificing implant of the same anatomical location, patients’ 

gender, age and time from surgery were not matched. There are many variables 

involved in limb salvage surgery for bone tumours. The type and length of pre- and 

post-surgery treatments varies in different patients, which can lead to different 

functional outcomes. For example, some patients could have a reduced range of motion 

as a result of any radiotherapy they may have received. Radiotherapy damages the 

skin, subcutaneous tissues and muscles and can cause fibrosis. It is associated with 

decreased tissue elasticity and contractures, resulting in joint stiffness (Oren et al. 

2004). The post operation rehabilitation plan is also different in patients; for example, 

the type of physiotherapy exercises, intensity and frequency of the sessions can 

significantly impact the recovery of the patients (Zhang et al 2016). The patient groups 

investigated in this study were not matched by time from surgery and it has been found 

that limb function improves over time (De Visser et al 2003). One of the major 

variables in oncology patients is the level of resection and the amount of muscle and 

soft tissue removed during surgery. Patients with larger resections or with more of the 

soft tissue removed, are expected to have a more impaired function.  
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An additional limitation of this study was the small number of participants in each 

group. The values of standard error provided in the results section showed the 

variability of data obtained. Although a large amount of data was obtained in this 

study, other gait determinants such as pelvic rotation, pelvic tilt, trunk flexion, pelvis 

displacement, step and stride lengths and time in swing were not included.   

This study was conducted in an experimental setting. All participants had several 

pieces of equipment that was attached to them, including the markers for data 

collection and were in a laboratory environment, aware of being observed and this may 

have affected their gait.  

For the purpose of this study an active marker system was used for capturing the spatial 

data. This equipment may be unable to capture data as accurately as some other motion 

analysis systems, such as passive marker systems that are available and can detect 

smaller differences in motion (Richards 1999). The changes in gait in limb salvage 

patients is subtle and in many cases is undetected by untrained individuals. Therefore, 

more advanced equipment that can detect small differences in motion may enable a 

more accurate assessment of joint-sparing implants.   

5.7 Conclusion 

In summary, the following can be concluded: 

• The hypothesis regarding the improved gait in joint-sparing implants compared 

with the knee sacrificing implants was disproved. Although joint-sparing 

proximal tibial groups had a more symmetrical gait, the conventional distal 

femoral group had an improved, more normal gait when compared with the 
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joint-sparing distal femoral group, with respect to gait symmetry and stance 

time.  

• Gait, both in terms of joint angles and symmetry was worse in proximal tibial 

implants than in distal femoral implants. Joint sacrificing proximal tibial 

implants had the worst gait when compared with all the other implant groups. 

• Time in stance in the operated leg was shorter than in the non-operated leg, in 

all implant groups.  

• Following limb salvage surgery around the knee, kinematics of all other joints 

such as the hip and ankle are significantly altered and must be evaluated. All 

groups of patients use compensatory mechanism for the loss of muscle power 

and poor extensor mechanism of the knee joint. 

• Load transfer is improved in joint-sparing implants when compared with the 

joint sacrificing implants; the hypothesis regarding VGRF was proved.  

• The step exercise was inadequate and did not provide any results that could be 

conclusive. 

• The hypothesis regarding the leg length discrepancy being greater in patients 

with joint sacrificing implants when compared with the joint-sparing groups 

was proved, although it was not significant. 

In the future, a more comprehensive study with a larger number of patients may 

identify a more specific trend in the compensatory mechanisms used in patients with 

joint-sparing and sacrificing implants. Using more advanced equipment may enable us 

to collect more accurate data that identifies smaller spatial position changes. 

Combining the gait kinematic data with electromyography (EMG) may also provide 

valuable information regarding the compensatory mechanisms, detected through 

different muscular activities.     
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Chapter 6 Finite Element Analysis of a Knee Sparing Distal 

Femoral Replacement and Adjacent Residual Bone  

6.1 Introduction  

Finite Element Analysis (FEA) has become a powerful tool in the field of orthopaedic 

surgery by assisting surgeons and implant designers to better understand the 

biomechanical changes that occur in the implant and bone following implantation. For 

example, FEA has been used to predict changes in stress and strain  distribution  in the 

bone adjacent to the implant to prevent complications caused by unsuitable  prosthetic 

design (Herrera et al. 2012). In this chapter, FEA was used to analyse the stress 

distribution within the distal femoral bone and a joint-sparing distal femoral implant 

when subject to forces and bending moments associated with loading the implant. FEA 

was used to investigate the optimum resection level when implanting a distal femoral 

joint-sparing implant and the changes that occur in the bone and the implant when key 

design features are altered.     

6.2 Objectives  

The aim of this chapter was to assess the risk of fracture in extra-cortical plates of 

different thickness by examining Von Mises stress (VM) and strain (E). This chapter 
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also aimed to identify the optimal resection level required when inserting a knee 

sparing implant by investigating Von Mises stresses within the implant and cortical 

bone and also by measuring Strain Energy Density (SED) within bone adjacent to the 

plates.  

Finally, this chapter aimed to assess whether the use of biomaterials of low stiffness 

increased the risk of plate fracture and increased stresses within adjacent bone, 

improving bone formation and implant fixation. This was examined using the VM 

stress criterion and SED.    

6.3 Hypothesis  

In this chapter it was hypothesised that:  

• The risk of extra-cortical plate fracture in the current design of distal femoral 

joint-sparing implants is low.  

• Reducing the thickness of extra-cortical plates, which can reduce bulkiness 

around the knee and improve soft tissue coverage, does not result in fracture of 

the plates.  

• Implant resection levels closer to the knee joint, produce lower stresses within 

cortical bone adjacent to the implant and increase the risk of stress shielding.    

• The risk of fracture of the extra-cortical plates is higher when materials with 

lower Young’s modulus, such as porous titanium and PEEK are used as 

implant material, however it is unlikely.    

• Using porous titanium or PEEK, can reduce the risk of stress shielding on the 

cortical bone adjacent to the plate and encourage bone formation, compared 

with the knee sparing implants made with solid titanium alloy. 
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6.4 Method 

6.4.1 Geometry 

Computer tomography (CT) images were taken of the left femur obtained from a 

female cadaveric donor with no pathology or history of musculoskeletal disease 

(Vesalius Clinical Training Centre, University of Bristol, UK). The specimen was 

submerged in water and 0.5mm thick slices were scanned using a standard clinical CT 

scanner (Brilliance, Philips Healthcare, UK). Scans through the femur were obtained 

at a peak voltage of 120kV and a tube current and planned current of 240mA.  

The CT images were sent to Stanmore Implants (Elstree, UK) where 4 simplified 

custom distal femoral joint-sparing implants were designed using CAD software 

(Unigraphics, Siemens PLM Software). A detailed description of the design of joint-

sparing implants is provided in Chapter 2, Section 2.4. One of the four implant designs 

produced by Stanmore Implants was a control implant. This distal femoral implant was 

designed using current features where the implant allowed for a 45mm resection level 

measured from the base of the femoral condyles and was composed of two 3mm thick 

extra-cortical plates. This model was also used to investigate the effect of material 

stiffness on the stresses within the bone and implant. The assignment of different 

material properties was carried out following the mesh generation step, and is 

explained in Section 6.4.4 of this chapter. The 45mm resection level was based on the 

average resection level measured in all patients listed within the database held by 

Stanmore Implants. The metrics of each patient with a joint-sparing distal femoral 

implant were used and patient data was anonymized. Two other implant models were 

designed to allow for a 35mm and 55mm resection level where both models also had 

two extra-cortical plates that were 3mm thick. The fourth implant model was designed 



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

220 

 

 
to allow for a 45mm resection level with two extra-cortical plates of 1.5mm thickness. 

For the purpose of this thesis the bone-implant models were simplified and the extra-

cortical plates did not have slots or holes for screw fixation. In reality the implant is 

fixed to the bone using uni- or bi-cortical screws.  

To create the bone-implant model, the CT images of the bone were imported into 

Mimics®  (Materialise, Belgium), an image processing software that can generate 3D 

models from 2D images. More information about this process is given in Chapter 2, 

Section 2.4.3. A mask was created from the CT images in order to generate a 3D model 

that included both the cancellous and cortical bone. Once the 3D bone model was 

created, the implant model was imported into Mimics® as an STL file. To ensure 

correct alignment of the 3D bone and the implant models, the ‘contour’ function of the 

software that showed the outline of both objects in the plane view, was used to inspect 

their alignment and contact in 3 spatial planes.   

Following alignment of the models, the 3D bone model was cut using the ‘poly plane’ 

function of the software in simulation module. Two points on the bone and along the 

plateau of the implant were chosen to create the cutting plane. The dimensions of the 

plane were edited to ensure that the cutting plane covered the entire surface of the 

plateau and a plane thickness of 0.1mm was chosen. The orientation of the plane was 

adjusted so that it was fully parallel and tangential to the implant plateau and not 

intersecting the implant. Once the cut was made, the distal and proximal parts of the 

bone model were split. The distal section that included the femoral condyles was then 

wrapped, using a closing factor of 0.5mm and saved to be meshed for Finite Element 

Analysis (FEA). Wrapping is used to enhance complex geometries by closing the gaps 

between surfaces. For the intact bone model, all the above steps were carried out but 
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the cut was made 150 mm from the base of the condyles to match the height of the 

bone-implant model.  

 

Figure 6.1 [A] A 2D CT image of femoral bone; [B] 3D bone image generated from 2D 

CT images; [C] wrapped 3D bone prior to cutting for alignment with the implant; [D] 

3D bone has been cut and split to two parts; [E] The implant and femoral condyles are 

aligned.  

 

6.4.2 2D Mesh Generation  

The wrapped bone and the implant models were exported from Mimics® into 3-

matic® (Materialise, Belgium), a module of Mimics® software that is used for mesh 

generation and 3D printing. To achieve accurate FE results, a uniform volume mesh 

of the model was required. The imported wrapped bone and implant model included a 

rough surface mesh and no volumetric mesh. The bone model was smoothed to 

eliminate all sharp edges and porous surfaces; a smoothing factor of 0.500mm was 

used. The number of elements in the mesh was then reduced to prepare both the 

implant and the bone for a finer mesh. Prior to generating the mesh an “inspection 

scene” was opened within the software to monitor the quality of the mesh triangles. A 

shape measure of height to base ratio (Height/Base (N)) and quality value of 0.4 was 

set within the inspection scene. A regular mesh with nodes roughly on the surface and 
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even length edges, generate more accurate results, as small displacements are 

distributed among all sub-items relatively equally. For mesh generation, the “Auto 

Remesh” function from the remesh module of the software was used and each object 

was remeshed individually. The auto remesh was carried out in two steps and the set 

parameters for the first step are given in Table 6.1.  

Table 6.1 Auto remesh parameters for the first stage of 2D mesh generating  

Shape measure  Height/Base (N)  

Shape quality threshold  0.4000 

Maximum geometric error  0.2000 

Maximum triangle edge length  2.000 mm 

Number of iterations 3 

In the second step, the maximum geometric error and the maximum triangle edge 

length were reduced and the number of iterations was increased to generate a finer 

mesh with fewer distorted, low quality triangles. The auto remesh parameters used are 

listed in Table 6.2.   

Table 6.2 Auto remesh parameters for the second stage of 2D mesh generating 

Shape measure  Height/Base (N)  

Shape quality threshold  0.4000 

Maximum geometric error  0.1000 

Maximum triangle edge length  1.000 mm 

Number of iterations 5 

Once the 2D mesh was generated, all duplicated and overlapping triangles were 

removed while preserving the quality of the triangles using the “quality preserved 

reduced triangle” function of the software. All mesh parameters from the previous step 

remained unchanged (Table 6.2). 
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To create a single model from two complex geometries, a “non-manifold assembly” 

was created. Manifold is a geometric topology term that allows disjoint parts to exist 

in a single logical body. A non-manifold means all disjoint parts will be their own 

logical body. In a non-manifold assembly, although the objects are part of one 

assembly with a shared area, each object is its own individual component, with its 

individual properties. The shared area between the objects is in fact the actual non-

manifold condition. In order to create a non-manifold assembly, first the two meshed 

objects were aligned in such a way that the bone and the implant were intersected and 

in full contact. This caused the implant model to dig into the bone model in some areas. 

Once the two meshed objects were aligned, the assembly was created using the “create 

non-manifold assembly” function of the remesh module.  

6.4.3 Generating a Volume Mesh  

The finite element mesh is a key factor for an efficient analysis. The type of element 

and the mesh density affect the accuracy of the results (Ramos and Simões 2006). The 

mesh element type used in this thesis was a 4-node linear tetrahedral element that is 

suitable for irregular and complex geometries. This type of element is indicated as 

“Init” within the 3-matic software. The method used for generating the volume mesh 

was “Init and Refine” that fills the volume and fits the tetrahedral elements more 

appropriately. The edge length was controlled to limit the size of tetrahedral elements 

to set dimensions. For the purpose of this study an “Aspect Ratio” mesh quality 

assessment method was used and the shape quality threshold was set to 25 (Table 6.3). 

Due to the interaction of two independent objects i.e. the bone and implant, at the bone 

implant interface a finer mesh was generated. The local remesh function was used and 

area of the bone-implant interface was chosen as the entity to create a local mesh 
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(Figure 6.2). The parameters chosen for the generation of a local mesh are given in 

Table 6.4. 

Table 6.3 Remesh parameters for the generation of volume mesh 

Method Init and Refine 

Shape quality threshold  25.000 

Shape measure  Aspect ratio (A)  

Maximum edge length  1.000 mm 

 

Table 6.4 Remesh parameters for the generation of local volume mesh at the bone- 

implant contact 

Method Init and Refine 

Shape quality threshold  25.000 

Shape measure  Aspect ratio (A)  

Maximum edge length  0.500 mm 

 

 

Figure 6.2 [A] The bone and implant are meshed as two individual objects. [B] A non-

manifold assembly, consisting of the bone and the implant has been formed and 

remeshed. [C] A finer local mesh at the bone-implant contact was generated. 
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6.4.4 Material Assignment  

The 3D meshed assembly was imported from 3-matic to Mimics for material 

assignment. The greyscale values within the CT images were included in the 3D 

meshed assembly and represented material density. These values were used to assign 

material properties to each of the elements in the volume mesh. Two quantitative 

relationship empirical expressions were used to convert the grey value into a density 

value and elastic modulus value. These expressions are provided in Equations 6.1 and 

6.2 (Qiu et al. 2012).  

Density = -13.4 + 1017 * HU     Equation 6.1  

Young’s modulus = -388.8 + 5925 * Density   Equation 6.2 

Where HU is the Hounsfield Unit. 

To simplify the FEA models, the range of grey values of the volume mesh were divided 

into ten equal-size intervals each representing one material (Figure 6.3). The central 

grey value of each interval was chosen as a representative for that interval. A Poisson 

ratio of 0.3 was assigned to all materials in the Material Editor. Figure 6.3 shows an 

image of the material editor and the relationship between colour and the material 

property values. The variable material properties of the bone model indicated the 

inhomogeneous nature of the bone.  
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Figure 6.3 Image of the Material Editor window within Mimics. The grey values within 

the bone volume mesh were divided into 10 equal-size intervals that each represents 

one material. 

Material assignment was applied manually for the implant. The mechanical properties 

for each type of material are given in Table 6.5. 

Table 6.5 Density, Young’s Modulus and Poisson’s ratio given to each type of material 

Material Density  (Kgm-3) 
Young’s Modulus 

(GPa) 
Poisson’s Ratio 

Titanium Alloy 4430 114.00 0.33 

Porous Titanium (30% 

Porosity) 
3100 18.00 0.22 

PEEK 1290 3.85 0.40 

The final model of a non-manifold assembly composed of a linear tetrahedral 

elemental volumetric mesh with assigned material properties (Figure 6.4) was 
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imported to Abaqus/CAE (Dassault Systèmes Simulia Corp.) for Finite Element 

Analysis.   

 

 

6.4.5 Loading Condition 

A study carried out by Taylor and Walker (2001), measured the axial force, torque and 

bending moments in the shaft of the femur using an instrumented massive distal 

femoral replacement. Forces in the implant were measured for several gait activities 

including walking and jogging at three intervals over a three year period and their 

correlation with body weight (BW) was calculated (Figure 6.5).  

Figure 6.4  Bone-implant model after material assignment. The implant was given the 

mechanical properties of Ti alloy and has uniform properties throughout the geometry. The 

voxels of the femoral condyle have different material properties depending on their grey values. 

Different shades of green, yellow, orange and red indicate different material properties. The 

scale represents the material properties of the elements within the bone model, only.      
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Figure 6.5 Schematic of the instrumented distal femoral replacement used for 

measurement of forces (Taylor and Walker 2001) 

The maximum forces recorded during a gait cycle when the knee is fully extended 

during walking and jogging at 132 weeks was selected for this study and a body mass 

of 70kg was assumed. The calculations were made based on the length of the bone-

implant model (150mm). A summary of the loads applied is presented in Table 6.6.  

As the elements chosen for the FE analysis were linear tetrahedral with no rotational 

degrees of freedom (DOF), two equal and opposite concentrated forces were applied 

to represent torsion and bending moments (Figure 6.6).  

Although implementation of the bending moments in this way may introduce a shear 

stress it is assumed to be negligible. The axial load was applied as uniform pressure to 

the base of the implant (Figure 6.6C). 
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Figure 6.6 Application of [A] torsion and [B] bending moment, using two opposite and 

equal concentrated forces. [C] Axial force was applied as uniform pressure.  

 

Table 6.6 Loads applied to the FE model, calculated from values by Taylor and Walker 

study (Taylor and Walker 2001). 

Activity Type of Load Axial load AP Bend ML Bend Torsion 

Walking  

Body Weight 3.3 BW 96.0 BWmm 57.0 BWmm 57.0 BWmm 

Newton  2266.11 N 2746.80 Nm 1630.91 Nm 4.12 Nm 

Applied load 5.01 MPa 1428.34 N 848.07 N 171.80 N 

Jogging  

Body Weight 3.82 BW 113.0 BWmm 79.0 BWmm 6.0B Wmm 

Newton  2623.20 N 3233.21 Nm 2260.39 Nm 4.12 Nm 

Applied load 5.80 MPa 1681.27 N 1175.40 N 171.80 N 

 

6.4.6 Boundary Conditions 

Boundary conditions are applied to mesh nodes to constrain their movement in any or 

all six degrees of freedom. In applying boundary conditions to a biomechanical FE 

model, assumptions have to be made based on the part of the human body being 

modelled and the main areas of interest on the model. For the purpose of this study 

“ENCASTRE” fixation was selected to fix the model in all 6 degrees of freedom at the 

distal end of the femoral condyles, eliminating movement in all directions. 
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ENCASTRE means completely fixed or clamped. This model aimed to mimic the knee 

joint (Figure 6.7).  

 

Figure 6.7 Schematic of the loading and boundary conditions applied. MML and MAP 

indicate bending moments applied in the M/L and A/P directions, respectively. Torsion 

(T) and the axial force that was applied as pressure (P) are also indicated. Each model 

was approximately 150mm high and was constrained (ENCASTRE) at the condyles.   

6.4.7 Contact Conditions    

A “tie” contact between the bone and the implant model was applied to allow the parts 

to be effectively fused together, deforming and transferring forces as one.  

At the early stages of the study, two other models were assessed:  

1. A bone model that included two types of material, namely cancellous and 

cortical bone. During segmentation of the 2D CT images, two masks were 

generated, one with a lower threshold value to represent cancellous bone and 

the other a higher threshold representing cortical bone. The two separate parts 
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were remeshed and assigned uniform material properties of cancellous and 

cortical bone before being assembled and imported into Abaqus/CAE. A tie 

interface was applied between the two parts. However, this model did not 

generate any results. Although during segmentation of the 2D images the 

threshold value did not overlap, as Mimics® generated masks based on the 

average grey value in each pixel, some parts of the geometry were common in 

both cortical and cancellous bone. Thus, during FE analysis these mesh 

elements overlapped and the calculations failed. Additionally, due to the large 

gaps in both geometries, the parts couldn’t be wrapped and incorrect results 

were generated. Therefore, results from this model are not presented in this 

thesis.  

2. The second scenario included introduction of friction between the bone and the 

implant. In another words a sliding interface, where the two parts move relative 

to each other. This model aimed to create a near to reality interface condition 

between the bone and the implant where the bone and the implant were not tied 

and moved relative to each other. In this case, following the creation of a non-

manifold assembly and generating a volume mesh, the non-manifold assembly 

was separated. This would ensure a perfect contact surface between the bone 

and the implant while generating two surfaces; one on each part to allow for 

assignment of contact conditions. Once the material properties were assigned 

to each part, both parts were imported to Abaqus/CAE. The contact condition 

of “sliding” was chosen and the bone-implant interface was selected as the 

contact surface. The mechanical condition of “friction” with a coefficient of 

friction of 0.3 was selected (Nuno et al., 2001; Completo et al., 2007). The 

bone contact surface was the “master” and the implant contact surface was the 
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“slave” surface. The slave surface moves relative to the master surface. A 

number of nodes on each plate were tied to their corresponding nodes on the 

bone to represent the screw fixation. Although the FE calculation was 

completed, the results did not indicate an accurate outcome as large 

displacement of the implant was observed. Therefore, the  results from this 

model are not presented in this thesis.     

6.4.8 Mesh Sensitivity Study 

A convergence study was carried out to identify the appropriate mesh size. FEA 

provides an approximate solution to a problem and therefore, the smaller the elements 

the more accurate the solution will be, particularly in areas of stress concentration. 

However, computing a very fine mesh, particularly in a complex geometry with 11 

different material properties is time consuming. Therefore, a compromise between 

accuracy and time taken to compute the results was made.    

The same geometry, material and boundary conditions as the control model were used 

to assess the Von Mises (VM) stresses recorded in areas of interest, i.e. bone adjacent 

to the implant and the extra-cortical plates. The geometry was meshed with maximum 

element edge length of 3mm and a varying element size at the bone-implant interface. 

A permissible relative error of 5% in all 4 areas was used to choose the mesh. The 

number of elements, included in each model for each element size is provided in Table 

6.7.  

Figure 6.8 shows the change in VM stress by change in mesh size in four different 

areas; two on the implant and two on the bone. ‘Implant 1’ and ‘2’ lines shown in 

Figure 6.8 indicate the maximum stress on the right and left extra-cortical plates, 



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

233 

 

 
respectively and ‘Bone 1’ and ‘2’ represent the maximum stress on the bone elements 

adjacent to the right and left extra-cortical plates.  

The mesh size chosen for this study was the 1.0mm element size, as less than 5% 

variation was calculated for a mesh size of 0.5mm edge length when compared to 

1.0mm edge length.  

Table 6.7 Number of elements and their type included in each model for mesh 

sensitivity study. 

Element Size (mm) No. of Element  Type of Element  

0.5 6,266,356 Linear Tetrahedral 

1.0 1,177,348 Linear Tetrahedral 

1.5 565,160 Linear Tetrahedral 

2.0 404,617 Linear Tetrahedral 

3.0 334,653 Linear Tetrahedral 

 

Figure 6.8 Convergence study in Abaqus/CAE, in four high stress areas: right extra-

cortical plate adjacent to the bone (Implant 1), left plate adjacent to the bone (Implant 

2), cortical bone adjacent to the right plate (Bone 1) and cortical bone adjacent to the 

left plate (Bone 2). The lines indicate that the 1mm element size was suitable for the 

study.  

4

8

12

16

20

3 2 1.5 1 0.5

V
M

 S
tr

es
s 

(M
P

a)

Element size (mm)

Implant 1 Implant 2 Bone 1 Bone 2



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

234 

 

 
6.5   Results 

6.5.1 Stress on Implant and Femoral Bone  

Analysis of stress distribution in all cases indicated that the anterior side of the implant 

was under compression loading while the posterior side was in tension. For all 6 

models, the maximum Von Mises (VM) values in the medial and lateral side of the 

bone and implant, in both loading conditions were investigated. The results of this 

study are presented as Von Mises values as VM stresses provide a single value that 

takes into account shear stresses as well as normal stresses. Thus, any influence from 

the shear stresses due to the torsion load would be detected. Von Mises stress can be 

calculated by the expression provided in Equation 6.3.  

𝝈𝒆 =
𝟏

√𝟐
[(𝝈𝟏 − 𝝈𝟐)𝟐 + (𝝈𝟐 − 𝝈𝟑)𝟐 + (𝝈𝟑 − 𝝈𝟏)𝟐]

𝟏
𝟐⁄
   Equation 6.3 

Where, σe is the Von Mises equivalent stress and σ1, σ2 and σ3 are principal stresses.  

The value and location of maximum VM stress in the implant in each model for both 

walking and jogging loadings are summarised in Table 6.8 to Table 6.11. The 

maximum VM stress in the intact bone model was 1.19MPa and 1.86MPa when 

walking and jogging loads were applied, on the anterior surface of cortical bone. In all 

implant models and for both loading conditions, maximum stresses were observed in 

the extra-cortical plates and at the plate-shaft interface (Figure 6.10). The highest 

concentration of stresses were observed at the plate-shaft interface in the model with 

1.5mm thick plates, where 24.7MPa in the antero-medial and 16.7MPa in the antero-

lateral plate for the walking load and 28.7MPa and 19.0MPa for the jogging load were 

measured.    
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When comparing the three resection levels investigated in this Chapter, the 55mm 

model had the highest concentration of stresses in the antero-medial plate, while the 

35mm resection implant had the lowest stress concentration, in both plates and for both 

loading conditions, indicating a reduced risk of plate fracture. The lowest stresses on 

the extra-cortical plates were observed in the implant with assigned PEEK material 

properties where 1.83kPa was measured in the antero-medial plate when subject to 

walking loading.  

 

Figure 6.9 VM stress distribution on the standard model under walking loading; low 

stresses are present on the bone. The highest stress concentration is at the plate-shaft 

interface. 



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

236 

 

 

 

Figure 6.10 Image of the implant with 1.5mm thick extra-cortical plates under walking 

load. The highest stress concentration of 24.7 MPa was seen at the plate-shaft interface 

of this model, when subject to jogging loading.   

 

High stress concentration 

at plate-implant junction 



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

237 

 

 
Table 6.8 Maximum VM stresses on the antero-medial plate of each implant for 

walking load   

Model Load  Part 
Max V-Mises 

(Nm-2) Location  

Standard Model  Walking Implant 1.83E+07 A/M Plate; Plate-shaft interface 

55mm Resection  Walking Implant 2.24 +07 A/M Plate; Plate-shaft interface 

35mm Resection Walking Implant 1.11E+07 A/M Plate; Plate-shaft interface 

Porous Ti Implant Walking Implant 5.01E+06 A/M Plate; Plate-shaft interface 

PEEK Implant Walking Implant 1.83E+03 A/M Plate; Plate-shaft interface 

1.5mm Thickness 

Plates Walking  Implant 2.47E+07 A/M Plate; Plate-shaft interface 

 

Table 6.9 Maximum VM stresses on the antero-lateral plate of each implant for 

walking load 

Model Load  Part 

Max V-Mises 

(Nm-2) Location  

Standard Model  Walking Implant 9.77E+06 A/L Plate; Plate-shaft interface 

55mm Resection  Walking Implant  1.19 +07 A/L Plate; Plate-shaft interface 

35mm Resection Walking Implant 6.78E+06 A/L Plate; Plate-shaft interface 

Porous Ti Implant Walking Implant 3.97E+06 A/L Plate; Plate-shaft interface 

PEEK Implant Walking Implant 2.29E+06 A/L Plate; Plate-shaft interface 

1.5mm Thickness 

Plates Walking Implant 1.67E+07 A/L Plate; Plate-shaft interface 

 

Table 6.10 Maximum VM stresses on the antero-medial plate of each implant for 

jogging load   

Model Load Part 
Max V-Mises 

(Nm-2) Location 

Standard Model  Jogging Implant 2.13E+07 A/M Plate; Plate-shaft interface 

55mm Resection  Jogging Implant 2.27 +07 A/M Plate; Plate-shaft interface 

35mm Resection Jogging Implant 1.29E+07 A/M Plate; Plate-shaft interface 

Porous Ti Implant Jogging Implant 5.91E+06 A/M Plate; Plate-shaft interface 

PEEK Implant Jogging Implant 2.12E+06 A/M Plate; Plate-shaft interface 

1.5mm Thickness 

Plates Jogging Implant 2.87E+07 A/M Plate; Plate-shaft interface 
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Table 6.11 Maximum VM stresses on the antero-lateral plate of each implant for 

jogging load 

Model Load Part 
Max V-Mises 

(Nm-2) Location 

Standard Model  Jogging Implant 1.12E+07 A/L Plate; Plate-shaft interface 

55mm Resection  Jogging Implant 1.69E+07 A/L Plate; Plate-shaft interface 

35mm Resection Jogging Implant  7.70E+06 A/L Plate; Plate-shaft interface 

Porous Ti Implant Jogging Implant 4.55E+06 A/L Plate; Plate-shaft interface 

PEEK Implant Jogging Implant 2.65E+06 A/L Plate; Plate-shaft interface 

1.5mm Thickness 

Plates Jogging Implant 1.90E+07 A/L Plate; Plate-shaft interface 

 

In all bone-implant models the location of the highest stresses was seen on the implant 

and areas of bone where the edges of the plates and the plateau of the implant had cut 

into the bone (Figure 6.11 and Figure 6.12). The results showed that stresses decreased 

in the femoral condyle compare with the intact bone, except around the areas of the 

implant that cut into the bone. Highest stress distributions on bone was associated with 

the PEEK implant (Figure 6.13). In each case maximum stress occured in cortical bone 

immediately adjacent to the plate. The areas of maximum stress on the bone, in the 

medial and lateral sides, for both the walking and jogging loading conditions are 

sumarised in Tables 6.12 to 6.15. 
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Figure 6.11 Image shows the medial side of the femoral condyle (with the implant 

removed). Overall low stresses are present on the bone. A high stress concentration is 

visible at contact areas adjacent to the implant shaft and plates. 

 

 

Figure 6.12 Highest stress concentration on the femoral bone adjacent to the extra-

cortical plate in implant designed for a 55mm resection level. 

 

 

  

Stress concentration 

where edges of implant 

cut into the bone  

Stress concentration 

on the bone adjacent 

to the plate  
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Table 6.12 Maximum VM stresses on the antero-medial plate of each implant for 

walking loading. 

Model Load Part 

Max VM 

(Nm-2) Location 

Standard Model  Walking 

Femoral 

Condyles 5.10E+06 

Bone-plate interface- centre of 

A/M  Plate 

55mm Resection  Walking 

Femoral 

Condyles 5.47E+06 

Bone-plate Interface- anterior 

corner of A/M Plate 

35mm Resection Walking 

Femoral 

Condyles 4.34E+06 

Bone-plate interface- Posterior 

corner of A/M Plate 

Porous Ti Implant Walking 

Femoral 

Condyles 3.95E+06 

Bone-plate interface- centre of 

A/M plate 

PEEK Implant Walking 

Femoral 

Condyles 3.22E+06 

Bone-plate interface- centre of 

A/M plate 

1.5mm Thickness 

Plates Walking 

Femoral 

Condyles 4.94E+06 

Bone-plate interface- centre of 

A/M plate 

 

 

Table 6.13 Maximum VM stresses for walking loading on the bone adjacent to the 

antero-lateral plate    

Model Load Part 

Max VM 

(Nm-2) Location 

Standard Model  Walking 

Femoral 

Condyles 5.04E+06 

Bone-plate interface- centre of A/L 

Plate 

55mm Resection  Walking 

Femoral 

Condyles 1.13E+07 

Bone-plate interface- anterior corner 

of A/L Plate 

35mm Resection Walking 

Femoral 

Condyles 5.11E+06 

Bone-plate interface- anterior corner 

of A/L plate 

Porous Ti 

Implant Walking 

Femoral 

Condyles 3.53E+06 

Bone-plate interface- centre of A/L 

plate 

PEEK Implant Walking 

Femoral 

Condyles 2.07E+06 

Bone-plate interface- centre of A/L 

plate 

1.5mm Thickness 

Plates Walking 

Femoral 

Condyles 5.80E+06 

Bone-plate interface- centre of A/L 

plate 
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Table 6.14 Maximum VM stresses for jogging loading on the bone adjacent to the 

antero-medial plate    

Model Load Part 

Max VM 

(Nm-2) Location 

Standard Model  Jogging 

Femoral 

Condyles 6.88E+06 

Bone-plate interface- centre of A/M 

plate 

55mm Resection  Jogging 

Femoral 

Condyles 7.14E+06 

Bone-plate interface- centre of A/M 

plate 

35mm Resection Jogging 

Femoral 

Condyles 5.03E+06 

Bone-plate interface- posterior 

corner of A/M plate 

Porous Ti Implant Jogging 

Femoral 

Condyles 4.58E+06 

Bone-plate interface- centre of A/M 

plate 

PEEK Implant Jogging 

Femoral 

Condyles 3.74E+06 

Bone-plate interface- centre of A/M 

plate 

1.5mm Thickness 

Plates Jogging 

Femoral 

Condyles 5.73E+06 

Bone-plate interface- centre of A/M 

plate 

 

 

Table 6.15 Maximum VM stresses for jogging loading on the bone adjacent to the 

antero- lateral plate    

Model Load  Part 

Max V-Mises 

(Nm-2) Location  

Standard Model  Jogging 

Femoral 

Condyles 6.45E+06 

Bone-plate interface- centre of A/L 

plate 

55mm Resection  Jogging 

Femoral 

Condyles 7.80E+06 

Bone-plate interface- anterior 

corner of A/L plate 

35mm Resection Jogging 

Femoral 

Condyles 5.93E+06 

Bone-plate interface- anterior 

corner of A/L plate 

Porous Ti Implant Jogging 

Femoral 

Condyles 4.09E+06 

Bone-plate interface- centre of A/L 

plate 

PEEK Implant Jogging 

Femoral 

Condyles 2.40E+06 

Bone-plate interface- centre of A/L 

plate 

1.5mm Thickness 

Plates Jogging 

Femoral 

Condyles 6.73E+06 

Bone-plate interface- centre of A/L 

plate 
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Figure 6.13 Stresses within the bone were increased when the implant material was 

PEEK.    

6.5.2 Maximum Strain in the Implant 

A summary of maximum strain in each implant for both loading conditions are 

provided in Table 6.16. Strain values decreased in resection levels closer to the joint, 

indicating an overall increase in strength of the bone-implant assembly that could be 

more durable. The porous titanium implant had the smallest strain values in both 

loading conditions, followed by PEEK.  

Table 6.16 Maximum starin values for all 5 implants when subject to walking and 

jogging loading. 

Model Load Max Strain  Load Max Strain  

Standard Model  Walking  2.51E-04 Jogging 2.92E-04 

55mm Resection  Walking  2.72E-04 Jogging 2.80E-04 

35mm Resection Walking  1.58E-04 Jogging 1.80E-04 

Porous Ti Implant Walking  3.01E-05 Jogging 3.49E-05 

PEEK Implant Walking  8.32E-05 Jogging 9.64E-05 

1.5mm Thickness Plates Walking  1.36E-04 Jogging 1.58E-04 
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6.5.3 Strain Energy Density in the Femoral Bone 

An increase in SED was noted in all implant cases where the bone and implant came 

into direct contact, particularly adjacent to the extra-cortical plates. A path made up of 

the nodes adjacent to the extra-cortical plates was created (Figure 6.14) and the SED 

values in the bone for each node was plotted against the distance on the path for each 

loading condition (Figure 6.15 to Figure 6.18). As each node is associated with 

multiple elements, a single node can have multiple values of strains/SED that are 

associated with different elements. Therefore, for each node, the average of elemental 

values was calculated and presented as the nodal solution. 

 

Figure 6.14 Node path along the edge of the plate on the surface of the bone 

The PEEK implant model exhibited the lowest values of SED in the bone, while SED 

in many nodes were highest in the Ti-6AL-4V implant. The SED values in the porous 

titanium model were more consistent throughout the length of the path. In all scenarios 

and for all three materials investigated, the value of SED decreased at the edges of the 

plates.    



Chapter 6 Finite Element Analysis of a Knee Sparing Distal Femoral Replacement  

244 

 

 

 

Figure 6.15 SED values for walking load on the bone adjacent to the antero-medial 

plate. 

 

Figure 6.16 SED values for walking load on the bone adjacent to the antero-lateral 

plate. 
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Figure 6.17 SED values for jogging load on the bone adjacent to the antero-medial 

plate 

 

Figure 6.18 SED values for jogging load on the bone adjacent to the antero-lateral plate 

A summary of maximum SED values measured on both sides of the models, for all 6 

implants investigated and for both loading conditions are provided in Table 6.17 and 

Table 6.18. 
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The PEEK implant showed the lowest maximum SED value amongst all implants by 

a factor of 10 in some cases; the SED of the nodes on the path adjacent to the plates 

were considerably lower than that of the porous titanium and solid titanium alloy 

models.  When comparing different resection levels, the SED measured on the bone 

adjacent to the plates in the 55mm model was higher than the control model. The 

35mm implant consistently produced lower SED than the other resection levels.  

Table 6.17 Maximum SED values for the medial and lateral side of the models when 

subject to walking load 

Model 
Medial  Lateral  

Load SED (Jm ) Load SED (Jm ) 

Standard Model  Walking  2.92E+03 Walking  2.32E+03 

55mm Resection  Walking  4.04E+03 Walking  5.21E+03 

35mm Resection Walking  1.69E+03 Walking  1.69E+03 

Porous Ti Implant Walking  5.25E+03 Walking  3.51E+03 

PEEK Implant Walking  8.36E+02 Walking  3.30E+02 

1.5mm Thickness Plates Walking  1.87E+03 Walking  2.83E+03 

 

Table 6.18 Maximum SED values for the medial and lateral sides of the models when 

subject to jogging load. 

Model 
Medial  Lateral  

Load SED (Jm ) Load SED (Jm ) 

Standard Model  Jogging  3.95E+03 Jogging  3.10E+03 

55mm Resection  Jogging  4.78E+03 Jogging  6.83E+03 

35mm Resection Jogging  2.41E+03 Jogging  2.27E+03 

Porous Ti Implant Jogging  4.72E+03 Jogging  7.07E+03 

PEEK Implant Jogging  1.13E+03 Jogging  4.45E+02 

1.5mm Thickness Plates Jogging  2.95E+03 Jogging  3.81E+03 
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6.6 Discussion  

The relevant parameters to detect risk of fracture in a structure, depending on the type 

of loading are: Ultimate Tensile Strength (UTS), Yield strength and Fatigue strength. 

The known values for these properties for the three materials used in this thesis are 

given in Table 6.19.  

Table 6.19 Ultimate Tensile Strength (UTS), Yield strength and Fatigue strength values 

for Ti alloy, porous titanium and PEEK. 

Parameter Value (MPa) Ti-6Al-4V Porous Titanium PEEK 

Ultimate Tensile Strength  900 UKN 110 

Yield Strength 830 85 100 

Fatigue Strength 510 UKN 103 

As the knee joint is exposed to cyclic loading the fatigue strength is more relevant in 

predicting fatigue failure of the implant. The fatigue strength is a direct predictor of 

risk of fracture under cyclic loading. If the stress limit is exceeded, a fatigue rupture 

will occur at some point, however, if the limit is not exceeded the material is expected 

to resist an infinite number of loading cycles. As the bone implant model presented in 

this chapter was not an accurate representation of the actual forces applied to the 

femoral condyles, in order to obtain a more realistic value for the generated stresses, 

an increase of 20% to the maximum stress in each model can be assumed (Abdoola 

2011). By comparing the ultimate tensile strength, yield strength and fatigue strength 

with the maximum stress values observed in each implant plus a 20% increase, it is 

clear that the risk of fracture of the extra-cortical plate under a bodyweight load of 

687N is low when the implant is made of titanium alloy, porous titanium or PEEK and 

even when the plate thickness is reduced. The follow-up study of patients with knee 

sparing distal femoral replacements by Gupta et al. (2006) and those presented in 
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Chapter 3 of this thesis did not indicate fracture of the extra-cortical plates and 

confirmed the findings of this chapter for the control implant model.  

As expected the stress distribution was highest near the extra-cortical plate attachment; 

the maximum Von Mises stresses found in all 6 implants was located on the surface 

of the extra-cortical plates at the junction with the shaft of the implant. The plate-

implant interface is a relatively weak part of the implant structure and was expected to 

present the highest stress concentration. The femoral inclination angle could be a 

contributing factor in the asymmetry of stress distribution in the antero-medial and 

antero-lateral plates (Figure 6.19). The 35mm resection level implant presented the 

smallest stress concentration on the plates while the 55mm resection level implant had 

the highest concentration of stresses. This could be due to the increased bending forces 

that are applied to a higher (further from the joint) resection level. In this thesis the 

two parts of the models i.e. the bone and the implant, were tied. However, in reality 

there is friction between the two parts that is expected to reduce the stresses on both 

the implant and the bone.  

The stresses on the anterior surface of the intact bone model were increased compared 

with the stresses in the same location on the bone-implant models. This result was 

expected, as the higher Young’s modulus of the implant compare with the bone would 

cause the bone to become less loaded and therefore stresses within the bone would 

decrease.  

The stresses within the bone increased around both the extra-cortical plates and at the 

implant plateau-bone contact regions. These were areas where high SED was recorded. 

This was expected as stress is directly related to the SED value (Jang et al. 2008). 
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Therefore, the areas of high stress within the cortical bone immediately adjacent to the 

plate were not the ideal location for measuring SED to determine possible bone 

formation. When creating the non-manifold assembly in this study, to ensure the two 

parts were in full contact, in some areas the implant cut into the bone and caused high 

stress concentrations. The higher the stiffness of the implant model (Ti alloy), the 

higher the stresses on the bone model would be; therefore, in future studies, the area 

on the bone adjacent to the stress concentration zone is more suitable to be investigated 

to determine the possibility of bone formation. The use of algorithms based on SED, 

such as those proposed by Huiskes et al. would provide a valuable insight into how 

bone forms and remodels adjacent to extracortical plates. In such algorithms, strain 

energy density acts as the stimulus for bone density change and the rate of the bone 

density change is determined on the basis of the difference between the remodelling 

stimulus e.g., stress, strain, and strain energy density and its target values (Huiskes et 

al. 1987, 2000). The radiographic analysis that was conducted and  presented in 

Chapter 3, showed no signs of bone resorption in the bone adjacent to the extra-cortical 

plates and bone formation was detected in some cases. These results are in line with 

the FEA results presented in this Chapter, showing high SED values in the bone 

adjacent to the Ti alloy implant.    
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Figure 6.19 Stress distribution in the control model, under walking loading at the 

centre of the implant; [A] Plane view of the implant with a horizontal cut through the 

model, [B] M/L view with an axial cut through the model and [C] A/P view with a 

frontal plane cut through the model  

The lowest maximum strain in the implant was observed in the porous titanium model, 

indicating high strength of the implant. As the 30% porous Ti that was modelled in 

this study has a similar Young’s modulus to cortical bone (18.6 ± 3.5GPa  to 20.7 ± 

1.9GPa), it can reduce the risk of stress shielding. Therefore, the results of this study 

indicate that porous titanium is a suitable candidate as an orthopaedic implant (Niinomi 

2011). Studies have confirmed the osseoconductivity of porous titanium and its alloys 

(Simmons et al. 1999; Nouri et al. 2010; Li et al. 2007) that further confirms its 

suitability as an implant material. However, it must be noted that the fatigue properties 

of this material depend on the amount of porosity and manufacturing methods used. 

In this study, the method used for assigning the material properties of bone was based 

on the average grey values of the voxels within the volume mesh. While the results of 

the study were not verified by mechanical testing, this method is an established method 
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of assigning material properties in biomechanical FE analysis (Taddei et al. 2007; 

Yosibash et al. 2007; Keyak et al. 2005; Keyak and Falkinstein 2003).   

This study had a number of limitations. In clinical practice, the attachment of the 

implant to the residual bone is through use of cortical screws, whereas in this FE study 

screw fixation was not modelled due to complexity of their geometry and the 

complications involved in creating an assembly with multiple parts. The addition of 

screws through the extra-cortical plates and onto the bone is expected to produce 

additional stresses on the surrounding bone and plate.  

The implant-bone model presented in this study was simplified by eliminating friction 

between the contact surfaces. Addition of friction increases the calculation time 

significantly; however, it could generate results that are closer to the physiological 

loading conditions of the bone and the implant.  

The boundary conditions used in this study were not fully representative of the loading 

condition in patients. The condyles of the bone in this study were fixed and the loads 

were applied through the shaft of the implant. However, in reality, ligaments in the 

knee joint exert forces through their attachment sites, located near the femoral 

condyles. Therefore, additional forces are applied to the joint near the condylar region 

from the distal part of the femur and via muscle attachments. 

Knee sparing implants are custom implants that are designed for individual patients. 

Therefore, there are unlimited number of possible combinations of resection lengths, 

number of plates and additional fixation features that could be investigated. While all 

bones of the same location have common features in all individuals, there are 
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differences in shape, size and density of each bone. Hence, the results of this study 

cannot be translated to every case and can significantly vary.    

The bone that was used to create the FE model in this study was from a donor with no 

history of musculoskeletal disease or complications. However, in patients that receive 

joint-sparing massive implants, the bone properties can be significantly different from 

a healthy bone due to loss of density associated with the treatments such as 

chemotherapy and disuse due to pain. Therefore, the model presented in this chapter 

may not be an accurate representation of the implantation condition.  

Due to time restrictions, an experimental validation of the FE model was not carried 

out. Validation is a process to confirm if the simulation results reflect the real-world 

outcomes. As FEA is a computational method for estimating solutions for a 

mathematical problem, a validation test is necessary to determine the reliability of the 

results and should be carried out in future studies.    

6.7 Conclusion  

The results presented in this chapter confirmed the hypotheses, which is that the risk 

of extra-cortical plate fracture in the current design of distal femoral joint-sparing 

implants is low and a decrease in plate thickness or material stiffness does not cause 

fracture of the extra-cortical plates. The results also confirmed the hypothesis that the 

resection levels closer to the knee and lower modulus materials such as PEEK and 

porous Ti generate lower stresses within the cortical bone immediately adjacent to the 

plate, while loading the bone more and therefore, are less likely to cause stress 

shielding of the bone. However, insufficient results were obtained to establish whether 

bone formation will be encouraged in implants made with less stiff materials than 
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titanium alloy and therefore, further work is required. This study was a simplified 

model of a joint-sparing implant and was not validated. Studies with a more realistic 

model and an experimental validation of the FE model must be carried out in future 

studies.  
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Chapter 7 Discussion and Conclusions 

 In contrast to distal femoral and proximal tibial segmental endoprostheses which use 

a   hinge knee replacement, joint-sparing prostheses are massive implants that replace 

a segment of bone cancer but where the knee joint can be spared. The implants are 

fixed to the bone by use of extra-cortical plates. Although knee sparing implants have 

been used in the treatment of patients for over 13 years, the study presented here is the 

first to compare the function, safety and the response to plate fixation in joint-sparing 

prostheses around the knee.  

The aim of this thesis was to evaluate patient and implant survival rates and to 

investigate the perceived advantages and disadvantages of distal femoral and proximal 

tibial knee sparing massive implants, in terms of gait and proprioception, functional 

outcome and patient acceptance. Using FEA, this thesis also aimed to investigate the 

stresses generated on the bone and implant when the bone resection level, plate 

thickness and implant stiffness was varied.  
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The following hypotheses were examined in this thesis:  

1. Following bone tumour surgery, knee joint-sparing implants have similar or 

reduced revision rate when compared to conventional knee sacrificing 

implants. Extra-cortical plates are a durable method of attaching a joint-

sparing prosthesis to the fragmental proximal tibia or distal femur. 

2. Patients with joint-sparing implants have improved proprioception due to the 

retention of soft tissues such as the knee ligaments which have been shown to 

contain sensory nerve endings. 

3. Patients with joint-sparing implants have improved function and acceptability 

of their implant compared to patients with knee sacrificing implants.    

4. Knee joint-sparing massive implants provide a more normal gait in 

comparison with conventional knee-sacrificing implants.  

5. FEA shows that extra-cortical plates do not cause stress shielding of the bone.  

6. Use of materials with a lower Young’s modulus, such as porous titanium and 

PEEK do not increase the risk of implant or plate fracture and can enhance 

bone formation adjacent to the prosthesis. 

The results of the follow-up study presented in Chapter 3 showed that both patient and 

implant survival rate in knee sparing proximal tibial and distal femoral implants were 

comparable with conventional joint sacrificing implants. The recurrence or metastasis 

in patients with joint-sparing implants was improved compared to recurrence in 

conventional implants, which has been reported in the literature  (Hamilton et al. 2005; 

Coathup et al. 2013). Revision rates due to aseptic loosening, infection, and fracture 

of the implant or plates were also similar to those reported for knee sacrificing 

implants. In this study, aseptic loosening and infection were the primary modes of 
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failure (6.67% and 4.74%), and this was similar to those reported in studies that 

investigated conventional joint sacrificing implant survival (Capanna et al. 2015; 

Henderson et al. 2011; Sewell et al. 2011; Hamilton et al. 2005; Coathup et al. 2013). 

Five patients underwent revision surgery due to loosening of the extra-cortical plates; 

however no plate fracture was observed. The revision rate was higher in the distal 

femoral replacement group and in patients under the age of 21, when compared with 

patients with a proximal tibial replacement and in patients who were over 21 years of 

age at the time of surgery. These findings were similar to those reported in patients 

following knee sacrificing implant surgery (Unwin et al. 1996). The survival rate was 

significantly higher in patients under the age of 21 when compared with adult patients 

when the end point was failure due to loosening of extra-cortical plates (p=0.023).  

Given these results the first hypothesis therefore, can be accepted.  

One of the limitations of the follow-up study was that I had to rely on available 

literature on distal femoral and proximal tibial joint sacrificing implants for 

comparison data. The patients in this study were not matched with those in the 

literature with regards to their age, gender, diagnosis and their treatment regime.  

Additionally, in this study the effect of joint-sparing implants on the growth plate was 

not investigated. It was not clear in what percentage of the patients the growth plate 

could be spared, and within that group what percentage of the patients continued to 

grow naturally.  

The results of the proprioception study presented in Chapter 4 of this thesis did not 

support the second hypothesis. Proprioception was measured in terms of joint position 

sense (JPS) in 20 oncology patients and 10 healthy subjects. The average error in 

repositioning angle in the operated leg in each patient was normalised against their 
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non-operated leg and the average for each group was calculated and compared. The 

mean absolute error in JPS was greatest in the operated leg in the JST group, while the 

DFRs exhibited the best JPS. The JPS results in the joint sacrificing distal femoral and 

proximal tibial groups were similar to those reported in the literature (Li et al. 2005).  

However, patients with DFRs and PTRs had better proprioception when compared 

with the JSF and JST groups. This result was surprising as proprioception is associated 

with nerve endings that are in tendons and ligaments that would have been resected 

during reconstruction procedures with a DFR or a PTR.   

The results of 3 established patient questionnaires confirmed the third hypothesis, as 

the patients with a joint-sparing distal femoral or proximal tibial implant showed 

improved functional outcome and acceptance when compared with patients with a 

conventional DFR and PTR. The results were aligned with other functional outcome 

studies of joint-sparing implants (Gupta et al. 2006; Spiegelberg et al. 2009). The 

passive knee ROM was identical in both legs in the JST group and significantly 

improved when compared with the PTR group (p=0.037). Similarly, the JSF group had 

an improved ROM, when compared with the DFR group, however this was not 

significant. The reduced knee motion could be associated with the design of the 

rotating hinge knee or the extent of scar tissue in the joint sacrificing groups.     

In Chapter 5, while some gait kinematics were more normal in joint-sparing patients, 

this was not observed consistently throughout the study and in some cases patients 

with a knee sacrificing implant showed improved gait when compared with those with 

a joint-sparing implant. Using optoelectronic gait analysis and force plates, gait in 

terms of the mean hip, knee, and ankle joint angles, joint angle symmetry, time in 

stance and vertical ground reaction force (VGRF) were assessed. Symmetry in leg 
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length was also analysed. A more symmetrical gait and one that was more normal was 

observed in patients with a JST replacement when compared with the PTR group. 

However, the DFRs showed a more symmetrical gait pattern, when compared with the 

JSF group. The measured VGRF indicated that load transfer in the joint-sparing groups 

was more normal when compared with the joint sacrificing groups. The JSF group had 

a similar stance time to the control group, compared with the DFRs. However, time in 

stance in the JST group was significantly increased when compared with the control 

group (p=0.020). This was not the case in the PTR group. Leg length discrepancy in 

joint sacrificing implants was greater, however this was not significant. While some 

results confirmed the hypothesis of this study, further investigation with a higher 

number of patients and more accurate equipment for data capture and analysis is 

required to assess gait in patients with joint-sparing implants.  

The gait analysis study presented here had a number of limitations. Firstly, the number 

of patients in each group was small. Secondly, the patient groups were not matched. 

Although the distal femoral and proximal tibial joint-sparing groups were compared 

with patients with joint sacrificing implants of the same anatomical location, patients’ 

gender, age, time from surgery, resection levels and treatment regime were not 

matched.  

In Chapter 6, Finite Element Analysis of a bone-implant model was carried out and 

results showed a low risk of plate fracture in the current design of the implant. Stresses 

and Strain Energy Density within the cortical bone adjacent to the plates were 

increased, indicating a low risk of stress shielding. This result was also confirmed by 

the results of the retrospective radiographic assessment of the joint-sparing implants, 

in Chapter 3 of this thesis.   
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The bone and implant response when subject to everyday (walking) and extreme 

(jogging) loading was estimated in order to potentially improve the design of the 

implant in distal femoral joint-sparing implants. A simplified model of a JSF implant 

was parametrised to identify the optimum design. The rationale for this was that the 

bony reaction to the extra-cortical plates seen in clinical radiographs was often 

negligible, while in the animal study carried out by Coathup et al. (2000), the extra-

cortical plates became buried within the bone. This may be associated with the stiffness 

and the positioning of the plates on the metaphysis. The plates in the study by Coathup 

et al. were longer, and were attached to the diapahyseal of the bone (Coathup et al. 

2000). The variables investigated in this study included the resection level, material 

used and extra-cortical plate thickness. The stresses within the bone and the implant, 

strain on the implant and the SED on the bone were assessed. The results of this study 

indicated that a decrease in plate thickness would not significantly compromise the 

strength of the plate and result in fracture. This could be a design improvement as 

reducing plate thickness would reduce stress shielding within adjacent bone and also 

lessen the bulkiness of the implant around the knee joint where adequate soft tissue 

coverage is often a problem. Using less stiff plates may encourage a greater bony 

reaction which would enhance implant fixation. The SED values found in this study 

indicate that bone formation may increase, adjacent to porous titanium when compared 

with the solid Ti alloy implant.   

These implants are currently manufactured from titanium alloy and this study also 

investigated the use of materials of lower stiffness. PEEK and 30% percent porous 

titanium have Young’s moduli that are similar to natural bone (Oh et al. 2002). 

Osseoconductivity of porous titanium has also been previously confirmed (Simmons 

et al. 1999; Nouri et al. 2010; Li et al. 2007). In orthopaedic applications, the ideal 
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biomedical implant material is required to  have high strength and a low Young’s 

modulus (Niinomi 2011).The results of this study indicated that both PEEK and porous 

Ti can be suitable materials for fabrication of a joint-sparing implant.  

Three different resection levels were also investigated and results showed that a 

resection level closer to the joint line reduced stresses within bone and the extra-

cortical plates, thereby reducing the risk of plate fracture. However, insufficient 

evidence was obtained to confirm that stress shielding is more likely when a higher 

bone resection level is made.  

The FEA study had a number of limitations. Firstly, it was simplified and elements 

such as friction and screw fixation were eliminated. The forces and the boundary 

conditions were also simplified and were not a true representation of the forces that 

are applied to the femoral condyles. Secondly, an experimental validation of the FE 

model was not carried out in order to confirm if the simulation results reflect the real-

world outcomes. A validation test is necessary to determine the reliability of the results 

and should be carried out in the future. Additionally, to investigate the bony reaction 

to the extra-cortical plates, the use of algorithms based on SED, such as those proposed 

by Huiskes et al (2000) would provide a valuable insight and could be used in future 

studies.   

7.1 Conclusion  

Knee joint-sparing endoprostheses provide a reliable reconstruction method for 

tumour treatment in a carefully selected group of patients, whose joint can be spared 

while sufficient surgical margins are allowed.  
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While subjective functional assessments indicated an improved function in patients 

with a joint-sparing implant, the more objective assessment methods produced mixed 

results. Knee proprioception was not improved in joint-sparing implants when 

compared with the patients with a knee sacrificing implant and with the healthy 

subjects. While joint sacrificing implants had improved joint angles and joint 

symmetry in some phases of the gait, overall the load transfer and time in stance was 

improved and closer to normal in joint-sparing implants. Overall, JST implants had 

better function than PTRs while this was reversed in the femoral replacement groups. 

Therefore, each anatomical location should be investigated individually due to their 

substantial differences.   

Finally, while the results of the FEA indicated that the risk of stress shielding within 

the bone and plate fracture in the current design of the joint-sparing implants is low, 

there are design improvements that can be made. Lower resection levels and use of 

lower modulus materials such as porous titanium require further investigation.  

7.2 Further work  

A randomised controlled study is required to establish the findings of the follow-up 

study. A prospective radiographic analysis that utilises a less subjective image analysis 

technique can be used to assess the relationship between the implantation accuracy and 

implant survival. 

Further studies that investigate proprioception with an increased number of patients 

and other analysis methods such as balance assessment may be required to establish 

the effect of different implant types on patients’ proprioception.  
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Further gait assessment, where the patient groups are matched with respect to their 

age, gender, time from surgery and resection levels are required to establish the 

differences in gait in both implant types and in each anatomical location. Also, a 

longitudinal study could reveal information about the difference in recovery time in 

patients with joint-sparing and joint sacrificing groups and how the gait in each group 

improves over time.   

A Finite Element model with constraints, loading and contact conditions that is closer 

to the actual bone-implant interaction may provide a more real world representative 

results.  
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Appendix 1 Mean hip joint angles in the horizontal plane for proximal tibial joint-

sparing and joint sacrificing groups and the control group. 

 

Appendix 2 Mean hip joint angle in the horizontal plane for distal femoral joint-sparing 

and joint sacrificing groups.   
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Appendix 3 Mean hip angle in the coronal plane in the proximal tibial joint-sparing and 

joint sacrificing groups and in the control group. 

 

Appendix 4 Mean hip angle in the coronal plane in the distal femoral joint-sparing and 

joint sacrificing groups and in the control group. 
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Appendix 5 Mean knee angle in the coronal plane in the distal femoral joint-sparing and 

joint sacrificing groups and in the control group. 

 

Appendix 6 Mean knee angle in the coronal plane in the proximal tibial joint-sparing 

and joint sacrificing groups and in the control group. 
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Appendix 7 Mean ankle angle in the coronal plane in the distal femoral joint-sparing and 

joint sacrificing groups and in the control group. 

 

Appendix 8 Mean ankle angle in the coronal plane in the proximal tibial joint-sparing 

and joint sacrificing groups and in the control group. 
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Appendix 9 Mean ankle angle in the horizontal plane in the proximal tibial joint-sparing 

and joint sacrificing groups and in the control group. 

 

Appendix 10 Mean ankle angle in the horizontal plane in the distal femoral joint-sparing 

and joint sacrificing groups and in the control group.
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