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Abstract 

 

The identification of non-coding single nucleotide polymorphisms (SNPs) and short 

insertions or deletions (indels) that are causative or contributory to human diseases and 

disorders is limited by the functional knowledge of the non-coding genome. This work 

demonstrates multiple approaches to elucidate functional variation in the non-coding genome 

by using homogenous populations or pedigrees of individuals with shared diseases and 

disorders, including Obesity, Schizophrenia, Anosmia and Mitochondrial Depletion 

Syndrome. A vast bank of non-coding variation has been created and can be utilised for 

population analysis. Using supporting evidence of developmental contributions to the 

disorders studied and genome interaction data, high coverage sequencing of targeted regions 

and subsequent bioinformatics analysis suggests multiple new disease-associated non-coding 

variants. Combining available variant function predictor tools and publicly available 

functional data, a selection of variants are prioritised as potentially causative or contributory 

and their affect on the region’s function in development as an enhancer is assessed in 

Zebrafish. In addition, deep-sequencing and bioinformatics analysis in mouse models of 

MPV17 deletion contributes to the understanding of mitochondrial depletion syndrome. 
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Impact Statement 

 

This work provides a significant contribution to the field of human genomics, specifically 

non-exonic sequencing and the variation that lies therein. The importance of exploring and 

understanding variation in non-exonic regions is paramount to understanding human diseases 

and disorders, specifically those resulting from embryonic development. Utilising genomic 

sequencing, as presented here, not only increases our understanding of general population 

variation, but also allows us to look for pathogenic mutations. The methodology of targeted 

sequencing and the variant calling and analysis pipelines could be applied in future in other 

instances of human developmental disease with a hypothesised non-coding variant cause. 

This top-down approach could also provide further insight to decoding the non-coding 

genome by continuing the work presented here, collating other functional non-coding 

mutations, and exploring the immediate sequence surrounding them. By using conserved 

non-coding elements as a base for much of this work, the functional prediction of the regions 

sequenced is already biased in a positive way. With further understanding of other regulatory 

element markers, other predicted enhancer regions could be sequenced in a similar manner.  

 

All chapters in this work contribute to the understanding of a variety of human diseases: 

Isolated Congenital Anosmia, Schizophrenia, Obesity and Mitochondrial Depletion 

Syndrome. Understanding the underlying genetic contributions to human diseases and 

disorders can spark lines of investigation into treatments (such as pharmacological 

interventions) and preventions (including genetic counselling of prospective parents). With 

such a vast understanding of coding mutations and their contribution to diseases, this work 

looks to shift the future focus onto the other 98% of the human genome, a vast expanse of 

information that is yet to be fully decoded.  
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Chapter 1. Introduction 

1.1 Human genome sequencing 

Since the Human Genome Project was completed in 2004 (International Human 

Genome Sequencing Consortium, 2004), remarkable progress has been made increasing 

the speed and efficiency, and decreasing the cost, of whole genome sequencing. We are 

now in a position where the field of single-cell genomics is expanding allowing a new 

perspective in our understanding of genetics to the cellular level (Gawad et al., 2016). 

Genetic sequencing has potential to add understanding to a wide variety of fields 

including evolutionary studies (Jones et al., 2012) and clinical diagnostics (Kingsmore 

and Saunders, 2011). 

1.1.1 Sequencing technology developments 

As the first human genome was sequenced using traditional automated Sanger 

sequencing techniques (Sanger et al., 1977), the National Human Genome Research 

Institute (NHGRI) set a goal of reducing the cost of human genome sequencing to 

$1000 within 10 years, funding the programme to do so itself (Collins et al., 2003). This 

led to the development of Next-Generation Sequencing (NGS) from multiple companies 

(Figure 1).  The current volume of output data allows for good whole genome coverage, 

with 30-40x achievable for $1000. For the first human genome sequenced using 

Illumina short-read technology, a threshold of 15x average depth was able to detect 

homozygous single nucleotide variation, however 33x average depth was required to 

detect the same heterozygous variants (Bentley et al., 2008). Therefore a standard of 

30x coverage for whole genome sequencing was quickly assumed (Ahn et al., 2009, 

Wang et al., 2008). This was increased to 50x in 2011 (Ajay et al., 2011) before 

improvements in sequencing technology decreased GC bias, delivering a more even 

coverage of the genome and suggesting a 35x threshold (Kozarewa et al., 2009). 

Uniformity of coverage, as well as depth, was shown to be essential for whole genome 

sequencing to identify population and individual specific variants (Sims et al., 2014). 

Nevertheless, all NGS sequencing platforms produce their own unique sequencing 

errors and biases that need identification and correction. Image analysis and cluster 
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amplification errors can occur at up to 1% frequency (Fox et al., 2014). Further 

downstream mapping errors can also occur from high frequency InDel polymorphisms, 

homopolymeric regions, GC- or AT-rich regions, replication bias and substitution errors 

(Bragg et al., 2013, Gilles et al., 2011, Huse et al., 2007). 
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Figure 1. Timeline of key advances in sequencing platform technology.  

Information for each platform refers to Output range; Reads per run; Max read length; 

Run Time. The Illumina Hiseq X Ten system can now give 30x coverage for a whole 

genome for less than $1000. 

 

2005 
•454 GS-20 pyrosequencer 

2006 
•Solexa/ Illumina Genome Analyser 

2007 
•ABI SOLiD sequencer 

2008 
•Illumina GAII 

2009 

•Illumina GAIIx: 95Gb;  

•SOLiD 3.0 

2010 
•IlluminaHiSeq 2000: 26 - 200Gb; 2 billion; 2 x 100bp; 1.5 - 8 days ($10,000 genome) 

2011 
•PacBio sequencer 

2012 
•Illumina HiSeq 2500: 9Gb - 1Tb; 300 million - 4 billion; 2 x 250bp; 7 hours - 6 days 

2013 
•PacBio RS II:  500Mb - 1Gb per SMRT cell; 75,000 ; >10kb; 0.5-4 hours 

2015 

•Illumina Hiseq 3000/4000:  1.7Tb;  5.8 billion; 2 x 150bp; 3.5 days  

•Illumina NextSeq 550: 16.25 - 120 Gb; 130-400 million; 2 x150bp; 29 hours 

2016 

•10x Genomics Chromium System; utilises short reads but gives 50kb long fragments 

•Illumina HiSeq X ten: 1.6-1.8 Tb; 5.3-6 billion; 2 x 150bp; < 3 days 

2017  
•Illumina NovaSeq: 167Gb - 6 Tb; 1.6 - 20 billion; 2 x 150bp;  2 - 2.5 days 
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In addition to the progress in whole genome sequencing, whole exome sequencing was 

a key target of development as reducing the size of the genome to be sequenced (~3 

billion bases to 50Mb) reduces cost and memory whilst strongly enriching coverage of 

the exonic regions. In addition, with disease causing variants understood better in the 

coding regions of the genome, whole exome sequencing can be efficiently utilised in 

patients to drive diagnosis and medical interventions. Exons however, are GC rich 

(Amit et al., 2012) and the methods utilised for whole exome sequencing are less likely 

than whole genome sequencing to provide complete coverage of the entire coding 

region of the genome (Meienberg et al., 2015). With current PCR-free whole genome 

sequencing developments and drastic reduction in costs, whole genome sequencing is 

able to give better complete coverage of the coding region of the genome (Meienberg et 

al., 2016), and therefore clinical whole genome sequencing with downstream analysis 

focussing on the exome is becoming the norm (Berg et al., 2011). The underlying 

question of the importance of variation in the non-coding genome is, to a degree, 

ignored in the clinical setting. Vast amounts of sequencing data are available, yet cast 

aside by this process of whole genome sequencing and then exome diagnostics. 

 

All NGS workflows utilise similar library preparation principles: DNA is fragmented, 

either by an enzymayic or shearing process, and these fragments are fused with 

platform-specific indexed adaptors. This allows multiple samples to be sequenced in 

one solution thanks to ‘barcode’ tag sequences on the adaptor that can be read by the 

sequencing platform and separated out in later computational steps. Size selection of the 

DNA fragments is crucial, and often PCR amplification is also utilised as a way of 

keeping fragments with adaptors successfully hybridised at both ends. For targeted 

sequencing e.g. exome, probes matching the sequence of the fragments being retained 

are used to pull down these fragments (often utilising biotin/streptavidin chemistry and 

magnetic beads).  
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Figure 2. NGS sequencing as performed on Illumina platforms. 

Figure adapted from Lu et al. 2016 (Lu et al., 2016). Adaptors are ligated to the ends of 

fragments as part of the library preparations steps. These will bind to the primer-loaded 

flow cell and bridge PCR then amplifies each fragment into a cluster of fragments with 

fluorophore attached nucleotides. Using a laser to excite the flourophores and an optic 

scanner to collect the signals, multiple fragments are sequenced simultaneously.  

1.1.2 Bioinformatics developments 

The development and improvements in NGS chemistry and sequencing platforms has 

only been made possible by equal advances in data storage, handling and analysis. The 

vast amounts of sequencing data have made demand for bioinformatics tools that can 

keep up with the accelerated rate of whole genome sequencing pivotal to the genomic 

revolution. The short reads resulting from NGS technology have resulted in new 

algorithms being needed for the mapping of these reads and the construction of 

individual whole genome sequence data (Hatem et al., 2013), as well as algorithms to 

overcome misread bases and correctly call variants. 
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Figure 3. NGS data processing pipeline from sequence data to SNP and short InDel calling 

(Van der Auwera et al., 2013). 

 

Mapping tools that can align the millions of short sequences produced form a single run 

vary in accuracy and speed (Hatem et al., 2013) and utilise different styles; MAQ (Li et 

al., 2008) and RMAP (Smith et al., 2008) build hash tables for reads whereas Bowtie2 

(Langmead and Salzberg, 2012) and BWA (Li and Durbin, 2009) index the reference 

genome. All tools have different key performance indicators that they do well in, 

therefore selection of a mapping tool depends on the work being performed. Pre-

processing of sequence data (de-multiplexing, removing index adaptors, mapping and 

marking duplicates) for whole genome sequencing currently has published best 

practices (Van der Auwera et al., 2013) utilising the Genome Analysis ToolKit 
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(McKenna et al., 2010) and mapping with BWA-MEM (Li, 2013) is a well-used process 

for current short-read (< 250bp) NGS data.  

 

Once sequence data is mapped, for WGS and WES, variant identification is often the 

sought after concluding step. Variants can be single nucleotide polymorphisms (SNPs), 

short insertions or deletions (InDels), copy number variants (CNVs), large insertions or 

deletions, or large structural variants, including inversions and translocations 

approximately > 1mb in size (Sachidanandam et al., 2001, Mills et al., 2006, Freeman et 

al., 2006). Some early genome sequencing studies used uniformity of depth coverage 

and high base quality to effectively focus on small InDels and SNPs. As no mapping 

algorithm is perfect and there are a multitude of variants possible in each human 

genome, false negative and false positive variant calls are both possible and a problem 

for downstream analysis. This is exacerbated by low coverage such as that used in the 

1000 Genomes Project Pilot Phase (Genomes Project Consortium, 2010) which relied 

on whole genome 3X sequencing. Low coverage sequencing can be useful as a cost-

effective method for identifying variants in association studies, provided a large number 

of individuals are sequenced (Kim et al., 2010). Nonetheless identification of rare 

variants, such as individual SNPs in a rare mendelian disorder within a single family, 

requires a much higher depth such as >20X for WGS and >40X for WES (Meynert et 

al., 2014). For early SNV calling algorithms, 20X coverage worked well for calling 

variants at high quality bases, with the number of occurrences of each allele counted 

and fixed cut-offs of 20-80% alternate alleles for a heterozygous call used (Harismendy 

et al., 2009, Wang et al., 2008). Where the coverage is generally lower, this filtering and 

fixed cut-off method can lead to the under-calling of heterozygous genotypes: false 

negatives. 

 

Algorithms that call SNPs and genotypes can use a probabilistic framework (Li et al., 

2008, Li et al., 2009b, Li et al., 2009c), incorporating ‘genotype likelihoods’ with other 

prior information such as linkage disequilibrium and allele frequencies (Nielsen et al., 

2011). These result in a SNV location, a genotype call, and a quality score indicating 

the strength of certainty of the call. This quality score can provide a statistical measure 

of uncertainty leading to a higher accuracy of genotype calling. By combining quality 
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scores, a genotype likelihood score can be calculated. The implicit assumption of 

independence among reads may be false due to the presence of PCR artefacts or even 

alignment errors. However, a weighting scheme that takes correlated errors into account 

can be used (Li et al., 2008). Error rates could also be estimated from each site in the 

read data independently, rather than using quality scores (Martin et al., 2010). 

Therefore, the genotype and SNP calling isn’t reliant on the quality scores being 

accurately calculated, although the information regarding errors in the alignment 

process is lost this way. 

 

In addition to variant calling directly from sequence data, SNP imputation is also 

utilised to fill missing data in variant data sets (Dai et al., 2006, Marchini and Howie, 

2010). This takes prior information on the pattern of linkage disequilibrium surrounding 

sites and utilising known haplotypes. This is heavily used in the 1000 Genomes project 

(Genomes Project Consortium, 2012) and haplotype callers have been developed 

including the GATK HaplotypeCaller (Van der Auwera et al., 2013) and analysis using 

Haploview (Barrett et al., 2005). GATK variant discovery is particularly good and 

utilised by many researchers, however as a probabilistic method it can be outperformed 

in some areas by deterministic methods such as the string based clustering algorithm 

utilised by TidyVar (Noyvert, 2015). Progress is continually being made in the accuracy 

and speed of variant callers but false positive calls can still occur (Ribeiro et al., 2015), 

conflating results where they are not identified in downstream analysis. Therefore, 

parameters for mapping, genotyping and variant calling must be continuously re-

evaluated and adapted for the specific project, such as weighing up conservative high 

quality variant calling compared to an increase in sensitivity (Warden et al., 2014).  

 

Whole genome sequencing, or whole exome sequencing, and the subsequent 

downstream mapping and variant calling provides researchers with an exhaustive list of 

human variation to interpret. In the exome, this process is becoming increasingly 

computerised and automated through various tools such as the Ensembl Variant Effect 

Predictor (McLaren et al., 2016) and ANNOVAR (Wang et al., 2010). This is possible 

thanks to the understanding of the genetic code in proteins - the triplets of bases that 

directly code of amino acids (Crick et al., 1961). Utilising this knowledge, computation 
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of deleterious affects of amino acid changes through algorithms such as SIFT (Ng and 

Henikoff, 2003) (Kumar et al., 2009) and PolyPhen2 (Adzhubei et al., 2010) are 

possible.  

1.2 Non-coding genome 

Since genome sequencing has become both affordable and efficient, multiple 

collaborative efforts have emerged in the hope of assessing all human population 

variation. These include, but are not limited to, the 1000 Genomes project (The 

Genomes Project, 2015), the UK10K project (The, 2015), the ExAC project (Lek et al., 

2016) and the current 100,000 genomes project (Mark et al., 2017). This has led us to 

huge amounts of genetic data becoming publicly available, allowing us to understand 

more about the frequency of population variation and its effect on both individuals and 

human evolution.  

 

However, despite these advances in technology we are still unable to interpret the 

function, if any of most of the genome. Originally noted to be “junk DNA” (Ohno, 

1972) and essentially useless, we now know the non-coding region of the human 

genome makes up close to 98% of our DNA (Venter et al., 2001) and no longer dismiss 

it as junk. A vast amount of work now goes towards elucidating all of its functions 

(Alexander et al., 2010), especially in light of evidence to suggest variation within it 

could be a cause for genetic disease (Alexander et al., 2010, Barr and Misener, 2016). 

Currently, a multitude of biochemical methods are used to define function within non-

coding regions based on their interaction with DNA transcription proteins and their 

chromatin availability. The ENCODE project (Encode project consortium, 2007) and 

the Epigenome Roadmap (Kundaje et al,. 2015) utilise ChIP-Seq, ATAC-seq DNaseI 

hypersensitivity and FAIRE to determine potential regulatory elements. 

1.2.1 Gene regulation 

Gene expression can be measured in a variety of ways: from protein product (Burnette, 

1981), RNA quantity (Alwine et al., 1977), RNA transcript quantification (Mortazavi et 

al., 2008) and reporter proteins (Chalfie et al., 1994). We know that different cell types 

have different RNA and protein profiles, therefore there must be differential gene 
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regulation. This is especially relevant when looking at the development of an embryo 

from a single fertilised egg. The regulation of the same ~20,000 genes in a human 

fertilised egg and the multi-cell developing embryo is the key to understanding how the 

process of development works and how it can go wrong.  

 

We know that some of the instruction for gene regulation is in the vast expanse of non-

coding genome (Pennacchio et al., 2006). The development of multicellular organisms 

depends on the precise, specific and accurate expression of genes both spatially and 

temporally. Genes encoding transcription factors play a critical role, as ultimately it is 

these proteins that are involved in the transcription of the genes (Hogan, 1996). 

Transcription factors help initiate and regulate the transcription of genes, including the 

recruitment of other transcriptional factors and opening the accessibility of the 

chromatin (Zaret and Carroll, 2011). Therefore, DNA binding events with transcription 

factors are crucial to the correct regulation of gene expression. In addition, regulation of 

the transcription of these factors themselves could also cause a cascade of mis-

regulation of downstream genes in that transcription factor’s network (Srivastava et al., 

1997, Villavicencio et al., 2000). 

 

A working model is that transcription factors bind to specific DNA motifs, but still 

these appear to have some wobble, allowing for some flexibility in binding (Herr and 

Cleary, 1995). These transcription factors recruit a co-activator complex to the DNA 

binding site and stabilise the transcription initiation complex at the promoter. Where 

this site is near the promoter of a gene, the transcription factors and mediator proteins 

are able to recruit RNA polymerase to initiate transcription. Sets of transcription factors 

can bind in co-localised regions known as cis-regulatory modules. These combinations 

can allow specific regulatory instructions for the nearby genes, influencing spatial-

temporal transcription throughout development (Maeda and Karch, 2011) (Figure 4).  
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Figure 4. Regulation of gene expression by transcription factors 

Adapted by permission from Macmillan Publishers Ltd: [Nature Reviews. Genetics] 

(Wasserman and Sandelin, 2004), copyright (2004) 

 

Distal elements much further away from the transcription start site can act as gene 

regulatory elements: enhancers, insulators and silencers (Riethoven, 2010). This 

genomic regulation by distal transcription binding factors utilises the looping of the 

DNA and its 3D structure to bring distant acting enhancers close to the transcription 

start site in order to influence gene expression (Visel et al., 2009b). These are referred 

to as cis-regulatory elements or modules as they act on genes on their own 

chromosome. Understanding when these elements are active, what genes they act upon 

and even what sequence specific language or grammar they use to do so is the next vast 

frontier of genomics. 

1.2.1.1 Conservation 

One method of identifying developmental cis-regulatory elements is through 

comparative genomics. The hypothesis is that all vertebrate organisms share a similar 
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phylotypic stage in development, and the genes involved are essentially the same 

(Duboule, 1994, Raff, 2012). Therefore vertebrate-specific development is likely to 

utilise the same gene regulatory elements to control this process, with the sequence 

highly conserved amongst vertebrate species (Woolfe et al., 2005).  Sequence 

conservation is most easily detected using BLAST (Altschul et al., 1990) or BLAT 

(Kent, 2002) software, however both of these algorithms require high identity 

thresholds when searching whole genomes for short sequences to obtain significant 

alignments. There are variations that have been developed for searching whole genomes 

against each other, such as MegaBLAST (Zhang et al., 2000), that makes this 

comparative genomics feasible and identification of large sets of non-coding sequence 

conservation possible (Lee et al., 2010) (Doglio et al., 2013). 

 

Comparisons of vertebrate genomes, and specifically Fugu-human alignments (Aparicio 

et al., 1995) show ancient vertebrate conservation of stretches of non-coding DNA with 

the Fugu genome used due to its highly compact size (Brenner et al., 1993). These 

highly conserved non-coding elements cluster around vertebrate specific 

developmentally important genes (Woolfe et al., 2005). The concept that these stretches 

of non-coding DNA would stay near-identical throughout such a large evolutionary 

period suggests that variation and mutation in them would be detrimental to the 

organism, in a similar way that the coding genome is resistant to random mutation 

events due to the chance of them being disadvantageous (Drake et al., 2006) (Katzman 

et al., 2007). Therefore sequence comparisons are able to be utilised to identify human 

cis-regulatory elements (Prabhakar et al., 2006). These cis-regulatory elements 

identified through sequence comparisons are several hundred bases in length, therefore 

identification of the functional motifs within them is the next step to annotating the non-

coding genome. Work has already begun to understand this cis-regulatory logic (Li et 

al., 2010) and more functional assays of non-coding regulatory elements are necessary 

to feedback into these computational predictors. 

1.2.1.2 Transcription Factor Binding Sites 

Sequence-specific DNA binding proteins (transcription factors) are the essential 

proteins utilised by cis-regulatory elements to regulate gene expression (Latchman, 
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1997, Chen and Rajewsky, 2007). Therefore, predicting and identifying the specific 

DNA motifs, or transcription factor binding sites (TFBS) could help identify cis-

regulatory elements and even tissue-specific function. Computational methods have 

been implemented to do this (Ellrott et al., 2002) but often the number of identified sites 

is much greater than the number able to be functionally validated. This is made even 

more complex by the ability for these transcription factors to identify motifs with some 

‘wobble’ – the exact motifs may vary by a handful of bases in some instances, the 

TFBS can be seen as a ‘preference’ rather than an exact sequence (Badis et al., 2009). 

For example, the JASPAR database (Mathelier et al., 2016) collates models of 

transcription factor binding sites in various species based on position frequency 

matrices (Figure 5).  

 

Figure 5. An example of JASPAR database information for FOXD1 TFBS (Mathelier et 

al., 2016). 

 

A key method in identifying binding sites is through capturing transcription factor 

binding events in vitro. Thanks to advances in sequencing, this combined with 

chromatin immunoprecipitation has allowed genome-wide ChIP-Seq to identify protein-

DNA interactions (Valouev et al., 2008). Using transcription factors as ‘bait’ in these 

assays, binding events are captured and the sequences involved can be analysed for 

common motifs. This can be used to predict enhancers themselves (Schmidt et al., 2010, 

Visel et al., 2009a) as well as provide further TFBS information. The method relies on 
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crosslinking of transcription factors and DNA followed by using factor-specific 

antibodies to pull down the regions bound and detect individual binding events. 

Genome-wide, this one versus all method can describe a footprint of the transcription 

factor across the genome, and utilising a cell- or tissue-specific approach can help 

identify cell- or tissue-specific enhancers (Blow et al., 2010). Despite these benefits, 

this approach does struggle to distinguish between genuine functional binding events 

and those that do not instigate downstream events. Therefore, there is a high false-

positive rate (Nix et al., 2008, Pickrell et al., 2011) and often the number of peaks is far 

too high to then functionally assay. Some progress has been made to reduce this, 

including comparisons of multiple TFBS peaks for common regions that could 

contribute to cis-regulatory modules (Zinzen et al., 2009). Crucially, understanding the 

specificity of transcription factor binding sites will be essential in elucidating the role a 

single nucleotide polymorphism could play within an evolutionary identified enhancer.  

1.2.1.3 DNA-DNA interactions 

Our understanding of the coding regions of the genome comes from the linear sequence 

of nucleotides, however the three-dimensional organisation of the chromatin has a part 

to play in gene regulation, bringing regions of the genome millions of bases away to 

close proximity in the nucleus. We are now able to capture these long-range interactions 

thanks to advances in a technique called chromosome conformation capture (Cope and 

Fraser, 2009). Crosslinking of DNA-DNA interactions and subsequent sequencing of 

the fragments involved allows the identification of loops and structural folding (Figure 

6). 
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Figure 6. Chromosome conformation capture (3C) technique overview. 

The interacting loci are cross-linked, capturing long range interaction. The DNA is 

restriction-enzyme digested and the fragments are then ligated. This occurs in dilute 

conditions to allow for preferential ligation to close-proximity strands. The DNA is then 

purified and various sequencing techniques are used to identify the interacting regions. 

 

The chromosome conformation capture technique has evolved rapidly over the past 

decade, initially utilising PCR sequencing for a ‘one vs one’ viewpoint of interactions 

(Dekker, 2006). This is useful for confirming interactions between two regions. 

Alternatively the 4C approach of ‘one vs all’ (Simonis et al., 2006) allows a promoter or 

enhancer region to be used as a viewpoint and captures all potential interactions. This is 

particularly useful for identifying cis-regulatory elements for a specific gene, or the 

genes a cis-regulatory element might act upon. A recent iteration, Hi-C (Lieberman-

Aiden et al., 2009) is an ‘all vs all’ high throughput sequencing approach that has since 

been extensively used across the whole human genome and led to the definition of 

topologically associating domains. Mapping these long-range interactions reveals how 

the human genome folds on itself and creating functionally important loops 

(Lieberman-Aiden et al., 2009). 

 

Recently, evidence has shown that the underlying organisation of genomic regions can 

be mapped to approximately 100kb to 1mb of locally interacting DNA known as 

topologically associating domains (TADs) (Dixon et al., 2012). Utilising TAD 

information may help understand how non-coding regions affect gene regulation, as 
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enhancers within the same TAD as a specific gene are much more likely to act on that 

gene than one potentially closer but in a different TAD.  

 

Topologically Associating Domains have been shown to have limited change when 

compared across species and cell types (Dixon et al., 2012, Nora et al., 2012) with key 

changes in chromatin architecture reorganisation in differentiating stem cells (Dixon et 

al., 2015). Some evidence has shown their involvement in facilitating transcriptional 

regulation through the integration of regulatory activities within their boundaries (Nora 

et al., 2013). TADs bring together the genes and cis-regulatory elements to allow cell-

specific gene expression patterns characteristic of phenotypes observed (Sanyal et al., 

2012). As the majority of GWAS variants are found in the non-coding genome 

(Manolio et al., 2009), utilising the information from TAD boundaries may help assign 

the correct gene these variants are acting on if found at TAD boundaries. In addition, 

disruption of TAD boundaries has been shown to form de novo enhancer-promoter 

interactions, gene mis-expression and resulting abnormal phenotypes (Lupiáñez et al., 

2015). 

 

A key limitation to these techniques is the resolution of interactions they obtain, mostly 

limited by the enzyme digestion and the sequencing depth. With deep sequencing, 

restriction fragment length resolution is possible with Hi-C (Jin et al., 2013, Rao et al., 

2014), allowing mapping of interactions to ~1kb in cell lines. However, enhancers can 

often be much smaller than that and binding sites within them even smaller so. 

Therefore 3C, 4C and Hi-C methods all have their benefits but do not reveal the single 

nucleotide level of sequence contribution to cis-regulatory elements. Many different 

models are now developing to resolve how the TADs shape the 3D architecture of the 

genome and drive the networks of cis-regulatory elements that determine gene 

expression during development (Remeseiro et al., 2016).  

1.2.2 Human non-coding variation 

Within the non-coding genome, natural human variation can occur and this is markedly 

more often than in the exome due to the functional constraint on the sequences that 

transcribe proteins (Genomes Project Consortium, 2010). Since the initial 1000 
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Genomes data release, the third release (The Genomes Project, 2015) has presented with 

more opportunity to interrogate the noncoding genome for rare variants thanks to an 

improvement in coverage. Any individual is thought to carry 3.5-4.5 million SNPs 

across their whole genome, with individuals of African ancestry having the most (The 

Genomes Project, 2015). Therefore, any attempt to find function in the variation of the 

non-coding genome is met with a vast number of variants with limited information. 

Reducing the region of the non-coding genome to be interrogated through functional 

annotation of regulatory elements allows more reasonable analysis. Previous 

comparisons of percentage of sites containing SNPs across the non-coding genome 

compared to the coding sequence consistently show higher frequencies of variants in the 

non-coding. When comparing variation in CNEs, this shows these sequences are 

constrained to a similar level to non-synonymous coding variants (De Silva et al., 

2014). Evidence shows that these CNEs are selectively constrained and not just 

mutational cold spots that have been retained over evolution (Drake et al., 2006).  

Outside of non-coding regulatory elements there is a large potential for genetic variation 

with no noticeable phenotypic effect. However there is also the potential for 

accumulation of mutations in the non-coding genome to influence continuous traits such 

as height (Lango Allen et al., 2010). The extent of non-coding regulatory variation and 

its contribution to evolution and natural selection is unclear (Lappalainen and 

Dermitzakis, 2010). However if gene regulation can be affected incrementally through 

regulatory variation, it gives the potential for smaller phenotypic variations to 

accumulate and, if beneficial, be positively selected for evolutionary. The converse 

could also be true if small genetic variation in regulatory elements is able to have just as 

severe an impact on phenotype as a nonsynonymous mutation. 

1.2.3 Contribution to human disease and disorders 

Most disease-associating variants that have been found in GWAS studies are located in 

the non-coding region of the genome (Maurano et al., 2012). Often these variants 

correlate to relatively small increments in risk in complex human diseases and traits 

(Manolio et al., 2009). There have been some examples of non-coding variation being 

the fundamental cause of a developmentally based disorder. A key example that also 

demonstrates the vast distances that gene enhancers can act across is a set of mutations 
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in the ZRS regulatory element that acts on the Shh gene (Lettice et al., 2003).   Four 

unrelated families with congenital polydactyly were found to have point mutations 

within the ZRS, affecting the Shh expression in the ZPA.  Since this evidence of such a 

strong effect of a SNP at such a large distance (~1Mb), further efforts to provide 

evidence for non-coding SNPs to be causative of human disease have gained traction.  

The use of 4C-seq analysis have shown that a common functional variant in a cardiac 

enhancer modulates cardiac SCN5A expression, predisposing patients to arrhythmia 

(van den Boogaard et al., 2014). Another approach has shown that gestational 

hyperglycaemia associating haplotypes disrupt regulatory element activity of the nearby 

HKDC1 gene, altering glucose homeostasis (Guo et al., 2015). The Deciphering 

Developmental Disorders project estimates that 42% of their cohort may have 

pathogenic mutations in the coding regions of the genome (Deciphering Developmental 

Disorders, 2017) and although the other half of the cohort may not be diagnosed 

through non-coding mutations, it is fair to predict that some of these cases may be 

explained this way. It is difficult to tell if multiple variants, both in the coding and 

noncoding regions may contribute to developmental disorders and much of the 

functional analysis of non-coding variants is yet to be done. In many instances, 

associating variants to disease phenotypes is possible, as is associating them to familial 

inherited disorders, however proving their effect on gene expression can be far more 

complex and time consuming. 

1.2.4 Noncoding variation functional prediction 

Noncoding variants can be pathogenic and they are also found at a higher rate than 

coding variants. Therefore, a great deal of resource has been put into computational 

methods to predict non-coding variant function and pathogenicity. This is made 

particularly difficult as many regulatory elements are predicted themselves based on 

sequence conservation, transcription factor binding sites, and chromosome 

conformation capture methods (see above: 1.2.1.1, 1.2.1.2, 1.2.1.3). Regulatory SNVs 

can affect histone modification, DNA methylation, and TF binding and all to various 

extents. The effect of these SNVs is very much unknown and we must rely on 

prediction models to sift through the vast number of personal and associating SNVs to 

find pathogenic variants. 
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Computational methods of scoring pathogenicity variants rely on available functional 

data sets to complement these predictors.  As mentioned previously, comparing PWMs 

between normal and variant versions of a locus may help judge the change in putative 

binding affinity that a variant imposes. Utilising public databases such as TRANSFAC 

(Matys et al., 2003), JASPAR (Mathelier et al., 2016) and UniPROBE (Hume et al., 

2014) can give these scores and their changes (Bailey et al., 2009) and predict 

pathogenicity based on changes in transcription factor binding. Methods such as the 

transcription factor affinity prediction (TRAP) utilises ChIP-seq peaks to determine the 

highest binding affinity transcription factors and then gives mutated sequence p-values 

for changes in binding sites (Thomas-Chollier et al., 2011). Much of the prediction of 

effect is reliant on a collection of know transcription factors and their binding sites, and 

is therefore limited by functional assays to feed in more information.  

 

Further improvements to the functional prediction of SNVs can be made by integrating 

more publicly available experimental data, such as that of ENCODE (ENCODE Project 

Consortium, 2007). This uses DNaseI-hypersensitive sites (DHS) and histone 

modifications to predict regulatory elements. As short TFBS sequences (6-20bp 

generally) can be found in a large proportion of the genome, finding variants that are in 

active regulatory elements are more likely to be pathogenic than those in inactive 

regions. A database that utilises chromatin states alongside transcription factor binding 

(both motifs and experimentally validated data) is RegulomeDB (Boyle et al., 2012). 

This combines information on histone modifications, DHS, TF binding, TF motifs and 

conservation to score variants in categories related to predicted functional consequences 

(Table 1). This integration of data and emphasis on expression quantitative trait loci 

(eQTLs) helps to identify active regulatory elements. The eQTLs are regions of the 

genome shown to have an influence on gene expression level however these 

experiments are costly both financially and in time and therefore unable to be used for 

all possible variation found. In addition, RegulomeDB is somewhat limited by the 

known human genetic variation, currently using dbSNP build 141 (Sherry et al., 1999, 

Sherry et al., 2001). Its output is easily interpreted and compared across cohort groups, 

or case-control studies. 
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Table 1. RegulomeDB scoring categories for SNPs 

Score Supporting data 

1a eQTL + TF binding + matched TF motif + matched DNase Footprint + DNase 

peak 

1b eQTL + TF binding + any motif + DNase Footprint + DNase peak 

1c eQTL + TF binding + matched TF motif + DNase peak 

1d eQTL + TF binding + any motif + DNase peak 

1e eQTL + TF binding + matched TF motif 

1f eQTL + TF binding / DNase peak 

2a TF binding + matched TF motif + matched DNase Footprint + DNase peak 

2b TF binding + any motif + DNase Footprint + DNase peak 

2c TF binding + matched TF motif + DNase peak 

3a TF binding + any motif + DNase peak 

3b TF binding + matched TF motif 

4 TF binding + DNase peak 

5 TF binding or DNase peak 

6 other 

 

An additional method to evaluate the effect of a single base change is to look at the 

precise genomic location conservation over evolution. This is particularly useful when 

looking at variants associating with developmental disorders as regulation of vertebrate-

specific development appears to be conserved between species (Piasecka et al., 2013) 

and by conserved regulatory elements (Woolfe et al., 2005). However, within these 

conserved noncoding elements there is some variation in individual bases despite the 

high overall consensus sequence. Individual nucleotides can be in non-variable or 

restricted variable regions (NVRs or RVRs) (De Silva et al., 2014). The base-by-base 

conservation, and the probability of a variant to be pathogenic as a result, can be scored 

using a database like GERP++ (Davydov et al., 2010). GERP++ uses rejected 

substitutions and neutral rate of mutation over evolution to give base-wise scores of 

variants based on alignments and a model of neutral evolution. The limitations of 

GERP++ and other similar approaches arises from the neutral rate of mutation 
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estimations. They are often uncertain and can vary dependent on the alignment quality, 

methodology used to estimate them and the genomic region. In addition, these methods 

make the assumption that all sites in the sequence region are independent.   

 

Further computational methods attempt to integrate more data for large-scale 

annotations and scoring. One of that is widely used is the Combined Annotation 

Dependent Deletion software (CADD) (Kircher et al., 2014). This software integrates 

multiple annotations and contrasts variants with simulated mutations and known 

common human variation. Machine learning software like CADD allows easy scoring 

of variants and ranking within a cohort set. It utilises 88 annotations from genomic and 

epigenomic data sets covering conservation, transcription factor binding, cell expression 

levels, chromatin states and histone modifications. It utilises the variant effect predictor 

(VEP) from ensembl (McLaren et al., 2016) for annotation as well as ENCODE data. 

CADD has been shown to be a valuable tool for noncoding annotation (Richardson et 

al., 2016) but some questions over its clinical validity remain (Mather et al., 2016). 

Some of the difficulty in scoring noncoding variants using CADD may result from its 

machine learning approach and training data that also contains coding variants. Some 

unsupervised approaches of integrating the same amount of annotations and scoring 

have also been developed (Ionita-Laza et al., 2016) with the latter more preferable in the 

absence of a large, representative and correctly labelled training set. CADD is able to 

readily integrate new information, and its upkeep in light of continued ENCODE 

annotation releases is a crucial benefit. The key addition to noncoding variant 

annotation will be tissue specific eQTLs and expression analysis, especially in light of 

human disease and phenotypes. However, these methods can only prioritise variants 

based on predicted functionality. This is a necessary step to reduce the number of 

variants to be functionally validated and both time and cost prevent all from being 

investigated. Once functional validation has been carried out, it is imperative that this 

information is fedback into these predictive models to continually improve their 

accuracy. This limiting step of validation is one of the key roadblocks in determining 

noncoding variation function. 
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1.2.5 Noncoding variation functional validation 

Functionally validating noncoding variants is dependent on prior knowledge or 

hypothesis of how these variants function. Functional validation could be defined as 

showing that a genetic variant has a cause and effect relationship, affecting gene 

function, expression or developmental processes. This is developed through the 

annotation tools mentioned above (1.2.4).  There are various methods that can be used 

to assess a variant’s effect on gene expression and potentially phenotype including 

luciferase assays (Ozaki et al., 2002), allele-specific FAIRE assays (Smith et al., 2012), 

transient enhancer assays (Bessa et al., 2009), dual-reporter transgenesis (Bhatia et al., 

2015), and CRISPR-Cas9 mutagenesis (Canver et al., 2015). Many of these methods are 

low-throughput, or the ones that are high-throughput reply on relevant cell lines and are 

not necessarily able to translate to the whole organism. This is particularly true for 

developmental enhancers, such as those predicted by conservation, and in vivo methods 

are more likely to give better evidence to the effects of a regulatory SNP on the 

developing embryo than in vitro methods. Conversely, in vitro methods may give a 

better understanding of the effect of a variant at the molecular level, such as 

transcription factor binding. 

 

In vitro methods to quantify the effect of a SNV on DNA-protein interactions have been 

used previously to confirm non-coding variant effects in GWAS identified variants 

(Oldoni et al., 2016). Allele-specific formaldehyde-assisted isolation of regulatory 

elements (FAIRE) can show binding differences between wild-type and variant 

regulatory elements but gives limited information in regards to the transcription factor 

binding that changes and is reliant on cell-type specific nuclear extract. Luciferase 

reporter assays allow quantification of the changes in enhancer-driven gene expression 

between variants, but are again limited by appropriate cell lines and the lack of whole-

organism information. These assays are fundamental as proof of concept and have been 

developed to be high throughput and quantitative  (Smith et al., 2012, Melnikov et al., 

2012).   

 

An additional method of interrogating the relationship between a putative enhancer and 

gene regulation is the visualisation of a reporter gene under the control of the element in 
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vivo. The core principal that an enhancer can drive a minimal promoter underpins much 

of the in vivo enhancer assay used. This includes lacZ assays such as those in the 

extensive VISTA enhancer catalogue in mice (Visel et al., 2006) and the Tol2:GFP  

transposon mediated approach in Zebrafish (Kawakami, 2007).  In addition, stable 

zebrafish transgenic lines using allele-specific enhancer-reporter constructs for the 

regulatory region of interest can show differences in in vivo function, although these can 

be hard to detect and are very low-throughput (Liu et al., 2017).  The benefits of 

transient enhancer assays in Zebrafish come from the medium-throughput approach 

(multiple constructs can be analysed in a week) as long as the disease the variant 

associates with is developmentally relevant.   Nevertheless, the mosaicism that can 

occur from random integration of the expression construct can make it difficult to find 

tangible evidence of a variant’s effect between microinjections. Therefore, it is 

paramount to do multiple repeats, and some work has been performed to utilise dual-

colour assays to allow an all-in-one approach, removing variation between injections 

(Bhatia et al., 2015). Therefore, there is a fine balance to be met between high-

throughput and less reproducible analysis and low-throughput but highly accurate 

experiments.   

 

One method of reliably assessing the function of a regulatory element variant in relation 

to a disease phenotype would be to create a comparable mutation in an animal model. 

Thanks to the advancement of CRISPR-Cas9 technology (Ran et al., 2013), the ability 

to mutate allele-specific sites anywhere in the genome is possible. For regulatory 

elements that have been discovered through comparative genomics, such as 

evolutionary conserved developmental enhancers, this method can be suitable as the 

DNA surrounding a regulatory variant is likely to be identical in human and in the 

vertebrate model being used. This genome-editing is costly and time consuming and 

therefore strong prior evidence of the variant’s function must be observed, however 

resulting phenotypes can be verified, as well as changes in gene expression (Han et al., 

2015).  This single-base interrogation of regulatory elements will not only give insights 

into the downstream effect of a variant but also feed back into the field’s computational 

predictions of SNV effects and help understand the language and grammar of the 

noncoding genome.  Conversely, this approach does not take into consideration the 
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environment-genome interactions and the part they play in complex hereditary diseases. 

As it is expected that multiple noncoding variations and their accumulation are more 

likely to affect gene regulation due to combined effects (Cannavò et al., 2016) 

combinations of mutations may need to be implemented to fully understand the 

threshold for a disease phenotype from noncoding variation. This information will 

ultimately shape the way we search for noncoding variants and predict and validate their 

impact, in an attempt to consolidate the vast amount of sequence information we are 

currently producing.
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Chapter 2. Materials & Methods 

2.1 Methods for Chapter 3: Obesity project 

2.1.1 Sequencing 

Samples were curated and individuals were assessed as described previously (Klöting et 

al., 2008). Libraries were prepared for sequencing using Illumina Nextera Rapid 

Capture Custom Enrichment Kit (Cat ID FC-140-1009). The custom kit included 8,701 

probes across the 2 Mb region for 288 samples (Project ID 44309). All samples were 

run on an Illumina HiSeq 2500 at 100 cycle pair end reads. Ninety-six multiplexed 

samples were run per flow cell with each multiplex being run twice on Rapid Run 

mode. Samples were de-multiplexed and converted to FASTQ files using Illumina 

software CASAVA. 

2.1.2 Ethical statement 

The study was approved by the regional scientific ethics committee and by the Danish 

Data Protection Board and fulfilled the Helsinki Declaration. 

2.1.3 Availability of supporting data 

Sequence data (reads) are be available through ENA at http://www.ebi.ac.uk/ena. 

Accession number PRJEB11794. All other data are contained within the paper or 

supplementary information files. All other data is fully available on request, without 

restriction. 

2.1.4 Mapping and variant calling 

Sequencing data (FASTQ) files was mapped to the hg19 assembly of the human 

genome, the version in human_g1k_v37.fasta file available from the 1000 Genomes 

Project (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/ reference/). BWA 

(Burrows-Wheeler Aligner) software was used to map the reads (Li, 2013), version 

bwa-0.7.8, bwa-mem algorithm with default parameters. The mapped read (sam) files 

were then converted to bam format using samtools version 0.1.19 (Li et al., 2009a). The 
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reads in each bam file were then sorted by chromosome and coordinate and indexed 

using samtools. 

 

Duplicate reads were marked by Picard (http://broadinstitute.github.io/picard), version 

1.91, MarkDuplicates tool. Then the two bam files from different sequencing runs for 

each individual were merged using Picard tool MergeSamFiles. The individual bam 

files per sample were then processed by our in-house tool ‘TidyVar’ (B. Noyvert and G. 

Elgar, manuscript in preparation, https://github.com/boris-noyvert/TidyVar.m), which is 

an implementation of a novel variant calling algorithm. The algorithm uses a string 

matching approach to detect SNPs and short insertions and deletions, the individual 

genotypes are assigned using pattern recognition. A single vcf file listing all the variants 

found in all the individuals was produced.  

2.1.5 Haplotype analysis 

Haplotyping was performed with Haploview (Barrett et al., 2005) using the methods 

described previously for defining linkage disequilibrium blocks (Gabriel et al., 2002). 

For this programme, only biallelic SNPs were used across the region chr16:53,500,000-

55,500,000. Comparisons over each variant over 500Kb were performed and settings 

altered from default to ignore Hardy-Weinberg P values, and to include only individuals 

with a minimum of 75% of all SNPs successfully called. Associations of individual 

variants and haplotypes were produced through Haploview using the case-control allelic 

chi-squared test with one degree of freedom for the 2 × 2 contingency table of allele 

counts for reference and non-reference alleles and for case and control separately 

(Clarke et al., 2011). The output P-values of this were used throughout this study. 

2.1.6 Interaction data liftOver 

The UCSC genome browser utility liftOver (http://geno me.ucsc.edu/cgi-

bin/hgLiftOver) was used as the Batch Coordinate Conversion method to transfer SNP 

hg19 coordinates to mouse genome build mm9 coordinates using default settings. 

Conversion of 5,842 SNPs was successful with 5,988 SNP locations failing. 
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2.1.7 Genotyping and imputation of replication cohorts 

This method (2.1.7) was not performed by the author but is essential to the subsequent 

work presented.  

Genome-wide genotyping on the Illumina 610 k quad chip was carried out at the Centre 

National de Genotypage (CNG), Evry, France. SNPs with minor allele frequency 

<1 %, >5 % missing genotypes or which failed an exact test of Hardy-Weinberg 

equilibrium (HWE) in the controls (P <10−7) were excluded. Any individual who did 

not cluster with the CEU individuals (Utah residents with ancestry from northern and 

western Europe) in a multidimensional scaling analysis seeded with individuals from 

the International HapMap release 22; who had >5 % missing data; outlying 

heterozygosity of >35 % or <30.2 %; genetic duplicates; one of each pair of genetically 

related individuals; individuals with sex discrepancies and one individual whose 

genotyping was discordant with a previous project were excluded. Imputation to 

HapMap release 22 (CEU individuals) was carried out using Mach 1.0, Markov Chain 

Haplotyping. This method was used for both the Male and Female GOYA cohorts (Nohr 

et al., 2009, Paternoster et al., 2011).  

 

Imputed genotypes for the sequenced 284 men (where available) were compared to the 

sequenced genotypes called by TidyVar and found to be correct 100 % for 

rs9939609:T>A and 98.3 % correct for the SNPs rs7186407:A>T, rs12598453:C>G and 

rs12596270:A>G. 

2.1.8 Topological association domain comparison 

The –log10(P-value) for association of each SNP with the case or control cohort was 

used in preparation of a variable step .wig file with a scale of 0 to 6 and each line to 

span 1 base. The coordinates for each SNP were converted using UCSC LiftOver from 

hg19 to hg18 to fit with the original scaffold used for the Hi-C data. The data used for 

the Hi-C tracks are limited to human embryonic stem cells (hESC). Default max [50] 

and min [10] values were used for the heat map visualisation ((Dixon et al., 2012) and 

http://yuelab.org/hi-c/). 
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2.1.9 Data sources 

CNE locations were taken from CONDOR (Woolfe et al., 2007). Exon coordinates 

were taken from Ensembl Biomart release version 75 (Flicek et al., 2013). All sequence 

coordinates in this study are from GRCh37/hg19. 1KG (1000 Genomes) variant data are 

taken from the publicly available 

‘ALL.chr16.phase1_release_v3.20101123.snps_indels_svs.genotypes.vcf.gz’ VCF file 

found at ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20110521/. All dbSNP 

variants are taken from the NCBI publicly available 

‘human_9606_b142_GRCh37p13/VCF/All.vcf.gz’ VCF file found at 

ftp://ftp.ncbi.nlm.nih.gov/snp/organisms/. Epigenomic data were sourced and visualised 

through the WashU Epigenome Browser (http://epigenomegate way.wustl.edu/) using 

ENCODE GIS Chia-Pet publicly available data (Li et al., 2012). 

2.2 Methods for Chapter 4: CNE sequencing of four cohorts 

2.2.1 Selection of CNEs and probe design 

CNEs were selected as described previously (Woolfe et al., 2007). Illumina Truseq 

custom enrichment probes were designed to target these regions using Illumina’s 

DesignStudio tool (Project ID 3897). 

2.2.2 Library Preparation 

Libraries were prepared for sequencing using Illumina Truseq DNA Sample Preparation 

v2 kit (Cat ID FC-121-2003) (CLP, SCHZ, IDE) or Illumina Nano DNA Sample Prep 

kit (Cat ID FC-121-4001/ FC-121-4003) (ANOS, SCHZ) and Capture Custom 

Enrichment Kit (Cat ID FC-123-1096).  

2.2.3 Custom enrichment 

CNEs were enriched for from the DNA samples using Illumina Truseq Custom 

Enrichment Kit. The custom kit included 3542 probes across 916kb of the human 

genome targeting 3006 regions (coverage of ~5000 CNEs – all ≥80bp CNEs and those 

within 500bp of an 80bp+ CNE) (Project ID 3897). This method uses biotinylated 
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probes that bind to streptavidin beads in order to magnetically pull-down regions of 

DNA of interest. 

2.2.4 Sequencing 

Samples were run on an Illumina HiSeq 2500 at 100 cycle pair end reads (SCHZ, IDE, 

ANOS). 192 samples for were run on an Illumina GA II at 100 cycle pair end reads 

(CLP). Samples were de-multiplexed and converted to FASTQ files using Illumina 

software CASAVA. 

2.2.5 Mapping and variant calling 

I mapped sequencing data (FASTQ) files to the hg19 assembly of the human genome, 

the version in human_g1k_v37.fasta file available from the 1000 Genomes project 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/reference/). I used BWA (Burrows-

Wheeler Aligner) software to map the reads (Li, 2013), version bwa-0.7.8, bwa-mem 

algorithm with default parameters. The mapped read (sam) files were then converted to 

bam format using samtools version 0.1.19  (Li et al., 2009a). The reads in each bam file 

were then sorted by chromosome and coordinate and indexed using samtools. Next 

duplicate reads were marked by Picard (http://broadinstitute.github.io/picard), version 

1.91, MarkDuplicates tool. These bam files were then processed by the Elgar lab’s in-

house tool ‘TidyVar’ (B. Noyvert and G. Elgar, manuscript in preparation, 

https://github.com/boris-noyvert/TidyVar.m), which is an implementation of a novel 

variant calling algorithm. The algorithm uses string matching approach to detect SNPs 

and short insertions and deletions, the individual genotypes are assigned using pattern 

recognition. A single vcf file listing all the variants found in all the individuals was 

produced.  

2.2.6 Prioritisation of candidate SNPs 

Standard QC and QA methods were used including quality score of 100+ for TidyVarv4 

coverage depth of 20. R programming software was utilised in the RStudio environment 

alongside Microsoft Excel in order to annotate and prioritise variants as outlined further 

in Figure 27 (page 96). The output vcf file from 2.2.5 was used as an input to Ensembl’s 

Variant Effect Predictor (McLaren et al., 2016) to annotate ethnic sub-group allele 
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frequencies, SNP rsIDs and previously identified pathogenic variants. These 

annotations were used in the pipeline visualised in Figure 27, utilising the online tools 

and their downloaded data sets as mentioned. 

2.2.7 Cloning of candidate CNEs 

Table 2. PCR Primers used 

Location (hg19) Size of 

PCR 

product 

Forward Primer Reverse Primer 

chr2:104496627-

104496946 

320bp TGATACCTCAGCTTTCTTG

GACT 

GCAGCAGCGAACCATATTA

TCA 

 

Primers were designed using Primer3 software (Rozen and Skaletsky, 1999). 

Polymerase chain reactions were set up using CNE-specific primer pairs and standard 

taq polymerase according to manufacturer’s guidelines (Table 2). PCR products were 

visualised by standard agarose gel electrophoresis to confirm size and purity. PCR 

products were then purified using Qiagen QIAquick PCR purification kit. Purified 

products were cloned into the pCR8/GW/TOPO vector (Invitrogen) as per 

manufacturer’s guidelines and transformed into Oneshot TOP10 chemically competent 

E. coli cells (Invitrogen) according to manufacturer guidelines. Outgrown cultures were 

then spread on agar plates containing the antibiotic spectinomycin and grown overnight 

at 37C. Colonies were then picked the next morning and inoculated in 3mls of 

spectinomycin-containing lysogeny broth. These were incubated overnight at 37C with 

agitation. The following morning, 2mls of culture was prepared using the QIAprep Spin 

Miniprep kit (qiagen) according to manufacturer’s guidelines to obtain 50l plasmid. 

 

100ng of entry clone then underwent Gateway LR recombination (Invitrogen) with the 

pGW_tol2:cfos:egfp vector according to manufacturer’s guidelines and transformed 

into Oneshot TOP10 chemically competent E. coli cells (Invitrogen) according to 

manufacturer guidelines. Outgrown cultures were then spread on agar plates containing 

the antibiotic ampicillin and grown overnight at 37C. Colonies were then picked the 

next morning and inoculated in 3mls of ampicillin-containing lysogeny broth. These 
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were incubated overnight at 37C with agitation. The following morning, 2mls of 

culture was prepared using the QIAprep Spin Miniprep kit (qiagen) according to 

manufacturer’s guidelines to obtain 50l of microinjection-ready plasmid. The correct 

insertion of the CNE sequence was confirmed by sanger sequencing (source 

bioscience). 

2.2.8 Enhancer assay in Zebrafish embryos 

Enhancer assays of CNEs in Zebrafish embryos is adapted and described previously 

(Fisher et al., 2006; Kawakami, 2007). The vector is described as Tg(cne-cfos:egfp) 

after cloning and further referenced as the ‘expression vector’. Tol2 transposase mRNA 

was transcribed in vitro from a linearised pCS-Tp vector containing the Tol2 

transposase ORF using the mMESSAGE m MACHINE SP6 kit (Invitrogen) according 

to manufacturer’s guidelines. The microinjection mix totalling 5l was prepared as 

follows: 

 1l expression vector DNA (150ng/l) 

 0.5l transposase mRNA (300ng/l) 

 0.5l 0.1% Phenol Red 

 3l ddH2O 

This mix was prepared on ice and injected into wild-type Zebrafish at the 1-cell stage. 

Embryos were stored at 28C in Zebrafish embryo medium, with the addition of PTU 

after 24 hours, and screened for GFP expression patterns at 24hpf, 48hpf and 72hpf 

using fluorescence microscopy.  
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Figure 7. Transient GFP enhancer assay in Zebrafish 

2.3 Methods for 0: Mitochondrial DNA sequencing 

2.3.1 Mitochondrial isolation 

This method 2.3.1 was not performed by the author but is essential to the subsequent 

work presented.  

 

Mitochondria were isolated for mouse tissues (liver, brain) by differential centrifugation 

as previously described (Spinazzola et al., 2006, Gonzalez-Vioque et al., 2011). 

2.3.2 Sequencing library 

Part of this method (2.3.2) in italics was not performed by the author but is essential to 

the subsequent work presented.  

 

Mouse mtDNA was purified from sucrose-gradient isolated mitochondria. Purified 

mtDNA was fragmented prior to library preparation using a Covaris S220 and the 

Sonolite software with settings of duty cycle 10%, intensity 5, 200 cycles for 3 minutes 

at 4C. 200bp paired-end DNA libraries were prepared using the Illumina Truseq LT 

kit and run on the Miseq.  
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Sequencing data (FASTQ files) were mapped to the mm9 assembly of the mouse 

mitochondrial genome. Reads were mapped using BWA software (version bwa-0.7.8) 

(Li, 2013) using the bwa-mem algorithm with default parameters. The mapped read sam 

files were converted to bam format using samtools version 0.1.19 (Li et al., 2009a), and 

the reads sorted and indexed using samtools. Then the two bam files from different 

sequencing runs for each sample were merged using Picard tool MergeSamFiles.  

2.3.3 Calculating coverage depths and mutation loads 

The number of single nucleotide substitutions at each individual base and the overall 

coverage at each base position was calculated using samtools (mpileup). Dividing these 

numbers but the total read coverage yielded the SNP frequencies for each of the 3 

possible non-reference alleles, the sum of which gave the total mutation load. ‘Mutation 

load’ is likely to be an overestimate due to false-positives. These can arise from the 

sequencing technology used and from the complexity of the sequence itself at that 

locus. Still, by only comparing samples from within a single sequencing run, the false 

positive error rate can remain consistent between samples. 

2.3.4 Statistical analysis 

Data are expressed as the mean  the standard error of the mean (SEM). Group means 

were compared using parametric t-test or non-parametric Mann-Whitney test. One-way 

ANOVA was used to compare more than two independent groups. A P-value of <0.05 

was considered to be statistically significant. 
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Chapter 3. Complete re-sequencing of a 2Mb 

topological domain encompassing the FTO/IRXB 

genes identifies a novel obesity-associated region 

upstream of IRX5 

This work is published in Genome Medicine 7, no. 1 (2015): 126 

“Complete re-sequencing of a 2Mb topological domain encompassing the 

FTO/IRXB genes identifies a novel obesity-associated region upstream of 

IRX5” by Hunt et al. (2015). 

The authors retain copyright and all co-authors have granted permission for this work 

to be presented as part of this thesis. Work not performed by Lilian E Hunt has been 

omitted or identified.  

 

3.1 Background 

Previous genome-wide association studies (GWAS) have consistently identified single 

nucleotide polymorphisms (SNPs) associated with obesity located within the first intron 

of the FTO gene on human chromosome 16q12.2 (Frayling et al., 2007, Hinney et al., 

2007, Scuteri et al., 2007). Findings from these studies have been confirmed in meta-

analyses wherein the associated SNPs are in strong linkage disequilibrium (LD) with 

one another. These SNPs lie in a noncoding region of the genome, resulting in some 

contention over their functional impact on neighbouring genes. The strongest 

association is found for SNP rs1121980:C>T with an odds ratio of 1.66 among 929 

Caucasians (Hinney et al., 2007). This variant is in LD with a number of other SNPs (r2 

≥ 0.88 for all), including rs9939609:T>A, which has been the most extensively 

genotyped. The rs9939609 risk allele (A) has an odds ratio itself of 1.34 for 

heterozygotes and 1.55 for homozygotes (Wellcome Trust Case Control, 2007). This 

association has also been identified for type 2 diabetes (T2D); however, when adjusting 

for body mass index (BMI), the T2D association is lost suggesting that this association 

is a secondary effect of BMI (Frayling et al., 2007). 



Chapter 3 FTO/IRXB re-sequencing and obesity 

 

 53 

 

The association of obesity with rs9939609: T > A has been replicated in many 

independent study groups across a range of different ethnicities (Dina et al., 2007, Fang 

et al., 2010, Hakanen et al., 2009, Hennig et al., 2009, Hotta et al., 2008, Villalobos-

Comparan et al., 2008). Nevertheless, the degree of linkage disequilibrium across the 

entire intron 1 of FTO has prevented a single potentially functional SNP from being 

identified, although trans-ethnic comparison has permitted a degree of fine mapping of 

the region (Akiyama et al., 2014). The LD region identified in the HapMap Phase II 

data spans about 50 kb, covering part of the first intron of FTO, the second exon and a 

small portion of the second intron (International HapMap Consortium, 2007). Despite 

this, coding SNPs in the second exon of FTO have not been found to follow the same 

association patterns. 

 

As a result of the persistent association with obesity in this region, the function of the 

surrounding gene, FTO, has been under close scrutiny. FTO is a ubiquitously expressed 

N6-methyladenosine demethylase (Jia et al., 2011) , yet there are conflicting data and 

models of how changes in FTO expression might affect function and phenotype. Mouse 

models have been informative; knockdown of FTO in mice results in reduced fat mass, 

suggesting that the susceptibility to obesity could be through overexpression of FTO 

(Church et al., 2009). A further mouse FTO knockout has been described generated 

through replacement of exons 2 and 3 with a neomycin STOP cassette (Fischer et al., 

2009). This mouse exhibits growth retardation from postnatal day 2 onwards although it 

also shows a broader range of phenotypes including higher postnatal death. It supports 

the hypothesis that FTO is involved in energy metabolism and body weight regulation 

as the knockout mice show a reduction in adipose tissue and increased energy 

expenditure. Conversely, eQTL analyses examining the links between the associated 

SNPs and the expression levels of FTO have not to date identified a clear and direct 

correlation (Grunnet et al., 2009, Klöting et al., 2008, Wåhlén et al., 2008). 

 

A few hundred bases upstream of FTO, and transcribed in the opposite direction, is the 

RPGRIP1L gene. As a result of its proximity to the LD region, the function of this gene 

has also been closely examined on the premise that non-coding SNPs might affect the 
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regulatory landscape acting in cis on this nearby gene. Some evidence to this effect has 

been reported (Stratigopoulos et al., 2011) and Rpgrip1l+/− mouse models gain weight 

more rapidly than their wild-type litter mates, as well as exhibiting increased energy 

intake and increased adiposity (Stratigopoulos et al., 2014). 

 

More recently, chromosome conformation capture (3C) approaches have demonstrated 

that longer-range interactions occur across this region acting at both the FTO and IRX3 

gene promoters (Smemo et al., 2014) although the concept of long-range regulation in 

this region has been speculated upon previously (Ragvin et al., 2010). These studies 

point to IRX3 as a further potential candidate gene that might interact with the 

associated SNPs in the first intron of FTO. In the paralogous IRXA cluster 

(encompassing IRX1, IRX2 and IRX4 at a separate genomic location on chromosome 

5), there has already been some enhancer analysis that suggests co-regulation of all 

three genes (Tena et al., 2011). Therefore, it might be that a similar pattern of distal cis-

regulation operates at this obesity-associated locus.  

 

Further evidence to support this comes from the analysis of topologically associated 

domain (TAD) structure in mammalian genomes. Data from embryonic stem cells 

identify a TAD of approximately 2 Mb that neatly encompasses the IRXB cluster, FTO 

and RPGRIP1L genes (chr16:53,562,500-55,442,500) (Dixon et al., 2012). Hence 

perturbation of the transcriptional architecture within this region during development 

could potentially impact upon any or all of these genes, and lead to an altered BMI 

phenotype. Finally, it is of note that this region contains hundreds of deeply conserved 

non-coding elements (CNEs), sequences implicated in the long-range cis-regulation of 

genes during development, including the IRX genes. Variants in such sequences might 

result in altered gene expression profiles across the region. Interestingly, the locations 

of CNEs at the IRXB cluster span from 53.56 to 55.48 Mb, in remarkably close 

agreement to the boundaries of the TAD (Dixon et al., 2012, Woolfe et al., 2007). 

 

Here, using custom enrichment, the complete sequence of 284 Danish males 

homozygous at rs9939609 across the 2 Mb TAD region is generated and analysed. The 

resulting deep and comprehensive coverage allows identification of over 14,000 SNPs 



Chapter 3 FTO/IRXB re-sequencing and obesity 

 

 55 

and short indels permitting the precise and complete construction of haplotypes without 

the need for imputation. The use of homozygotes for the FTO LD region facilitates the 

downstream analysis of haplotypes. A novel association that implicates the IRX5 gene 

region in obesity is identified, and results are compared with previously derived 

interaction data for the region. These findings are replicated in an expanded male cohort 

and in a separate female study group using accurate imputation calls, identifying an age 

dependent association, consistent with previous studies (Graff et al., 2013, Hardy et al., 

2010). This provides a high quality, single base resolution resource for further study 

into the complex genetics of obesity across human chromosome 16q12.2, and a general 

methodology for targeted sequencing and analysis of variation across large genomic 

regions in general. 

 

3.2 Results 

3.2.1 Strategy and study group 

I employed a custom in-solution hybridisation approach to capture and completely 

sequence a 2 Mb region of chromosome 16 encompassing the RPGRIP1L, FTO and 

IRX3, 5 and 6 genes from 288 Danish men, previously genotyped as homozygous at 

rs9939609 (A/A or T/T) (Jess et al., 2008). The region (53.5 to 55.5 Mb) was 

specifically selected to encompass a TAD defined in embryonic stem cells (53.56–55.44 

Mb) (Dixon et al., 2012). The study group comprises 126 cases with a BMI of ≥31.0 

kg/m2 and 162 control samples (Appendix Table 1). They originate from two larger 

series of men selected from the study population of Danish men (n = 362,200) 

examined at mandatory draft board assessment during the years 1943 through 1977(Jess 

et al., 2008). The case set represents all men with a BMI ≥31.0 kg/m2 at initial 

assessment, corresponding to those above the approximately 99.5 percentile, whereas 

the control group consists of a randomly selected 1% of all men in the original study 

population and is thus representative of the underlying population’s distribution of BMI 

values. The case group and half of the control group have been used in several follow-

up studies including one in 1998–2000 where additional blood sampling allowed 

extraction of high quality DNA (Berentzen et al., 2008, Jess et al., 2008, Kring et al., 
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2008, Paternoster et al., 2011, Zimmermann et al., 2009, Zimmermann et al., 2011). As 

a result of this sampling design, this study group has a bimodal distribution of BMI 

values and enrichment for homozygosity across the LD region encompassing the 

obesity-associating SNPs. The average BMI for the controls is 21.5 compared to 33.2 

for the cases (Table 1). 

 

Table 3. Study group details 

 rs9939609 

T/T (%) 

 

A/A (%) 

 

Total (%) 

 

Average 

BMI 

 

Variance 

(95% CI) 

 

SEM 

Controls. 

BMI<31 

kg/m
2 

106 (37.3) 55 (19.4) 161 (56.7) 21.5 0.4 4.3 

Cases. 

BMI31 

kg/m
2
 

59 (20.8) 64 (22.5) 123 (43.3) 33.2 0.5 5.6 

Total 165 (58.1) 119 (41.9) 284 (100) 26.5 0.7 7.1 

 

 BMI values are calculated from the original draft board assessment. The rs9939609:T > 

A (risk) allele was present in the study group at 41.9 %. In 1000 Genomes Project 

(1KG) data, both the Finnish (FIN) and British (GBR) allele frequency (AF) of the 

minor allele is 39.3 % (Genomes Project Consortium, 2012). Therefore, despite 

enrichment for homozygosity, there is a similar representation of the risk allele 

compared to the general population. The study group also maintains the relative 

proportions of T/T to A/A individuals (1.9:1 in controls and 0.9:1 in cases) found in the 

larger case and control group from which these individuals are derived (Jess et al., 

2008). 

3.2.2 Sequencing and variant calling 

I used 96-plex indexing to construct custom libraries for 288 samples. This generated 

1.66 billion paired end reads from these libraries for a total of 166Gb of sequence. 

Approximately 75% of reads map back uniquely to the 2 Mb region of interest 
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(chr16:53,500,000-55,500,000) giving an average of 4 million reads per sample (200-

fold coverage). The sequencing identified one genotyping error (a genotyped A/A 

individual that was actually A/T), one sample failed to run, and two samples (1 case 

T/T, 1 control T/T) were of low coverage and had missing genotypes for more than 50% 

of variants. These were removed from subsequent analyses resulting in a final set of 284 

samples (161 controls and 123 cases). As expected, coverage varied extensively both 

between samples and across the region. Nevertheless, 277 samples have greater than 10-

fold coverage across at least 90% of the region allowing comprehensive, single base 

resolution analysis and unequivocal variant calling (Figure 8). 

 

Figure 8. The number of samples where 90% of bases have the coverage of each bin value.  

 

The following analysis utilised an in-house variant calling algorithm ‘TidyVar’ 

(methods – B. Noyvert and G. Elgar, manuscript in preparation). The algorithm is 

fundamentally different from that of commonly used variant calling software GATK 

(McKenna et al., 2010). TidyVar can be accurately deployed across any region of DNA 

of any size and from any species. Across the two-megabase interval, 14,101 variants 

passed quality control, of which 13,373 are simple (bi-allelic) and 728 are ‘complex’, in 

that they have more than one non-reference allele. Of the 13,373 simple variants, 

12,392 are SNPs and 981 are indels. Fifty-nine percent of these variants are identically 
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catalogued in the phase 1 release of 1KG project data (Genomes Project Consortium, 

2012) and 74% are identically catalogued in dbSNP build 142 (Sherry et al., 2001). On 

average, each individual has 2,869 variants across the region (ranging from 2,178 to 

3,377). 

 

I compared minor allele frequency (MAF) for those bi-allelic SNPs present in both the 

whole study group and the 1KG project (Figure 9). Reassuringly, the two datasets 

correlate very closely, demonstrating that despite selecting only homozygotes, the fact 

that I frequency matched rs9939609:T>A with the general European population results 

in a broadly representative set of variant frequencies. It is essential to use the 

comparative population from 1KG data as global allele frequencies are much more 

varied (Figure 10). 

 

 

Figure 9. Variant frequencies across the 2 Mb interval.  

The allele frequency of each variant in this study group is plotted against its frequency in 

European populations from the 1,000 Genomes Project. Only variants identified in both 

sets of data in the same format are directly compared (n = 9041).  
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Figure 10. Global variant frequencies compared to cohort variant frequencies. 

Only variants identified in both sets of data in the same format are directly compared 

(n=9056), 

 

3.2.3 Distribution of variants across constrained sequences 

Within the 2 Mb interval sequenced in this study, 225 conserved CNEs are highly 

conserved between mammals and fish (CONDOR(Woolfe et al., 2007)) covering a total 

of more than 25kb. In addition, there is 17.2 kb of coding sequence across the region. I 

examined the number and distribution of SNPs in these different classes of constrained 

DNA (Table 4). As expected, there is a lower density of SNPs in coding sequences and 

to a lesser extent in CNEs, than in the remainder of the non-coding DNA across the 

region. SNPs in coding sequences and CNEs also have lower mean MAFs than general 

non-coding DNA, reflecting an excess of rare variants (Figure 11). These data reflect 

differing levels of functional constraint at these sites. The number of variants per 

individual does not differ significantly between cases and controls in any class of 

sequence. 
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Table 4. Variant summary data for chr16q12.2 classified by functional region and BMI 

status 

Region Size of 

region 

(kb) 

Number of 

variant locations 

Variant 

locations 

(per Kb) 

Mean 

MAF 

Av. number 

variants per 

individual 

Av. number 

non-ref 

alleles per 

individual 

CNEs 25.1 Cases: 117 4.66 0.118 20.03 27.52 

Controls: 109 4.34 0.127 19.94 27.60 

Total: 141 5.61 0.098 19.98 27.57 

Coding 17.2 Cases: 38 2.21 0.075 4.61 5.37 

Controls: 56 3.26 0.051 4.75 5.40 

Total: 70 4.07 0.041 4.69 5.39 

Non-

Coding 

1,957.7 Cases: 11014 5.51 0.181 2853 3916 

Controls: 11826 5.91 0.167 2836 3892 

Total: 13980 6.94 0.142 2843 3902 

 

 

 

Figure 11 Cumulative frequency distribution of variants. 

Blue: CNEs, Green: Coding regions, Red: All variants across the region combined. 
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3.2.4 Haplotype analysis 

Haplotype analysis of the entire region (using pairwise comparison of SNPs up to 

500kb apart) permits the identification of blocks with high LD (Figure 12), the most 

notable of which is the previously identified 44 kb region (A: chr16:53,799,296-

53,843,533) in the first intron of the FTO gene containing rs9939609.  

 

Figure 12. Full LD mountain plot of chr16:53500000-555500000 sequenced and exported 

from Haploview. 

A: region 53.8Mb-53.85Mb. B: region 54.81Mb-54.87Mb. These regions also correspond to 

Figure 14 and Figure 15 respectively. 

 

Three distinct haplotypes persist across this interval and comprise 63.5% of all 

haplotypes across the region. The first two (29.3% and 12.5%) differ by just one SNP 

(rs113191842:A>G) and account for all the rs9939609 A/A individuals (known 

henceforth as haplotype AH44). While the more common of these two haplotypes 

strongly associates with the obesity case group (Figure 13) as expected (P =1×10
-4

), the 

second does not (P = 0.383) although this might simply reflect a lack of statistical 

power due to its low frequency in the study group overall. The third common haplotype 

(21.7%) is found only in T/T individuals, but does not show a significant association 

with either case or control (P = 0.086) group. Appendix Table 2 describes all the other 

haplotype blocks with associations to the case or control group with a frequency 

of >0.05. Due to the number of individuals sequenced in this study, I have focused on 

the two regions showing the clearest and most strongly associating variants. There are 

several other LD blocks containing haplotypes that also associate with either case or 

control outside of these regions. For this, further sequencing would be needed to 

establish any association of these blocks in the general population. 
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Figure 13. Minor allele frequencies for each variant across the 2 Mb interval compared 

between controls and cases.  

Variants within the AH44 LD block are in red and variants in the second association 

region upstream of IRX5 are in blue. This graph is laid in perspective of the obese cohort 

so variant positions with alleles associating with obesity can be seen clearly. In this 

instance, the further above the x=y line the greater the frequency of the allele in the case 

cohort. 

3.2.5 The AH44 haplotype 

The obesity-associated haplotype, along with its almost identical sub-haplotype 

(referred to collectively henceforth as AH44) has a clear and distinct pattern of variation 

across its length when compared to other haplotypes for the same region. This 

haplotype encompasses many of the obesity-associated SNPs that have been identified 

by various GWAS studies (Berndt et al., 2013). From this in-depth analysis, 114/122 

highly polymorphic SNPs (MAF >0.35) spanning 53,798,523 to 53,848,561 (50.038 kb) 

are in complete LD with rs9939609 in all A/A individuals in this study group. Of the 

remaining 8/122 SNPs, seven are uniquely heterozygous in the same individual and the 

final SNP also occurs just once. While these common SNPs are essentially in complete 
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LD across the 44 kb AH44 haplotype, there are a number of rarer variants across the 

region that are not in LD, indicating that while the common variants are retained, there 

are in fact numerous sub-haplotypes that contribute to AH44. The most frequent of 

these rarer alleles that separates the two AH44 haplotypes, rs113191842:A>G at 

53,817,318 (just over 3 kb from rs9939609:T>A), is only present in AH44 but occurs at 

a frequency of 0.28 within this population. A further 26 non-unique and 21 unique 

variants are present within the AH44 haplotype individuals, while just one of these 

(rs16952522:C>G) is shared with the non-AH44 haplotype in T/T individuals. 

 

3.2.6 Identification of a novel region associated with BMI in this study 

group 

I used Haploview (Barrett et al., 2005) to compare the frequency of every SNP across 

the 2Mb interval between cases and controls and to calculate the case-control allelic 

association P values (Fig. 3 and methods). The known LD region in the first intron of 

FTO (chr16:53,797,908-53,846,168) is clearly defined (Figure 14).  

 

 

Figure 14. AH44 LD block region exported from Haploview. 
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In addition, there is a second peak of association approximately 1Mb away that consists 

of a cluster of SNPs upstream of the IRX5 gene (16:54,820,000-54,860,000). Critically, 

this case specific association is independent of risk allele rs9939609 and random 

shuffling of the cases and controls results in loss of any comparable signal across the 

region. The non-coding region encompasses four linkage disequilibrium blocks, the 

largest of which is 38 kb in size (Figure 15). In addition, PLINK conditional regression 

testing using GATK shows independence of association between the two haplotypes 

when tested against each other.  

 

 

Figure 15. Novel association peak region exported from haploview 

 

Within this LD block, there are several haplotypes identified by Haploview. The 

strongest obesity associating haplotype (P value =0.002) occurs at a frequency of 0.49 

in the case group and 0.36 in controls. No other haplotype in this LD block has a total 

frequency above 0.13 suggesting that the associating haplotype is more robust in its 

entirety than the multiple non-associating haplotypes. The 38kb associating region 

encompasses 213 SNPs that have been identified in the sequencing, 78 of which are 

tagged by Haploview for use in haplotyping. Thirty-five SNPs within this LD block 

have an association P value <0.05. The lowest 10% of P values for SNPs in this region 
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(n=21) range from 0.0002 to 0.0073. The three highest associating SNPs in this second 

peak (P=0.0002) are in complete LD within 7 kb of each other in all but two 

individuals. These SNPs (rs7186407:A>T, rs12598453:C>G and rs12596270:A>G, 

hg19 coordinates chr16:54837068, 54843731, 54843981, respectively) are present at a 

frequency of 0.491 in controls and 0.646 in cases (0.56 in whole study group), whereas 

they have a wide range of derived allele frequencies in different populations in the 1KG 

Project, with values as low as 0.0225 to 0.036 in Japanese and Chinese populations, to 

greater than 0.5 in all European populations. Individuals in the study group who have 

neither risk region allele rs9939609:T>A (from known region) nor rs12598453:C > G 

from the novel association region have a mean BMI of 23.86, whereas individuals 

homozygous for either risk region have significantly higher mean BMIs of 27.96 

(Mann-Whitney P value = 0.0062) and 27.60 (P value = 0.0088), respectively (28.90 if 

homozygous for both (P value = 0.00067)). Thus, both regions have a similar 

association with BMI. 

 

3.2.7 Multiple testing correction 

The P values presented in the previous section are not corrected for multiple testing. A 

naïve Bonferroni correction for 14000 variants would give a P value threshold 

significance of 3.5×10
−6

 (=0.05/14000) when controlling the family wise error rate 

(FWER) at the 5% level. Although since the variants are not independent the above 

correction is overly conservative. Indeed, variants belonging to the same linkage 

disequilibrium blocks have a strong positive correlation (consider that I identify 

multiple associating variants across both the known, and this novel, regions). It is 

therefore more appropriate to use the number of LD blocks (n = 226) identified by 

Haploview to estimate the corrected P value threshold. This then becomes 0.05/226 = 

2.2×10
−4

. Only the known LD region in the first intron of FTO and the second peak of 

association identified above pass this threshold (Figure 16), guiding the focus on these 

two regions only. However it is fair to consider these significant p-values as suggestive 

of association as the initial threshold is not met. 
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Figure 16. Association of individual SNPs to cases v controls. 

Minus log10(P-value) of Case/Control association for each SNP across the 2Mb interval 

generated from Haploview (Barrett et al., 2005) and represented by vertical blue lines. 

The first peak (at 53.82 Mb) in the intron of FTO shows the known association at 

rs9939609:T > A and reflects the strong linkage disequilibrium across that region. The 

second peak (54.84 Mb) indicates a novel associated region upstream of IRX5 

 

Since there is no exact definition of an LD block the above multiple testing correction 

by the number of LD blocks may be underestimated. This is why I decided to control 

for FWER by permuting the set of obese and control labels. This was achieved by a 

100,000-permutation test in Haploview for the full set of sequenced variants across the 

2Mb in this cohort of 284 men. The individual SNPs in the second peak of association 

have corrected P values >0.05 and therefore do not pass multiple testing correction. 

This is a reflection of the limited sample size and paradoxically the vast number of 

variants I identified through complete sequencing of the region. Therefore, it was 

essential that I replicate these findings in other cohorts. 
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3.2.8 Replications 

In order to validate these findings, I replicated the case-control association tests in two 

larger cohorts (Table 5). The first (Male GOYA) comprises 1,450 men from the 

expanded cohort that this sequenced study group was initially selected from 

(Paternoster et al., 2011). The expanded group has imputed SNP data for the three 

highest associating SNPs (rs7186407:A>T, rs12598453:C>G and rs12596270:A>G) as 

well as for rs9939609:T>A. The three highest associating SNPs, which are in near 

perfect LD, were chosen to be representative of the second novel peak of association. I 

found that in this larger group of young men, all three representative SNPs also 

associate with the case group, with a P value of 0.0054 (Table 5). 

 

In addition, I replicated the association analysis of the three representative SNPs in a 

large female Danish cohort (Female GOYA (Paternoster et al., 2011, Nohr et al., 

2009)). I initially looked at the entire cohort of 3,908 women (1,960 extremely 

overweight and 1,948 control women, total average age of 29.5). In this group, using 

imputed data for the three representative SNPs, I cannot confidently replicate the second 

association peak (P values >0.05, Table 5). However, in light of previous studies that 

suggest genetic association to obesity at the FTO locus may be age-dependent (Graff et 

al., 2013, Hardy et al., 2010, Jess et al., 2008) and because of the lower, narrower age 

range in the male cohort (mean = 19.9), I examined the role of age in this age-diverse 

female cohort (range from 16 to 45). I found that the allele frequency of the three SNPs 

is consistently higher in cases compared with controls only for women aged under 25 

years (Figure 17).  
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Figure 17. Allele frequencies by age in Female GOYA cohort. 

The case allele frequency (AF) is shown in red, the control AF is shown in blue. The allele 

frequencies are calculated in groups of 400 individuals of consecutive age. Whilst the case 

AF is consistently larger than control AF for rs9939609:T>A across essentially the entire 

age range, the consistent AF difference for rs12598453:C>G is only observed in younger 

(up to approximately 25 years old) females. (Figure prepared by B.Noyvert) 
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In this smaller group of 562 individuals the three SNPs show suggestive association 

with obesity (P value = 0.0014, Table 5). This is consistent both with previous studies at 

the FTO locus (Graff et al., 2013) and with the value found in the larger Male GOYA 

cohort. If I consider all individuals aged less than 25 years in all cohort groups then the 

P value for the association of the novel peak I found is 1 × 10
−5

 (Figure 18) confirming 

that the second novel peak of association can be replicated independently in larger 

cohorts of the same ethnic background and similar age, regardless of gender. 

 

 

 

Figure 18 Age dependence of SNP rs12598453:C>G association to obesity. 

Each point on the plot represents the association p-value (on y-axes) for a subgroup of 

combined GOYA male and female cohort younger than a certain age (on x-axes). (Figure 

prepared by B.Noyvert) 
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Table 5. Replication data using SNP rs12598453:C>G as a representative of the three 

SNPs referred to in the text 

Cohort N Number of 

controls, cases 

G AF in  

controls, cases 

P-value, case-

control allelic 

chi-squared 

test 

BMI 

averages 

by 

genotype: 

CC 

CG 

GG 

Sequenced 

males 

284 161, 123 0.491, 0.646 0.00021 25.2 

26.03 

28.13 

Male GOYA 1450 785, 665 0.496, 0.547 0.0054 26.51 

26.89 

27.39 

GOYA males, 

younger than 

25 

1381 749, 632 0.493, 0.551 0.0027 26.45 

26.85 

27.47 

Female GOYA 3908 1948, 1960 0.507, 0.529 0.056 30.00 

30.21 

30.46 

GOYA 

females, 

younger than 

25 

562 255, 307 0.465, 0.560 0.0014 29.79 

30.67  

32.5 

All combined 5401 2762, 2639 0.503, 0.534 0.0012 29.04 

29.24 

29.63 

All combined, 

younger than 

25 

1984 1032, 952 0.486, 0.556 0.000011 27.35 

27.85 

28.89 
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3.2.9 IRX3 interactions extend beyond both BMI associated regions 

Recently, long-range interactions have been experimentally defined across most of the 

16q12.2 region for the FTO and IRX3 genes using chromatin conformation analysis 

(Smemo et al., 2014). Comparing the locations of these interactions with those of BMI-

associated SNPs might help determine both a mechanism and a role for the SNP regions 

in the cis-regulation of the FTO or IRX3 genes. Figure 19A shows that while neither the 

FTO nor the IRX3 promoter-based 4Cseq data correlate strongly with the associated 

regions, both associating regions are within the long-range interaction architecture of 

IRX3, with particularly strong interactions (both with FTO and IRX3) flanking the 

associated region upstream of IRX5. Hi-C data from human embryonic stem cells also 

provides strong evidence that the novel association region upstream of IRX5 plays a 

role in many interactions across the TAD (Figure 19B), including with the IRX3 and 

FTO gene regions ((Dixon et al., 2012) and http://yuelab.org/hi-c/). Further 4C-seq 

analyses of non-coding association regions will contribute to understanding which 

genes or other non-coding regions of DNA these SNPs might be interacting with, and 

whether the presence of this variation changes these interaction profiles. 
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A  

B  

Figure 19. Comparison of the SNP association data with previously published 4C-seq 

(Smemo et al., 2016) and Hi-C data (Dixon et al., 2012). The two significant SNP 

association peaks lie within interacting domains within the previously defined TAD but 

don’t appear to strongly correlate with FTO or IRX3 promoter interactions. 
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3.2.10 Functional predictions for the novel BMI associated region 

Using publicly available data, I compared the novel BMI associated region upstream of 

IRX5 with gene regulatory markers and functional annotations. This includes (but is not 

limited to) the presence of CNEs, epigenetic marks and interaction data (HiC). Selecting 

a relevant cell line is a caveat of this approach, as the exact contribution of this genomic 

region to BMI is not fully understood. A recent study suggests the contribution of 

variation at the FTO locus affects adipocyte lipid accumulation through increased IRX3 

and IRX5 expression (Claussnitzer et al., 2015). Within the novel region there are three 

CNEs (Figure 20). These highly constrained regions are strong indicators of regulatory 

function. One of these CNEs contains, and is surrounded by, a cluster of conserved 

transcription factor binding sites (HMR Conserved Transcription Factor Binding Sites). 
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Figure 20. UCSC browser figure of the second association peak region (54820000-

54860000) 

 

 In addition, ENCODE Genome Institute of Singapore ChiA-PET data show 

interactions in the second association peak highlighted region for RNAPII and CTCF 

long-range binding in two different cell lines (K562 myelogenous leukaemia cells and 

MCF-7 breast cancer cells). CTCF is thought to be a transcriptional regulator (Ong and 

Corces, 2014) and therefore the presence of long-range CTCF-mediated binding in this 

region suggests a potential role in either repression or activation through DNA looping. 

The presence of RNAPII mediated looping can also be indicative of enhancer activity in 
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the region. These long-range interactions across the TAD are supported by previous Hi-

C data across the whole 2Mb and suggest that additional regulatory regions might 

contribute to the gene expression of IRX3 and IRX5 (Figure 21). Interestingly, I was 

unable to find any positive interaction data between the novel BMI association region 

and the FTO gene (or any other genes within the TAD) in the current literature. 

 

 

Figure 21 WashU epigenome browser figure. 

The entire region sequenced is shown. Highlighted in yellow is the second novel peak of 

association identified. 

 

3.3 Discussion 

Recently, the selective sequencing of regions of the human genome has been achieved 

using hybridisation capture approaches. This has largely been exploited to sequence the 

coding, or exome, portions of the genome. However, the same capture approach can 

also be adapted to select any regions from the genome (Tewhey et al., 2009). Here, 
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unusually, I have employed it to capture a contiguous megabase scale region of the 

human genome. The 2Mb interval was selected using 8,701 probes at intervals of 

approximately 200bp. Since this work, this ethnically homogenous population and 

targeted sequencing approach has also been used to identify obesity associating variants 

in a Polish population (Sobalska-Kwapis et al., 2017). Seventy-two gaps in the 

sequence, largely repetitive and covering a total of 30.7 kb (1.5% of total), were not 

traversable. Between 70% and 80% of all reads map back to the region of interest in 

these 284 study group samples providing good coverage across 98.5% of the interval, 

making the capture approach considerably more efficient than whole genome 

sequencing. Furthermore, downstream analysis is considerably simpler and less time-

consuming. As a result, I was able to generate very high coverage, (average 200-fold) 

which in practice means that almost every individual variant can be called with very 

high confidence. 

 

At the outset only those individuals that are homozygous at rs9939609 were sequenced. 

This allowed very high-resolution mapping of haplotypes, particularly across the 44 kb 

LD region associated with this SNP. One of the aims was to determine whether, within 

the Danish study group I sequenced, there were any low frequency variants that 

contributed a significant effect within this region and would therefore allow further 

dissection of the association with BMI. There are multiple independent obesity 

association signals across this region so determining the co-occurrence or co-

dependence of these would help define sub-haplotypes. It was also easier to determine 

whether the association of other variants across the 2 Mb interval with BMI was linked 

to, or independent of, the 44kb LD region. Consistent with other studies (Gabriel et al., 

2002), particularly in European populations, the 44kb region is in almost complete LD. 

Incredibly, of 282 SNPs mapped across the 44kb, only one (rs16952522:C > G at 

53,807,498) is found in common between the rs9939609 ‘A’ and ‘T’ alleles (MAF 

0.045 in cases, 0.037 in controls). This implies that at least in the Danish population, 

recombination events in this region are historically exceptionally rare. The small size of 

the study group means that there is not the statistical power to evaluate whether any of 

the rs9939609 ‘A’ risk allele sub-haplotypes or rare variants are more associated with 

obesity than others.  
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Analysis of the constrained sequences within the region confirms that there are no 

coding variants nor any frequently occurring variants in highly conserved noncoding 

elements (CNEs) that are associated with elevated BMI. Functional constraint does have 

an effect on both the frequency of variant locations (4.1, 5.6 and 7.0 per kb, 

respectively, for coding, CNE and non-coding sequence) and the minor allele frequency 

of variants (85% of coding, 80% of CNE and 70% of non-coding variants have 

MAF<0.1). 

 

Within the Danish male study group, I clearly identify a second, novel region associated 

with BMI in noncoding sequence upstream of the IRX5 gene. Individuals in this study 

group who are homozygous for this second region have a mean BMI elevated to a 

similar extent to the effect of the known FTO intron region variants. This association is 

independent of the FTO LD region as it is not present if A/A vs. T/T individuals are 

compared. This analysis was performed using data obtained at Danish draft board 

assessment which results in a very homogeneous study group, not only in terms of 

gender and ethnicity but also because all participants were of similar age (average age 

19.9 years) when their BMI was measured. Interestingly, this association is strongest in 

younger sub-groups of the replication cohorts as well, suggesting an age-dependence 

aspect. 

 

To address this idea, I first utilised imputed values for the three most highly associating 

variants upstream of IRX5 in the expanded male cohort, comprising 1,450 individuals, 

to confirm the association. Next, I used imputed values for the same three SNPs in a 

completely independent female Danish study group, comprising nearly 4,000 

individuals. When the entire cohort is used with a higher average age, the association is 

not clear but in women aged under 26 years the association can be replicated. Thus, if 

the male and female cohorts are matched by age (as far as possible), there remains a 

significant association between BMI and the region upstream of IRX5. 

 

I then searched for the 22 highest associating SNPs across the second peak of 

association in the GIANT consortium BMI based anthropometric data for European 
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populations (Locke et al., 2015). Of these 22 SNPs, 13 are included in the GIANT 

dataset, with over 200,000 individuals having data for these variants, yet none of these 

SNPs are found to have a significant association with obesity. It is impossible to discern 

the reason for the lack of an association in the GIANT consortium data without 

secondary analyses. It is unlikely that a population specific variation and association 

with this common variant in an outbred population from North West Europe would be 

missed by meta-analyses that are also biased to North West European populations. This 

may suggest that other factors are confounding this association in meta-analyses, 

potentially age or gender in this instance. Nevertheless, in these meta-analyses the 

association is lost as age increases, perhaps because environmental factors such as diet 

and levels of physical activity are likely to have an increasing impact on BMI with age, 

confounding the detection of some genetic associations. Conversely, if the genetic 

consequences of this association are established early in life, such as during 

development, then it is likely that a stronger association will be seen at a younger age. 

Given that this locus is intimately associated with complex developmental transcription 

factors, this would seem highly likely and reflect the life course data at the 

neighbouring FTO gene (Graff et al., 2013). 

 

The IRX genes, including IRX3 and IRX5, play complex and overlapping 

developmental roles in multiple tissues and organs (Gaborit et al., 2012, Houweling et 

al., 2001). There is also evidence that both IRX clusters form complex interactions that 

define specific three-dimensional structures that regulate gene expression at different 

loci (Peters et al., 2000, Tena et al., 2011). In particular, it has been shown that the 

IRX3 promoter region interacts with a number of distal sites across the 2Mb region 

(Smemo et al., 2014) sequenced here and defined by the embryonic stem cell line TAD 

described previously (Dixon et al., 2012). 

 

In order to examine this in detail, I first looked at the overlap between the interaction 

data for FTO and IRX3 genes and the association data across the region. As the 

interaction data are from mouse, I lifted the human data for the region over to the 

syntenic region on mouse chromosome 8. There is no strong correlation between IRX3 

(or FTO) interactions and either of the BMI-associated regions although there is some 
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IRX3 and FTO signal across the 44kb region. Nevertheless, the fact that long-range 

IRX3 interactions occur up to and beyond both associated regions suggests architecture 

is an important aspect of gene regulation across the whole region. This is supported by 

Hi-C interaction data across the TAD from human embryonic stem cells (Dixon et al., 

2012), which clearly show strong interactions between the FTO and IRX5 gene regions. 

It will therefore be important to establish the specific interaction domains of IRX5 and 

IRX6 in order to get a fuller picture of the complex structure of this region and to be 

able to place the associated regions into a fuller context. 

 

Despite many GWAS studies (Berndt et al., 2013) and now the full sequencing of this 

region from a well-defined study group, there remains considerable difficulty in 

predicting, describing or functionally assaying the impact of non-coding variants on 

disease or phenotype. As a result, a number of the genes across this region have been 

implicated in obesity yet without any clear mechanism of regulatory control (Tung et 

al., 2014, Yeo, 2014). This region is particularly complex because of the presence of the 

IRXB cluster, a set of homologous genes that regulate many aspects of early 

development and are thus under tight regulatory control themselves. This control is 

likely to be mediated via cis-regulatory sequences that in some cases may be hundreds 

of kb away and even within the non-coding regions of other genes, as has been 

demonstrated for other genes such as Shh (Goode et al., 2005, Lettice et al., 2003). 

  

The implication of more than one gene in the aetiology of obesity at this locus may 

therefore not be so surprising, neither is the identification of a second cluster of 

associating SNPs. The structural architecture(s) of this particular topologically 

associated domain (TAD) may have profound effects on the regulation of all the genes 

in the region at some stage, but at this juncture not enough is known about how 

sequence variation may alter chromatin architecture nor what the consequences might 

be in terms of gene expression. Nevertheless, as more insight is gained into the structure 

and function of the non-coding DNA in this TAD, the complete sequence of the 2Mb 

interval from this study group will provide a valuable resource. Furthermore, targeted 

region sequencing may be of great utility in examining other such complex regions in 

fine detail in the future.



Chapter 4. CNE sequencing 

 

 80 

Chapter 4. Conserved non-coding element 

sequencing elucidates novel mutations in regulatory 

regions with predicted functional consequences 

4.1 Background 

Conserved non-coding elements (CNEs) are small stretches of sequence that do not 

code for proteins and yet are highly conserved in many vertebrate organisms as defined 

by fish-mammal alignments (Elgar and Vavouri, 2008). Specifically, vertebrates have 

been shown to have many CNEs through sequence alignment against the pufferfish, 

Fugu (Aparicio et al., 1995, Aparicio et al., 2002), a teleost with a compact genome 

devoid of much of the highly repetitive sequences found between and within genes in 

higher organisms (methods of comparisons are reviewed in (Boffelli et al., 2004)). It is 

through comparing alignments of these CNEs closely that we can also define the bases 

within them as non-variable or restricted variable regions (De Silva et al., 2014). 

Completely evolutionary conserved sites are non-variable regions and those sites with at 

least one nucleotide substitution across any of six divergent vertebrate species 

(macaque, mouse, chicken, frog, zebrafish and fugu) are restricted variable regions. Due 

to the extreme conservation of these regions over time and evolutionary distance it is 

likely that they correspond to some function as otherwise we would expect them to have 

diverged between species through random mutation. 

 

On further inspection of these CNEs it has been shown that at least some are enriched 

with specific predicted transcription factor binding sites (Parker et al., 2011) (although 

the increased frequency of some is matched with a decreased frequency of others). 

Therefore, it is suggested and widely believed that these CNEs act as regulatory 

elements, activating or repressing the expression of nearby genes (Featherstone, 2003, 

Howard and Davidson, 2004, Strahle and Rastegar, 2008). Furthermore, CNEs are seen 

to cluster around developmental genes, specifically those involved with head and neural 

development in vertebrates (Woolfe et al., 2005), suggesting they play a key role in 

these vertebrate morphogenetic characteristics.  
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CNEs by their definition have a fewer fixed mutation over evolutionary time than other 

areas of the genome. However, within CNEs there can be single bases that are non-

variable or have restricted variance. It could be suggested that mutations in CNEs may 

have similar effects to those in coding sequence. Many CNEs combine to form 165 

clusters and presumably control only a fraction of vertebrate specific genes (Woolfe et 

al., 2005), therefore there may also be some redundancy between CNEs and an 

accumulation of mutations may be necessary to produce a similar effect to a single 

coding mutation. This could occur through a low penetrance model of each CNE 

mutation and the resulting accumulation creating differences in gene expression. As we 

are yet to understand the exact grammar of these non-coding elements it is difficult to 

infer what a single base change at a single position may result in, however a few studies 

have associated phenotypes with CNE variation and mutation (Antonellis et al., 2006, 

Loots et al., 2005, Lettice et al., 2003, Attanasio et al., 2013). Approximately 90% of 

GWAS markers are found in the non-coding regions of the genome (Maurano et al., 

2012). Much of the subsequent focus of these studies has looked at the effect of 

mutations on nearby genes, making the assumption that these GWAS variants affect 

gene function. This bypasses an important feature of gene regulation - how SNPs 

directly affect gene expression.  

 

Many of the published examples of non-coding variants affecting long-range gene 

regulation have been reviewed previously (Bhatia and Kleinjan, 2014) however current 

methods to assess the function of a SNP or short InDel in non-coding DNA are either 

high-throughput and not developmentally applicable or vice versa. Therefore, the 

identification of non-coding causative variants is many years behind the successes of 

identifying coding variants and their roles in Mendelian disorders. The approach used 

here combines association studies and family pedigrees with functional prediction of 

non-coding variants in an attempt to prioritise those implicated in developmental 

diseases and disorders. Here I present targeted sequencing of CNEs in a number of 

differing cohorts as a way of elucidating functional SNPs and InDels amongst the vast 

non-coding genome. I go on to predict some level of functionality both through 

computational tools and assaying these regions for enhancer activity in the developing 

Zebrafish embryo using known methods (Fisher et al., 2006, Kwan et al., 2007). 
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Utilising the same probe set for all cohorts, CNE targeted sequencing creates a large 

database of non-coding variation at a read depth that matches or exceeds many exome 

projects allowing accurate SNPsand InDel calling in these potential regulatory regions. 

This will allow assessment of the extent of human variation in these regions, including 

meta-analysis of non-variable and restricted-variable bases within these highly 

conserved regions (De Silva et al., 2014), as well as create candidate lists of variants 

that could play a role in these developmental disorders.  

4.1.1 Cohort descriptions 

Table 6. Cohorts used in this chapter for CNE sequencing 

Disease Total 

Samples 

Patients Controls Ethnicity Notes 

Intellectual 

Disability & 

Epilepsy 

96 32  64 Danish Used primarily to 

develop 

prioritisation 

pipeline Cleft Lip and 

Palate 

192 64 128 Dutch 

Isolated 

Congenital 

Anosmia 

20 14 7 Faroese & 

European 

Focus on pedigree 

tracking 

Schizophrenia 265 265 0 Pakistani Followed with 

Zebrafish assay 

 

4.1.1.1 Intellectual disability and epilepsy comorbidity 

Epilepsy and intellectual disability comorbidities are a common occurrence with 

prevalence of epilepsy ranging from 20-30% in individuals with intellectual disability 

(Bowley and Kerr, 2000) compared to approximately 1% of the European population 

having epilepsy (Forsgren et al., 2005). Epilepsy is a neurological condition and 16% of 

individuals with the condition also have been reported to have some level of intellectual 

disability (Morgan et al., 2003), a proportion that is much higher than the overall 
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population prevalence of <1% (Westerinen et al., 2014). The two disorders may also co-

occur with many other characteristics and phenotypes, including being symptoms of 

known genetic disorders such as microdeletions and rearrangements (Stevenson et al., 

2012) and can have a strong hereditary component (Myers and Mefford, 2015, Flint, 

2001). Both are known to sometimes occur as the result of complications during 

pregnancy, including resulting from Fetal Alcohol Spectrum Disorder (Sumner et al., 

2013). Together, this suggests a key role in developmental genetics and its 

misregulation in neuronal embryogenesis as a potential cause of epilepsy and 

intellectual disability co-occurrences.  

 

As both disorders can have a range of severity and co-occurrences with other disorders, 

studying their genetic causes can be difficult.  Here, 96 individuals from various 

familial backgrounds (7.5) with at least one child with intellectual disability and 

epilepsy undergo targeted conserved noncoding elements sequencing in an attempt to 

find vertebrate regulatory region variants that could be contributing to the clinical 

phenotype. The parents of 32 affected children are mostly unaffected but 17 have some 

diagnosed or subclinical phenotype noted by the medical examiner. 

4.1.1.2 Cleft lip and cleft palate (CLP) comorbidity 

Orofacial clefts represent a heterogeneous group of defects with varying ranges of 

severity. Cleft lip can occur with or without cleft palate but the two are more commonly 

diagnosed together and incidences of cleft lip and palate are around 6.64 per 10,000 

births worldwide (Group, 2011). Incidences of mortality in developed countries are 

relatively low (Kang et al., 2012) (but still elevated compared to those born without) the 

incidence of infant mortality in developing countries is significantly elevated (Bickler 

and Rode, 2002) and all affected children impose a substantial financial burden on 

healthcare (Wehby and Cassell, 2010). Twin studies have provided compelling evidence 

for a genetic component to CLP (Fraser, 1970, Grosen et al., 2011) although there is 

also a large amount of evidence for environmental risk factors (Mossey et al., 2009) 

which leads to possibilities of medical interventions. These would be particularly useful 

if genetic risk factors could first be identified. 
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The occurrence of cleft lip and/or palate in humans is a result of the failure of the palate 

to fuse. Normal development (Figure 22) begins by the fourth week of human 

embryonic development around the oral cavity (a) with the nasal pits forming by the 

fifth (b). This leads to formation of the paired medial and lateral nasal processes (c). 

These in turn (c), by the sixth week, form the nasal alae. In addition, the medial nasal 

processes merge with the maxillary processes to form the upper lip and primary palate.  

The secondary palate then develops as bilateral outgrowths from the maxillary 

processes, which grow vertically down the side of the tongue (d). Afterwards, the 

palatal shelves elevate to a horizontal position above the tongue, contact one another 

and commence fusion (e). Fusion of the palatal shelves ultimately divides the oronasal 

space into separate oral and nasal cavities (f) and the failure of this as results in cleft lip 

and/or palate. 

 

Figure 22. Development of the lip and palate in humans 

Adapted by permission from Macmillan Publishers Ltd: [Nature reviews. Genetics] 

(Dixon et al., 2011), copyright (2011) 

 

Environmental risk factors for CLP stem largely from maternal exposure to a variety 

of elements. Strong evidence supports maternal smoking during pregnancy with a 
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consistent increased risk of both cleft lip with or without cleft palate and isolated cleft 

palate (Lammer et al., 2004, Little et al., 2004, Shi, 2007, Shi et al., 2008, van Rooij, 

2001). Meta-analysis has also shown that maternal use of multivitamin supplements in 

early pregnancy was associated with a 25% reduction in birth prevalence of orofacial 

clefts (Johnson and Little, 2008). Supplements of folic acid are used to prevent the 

failure of the neural tube to close in development, yet despite interest in the use of folic 

acid to also prevent CLP it was shown that multivitamins may give some protection, 

but not folic acid alone (Johnson and Little, 2008). Folic acid deficiency does cause 

cleft palate in rats (Asling et al., 1960) and antagonists of folic acid confers higher risk 

of orofacial clefts in people. This suggests a role for folic acid, but a multi-faceted 

approach to orofacial cleft susceptibility. What is clear is that the early embryonic 

development and its environment is essential to the correct formation of the palate and 

lip. 

 

As CLP is aetiologically heterogeneous, understanding the genetic influences will 

allow further understanding how environmental risks interact and hope to give rise to 

interventions. Non-syndromic CLP is a particularly complex disorder, and the genetic 

variation is likely to occur in regulatory elements. It has been shown previously that 

long-range regulatory elements add control to craniofacial development (Attanasio et 

al., 2013) and although multiple mutated genes have been associated to various clefting 

syndromes (Ardinger, 1989, Beaty, 2010, Birnbaum, 2009, Grant, 2009, Mangold, 

2010, Marazita, 2009, Pauws, 2009, Suzuki, 2009, Wehby and Cassell, 2010, Zucchero, 

2004) the complexity of the traits leaves much to still be explored. One key finding with 

nonsyndromic cleft lip and palate is the discovery already of an accumulation of 

conserved noncoding variants in and around the FGF and FGFR genes that may 

contribute to clefting (Riley and Murray, 2007). This suggests that exploring these 

conserved noncoding regulatory elements for variation could contribute to the genetic 

understanding of CLP. In addition, functional noncoding variation that affects enhancer 

activity near the gene NOG associates with CLP (Leslie et al., 2015) further suggesting 

a targeted sequencing approach of predicted developmental enhancers could discover 

novel contributing regulatory variants. 
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The cohort used in this work are 63 trios of Dutch origin where the child has been born 

with cleft lip and palate and neither parents are affected. These samples are from the  

EuroCran project (eurocran.org) and full phenotype data is attached (Appendix Table 

3).  

4.1.1.3 Anosmia 

Isolated congenital anosmia (OMIM#107200) is the inability to smell from birth. 

Estimates are that 5% of the population are anosmic (Brämerson et al., 2004, Landis et 

al., 2004) with many of these cases a result of age, poor diet and other poor quality of 

life factors (Nordin and Brämerson, 2008). Congenital anosmia is also a presenting 

symptom of a variety of sexual and developmental abnormalities (Vowles et al., 1997) 

including Kallmann syndrome (Lieblich et al., 1982). Interestingly there has been 

evidence of family members of patients with Kallmann syndrome having isolated 

congenital anosmia (Pitteloud et al., 2006). This suggests a complex genetic component 

to the disorder, and cases of isolated congenital anosmia (without the presence of 

trauma or other environmental factors) is much rarer, comprising ~1% of the anosmic 

population (Pitteloud et al., 2006, Ciofalo et al., 2006). Although the lack sense of smell 

may not present as many societal and psychological difficulties for patients as blindness 

or deafness, its origins in neural development and genetic component could help shed 

light on the complex regulatory processes surrounding the formation of the vertebrate 

head. 

 

Familial presentation of ICA has driven previous investigations into the underlying 

genetic components of the disorder. Through pedigree tracing, ICA has been observed 

and followed in a handful of families (Lygonis, 1969, Singh et al., 1970). This has 

provided some evidence towards a dominant inheritance. However, one large family in 

the Faroe Islands (with 28 patients having ICA across 4 generations) also provided 

some evidence to an alternative mode of inheritance. The isolated nature of this 

population has meant that otherwise recessive rare mutations may be found in much 

higher frequencies. The varying nature of family history makes ICA hard to study, both 

in the incomplete family records and the non-uniform presentation of inheritance. 

Generally, autosomal dominant inheritance patterns are seen but reduced penetrance is 
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sometimes observed with some family members presenting isolated congenital 

hyposmia instead (Mainland, 1945, Ghadami et al., 2004a, Singh et al., 1970, 

Feldmesser et al., 2006, Leopold et al., 1992).  

 

Despite the strong evidence suggesting a genetic inheritance to ICA, few efforts to 

identify the causative mutations have been published. One study mapped ICA to locus 

18p11.23-q12.2 using genome-wide linkage analysis of two unrelated Iranian families 

(Ghadami et al., 2004b). This was a small powered study with 7 patients presenting ICA 

as autosomal dominant with incomplete penetrance. The study then sequenced the 

exons and exon-intron boundaries of 8 candidate genes in this vast 30Mb region but 

found no mutations. A separate study looked for ICH susceptibility loci genome wide in 

North Americans and mapped to a 45cM region on chromosome 4 (Pinto et al., 2008). 

 

It has been suggested that non-coding variation plays a role in reduced penetrance 

disorders (Ward and Kellis, 2012). Studies have used eQTL data to show a relationship 

between deleterious coding variants and regulatory variants that help adjust their 

penetrance (Lappalainen et al., 2011). Widespread potential for interactions between 

coding variants and regulatory variants (Montgomery et al., 2011), especially those 

within cis-regulatory modules, could help explain some of the reduced penetrance 

phenotypes seen in isolated congenital anosmia. This work looks at multiple families 

with some history of ICA (and 2 individuals with ICH) whose exomes have not 

revealed any causal variants for their phenotypes (7.5, Figure 44, Figure 45, Table 24). 

Therefore, without attempting to sequence and investigate the entire genome, 

sequencing of the CNEs reveals variants that may impact developmental gene 

regulation and play a part in the anosmia phenotype.  

 

4.1.1.4 Schizophrenia 

Schizophrenia (OMIM#181500) affects approximately 24 million people worldwide 

and has a prevalence of around 7 per 1000 adults (Saraceno and Bertolote, 2013). It is a 

brain disease that presents as a variety of symptoms with differing severity between 

individuals. It is widely diagnosed using the PANSS (positive and negative syndrome 
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scale) (Kay et al., 1987, Leucht et al., 2005) alongside identification of psychotic 

episodes, and can be treated to an extent with medication. Schizophrenia is a worldwide 

healthcare problem, with high morbidity, mortality (Saha et al., 2007) and societal costs 

(Mathers, 2008) (Knapp et al., 2004). Both diagnosis and treatment of Schizophrenia 

could relieve some of these societal costs and improve patient outcomes by preventing 

relapses (Almond et al., 2004, Hong et al., 2009). The development of Schizophrenia in 

patients can vary widely both in age of onset and severity, with some differences 

between gender (Sham et al., 1994). Despite Schizophrenia presenting in a variety of 

ways, all available antipsychotic drugs used as treatment exert their main therapeutic 

effects through blocking the type 2 dopamine receptor (Lahti et al., 2003) (Carlsson and 

Carlsson, 2006). Pharmacological treatments for Schizophrenia are typically low in 

efficacy for many patients (Leucht et al., 2013). Therefore, identifying the causes of 

Schizophrenia is essential for the development of new treatments and the lessening of 

this disease’s burden on the patients and global healthcare systems.  

 

It is believed that Schizophrenia has a significant genetic component with MZ twin 

concordance data showing around 48% heredity (Onstad et al., 1991). Although many 

studies including GWAS point to susceptibility loci, no specific gene has been seen to 

cause the varying symptoms of the disorder (Bray et al., 2005, Chowdari et al., 2002, 

Emamian et al., 2004, Jolly et al., 2013, O'Donovan et al., 2008, Riley et al., 2010, 

Stefansson et al., 2009, Williams et al., 2011). Recently a large GWAS study of over 

36,000 cases and 113,000 controls has pointed to 108 conservatively defined loci of 

significant association (Schizophrenia working group of the Psychiatric Genomics 

Consortium, 2014). This, in addition to other research suggests that Schizophrenia is not 

only a complex phenotype but also polygenic in nature (Internatioal Schizophrenia 

Consortium, 2009). This can make pinpointing the hereditary predisposition to a 

particular loci, gene or variant particularly confounding. One potential solution offered 

here to sift through the noise is to utilise ethnically homogenous populations in 

association studies.  

 

Many genome-wide association studies have found single nucleotide polymorphisms 

that associate with Schizophrenia in the non-coding regions of the genome 
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(Schizophrenia working group of the Psychiatric Genomics Consortium, 2014). The 

notion of polygenic contributions and large environmental influence causing the first 

symptoms of Schizophrenia to occur fits a gene mis-regulation model. This has been 

shown to happen with structural variants (Walsh et al., 2008) and as a result epigenetic 

changes from the early developmental environment (Dolinoy et al., 2007). Therefore, 

some genetic association and the underlying predisposition could come from non-

coding variation and its effects on gene regulation. Data has already shown that there is 

an enrichment in Schizophrenia eQTL associated variants in enhancer and promoter 

regions (Roussos et al., 2014, Schizophrenia working group of the Psychiatric 

Genomics Consortium, 2014). Identification of contributing SNPs in respect to regions 

of high LD will only be possible with further functional analysis including enhancer 

assays, Hi-C information and potentially CRISPR-Cas9 genetic modification. In 

addition, with Schizophrenia being such a complex disease, in vitro methods are reliant 

on finding a suitable cell line which is unlikely to be feasible given the nature of neural 

development, networks and heterogeneity of the brain. New risk loci are being 

identified continually however work needs to be done to correlate these genetic 

identifiers with gene regulatory elements, the genes they’re affecting and the role of 

these genes in neuronal development.  

 

Schizophrenia is known to be a disorder resulting from altered neurodevelopmental 

processes (and environmental influence), the predisposition to which is set during brain 

development in the womb (Haijma et al., 2012, Nenadic et al., 2012, Honea et al., 2005, 

Collin et al., 2013, Gogtay et al., 2011).The development of a complex brain is 

vertebrate specific, and regulation of genes in this development must be both precise 

and exact. There is also the variation of gene expression and regulation across the 

multiple developing brain regions (Buonocore et al., 2010).  Therefore, a large cohort of 

Schizophrenia patients from Pakistan, a disorder thought to be related to brain 

development (Rapoport et al., 2005, Pantelis et al., 2005) presents an opportunity to 

discover regulatory variation that could contribute to this disease. Using the targeted 

sequencing approach, vertebrate evolutionary constrained sequences are utilised as a 

method of identifying enhancers involved in neural development (McEwen et al., 2009). 
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Here, I sequence the conserved non-coding elements of 265 Schizophrenia patients of 

Pakistani origin and analyse disease-associating variants for potential function. 

4.2 Results 

4.2.1 In-solution capture probe hybridisation of CNEs produces high 

coverage and quality non-coding sequencing data suitable for rare 

variant analysis 

The CNE probe regions span 769,894 bases with the distribution of bases within these 

regions being representative of the whole genome. Within the 1000 Genomes publicly 

available data across all ethnicities, there are 20,521 variant locations called within 

these targeted CNEs; 2.7% of bases within CNEs have annotated human variation in 

current publicly available datasets. The vast majority of these variants are rare (Figure 

23) due to the evolutionary constraints on these sequences used in their selection. 

 

 

Figure 23. CNE variant frequencies currently listed in 1000 Genomes database (phase 3). 

All variants listed in the CNE regions targeted by the probe set used (methods 2.2.3) from 

1000 Genomes phase 3 release (The Genomes Project, 2015) were extracted. Global allele 
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frequencies for all variants were retained and histograms plotted of their spread. GAF: 

Global Allele Frequency. The right-hand panel shows a detailed view of frequencies, 

removing the rare variants for ease of viewing. Rare variants have GAF <0.01. 

The CNE targeted sequencing used produced high coverage data for 83% of all 

individuals sequenced in the four cohorts (Table 7, Figure 24) suitable for rare variant 

calling, demonstrating the success of this method (including using different methods for 

targeted capture and enrichment described in methods 2.2.1 and 2.2.3). 

 

Table 7. CNE targeted sequencing coverage of all cohorts 

Cohort Samples sequenced: passed QC Average coverage per sample 

ID/E 96: 96 520 

CLP 192: 159 208 

ANOS 20: 19 163 

SCHZ 265: 199 200 

 

 

Figure 24. Spread of average coverage of samples in each sequenced cohort.  

Minimum average coverage cut off line = 20. 
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4.2.1.1 IDE 

1750 SNVs were called in CNEs across 96 individuals passing all standard quality 

control measures. The familial inheritance patterns for these samples were complex, 

with multiple traits and for some, a variety of clinical notations from the medical 

practitioners working with the patients. Therefore, this patient group was largely used as 

proof of principal for targeted CNE sequencing and in the development of the variant 

prioritisation pipeline outlined below (Figure 27). The rich depth of clinical data could 

have been beneficial if a higher level of clinical input was available, including further 

understanding of the implications of familial phenotypes. This clinical and genetic data 

could be well used in future with a larger resource to investigate fully the individual 

cases, such as through the DDD project (Deciphering Developmental Disorders, 2017). 

 

4.2.1.2 CLP 

The cohort of trios used for the CLP study comprised of 31% female and 69% male 

affected children and their parents (Appendix Table 3). Once sequenced, reads mapped 

and variants called, a check of the patient samples for shared genetic information was 

performed. A simple assessment of the % of shared variation between individual 

samples, plotted as nodes (Figure 25) showed clear evidence of sample cross-

contamination. This reduced the number of ‘trusted’ trios to 53 (total n= 159). 
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Figure 25. Common variation between CLP samples shows sample mislabelling and 

contamination. The kinship network diagrams were created through R Bioconductor 

package using shared variant genotypes amongst samples for mapping. 

 

With such a large degree of sample mix up, any implicated families were removed from 

downstream analysis and samples were used to develop and perform trio-based analysis 

of variants through the variant prioritisation pipeline. A total of 2266 variants were 

identified that passed quality controls. 

4.2.1.3 ANOS 

The Anosmia based cohort consisted of 20 samples from various ethnicities and a 

variety of familial relations (see 7.6). To ascertain if there was similar sample 

contamination or mislabelling as per the CLP cohort noted above, variant nodal analysis 

was performed in the same way and samples were found to be correctly labelled and 

with no detectible contamination (Figure 26). A total of 4461 variants locations were 

found within 500bp up- or down-stream of CNE regions. One sample (AN004) had low 

coverage compared to the rest of the samples. A total of 1087 variants were located 

within the CNE regions and extended regions were used for downstream analysis 
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(where coverage was good enough) in an attempt to understand extended haplotypes 

from the CNE borders better. 

 

Figure 26. Identification of trios and confirmation of genders of samples using only 

variants called.  

Numbers are % of shared variation. Red indicates females, blue indicates males. Network 

analysis was performed through R Bioconductor package. 

4.2.1.4 SCHZ 

A total 3652 variant locations were found in the 199 samples that were sequenced 

successfully. The Illumina Nano library preparation method may have not worked as 

well with the Truseq Custom Enrichment probes utilised from Illumina compared to the 

Truseq-Truseq compatible kit method used for the IDE and CLP cohorts, explaining the 

8% failed sample rate. Samples were unrelated and similar nodal analysis of variants as 

performed previously confirmed this. This figure is not included as it is simply a display 

of individual samples with no network. 
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4.2.2 Development of a CNE targeted sequencing and variant 

prioritisation pipeline using sequence data from IDE and CLP 

cohorts. 

Utilising cohorts of different sizes and with varying levels of inter-familial relationships 

and from different ethnic backgrounds, I have developed a standardised pipeline in 

order to sequence conserved non-coding regions and prioritise variants found within 

these putative developmental enhancer regions for further functional investigation 

(Figure 27). This method of sequential analysis of variants was developed using the IDE 

cohort and the CLP cohort. The CLP sequence data arose from trios where the child was 

affected with the most severe form of cleft lip and palate combine, yet both parents 

were unaffected. This allowed the variant prioritisation to focus on de novo 

heterozygous mutations amongst the affected children, or new homozygous occurrences 

in just affected children of rare (AF <1%) variants. The IDE cohort has complex 

familial information including many sub-clinical phenotypes in parents. Therefore, 

grouping of ‘affected’ and ‘unaffected’ individuals based on clinician recommendations 

(presence of absence of any neurological disorder) had to be implemented. Rare variants 

found only in affected individuals or homozygous in affected individuals were reported.  

 

These two cohorts demonstrated this method’s ability to reduce potential functional 

variants from thousands to a number small enough for human interrogation. These 

variants are then easily assessed against publicly available functional data for further 

insight into their practical validity, annotated, and where appropriate can be taken 

through to functional analysis. 
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Figure 27. Visualisation of targeted sequencing and variant prioritisation pipeline. 

Various publicly available datasets and tools were used as follows: wANNOVAR(Wang et 

al., 2010, Chang and Wang, 2012) Variant Effect Predictor (VEP) (McLaren et al., 2016), 

Regulomedb (Boyle et al., 2012), Combined Annotation Dependent Deletion (CADD) 

Prepare custom enrichment libraries 

Sequence cohort 

Align sequence to reference genome 

Call SNP variants 

Remove poor quality variants 

Annotate variants: rsID and 1KG Allele Frequency (using wANNOVAR) 

Select associating variants 
(common variants) 

Select variants found only in 
affected individuals (rare 

variants - pedigree tracking) 

Score variants based on 
Regulomedb and CADD 

Annotate variants found in 
VISTA enhancer browser 

assayed regions 

Annotate individual SNP 
conservation based on 

CONDOR 

Assay WT human CNEs 
containing prioritised SNPs 

using Tol2:GFP vector system 
in zebrafish 

Assay Variant human CNEs 
containing prioritised SNPs 

using Tol2:GFP vector system 
in zebrafish to compare 

Select variants found only as 
homozygous in affected 

individuals (rare variants - 
pedigree tracking) 
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(Kircher et al., 2014), VISTA Enhancer Browser database (Visel et al., 2006), and 

COnserved Non-coDing Orthologous Regions database (CONDOR) (Woolfe et al., 2007). 

 

After using the literature to review regulatory scoring algorithms publicly available 

(1.2.4), CADD and RegulomeDB were chosen to score variants on their pathogenicity. 

The algorithms have slightly different approaches and including both a categorical and a 

continuous scoring programme allows for full integration of known data and its 

relevance. In addition, a comparison of scores for all known CNE SNPs in dbSNP 

release 141 that are directly comparable in CADD and RegulomeDB (n=8273) shows 

multiple differences in the rank of variants based on the two approaches (Figure 28 and 

Figure 29). CADD scores above 20 place the variant in the top 1% of pathogenic 

variants, while a RegulomeDB score of 3 and above demonstrates at least two matching 

indicators of regulatory function at that nucleotide location. 

 

 

Figure 28. Comparison of spread of scores for CNE variants in dbSNP141 by CADD and 

RegulomeDB.  
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CADD scores generally place CNE variants (and non-coding variants) outside of the top 

1% pathogenic and previous studies have used much lower cut off scores than 20 for 

non-coding variants of interest due to the way CADD is trained on all possible variants 

in the genome (Mather et al., 2016). Therefore its use to rank variants in order may be 

more informative than the overall score for CNE variants. This can be seen again when 

looking at the spread of CADD scores when compared to RegulomeDB scores for all 

CNE variants in dbSNPv141 (Figure 29) with no significant trend being observed that 

would suggest agreement between the two programmes. 

 

 

Figure 29. Comparison of the spread of CADD scores within RegulomeDB scoring 

categories shows no significant trend in agreement between the two sets of data 

 

4.2.2.1 IDE variants of interest 

Utilising familial data, there were 32 instances of SNPs that were only found in the 

variant homozygous form in affected children, and a single de novo heterozygous 

mutation in one affected child. None of these significantly associate with the phenotype 
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however there are 4 rare homozygous SNPs and one rare heterozygous SNP (EAF ≤ 

0.01). 

4.2.2.2 CLP variants of interest 

Utilising trio data, there were 63 SNPs that were found homozygously only in children 

with CLP and one SNP that was heterozygous in an affected child only (de novo het). 

When comparing the allele frequencies to those in 1000 Genomes phase 3 release for 

European cohorts, a list of 5 SNPs was curated (Table 8). 

 

Table 8. SNPs in CNEs exclusive to CLP children, rare in 1000 Genomes European 

cohort. SNP 5:91019059 is a de novo heterozygous variant. All others are only found as 

homozygous in affected children. 

Region Chr Pos Ref Alt CNE 1KG EUR AF 

NR2F1 REGION 5 91019059 T C CRCNE00008112 0 

PROXIMAL TO 

HOXD9 AND 

LUNAPARK 

2 176428892 C A CRCNE00010496 0.01 

PROXIMAL TO 

IRX2 AND IRX1 

5 2547178 C G CRCNE00006703 0.01 

PROXIPMAL 

TO TFAP2A 

6 10150462 C G CRCNE00007024 0 

PROXIMAL TO 

POU3F2 

6 97949475 G A CRCNE00009797 0.01 

 

With these relatively small cohort sizes (IDE and CLP) and the small regions of 

conserved non-coding sequence that is studied (0.7Mb) there is a low expectation of de 

novo mutations. Methods for predicting these rates as described previously (Samocha et 

al., 2014) focus on exome analysis, incorporating per base function and mutation effect 

(synonymous or nonsynonymous) making them limited in application to this method. 

New per-base constraint predictions for conserved non coding regions will need to be 

calculated, taking into account NVR and RVR sites (De Silva et al,. 2014) alongside a 

deeper understanding of the non-linear code and function. 
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4.2.2.3 CNE sequencing discovers novel non-coding variants 

Utilising such a high-coverage and targeted approach to non-coding sequencing, new 

variants that cannot be found in previous literature were found for each cohort. 

Comparisons of cohort allele frequencies against those found in 1000 Genomes publicly 

available data point to multiple novel variants and some disparity between more 

common variation as well (Figure 30 and Figure 31). 

 

Figure 30. Comparison of IDE cohort allele frequencies and 1000 Genomes global allele 

frequencies identifies multiple novel variants. 
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Figure 31. Comparison of CLP cohort allele frequencies and 1000 Genomes global allele 

frequencies identifies multiple novel variants. 

Using all 4 cohorts, total number of variants annotated and those that can be deemed to 

be novel were listed (using wANNOVAR to annotate (Wang et al., 2010) and novel 

being defined as not being seen in dbSNP, gnomAD or 1000 Genomes). Targeted non-

coding sequencing provides a great deal of previously unknown information on human 

noncoding variation ( 

Table 9). This is especially true in cohorts with ethnicities not used in GWAS studies as 

often; the Pakistani SCHZ cohort and the Faorese component to the ANOS cohort may 

result in higher novel mutation discovery as these ethnicities are underrepresented in 

current GWAS studies (Popejoy and Fullerton, 2016).  
 

Table 9. Novel variants discovered in cohorts undergoing targeted CNE sequencing. A full 

list of novel variants discovered here will be made available alongside the ENA submission 

of sequences (vcf file). 

Cohort Total no. of 

variants 

Novel 

variants 

% Novel 

Variants 

Samples 

Sequenced 

Per sample 

average 

novel 

variants 

IDE 1750 109 6.2% 96 1.14 

CLP 2266 203 9.0% 159 1.27 

ANOS 1087 48 4.4% 19 2.5 
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SCHZ 3652 1016 27.8% 199 5.1 

 

4.2.3 Targeted CNE sequencing of a small Anosmia cohort identifies 

familial disease-associating variants with predicted functional 

consequences 

Utilising the variant prioritisation framework developed previously (Figure 27) each 

family was scrutinised for variants that fit the predicted inheritance patterns they 

displayed. For families B1, B2, B3 and B6 (Figure 45, Table 24) these were small 

pedigrees with limited availability of sequence data. It was possible to predict the 

pattern of inheritance of contributing SNPs based off of the family pedigree information 

given. This plus comparing the presence/absence of variants in other family’s ICA and 

control samples allowed the significant reduction of ‘interesting’ variants ( 

Table 10). 
 

Table 10. Family-specific pedigree tracing, using other affected and unaffected individuals 

as control populations 

Family Patients 

sequenced 

Family 

controls  

Predicted pattern of 

inheritance 

Number of 

variants that fit 

pedigree 

B1 ICH Father 

ICA Daughter 

Mother Autosomal Dominant 

(reduced penetrance) 

39 

B2 ICA Brothers 

(2) 

none Autosomal Recessive 38 

B3 ICA Father 

ICA Daughter 

Mother Autosomal Dominant 37 

B6 ICA Daughter Father 

Mother 

Autosomal Dominant or 

Autosomal Recessive 

7 

 

There were no variants that were duplicated in these short lists between families. These 

variants were then annotated using CADD, RegulomeDB, VISTA enhancer browser 

and CONDOR database.  
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Figure 32. CADD and RegulomeDB scores for variants following inheritance patterns of 

Anosmia in four European families. 

 

 

Figure 33. CADD normalised scores plotted against the RegulomeDB scores for the same 

variant in European Anosmia affected families 
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The variants with the highest pathogenic potential were compiled ready for transient 

Zebrafish enhancer assays going forward (Table 11). 

 

Table 11. Prioritised familial variants in European families presenting Anosmia to be 

taken forward to functional studies 

Family Chrom Pos Ref Alt Vista Regulome 

DB 

CADD 

B1 5 157959431 T C - 6 20.1 

3 147219331 T C - 5 20.2 

15 61318347 T C - 5 20.5 

10 78192968 C G - 5 22.3 

16 54524133 T C - 5 31 

15 96427654 G A - 2a 12.59 

19 31830269 A C - 2b 0 

7 155264279 C T hs1418: hindbrain, 

midbrain 

2b 7.82 

4 147289519 T G - 2b 11.49 

4 147393687 C T - 2b 13.88 

10 78313940 C A - 3a 14.04 

11 16443426 C T - 3a 17.03 

B2 10 102466902 C T - 7 20.8 

9 128655115 T G - 7 21.3 

9 128141809 G A - 5 28.6 

10 102469402 C A - 2b 2.605 

10 102475964 C G - 2b 9.119 

10 102475948 G A - 2b 11.18 

10 102475954 C G - 2c 9.007 

7 1308934 G GT - 3a 0.429 

1 3209923 A G - 3a 3.789 

15 98166554 A G - 3a 9.471 

9 128225561 T C - 3a 11.43 
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B3 2 164844248 A T hs421: neural tube, 

dorsal root 

ganglion 

6 21.1 

1 10976340 C T - 5 21.2 

1 216691632 C T - 5 21.3 

3 147792863 G C - 5 25.4 

5 3326276 T C - 5 27.1 

16 78698869 G T - 5 28.7 

2 177235473 C T - 4 31 

10 102472468 A T - 3a 36 

10 102469399 C T - 2b 3.371 

7 156407509 A G - 2b 12.42 

1 63590702 GT G - 2b 13.67 

10 102472468 A T - 3a 36 

B6 2 104736646 T C hs401: hindbrain 7 0.961 

 

 

Chr2:172956687 C>T is a SNP found in two brothers (AN010 and AN011, Family B2) 

presenting with ICA not present in GnomAD. Although both parents are unaffected, 

suggesting recessive inheritance may be the cause, previous literature suggests an 

autosomal dominant inheritance pattern with reduced penetrance. This could be through 

multiple contribution variants or other environmental factors. Neither parents are CNE 

sequenced here, and the likelihood of both brothers randomly gaining the same SNP is 

rare, therefore if this variant has any contribution to the phenotype it is likely to be in 

addition to other variants or inherited haplotypes from the other parent. This rare variant 

lies within the hs422 element (chr2:172,955,879-172,957,052) tested in the vista 

enhancer browser (Visel et al., 2006). In this vertebrate-conserved region, the element 

acted as a developmental enhancer in the forebrain, midbrain and nose at mouse 

embryonic day 11.5 (Pennacchio et al., 2006).  
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Figure 34. hs422 VISTA Enhancer element expression in e11.5 mouse embryo 

Adapted by permission from Macmillan Publishers Ltd: [Nature] (Pennacchio et al., 

2006), copyright (2006) 

 

The variant has a CADD score of 22.2 suggesting it is in the top 5% of deleterious 

variants, although the RegulomeDB score is 5, demonstrating minimal binding 

evidence. The CNE region is an active enhancer in the nose but the contribution of this 

SNP to altered enhancer function and gene expression is unclear. 

 

In addition to the multiple small European pedigrees, a more extensive family history 

was available for a Faroese family. This family had already undergone extensive genetic 

analysis including Karyotyping, SNP 6.0 genotyping and exome sequencing. These 

results were inconclusive (N. Tommerup, personal communication, 2013). Using 

previous evidence for dominant inheritance with reduced penetrance in a previously 

studied family of the same limited ethnic background (Lygonis, 1969), variants were 

traced that were present as heterozygous variants in affected individuals and not present 

in unaffected individuals. Two SNPs were found to be present in all 5 affected 

individuals and not seen in any unaffected individuals. These variants are in close 

proximity to each other: chr7:1461971 G>A and chr7:1461984 T>C. These SNPs are 

located 50bp downstream of CRCNE00009845, with the reduction in conservation from 

the CNE boundary to the variants caused by the region being missing in some vertebrate 

species. Both variants have regulomeDB scores of 5 and low scores from CADD (raw 

scores = 0.28 and 0.08 respectively) not indicating any discernible pathogenicity. 

Nonetheless, the presence of these two SNPs in such close proximity within this family 
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suggests there could be an associating haplotype in this region extending away from the 

CNE probe, making the consequences of these specific SNPs difficult to predict.  

 

The cluster of CNEs in this region associate with the gene UNC Homeobox (UNCX). 

The UNCX Homeobox Protein is a Transcription factor involved in neurogenesis and 

somitogenesis. Amongst other functions, it plays a role in controlling the development 

of connections of hypothalamic neurons to pituitary elements. In addition, it is GO 

annotated to be involved in olfactory bulb interneuron differentiation (Ashburner et al., 

2000, Gene Ontology Consortium, 2015). Previously, ICA patients have presented lack 

of olfactory cells or few olfactory sensory neurons in olfactory epithelium biopsies 

(Assouline et al., 1998). Therefore, changes in UNCX expression could plausibly affect 

the normal development of the olfactory system. 

4.2.4 Targeted CNE sequencing of a Schizophrenic cohort identifies 

disease-associating variants with predicted functional effects 

4.2.4.1 Comparative population genetics is restricted by publicly available 

data, including poor coverage of the non-coding genome and few 

ethnically comparable samples 

Targeted CNE sequencing identified 3652 variant locations within the Pakistani 

Schizophrenic cohort group. Some of these variants were multiallelic, making the total 

number of variant alleles identified 3826. Using wAnnovar, these were annotated with 

RsIDs for dbSNP analysis and 1KG allele frequencies. A total 992 

 variant alleles had no RsID and no allele frequency information available (26%). Of 

these variant alleles, 890 (90%) are rare in the cohort (MAF<0.01) and can be classed as 

personal variants or a false positive variant call. This additional information on the 

extent of rare variation in conserved noncoding regions extensively adds to the variants 

identified in these regions, adding almost 1000 novel variants to the ~20,000 already 

called by 1KG within CNEs. An additional 102 common allele (MAF>0.01) were also 

identified (Appendix Table 3). Comparable ethnic cohorts are present in public data but 

not large enough to find variant associations. 
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The cohort studied is from Pakistan, therefore any comparison of allele frequencies 

should be between a similar ethnic background cohort where possible. Although there is 

a subset of the 1000 Genomes sample groups from Pakistan (n=157), utilising a larger 

number of individuals would gain more accurate allele frequencies for noncoding 

regions (where coverage is much lower). To see if the full SAS (South Asian) subgroup 

could be used, a PCA comparing the Pakistani cohort and the different sub-groups of 

1000 Genomes was performed to identify degree of concordance between the two 

populations (Figure 35). This showed that the Gujarati Indian from Texas (GIH) sub-

population was the most estranged, retaining some overlap. There were also outliers 

within the Pakistani patient cohort which could be attributed to low sequence coverage. 

In addition, the PJL subgroup has 2,658 variants listed across the CNE probe regions – 

just under 13% of the total number of variants called globally for these regions 

(Appendix Script 1).  

 

Figure 35. PCA showing overlap of Pakistani Schizophrenic cohort with SAS 1KG 

population. The Pakistani cohort sequenced here are PAKI in navy blue, the other 
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subgroups are 1KG South Asian individuals. Further analysis of the smeared 

samples from approximately -0.10 on PCA3 axis shows these individuals to have 

multiple low coverage regions. PCA performed using minor allele frequencies as 

described previously (Lu and Xu, 2013). The PJL subgroup are the closest 

geographical subgroup to the new Pakistani samples we have sequenced. 

 

Using a 2x2 contingency table, case-‘control’ allelic association chi squared and p 

values (d.f.=1) were conducted, primarily with 1KG SAS population frequencies but 

also with 1000 Genomes global allele frequencies and gnomAD frequencies where 

values were missing. Case individuals were from our Schizophrenia cohort as described 

above, ‘control’ individuals were simply the publicly available population genetic data 

available for this region for 1KG SAS individuals. No variants were found to have 

significant association to the Schizophrenic cohort when comparing to 1KG SAS and 

Global Allele frequencies (pvalue<5x10
-8

). This threshold was used to prioritise 

variants despite not necessarily being a true representation of actual statistical 

significance. 

 

The gnomAD project pulls together 15,496 whole genomes from various sources 

including patient data, however there is no representation of South Asian origin 

individuals in the current data release. In addition, there is no phenotype data that can 

be matched with variant information. This being said, the gnomAD data provided the 

most comprehensive coverage of all the variants found in the case cohort, providing 

information on an additional 243 variants when compared to the SAS population, and 

24 variants compared to the 1KG global allele frequencies. An additional 182 variants 

were assigned RsIDs but with no allele frequency information available. Therefore, 

gnomAD allele frequencies were used to perform further case-‘control’ association 

tests. The use of gnomAD as a ‘control’ data set is limited largely by the quality of 

variants available and the comparative methods used. In addition, as mentioned 

previously, the limit of number of individuals available for comparative ethnicities is 

difficult to overcome until more sequencing studies are done. GnomAD also pulls 

genetic information in from other disease-association studies, potentially skewing some 

of the data based on other disorders being studied, however the hypothesis that the large 
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numbers of individuals available will overcome this noise. Therefore despite being 

referred to as a ‘control’ set, it should be noted that this is just in principle for statistical 

analysis and variant prioritisation and the genetic data is not truly reflective of a control 

group. 

 

4.2.4.2 Use of the variant-prioritisation pipeline (developed in 4.2.2) 

identifies Schizophrenia associating variants with predicted 

functional consequences 

Case-control allelic association testing of cohort allele frequencies compared to 

gnomAD reported frequencies identified 12 variant alleles associating with the 

Schizophrenia cohort (p-value<5x10
-8

).  

 

Table 12. Variant alleles associating with Schizophrenia 

Chrom: Chromosome; Ref: Reference Allele; C.AF: Cohort minor allele frequency; 

G.AF: gnomAD allele frequency 

Chrom Start End Ref Alt C.AF G.AF P-value 

10 131556191 131556191 A C 0.2297 9.71E-05 4.94E-238 

10 77469716 77469716 A G 0.2294 9.70E-05 1.04E-237 

3 157882877 157882877 T G 0.4615 0.0004 3.51E-233 

3 71629340 71629340 T G 0.2627 0.0002 7.14E-152 

5 2113231 2113231 A C 0.2106 0.0005 2.72E-40 

2 172580364 172580364 T G 0.2319 0.0007 4.40E-35 

2 104496685 104496685 T G 0.2308 0.0007 9.122E-35 

19 30941020 30941020 C T 0.1833 0.001 3.55E-16 

10 114885262 114885262 - A 0.029 3.27E-05 7.53E-13 

13 101015915 101015915 C G 0.0258 3.23E-05 1.43E-10 

16 80143645 80143645 A C 0.2162 0.0031 6.20E-08 

16 51501890 51501890 T A 0.0217 3.23E-05 6.94E-08 

 

Of these variants, only chr10:114885262, chr13:101015915 and chr16:51501890 have 

recorded rsIDs (rs527416250, rs376094199, and rs540088918 respectively) with none 
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appearing in recent Schizophrenia meta-anlayses (Ripke et al., 2014). These p-values 

are indicators only and further sanger sequencing would be needed to confirm the 

variant locations and frequencies with more time and resource. 

4.2.4.3 Functional predictions of disease associating SNPs prioritising 

variants for functional analysis 

Utilising publicly available software and tools allows the novel associating variants to 

be prioritised for functional assays in zebrafish. Functional assays are medium-

throughput with each enhancer assay taking 2-4weeks of hands-on time. The variants 

were initially scored using the CADD software (Kircher et al., 2014). Results were 

reported both as raw scores and as scaled scores ( 

Table 13) and variants were sorted from most likely to be pathogenic to least likely. All 

scaled (PHRED) scores were below 20, the suggested cut off for pathogenicity (the 1% 

most deleterious variants), although CADD consistently scores noncoding variants 

lower generally than coding variants suggesting a lower threshold level could be used.  

 

Table 13. CADD scores for Schizophrenia associating variants 

#Chrom Pos Ref Alt RawScore PHRED 

2 104496685 T G 2.43598 19.05 

16 51501890 T A 2.427926 19 

10 131556191 A C 2.150394 17.18 

16 80143645 A C 2.005432 16.25 

10 77469716 A G 1.917527 15.7 

2 172580364 T G 1.794542 14.95 

3 157882877 T G 1.538025 13.52 

13 101015915 C G 1.34814 12.52 

19 30941020 C T 1.23543 11.93 

10 114885262 - A 1.005911 10.7 

3 71629340 T G 0.929835 10.25 

5 2113231 A C -0.163046 1.306 
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Additionally, the 12 associating variants were scored using RegulomeDB (Boyle et al., 

2012). RegulomeDB is specifically built for non-coding regulatory variants, scoring and 

annotating the SNPs into categories based on known and predicted regulatory elements. 

Scores are possible between 1a-6 (14 levels) with the 12 Schizophrenia variants scoring 

from 2b-7 ( 

Table 14). 

 

Table 14. RegulomeDB scores of Scizophrenia associating variants. 

Co-ordinate (0-based) Regulomedb Score 

chr3:71629341 2b 

chr5:2113232 2b 

chr13:101015916 2b 

chr10:131556192 5 

chr10:77469717 5 

chr2:172580365 5 

chr2:104496686 5 

chr19:30941021 5 

chr10:114885263 5 

chr3:157882878 7 

chr16:80143646 7 

chr16:51501891 7 

 

4.2.4.4 Enhancer assay in zebrafish confirms neural developmental 

activity of CNE surrounding an associating variant upstream of 

POU3F3 

The highest scoring associating variant as measured by CADD is chr2:104496685 T>G 

(RegulomeDB score 5). This SNP lies in CRCNE00007883 which is located 

approximately 1Mb proximal to POU3F3. The SNP within a hESC TAD (Schmitt et al., 

2016) containing two non-protein coding RNAs (LINC01796 and LINC01935), yet this 

TAD and the adjacent TAD downstream do share many interactions, suggesting 

together they form a much larger TAD (Figure 36). 
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Figure 36. HiC interactions in H1-ESC cells 

Blue and Yellow bars represent TADs as defined previously (Dixon et al., 2015) with hg18 

to hg19 LiftOver implemented. User supplied track uses complimentary TAD boundary 

definitions (Schmitt et al., 2016). CNEs lie across two TAD blocks however HiC data 

visualised here shows strong interactions across and between both regions (highlighted). 

POU3F3 is highlighted as the closest neuro-developmentally active gene. 

 

CRCNE00007883 in its WT human form was cloned upstream of a minimal cfos 

promoter and GFP in the Tol2 vector (methods 2.2.7). Microinjection of this construct 

alongside transposase mRNA into 1 cell stage fertilised zebrafish embryos allowed 

visualisation of enhancer function of this CNE in development (methods 2.2.8). 

CRCNE00007883 showed specific enhancer function in the nervous system in 29% of 

injected embryos, peaking at 48 hpf (Figure 37) and remaining through 72 hpf (Figure 

38).  
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Figure 37. 48hpf zebrafish embryo with showing neuronal GFP expression after 1-cell 

stage microinjection of B-Tol2:GFP.  

 

 

Figure 38. Enhancer signal variations between zebrafish injected with the same construct 

(B). 

 

The variant version of CRCNE00007883 showed similar neuronal GFP expression 

patterns with no significant difference in neuronal specific GFP positive embryos when 

compared to the wild type construct (27%). GFP expression varied between embryos in 

intensity, possibly as a product of the integration of the vector. Creation of a stable 

transgenic line could further improve this method, although it would be at a much lower 

throughput.   
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4.2.4.5 Predicted consequences of variant allele chr2:104496685 T>G 

The SNP chr2:104496685 T>G is located in a highly conserved region of the genome 

with the reference thymine conserved throughout all vertebrate organisms (Figure 39).  

 

 

 

Figure 39. CRCNE00007883 sequence level conservation shows chr2:104496685 is a non-

variable base amongst vertebrate organisms. 

 

Utilising the JASPAR online tool (Mathelier et al., 2016) and the nucleotide sequence 6 

bases up- and down-stream of this SNP, 8 putative transcription factor binding sites 

were found (Table 15). The introduction of the variant SNP altered the putative sites, 

introducing 4 new models above the threshold score, and removing 3 ( 

Table 16). TRASFAC curated transcription factors that bind to the promoter of 

POU3F3 in functional studies from these lists are CEBPA and FOXO4 (Rouillard et al., 

2016, Matys et al., 2006). The FOXO4 site is introduced as a result of the 

chr2:104496685 T>G base change. These predictions suggest that the variant lies within 

a transcription factor binding site that has the potential to regulate POU3F3, which acts 

as transcription factor the development of the nervous system. However the link 

between POU3F3 and misregulation of brain development that could contribute to 

schizophrenia is tenuous at best and further studies would need to be conducted to prove 

1) that the associating variant found has an impact on gene regulation, 2) that this 

misregulation of POU3F3 has an impact on brain development, and the 3) this impact 

could in any way contribute to schizophrenia. This is a good example however, of a 

way to distil large numbers of variants into a manageable number for future lines of 

inquiry, in a similar way to large scale forward genetic screens as a starting point. 
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Table 15. JASPAR output for WT sequence chr2:104496679-104496691 

Input: GGCTGGTTCAAT; relative profile score threshold: 80%. Difference to variant 

version are highlighted. 

 

  

Model ID Model 

name 

Score Relative 

score 

Start End Strand  predicted 

site sequence 

MA0745.1  SNAI2  5.08 0.8494 1  9  1  GGCTGGTT

C  

MA0102.3  CEBPA  3.61  0.8412 2  12  -1  ATTGAACC

AGC  

MA0466.2  CEBPB  2.71 0.8220 3  12  1  CTGGTTCA

AT  

MA0837.1  CEBPE  4.13 0.8181 3  12  1  CTGGTTCA

AT  

MA0099.2  FOS::JUN  5.72 0.8198  4  10  -1  TGAACCA  

MA0719.1  RHOXF1  1.84 0.8410 4  11  -1  TTGAACCA  

MA0847.1  FOXD2  2.56 0.8084 7  13  1  TTCAATA  

MA0033.2  FOXL1  3.46  0.8390 7  13  1  TTCAATA  
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Table 16. JASPAR output for variant sequence chr2:104496679-104496691 

Input: GGCTGGGTCAAT; relative profile score threshold: 80%. Differences compared 

to WT are highlighted. 

 

This data suggests that this cohort’s Schizophrenia associating SNP chr2:104496685 

T>G lies within an active enhancer in the development of the nervous system. The SNP 

itself has the potential to change the transcription factor binding affinity of multiple 

transcriptions factors. The CNE is associated to the developmental transcription factor 

POU3F3, with chromosome conformation capture data supporting the potential for 

active interaction and looping of the CNE to the gene region across this vast region. The 

variant allele introduces a strong binding affinity for the transcription factor FOXO4, 

which has already been shown previously to bind to the promoter of POU3F3 (Matys et 

al., 2006). POU3F3 has previously been implicated as a gene involved in the 

schizophrenia phenotype (Potkin et al., 2008). 

 

POU3F3 regulates upper-layer neuronal migration and identity during development of 

the neocortical layers (McEvilly et al., 2002, Sugitani et al., 2002). Neuronal migration 

Model ID  Model 

name 

Score Relative 

score 

Start End Strand  predicted 

site sequence 

MA0102.3  CEBPA  0.41 0.8029 2  12  -1  ATTGACCC

AGC  

MA0477.1  FOSL1  3.16 0.8126 2  12  -1  ATTGACCC

AGC  

MA0099.2  FOS::JUN

  

6.83 0.8602 4  10  -1  TGACCCA  

MA0719.1  RHOXF1  1.84 0.8410 4  11  -1  TTGACCCA

  

MA0847.1  FOXD2  7.50 0.9132 7  13  1  GTCAATA  

MA0042.2  FOXI1  7.33 0.8879 7  13  1  GTCAATA  

MA0033.2  FOXL1  7.56 0.9140 7  13  1  GTCAATA  

MA0848.1  FOXO4  8.12 0.9101 7  13  1  GTCAATA  

MA0849.1  FOXO6  6.52 0.8851 7  13  1  GTCAATA  
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defects have been associated with schizophrenia (Wang et al., 2011, Eastwood and 

Harrison, 2005), and although the evidence is not conclusive, misregulation of a 

neuronal development gene fits the current hypothesese that non-traumatic 

schizophrenia is a consequence of abnormal foetal brain development (Suddath  et al., 

1990).  

 

4.3 Discussion and Conclusions 

Selective sequencing of the human genome in search of mendelian inherited disease 

causing mutations has previously focused on the exome (Bamshad et al., 2011), 

however here I have demonstrated that the same hybridisation capture approach can be 

utilised in the noncoding genome. Specifically, using evolutionary conservation to 

predict vertebrate developmental enhancers, this method has taken a subsection of the 

noncoding genome that is likely to form an important part of the regulatory landscape. 

This targeted sequencing has provided extensive additional human variation 

information in an underrepresented region of the genome in previous sequencing efforts 

(The Genomes Project, 2015). This method resulted in very high coverage of the 

targeted regions (average = 272), allowing for confident calling of rare variants. In 

addition, the use of the TidyVar algorithm (Noyvert, 2015) with good quality and depth 

sequence data resulted in fast and accurate variant calling across the multiple cohorts.  

 

Each clinical cohort was selected based on three key criteria – homogenous symptoms, 

ethnic background and evidence for a developmentally based disorder. The intellectual 

disability and epilepsy comorbidity study examined multiple families with children 

presenting with both of these disorders. Both of these disorders (when non-trauma 

induced) are understood to often be a result of abnormal foetal brain development 

(Guerrini and Dobyns, 2014). The clinical notes for the patient samples and families 

showed many instances of multiple other symptoms and disorders. Therefore, the cohort 

was mostly used to develop the variant annotation pipeline, including how it responds to 

various inheritance patterns. As a result, the pipeline relied on a low-information input 

in regards to patient status: 1 (affected) or 0 (unaffected). This reduction in information 

input simplified the process removing phenotypic ‘noise’, but it also removed a lot of 
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detail that could be important in further downstream analysis. Due to the complex 

presentation of symptoms, disorder-associating variants were not expected to be found, 

rather familial specific rare mutations. The variant prioritisation pipeline was able to 

reduce the 1750 CNE variants to 5 mutations to focus on in subsequent analyses.  

 

The cleft lip and palate cohort not only had a homogenous ethnicity as a cohort, but the 

symptoms were also clinically the same (presentation of cleft lip and palate, the most 

severe of this disorder). In addition, the use of unaffected parents allowed for simplicity 

of variant analysis under the mendelian inheritance assumption. The sample 

mislabelling caused downstream problems with the reliability of data and although 

some variants of interest were found, functional analysis was abandoned as the results 

were at risk of being compromised. Sample mislabelling is a problem within the wider 

scientific community and therefore nodal analysis of shared variants such as that 

presented here should be a standard quality control measure to identify human error, 

especially in international and collaborative projects. In total, 64 variants of varying 

degrees of interest were identified, with a focus on 5 specific SNPs that both followed 

inheritance patterns and were very rare in publicly available data sets. No variants were 

found to associate significantly with the disease phenotype. 

 

The Anosmia clinical cohort could be seen as two sub cohorts: the large familial case of 

Anosmia in the Faroese family, and the multiple European families. The extensive 

familial data allowed the variant prioritisation pipeline to accurately trace potential 

variants. It was able to identify two SNPs in a regulatory region near the gene UNCX. 

These variants were downstream of a CNE, however their close proximity and presence 

in all affected Faroese individuals suggests a larger haplotype could be being inherited. 

This result points to haplotype variation just outside of the CNEs, a region that could be 

important to the chromosomal architecture of the topological associating domain, 

bringing the CNEs in proximity with each other or the promoter region. Therefore, 

more research should look into the regions extending from the CNEs, supporting 

including 1kb either side of their boundaries in future targeted sequencing efforts. For 

this additional sequencing to be cost-effective, some analysis of these regions for repeat 

sequences or structural components should be completed first. 
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Although the evidence for Schizophrenia as a fetal brain development disorder is not 

completely conclusive (Haijma et al., 2012, Nenadic et al., 2012, Honea et al., 2005, 

Collin et al., 2013, Gogtay et al., 2011), the general consensus is that genetic 

predisposition to the disease is a factor. The large clinical cohort used here were all of 

Pakistani origin, an under-represented population in current human genome variation 

databases. Therefore, population statistics on some of the key variants found may not be 

entirely reliable as comparative data sets are not readily available. The scientific 

community should look to remedy this going forward as 81% of current GWAS studies 

are of European origin (Popejoy and Fullerton, 2016). Therefore genomics-driven 

healthcare initiatives may isolate large populations of the world, specifically those in 

developing countries, if primary research remains as ethnically exclusive as it currently 

is. Nevertheless, using global variant data available in combination with the large cohort 

size, high level disease-associating variants were identified. A similar number of non-

syndromic individuals would need to be sequenced in such high depth in order to clarify 

if these variants are truly disease-associating or if they are specific to the ethnic group 

of the cohort (Pakistani). 

 

In addition to under-represented populations being sequenced here, the CNE regions 

targeted were also underrepresented regions when comparing coverage of whole 

genome sequencing efforts, such as that of 1000 Genomes (The Genomes Project, 

2015), where high quality exome sequence data is still prioritised. The high-quality 

coverage and string-based variant calling algorithm used here allows rare variants in 

these non-coding regions to be accurately and confidently called. This is particularly 

useful due to the vast number of rare variants found in the CNEs (Figure 23). The 

development of a streamlined variant processing pipeline greatly reduced the amount of 

time needed to investigate the variants called in the CNEs. By integrating inheritance 

patterns, known enhancer data (VISTA (Visel et al., 2006)), a category scoring method 

(RegulomeDB (Boyle et al., 2012)) and a quantitative scoring method (CADD (Kircher 

et al., 2014)), only variants showing the most promise for pathogenicity were 

interrogated further. Once developed using the CLP and IDE cohorts, this method was 

able to be easily applied to the Anosmia and Schizophrenia cohorts and could be 

utilised for other similar CNE sequencing cohort studies. It uses the assumption that 
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conserved non-coding elements all act as regulatory elements, however downstream 

assays used focus on validating enhancers. Therefore, not all CNEs will give positive 

results as not all regulatory elements are enhancers, and possibly not all CNEs are 

active regulatory elements. The exact number of CNEs that are not acting in this way is 

hard to predict. Nevertheless, most CNEs that have been assayed for enhancer function 

have given positive results (Grice et al., 2015, Doglio et al., 2013, Parker et al., 2011, 

Woolfe et al., 2005). 

 

For all 4 cohorts sequenced, multiple novel variants were discovered in the CNEs. 

Novel variants were defined as those not able to be annotated using wANNOVAR 

(Chang and Wang, 2012), covering 1000 Genomes (The Genomes Project, 2015), 

hapmap (International HapMap Consortium, 2007), dbSNP (Sherry et al., 2001) and 

other publicly available data sets that contribute to gnomAD (Lek et al., 2016). The 

greatest number of novel variants discovered per individual sequenced was ~5, found in 

the Schizophrenia cohort. As mentioned previously, this shows the value in deep 

sequencing both underrepresented cohorts and underrepresented regions of the 

regulome. Over 1000 new variants were discovered in the CNEs as a result of this 

approach. This increase in understanding of the variation in these highly conserved 

regions will help elucidate the grammar and rules surrounding their function. Much 

larger efforts should be made to cover these regions in phenotypically normal 

individuals to help compare how much of this variation can be non-syndromic and how 

much could be pathogenic. It will be exciting to mine the whole genome data being 

generated from the 100,000 genomes project. 

 

So far, the in-solution hybridisation CNE sequencing approach and downstream 

computational analysis described has been high throughput. From DNA sample 

preparation to a list of prioritised variants could take as little as 6 weeks depending on 

the resources, sequencing platform and computational power available. However, the 

reason behind attempting to reduce the number of called variants to a prioritised list is 

due to the lack of a high throughput in vivo method of functional validation. Some 

progress has been made for some tissue specific enhancers (Patwardhan et al., 2012), 

although comparable methods are, as of yet, unavailable for developmental enhancers. 
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The transient enhancer assay in zebrafish used here (Fisher et al., 2006) is potentially 

the most high-throughput method available for in vivo functional analysis of enhancer 

elements. The transient approach allows for enhancer function to be visualised over 24-

72hpf. The nature of this method makes comparisons between constructs with subtle 

differences in presented GFP expression patterns difficult. In addition, the visualisation 

and microscopy is labour intensive. Advances in automated imaging systems such as 

the VAST bioimager (Pulak, 2016) may help this process moving forward, but are 

heavily reliant on good quality zebrafish larvae microscopes if the images are to be used 

for comparative analysis. The development of dual colour enhancer assays (Bhatia et 

al., 2015) within a single embryo will also be particularly useful for assaying both 

putative enhancer element function, and the effect of SNPs found within. These 

combined with automated imaging could allow much larger numbers of enhancer 

elements and their mutations to be assayed, with microinjection and the actual zebrafish 

development being the most time-consuming components. 

 

The transient enhancer assay was utilised to demonstrate a schizophrenia associating 

variant with a high CADD score and some evidence for transcription factor binding 

from RegulomeDB was within an active neuronal developmental enhancer. The CNE 

assayed showed a high degree of specificity, however no difference between the wild-

type and variant version of the CNE was found. The CNE had a low positive number of 

GFP expressing embryos (27%) suggesting the vector integration could be low. 

Computationally, transcription factor binding site predictions show that the variant 

chr2:104496685 T>G may have an effect on transcription factor binding. In addition, 

the specific base is highly conserved amongst all vertebrate species and sits within a 

topologically associating domain, demonstrating DNA-DNA interactions in that region. 

Although there is not enough evidence to say that this variant is a causative factor in 

schizophrenia, it is a viable variant for further analysis including assessing its impact on 

nearby gene expression in the developing embryo. Conserved noncoding variants may 

only contribute to some of the phenotype observed and may act as a part of a mutational 

load on a gene expression pathway. Finding the impact of each variant and attempting 

to predict the threshold for pathogenicity is particularly difficult, however this method 

may contribute to the understanding needed to do so. If further investigations were to 
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suggest this variant (and others identified by this method) severely affects neuronal 

gene expression during development, a case could be made for utilising the CRISPR-

Cas9 genome editing technique to recapitulate the mutation in a model organism and 

assess its impact and phenotypic presentation.
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Chapter 5. Targeted sequencing of mitochondrial 

DNA in MPV17
-/-

 mice discovers no effect of dNTP 

insufficiency on mutational load and mtDNA 

replication fidelity. 

Some of this work is published in PLoS Genetics 12, no. 1 (2016): e1005779 

"MPV17 loss causes deoxynucleotide insufficiency and slow DNA replication in 

mitochondria." by Dalla Rosa, Ilaria, et al. (2016). 

The authors retain copyright and all co-authors have granted permission for this work 

to be presented as part of this thesis. Work not performed by Lilian E Hunt has been 

omitted or clearly identified.  

 

5.1 Background 

As shown in the previous chapters, the use of targeted genomic sequencing can be 

applied in multiple ways to further our understanding of DNA variation in human 

diseases. Separate to our genomic DNA, mitochondrial DNA is also present in all of our 

cells and susceptible to variation that can cause human disease. Mitochondrial DNA is 

different in many ways to genomic DNA, in particular that it is found in many copies 

within the cell and therefore each of these copies is susceptible to variation from poor 

replication fidelity. Normally, misincorporation of bases can be up to two orders of 

magnitude higher than that for the nuclear genome (Marcelino and Thilly, 1999). It has 

been shown that after a misinsertion has occurred it can then be excised (Johnson and 

Johnson, 2001). Equimolar dNTP concentrations facilitate correct base pairing and 

increase replication fidelity. However, an increase in any concentration of dNTPs away 

from the norm will flood the replisome with a different ratio to the base composition 

and this can push extension and misinsertion (Song et al., 2005). Therefore, mutations 

that have an effect on dNTP concentration in the mitochondira can have a profound 

effect on mtDNA replication fidelity. There are also some genomic mutations that may 

also affect the mitochondrial replication programme (Alberio et al., 2007) including 
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those affecting mtDNA polymerase  which has intrinsic exonuclease activity to excise 

these misinsertions during replication. 

 

Mitochondrial DNA depletion syndrome (MDS) is a genetically heterogenous 

condition. It is characterised by decreased activities of respiratory chain enzymes and 

lower mtDNA copy number. There are several genes that can contain mutations that 

contribute to MDS (Poulton et al., 2009). These genes generally encode the proteins 

directly involved in mtDNA replication (Van Goethem et al., 2001, Longley et al., 

2006), or factors regulating the homeostasis of the mitochondrial deoxynucleotide pool 

(Saada et al., 2001). The deoxynucleoside triphosphate (dNTP) pools that are used for 

mitochondrial DNA replications are found within the mitochondria themselves, 

separated from the rest of the cell. It is possible to measure mitochondrial dNTP pools 

(Marti et al., 2012), and in normal mitochondria environments they are found in 

asymmetrical concentrations, differing slightly between tissues (Mathews, 2006). 

Maintaining this balance and overall availability of mitochondrial dNTPs is essential for 

both the rate and fidelity of mtDNA replication (Mathews, 2006). Increases in the 

asymmetry of the mitochondrial dNTP pools can result in an increased rate of mutation 

in the mitochondria (Mathews and Song, 2007, Song et al., 2005). 

  

MPV17 is a mitochondrial inner membrane protein whose loss of function phenotype 

causes mtDNA abnormalities, characterised in human (Uusimaa et al., 2014), mouse 

(Viscomi et al., 2009) and yeast (Dallabona et al., 2009). The mechanism by which 

MPV17 loss affects mtDNA is still unclear. Its loss results in low copy numbers of 

mtDNA, primarily in the liver (Viscomi et al., 2009). Previously, quantification of 

random mutations in the mitochondrial genome has been performed using restriction 

digests (Vermulstet al., 2008), however NGS can now be used to characterise 

mitochondrial genomic DNA heteroplasmy (Huang, 2015). Here we use this method as 

described previously and improve upon it by utilising a clean mitochondrial prep. Using 

liver tissue as a model, this work investigates the hypothesis that MPV17 deficiency 

alters the mitochondrial dNTP pools, causing an increase in mtDNA mutations that 

leads to low copy numbers. This work contributes to elucidating the true function by 

which MPV17 loss causes MDS. 
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5.2 Results 

5.2.1 dNTP insufficiency does not alter the mutational load in Mpv17-/- 

liver mtDNA 

Loss of MPV17 causes tissue-specific mtDNA depletion, with lower copy numbers in 

the liver and deficiencies in respiratory chain, and ATP synthase complexes (Dalla Rosa 

et al., 2016). In addition, Mpv17
-/- 

mice have both dGTP and dTTP shortages in liver 

mitochondria (Dalla Rosa et al., 2016), slowing mtDNA replication. The phenotype in 

mice can be recapitulated in quiescent MPV17 deficient human fibroblasts (Spinazzola 

et al., 2006). MPV17 deficiency in human and in mice is associated with two tissue-

specific mtDNA phenotypes: mtDNA copy number depletion and multiple deletions 

(Blakely et al., 2012). Therefore, reduced dNTP pools, as seen in MPV17 KO mice 

liver tissue (Dalla Rosa et al., 2016), could also affect the fidelity of mtDNA 

replication, causing further problems in the mtDNA RNA or protein products. 

 

To determine the effect of the reduced dNTP pools on mtDNA fidelity, deep sequencing 

of purified mtDNA from the livers of two pairs of WT and Mpv17-/- mice was 

performed. The sequencing coverage was comprehensive for all the samples, with a 

small trough in the vicinity of the large non-coding region (Figure 40). With this 

method, the detection of 5% heteroplasmy is possible with a coverage of 1000-fold 

(Huang, 2015) with increasing sensitivity expected at higher levels of coverage. One 

sample (KO4, Table 17) did not surpass this average coverage requirement however all 

other samples did by substantial amounts.  
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Figure 40. Mouse mtDNA samples sequence coverage.  

The mitochondrial genome position (x- axis) versus sequence coverage divided by 

maximum coverage for each sample (relative coverage, y-axis). The coverage was 

calculated using a 2kb sliding window average. MtDNA of the WT and KO samples are 

indicated in red and black. 

 

The error rates for the wild-type and knockout mice were similar; for one pair, the 

knockout mouse had a slightly lower error rate than the wild-type littermate (0.033% v 

0.043%), and in the other pair a 1.7 fold higher error rate was observed in the knockout 

mouse (Table 17, run 1). The read depth was lowest in the second knockout animal; a 

replica experiment produced greater depth and confirmed the error rate as higher than 

the paired control (Table 17, run 2). The error rates for the four individual bases differed 

to similar extents in all four mtDNA samples (P > 0.05 using one-way ANOVA), with 

dGTP consistently the lowest and dATP the highest (Figure 41). Therefore, the dNTP 

insufficiency in the Mpv17-/- mouse appears to have little or no effect on the fidelity of 

mitochondrial DNA replication. 
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Table 17. Mutational load in purified liver mitochondrial DNA of Mpv17
-/- 

mice and 

controls.  

Misincorporation of bases is inconsistent between sequencing runs, therefore comparisons 

can only be made within run 1 and run 2 separately. ML- Mutation Load  per site 

frequency. KO – Mpv17-/-, WT – wild-type littermates of KO mice. Individual bases are 

shown as the number of the misincorporated allele divided by total bases. 

 

Run Sample Total 

bases 

ML A C G T 

1 WT1 8.76E+07 4.30E-04 1.39E-04 1.07E-04 8.20E-05 9.90E-05 

1 KO2 2.50E+07 3.30E-04 1.00E-04 8.60E-05 6.70E-05 7.70E-05 

1 WT3 1.13E+08 3.40E-04 1.10E-04 7.80E-05 6.20E-05 8.60E-05 

1 KO4 5.97E+06 5.80E-04 2.22E-04 1.19E-04 8.20E-05 1.53E-04 

2 WT3 1.82E+08 9.90E-04 3.19E-04 2.61E-04 1.58E-04 2.36E-04 

2 KO4 1.16E+07 2.21E-03 7.73E-04 5.07E-04 3.40E-04 5.66E-04 
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Figure 41. Proportion of misincorporated bases shown as proportions per base. 

 No significant difference can be found between WT and KO samples. 

5.2.2 MPV17 deficiency does not alter the mutant load of brain mtDNA.  

MPV17 deficiency is known to cause mitochondrial copy number depletion in the liver 

(Spinazzola et al., 2008), however a decrease in copy number is not seen in the brain. 

Despite this, MDS does display a neurological phenotype (Spinazzola et al., 2008), 

therefore similar analysis was performed on mouse MPV17
-/- 

and WT brain tissue. 

Conventional next generation sequencing (that does not detect rNMPs) was applied to 

libraries prepared from three controls (CM1-3, MPV17
+/+

) and three MPV17
-/-

 (CM4-6) 

mice of 3 months of age. There was no significant difference in the misincorporation of 

bases (those differing from the reference sequence) between the two groups of mice 

(Figure 42, Table 18).  
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Figure 42. Proportion of misincorporated bases broken down by base. 

CM1 – WT B (2 m/o); CM2 – WT B (3.5 m/o); CM3 – WT B (3.5 m/o); CM4 – MPV17 KO 

B (2 m/o); CM5 – MPV17 KO B (3.5 m/o); CM6 – MPV17 KO B (3.5 m/o) 

 

Table 18. Mutational load in purified brain mitochondrial DNA of Mpv17
-/- 

mice and 

controls. 

Sample Total bases ML (all bases) A C G T 

CM1 6.61E+08 1.26E-03 3.82E-04 3.43E-04 2.05E-04 3.25E-04 

CM2 1.51E+08 5.51E-03 1.68E-03 1.51E-03 8.98E-04 1.43E-03 

CM3 3.19E+08 2.60E-03 7.91E-04 7.12E-04 4.24E-04 6.74E-04 

CM4 3.76E+08 2.21E-03 6.71E-04 6.04E-04 3.60E-04 5.72E-04 

CM5 1.02E+08 8.16E-03 2.48E-03 2.23E-03 1.33E-03 2.11E-03 

CM6 2.73E+08 3.04E-03 9.26E-04 8.33E-04 4.96E-04 7.88E-04 
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In addition, the spread of mutational load across the mtDNA was checked for 

differences between WT and KO mouse models. A comparison of misincorporated 

bases at each position as a factor of all reads at each position was measured for each 

mouse sample (Figure 43). This varied between mice and showed no significant 

difference between the two genotypes.  

 

Figure 43. The rate of misincorporation of bases across each position of the mitochondrial 

genome in mouse brain samples.  

Number of reads with mutation/total number of reads at each base as a box plot for each 

sample. Outliers have been removed for ease of visualisation. No significant difference is 

seen between the WT (CM1-3) and the KO (CM4-6). 

 

Further to this result, unpublished data (Moss et al.) shows that the dNTP pools in 

MPV17
-/- 

brain tissue are asymmetric and the same as that of the wild-type mice. This 

sequence data when presented alongside the dNTP pool information (work performed 

by C. Moss & I. Dalla Rosa) provides strong evidence that the decrease of dGTP and 

dTTP in MPV17 deficient mice liver does not increase mtDNA replication infidelity. 
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5.3 Discussion and conclusions 

Targeted sequencing of regions of the genome may elucidate disease-causing variants. 

Where coding variants are already known, other methods of targeted sequencing can 

still provide crucial information to revealing the disease mechanism. This is especially 

true when the mutation leads to problems with the internal replication of the cell and its 

organelles. Here, isolation of mitochondrial DNA and its sequencing has significantly 

contributed to the understanding to the MPV17 phenotype, mitochondrial depletion 

syndrome. Alongside other work establishing dNTP insufficiency in the mitochondria 

as the cause of mitochondrial depletions in MPV17 deficiency, I show through 

sequence analysis that the mutational load in mitochondria is unaffected by the MPV17 

gene mutation.  

 

Previously studies have suggested that the mitochondrial genome instability caused by   

loss of MPV17 could be a result of changes in the dNTP pool available, which would fit 

with its function as an  inner membrane protein (Spinazzola et al., 2006).  This work has 

contributed to further understanding of MPV17 loss (Dalla Rosa et al., 2016) and 

utilised mouse models to reflect a highly detrimental human disorder.  However, despite 

previous work showing that MPV17 loss causes dNTP insufficiency (Dalla Rosa et al., 

2016), here it is shown that this does not affect the mutational load in liver or brain 

mtDNA. Imbalances of mitochondrial dNTP pools affect replication fidelity (Nishigaki 

et al., 2003) and have been shown to lead to a higher rate of mutation by mitochondrial 

DNA (Mathews, 2006, Song et al., 2005). As a result of the work presented here, 

MPV17 KO mice dNTP pools were measured and shown to be close to equimolar 

(Dalla Rosa et al., 2016). Therefore, the reduction in availability of some dNTPs has not 

increased the mutation rate, but rather slowed the whole process of replication. This 

suggests that the mechanism for MDS from MPV17 loss is from a slower rate of 

mtDNA replication, as suggested in a previous in organello model (Gonzalez-Vioque et 

al., 2011) rather than an increase in mtDNA mutations.  

 

Additional validation of this increase in mutational load seen here could be performed 

by including a positive control – a mouse model with a known increased mutational 
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load in the mitochondrial DNA. The difficulty with this is that a comparative model 

may be hard to find as the rate of base misincorporation will vary depending on the 

mechanisms and severity of the mutation.
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Chapter 6. Conclusions 

The work presented here demonstrates three very distinct and non-conventional 

approaches to genome sequencing. All approaches share the common theme of 

searching for non-coding variation that could explain various diseases and disorders. 

 

In the first instance (Chapter 3), targeted deep sequencing of a topologically associated 

domain containing known non-coding GWAS variants associated with obesity was 

used. This gave more detail into the human genetic variation in this 2Mb region which 

has been shown previously to self-interact as a regulatory block (Dixon et al., 2012). 

Using a very distinct ethnic cohort, novel associations were found between variants in 

the regulatory regions, extending further than previous interaction data (Smemo et al., 

2014). This novel association peak appears to be age-dependent and previously unseen. 

This demonstration of extending variant associations across such a large distance 

demonstrates the need for a 3D perspective of the genome, especially in relation to gene 

regulation. In addition, this method of deep sequencing of topologically associating 

domains could be utilised elsewhere as a method for determining the region of variation 

associating with a disease phenotype and the distance at which these variants could 

interact. A similar technique has been implemented since the publication of this work 

(Sobalska-Kwapis et al., 2017) demonstrating different association signals in different 

ethnic populations. 

 

In the second instance (Chapter 4), conserved non-coding elements (CNEs) previously 

identified using pufferfish-human genomic alignments were sequenced in four cohorts 

presenting different developmentally based disorders: cleft lip and palate, intellectual 

disability and epilepsy, anosmia, and schizophrenia.  The CNEs were predicted 

enhancer elements conserved in the vertebrate genome that cluster around 

developmentally active genes (Woolfe et al., 2005), suggesting a crucial role in 

regulating vertebrate development. This targeted approach was used to attempt to 

elucidate non-coding genetic variants that either associated with the phenotype or 

followed a familial inheritance of the phenotype where exome sequencing had not 

discovered any conclusive pathogenic variants. This method identified many previously 
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unseen human SNVs within the noncoding genome, adding to the global map of known 

human genetic variation. In addition, variants were scored and prioritised by their 

potential for pathogenicity in an easily to follow pipeline that could be replicate 

between differing cohorts.  

 

Finally, the third use of targeted deep sequencing (0) used very high coverage 

mitochondrial DNA targeted sequencing in mouse models of a human mitochondrial 

depletion syndrome: MPV17 loss. Using such high depth of coverage, mutation loads in 

these mice were able to be calculated and used to show how MPV17 depletion does not 

result in an increase of misincorporated bases in the mitochondrial DNA (Dalla Rosa et 

al., 2016). This proof of hypothesis allowed the true function of MPV17 loss to be 

determined and show that the decrease in dGTP and dTTP seen in Mpv17
-/- 

mice does 

not affect the mtDNA replication fidelity. This was shown in both liver and brain tissue 

despite a reduction in mtDNA copy number in both these tissues in the mouse model. 

Previously, the contribution of MPV17 loss to MDS was unknown however it has now 

been shown that it causes deoxynucleotide insufficiency which in turn slows the rate of 

DNA replication in mitochondria. This method could also be applied to other 

mitochondrial depletion syndromes where an accumulation of mitochondrial mutations 

is hypothesised to be a driving factor to MDS. 

 

All three non-conventional sequencing methods demonstrated their merit and the depth 

of information that can still be found in the non-exonic portions of the genome. All 

three methods also contributed to the further understanding of human diseases and 

disorders. Previously, much of the focus on coding mutations and their consequences 

have led to many genetic disorder diagnoses. Projects such as this also demonstrate the 

value in trying to understanding the non-coding portions of the genome and the 

regulome. The variant information included in this work will be made publicly available 

through the European Nucleotide Archive. Future work could further validate and 

consolidate these variants as well as incorporate them into other databases such as 

GenomAD. 
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The work in Chapter 3 and Chapter 4 is driven by the concept of long-range genomic 

regulation. Advances in understanding the 3D architecture of the genome, its spatial 

organisation and its compartmentalisation drive the research behind non-coding 

regulation. Previously distances between interacting elements of DNA were thought to 

be limited, however it is now known that regulatory elements can act on promoters from 

vast distances (Antonellis et al., 2006, Lettice et al., 2003, Lieberman-Aiden et al., 

2009, Loots et al., 2005, Ragvin et al., 2010, Smemo et al., 2014). This work focuses on 

cis-regulatory elements, and even the clustering of CNEs around developmental genes 

is within a relatively small size window. There is potential for regulatory elements at 

much greater distances to be found, and even elements acting in trans from another 

chromosome. How the non-coding genome folds in on itself, its stability (or lack 

thereof) and how this dictates key processes such as development is still largely 

unknown.  

 

Much work could be put into the creation of vertebrate models for different predicted 

pathogenic variants found, however this is costly and time ineffective. Dissecting the 

exact architecture of known regulatory elements could help determine their how they 

function. Though if transcription factor binding is thought to be the critical influence 

then every regulatory element may not follow the same set of rules. By understanding 

SNV influences within these regulatory elements and their link to diseases and 

disorders, it is hoped that the critical bases in gene regulation can be identified. Through 

this methodology, a large database of functionally relevant noncoding SNVs could be 

curated that can help sift through the non-coding genome. Once this information 

database is big enough, we can hope to understand the patterns around these individual 

bases and the 3D architecture of the genome that can interact. Inevitably, whole genome 

data will increase to hundreds of thousands of individuals in the near future, perhaps 

even millions. Mining these genomes using some of the approaches developed here will 

lead to a single base understanding of regulatory regions, and perhaps ultimately a much 

finer resolution mapping of TFBS. With this information, some dent could be made in 

the deciphering of the regulatory code of the human genome.  
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Chapter 7. Appendix 

7.1 Appendix Table 1 

Table 19. Obesity cohort information 

IID Case/Control (1/2) Age BMI 

3909 1 19 20.9 

4337 1 22 25.5 

4347 2 19 34.0 

4348 2 26 31.6 

4353 2 19 32.4 

4358 2 19 33.6 

4362 1 19 22.3 

4363 1 24 21.2 

4375 1 24 23.9 

4378 1 21 17.1 

4380 1 19 20.6 

4393 2 19 31.7 

4395 2 19 31.9 

4396 2 19 31.9 

4397 1 18 21.1 

4412 1 19 20.7 

4415 1 23 21.1 

4416 2 19 35.7 

4462 1 19 17.8 

4607 2 19 34.5 

4649 2 20 36.7 

4652 2 19 33.9 

4653 1 19 19.8 

4658 1 20 21.4 

4662 1 20 26.2 

4670 2 20 31.1 
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4672 2 19 34.2 

4673 2 18 31.6 

4675 2 19 32.7 

4683 1 19 21.3 

4704 2 22 32.8 

4709 1 19 24.0 

4714 2 20 31.2 

4716 1 20 21.3 

4719 2 24 35.4 

4723 2 19 32.8 

4727 2 19 31.6 

4749 1 18 20.7 

4751 1 19 21.4 

4755 1 19 21.5 

4772 1 18 19.9 

4776 1 19 20.2 

4779 1 19 18.9 

4780 2 20 31.6 

4781 1 19 17.8 

4782 1 19 24.5 

4792 1 25 19.6 

4798 1 20 21.1 

4826 2 21 32.5 

4846 2 19 31.6 

4860 1 19 21.7 

4990 2 19 32.0 

5301 1 20 20.3 

5305 1 18 21.8 

5308 2 19 32.7 

5370 1 23 22.0 

5373 1 19 21.4 
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5374 1 19 21.3 

5397 2 18 33.0 

5399 2 20 33.8 

5407 2 19 33.5 

5444 1 19 22.3 

5469 1 20 20.7 

5477 1 19 21.6 

5479 2 19 32.1 

5481 1 20 20.7 

5482 2 20 32.1 

5508 1 20 21.1 

5525 2 20 37.4 

5533 1 21 18.3 

5550 1 20 20.7 

5553 1 18 29.7 

5583 1 26 20.9 

5623 1 20 22.4 

5695 2 20 32.0 

5706 2 19 32.0 

5901 1 18 23.6 

6001 2 19 34.6 

6884 2 20 32.8 

6898 1 18 24.3 

6903 2 19 33.1 

6906 1 19 25.9 

6908 1 19 23.3 

6910 1 18 23.8 

6923 2 21 31.8 

6924 2 19 35.3 

6932 1 20 21.1 

6934 1 19 18.6 
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6964 2 18 36.3 

6976 1 21 20.4 

6981 1 20 21.2 

7088 1 19 20.5 

7215 2 19 31.5 

7257 2 19 31.1 

7269 1 18 26.3 

7277 2 19 31.1 

7294 2 19 31.2 

7368 1 20 21.9 

7404 1 19 19.8 

7406 1 19 21.4 

7408 1 20 24.8 

7593 1 19 22.3 

7647 1 28 25.1 

7653 1 19 23.2 

7928 2 19 32.8 

7941 2 18 33.9 

8048 1 19 20.0 

8051 2 19 33.3 

8072 2 19 33.6 

8155 1 19 18.4 

8277 2 18 31.2 

8289 1 19 21.2 

8501 1 20 22.9 

8552 2 19 31.8 

8553 1 20 22.6 

8555 1 19 17.2 

8560 2 19 43.3 

8726 1 21 17.8 

8792 2 25 33.0 
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8807 1 19 17.9 

8880 1 21 24.2 

8882 1 21 24.3 

8921 1 18 20.9 

8928 2 19 35.3 

8934 2 19 32.5 

8994 1 18 25.6 

9016 1 19 18.9 

9017 2 19 32.3 

9075 1 19 20.0 

9078 1 22 23.1 

9108 2 19 51.8 

9424 1 20 20.3 

9472 2 19 31.5 

9664 1 18 20.9 

9769 2 19 31.5 

9785 1 19 22.3 

9789 1 20 19.3 

9805 2 19 34.5 

9808 1 19 24.2 

9882 2 23 32.7 

9913 2 19 33.3 

9924 1 24 20.7 

9957 1 19 18.0 

10577 2 19 35.6 

10600 2 20 33.8 

10645 2 18 40.4 

10713 1 19 21.7 

10741 1 21 20.3 

10769 2 20 34.3 

10811 1 20 17.4 
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10835 1 18 20.9 

10858 1 26 20.4 

10875 1 18 19.7 

10878 1 19 17.8 

10881 2 19 31.4 

10885 1 18 21.5 

10886 1 18 26.2 

10889 1 19 19.1 

10898 2 21 31.4 

10899 1 19 21.0 

10905 2 19 31.4 

10911 1 19 22.4 

10912 1 20 22.9 

10913 1 21 28.1 

10915 2 19 31.7 

10917 1 18 20.3 

10942 1 18 22.1 

10944 1 19 18.6 

10948 1 19 19.4 

10957 2 19 32.7 

10971 2 19 35.1 

10978 1 20 21.4 

10982 1 19 19.4 

10986 1 19 20.8 

10989 2 20 33.0 

11006 1 20 19.2 

11012 1 20 21.8 

11022 2 19 31.5 

11025 1 21 25.6 

11059 2 20 36.2 

11065 2 19 36.6 
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11074 1 20 18.8 

11078 1 19 18.2 

11082 1 19 22.9 

11089 2 19 31.3 

11093 2 18 32.1 

11096 1 21 21.5 

11101 1 20 19.3 

11103 2 19 31.5 

11115 1 26 22.9 

11124 1 20 19.8 

11129 1 19 21.7 

11135 1 20 19.6 

11141 2 19 32.2 

11145 1 20 24.8 

11164 1 19 22.3 

11167 1 20 21.1 

11176 2 18 31.3 

11183 1 19 19.1 

11189 1 19 18.6 

11205 1 19 22.1 

11214 2 19 31.8 

11234 2 21 31.0 

11239 1 19 20.8 

11240 2 22 31.1 

11266 1 19 19.1 

11276 1 19 15.9 

11277 1 26 22.3 

11286 2 20 31.4 

11287 1 19 23.1 

11297 2 19 34.0 

11304 2 19 32.1 
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11309 2 19 34.8 

11323 2 26 32.1 

11324 2 20 35.0 

11332 2 19 32.5 

11334 1 20 22.4 

11345 1 19 20.8 

11348 1 19 21.0 

11349 1 21 25.1 

11350 2 27 35.2 

11353 1 18 18.8 

11356 1 21 26.6 

11359 2 19 35.0 

11373 1 19 24.4 

11381 2 19 35.0 

11383 1 19 24.3 

11384 1 31 23.4 

11399 1 18 22.9 

11402 2 18 31.1 

11408 1 19 22.5 

11410 2 20 33.0 

11416 1 19 19.6 

11429 2 25 31.1 

11439 2 20 36.2 

11440 2 19 31.2 

11442 2 19 37.9 

11448 1 20 19.3 

11453 2 18 31.3 

11459 2 18 33.5 

11478 2 19 35.4 

11481 2 21 34.7 

11497 2 19 32.0 
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11500 2 19 36.2 

11507 2 19 31.6 

11509 2 19 33.2 

11512 2 19 32.5 

11515 1 19 20.5 

11519 1 21 23.8 

11533 1 22 24.6 

11535 2 26 31.6 

11538 1 19 22.0 

11555 2 19 31.5 

11568 1 19 22.9 

11570 2 19 31.7 

11585 1 22 24.8 

11586 2 19 31.6 

11595 2 19 33.8 

11602 1 25 19.3 

11616 2 20 31.1 

11623 1 20 19.8 

11631 1 24 26.5 

11642 2 19 31.2 

11643 2 20 31.2 

11655 2 21 32.1 

11660 2 19 33.3 

11666 1 23 25.0 

11668 1 19 21.6 

11672 2 20 31.3 

11673 2 19 31.1 

11675 2 19 32.3 

11681 1 20 21.7 

11688 2 19 32.7 

11727 2 18 31.6 
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11736 2 19 32.5 

11741 1 18 20.2 

11753 1 23 18.7 

11755 1 19 18.8 

11756 1 20 21.4 

11762 1 18 23.1 

11763 1 20 19.8 

11774 1 19 23.1 

11779 1 20 19.2 

11780 1 19 22.5 

 

7.2 Appendix Table 2 

Table 20. Obesity haplotypes 

Start End Tagged SNP 

region 

Freq. Case, Control 

Frequencies 

P Value 

53606229 53739773 587-1267       

      0.264 0.315, 0.233 0.0327 

53755146 53759123 1330-1349       

      0.516 0.577, 0.469 0.0105 

      0.313 0.260, 0.354 0.0169 

53767959 53771583 1379-1398       

      0.523 0.585, 0.475 0.0092 

      0.299 0.252, 0.335 0.0316 

53772346 53772626 1406-1407       

      0.525 0.589, 0.475 0.0069 

      0.475 0.411, 0.525 0.0069 

53774903 53786446 1427-1469       

      0.396 0.451, 0.354 0.019 

      0.375 0.325, 0.413 0.0321 

53793798 53795636 1510-1526       

      0.456 0.504, 0.419 0.0442 

53798523 53798622 1542-1543       

      0.482 0.556, 0.424 0.0018 
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      0.477 0.419, 0.522 0.0148 

53799296 53843533 1546-1827       

      0.293 0.384, 0.232 0.0001 

53844579 53845487 1834-1841       

      0.439 0.362, 0.497 0.0013 

      0.434 0.532, 0.360 0.000041 

54010398 54019686 2802-2844       

      0.198 0.150, 0.235 0.0114 

54211937 54213893 4008-4016       

      0.29 0.340, 0.251 0.0211 

54214069 54214702 4018-4023       

      0.289 0.337, 0.252 0.0253 

54268659 54271085 4349-4366       

      0.177 0.228, 0.138 0.0051 

54272047 54306215 4371-4583       

      0.054 0.082, 0.034 0.0143 

54327852 54328675 4707-4712       

      0.067 0.093, 0.047 0.0266 

54532641 54537608 6137-6157       

      0.06 0.089, 0.037 0.0094 

54542033 54546604 6183-6198       

      0.468 0.419, 0.506 0.0384 

54736811 54741807 7291-7311       

      0.202 0.158, 0.236 0.0216 

54753168 54774171 7389-7529       

      0.294 0.248, 0.330 0.0351 

54777074 54807769 7565-7775       

      0.206 0.254, 0.171 0.016 

54808449 54813519 7780-7809       

      0.295 0.356, 0.248 0.0055 

54813801 54817371 7812-7842       

      0.528 0.598, 0.475 0.0038 

54818762 54856786 7850-8069       

      0.412 0.493, 0.362 0.0021 

      0.125 0.089, 0.156 0.019 

54856933 54857871 8071-8080       

      0.584 0.638, 0.543 0.0232 
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54885318 54963258 8251-8666       

      0.132 0.167, 0.109 0.0466 

      0.051 0.075, 0.035 0.0382 

55136446 55139619 9771-9792       

      0.107 0.077, 0.130 0.0424 

55140657 55141022 9799-9802       

      0.884 0.915, 0.860 0.0451 

      0.116 0.085, 0.140 0.0451 

55226745 55234048 10439-10508       

      0.085 0.118, 0.059 0.0124 

55234072 55276574 10509-10821       

      0.1 0.131, 0.079 0.0479 

55279211 55291144 10839-10899       

      0.13 0.167, 0.102 0.0243 

55461759 55461854 11927-11930       

      0.655 0.703, 0.618 0.0342 

 

7.3 Appendix Table 3 

Table 21. Cleft lip/palate cohort sample and sex information 

    cleft type cleft type cleft type 

 Eurocran trio code sex lip jaw palate 

H008 H008     M Y        Y        Y        

H009 H009     M Y        Y        Y        

H015 H015     F Y        Y        Y        

H019 H019     F Y        Y        Y        

H027 H027     M Y        Y        Y        

H029 H029     M Y        Y        Y        

H032 H032     F Y        Y        Y        

H042 H042     M Y        N        Y        

H054 H054     M Y        Y        Y        

H057 H057     F Y        Y        Y        

H058 H058     M Y        Y        Y        

H101 H101     M Y        Y        Y        
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H105 H105     M Y        Y        Y        

H107 H107     M Y        Y        Y        

H109 H109     F Y        Y        Y        

H111 H111     F Y        Y        Y        

H122 H122     M Y        N        Y        

H124 H124     M Y        Y        Y        

H129 H129     M Y        Y        Y        

H136 H136     M Y        Y        Y        

H137 H137     M Y        Y        Y        

H144 H144     M Y        Y        Y        

H170 H170     M Y        Y        Y        

H174 H174     M Y        Y        Y        

H186 H186     M Y        Y        Y        

H195 H195     M Y        Y        Y        

H196 H196     F Y        Y        Y        

H198 H198     M Y        Y        Y        

H201 H201     F Y        Y        Y        

H204 H204     M Y        Y        Y        

H207 H207     F Y        Y        Y        

H216 H216     F Y        Y        Y        

H218 H218     F Y        Y        Y        

H222 H222     M Y        Y        Y        

H236 H236     M Y        Y        Y        

H238 H238     F Y        Y        Y        

H239 H239     F Y        Y        Y        

H243 H243     M Y        Y        Y        

H251 H251     M Y        Y        Y        

H278 H278     M Y        Y        Y        

H284 H284     M Y        Y        Y        

H285 H285     M Y        Y        Y        

H287 H287     F Y        Y        Y        
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H288 H288     F Y        Y        Y        

H289 H289     M Y        Y        Y        

H290 H290     M Y        Y        Y        

H293 H293     F Y        Y        Y        

H303 H303     M Y        Y        Y        

H304 H304     M Y        Y        Y        

H311 H311     F Y        Y        Y        

H317 H317     M Y        Y        Y        

H321 H321     M Y        Y        Y        

H322 H322     M Y        Y        Y        

H325 H325     F Y        Y        Y        

H327 H327     F Y        Y        Y        

H330 H330     M Y        Y        Y        

H333 H333     M Y        Y        Y        

H340 H347     M Y        Y        Y        

H342 H352     M Y        Y        Y        

H347 H356     M Y        Y        Y        

H359 H359     F Y        N        Y        

 

7.4 Appendix Table 4 

Table 22. Novel Schizophrenia cohort variants 

Chr Start End Ref Alt Cohort AF 

1 90601727 90601727 T - 0.8981 

19 31770873 31770873 - A 0.7549 

8 106155991 106155990 - A 0.7071 

2 145202854 145202854 T - 0.614 

10 124828491 124828491 T - 0.5486 

19 31831244 31831244 - A 0.5444 

2 172956771 172956771 - A 0.5357 

16 79631698 79631698 - T 0.5171 

7 70257475 70257475 A - 0.4659 
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15 37180386 37180386 G - 0.4566 

3 147099886 147099886 T - 0.4153 

18 73370970 73370979 GTTTTCTTTC TTTTTTTTTT 0.3916 

10 102501168 102501171 AAAA - 0.3819 

X 612330 612330 - A 0.3518 

2 59541122 59541122 A - 0.3508 

13 72333065 72333065 T - 0.3507 

2 59541121 59541122 AA - 0.3325 

15 98292748 98292755 ACACACAC - 0.3109 

5 158124282 158124282 T - 0.2937 

10 124828491 124828491 - T 0.2919 

3 181328198 181328198 A - 0.2905 

3 147099885 147099886 TT - 0.2814 

7 1308935 1308935 - T 0.278 

11 8351446 8351459 

TTCCCCCCCCC

CCA 

ATCCCCCCCCC

C 0.2464 

9 16704711 16704711 T G 0.2383 

2 145189567 145189567 - A 0.2365 

10 78062966 78062966 T C 0.2354 

16 73093074 73093074 G A 0.2325 

6 10398152 10398152 T - 0.2283 

13 100547026 100547026 G T 0.2271 

3 181328197 181328198 AA - 0.2264 

8 71963499 71963499 T G 0.223 

13 72333065 72333065 - T 0.2227 

1 91300727 91300727 T C 0.2195 

17 35061677 35061677 A G 0.2178 

15 98292746 98292755 ACACACACAC - 0.2176 

17 35061685 35061685 A T 0.2174 

1 87800568 87800568 A C 0.215 

5 4628063 4628063 T G 0.2133 

15 98292742 98292755 

ACACACACACA

CAC - 0.2073 

13 100547035 100547035 A G 0.2063 



Appendix 

 

 152 

6 10398132 10398132 G T 0.2036 

16 54323650 54323650 T C 0.2019 

3 181328195 181328198 AAAA - 0.1926 

1 10702242 10702242 A G 0.1881 

2 60685089 60685089 T - 0.1854 

20 21378185 21378185 T G 0.1846 

X 835430 835430 - A 0.1845 

13 36104481 36104481 T C 0.1749 

13 100547039 100547039 C T 0.1723 

10 102501169 102501171 AAA - 0.1566 

6 10397894 10397894 - A 0.1485 

5 158123012 158123012 - A 0.1348 

5 158123012 158123012 A - 0.1275 

1 63553982 63553982 A C 0.1263 

1 87801555 87801555 - A 0.1232 

3 181328196 181328198 AAA - 0.1216 

20 22565488 22565488 G T 0.1178 

3 17988437 17988437 - T 0.1158 

20 51804117 51804120 TCCC CCCT 0.1043 

X 612330 612330 - AA 0.103 

9 37034270 37034270 A T 0.0936 

15 98292744 98292755 

ACACACACACA

C - 0.0907 

2 60685410 60685410 - T 0.0838 

18 73370975 73370979 CTTTC TTTTT 0.0837 

1 18968447 18968447 T C 0.0704 

15 98292752 98292755 ACAC - 0.0674 

18 73370979 73370980 CT - 0.064 

15 98292750 98292755 ACACAC - 0.0596 

11 16121254 16121254 - T 0.0478 

16 73747539 73747539 T - 0.0463 

19 31915104 31915103 - T 0.0417 

10 124828491 124828491 - TT 0.0405 

15 96812001 96812001 A - 0.0393 
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11 8351448 8351447 - C 0.0386 

13 95547310 95547310 T - 0.0383 

1 87801555 87801555 - AAAA 0.0379 

2 60685089 60685089 - T 0.0366 

2 172956771 172956771 - AA 0.0357 

13 100546987 100546993 AGGCGGG GGGC 0.0332 

X 612330 612330 - AAA 0.0327 

8 72110674 72110674 - A 0.0291 

7 70257602 70257602 - T 0.0286 

19 31915104 31915104 T - 0.027 

5 158124282 158124282 - T 0.0267 

10 131668257 131668257 - A 0.0246 

13 100546987 100546994 AGGCGGGG GGGC 0.023 

15 98292754 98292755 AC - 0.0207 

1 18968455 18968455 - C 0.0201 

X 612330 612330 - AAAA 0.0201 

11 33376243 33376246 AGGG GGGT 0.0191 

15 37183275 37183275 - T 0.0191 

15 98292740 98292755 

ACACACACACA

CACAC - 0.0181 

13 100546987 100546995 AGGCGGGGG GGGCGGGGGGC 0.0179 

18 73370970 73370979 GTTTTCTTTC TTTTTTTTT 0.0172 

3 181328198 181328198 - A 0.0169 

19 30714131 30714131 - A 0.0143 

7 156407220 156407224 TCTGA G 0.0123 

16 51671786 51671786 A G 0.0122 

11 8351446 8351459 

TTCCCCCCCCC

CCA 

ATCCCCCCCCC

CC 0.0121 

3 71629324 71629324 - A 0.0118 

14 97204816 97204818 TAG - 0.0114 
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7.5 Intellectual Disability and Epilepsy comorbidity sample and 

phenotype information 

Table 23. IDE cohort clinical notes 

7782 (unclassified progressive epilepsy – died two years old) scn8a  

7787 mother 

7786 father 

EG0522 (epilepsy, autisme, intellectual disability, athrititis) 

EG0521 mother 

EG0523 father     

EG1238 (Myoclonic astatic epilepsy, learning disability), COCO E1 

EG1239 (Myoclonic astatic epilepsy, learning disability) (sister) 

EG0603 (brother) (autisme)  

EG0435 (mother)  (depression)  

EG0434 (father) 

EG0540 (Juvenile myoclonic epilepsy), COCO E11  

EG0542 (brother) (Juvenile myoclonic epilepsy) 

EG0541 (mother) 

EG0539 (father) (migraine, dyslexia)  

EG0609 (epilepsy, schizophrenia, ADHD, tics) COCO E17  

EG0680 (mother) 

EG0819 (father) 

EG0499 (Childhood absence epilepsy, ADHD), COCO E22 

EG0871 (brother, Childhood absence epilepsy) 

EG1253 (mother, Obsessive compulsive disorder, panic attacks) 

EG0498 (father) 

EG0662 (sister, epilepsy, autisme, aggresive behaviour, intellectual disability, immune 

defect, CP, 2 small duplications at 20p12.1) COCO E33 

EG0716 (sister, epilepsy, autisme, aggresive behaviour, intellectual disability, immune 

defect, CP, 2 small duplications at 20p12.1) 

EG1010 (mother, depression) 
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EG0663 (father, migraine, 2 small duplications at 20p12.1 ) 

EG0343 (Childhood absence epilepsy, atypical autisme) COCO E39 

291202 ( brother, Infantil autist) 

EG0344 (mother) 

EG0330 (father) 

EG0681 (Attension dificiet disorder, epilepsy) COCO E42  

EG0694 (sister, anxiety, cutting, alice in wonderland syndrome) 

EG0723 (sister, Obsessive compulsive disorder, anorexia, speech delay 

EG0683 (mother, migraine, ADHD, depression, PNES (Psychogenic Non-Epileptic 

Seizures), anxiety, kidney disease)  

EG0682 (father, depression, learning disability) 

EG0750 (epilepsy, infantile autism, ADHD) COCO E43  

EG0748 (sister, ADHD)  

EG0751 (mother) 

EG0772 (father) 

EG0691 (epilepsy due to a recently discovered GRIN2A frameshift mutation) COCO 

E51 

EG0690 (mother, epilepsy) 

EG0692 (father) 

EG0719 (epilepsy) COCO E52 

EG0720 (brother, epilepsy, asperger syndrome) 

EG0718 morther   

EG0717 father 

EG0850 (epilepsy) COCO E56 

EG0852 (brother, epilepsy) 

EG0851 (depression, anxiety) 

EG0846 father 

EG0725 (epilepsy, autism, intellectual disability due to a 15q11q14 duplication), COCO 

E64 

EG0759 (brother, tourette syndrome, migraine, 15q11.2 duplication) 

EG0726 mother 
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EG0724 (vocal tics obs tourette syndrome, 15q11.2 duplication) 

EG1030 (epilepsy) COCO E82 

EG1101 (sister, ADHD) 

EG1031 mother,  

EG1102 father (ADHD) 

EG1036 (epilepsy, ADHD) COCO E83 

EG1055  (brother, asperger syndrome) 

EG1054 mother 

EG1056 father 

EG1059 (epilepsy, intellectual disability) COCO E85 

EG1069 (sister, intellectual disability, autisme)  

EG1058 mother 

EG1068 father 

EG1149 (epilepsy) COCO E88  

EG1148 mother 

EG1147 father 

EG0632 (epilepsy, pulmonary stenosis, delayed bone growth, tourette syndrome, 

Obsessive compulsive disorder) COCO E89  

EG0622 (sister, epilepsy)  

EG0631 mother  

EG630 father 

EG1136 (epilepsy, speech delay, enamel dysplasia, sleep disorder)  

EG1135 mother  

EG1139 father 

EG1118 (epilepsy, developmental delay)  

EG1117 mother  

EG1119 father 

EG0909 (epilepsy, microcephaly)  

EG0915 mother  

EG0916 father 

EG0413 (epilepsy, intellectual disability) 
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11000-10 mother 

11002-10 father 

EG1045 (epilepsy, intellectual disability)  (maternal uncle with similar phenotype)  

EG1044 mother  

EG1043 father 

 EG0943 (epilepsy) 

EG0944 (maternal halfsister, epilepsy)  

EG0942 mother 

EG0948 (Mathias father of EG0943)  

EG1098 (epilepsy, speech delay, sleep apnea)  

EG1110 (father) 

EG1109 (mother) 

EG0561 (epilepsy, intellectual disability, Lennox Gestault syndrome)  

EG0560 (father) 

EG0562 (mother) 

EG0600 (epilepsy)  

EG0611 (mother, epilepsy) 

EG0601 (father, dyslexia) 

EG1295 (Dravet syndrome due to a SCN1A mutation, extremely severely affected; 

suspicion of an additional genetic condition) 

EG0235 also sent as 8945 father 

EG0237 also sent as 8946 mother 

EG0570, Aicardi syndrome  

EG0531 sister,  

EG0589 brother infantile Autism 

EG0530 Lea mother 

EG0588 Jesper father 

EG0571 epilepsy, ADHD. COCO E8 

EG1106 brother, obsessive compulsive disorder, anxiety, developmental delay 

EG0572 (mother) ADHD, depression 

EG0574 anxiety 
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8585 ADHD, inversion 12 COCO E10  

8443 sister ADHD, inversion 12  

8219 mother ADHD, epilepsy migraine, Obsessive compulsive disorder, PCDH19 

mutation (suceptibility factor) 

8586 father inversion 12 

 

Sample Name Patient ID 

D003C EG0152 

D003F 7787 

D003M 7786 

D006C EG0522 

D006F EG0523 

D006M EG0521 

D008C EG1238 

D008F EG0434 

D008M EG0435 

D009C EG0540 

D009F EG0539 

D009M EG0541 

D010C EG0609 

D010F EG0819 

D010M EG0680 

D012C EG0499 

D012F EG0498 

D012M EG1253 

D015C EG0662 

D015F EG0663 

D015M EG1010 

D016C EG0343 

D016F EG0330 

D016M EG0344 
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D018C EG0681 

D018F EG0682 

D018M EG0683 

D019C EG0750 

D019F EG0772 

D019M EG0751 

D020C EG0691 

D020F EG0692 

D020M EG0690 

D021C EG0719 

D021F EG0717 

D021M EG0718 

D022C EG0850 

D022F EG0846 

D022M EG0851 

D023C EG0725 

D023F EG0724 

D023M EG0726 

D026C EG1030 

D026F EG1102 

D026M EG1031 

D027C EG1036 

D027F EG1056 

D027M EG1054 

D029C EG1059 

D029F EG1068 

D029M EG1058 

D032C EG1149 

D032F EG1147 

D032M EG1148 

D033C EG0632 
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D033F EG0630 

D033M EG0631 

D034C EG1136 

D034F EG1139 

D034M EG1135 

D035C EG1118 

D035F EG1119 

D035M EG1117 

D036C EG0909 

D036F EG0916 

D036M EG0915 

D037C EG0413 

D037F 11002 

D037M 11000 

D038C EG1045 

D038F EG1043 

D038M EG1044 

D039C EG0943 

D039F EG0948 

D039M EG0942 

D040C EG1098 

D040F EG1110 

D040M EG1109 

D041C EG0561 

D041F EG0560 

D041M EG0562 

D043C EG0600 

D043F EG0601 

D043M EG0611 

D044C EG1295 

D044F EG0235 
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D044M EG0237 

D048C EG0570 

D048F EG0588 

D048M EG0530 

D052C EG0571 

D052F EG0574 

D052M EG0572 

D053C 8585 

D053F 8586 

D053M 8219 
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7.6 Isolated Congenital Anosmia patient phenotypes and 

pedigrees 

 

Figure 44. Faroese families 
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Figure 45. European families 

 

Table 24. Anosmia sample information 

ID Affected status Country ID_Pedigree 

AN001 ICA Faroe Islands BranchA_II-7 

AN002 ICA Faroe Islands BranchA_III-12 

AN003 Normal Faroe Islands BranchA_III-13 

AN004 ICA Faroe Islands BranchB_III-1 

AN005 ICH Faroe Islands BranchB_I-1 

AN006 ICA Faroe Islands BranchD_III-1 

AN007 ICA Faroe Islands F1 

AN008 Normal Faroe Islands NA 

AN009 Normal Faroe Islands NA 

AN010 ICA Germany B2_I-1 

AN011 ICA Germany B2_I-2 

AN012 ICA Germany B6_I-1 
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AN013 Normal Germany B6_II-2 

AN014 Normal Germany B6_II-1 

AN015 ICA Sweden B3_I-1 

AN016 ICA Sweden B3_II-1 

AN017 Normal Sweden B3_II-2 

AN018 ICA Denmark B1_I-2 

AN019 Normal Denmark B1_II-2 

AN020 ICH Denmark B1_II-1 
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