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Abstract

Observations of temperature anisotropies in the cosmic microwave background (CMB) and meas-

urements of the large-scale structure of matter have established the standard Lambda cold dark

matter model of cosmology. Precise measurements of new observables will test extensions to the

standard cosmological model, e. g., a non-zero tensor-to-scalar ratio of primordial perturbations, a

running of the spectral index of the primordial power spectrum (both tests of cosmic inflation), or

new components like massive neutrinos and warm dark matter (WDM). Two of the most promising

observables to test these extensions in upcoming surveys are polarisation anisotropies in the CMB

and correlations in the Lyman-alpha forest. Accurate cosmological parameter estimation, however,

is only achievable through careful consideration of instrumental and astrophysical systematic effects,

either by removing contamination in data or modelling its effect during statistical inference. I

present new approaches to controlling contaminants to CMB temperature and polarisation and the

Lyman-alpha forest.

The primary contamination to the CMB is foreground Galactic radiation, e. g., synchrotron

and thermal dust emission. I demonstrate the use of directional wavelets in more accurately

reconstructing CMB temperature maps in the presence of these foregrounds, using Planck simulations

and data. The complexity of polarised Galactic emissions limits constraints on inflation and neutrinos

using CMB polarisation. I show how spin directional wavelets can allow additional morphological

information to improve cosmic and foreground component separation.

The Lyman-alpha forest probes the primordial power spectrum and the suppression of small-scale

clustering by neutrinos or WDM. However, estimation of the shape of the power spectrum is biased

by broadened absorption lines formed by high density systems of neutral hydrogen. I present models

of their effect, built from Illustris cosmological hydrodynamical simulations. Being functions of
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absorber column density provides the flexibility to model residual contamination, after the largest

absorbers have been removed from data.
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1
Introduction

1.1 The cosmological principle

This thesis is a study of the origin, evolution and contents of the Universe, by designing methods

to accurately test the principles and models proposed to explain these phenomena with different

observables; i. e., a study of physical cosmology. In this Chapter, I will introduce the established

knowledge about these principles, models and observations, review some of the tools that are

used and indicate the directions of current research, in order to motivate and provide background

information to the work that is presented in Chapters 2 to 5.

A guiding notion is the cosmological principle, an assumption that will motivate some of the

decisions made below (e. g., see § 1.2). It states that when viewed on sufficiently large scales, the

properties of the Universe are the same for all observers. It follows that on these large scales the

Universe is homogeneous, i. e., that the same observational evidence is available at every location in

the Universe. It also follows that the Universe, on these large scales, is isotropic, i. e., that the same

observational evidence is available by looking in any direction in the Universe. It further follows

that the observable Universe (which I will otherwise usually refer to as simply the Universe) is a fair

sample of the whole and that the same physical laws apply throughout. There is a body of evidence

that supports the cosmological principle (e. g., see § 1.6.1 and 1.6.2), but this remains an active

area of research.
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1.2 The general theory of relativity

The general theory of relativity (GR) is currently the most complete theory of gravity1. It describes

gravity as a geometric property of spacetime. It relates the curvature of spacetime to the energy and

momentum of matter and radiation (i. e., the contents of the Universe); this relation is expressed by

the Einstein field equations (EFE), a set of ten partial differential equations which can be expressed

in tensor form:

Rµν −
1

2
gµνR+ Λgµν = 8πGTµν , (1.1)

where I have included the cosmological constant Λ, in order to be consistent with the standard

cosmological model (see § 1.3). The left-hand side expresses the curvature of spacetime in terms

of the metric gµν , which characterises all the geometric and causal structure of spacetime; the

Ricci curvature tensor Rµν is a function of the metric and its derivatives and the Ricci scalar R is

the contraction of the Ricci tensor with the metric. The right-hand side expresses the energy and

momentum of the contents of the Universe through the energy-momentum tensor Tµν , which char-

acterises the density and flux of energy and momentum in spacetime (G is Newton’s gravitational

constant and, throughout this chapter, I am using units where the speed of light in vacuum c = 1).

µ and ν index over the (four) coordinates of spacetime. Solutions of the EFE consist of spacetime

metrics.

The Universe is observed to be expanding; more specifically, the radiation from distant objects

(e. g., galaxies) is redshifted (the wavelength is increased) in all directions and the further away

they are, the greater is the redshift. This observation and the cosmological principle (see § 1.1)

support the use of the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, an (exact) solution of

the EFE for a homogeneous, isotropic, expanding (or indeed contracting) universe:

gµνdxµdxν = −dt2 + a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin2 dφ2)

)
, (1.2)

where the expansion is fully determined by the homogeneous and isotropic scale factor a(t), which

is a function of physical time t only and by convention has a value today a0 = 1. The spatial part

of the metric is given in reduced-circumference polar coordinates (r, θ, φ) for a three-dimensional

space of uniform curvature, such that xµ indexes (t, r, θ, φ). k is a constant representing the (global)

curvature of space; it is taken to be in the set {−1, 0, 1}, corresponding to negative, flat or positive

curvatures respectively.
1There are numerous good textbooks about GR. For a good review of GR in the context of cosmology, see Dodelson

(2003); I will here follow his conventions.
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The physical distance travelled by a photon dt = a dx, where x is a comoving spatial coordinate

(as used in Eq. (1.2)) and the expansion of the Universe has been “scaled-out.” It follows that the

comoving particle horizon, the maximum comoving distance that a photon could have travelled in a

time interval t− ti is

χ(t) ≡
∫ t

ti

dt′

a(t′)
≡ η, (1.3)

where we have additionally defined the conformal time η. χ(t) defines a causal horizon, beyond

which particles have not been causally connected since ti.

The laws of motion in GR are essentially determined by the geodesic equation; by solving the

geodesic equation for a photon gµνdxµdxν = 0 with the FLRW metric given in Eq. (1.2), it follows

that the physical momentum and energy of photons ∝ 1
a . Since the energy of a photon is inversely

proportional to its wavelength λ, I can define the (cosmological) redshift due to the expansion of

the Universe in terms of the observed (λobsv) and emitted (λemit) wavelengths and then relate these

to the scale factors at the times of observation (aobsv) and emission (aemit):

1 + z ≡ λobsv

λemit
=
aobsv

aemit
. (1.4)

Since by convention a0 = 1 (as mentioned above), the redshift observed today of distant objects

= 1
a − 1.

Ignoring any comoving motion (ẋ = 0, i. e., no “peculiar” velocity), the relative velocity due only

to the metric expansion of the Universe v = ȧx = Hd (where ˙ indicates the derivative with respect

to time). Here, in the second equality, I have expressed the Hubble law and related this relative

velocity to the physical distance d between objects by defining the Hubble parameter

H ≡ 1

a

da

dt
. (1.5)

In general, the Hubble parameter is a function of time and so determinations of its value through

cosmic history reveal the changing rate of expansion of the Universe. The Hubble parameter at the

present epoch is usually denoted the Hubble constant H0 and is often expressed in terms of the

dimensionless parameter h as H0 = 100h km s−1 Mpc−1.

I now return to the EFE in Eq. (1.1); the FLRW metric was given as a solution to this equa-

tion for the observed (homogeneous and isotropic) expansion of the Universe in Eq. (1.2). The

remaining piece is the energy-momentum tensor Tµν , for which I will consider an isotropic fluid

diag(−ρ,P,P,P), where ρ is its energy density and P is its pressue, to represent the contents of the
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Universe. By plugging in gµν and Tµν into Eq. (1.1), I can derive the Friedmann equations, which

more usefully relate the geometry and the contents of the Universe, by connecting the (background)

evolution of the scale factor to the energy-momentum of the Universe’s contents:

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
+

Λ

3
; (1.6)

ä

a
= −4πG

3
(3P + ρ) +

Λ

3
, (1.7)

where ¨ indicates the second derivative with respect to time.

The conservation of energy-momentum in GR is expressed as ∇µTµν = 0, where ∇µ is the

covariant derivative. For the metric and energy-momentum tensors specified above, this simplifies

to

ρ̇+ 3
ȧ

a
(ρ+ P) = 0. (1.8)

The isotropic fluid considered above is additionally “perfect” (i. e., completely characterised by its

rest-frame energy density and pressure) and so has an equation of state P = wρ. By plugging this

into Eq. (1.8), we find the solution ρ ∝ a−3(1+w), describing the evolution of the energy contents

of the Universe as it expands. Further, by combining this solution with the Friedmann equations

(Eqs. (1.6) and (1.7)), we derive equations for the evolution of the scale factor when a given

fluid (as specified by an equation of state parameter w) dominates the total energy density of the

Universe:

a(t) =





t
2

3(1+w) , if w 6= −1,

eHt, if w = −1.

(1.9)

I will discuss the different components of the Universe, their equations of state and their consequent

effects on the evolution of the Universe in § 1.3.1.

I finally comment that effective energy densities can be associated with the last two terms

in Eq. (1.6); the cosmological constant Λ implies a constant energy density (i. e., w = −1). An

explicit curvature term can be formed by manipulating Eq. (1.6) further by defining a critical density

ρcrit = 3H2/8πG:

Ω(a)− 1 =
k2

H2a2
, (1.10)

where the total energy density is expressed in units of the critical density Ω(a) = ρ/ρcrit. The

Universe is observed to be consistent with a flat global curvature (k = 0; see § 1.3 and 1.6.1 for more

details); i. e., the total energy density is very close to the critical density. However, this suggests the
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“flatness problem” (which I will return to in § 1.4 to motivate the model of cosmic inflation), which

is a cosmological fine-tuning problem. If the Universe deviated very slightly from perfect flatness,

then by Eq. (1.10), it can be seen that the total energy density would diverge quickly away from the

critical density; conversely, considering that the total energy density is observed to be very close to

the critical density, then it must have been even closer to the critical density in the past, suggesting

that the total energy density of the Universe has been “fine-tuned” to this value. Proposed solutions

to this problem include an epoch of primordial cosmic inflation (§ 1.4).

1.3 The standard Lambda cold dark matter model of cosmo-

logy

The current concordance cosmology is the Lambda cold dark matter (ΛCDM) model, which is

a parameterisation of the Big Bang cosmological model. The Big Bang model explains that the

Universe began in a small, dense and high-temperature state and it has since expanded and cooled,

symmetries have been broken and lower-energy states persist. This expansion is modelled by the

FLRW metric (Eq. (1.2)) and the laws of GR summarised in § 1.2. The Big Bang model was initially

proposed to explain the expansion of the Universe observed through the redshifts of distant galaxies

(as mentioned in § 1.2; other models were also proposed, most notably the Steady State theory;

Bondi and Gold, 1948; Hoyle, 1948), but the key evidence came with the observation of the cosmic

microwave background (CMB; Penzias and Wilson, 1965, § 1.6.1; “relic radiation” from the early

Universe) which the Big Bang model had predicted.

The baseline ΛCDM parameterisation of the Big Bang model has six free parameters (and

a number of fixed parameters) that determine the components (§ 1.3.1), origin (§ 1.3.2) and

evolution (§ 1.3.3) of the Universe2. The values of these parameters (or more specifically, their

probability distributions) are estimated from a number of cosmological observations (§ 1.6), most

powerfully the CMB (§ 1.6.1). The Universe is observed to be flat and so the total energy density is

fixed (Ω = 1). This energy density is today distributed between three main components (ordinary

“baryonic” matter, cold dark matter (CDM) and “dark energy;” these components will be explained

in § 1.3.1); their varying proportions are parameterised by Ωb and Ωc
3, the energy densities today

of baryons and CDM respectively (as a fraction of the total). The initial conditions of the Universe

are modelled as purely adiabatic scalar perturbations to the background with a (dimensionless)

2I explicitly follow the parameterisation given in Planck Collaboration et al. (2014d, 2016e).
3The combinations Ωbh

2 and Ωch2 are actually usually sampled (e. g., Planck Collaboration et al., 2014d, 2016e).
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curvature power spectrum, parameterised by an amplitude As and a power-law scale index (or

“tilt”) ns (more details about the primordial power spectrum will be given in § 1.3.2). (The origin

of these “initial” conditions is discussed in § 1.4.) The evolution of the Universe from these initial

conditions passed through two major epochs: recombination when originally ionised hydrogen was

made electrically neutral by cooling; and, later, reionisation when hydrogen ionised again by the

formation of the first stars. The remaining two free parameters essentially relate to these phase

transitions: θ? is the angular size of the sound horizon4 at recombination5; and τ is the Thomson

scattering optical depth due to reionisation. (See § 1.3.3 for more details.) This six-parameter model

remains the baseline cosmology, but parameter extensions (as well as more radical departures) are

considered (but not preferred by observations); I will discuss some extensions to the model in § 1.4

and 1.5.

1.3.1 Components

There are a number of components to the energy contents of the Universe; here, I will outline

the main categories, specify their equations of state and therefore how their energy densities

evolve. Furthermore, since these energy densities scale very differently, it follows that their relative

contributions to the total energy density vary and the Universe has passed through different epochs,

where one component has dominated and determined the expansion rate.

• Relativistic components: these are photons and neutrinos (in the early Universe). (Indeed,

even matter behaves relativistically in the very early Universe when the kinetic energy is

much greater than the mass energy.) These relativistic components have an equation of

state w = 1
3 and so their energy density ργ ∝ a−4. These components dominate the total

energy density in the very early Universe and in this radiation-dominated epoch, a ∝ t 1
2 . The

decoupling of photons from the primordial plasma (i. e., the CMB) will be discussed in § 1.3.3;

neutrinos decoupled earlier when the rate of their (weak force) interactions with electrons

and positrons fell below the rate of expansion of the Universe (at a temperature ∼ 1 MeV).

This cosmic neutrino background is not (yet) directly observed. In the baseline ΛCDM model,

the sum of the masses of the different species of neutrino
∑
mν is fixed to the minimum value

given by oscillation experiments (0.06 eV; Esteban et al., 2017; Forero et al., 2012, 2014;

Gonzalez-Garcia et al., 2014). The effective number of (neutrino-like) relativistic degrees of

freedom Neff is fixed to the canonical value 3.046, which assumes three species (corrected
4The comoving horizon of a sound wave.
5An approximation to this parameter is used in Planck Collaboration et al. (2014d, 2016e).
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slightly due to heating by electron-positron annihilation during decoupling). I will discuss

in § 1.5 extended cosmological models where these parameters are allowed to vary and the

implications for neutrino physics and cosmology.

• Baryonic matter: this is the “ordinary” matter that forms part of the Standard Model of particle

physics and is “visible” since it interacts by the electromagnetic (EM) force (it also interacts

gravitationally and by the weak and strong forces). The fraction of the total energy density

today composed of baryons Ωb is inferred to be 4.9% (Planck Collaboration et al., 2016e).

These baryons primarily form hydrogen, helium and other light elements (hydrogen, helium

and trace amounts of lithium were formed in the early Universe by Big Bang nucleosynthesis

(BBN; see § 1.3.3 for more details)). The mass fraction in helium YP is fixed in Planck

Collaboration et al. (2014d, 2016e) to a standard value from BBN calculations (24.77%;

Pisanti et al., 2008).

• Cold dark matter: this is non-baryonic, pressureless and non-relativistic matter that does not

form part of the Standard Model of particle physics. It does not interact (or at least it does

very weakly) by the EM force; it has not been directly or indirectly detected, but its presence

is inferred by a number of cosmological and astronomical observations. These include the

CMB (Planck Collaboration et al., 2014d, 2016e); galaxy velocity curves (Rubin and Ford,

1970); galaxy velocity dispersions; X-ray emission from galaxy clusters; gravitational lensing

of galaxies and galaxy clusters (Taylor et al., 1998); and galaxy clustering (Davis et al., 1982;

Oort, 1932; Zwicky, 1933). However, the particle nature of CDM is unknown and remains

an active area of research (I will discuss in § 1.5 how cosmological observations can help

distinguish between alternative models of dark matter). The leading candidates for CDM can

broadly be separated into three categories. Weakly interacting massive particles (WIMPs) are

proposed particles that interact by gravity, but by any other forces weakly; candidate particles

come, e. g., from supersymmetry theory (see Jungman et al. 1996 for an early, comprehensive

review). Low-mass axions are proposed particles that have a non-zero coupling to photons

(Peccei and Quinn, 1977a,b). The third category is massive astrophysical compact halo objects

(MACHOs), of which there is renewed interest in primordial black holes (Carr and Hawking,

1974) due to some consistency with gravitational wave observations (Bird et al., 2016). The

fraction of the total energy density today composed of CDM Ωc is inferred to be 26.5% (Planck

Collaboration et al., 2016e) and so it constitutes 84% of the total matter energy density. The

evolution of CDM in cosmic history plays a central role in the formation of large-scale structure
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(see § 1.3.3). Since CDM is pressureless, it has an equation of state w = 0. It follows that the

energy density of non-relativistic matter ρm ∝ a−3. It follows that as the Universe continued

to expand, the relative proportions of the energy densities of matter to radiation increased,

such that the Universe entered a matter-dominated epoch, where a ∝ t 2
3 .

• Dark energy: this is modelled in ΛCDM cosmology by the cosmological constant Λ (introduced

in Eq. (1.1)). It is included in the inferred energy contents of the Universe to explain the

observed late-time accelerated expansion of the Universe (Perlmutter et al., 1999; Riess et al.,

1998, 2004). This is because its energy density ρΛ is constant (as noted in § 1.2; i. e., its

equation of state w = −1) and so at late times, it becomes the dominant component of the

total energy contents of the Universe and in this Λ-dominated epoch, a ∝ eHt. Indeed, any

equation of state for dark energy w < − 1
3 would generate late-time accelerated expansion,

but current observations are consistent (to percent precision) with the simplest model of

the cosmological constant and so in the baseline cosmology w is fixed to −1, with no time-

evolution in its equation of state. However, when Λ is considered as vacuum energy, there is a

disagreement with theoretical predictions from quantum field theory for the value of Λ of up

to 120 orders of magnitude – the so-called “cosmological constant problem.” Alternatives to

the ΛCDM model aim to avoid this problem by proposing dynamical models of dark energy or

alternative theories of gravity; modern reviews of the theoretical challenges can be found in

Carroll (2001); Clifton et al. (2012); Martin (2012). The fraction of the total energy density

today composed of dark energy ΩΛ is inferred to be 68% (Planck Collaboration et al., 2016e).

1.3.2 The primordial Universe

Having discussed the different components that constitute the energy contents of the Universe

and how they determine the background evolution of the Universe (§ 1.3.1), I will now discuss

the initial conditions of the Universe, or more specifically of the perturbations to the background.

The majority of the above adheres rigidly to the cosmological principle and concerns an entirely

homogeneous and isotropic Universe. However, there are manifestly some small-scale inhomo-

geneities and anisotropies, i. e., structure has formed in the Universe (this does not contradict the

cosmological principle, which only concerns very large scales). In this section, I will present the

simple phenomenological parameterisation for the initial perturbations, which went on to grow

into the structure that is observed today; however, the origin of these primordial perturbations will

only be explored in § 1.4, when I discuss the theory of cosmic inflation. The baseline ΛCDM model
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considers only scalar comoving curvature perturbations R, which are purely adiabatic (i. e., have a

constant matter-to-radiation ratio everywhere, as opposed to isocurvature perturbations). Tensor

perturbations will be discussed in § 1.4 and in the baseline model, the ratio of tensor primordial

power to curvature power (or “tensor-to-scalar ratio”) r is fixed to zero. These perturbations are

Gaussian-distributed and so all the information is characterised by a (dimensionless) primordial

power spectrum6, which is a function of scale k:

PR(k) = As

(
k

k0

)ns−1

, (1.11)

where As is the amplitude, ns is the scalar spectral index and k0 is a pivot scale (set to 0.05 Mpc−1

in Planck Collaboration et al. 2016e). The values and 68% credible intervals of As and ns inferred

in Planck Collaboration et al. (2016e) are respectively (2.198+0.076
−0.085)× 10−9 and 0.965± 0.0062; the

latter implies a nearly scale-invariant primordial power spectrum. I will discuss extensions of the

standard cosmological model that generalise the form of the primordial power spectrum in § 1.4.

1.3.3 Evolution

The Big Bang cosmological model assumes that the Universe begins in a very hot, small7 and

dense state (itself called the “Big Bang”) and that as it expanded, it cooled. This allowed the

generation of lower energy states, forming the particles of the Standard Model of particle physics

(and probably physics beyond the Standard Model, e. g., CDM). As noted in § 1.3.1, when the

temperature cooled to about 1 MeV (or about 1 s after the Big Bang), neutrinos decoupled from

the other components, forming the (as yet unobserved) cosmic neutrino background. When the

primordial plasma cooled further to about 100 keV (or about 10 s after the Big Bang), the processes

of Big Bang nucleosynthesis (BBN) began, where protons and neutrons combined to form the nuclei

of the light elements (hydrogen, helium and small amounts of lithium).

From this time until the Universe had cooled to about 1 eV (∼ 3000 K, or ∼ 380, 000 years

after the Big Bang, or a redshift z ∼ 1100), there existed a plasma of atomic nuclei and electrons

(i. e., baryons) and photons, (to a first approximation) tightly-coupled through Coulomb scattering

between nuclei and electrons and Compton scattering between electrons and photons. This baryon-

photon plasma interacted gravitationally with the CDM. The mean free path of photons in this

6I will not discuss here possible primordial non-Gaussianities, but the search for these remains an active area of research;
current observations are consistent with zero non-Gaussianity (Planck Collaboration et al., 2016c).

7I. e., the physical distances between any points are small; this says nothing about the comoving volume of the entire
Universe beyond what is observable, which may even be infinite.
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plasma was very small. Acoustic oscillations were set up in this plasma because of the balance

between the tendency of gravity to collapse structure (initially seeded as the primordial perturbations

discussed in § 1.3.2) and the pressure of the relativistic photons erasing structure. The scales of

these oscillations were related to the size of the sound horizon in the fluid. I will discuss this and

other features of the plasma when I discuss the primary observable, the CMB, in § 1.6.1. At the end

of this epoch, the Universe had cooled sufficiently to allow neutral hydrogen to form: this event is

called recombination8. After recombination, the photons decoupled from the baryons and began to

free-stream, i. e., their mean free path became very large: it is these photons that we observe today

as the CMB. It follows that the CMB is a powerful observable, allowing us to probe the physics of

the early Universe. The angular size of the sound horizon at recombination θ? is one of the free

parameters in the ΛCDM model, constrained by observations of the CMB. The (nearly spherical)

surface at which the photons we observe of the CMB last scattered is called the “last scattering

surface.” The CMB is also (linearly) polarised because of Compton scattering of the quadrupole of

the photon anisotropies at the last scattering surface. There are also late-time effects on the CMB,

which I will discuss in § 1.6.1.

I now consider how the initial perturbations introduced in § 1.3.2 evolve up to recombination

(and beyond). First, we must make a distinction between super-horizon and sub-horizon modes, i. e.,

perturbations of a scale respectively larger and smaller than the Hubble radius. As time increases,

the Hubble radius increases in size and larger-scale modes cross the horizon and enter into causal

contact. Since at any given moment, the largest-scale modes observable have just crossed the

horizon, they have evolved in causal contact for the least time. Additionally, the evolution is also

dependent on the dominant components in the Universe. As explained in § 1.3.1, the Universe

passes through radiation-, matter- and Λ-dominated epochs. The Λ-dominated epoch occurs at late

times (z . 0.5), but matter-radiation equality occurs before recombination (zeq = 3400 as inferred

by Planck Collaboration et al. 2016c). The evolution of the perturbations is fully determined by

solving the (nine first-order differential) Einstein-Boltzmann equations, but I will summarise some

of the key dependencies. In particular, in the radiation era, sub-horizon perturbations to the matter

distribution only grow logarithmically with time, while super-horizon modes ∼ η2. However, after

matter-radiation equality, the matter perturbations grow linearly with the scale factor. The way

in which the spectrum of temperature anisotropies in the CMB (i. e., the angular power spectrum

CTT
` ) depends on the primordial power spectrum of scalar perturbations (i. e., the evolution of

8This is a misnomer, since hydrogen had never previously been neutral; helium recombination is a two-step process that
occurred earlier, since its ionisation energy is greater than that of hydrogen.
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perturbations noted above) is encapsulated by

CTT
` =

∫ ∞

0

dk

k
(∆s

`,T)2PR(k), (1.12)

where ∆s
`,T is the scalar temperature CMB transfer function. This transfer function also accounts

for late-time effects which I will discuss in § 1.6.1. There may also be a sub-dominant contribution

of primordial tensor perturbations to the temperature angular power spectrum, which adds in

quadrature. Equivalent equations work for anisotropies in the polarisation of the CMB.

After recombination and photon decoupling, the Universe entered the so-called “dark ages,”

where most of the baryons resided in neutral hydrogen. The Universe was “dark,” apart from 21

cm emission from the spin-flip transition of neutral hydrogen. About 150 million years after the

Big Bang, the first stars began to form, themselves beginning to form the first heavy elements.

These stars formed the first galaxies, built within halos of dark matter. The ultraviolet background

radiation from these sources had sufficient energy to ionise the neutral hydrogen, beginning the

epoch of reionisation, which probably proceeded in patches that eventually overlapped. Planck

Collaboration et al. (2014d, 2016e) model hydrogen reionisation in their ΛCDM parameterisation as

having occurred quite sharply (and simultaneously to the first helium reionisation) with a mid-point

redshift zre, related to a Thomson scattering optical depth τ , and a width parameter ∆zre = 0.5 9.

Planck Collaboration et al. (2016g) inferred τ = 0.055± 0.009, giving zre ∼ 8. The optical depth

to reionisation is the most poorly constrained ΛCDM parameter (to only ∼ 15% precision10 in

Planck Collaboration et al. 2016g) and this remains one of the most poorly understood epochs of

the ΛCDM model and an active area of research. Once the Universe was fully ionised, the largest

structures began to form, with the first proto-clusters forming at z ∼ 6. After this, larger and larger

clusters and structures built up forming the “cosmic web” of clusters, filaments, walls and voids

we observe locally today (“hierarchical structure formation;” White and Rees, 1978). The final

chapter to the evolution of the Universe is the Λ-dominated epoch, which began at z ∼ 0.5, and an

accelerated phase of expansion. In this epoch, gravitational potentials decay inversely with scale

factor and the largest structures are frozen.

9The second helium reionisation is fixed at z = 3.5, consistent with observations of the Lyman-alpha forest (Becker et al.,
2011, see § 1.6.3).

101σ credible interval on the marginalised 1D posterior distribution.
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1.4 Cosmic inflation

An extension of the standard ΛCDM cosmological model is the theory of cosmic inflation. Indeed,

inflation is required to resolve a number of problems that otherwise arise in the ΛCDM model, such

that it is often considered a part of the model itself, but there is not yet any conclusive evidence for

it and there remain numerous viable models of inflation. In general, inflation consists of a period of

accelerated expansion at the start of the Universe (before the radiation-dominated epoch). I will

now discuss the problems in the ΛCDM model and the properties of inflation necessary to resolve

them.

• Horizon problem: due to observations of the CMB, the Universe is inferred to be very homo-

geneous on scales larger than the particle horizon at the time of decoupling, i. e., outside

causal contact, assuming the standard expansion history of the Universe without inflation (as

set out in § 1.3). Inflation resolves this by driving a period of expansion at the beginning of

the Universe where the comoving Hubble radius decreased. The expression for the comoving

particle horizon in Eq. (1.3) can be re-expressed in terms of the comoving Hubble radius

(aH)−1: χ(a) =
∫ a

0
d ln a′(a′H(a′))−1. I. e., the comoving Hubble radius is the distance that

particles can travel in one expansion time (approximately the time in which the scale factor

doubles); or, it is a measure of the scale on which particles can communicate at any moment

in time (as opposed to the particle horizon, which is the scale on which particles have ever

been able to communicate). By decreasing the comoving Hubble radius, inflation allows

particles separated by a given scale to be in causal contact at early times and to then fall out of

contact. After the end of inflation, the standard expansion resumes and the comoving Hubble

radius begins to increase. The horizon problem is resolved because the scales in the CMB that

otherwise appeared to have never been in causal contact were at the start of inflation.

• Flatness problem: this was discussed in § 1.2 and is understood by noting that the observed

flatness of the Universe Ω = 1 is an unstable point in Eq. (1.10) for an expanding Universe.

This is resolved by inflation because a decreasing comoving Hubble radius in Eq. (1.10) drives

Ω towards unity at the end of inflation.

• Origin of structure: this was noted in § 1.3.2, in that no mechanism was provided to produce

the primordial perturbations that later grow into the structure we observe today. As will be

expanded below, the primordial inflationary expansion is usually driven in the simplest models

by a scalar field. Inflation postulates that quantum fluctuations in this field were expanded
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reality, inflation ends at some finite time, and the approximation (60) although valid at early times,

breaks down near the end of inflation. So the surface ⌧ = 0 is not the Big Bang, but the end of

inflation. The initial singularity has been pushed back arbitrarily far in conformal time ⌧ ⌧ 0, and

light cones can extend through the apparent Big Bang so that apparently disconnected points are

in causal contact. In other words, because of inflation, ‘there was more (conformal) time before

recombination than we thought’. This is summarized in the conformal diagram in Figure 9.

6 The Physics of Inflation

Inflation is a very unfamiliar physical phenomenon: within a fraction a second the universe grew

exponential at an accelerating rate. In Einstein gravity this requires a negative pressure source or

equivalently a nearly constant energy density. In this section we describe the physical conditions

under which this can arise.

6.1 Scalar Field Dynamics

reheating

Figure 10: Example of an inflaton potential. Acceleration occurs when the potential energy of

the field, V (�), dominates over its kinetic energy, 1
2 �̇

2. Inflation ends at �end when the

kinetic energy has grown to become comparable to the potential energy, 1
2 �̇

2 ⇡ V . CMB

fluctuations are created by quantum fluctuations �� about 60 e-folds before the end of

inflation. At reheating, the energy density of the inflaton is converted into radiation.

The simplest models of inflation involve a single scalar field �, the inflaton. Here, we don’t

specify the physical nature of the field �, but simply use it as an order parameter (or clock) to

parameterize the time-evolution of the inflationary energy density. The dynamics of a scalar field

(minimally) coupled to gravity is governed by the action

S =

Z
d4x

p�g


1

2
R +

1

2
gµ⌫@µ�@⌫�� V (�)

�
= SEH + S� . (61)

The action (61) is the sum of the gravitational Einstein-Hilbert action, SEH, and the action of a

scalar field with canonical kinetic term, S�. The potential V (�) describes the self-interactions of the
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Figure 1.1: An example potential for the inflation field φ. Acceleration happens when the potential

energy of the field V (φ) dominates over its kinetic energy 1
2 φ̇

2. Inflation ends at φend, when the

kinetic energy grows to be comparable to the potential energy. Quantum fluctuations in the field

δφ are the source of primordial perturbations and are ultimately the origin of structure in the

Universe. At reheating, the energy of the inflaton is converted into radiation. This figure is taken

from Baumann (2009).

to macroscopic scales and these are the source of the primordial density perturbations

(Starobinsky, 1982).

Above, I motivated why primordial inflationary expansion needs a decreasing comoving Hubble

radius. It follows that the expansion is accelerating [ d
dt

(
a ȧa
)

= ä > 0]. I explained in § 1.2 that

accelerated expansion occurs for any fluid with an equation of state w < − 1
3 . Another feature

of inflation must be that it is finite (at least for our part of the Universe), so that the standard

expansion history that we otherwise observe can begin at its end. The fine-tuning problems above

are solved if in this time, the scale factor increases by a factor & e60 (60 “e-folds”). At the end

of inflation, there must also be a mechanism to couple to the particles of the Standard Model of

particle physics (“reheating”). Inflation is usually implemented by a scalar field, the inflaton φ. The
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initial implementation (“old inflation”) drove the accelerated expansion by holding the field in a

false vacuum and inflation ended by quantum tunnelling to the true vacuum (Guth, 1981). This

model was not viable as it does not allow the Universe to stop inflating and reheat homogeneously

(Guth and Weinberg, 1983). The simplest modern implementation (“new inflation”) is to have

the inflaton roll slowly down a shallow potential (Albrecht and Steinhardt, 1982; Linde, 1982,

an example is shown in Fig. 1.1). The Universe will expand at an accelerated rate as long as the

potential energy of the field is much greater than its kinetic energy (V � φ̇2), stopping only when

the kinetic energy becomes comparable to the potential energy. Once the inflaton reaches the

minimum of the potential, it oscillates coherently, coupling to the Standard Model particles and

reheating the Universe (Mukhanov and Chibisov, 1981).

There exist numerous viable models of inflation, many more complicated than the simple scheme

explained above (see Planck Collaboration et al. 2016d for constraints on many of these different

models). A generic prediction of most models of inflation is the generation of Gaussian-distributed

primordial perturbations with a nearly scale-invariant spectrum; this has indeed been observed (see

§ 1.3.2). However, in order to further distinguish between inflationary models, it will be necessary

to probe the primordial scalar power spectrum more precisely and to accurately measure new

observables like the primordial tensor power spectrum. A standard extension to the baseline ΛCDM

parameterisation of the primordial scalar power spectrum is to add an extra scale-dependent term

to the index in Eq. (1.11) 1
2

dns

d ln k ln
(
k
k0

)
, where dns

d ln k is the “running of the spectral index” (even

more complicated forms can be considered, e. g., a “running of the running”). The inflationary

epoch would also have generated primordial tensor perturbations (i. e., a stochastic background of

primordial gravitational waves). The power spectrum of these modes can be phenomenologically

modelled in the same way as the scalar modes (see Eq. (1.11)), with a tensor amplitude At and

tensor spectral index nt. The ratio of the tensor and scalar amplitudes is the tensor-to-scalar ratio r.

There is a non-zero transfer function for tensor modes for the CMB temperature T and polarisation

E and B 11 angular power spectra (although for the T and E modes, the tensor contribution is very

sub-dominant to the scalar part). However, there is no transfer of scalar perturbations to the CMB

B- mode angular power spectrum and tensor modes are the only primordial source of B modes

(Kamionkowski et al., 1997; Seljak and Zaldarriaga, 1997). This makes the measurement of B

modes a high priority for future surveys in order to find compelling evidence for inflation and to

further distinguish between models (contamination of this signal by lensing and foreground modes

will be discussed in § 1.6.1).

11The distinction between polarisation E and B modes will be made in § 1.6.1.
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1.5 Additional components

Some extensions to the standard cosmological model postulate adding additional components to

the energy contents of the Universe. The first I will discuss is massive neutrinos; this is not strictly

an additional component – as explained in § 1.3.1, they are included in the baseline model, but

varying their parameters (the sum of the three species’ masses
∑
mν and the number of relativistic

degrees of freedom Neff) is a non-standard extension. Cosmological observables are sensitive

to the neutrino sector partly because of the suppression of small-scale clustering due to massive

neutrinos (see § 1.6). Neutrinos are a form of “hot dark matter” and can free-stream out of matter

overdensities. This allows e. g., an upper limit to be put on
∑
mν . Indeed, the value of the best

upper limit (0.12 eV 12; Palanque-Delabrouille et al., 2015) is beginning to approach the lower

limits given by neutrino oscillation experiments (Esteban et al., 2017; Forero et al., 2012, 2014;

Gonzalez-Garcia et al., 2014), which are different depending on the mass hierarchy of the three

neutrino mass eigenstates, i. e., the relative masses of the different species. In the normal hierarchy

(implying
∑
mν & 0.06 eV), there are two light and one heavy neutrino; whereas in the inverted

hierarchy (which has a higher lower limit
∑
mν & 0.1 eV), there are two heavy and one light

neutrino (Capozzi et al., 2016). The ability to identify the mass hierarchy of the neutrinos will

have implications for particle physics, which currently does not have a thorough understanding of

why neutrinos are massive. There are two leading mechanisms: the Dirac mechanism (Mohapatra

and Senjanović, 1980), requiring a sterile neutrino (also see below); and the Majorana mechanism

(Majorana, 1937), where the neutrino is its own antiparticle.

Second, although CDM is part of the standard cosmological model, not all extended models

that allow part of the dark matter to be another species are ruled out by current observations.

One example of this is warm dark matter (WDM); an example of a candidate particle is the sterile

neutrino (Adhikari et al., 2017). WDM would suppress small-scale clustering in a similar way as

neutrinos by free-streaming. Cosmological observations of small-scale clustering allow lower limits

to be placed on the mass of the WDM particle (see § 1.6; Iršič et al., 2017b). Interest remains

in WDM models because they have been suggested to resolve some of the “small-scale crisis” in

CDM (e. g., Weinberg et al., 2015): discrepancies between observations and cosmological CDM

simulations on small scales (although many of these problems have now been resolved without

WDM; e. g., Brooks and Zolotov, 2014).

1295 % confidence limit.
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1.6 Cosmological observables

1.6.1 The cosmic microwave background

As discussed in § 1.3.3, the CMB is the background EM radiation, which decoupled shortly after

recombination; owing to cosmological redshift, its spectrum today peaks at microwave frequencies.

It was first observed by Penzias and Wilson (1965) and identified by Dicke et al. (1965), providing

key evidence for the Big Bang cosmological model. The COBE satellite (Boggess et al., 1992;

Mather et al., 1990) measured its near-perfect blackbody spectrum (FIRAS instrument; Mather

et al., 1994), implying that the CMB was once in thermal equilibrium. It is observed to have

a near-uniform temperature of 2.7 K, but COBE also made the first measurement of the small

temperature anisotropies of order 1 in 100,000 (DMR instrument; Smoot et al., 1992). The

large-scale isotropy of the CMB is key evidence to support the cosmological principle (see § 1.1).

Precise measurement of these small anisotropies underpins our determination of cosmological

parameters. As explained in § 1.3.2, these anisotropies are sourced by primordial perturbations that

themselves are understood to have originated in the early inflationary expansion (§ 1.4). We also

learn about the contents and evolution of the Universe as these leave their imprint on the CMB both

before and after decoupling. It follows that there have been numerous experiments to make ever

more precise measurements; some of the early experiments include Saskatoon (Netterfield et al.,

1997), BOOMERanG (de Bernardis et al., 2000) and MAXIMA (Hanany et al., 2000). There have

been two further generations of satellite experiments: WMAP (Bennett et al., 2003a) and Planck

(Planck Collaboration et al., 2011); these have been complemented by high-resolution ground-based

experiments, ACT (Das et al., 2011a) and SPT (Keisler et al., 2011)13.

As mentioned in § 1.3.3, the CMB is linearly polarised at the last scattering surface when

the quadrupole of the photon anisotropies Compton scatters off the electron distribution. Linear

polarisation can be decomposed into Stokes Q and U parameters (relative to some coordinate

basis) and these are what is directly measured; angular power spectra can be constructed from

their anisotropies in an equivalent way as the temperature anisotropies. However, these do not

allow rotationally-invariant measures of angular power spectra and so it is useful to decompose

into scalar E and and pseudo-scalar B modes (Kamionkowski et al., 1997; Seljak and Zaldarriaga,

1997, see § 3.4.2 for more details about E-B decomposition). CMB (E-mode) polarisation was first

detected by the DASI experiment (Kovac et al., 2002). CMB polarisation anisotropies provide even

more statistical power than the temperature modes in constraining cosmological parameters (Galli

13See https://lambda.gsfc.nasa.gov/product/expt for a comprehensive list of CMB experiments.
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Planck Collaboration: The Planck mission

Fig. 7. Maximum posterior CMB intensity map at 50 resolution derived from the joint baseline analysis of Planck, WMAP, and
408 MHz observations. A small strip of the Galactic plane, 1.6 % of the sky, is filled in by a constrained realization that has the same
statistical properties as the rest of the sky.
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Fig. 8. Maximum posterior amplitude Stokes Q (left) and U (right) maps derived from Planck observations between 30 and 353 GHz.
These mapS have been highpass-filtered with a cosine-apodized filter between ` = 20 and 40, and the a 17 % region of the Galactic
plane has been replaced with a constrained Gaussian realization (Planck Collaboration IX 2015). From Planck Collaboration X
(2015).

viewed as work in progress. Nonetheless, we find a high level of
consistency in results between the TT and the full TT+TE+EE
likelihoods. Furthermore, the cosmological parameters (which
do not depend strongly on ⌧) derived from the T E spectra have
comparable errors to the TT -derived parameters, and they are
consistent to within typically 0.5� or better.

8.2.2. Number of modes

One way of assessing the constraining power contained in a par-
ticular measurement of CMB anisotropies is to determine the
e↵ective number of a`m modes that have been measured. This
is equivalent to estimating 2 times the square of the total S/N
in the power spectra, a measure that contains all the available

16

Figure 1.2: A map of the CMB temperature anisotropies as jointly inferred from data from the

Planck and WMAP satellites and 408 MHz observations (Haslam et al., 1982). This figure is taken

from Planck Collaboration et al. (2016a).

et al., 2014) and so there is a continuing effort for precise measurements. As discussed in § 1.4,

primordial gravitational waves are a potential primordial source of CMB B modes and detection

would provide key evidence to support the theory of inflation (this conclusion is complicated by

cosmic defect models which can also source B modes; see e. g., Magueijo and Brandenberger 2000

for a review). As I will discuss below, this is (further) complicated by the presence of dominant

secondary sources (from weak gravitational lensing and foreground Galactic polarised microwave

emission); the POLARBEAR experiment has made the first detection of lensing B modes (The

Polarbear Collaboration: P. A. R. Ade et al., 2014). There are numerous current and upcoming

experiments in pursuit of primordial and lensing B-mode detection (see e. g., Errard et al. 2015

for a summary and forecast on their cosmological constraining power). The current best limit

on the tensor-to-scalar ratio from CMB B modes is from the BICEP2 and Keck Array experiments

(combined with other datasets: r < 0.07 14; BICEP2 Collaboration et al., 2016).

Figure 1.2 shows the highest-resolution full-sky map to date of the CMB temperature anisotropies.

Although most of the information can be extracted in the angular power spectrum (since the modes

1495 % confidence limit.

37



18 J. W. Henning, J.T. Sayre, C. L. Reichardt, et al.

Fig. 7.— Summary of recent TT measurements (Planck Collaboration et al. 2016a; Louis et al. 2016) with the results of this work. The
spectrum is plotted on a log-scale at ` < 30 (vertical dashed line) and otherwise scaled by `0.6. The solid gray line is the best-fit ⇤CDM
model to the Planck plikHM TT lowTEB dataset. Di↵erences in power between experiments at high ` are caused by varying levels of
foreground masking and/or component fitting in the respective analyses.

Fig. 8.— Summary of recent EE measurements (Planck Collaboration et al. 2016a; Keck Array and BICEP2 Collaborations et al. 2015;
Louis et al. 2016) with the results of this work. The spectrum is plotted on a log-scale at ` < 30 (vertical dashed line) and otherwise
scaled by `0.6. The solid gray line is the best-fit ⇤CDM model to the Planck plikHM TT lowTEB dataset. Di↵erences in power at high
` between ACTPol and SPTpol data are caused by varying levels of foreground masking. Planck data are restricted to ` < 1750.

Figure 1.3: The CMB temperature angular power spectrum (DTT
` = `(`+ 1)CTT

` ). The data-points

are measurements from the ACTPol (Louis et al., 2017), Planck (Planck Collaboration et al., 2016f)

and SPTpol (Henning et al., 2017) experiments. The grey line is the best-fit ΛCDM model as

inferred by Planck. This figure is taken from Henning et al. (2017).

are almost exactly Gaussian distributed), maps still have a vital use. This includes searching

for the signatures of e. g., anisotropic backgrounds and primordial non-Gaussianity; secondary

contributions like the integrated Sachs-Wolfe (ISW) effect (see below), reconstruction of the lensing

potential and the Sunyaev-Zel’dovich (SZ) effect (Sunyaev and Zeldovich, 1970); and to be used in

cross-correlation with other non-CMB maps. Maps are also made of the polarisation Q, U , E and B

modes, with equivalent uses. Since at any single frequency, a map of the CMB is contaminated by

foreground emission (see below), it is necessary to appropriately combine maps as measured at

different frequencies in order to separate the cosmological and foreground signals. Ways to improve

this “component separation” in both temperature and polarisation are the focus of Chapters 2 and 3.

Figure 1.3 shows the best-fit ΛCDM model CMB temperature angular power spectrum as inferred

from observations by the Planck satellite. There is an excellent agreement between data and model

for a wide range of angular scales. The acoustic oscillations in the primordial baryon-photon

plasma (from which the CMB photons decoupled) discussed in § 1.3.3 leave a clear imprint on

the angular power spectrum, in the periodic peaks and troughs. Modes that have undergone a

half-integer number of oscillations at recombination are maximally rarefied or compressed at photon

decoupling. It follows that structure on these scales, which are the harmonics of the sound horizon
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at recombination, is enhanced relative to intermediate scales – forming the acoustic peaks and

troughs. Another striking feature of the angular power spectrum is the damping tail on small

scales. This arises because the finite speed sound in the plasma means that photons and baryons

are not perfectly coupled and the photons have a small non-zero mean free path. This smooths

out structure smaller than a characteristic diffusion length-scale (Silk, 1968). There is a slight

increase in power on the very largest scales due to the ISW effect (Rees and Sciama, 1968), where

the energy of CMB photons changes because they travel through evolving potentials (which decay

at late times due to dark energy). The overall scale-dependence of the angular power spectrum

indicates the scale-dependence of the primordial power spectrum, especially on large scales, where

the modes were super-horizon at recombination and so less evolved than those that had been in

causal contact. The positions of the acoustic peaks constrain a combination of the curvature and

dark energy density fractions, due to their geometric effect on the angular diameter distance to the

last scattering surface. The ratios of the odd and even numbered peaks constrain the baryon energy

density fraction, since an increase in the baryon fraction increases this ratio (and vice versa). This is

because an increased baryon fraction causes the baryon-photon plasma to compress further than it

rarefies. The amplitudes of the small-scale peaks constrain the dark matter energy density fraction,

since an increased fraction (at fixed baryon fraction so that the total matter fraction increases)

reduces the effect of radiation driving, where in radiation-domination, gravitational potentials decay,

increasing plasma oscillation amplitudes. Measurement of the damping tail constrains the fraction

of relativistic matter (in particular, neutrinos). An important late-time effect is weak gravitational

lensing of the CMB by matter between the last scattering surface and us. The arcminute deflections

of CMB photons tend to smooth the amplitudes of the small-scale peaks and troughs.

The E-mode angular power spectrum (first detected by DASI; Kovac et al. 2002) and the TE

cross-spectrum (first detected by WMAP; Kogut et al. 2003) have also been measured to high

precision up to very small scales (BICEP2 and Keck Array Collaborations et al., 2015; Henning et al.,

2017; Louis et al., 2017; Planck Collaboration et al., 2016f). Figure 1.4 illustrates the challenge of

primordial B-mode detection. It is already an intrinsically low-amplitude signal, many orders of

magnitude fainter than the T and E modes, which therefore requires very sensitive instrumentation

to be observed. In addition, on arcminute scales, it is superposed with modes generated by weak

gravitational lensing of E modes. These modes contain important information about the matter

distribution at high redshift (particularly at z ∼ 2) and will place constraints on neutrino properties.

As mentioned above, this signal has now been detected (Ade et al., 2015; Keisler et al., 2015; The

Polarbear Collaboration: P. A. R. Ade et al., 2014). As will be discussed below, both these signals are
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Figure 2. Left panel: Angular power spectra showing primordial B modes, lensing B modes,
total intensity, and E modes, as well as the total contribution of polarized B-mode foregrounds
(dust plus synchrotron), expected on the cleanest 1–90% of the sky, at 100 and 200 GHz. Note
that, as these results are derived from Planck ’s Galactic masks and are not therefore optimized for
high-resolution, ground-based instruments, there is potential for discovery of small patches of sky
(e.g., fsky . 5%) cleaner than those indicated here. Right panel: The ratio of power spectra of
foreground and lensing B modes to primordial B modes, assuming a tensor-to-scalar ratio r = 1.
The contours indicate, in e↵ective values of r, the contamination due to foregrounds and lensing on
primordial B-mode measurements. The x- and y-axes correspond to the multipole ` and frequency
of observation, in GHz, respectively. The level of input foregrounds are estimated on a 50% patch
of the sky.

2.1 Foreground removal

As illustrated in Fig. 2, polarized contamination from astrophysical foregrounds is an un-
avoidable challenge in the quest for primordial B-mode measurements. The left panel
shows CMB temperature, E-mode and B-mode angular spectra for di↵erent values of the
tensor-to-scalar ratio r, as well as the expected amplitude of dust and synchrotron B
modes, estimated using various portions of the Planck data [23]. The right panel shows,
as a function of frequency of observation and multipole `, the ratio of foreground plus
lensing B modes to primordial B modes, assuming a tensor-to-scalar ratio r = 1. Outside
the half-sky Galactic mask that was considered, the minimum contamination is reached
at multipole ` ⇡ 80 and frequency ⌫ ⇡ 74 GHz (as confirmed by Ref. [45, 46]). This
foreground-minimum region has an e↵ective foreground amplitude of r ⇠ 0.1. Reaching
values of r less than 0.1 (or, indeed, improving the significance of any future detection of
r of this magnitude) therefore requires highly e↵ective cleaning of both foregrounds and
lensing B modes.

– 4 –

Figure 1.4: The CMB temperature TT and polarisation EE and BB angular power spectra as pre-

dicted by the ΛCDM model. The BB angular power spectrum is split into its possible contributions.

The contribution from Galactic polarised dust and synchrotron emission is shown in the coloured

bands, for different fractions of the full sky and as seen at different frequencies. The contribution

from weak lensing modes is the grey line, peaking on arcminute scales. The contribution from

primordial modes is shown for different values of the tensor-to-scalar ratio r. This figure is adapted

from Errard et al. (2015).
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Planck Collaboration: The Planck mission

Fig. 15. Maximum posterior amplitude polarization maps derived from the Planck observations between 30 and 353 GHz
(Planck Collaboration X 2015). The left and right columns show the Stokes Q and U parameters, respectively. Rows show, from top
to bottom: CMB; synchrotron polarization at 30 GHz; and thermal dust polarization at 353 GHz. The CMB map has been highpass-
filtered with a cosine-apodized filter between ` = 20 and 40, and the Galactic plane (defined by the 17 % CPM83 mask) has been
replaced with a constrained Gaussian realization (Planck Collaboration IX 2015).
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Fig. 16. Brightness temperature rms as a function of frequency and astrophysical component for temperature (left) and polarization
(right). For temperature, each component is smoothed to an angular resolution of 1� FWHM, and the lower and upper edges of each
line are defined by masks covering 81 and 93 % of the sky, respectively. For polarization, the corresponding smoothing scale is 400,
and the sky fractions are 73 and 93 %.

10. Planck 2015 cosmology results

Since their discovery, anisotropies in the CMB have contributed
significantly to defining our cosmological model and measuring
its key parameters. The standard model of cosmology is based
upon a spatially flat, expanding Universe whose dynamics are
governed by General Relativity and dominated by cold dark mat-
ter and a cosmological constant (⇤). The seeds of structure have
Gaussian statistics and form an almost scale-invariant spectrum
of adiabatic fluctuations. The 2015 Planck data remain in excel-

lent agreement with this paradigm, and continue to tighten the
constraints on deviations and reduce the uncertainty on the key
cosmological parameters.

The major methodological changes in the steps going
from sky maps to cosmological parameters are discussed
in Planck Collaboration XII (2015); Planck Collaboration XIII
(2015). These include the use of Planck polarization data in-
stead of WMAP, changes to the foreground masks to include
more sky and dramatically reduce the number of point source
“holes,” minor changes to the foreground models, improve-
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Figure 1.5: RMS brightness temperature as a function of frequency for various astronomical

foreground components and the CMB for (left) temperature and (right) polarisation. The grey

bands in the background show the frequency response of each Planck channel. This figure is taken

from Planck Collaboration et al. (2015a).

contaminated by the polarised emission from Galactic dust and synchrotron. Even at the frequency

where the foreground signal is smallest and in the cleanest 1 % of the sky, the primordial signal is

very contaminated. The development and testing of methods to overcome this obstacle is the focus

of Chapter 3.

Figure 1.5 shows the RMS brightness temperature as a function of frequency for astrophysical

microwave-frequency foregrounds and compares them to the CMB. It can be seen that for temperat-

ure anisotropies, there is only a small window of frequencies (around 80 GHz) where the CMB is of

the same order of magnitude as the sum of contaminants. Meanwhile, for polarisation, foregrounds

are dominant at all frequencies.

A significant source of contaminating radiation to the CMB temperature anisotropies derives

from warm (about 10 - 100 K) interstellar dust grains in the Milky Way (see review in e. g., Dunkley

et al. 2009; red bands in Fig. 1.5). These emit thermal radiation and dominate the foreground

signal at high frequencies. This radiation comes from almost the entire sky, though it is particularly

concentrated in the Galactic plane, as is most foreground signal (Planck Collaboration et al., 2016b).

Free-free emission or bremsstrahlung (dark blue band in Fig. 1.5) comes from electron-electron

scattering events in warm (104 K) ionised gas in the interstellar medium (ISM). This is a dominant

foreground at low frequencies. Synchrotron photons are emitted by electrons accelerated in the

Galactic magnetic field (green bands in Fig. 1.5). Synchrotron emission, though still concentrated

along the Galactic equator, extends far into the “cirrus” part of the Milky Way at higher Galactic

latitudes. Spinning dust emission (Draine and Lazarian, 1998, yellow band in Fig. 1.5) is the
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preferred explanation for observed anomalous microwave emission (Kogut et al., 1996). It would

arise from the electric dipole of rapidly spinning (10 - 60 GHz), small (nm) dust grains, most

probably polycyclic aromatic hydrocarbons. There are also various line emissions at the microwave

frequencies of interest, in particular from rotational transitions of carbon monoxide (CO; the CO

J = 1→ 0 emission is the black and white band in Fig. 1.5).

Polarised foregrounds are brighter (with respect to the CMB; see Fig. 1.5) and even more

complex. The thermal emission from dust grains is polarised due to the alignment of aspherical

grains in the Galactic magnetic field. The grains experience radiative torque by photon interactions

(Planck Collaboration et al., 2015e). When spinning, the grains align their longest axis perpendicular

to the local magnetic field. The grains then emit and absorb radiation most efficiently along their

long axis forming a polarisation which traces the structure of the magnetic field in the Milky

Way. What is more, there are multiple populations of dust grains: a mixture of silicates and

carbonaceous grains with different temperatures, emissivities and polarisation efficiencies lying

in different magnetic field alignments. This forms a very complicated foreground signal, again

concentrated along the Galactic equator. Polarised thermal dust emission dominates over the CMB

at high frequencies. Synchrotron emission is also polarised and again traces interstellar magnetic

fields. Polarised synchrotron emission dominates over the CMB at low frequencies. Other polarised

foregrounds include free-free emission (polarised by Thomson scattering at the edges of HII regions)

and so-called anomalous emission (electric or magnetic dipole emission from rapidly rotating dust

grains).

Another set of foregrounds is compact or point sources of both Galactic and extragalactic origin.

These normally undergo special handling in CMB analysis by either subtracting flux or masking

appropriately. Planck Collaboration et al. (2015f) gives a catalogue of compact sources as identified

in Planck data.

As mentioned above, the CMB is gravitationally lensed by intervening matter between the last

scattering surface and the observer (see Lewis and Challinor 2006 for a good review). The photon

deflections are of order arcminute scales; CMB lensing is the dominant source of power in the TT

angular power spectrum for ` & 3000 (in the absence of other secondary effects). On larger scales,

lensing smoothes the acoustic peaks and troughs of the TT power spectrum at the percent level

(Hu, 2000). It similarly smoothes the TE and EE angular power spectra. As mentioned above, the

lensing of CMB E modes is a significant source of B modes on arcminute scales (see Fig. 1.4), a

contamination to the possible primordial signal. Lensing of the CMB also induces non-Gaussian

signatures (Amblard et al., 2004; Jain et al., 2000), which can be measured by higher-order point
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functions. The deflection angle of CMB photons can be expressed to first order as the gradient of a

“lensing potential,” itself an integrated form of the gravitational potential along the line-of-sight.

This lensing potential can be reconstructed using statistical properties of the unlensed CMB (Hu,

2001a,b; Hu and Okamoto, 2002; Zaldarriaga and Seljak, 1999). On large scales, the gravitational

potential is Gaussian and hence so is the lensing potential; all the information can be captured by a

lensing potential power spectrum, which peaks on degree scales. Furthermore, the CMB can then

be “de-lensed;” this is of particular interest for removing contamination to primordial B modes (Hu,

2002).

Lensing is not simply a contamination to the unlensed CMB; the reconstruction of the lensing

potential is a powerful cosmological probe in itself. The kernel of the integration of the gravitational

potential that forms the lensing potential peaks at higher redshifts (z ∼ 2) than the equivalent for

galaxy weak lensing (z . 0.5; see § 1.6.2) and so the large-scale (integrated) matter distribution can

be probed at high redshift. Moreover, e. g., the lensing potential power spectrum is more sensitive

to neutrino masses than the unlensed CMB anisotropies (Kaplinghat et al., 2003) and the cross-

correlation to the TT angular power spectrum is sensitive to the ISW effect (Seljak and Zaldarriaga,

1999). CMB lensing was first detected by cross-correlation between the CMB as observed by WMAP

and counts of radio galaxies (Smith et al., 2007). It was first detected in the CMB alone by ACT

(Das et al., 2011b).

1.6.2 The large-scale structure of matter

Cosmological observation extends beyond the CMB radiation anisotropies presented in § 1.6.1; we

also learn about the Universe by measuring the matter inhomogeneities. The CMB is a powerful

source of information especially about the early Universe and is less affected by late-time evolution.

The large-scale structure of matter informs us about this late-time evolution (e. g., the effect of

dark energy), as well as the initial conditions from which the matter perturbations grew. Moreover,

there is intrinsically more statistical power in large-scale structure, since the number of CMB

modes is limited by the two-dimensional surface from which they came (there are ∼ 106 accessible

temperature modes). There is more information to be accessed through CMB polarisation and the

CMB is partly sensitive to the late-time matter distribution through e. g., CMB lensing. Nonetheless,

current and future surveys of tracers of the matter distribution will access & 109 modes throughout

the three-dimensional volume from us to high redshifts.

Like the angular power spectra for the CMB, most of the information in the matter fluctuations
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Fig. 5.— The reconstructed matter power spectrum: the stars show the power spectrum from combining ACT and WMAP data (top
panel). The solid and dashed lines show the nonlinear and linear power spectra respectively from the best-fit ACT ⇤CDM model with
spectral index of ns = 0.96 computed using CAMB and HALOFIT (Smith et al. 2003). The data points between 0.02 < k < 0.19 Mpc�1

show the SDSS DR7 LRG sample, and have been deconvolved from their window functions, with a bias factor of 1.18 applied to the data.
This has been rescaled from the Reid et al. (2010) value of 1.3, as we are explicitly using the Hubble constant measurement from Riess et al.
(2011) to make a change of units from h�1Mpc to Mpc. The constraints from CMB lensing (Das et al. 2011), from cluster measurements
from ACT (Sehgal et al. 2011), CCCP (Vikhlinin et al. 2009) and BCG halos (Tinker et al. 2011), and the power spectrum constraints
from measurements of the Lyman–↵ forest (McDonald et al. 2006) are indicated. The CCCP and BCG masses are converted to solar mass
units by multiplying them by the best-fit value of the Hubble constant, h = 0.738 from Riess et al. (2011). The bottom panel shows the
same data plotted on axes where we relate the power spectrum to a mass variance, �M/M, and illustrates how the range in wavenumber k
(measured in Mpc�1) corresponds to range in mass scale of over 10 orders of magnitude. Note that large masses correspond to large scales
and hence small values of k. This highlights the consistency of power spectrum measurements by an array of cosmological probes over a
large range of scales.

Figure 1.6: The matter power spectrum today (z = 0). The dotted line is the linear power spectrum

and the solid line is the non-linear power spectrum; both are the best-fit ΛCDM model as inferred

by CMB observations from ACT. The non-linearities are computed using HALOFIT (Smith et al.,

2003). The data-points are as indicated in the legend; details of the datasets are given in Hlozek

et al. (2012). The Lyman-alpha forest (LyA) is discussed in § 1.6.3. This figure is adapted from

Hlozek et al. (2012).

44



(on large scales k . 0.15hMpc−1; Sefusatti and Scoccimarro, 2005) is encapsulated by their two-

point function15; in Fourier space, this is the matter power spectrum. Figure 1.6 shows the matter

power spectrum as it is inferred to be today in the ΛCDM model. The dotted line is the linear power

spectrum and is the expectation from linear perturbation theory (as set out in § 1.3.3); in the linear

regime, the Fourier modes evolve independently. The main features of the linear power spectrum

are determined by when the modes enter the horizon. The very largest modes are super-horizon

and unaffected by causal processes. On intermediate scales, the modes enter the horizon after

matter-radiation equality and grow proportional to the scale factor during matter-domination. All

modes stop growing in Λ-domination and stay constant as gravitational potentials decay in the

accelerated expansion. However, the smallest scales enter the horizon before matter-radiation

equality and during radiation-domination, their growth is suppressed by the radiation pressure.

This means that the power in these modes is suppressed by a factor of ∼ k−4 relative to the larger

scales. When this is superposed on the (nearly) scale-invariant initial power spectrum Pm(k) ∝ k

(Harrison, 1970; Peebles and Yu, 1970; Zeldovich, 1972)16, the small-scale tail scales ∝ k−3,

forming the characteristic turn-over at the horizon scale at matter-radiation equality. The other

significant feature of the matter distribution is the imprint from the acoustic oscillations in the

primordial baryon-photon plasma (BAO; see § 1.3.3 and 1.6.1) at the scale of the sound horizon

at recombination. Although this feature is more distinctive in the real space two-point function

(the correlation function), it is observable in the power spectrum as wiggles at k ∼ 0.04 Mpc−1. In

Fig. 1.6, the solid line is the non-linear power spectrum. It is enhanced on small scales relative to the

linear power spectrum due to the non-linear gravitational collapse of structures and is sensitive to

the baryonic physics of galaxy formation. It is understood through cosmological simulations, which

I will discuss in § 1.7. The measurements of the linear power spectrum from different observables

and surveys are in excellent agreement with the ΛCDM theory; details of the different datasets are

given in Hlozek et al. (2012). I highlight here the measurements of the small-scale linear power

spectrum from the Lyman-alpha forest (LyA), which I will discuss in § 1.6.3.

The total matter distribution (which includes baryons and dark matter) is inferred by the

observation of tracers. These are in general luminous objects like galaxies, galaxy clusters or quasars

(high-redshift active galactic nuclei); or diffuse fields like neutral hydrogen through e. g., 21 cm

emission or Lyman-alpha forest absorption (see § 1.6.3). The dark matter distribution can be more

15There is more information in the higher-order point functions and this is an active area of research.
16The (near) scale-invariance refers to the dimensionless primordial curvature power spectrum (Eq. (1.11)). This implies

in the weak-field limit that the dimensionless power in fluctuations in the gravitational potential (k3PΦ) is constant, where
Φ is the fluctuation in the potential. By Poisson’s equation, the matter fluctuation δm ∝ k2Φ and so the matter power
spectrum Pm(k) = 〈|δm|2〉 ∝ k4〈|Φ|2〉 ∝ k4PΦ ∝ k.
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directly probed by measuring the weak gravitational lensing of the CMB or galaxies, whose observed

shapes are distorted by intervening matter. Galaxy surveys have historically informed us about

the large-scale distribution of matter. One of the first such datasets was the Lick galaxy catalogue

(1967; re-mapped by Seldner et al., 1977). As early as the 1970s, it was realised that galaxies are

not randomly distributed but form distinct structures (what we today term the “cosmic web”; see

§ 1.3.3). The Lick catalogue only gave the angular positions of galaxies on the sky (being formed

only from photographic plates). The first major three-dimensional survey (measuring redshifts as

well as angular positions) was the CfA Redshift Survey (1977 - 1982; Davis et al., 1982), which

further revealed the clusters, filaments and voids that galaxies assemble. This was followed by CfA2

(1985 - 1995; de Lapparent et al., 1986), which, among other things, discovered the “Great Wall”

(Geller and Huchra, 1989), a sheet of galaxies spanning hundreds of Mpc. The formation of such

large structures was not understood at the time, but these are now understood to have been sourced

in primordial inflationary perturbations (see § 1.4). These surveys were superseded by e. g., APM

(1990s; Maddox et al., 1990) and the 2dF Galaxy Redshift Survey (1997 - 2002; Peacock et al.,

2001), whose large survey volumes allowed the precise determination of cosmological parameters

like the matter fraction. The major modern galaxy survey is SDSS (1998 - today; Abazajian et al.,

2003), within which latterly BOSS (2008 - 2014; Dawson et al., 2013) has the task of mapping the

three-dimensional distribution of luminous red galaxies and quasars.

Indeed, there are numerous current and upcoming photometric, spectroscopic and radio surveys.

Spectroscopic surveys (e. g., BOSS17, DESI18) measure the full spectrum of the EM radiation from

galaxies or quasars and are able to accurately measure their redshifts. Photometric surveys (e. g.,

SDSS19, DES20, LSST21, Euclid22) only measure the spectrum of the light from these objects in a

few integrated photometric bands and have to estimate the redshifts from this limited information.

Radio surveys (e. g., SKA23) e. g., aim to measure the high-redshift 21 cm emission.

These observables do not exactly map the dark matter distribution and in general will be biased

tracers. On large scales, this bias can be linearly modelled (Kaiser, 1984), such that the overdensity

in the tracer δs can be related to the matter overdensity δm by a linear bias parameter b:

δs = b(1 + βµ2)δm, (1.13)

17http://www.sdss3.org/surveys/boss.php
18http://desi.lbl.gov
19http://www.sdss.org
20http://www.darkenergysurvey.org
21https://www.lsst.org
22https://www.euclid-ec.org
23https://skatelescope.org
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where µ is the cosine of the angle away from the line-of-sight, such that along the line-of-sight

µ = 1. Here, I have additionally included the multiplicative term (1 + βµ2) to model large-scale

linear redshift-space distortions (RSD; Kaiser, 1987), where β is the linear RSD parameter. This

is an observational effect where on large scales, overdensities appear compressed towards the

line-of-sight. This is due to the coherent peculiar velocities of objects on the edge of an overdensity

pointing towards the centre. This changes their measured redshift such that objects on the far

side of an overdensity along the line-of-sight appear closer than they are and objects on the near

side appear further away. This “flattens” the overdensity along the axis of the line-of-sight and

enhances the apparent overdensity by a factor β, the redshift-space distortion parameter24. There

is no effect in the direction transverse to the line-of-sight since only line-of-sight velocities are

measured. Objects like galaxies or galaxy clusters in general have a bias b > 1, since they form at

the peaks of the underlying matter density distribution (although this is not true for all populations).

However, some tracers are less clustered than the dark matter and have a bias b < 1. Indeed, e. g.,

the transmitted flux of the Lyman-alpha forest has |b| < 1 and, in fact, the bias is negative because

more flux is transmitted in matter underdensities (since there is less absorption by neutral hydrogen;

see § 1.6.3 for more details).

1.6.3 The Lyman-alpha forest

The Lyman-alpha forest is the absorption in quasar spectra from neutral hydrogen (HI) along the

line-of-sight due to the Lyman-alpha transition from the ground to the first excited state. Quasars

are very luminous sources at the centres of galaxies (essentially the emission from central accretion

discs around supermassive black holes) and as a consequence can be observed at high redshifts. As

their radiation travels towards us, the Lyman-alpha line (at a rest wavelength of 1216 Å) is absorbed

by intervening HI (and re-emitted isotropically so as to leave the absorption line). However, the

lines from previous absorption are continuously redshifted such that a series (or “forest”) of lines is

formed. The first proposed cosmological use was to search quasar spectra for the Gunn-Peterson

trough (Gunn and Peterson, 1965). If the intergalactic medium (IGM) is completely neutral then

the absorption lines of the forest would form a single absorption “trough” in the spectrum. The lack

of a Gunn-Peterson trough at low redshifts showed that the Universe reionised and the identification

of troughs at high redshifts helps to determine the redshift of (hydrogen) reionisation (see § 1.3.3).

The first Gunn-Peterson trough was identified at z = 6.3 (Becker et al., 2001); the exact connection

24This is the opposite effect as the small-scale non-linear RSD which form the “fingers of God.” Here, random peculiar
velocities in collapsed structures make overdensities appear elongated along the line-of-sight.
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to the redshift of reionisation is complicated by its patchy nature. Croft et al. (1998) proposed that

the statistics of the absorption could be used to infer the clustering of matter at the high redshifts

at which the Lyman-alpha forest is observed (2 . z . 6). This was supported by the advances in

simulating the Lyman-alpha absorption in a cosmological context (Hernquist et al., 1996, see § 1.7),

allowing the absorption statistics to be related to cosmological parameters.

The gas forming the Lyman-alpha forest is low-density (specifically defined as having column

density < 1.6× 1017 atoms cm−2; Wolfe et al., 1986). This means that there exists a tight relation

between the density (ρ) and temperature (T ) of the gas (T ∝ (ρ/ρ)α, where ρ is the mean density

and α is a constant), determined by the rates of photoionisation heating and adiabatic cooling (Hui

and Gnedin, 1997); although, as discussed below, uncertainty in this relation limits cosmological

parameter inference. Simulations of the Lyman-alpha forest show that there is no clear distinction

between individual absorption lines and the Lyman-alpha forest is better characterised as absorption

formed by a smoothly fluctuating IGM (Hernquist et al., 1996). Although the redshifts at which

the Lyman-alpha forest is observed are later than the epoch of reionisation, because Lyman-alpha

absorption has a particularly large cross-section, even a very small fraction of neutral hydrogen

remaining will form a saturated absorption line. At z ∼ 6, when the Gunn-Peterson trough is giving

way to the Lyman-alpha forest, the neutral fraction is already ∼ 10−6 (Haehnelt, 1995) and it

continues to decrease as the Universe evolves.

When quasar sightlines are closely separated, modern surveys can use the absorption lines

of the Lyman-alpha forest to tomographically map the three-dimensional distribution of HI and

hence infer the total matter distribution (Caucci et al., 2008; Krolewski et al., 2017; Lee et al.,

2014; Pichon et al., 2001). Wide-angle surveys (e. g., BOSS and, in the future, DESI) measure the

statistics (i. e., the two-point function) of the fluctuations in the transmitted flux. On large scales,

these fluctuations are modelled as biased tracers of the matter density fluctuation distribution with

redshift space distortions (Eq. (1.13)) and the correlation function (and cross-correlation to the

quasar distribution) is used to measure the BAO feature (see § 1.6.2) at high redshift (z ∼ 2.3;

Bautista et al., 2017; Busca et al., 2013; Delubac et al., 2015; du Mas des Bourboux et al., 2017;

Font-Ribera et al., 2013, 2014a; Kirkby et al., 2013; Slosar et al., 2011, 2013). On small scales, the

one-dimensional flux power spectrum (integrated over directions transverse to the line-of-sight)

is used to measure the small-scale linear matter power spectrum (see Fig. 1.6; Armengaud et al.,

2017; Iršič et al., 2017a,b; Palanque-Delabrouille et al., 2015; Seljak et al., 2005; Yeche et al.,

2017). The one-dimensional power spectrum can actually probe a wide range of (line-of-sight)

scales (0.1hMpc−1 . k|| . 10hMpc−1). This is achieved by combining a large number of lower
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FIG. 7: Evolution of the normalized perturbation growth fac-
tor g ≡ (δb/a) at comoving scales of k = 0.1, 0.5 hMpc−1

for different axion masses (colored curves). Here we use an
evolving-axion-mass model with atr = 7× 10−5. Black curves
represent the growth factor of the fiducial ΛCDM model.

FIG. 8: Matter and CMB temperature anisotropy power spec-
tra expected in a model containing small fraction of massive
neutrino component, where we have used the CAMB soft-
ware [37]. Here we consider massive neutrinos (Nν = 3.04)
whose mass ranges from mν = 0.154 eV (Ων0 = 0.01; red)
to 0.769 eV (Ων0 = 0.05; violet curves), with a relation
(Ων0 + Ωc0)h

2 = 0.1123. Black curves represent the power
spectrum of the fiducial ΛCDM model with massless neutri-
nos. The curves in the bottom panels indicate the ratios of
powers relative to the ΛCDM model prediction.

compare the small-scale suppression of our low-mass ax-
ion model with those models. In Fig. 8 we present the
case of massive neutrinos contributing as the hot dark
matter added to the dominant CDM model. The results
are similar to those found in Ref. [36].

Although the low-mass axion dark matter model shows
a sharp damping in the baryonic matter power spectrum,
the CDM model with a small fraction of massive neutri-

nos gives a damping of power with almost constant fac-
tor at k > 0.1 hMpc−1. Besides, the CMB anisotropy
power spectrum is very sensitive to the massive neutrino
contribution; the massive neutrinos affect all the acous-
tic oscillatory features at intermediate and high angular
scales (ℓ ! 100). On the other hand, the behavior of the
axion dark matter model is quite different, and is almost
insensitive to the axion mass except at the higher multi-
poles. In the low-mass axion case the changes from the
CDM in both power spectra occur only at scales smaller
than the axion Jeans scale.

V. DISCUSSION

In this work, we have studied effects of extremely low-
mass (m ≤ 10−24 eV) axion on the baryon matter density
and the CMB anisotropy power spectra, and the pertur-
bation growth based on the full relativistic linear per-
turbation analysis. With a low mass, however, the basic
assumption about the coherently oscillating scalar field
is inevitably broken in the early universe (H/m ≫ 1).
We have introduced the simple evolving-axion-mass-in-
the-early-universe model to avoid this problem.

We showed that axion mass smaller than 10−24 eV in-
duces the characteristic significant damping in the baryon
density power spectrum on scales smaller than the axion
Jeans scale, and changes in the higher multipole in the
CMB anisotropy power spectra. Except for small changes
in the higher multipoles (ℓ ! 1000) corresponding to the
scales smaller than the axion Jeans scale, the CMB power
spectrum remains the same as the CDM case. The CDM
nature is also preserved in the baryon matter power spec-
trum above the axion Jeans scale. We showed that the
small-scale damping nature of our low-mass axion model
differs from the one expected in the CDM model mixed
with the massive neutrinos as a hot dark matter compo-
nent.

Whether the small-scale damping of the baryon mat-
ter density power spectrum can help alleviating the ex-
cess small-scale clustering problem of the CDM model
requires further studies in the nonlinear clustering prop-
erties of the light mass axion.
Acknowledgments: J.H. was supported by KRF Grant
funded by the Korean Government (KRF-2008-341-
C00022). H.N. was supported by grant No. 2010-
0000302 from KOSEF funded by the Korean Government
(MEST).
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resolution and lower signal-to-noise spectra (e. g., BOSS) on larger scales with a smaller number of

high resolution and high signal-to-noise spectra on smaller scales (e. g., Kim et al., 2004; Viel et al.,

2004b, 2013). In current (eBOSS) and future (DESI) surveys, the power spectrum measurements

will be expanded to include the full three-dimensional flux power spectrum, providing many more

modes (Font-Ribera et al., 2017).

Figure 1.7 shows the effect of massive neutrinos on the linear matter power spectrum (see also

§ 1.5). The greater the neutrino energy density fraction today Ων (and hence the greater the sum of

the masses
∑
mν), the greater the small-scale suppression in power. The small-scale Lyman-alpha

forest flux power spectrum is very sensitive to this suppression. Indeed, the best upper limit on
∑
mν comes from the one-dimensional Lyman-alpha forest flux power spectrum in combination

with the CMB angular power spectrum to measure the large scales (Palanque-Delabrouille et al.,

2015). As mentioned in § 1.5, WDM similarly suppresses small-scale power and the Lyman-alpha

forest is sensitive to the mass of the WDM particle (e. g., Iršič et al., 2017b). The small-scale

Lyman-alpha forest power spectrum is also sensitive to the shape of the primordial power spectrum,

e. g., the running of the spectral index (see § 1.4). There is more discussion about the current and

future status of Lyman-alpha forest observations and their constraining power in § 4.2 and 5.2.

The Lyman-alpha forest is not only a powerful cosmological probe, but it is also sensitive to gas

and ionisation physics. This requires cosmology and the physics of the IGM to be simultaneously

constrained, relying on accurate simulations of the IGM (see § 1.7). Indeed, degeneracies arise

between the two, e. g., between neutrino or WDM masses and the thermal history of the IGM. A

large systematic uncertainty arises from estimation of the mean transmitted flux, which depends

on the neutral fraction of hydrogen and the quasar emitted continuum. This affects the amplitude

of the absorption correlations and so is partially degenerate with the amplitude of the density

perturbations (McDonald et al., 2005b), weakening cosmological constraints. There is also uncer-

tainty in estimating the temperature and temperature-density relation of the gas, reflecting a lack of

knowledge about the ionising photon background from stars and quasars (see § 1.3.3).

In the data analysis of the Lyman-alpha forest, the leading “foreground” contamination is the

presence of broadened absorption features from high column density (HCD) systems of HI. These

HCD absorbers have damping wings which extend along the spectrum, causing absorption away

from the location of the absorber (Font-Ribera and Miralda-Escudé, 2012; McDonald et al., 2005a),

which will bias inference from the Lyman-alpha forest. HCD absorbers are regions of HI gas that are

dense enough to self-shield their cores from the ionising ultra-violet (UV) background (Cen, 2012)

and diffuse enough to have a low star-formation rate (Fumagalli et al., 2015). Self-shielding occurs
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for column densities N(HI) > 1.6× 1017 atoms cm−2 and sets the lower limit in column density for

HCD absorbers. By contrast, lower column density absorbers form the Lyman-alpha forest and are

heavily ionised by the UV background. The relation between optical depth and density changes

with the onset of self-shielding; broadening from damping wings causes absorption in the spectrum

away from the location of the absorbing gas. The damping wings have a characteristic Voigt profile,

which is a convolution of a Gaussian profile (e. g., caused by Doppler broadening) and a Lorentzian

profile (e. g., caused by natural or collision broadening). The width of these wings in velocity space

increases with the column density of the absorbing system. High column density absorbers are

then usually classified as either damped Lyman-alpha absorbers (DLAs), whose damping wings are

considered significantly broadened and which correspond to N(HI) > 2× 1020 atoms cm−2 (Wolfe

et al., 1986); or Lyman-limit systems (LLS), which correspond to column densities in the range

2 × 1020 atoms cm−2 > N(HI) > 1.6 × 1017 atoms cm−2. The systems are formed at peaks of the

underlying density distribution; consequently, they cluster more strongly than the forest itself (Font-

Ribera et al., 2012b; Pérez-Ràfols et al., 2017). They are usually identified with the gas in or around

galaxies, but this remains an active area of research because observation of the galaxies hosting

DLAs is complicated by the presence of the illuminating background quasar on the line-of-sight.

Current observations that have been made suggest that the hosts are massive star-forming galaxies,

which are situated within metal-enriched HI gas reservoirs that extend far beyond the star-forming

interstellar medium (e. g., Neeleman et al., 2017). Attempts are made to remove these systems in

quasar spectra before cosmologcal inference (e. g., Garnett et al., 2017; Lee et al., 2013), but there

is always a residual contamination. The construction of models from cosmological hydrodynamical

simulations (§ 1.7) for their effect on one-dimensional and three-dimensional correlations in the

Lyman-alpha forest is the focus of Chapters 4 and 5.

1.7 Cosmological hydrodynamical simulations

The work presented in Chapters 4 and 5 makes use of cosmological hydrodynamical simulations

from the Illustris project (Nelson et al., 2015; Vogelsberger et al., 2014a). These simulations

need to replicate the co-evolution of dark matter and baryons on cosmological distances and

timescales. I first discuss some of the methods used to simulate the formation of structure under

Newtonian gravity. Newtonian gravity is expected to be a good approximation because the Universe

is dominated by dark matter and baryons, whose velocities and matter densities are non-relativistic.

The full problem is to solve N -body gravitational dynamics for N particles. N -body simulations
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approximate a large complex object as a point particle at its centre-of-mass (e. g., Illustris-1, the

simulation used in Chapters 4 and 5, has 18203 dark matter particles, each of mass 6.3× 106M�;

Vogelsberger et al., 2014a). This neglects internal structure on scales smaller than the mass scale of

the N -body particle (Press and Schechter, 1974; von Hoerner, 1960). In order to check that this

unresolved smaller-scale structure does not have a strong impact on results, an identical simulation

is run with a slightly lower mass resolution. In order to minimise boundary effects, periodic

boundary conditions are used, which mimics the large-scale homogeneity of the Universe.

The full N -body dynamics as implemented numerically essentially requires evaluating the

total force exerted on each particle i of mass Mi at position xi in a series of small time-steps:

Fi = GMi

∑
jMj |xi − xj |−2 (Hernquist and Katz, 1989). This direct summation method is

computationally unfeasible for a cosmological simulation. The gravitational dynamics can be

described by Poisson’s equation ∇2φ(x) = 4πGρ(x), where φ is the gravitational potential and ρ is

the density field. Once the density field is evaluated on a grid, this equation can be solved using

Fourier methods, which are much faster than direct summation (Miller and Prendergast, 1968). This

however requires the approximation of the particle-mesh approach, where particles are smoothed

to the width of a grid cell and interpolated onto a grid, which is then Fourier transformed and the

forces computed (Doroshkevich et al., 1980). This can accurately resolve long-range forces, but

has finite resolution corresponding to the grid spacing. In order to maintain the necessary dynamic

range, early codes (e. g., Efstathiou and Eastwood, 1981) used a particle mesh grid on large scales

and resolved small scales with direct summation: the so-called particle-particle-particle-mesh, or

P3M, algorithm. The modern development is the TreePM algorithm (Springel, 2005), which uses

a particle mesh on large scales, but uses a tree algorithm on small scales. This is essentially a

multipole method, which groups particles into a hierarchy of cells. TreePM is the gravity solver used

in Illustris.

Hydrodynamical simulations require a description of gas physics and pressure forces. This is

achieved by applying the fluid approximation and tracking fluid elements across a grid of cells.

The traditional use of a fixed Eulerian grid (Richtmyer and Morton, 1967) suffers from limited

resolution (like the bare particle-mesh approach above). The high dynamic range necessary for

cosmological simulations is maintained by adaptive mesh refinement (AMR; Anninos et al., 1994).

In this approach, grid cells are dynamically refined to a finer sub-grid as is necessary. There are

many simulation codes that couple hydrodynamics using AMR to a particle-mesh gravity solver, e. g.,

RAMSES (Teyssier, 2002) and ENZO (O’Shea et al., 2004). However, these codes suffer computational

overhead from having to combine a particle description of gravity and a grid-based fluid description.
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This is overcome by the use of smoothed particle hydrodynamics (SPH; Evrard, 1988; Gingold and

Monaghan, 1977; Lucy, 1977), where the fluid is sampled by a number of tracer particles, each of

which corresponds to a Lagrangian fluid element of constant density. SPH discretises the fluid in

mass (in Illustris-1, the gas particle masses are each 1.3× 106M�) rather than spatial coordinate

and so it combines well with the particle description of gravity. It automatically has a high dynamic

range because particles concentrate in areas of high matter density. A fluid description is obtained

by interpolating smoothly between particles. The formulation of SPH in the code GADGET explicitly

conserves entropy and energy (Springel and Hernquist, 2002) and thus avoids spurious mixing. The

code AREPO (Springel, 2010) combines the advantages of SPH and grid-based codes by discretising

the fluid using a Lagrangian moving mesh; this is the code used in Illustris. There is some discussion

of the galaxy formation physics implemented in Illustris of relevance to the work in Chapters 4 and

5 in § 4.4.1.

In Chapters 4 and 5, simulated spectra containing only the Lyman-alpha absorption line (i. e.,

the Lyman-alpha forest; see § 1.6.3) are generated and used. These are formed using snapshots

(i. e., a view of the simulation box at a fixed redshift) from the Illustris simulation. For each

spectrum, the optical depth τ is measured along a chosen line-of-sight in a series of bins, effectively

as given by Eq. (A.1) except transformed to velocity space. More details are given in § 4.4.1 and

Appendix A.1. The full Voigt profile of each absorption line is not needed for the majority of the

HI gas, which has low column density (N(HI) < 1.6 × 1017 atoms cm−2) and which forms the

Lyman-alpha forest, and is replaced by only the Gaussian Doppler broadening term. The necessary

velocities are measured from the simulation particles. The transmitted flux in the spectrum F = e−τ .

Figure 1.8a shows some examples of the simulated Lyman-alpha forest spectra used in Chapters

4 and 5. The same sightline is shown for two different redshifts (z = 2.44 and 3.49), highlighting

the increased amount of absorption at higher redshift due to the higher abundance of neutral

hydrogen. Figure 1.8b shows an example real observed quasar spectrum (Q1422+2309), where

the (currently usable) Lyman-alpha forest is the series of absorption lines from 1216 Å to 1026 Å.

There is a remarkable qualitative similarity between the real and simulated Lyman-alpha forests.

The remaining differences are that in the real spectrum, the quasar emitted continuum has not

been normalised. Estimation of this continuum is a source of uncertainty in data analysis, since

most observed spectra do not have the remarkable signal-to-noise and resolution of this example.

Furthermore, the length of the simulated spectra is much shorter than the full forest observed in

panel (b); this only has the visual effect of “stretching-out” the absorption lines. The conversion

from comoving position to wavelength is explained in Chapter 4 and Appendix A.1.
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(a) Simulated Lyman-alpha forest.

(b) Real Lyman-alpha forest.

Figure 1.8: (a) Examples of simulated Lyman-alpha forest spectra as generated from a cosmological

hydrodynamical simulation (Illustris-1; Nelson et al., 2015; Vogelsberger et al., 2014a, using

the fake spectra code; Bird 2017). The normalised transmitted flux is shown as a function of

comoving position along the sightline within the simulation box. The same sightline is shown in

the two panels for (top) z = 2.44 and (bottom) z = 3.49. (b) An example of a real Lyman-alpha

forest spectrum (as observed by the Keck I HIRES instrument). The normalised intensity is shown

as a function of wavelength in the quasar’s (Q1422+2309) rest-frame at z = 3.62. The full quasar

spectrum is shown and the Lyman-alpha forest comprises the series of absorption lines from 1216 Å

to 1026 Å; at shorter wavelengths, the Lyman-alpha forest superposes with the absorption from the

Lyman-beta transition and this region is usually excised in data analysis. This sub-figure is modified

from an original available at http://pages.astronomy.ua.edu/keel/agn/forest.html.
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Figure 4. Examples of wavelet functions used in ECG signal processing. 

wavelet functions. A cautious and still exploratory 
approach is to test different wavelets and then to 
compare their efficiency in highlighting specific 
ECG inf~rmation. '~ In the following section, we 
will describe several examples of wavelet applica- 
tions in electrocardiology . The contributions of 
wavelets to noninvasive electrocardiology in com- 
parison with classic approaches will be addressed. 

Application of the Wavelet Transform in 
Electrocardiology 

ECG Compression 
Increasing use of computerized ECG pro- 

cessing systems requires effective ECG data com- 

pression techniques that aim to enlarge storage 
capacity and improve methods of ECG data trans- 
mission over phone and internet lines. The wave- 
let compression methods described in 1992 pro- 
vide a robust technique suited for detecting and 
removing redundancy in the ~ igna1 . I~  The few 
publications available on this topic suggest that 
the ECG data compression using wavelets could 
decompose the ECG without redundancy and 
provide high compression ratio and high quality 
reconstruction of ECG signa1.I4-l7 According to 
these preliminary reports, wavelet-based com- 
pression seems to be more efficient than the clas- 
sic compression methods. 

I 
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Figure 5. An example of a set of analyzing wavelets from the Znd Gaussian derivative ("Mexican Hat") is 
plotted. The wavelets are represented in both the time (left panel) and the frequency (right panel) domains. 
The mother wavelet is drawn with a bold line in the time and frequency domains. Then for each of the ten 
values of the scale parameter the wavelets are plotted with same time location. The corresponding frequency 
representation of this set of wavelet is given. The longer the wavelet duration, the shorter its frequency 
bandwidth centered in the lower frequencies. 

Figure 1.9: A set of Mexican hat wavelets, showing their localisation in time (left) and frequency

(right) domains. This figure is taken from Couderc and Zareba (1998).

1.8 Wavelets

By the uncertainty principle, functions cannot be perfectly localised simultaneously in both real and

frequency space. I. e., a Dirac delta function (which is perfectly localised) in one space is unbounded

(has infinite support) in the other. Wavelets are the compromise solution: they are bounded (or

band-limited) in both spaces. Figure 1.9 shows a set of Mexican hat wavelets, a particular type

of one-dimensional wavelet (higher-dimensional forms can be constructed). Their localisation in

both real (time) and frequency space is shown. When a wavelet has more localised (compact)

support in one domain, it is less localised in the other. Many different types of wavelet exist with

different localisation properties and also in higher dimensions. They are very useful for analysing

data with localised features. In Chapters 2 and 3, I use particular types of wavelets called (spin)

scale-discretised directional wavelets (McEwen et al., 2015b) to analyse CMB temperature and

polarisation anisotropies. These wavelets are defined on the two-dimensional surface of the sphere

and are additionally localised in the orientation of their (non-axisymmetric) spatial kernels (i. e.,

they are “directional”). Details of the wavelets and an introduction to related wavelet analyses

on the CMB are given in Chapters 2 and 3. Indeed, wavelets are commonly used in cosmological

analyses, especially for the CMB. They have been used e. g., to search in CMB maps for the ISW

effect (see § 1.6.1; McEwen et al., 2007, 2008), the signatures of primordial non-Gaussianity (Cayón

et al., 2001; Vielva et al., 2004) and other anomalous features (e. g., Feeney et al., 2011).

55



1.9 Thesis outline

Each of the following chapters (2 to 5; their associated appendices are collated in Appendices A

and B) is a journal article of which I am the lead author, reproduced here with minor formatting

changes. There is some repetition in the introductory material presented in each chapter because of

this reproduction.

• Chapter 2: SILC: a new Planck Internal Linear Combination CMB temperature map using

directional wavelets.

This work was published as Keir K. Rogers, Hiranya V. Peiris, Boris Leistedt, Jason D. McEwen,

and Andrew Pontzen, Monthly Notices of the Royal Astronomical Society, 460: 3014-3028,

2016, and was carried out in collaboration with the named co-authors.

• Chapter 3: Spin-SILC: CMB polarisation component separation with spin wavelets.

This work was published as Keir K. Rogers, Hiranya V. Peiris, Boris Leistedt, Jason D. McEwen,

and Andrew Pontzen, Monthly Notices of the Royal Astronomical Society, 463: 2310-2322,

2016, and was carried out in collaboration with the named co-authors.

• Chapter 4: Simulating the effect of high column density absorbers on the one-dimensional

Lyman-alpha forest flux power spectrum.

This work was published as Keir K. Rogers, Simeon Bird, Hiranya V. Peiris, Andrew Pontzen,

Andreu Font-Ribera, and Boris Leistedt, Monthly Notices of the Royal Astronomical Society,

474: 3032-3042, 2018, and was carried out in collaboration with the named co-authors.

• Chapter 5: Correlations in the three-dimensional Lyman-alpha forest contaminated by high

column density absorbers.

This work was submitted as Keir K. Rogers, Simeon Bird, Hiranya V. Peiris, Andrew Pontzen,

Andreu Font-Ribera, and Boris Leistedt, Monthly Notices of the Royal Astronomical Society,

submitted, 2018, and was carried out in collaboration with the named co-authors.
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2
SILC: a new Planck Internal Linear Combination CMB

temperature map using directional wavelets

2.1 Abstract

We present new clean maps of the CMB temperature anisotropies (as measured by Planck) construc-

ted with a novel internal linear combination (ILC) algorithm using directional, scale-discretised

wavelets — Scale-discretised, directional wavelet ILC or SILC. Directional wavelets, when convolved

with signals on the sphere, can separate the anisotropic filamentary structures which are charac-

teristic of both the CMB and foregrounds. Extending previous component separation methods,

which use the frequency, spatial and harmonic signatures of foregrounds to separate them from

the cosmological background signal, SILC can additionally use morphological information in the

foregrounds and CMB to better localise the cleaning algorithm. We test the method on Planck data

and simulations, demonstrating consistency with existing component separation algorithms, and

discuss how to optimise the use of morphological information by varying the number of directional

wavelets as a function of spatial scale. We find that combining the use of directional and axisym-

metric wavelets depending on scale could yield higher quality CMB temperature maps. Our results

set the stage for the application of SILC to polarisation anisotropies through an extension to spin

wavelets.

2.2 Introduction

Accurate measurements of the cosmic microwave background (CMB) arguably form the bedrock of

modern precision cosmology. In particular, the full-sky multifrequency CMB maps provided by three

generations of satellite experiments — COBE (Boggess et al., 1992; Mather et al., 1990), WMAP
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(Bennett et al., 2003a) and Planck (Planck Collaboration et al., 2011) — represent milestones in our

understanding of the cosmological model. However, to obtain a full-sky map of the CMB requires

removing instrumental noise and signals due to astrophysical foregrounds (primarily in the Milky

Way). Full-sky foreground-cleaned CMB maps are used for a wide variety of scientific purposes (see

e. g., Planck Collaboration et al., 2015d,g).

There are numerous methods to perform foreground component separation. They broadly fall

into two categories: blind methods which make minimal physical assumptions about the contributing

signals and the so-called mixing matrix (which quantifies the strength of different components

at different frequencies) and non-blind methods which are based on a physical modelling of the

sky components. Examples of non-blind methods include the Maximum Entropy Method (MEM)

(Hobson et al., 1998) and the parametric Bayesian CMB Gibbs sampler Commander (Eriksen et al.,

2006, 2008). Correlated Component Analysis (CCA) (Bedini et al., 2005) is a semi-blind method that

estimates the mixing matrix based on second-order statistics. Spectral Estimation via Expectation

Maximisation (SEVEM) (Fernández-Cobos et al., 2012; Leach et al., 2008; Mart́ınez-González et al.,

2003) is a template fitting technique. Examples of so-called blind source separation include the

sparsity-based method Local-Generalized Morphological Component Analysis (L-GMCA) (Bobin

et al., 2008, 2013) and the Spectral Matching Independent Component Analysis (SMICA) (Cardoso

et al., 2008), although the latter work does discuss how the choice of component model affects the

blindness of this method. Of particular interest to this work is another blind method, the Internal

Linear Combination (ILC), most recently implemented by the Needlet ILC (NILC) (Delabrouille

et al., 2009). In its component separation analysis, the Planck Collaboration used Commander, NILC,

SEVEM and SMICA (Planck Collaboration et al., 2015c). See, e. g., Bobin et al. (2013); Delabrouille

et al. (2009) for reviews of CMB component separation methods.

The ILC computes a weighted sum of CMB maps as measured at multiple frequencies. These

weights are constrained to sum to unity at each point in the map, ensuring that the CMB signal

is conserved, assuming that it is equal at each frequency. Under this constraint, the weights are

calculated by minimising the empirical variance of the ILC map, which in turn minimises the

variance of the error in CMB reconstruction (assuming the CMB and foregrounds and the CMB

and noise are respectively uncorrelated). The variances we minimise are empirical in that they are

calculated using the data themselves. In this way, the weights are calculated to remove foreground

and noise, revealing the underlying primordial CMB anisotropies. The ILC method was originally

used by the WMAP Collaboration (Bennett et al., 2003b) and then extended by Eriksen et al. (2004)

through an analytical calculation of the weights. One limitation of the original ILC approach is the
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extent of localisation of the weights. The initial versions calculated different weights in separate

parts of the sky (e. g., Bennett et al. 2003b split the Galactic region into 11 parts). In order to

further remove local contamination, the weights can be allowed to vary across the sky and also at

different spatial scales. Tegmark et al. (2003) made an ILC map allowing the weights to vary at

each multipole, as well as within different regions of the sky. A direct extension of this work is to

make use of both spatial and frequency information simultaneously using wavelets. The weights

are then defined across wavelet scales and within wavelet coefficient maps on the sky.

Wavelets are functions that are localised in both real and frequency space. To analyse full-

sky CMB maps, wavelets defined on the surface of a sphere are required. A number of wavelet

frameworks on the sphere have been developed recently (Antoine and Vandergheynst, 1998, 1999;

Baldi et al., 2009; Barreiro et al., 2000; Geller and Marinucci, 2010, 2011; Geller et al., 2008;

Leistedt et al., 2013, 2015; Marinucci et al., 2008; McEwen and Scaife, 2008; McEwen et al., 2006,

2011; McEwen et al., 2013, 2014; McEwen et al., 2015a,b; Narcowich et al., 2006; Sanz et al.,

2006; Starck et al., 2009, 2006; Wiaux et al., 2005; Wiaux et al., 2008). In particular, needlets

(Baldi et al., 2009; Marinucci et al., 2008; Narcowich et al., 2006) have been used in the latest

generation of ILC methods. Needlets are a set of axisymmetric kernels defined on the surface of a

sphere. Each member of the set has compact support in harmonic space over different multipole

ranges. When each needlet is convolved with a signal defined on the sphere, the resulting signal

(i. e., needlet coefficients) also has compact harmonic support. NILC (Delabrouille et al., 2009)

computes its weights by considering needlet scales separately (harmonic localisation) and then

different parts of each needlet coefficient map separately (spatial localisation). The needlets are

constructed in such a way that the original signal can be recovered from its needlet coefficients

with no loss of information (in practice, small losses can be introduced by approximate spherical

harmonic transforms). NILC has been very successful at forming clean full-sky CMB maps, which

contain very little residual foreground and noise contamination.

In this work, we introduce the Scale-discretised, directional wavelet ILC or SILC, which extends

the wavelet ILC framework by localising the calculation of ILC weights in an additional domain. We

use wavelets which are not only harmonically-localised but also directional (McEwen et al., 2013;

McEwen et al., 2015b; Wiaux et al., 2008). Unlike needlets, which are axisymmetric on the sphere,

directional wavelets are non-axisymmetric, i. e., the kernels are “squeezed.” This means that for

one wavelet scale, one axisymmetric kernel is replaced by a number of complementary directional

kernels, each with a different orientation. When these directional wavelets are convolved with a

signal on the sphere, (within each scale) different orientations of signal structure are separated.
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Table 2.1: The harmonic band-limits [`jmin, `
j
max] of the directional wavelets used in this work. `jpeak

is the multipole at which each wavelet has its maximum response. The final column shows the

number of equiangular samples per wavelet coefficient map N j
samp.

Wavelet scale j `jmin `jpeak `jmax N j
samp

Scal. 0 64 64 8,385
0 32 64 128 33,153
1 64 128 256 131,841
2 128 256 512 525,825
3 256 512 706 998,991
4 542 705 918 1,688,203
5 705 917 1193 2,850,078
6 917 1192 1551 4,815,856
7 1192 1550 2015 8,126,496
8 1550 2015 2540 12,910,821
9 2116 2539 3048 18,589,753
10 2539 3047 3600 25,930,801
11 3047 3600 3600 25,930,801

This directional localisation allows the ILC weights to be additionally fine-tuned to better remove

foreground and noise, in particular for signals with filamentary structure. Furthermore, directional

wavelets exhibit exact reconstruction, allowing them to be embedded in an ILC such that no signal

is lost.

SILC is being developed with the goal of analysing CMB polarisation components through an

extension to spin, directional wavelets (Leistedt et al., 2015; McEwen et al., 2014; McEwen et al.,

2015b), which are expected to be well-suited to localising the complex filamentary morphologies

of polarised foregrounds. As a precursor step, in this work we test SILC on the scalar temperature

field in order to demonstrate the quantitative consistency of its foreground cleaning performance

compared with existing component separation methods, and to identify possible optimisations for

the extension to spin fields.

Directional wavelets are explained briefly in § 2.3. In § 2.4, the SILC algorithm is explained in

detail. Various sources of error in the method are considered in § 2.5. In § 2.6, we compare our

method to previous component-separation methods. The application to Planck simulations (§ 2.7)

is followed by application to Planck data (§ 2.8). We discuss the results and error estimation based

on the data in § 2.9 and conclude in § 2.10.
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(a) j = 0 (b) j = 1 (c) j = 2

(d) j = 3 (e) j = 4 (f) j = 5

Figure 2. Parametric plots of scale-discretized wavelets on the sphere (L = 128, N = 3, J = 5, ↵ = 2).

3.1 Discretization and quadrature

The Driscoll and Healy sampling theorem24,25 is adopted in S2DW, with the corresponding cubature points:
✓t = ⇡(2t + 1)/(4L), for t = 0, . . . , 2L � 1, and 'p = 2⇡p/(2L � 1), for p = 0, . . . , 2L � 2, giving 4L2 samples on
the sphere. The Driscoll and Healy sampling theorem can be distilled into the following quadrature rule for the
exact integration over colatitude ✓ of a function f band-limited at 2L or below:

Z ⇡

0

d✓ sin ✓ f(✓, ·) =

2L�1X

t=0

q(✓t)f(✓t, ·) , (17)

where the quadrature weights are given by24–26

q(✓t) =
2

L
sin ✓t

L�1X

k=0

sin((2k + 1)✓t)

2k + 1
. (18)

We will also make use of exact quadrature for the following integration over longitude ', for a function f
band-limited at L: Z 2⇡

0

d' exp(�im') f(·,') =
2⇡

2L � 1

2L�2X

p=0

exp(�im'p)f(·,'p) , (19)

which follows from the continuous and discrete orthogonality of the complex exponentials.

We have so far considered the discretization of functions defined on the sphere S2; however, the wavelet
coe�cients themselves are defined on the rotation group SO(3) (due to the directional nature of the wavelet

6

Figure 2.1: The spatial localisation on the sphere of directional, scale-discretised wavelets. Each

sub-plot shows a representation of a directional wavelet kernel at different scales, where red, raised

parts show positive wavelet response and blue, depressed parts show negative wavelet response.

From left to right, top to bottom: wavelet scale index j decreases. The number of directions per

wavelet scale N = 3. Therefore, for complete reconstruction at each scale, the above wavelets

would be complemented by two more wavelets of the same size but of a different orientation on the

sphere. This figure is adapted from McEwen et al. (2013).
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Figure 2.2: The harmonic response of the directional wavelets used in this work, where j specifies

the wavelet scale. Increasing j corresponds to a smaller wavelet kernel and so a multipole range on

smaller scales (i. e., larger multipoles `). The largest wavelet scale (Scal.) is the scaling function

(§ 2.4.4). The two smallest wavelets are harmonically truncated at ` = 3600 but are smoothly

tapered to zero from ` = 3400 to ` = 3600 (the two dotted lines) by the beam tapering discussed in

§ 2.4.3. The band-limits of the above wavelets are given in Table 2.1.
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Input CMB map

-300 300µK

Scale 1, direction 1 Scale 1, direction 2 Scale 1, direction 3

Scale 2, direction 1 Scale 2, direction 2 Scale 2, direction 3

Scale 3, direction 1 Scale 3, direction 2 Scale 3, direction 3

Scale 4, direction 1 Scale 4, direction 2 Scale 4, direction 3

Scale 1, direction 1 Scale 1, direction 2 Scale 1, direction 3

Scale 2, direction 1 Scale 2, direction 2 Scale 2, direction 3

Scale 3, direction 1 Scale 3, direction 2 Scale 3, direction 3

Scale 4, direction 1 Scale 4, direction 2 Scale 4, direction 3

Figure 2.3: The CMB (top map) decomposed into directional wavelet coefficient maps (bottom

section). The wavelet kernels are shown (middle section), where red indicates positive response and

blue indicates negative. In the full analysis, we also include smaller wavelets than we show above.
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2.3 Directional wavelets

Directional, scale-discretised wavelets on the sphere that support exact reconstruction have been

developed in Wiaux et al. (2008), McEwen et al. (2013) and McEwen et al. (2015b), while their

localisation properties have been studied in McEwen et al. (2015a). Figure 2.1 shows an example

of the spatial localisation of directional wavelets. Larger wavelet scales have larger kernels, and

when these are convolved with signals defined on the sphere (such as the CMB and astrophysical

foregrounds), signal structure with the same scale and orientation as the wavelet is isolated. The

kernels in Fig. 2.1 are shown for a single direction and (for complete reconstruction) would be

complemented by two more sets of kernels of the same sizes but rotated to different orientations.

Figure 2.2 shows an example of the harmonic localisation of directional wavelets (for the wavelets

used in this work). The harmonic supports of the wavelets overlap, with each wavelet covering

a finite set of multipoles. Figure 2.3 shows an example of directional wavelet decomposition as

applied to the CMB. Although the CMB anisotropies are statistically Gaussian, the CMB spots on the

sky demonstrate anisotropy as a function of scale (Bond and Efstathiou, 1987). When the CMB is

convolved with directional wavelets, structure of different orientations is separated. This further

supports the use of directional wavelets in CMB analysis: both filamentary foreground structure

and the CMB itself are better localised. This particularly applies in the case of polarisation, as will

be discussed in § 2.10 when we consider extensions to our method. For a mathematical description

of directional wavelets, see § 2.4.4.

In the spherical harmonic transforms used in the computation of directional wavelet coefficient

maps, we adopt the sampling scheme on the sphere of McEwen and Wiaux (2011) (hereafter MW

sampling), rather than, e. g., HEALPix sampling (Górski et al., 2005), although in principle HEALPix

could be used if desired. The corresponding sampling theorem of McEwen and Wiaux (2011) shows

that the MW sampling scheme requires fewer samples for a band-limited signal than any other

sampling theorem. Additionally, the use of a separation of variables and fast Fourier transforms

(FFTs) yields a numerically efficient algorithm. In particular, our spherical harmonic transforms

are theoretically exact, unlike HEALPix. This allows one to manipulate signals with the minimal

number of samples and to perform the numerous spherical harmonic transforms involved in the

ILC algorithm without any loss of information (other than that due to the finite representation of

floating point numbers). Our final map products, however, are provided in HEALPix format. Finally,

MW sampling of spin signals on the sphere requires no additional computational complexity and

this will be vital in the extension of our method to polarisation E and B modes (§ 2.10). Further
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details on MW sampling are given in § 2.4.4.

2.4 Method

We start by outlining the SILC algorithm. The steps are explained in more detail in the subsequent

subsections (§ 2.4.1 to 2.4.6). We discuss our numerical implementation in § 2.4.7.

(1). The raw input data are multifrequency full-sky maps of CMB temperature fluctuations. These

maps use the HEALPix format. (See § 2.4.1.) The model we employ for the raw data is

explained in § 2.4.2.

(2). The maps are “pre-processed” by inpainting in a small point source mask (see § 2.4.6).

(3). The input maps are converted to thermodynamic (CMB) temperature (if necessary). For

Planck temperature data, the 545 GHz and 857 GHz maps are converted from spectral flux

density per unit solid angle (MJy Sr−1) to CMB temperature (KCMB) by the unit conversions

given in the Planck 2015 Release Explanatory Supplement1.

(4). The maps are each convolved to have the same effective beam (see § 2.4.3).

(5). Each input map is converted into a set of wavelet coefficient maps. This separates both the

scale and orientation of structure within each map. These wavelet coefficient maps use MW

sampling (McEwen and Wiaux, 2011). (See § 2.4.4.)

(6). The ILC method is then applied separately to each wavelet scale and orientation. For each

scale and orientation, the multifrequency wavelet coefficient maps are weighted and added

to form a single wavelet coefficient map that contains mainly CMB signal, as well as some

residual foreground and noise. These weights are allowed to vary from wavelet coefficient to

wavelet coefficient. The calculation of these weights is explained in § 2.4.5.

(7). The final ILC wavelet coefficient maps are synthesised to form the final product: a full-sky

map of CMB temperature fluctuations (with some residual foreground and noise). The final

map uses the HEALPix format. (See § 2.4.4.)

(8). The final map is inpainted in a small point source mask (see § 2.4.6).
1Planck 2015 Release Explanatory Supplement: UC CC tables (http://wiki.cosmos.esa.int/planckpla2015/index.

php/UC_CC_Tables). For the 545 GHz map, the unit conversion is (58.0356 ± 0.0278) MJy Sr−1 K−1
CMB and for the 857

GHz map, the unit conversion is (2.2681 ± 0.0270) MJy Sr−1 K−1
CMB.
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2.4.1 Input data

Our main CMB temperature map products use full-mission 2015 release Planck temperature maps

as their input2. All nine frequency channels are used. At 70 GHz, we use the higher-resolution

version at Nside = 2048. We also use the full-mission Full Focal Plane 8 (FFP8) simulations (Planck

Collaboration et al., 2015h) without bandpass mismatch3.

2.4.2 Data model

Each full-sky temperature map can be modelled (e. g., Basak and Delabrouille, 2012) as

TOBS,c(n̂) =

∫

n̂′
dn̂′Bc(n̂, n̂′)T SIG,c(n̂′) + TN,c(n̂), (2.1)

where the signal component can further be decomposed as

T SIG,c(n̂) = acTCMB(n̂) + TFG,c(n̂). (2.2)

TCMB(n̂) is the CMB component at a point on the sky n̂. TFG,c(n̂) and TN,c(n̂) are respectively the

foreground and detector noise components for frequency channel c. ac is the calibration coefficient

for the CMB for each channel. The overall signal component is smoothed by a beam function

Bc(n̂, n̂′) due to the finite resolution of the observations. However, the noise component is not

smoothed by the beam. Here we assume the beam to be circularly symmetric. Therefore, the beam

can be represented as a sum over Legendre polynomials,

Bc(n̂, n̂′) =

∞∑

`=0

2`+ 1

4π
Bc`P`(n̂.n̂

′). (2.3)

We can recast Eq. (2.1) in the spherical harmonic representation as

aOBS,c
`m = acBc`a

CMB
`m +Bc`a

FG,c
`m + aN,c

`m (2.4)

where a`m are the coefficients of spherical harmonics Y`m(n̂).

2http://pla.esac.esa.int/pla
3FFP8 simulations are also available with bandpass mismatch, accounting for differences in the bandpasses of detectors

nominally at the same frequency, leading to spurious signals in the frequency maps.
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2.4.3 Beam convolution

Equation (2.4) shows that each frequency channel c has a different beam transfer function Bc` . To

replace each beam with a channel-independent resolution, we perform a deconvolution/convolution

procedure to give spherical harmonic coefficients

ac`m =
BEFF
`

Bc`
aOBS,c
`m , (2.5)

where BEFF
` is the final (effective) beam transfer function of our map products. For Planck data,

we use a Gaussian beam with a FWHM of 5’ as our input beam. We taper this beam to zero from

` = 3400 to ` = 3600 using a Fermi function. This suppresses any small-scale power aliasing due to

having harmonically-truncated wavelets in this multipole range. Convolving with beam transfer

functions ignores the non-axisymmetric component of the beams; these will remain in the input

maps but are assumed to be small.

This deconvolution/convolution procedure does not correctly handle the noise component of

our input maps. Equation (2.5) can be expanded (using Eq. (2.4)) as

ac`m = BEFF
` (acaCMB

`m + aFG,c
`m ) +

BEFF
`

Bc`
aN,c
`m , (2.6)

where ac are the CMB calibration coefficients (not to be confused with the inverse spherical harmonic

transform of harmonic coefficients aclm). The final resolution of an ILC map is usually chosen to

match the best resolution of the input maps. Therefore, for all but the highest resolution channel

and for all `, BEFF
` > Bc` . This has the effect of increasing the noise contribution of the input maps,

particularly at high ` and for low-resolution maps, where BEFF
` � Bc` . We use the Planck beam

transfer functions as provided in the Reduced Instrument Model (RIMO)4. For the LFI beams, we use

Gaussian approximations with FWHM 32.33’, 27.01’ and 13.25’ for 30, 44 and 70 GHz respectively.

Following Planck Collaboration et al. (2014c), the deconvolved beams are thresholded such that

the Bcl is set to the value given in the RIMO or 0.001, whichever is larger. This prevents the last

term in Eq. (2.6) from becoming so large that numerical errors occur. Although we lose accuracy

in the deconvolution process, the contribution of the channels in the multipole ranges affected is

highly attenuated in the ILC weights in any case.

4Planck 2015 Release Explanatory Supplement: The 2015 instrument model (http://wiki.cosmos.esa.int/
planckpla2015/index.php/The_RIMO).
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2.4.4 Wavelet analysis and synthesis

The wavelet ILC method requires the decomposition of each band-limited temperature map T c(n̂)

into a set of wavelet coefficient maps WΨj

: in our case, directional, scale-discretised wavelets

(McEwen et al., 2013; McEwen et al., 2015b; Wiaux et al., 2008). A general introduction was

provided in § 2.3 — here we provide some technical details of the implementation. We drop

the c superscript on T for the rest of this subsection since each map is analysed using the same

wavelets. The wavelet coefficients are defined as the directional convolution of T with wavelets

defined on the sphere Ψj ∈ L2(S2) (specifically those shown in Fig. 2.2) where index j denotes the

wavelet scale. Importantly, directional wavelets yield coefficients WΨj

(ρ̂) that live on the space of

three-dimensional rotations, i. e., the rotation group SO(3):

WΨj

(ρ̂) ≡ 〈T,Rρ̂Ψj〉 =

∫

S2
dn̂ T (n̂)(Rρ̂Ψj)∗(n̂), (2.7)

where dn̂ is the usual invariant measure on the sphere, ·∗ denotes complex conjugation and the

rotation operator is defined by

(Rρ̂Ψj)(n̂) ≡ Ψj(R−1
ρ̂ n̂), (2.8)

where Rρ̂ is the three-dimensional rotation matrix corresponding to Rρ̂. In these equations,

ρ̂ = (θ, φ, χ) ∈ SO(3) denotes the Euler angles (in the zyz convention) with colatitude θ ∈ [0, π],

longitude φ ∈ [0, 2π) and direction χ ∈ [0, 2π)5. In other words, the wavelet coefficients probe

directional structure in T with χ corresponding to the orientation about each point (θ, φ) on the

sphere.

Following the directional construction of scale-discretised wavelets (McEwen et al., 2013;

McEwen et al., 2015b; Wiaux et al., 2008), wavelets are defined by their spherical harmonic

coefficients in factorised form:

Ψj
`n ≡ κj(`)s`n, (2.9)

where κj(`) sets the harmonic localisation (Fig. 2.2) and s`n sets the directional localisation.

In the original definition of scale-discretised wavelets, the size of all harmonic kernels (setting

the harmonic localisation of the wavelets) is parameterised by a unique wavelet dilation parameter

λ ∈ R+
∗ , λ > 1. Similarly, the number of directions is set by a unique azimuthal band-limit N .

These two parameters respectively characterise κj(`) and s`n for all j. In this work, we vary

5We adopt the zyz Euler convention corresponding to the rotation of a physical body in a fixed coordinate system about
the z, y and z axes by χ, θ and φ, respectively.
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λ as a function of multipole in order to allow more flexible harmonic localisation. We achieve

this by defining different values of λ in different multipole regions and then stitching together

harmonically-truncated wavelets at the region boundaries. We use the values λ = 2, 1.3, 1.2 with

transitions at the multipoles ` = 512, 2015. If at a transition multipole the harmonic peak of the

larger wavelet doesn’t equal the peak of the smaller wavelet, then a small amount of unit response

is used so that the two wavelets can be continuously combined. Wavelets constructed in this manner

satisfy the standard admissibility criterion required for exact reconstruction. The harmonic tiling of

the resulting wavelets is shown in Fig. 2.2. The technical details of the construction of each kernel

is described in McEwen et al. (2015a). Finally, we use a single parameter N for all scales, i. e., each

wavelet is divided into the same number of directions. However, a possible extension of this work

is to vary N as a function of scale j, e. g., by using curvelet kernels (Chan et al., 2015) or other

directional optimisations.

In the case of a single parameter λ, the limits of the wavelet harmonic window for scale j

are simply (`jmin, `
j
max) = (λj−1, λj+1), with their peak response at λj . In our hybrid scheme, this

property remains but j and λ must be adjusted in each harmonic region. The full details of our

tiling are given in Table 2.1. When the limits of the harmonic windows of the maximum wavelet

scales extend beyond the overall band-limit `max, the windows are truncated at `max. Finally, note

that a scaling function WΦ is needed to capture the very low frequency content of the signal. It is

axisymmetric and the corresponding scaling coefficients therefore live on the sphere. Here we do

not give the full details of the construction of the scaling function or the factors κj(`) and s`n since

these can be straightforwardly reproduced by following previous approaches (McEwen et al., 2013;

McEwen et al., 2015b; Wiaux et al., 2008) and using Table 2.1.

To apply the ILC algorithm, the above continuous wavelet coefficients must be discretised. Since

they live on the rotation group SO(3), we represent them using the sampling scheme of McEwen

et al. (2015), which is a generalisation of the MW sampling scheme (McEwen and Wiaux, 2011).

Because our wavelets have well-defined band-limits, this approach allows a multiresolution scheme

where each scale is pixellated with a minimal number of samples. In practice, the j-th wavelet

scale has a band-limit `jmax and is only evaluated at locations (θjt , φ
j
p, χn) with t ∈ {0, 1, . . . , `jmax},

p ∈ {0, 1, . . . , 2`jmax} and n ∈ {0, 1, . . . , N − 1}. Although wavelet coefficients are evaluated at

discrete samples only, for a band-limited signal they capture the total information content of the

underlying continuous wavelet coefficient representation, probed up to harmonic band-limit `jmax

and azimuthal band-limit N . This is thanks to the sampling theory on the rotation group SO(3) of

McEwen et al. (2015). In the full ensemble of realisations, the ILC (see § 2.4.5 for details) has no
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sensitivity to the choice of coordinate convention for directions χ. In a single realisation, there will be

some marginal sensitivity to this choice manifesting in the localisation of the empirical covariances

we use. However, this effect is sub-dominant to the choice of N , on which we concentrate our

analysis.

After the ILC method (see § 2.4.5) has been applied to the sets of wavelet coefficient maps, there

is one final map WΨj ,ILC(ρ̂), for each wavelet scale j, living on SO(3) and including the multiple

orientations χ0, . . . , χN−1. The additional axisymmetric scaling coefficients WΦ,ILC(n̂) live on the

sphere. The final temperature map T ILC(n̂) is synthesised by

T ILC(n̂) =

∫

S2
dn̂′WΦ,ILC(n̂′)(Rn̂′Φ)(n̂)

+

jmax∑

j=jmin

∫

SO(3)

dρ̂ WΨj ,ILC(ρ̂)(Rρ̂Ψj)(n̂),

(2.10)

where dρ̂ is the usual invariant measure on the rotation group. This final ILC temperature map is

pixellated using the HEALPix format from its spherical harmonic coefficients T ILC
`m .

The wavelet analysis and synthesis are performed using the latest version of the S2LET6 code

(Leistedt et al., 2013; McEwen et al., 2015), which in turn relies on the SSHT7 (McEwen and Wiaux,

2011) and SO38 (McEwen et al., 2015) codes to compute spin spherical harmonics and Wigner

transforms exactly and efficiently using the MW sampling scheme. Thanks to the sampling theorem,

the wavelet coefficients can be transformed using Wigner transforms without any loss of information

(McEwen et al., 2015).

2.4.5 ILC method

Following the wavelet analysis of the input maps (see § 2.4.4), there is a wavelet coefficient map

W c
jnk for each channel c, scale j and orientation n with a pixel index k. Using this more compact

notation, we conflate the scaling coefficient map with the wavelet coefficient maps as the ILC

method applies in exactly the same fashion. The ILC estimate of the CMB signal at each wavelet

scale and orientation is defined as a weighted sum of the wavelet coefficient maps at that scale and

orientation

W ILC
jnk ≡

Nc∑

c=1

ωcjnkW
c
jnk , (2.11)

6http://www.s2let.org
7http://www.spinsht.org
8http://www.sothree.org

70

http://www.s2let.org
http://www.spinsht.org
http://www.sothree.org


where ωcjnk are the weights (which are allowed to vary across the scale and orientation of the signal

as well as pixel space) and Nc is the number of input channels.

We impose a constraint on the weights (to ensure that the CMB signal is preserved) such that

Nc∑

c=1

acωcjnk = 1. (2.12)

Assuming that the CMB and foregrounds and the CMB and noise are respectively uncorrelated, the

variance of the error in the result is minimised when the variance of the ILC map itself is minimised.

The resulting weights are given by

ωcjnk =

∑Nc

c′=1(R−1
jnk)cc

′
ac

′

∑Nc

c=1

∑Nc

c′=1 a
c(R−1

jnk)cc′ac′
, (2.13)

where the true covariance matrices at scale j, orientation n and pixel k, (Rjnk)cc
′

= 〈W c
jnkW

c′

jnk〉

(where the angled brackets indicate an ensemble average). For a derivation of Eq. (2.13), see

Eriksen et al. (2004); Tegmark et al. (2003).

In this work, we estimate covariance matrices empirically by the following procedure (as used

in Basak and Delabrouille 2012; Planck Collaboration et al. 2015c). We start by calculating at each

pixel k:

(Rapprox
jnk )cc

′
= W c

jnkW
c′

jnk. (2.14)

We then smooth each element of the above matrix by a Gaussian beam wj(k, k
′) in pixel space to

form the empirical estimates of covariance matrices

(R̂jnk)cc
′

=

Nj
samp∑

k′=1

wj(k, k
′)(Rapprox

jnk′ )cc
′

(2.15)

where N j
samp is the total number of pixels in a given map at scale j. For computational efficiency,

we perform this smoothing in harmonic space:

(R̂jnk)cc
′

=

2`jmax∑

`=0

∑̀

m=−`
w`j(r

`m
jn )cc

′
Y `mk , (2.16)

where (r`mjn )cc
′

are the harmonic coefficients of the maps formed by the elements of matrices

(Rapprox
jnk )cc

′
, w`j is a Gaussian beam transfer function and Y `mk are the spherical harmonics evaluated

at pixel k.
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The size of the Gaussian kernel used to smooth the covariance matrices is chosen to be pro-

portional to the size of the wavelet used to form a particular set of wavelet coefficient maps9. In

general the estimation of covariance matrices in ILC methods could be further optimised. It may

be preferable to dynamically adapt the smoothing kernel used based on local data. Delabrouille

et al. (2009) suggested using a larger kernel at high Galactic latitudes where Galactic emission

does not vary so much and a smaller kernel towards the Galactic equator where emission is more

complex. It could involve masking equatorial regions when estimating the covariance at higher

latitudes (somewhat akin to Planck Collaboration et al. (2014c)). It could involve convolving the

maps of elements of covariance matrices with the same directional wavelet in order to pick out how

the local covariance follows the directional structure of the underlying signal. As mentioned above,

in this work, we use a similar method as in previous work for ease of comparison.

It is also worth discussing the upper limit on the summation over ` in Eq. (2.16). We first note

the general rule that for the product of two spherical harmonics (Driscoll and Healy, 1994)

Y`1,m1
(n̂)Y`2,m2

(n̂) =

`1+`2∑

L=|`1−`2|
aL,m1+m2

YL,m1+m2
(n̂) (2.17)

where YL,m1+m2
(n̂) is defined to be zero if |m1 + m2| > L. It follows that for the product of

two band-limited maps M(n̂) =
∑`2
`=`1

∑`
m=−`m`mY`m(n̂) and N(n̂) =

∑`4
`=`3

∑`
m=−` n`mY`m(n̂)

(where, without loss of generality, `1 ≤ `4):

M(n̂)N(n̂) =

`2+`4∑

L=0

L∑

M=−L
pLMYLM (n̂) (2.18)

for `3 < `2, i. e., the limits on ` in the two maps overlap (the pLM are the new harmonic coefficients).

(If the limits do not overlap, the lower limit on L in Eq. (2.18) becomes `3 − `2.) The limits on `

in the wavelet coefficient maps W c
jnk are (`jmin, `

j
max) (see § 2.4.4). Therefore, by Eq. (2.18) and

Eq. (2.15), the limits on ` in the covariance matrix element maps (R̂jnk)cc
′

are (0, 2`jmax); hence

the limits on ` in Eq. (2.16).

Having established the main equations governing the ILC method, we now present the main

steps in the ILC algorithm that we use:

1. Form the (Rapprox
jnk )cc

′
by Eq. (2.14).

2. Smooth the (Rapprox
jnk )cc

′
in harmonic space by Eq. (2.16).

9FWHMj = 50
√

1200

N
j
samp

. This value is the same as used in the NILC implementation on Planck data.
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3. Take the inverse of each covariance matrix at each pixel to form (R̂−1
jnk)cc

′
.

4. Calculate the ILC weights ωcjnk by Eq. (2.13), where we assume that ac = 1 for all c and we

substitute the empirical estimates for the inverse covariance matrices.

5. Finally, calculate the ILC estimate wavelet coefficient maps W ILC
jnk by applying Eq. (2.11).

2.4.6 Point source masking

The input frequency maps are diffusively inpainted in a small point source mask following the

method employed by Planck Collaboration et al. (2015g). This recognises that the ILC fails when

the CMB is obscured by bright extragalactic sources or complex emission near the Galactic equator.

The inpainting removes these sources and attempts to replace them with an extrapolation of the

surrounding signal. The mask supplied is taken from the NILC section of Planck Collaboration

et al. (2014a) and is constructed from the Planck Catalogue of Compact Sources (PCCS) (Planck

Collaboration et al., 2014b, 2015f)10. It masks about 2.2% of the whole sky, predominantly along

the Galactic equator towards the Galactic centre.

Because of this inpainting, the final ILC map is inpainted within the point source mask. For the

purposes of this inpainting, we have split the mask into two, based on the size of its constituent

individual contiguous holes11. For holes consisting of less than or equal to 800 pixels, we inpaint

with a constrained Gaussian realisation following the method of Benoit-Lévy et al. (2013), itself

an approximate implementation of the Hoffman-Ribak algorithm (Hoffman and Ribak, 1991). For

holes consisting of more than 800 pixels (the largest 131 out of 10031), we inpaint with a standard

diffusive algorithm (in particular, following the method employed by Planck Collaboration et al.

(2015g)). The result is that the ILC map is 1.3% Gaussian inpainted and 0.9% diffusively inpainted.

This follows Benoit-Lévy et al. (2013), who do not recommend using their Gaussian inpainting for

large holes near the Galactic equator.

2.4.7 Numerical implementation

SILC is implemented in Python and is parallelised. At full Planck resolution (Nside = 2048, `max =

3600), when run on a 60-core symmetric multiprocessor (SMP) with 1.5 TB RAM and a 24-core

cluster node with 256 GB RAM12, the pipeline takes approximately 12 hours per direction. As shown
10The details of its construction are given in Planck Collaboration et al. (2014a). It can be downloaded from http:

//pla.esac.esa.int/pla and is labelled I MASK in the NILC data products.
11Note that many holes can be large and irregularly-shaped due to the overlapping of smaller circular holes.
12The exact specification for our infrastructure is an Intel Xeon E7-4890 2.8 GHz SMP with 4 × 15-core CPUs with 25.6

GB RAM per core, and an Intel Xeon E5-2697 2.7 GHz node with 2 × 12-core CPUs with 10.7 GB RAM per core.
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by Eq. (2.16), we perform spherical harmonic transforms to 2`max = 7200. For a given number of

directions N , the full pipeline takes approximately N times as long as the axisymmetric limit of

our method (when N = 1). In our infrastructure, the code was usually memory-limited (due to

the very high resolution of the covariance matrix maps (Rjnk)cc
′

at harmonic band-limit 2`jmax);

the amount of parallelisation sometimes had to be reduced to prevent memory overloads on a

single node. As mentioned in § 2.4.4, the wavelet transforms employ the latest version of S2LET

(Leistedt et al., 2013; McEwen et al., 2015), written in C with Python wrappers, itself employing

SSHT (McEwen and Wiaux, 2011) and SO3 (McEwen et al., 2015). Despite the use of MW sampling

and FFTs, spherical harmonic transforms are the most time-consuming part of the pipeline, again

due to the very high resolution of the (Rjnk)cc
′

(for the smallest wavelets, these covariance maps

are band-limited at ` = 7200). There is scope to further optimise the implementation. Our wavelet

analysis and synthesis functions do not respectively output and take as input wavelet coefficient

maps at double-resolution (i. e., a map band-limited at `max
j sampled at 2`max

j ), requiring additional

spherical harmonic transforms to double the resolution. Also, our spherical harmonic transform

function does not calculate harmonic coefficients to a multipole less than the band-limit of the input

map (i. e., to only calculate a`m for ` < L where L < `jmax), resulting in excess computation at

certain steps in the algorithm. These optimisations are left as further work.

2.5 Sources of error in the ILC

By the linearity of the wavelet transform in Eq. (2.7), the data model in Eqs. (2.1) and (2.2) can be

recast in wavelet space as

W c
jnk = acWCMB

jnk +WFG,c
jnk +WN,c

jnk , (2.19)

where WCMB
jnk , WFG,c

jnk and WN,c
jnk are respectively the CMB, foreground and instrumental noise

contributions to each wavelet coefficient map. The beams within each component have been

absorbed into the component wavelet coefficient maps. Substituting Eq. (2.19) into Eq. (2.11) gives

W ILC
jnk =

Nc∑

c=1

acωcjnkW
CMB
jnk +

Nc∑

c=1

ωcjnk(WFG,c
jnk +WN,c

jnk)

= WCMB
jnk +

∑Nc

c,c′=1(WFG,c
jnk +WN,c

jnk)(R−1
jnk)cc

′
ac

′

∑Nc

c,c′=1 a
c(R−1

jnk)cc′ac′
,

(2.20)

where the second equality follows by applying the constraint given in Eq. (2.12) and expanding the

weights as given in Eq. (2.13). Even when the calibration ac and the covariance matrices (Rjnk)cc
′
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SILC (N = 1)

-300 300µK

Figure 2.4: Planck data. The CMB temperature anisotropies reconstructed using SILC in the

axisymmetric limit (N = 1,FWHM = 5′, Nside = 2048). The grey pixels are the point source mask.

are correct, there is always residual signal in the final ILC wavelet coefficient maps, given by the

second term on the RHS of Eq. (2.20). Due to the linearity of the inverse wavelet transforms, this

residual signal will propagate linearly into the final ILC temperature map as calculated by Eq. (2.10).

As explained in § 2.4.5, this error term is reduced by minimising the empirical variance of the ILC

map assuming that the CMB and foregrounds and the CMB and noise are respectively uncorrelated.

There are additional sources of error in the ILC method. The first is due to inaccuracy in the

calculation of covariance matrices (Rjnk)cc
′
, i. e., deviations in the empirical estimate (R̂jnk)cc

′

from the true covariance (Rjnk)cc
′
. Delabrouille et al. (2009) estimated the first order expansion of

the reconstruction error in the ILC map estimate due to this covariance error. They showed that

the covariance of the ILC error with the CMB is inversely proportional to the number of “effective

modes” used in the ILC calculation. This covariance bias is negative. In our directional wavelet

decomposition, our “effective modes” are spherical harmonic coefficients weighted to take account

of the fact that the harmonic responses of wavelets overlap in both scale and direction. As N ,

the number of orientations probed, increases and so does the number of wavelets, each wavelet

coefficient map contains fewer “effective modes.” We therefore conclude that our directional

wavelet ILC may be susceptible to this negative ILC bias by increasing N . Delabrouille et al.
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SILC (N = 1) - NILC

-15 15µK

SILC (N = 1) - SMICA

-15 15µK

NILC - SMICA

-15 15µK

Figure 2.5: Planck data. Differences between the axisymmetric limit (N = 1) of SILC, NILC and

SMICA. The maps have been smoothed to FWHM = 80′ and downgraded to Nside = 128. The grey

pixels are the UT78 confidence mask from Planck Collaboration et al. (2015c), which masks the

regions of the NILC and SMICA maps not recommended for cosmological analysis. The differences

are (from top to bottom) (a) SILC (N = 1) - NILC, (b) SILC (N = 1) - SMICA and (c) NILC - SMICA.

76



(2009) also showed that due to chance correlations between the CMB and foregrounds, the

variance minimisation leads to the unintentional cancellation of N c − 1 CMB modes. For Planck,

N c = 9, whereas for WMAP, N c = 5. We therefore expect the magnitude of this negative bias

to double simply by using more input frequency channels. Also, since this covariance bias is due

to the cancellation of CMB modes, Delabrouille et al. (2009) showed that the absolute value is

proportional to the CMB power. Therefore, the absolute value of the bias is greatest on large scales

where CMB power is concentrated. In general, these biases are best estimated through suites of

Monte Carlo simulations.

Another source of error is due to inaccuracy in the calibration ac of the CMB. Dick et al. (2010)

calculated the consequence of a first order error in ac on a multiplicative correction to the CMB

term in Eq. (2.20). They showed that even a small error in calibration can lead to a significant

negative multiplicative bias in the CMB term, when the signal-to-noise ratio is large. (Here, the

noise in this ratio also includes foreground signal.) They consider the implications for using an

ILC on Planck data, where the signal-to-noise ratio is larger than for WMAP data. They estimate

that a 1% error in ac can cancel about a third of the CMB signal, while even a 0.1% error in ac can

remove about 1% of the CMB. Since our main map products use Planck data as input, they will be

susceptible to this additional negative calibration bias. In this work, we assume that the CMB is

calibrated to have unit response for all frequency channels, i. e., ac = 1 for all c.

As mentioned in § 2.4.2 and 2.4.3, we assume all beams to be circularly symmetric. Therefore,

non-axisymmetric beam components will propagate into the ILC calculation but are assumed

sufficiently small to be ignored.

2.6 Comparison to previous work

We now consider how SILC compares with existing component separation methods, particularly

those adopted for the Planck analysis. We applied the axisymmetric limit (when N = 1) of SILC

to full-mission Planck data and compared the results to existing Planck analyses using the NILC

and SMICA methods: the former because it is the closest in spirit to SILC, and the latter because it

is the baseline method adopted by the Planck Collaboration for high-resolution analyses. Figure

2.4 shows the CMB reconstructed by the axisymmetric limit of SILC, while Fig. 2.5 shows the

differences between this map and the NILC and SMICA (full-mission 2015 release) CMB maps and

the difference between NILC and SMICA. The differences between the three maps are small in

magnitude and mostly concentrated at the edges of the Galactic mask towards the Galactic centre,
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Figure 2.6: Planck data. TT angular power spectra comparing the axisymmetric limit (N = 1) of

SILC to NILC and SMICA. The top panel (a) shows point source masked spectra. The middle panel

(b) shows residuals after subtracting the best-fit ΛCDM model from the Planck 2015 likelihood. The

bottom panel (c) shows the same residuals at low multipoles only (` < 1500).
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where foreground emission is most intense and complex. Quantitatively, we can compare the mean

values and standard deviations of the masked difference maps. The mean values of Figs. 2.5 (a), (b)

and (c) are respectively 0.44, −0.63, and −1.07 µK, while the standard deviations are respectively

4.24, 3.38 and 3.43 µK2. These values are small and similar, suggesting a strong consistency between

the three methods. These difference maps have been formed from maps which have been smoothed

and downgraded in resolution and so visually highlight differences at the lowest multipoles.

Figure 2.6 compares point source masked TT angular power spectra (D` = `(`+ 1)C`/2π) at

the full multipole range of the three maps (up to ` = 3400)13 with a CMB spectrum derived from

the Planck 2015 TT and low TEB likelihood14. The SILC spectrum is remarkably similar to that

of NILC. This is unsurprising since the axisymmetric limit of SILC (when N = 1) is very similar to

the NILC method. Nonetheless, there are a number of pipeline differences. In particular, we use a

different set of wavelets than the needlets employed in NILC (as discussed in § 2.4.4), even in the

axisymmetric limit, with different harmonic responses. Figure 2.2 shows the harmonic response of

the wavelets used in this work and Table 2.1 lists their harmonic band-limits `jmin and `jmax. The

SMICA spectrum has lower residuals at higher multipoles than both the axisymmetric limit of SILC

and NILC.

Figure 2.7 compares full-sky angular power spectra of the three maps, including the inpainted

point source regions. The spectra are similar to those in Fig. 2.6. The main difference is the lower

noise tail in the SILC map at high multipoles above ` = 1500 (where all component separation CMB

maps are dominated by residual instrumental noise). This is because, unlike NILC and SMICA, we

do not Gaussian inpaint the very largest point source holes, but rather use diffusive inpainting (as

discussed in § 2.4.6). The Gaussian inpainting of large irregular holes is poorly constrained and

adds residual noise relative to diffusive inpainting.

We have shown that the axisymmetric limit of SILC gives comparable performance to NILC and

SMICA. In § 2.7 and § 2.8, we “turn on” the directionality of the wavelets and consider the impact

on CMB reconstruction from simulated and real data respectively.

13In order to estimate full-sky spectra from a masked map, we correct the C` by dividing by fsky = 0.978, a good
approximation for a small mask. We elect to use point source masked spectra in order to concentrate our analysis on
foreground and noise removal, rather than how maps are inpainted; all three maps are inpainted (at least) within the mask
used.

14The parameters come from the base plikHM TT lowTEB likelihood. The values are available in the Planck 2015 Release
Explanatory Supplement: 2015 Cosmological parameters and MC chains (http://wiki.cosmos.esa.int/planckpla2015/
images/f/f7/Baseline_params_table_2015_limit68.pdf).
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Figure 2.7: Planck data. TT angular power spectra comparing the axisymmetric limit (N = 1)

of SILC to NILC and SMICA. The top panel (a) shows full-sky spectra of inpainted maps. The

middle panel (b) shows residuals after subtracting the best-fit ΛCDM model from the Planck 2015

likelihood. The bottom panel (c) shows the same residuals at low multipoles only (` < 1500).
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SILC (N = 1) - input [FFP8]

-15 15µK

Figure 2.8: Planck simulations. Difference between output ILC and input CMB temperature maps

from FFP8 simulations. The maps have been smoothed to FWHM = 80′ and downgraded to

Nside = 128. The grey pixels are the UTA76 confidence mask from Planck Collaboration et al.

(2015c), which masks the Galactic region in FFP8 simulations where foreground emission is

strongest.
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2.7 Application to Planck simulations

We now apply SILC to the fiducial full-mission Planck FFP8 simulated sky maps, focusing on the

impact on CMB reconstruction by increasing directionality as a function of scale. Figure 2.8 shows

the difference between our reconstructed CMB (using N = 1) and the input simulated CMB. There

are small-magnitude differences particularly at the edge of the Galactic mask where the strength and

complexity of foreground emission is greatest. As in Fig. 2.5, this difference map is at low resolution

and so highlights residuals at the lowest multipoles. Figure 2.9 compares point source masked TT

angular power spectra (up to ` = 3400) of CMB maps reconstructed using values of N from 1 to 5.

It can be seen that the introduction of directionality has the greatest effect at multipoles around

` = 800; the residuals are beginning to converge for ` & 2000. Figure 2.10 shows the differences

between simulated CMB maps reconstructed using N = [2, 3, 4, 5] minus the input CMB. The four

maps and the axisymmetric difference map in Fig. 2.8 are almost identical with small magnitude

residuals. This is because these low-resolution difference maps again highlight residuals on the

very largest scales. However, as discussed in § 2.4.4, the wavelets we use are constructed to have

an axisymmetric scaling function at the very lowest multipoles. The scaling function we use (as

detailed in Table 2.1) means that no directionality is applied for ` < 32.

Figure 2.11 shows equivalent difference maps as in Fig. 2.10 but for the simulated CMB

reconstructed using directional wavelets at all scales15, including for ` < 32. It can be seen that

the reconstruction errors are significantly larger in magnitude and cover almost the entire sky.

The errors are also dominated by the largest scales, in particular a large error in the quadrupole

increasing with magnitude as the amount of directionality N increases. We attribute this effect

most probably to the ILC “biases” discussed in § 2.5, in particular the cancellation of CMB modes

due to chance correlations with foregrounds in the ILC variance minimisation. Delabrouille et al.

(2009) showed that the absolute value of this effect is largest on large scales where CMB power is

concentrated, since the cancelled CMB modes on large scales have the greatest magnitude. Further,

as discussed in § 2.5 and shown in Fig. 2.11, these errors are expected to increase in magnitude as a

function of N . This is because as N increases, each directional wavelet coefficient map (the space

in which our ILC operates) contains fewer “effective modes” of the input data and so the error in

our empirical covariance estimation is expected to increase. This error propagates to the final maps.

These map reconstruction errors due to the implementation of directionality on the very largest

scales are accompanied by increasingly negative power spectrum residuals as N increases, in

15In particular, the scaling function and j = 0 wavelet are replaced by two directional wavelets with harmonic band-limits
[1, 60] and [1, 128].

82



0

1000

2000

3000

4000

5000

6000
D
`

[µ
K

2
]

N = 1

N = 2

N = 3

N = 4

N = 5

Input

0 500 1000 1500 2000 2500 3000

Multipole `

0

100

200

300

∆
D
`

[µ
K

2
]

0 200 400 600 800 1000 1200 1400

−50

0

50

100

150

200

250

∆
D
`

[µ
K

2
]

Figure 2.9: Planck simulations. TT angular power spectra comparing output ILC using different

values of N and input CMB from FFP8 simulations. The top panel (a) shows point source masked

spectra. The middle panel (b) shows residuals after subtracting the input CMB spectrum. The

bottom panel (c) shows the same residuals at low multipoles only (` < 1500).

83



SILC (N = 2) - input [FFP8]
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Figure 2.10: Planck simulations. Differences between output ILC reconstructed using different values

of N and input CMB temperature maps from FFP8 simulations. The maps have been smoothed to

FWHM = 80′ and downgraded to Nside = 128. The grey pixels are the UTA76 confidence mask.

The differences are (from left to right, top to bottom) (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5

minus the input CMB.
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Figure 2.11: Planck simulations. Same as Fig. 2.10 (which uses the recommended wavelets) but

here using directional wavelets on large scales (` < 32), which is not recommended as it leads to

increased CMB reconstruction errors as seen above.

85



particular in the first multipole bin from ` = 2 to ` = 11. This is also indicative of the negative ILC

bias due to empirical CMB cancellation, as discussed in § 2.5 and Delabrouille et al. (2009). The

results in Fig. 2.11 thus motivate the use of an axisymmetric scaling function, which ensures that

no directionality is used for ` < 32 and so reduces the errors in CMB reconstruction. In principle

these biases can be estimated and corrected through large suites of simulations, which is beyond

the scope of this work.

2.8 Application to Planck data

We now study the application of SILC with increasing directionality to the full-mission Planck sky

maps. The left column of Fig. 2.12 shows the full-resolution reconstructed CMB maps as calculated

with different values of N from 2 to 5, which visually appear very similar. The right column of

Fig. 2.12 shows the differences between the CMB reconstructed using N = [2, 3, 4, 5] minus the

axisymmetric limit (when N = 1), highlighting the differences at the lowest multipoles. The

differences are of largest magnitude towards the Galactic plane where foreground emission is

concentrated. This shows how the different wavelet kernels are localising the ILC weights differently

in response to the directional structure of the foregrounds and CMB. The differences are small,

reflecting the implementation of an axisymmetric scaling function, meaning that no directionality is

applied at ` < 32. Figure 2.13 compares point source masked TT angular power spectra of the CMB

reconstructed using values of N from 1 to 5. The power spectrum residuals from a Planck best-fit

ΛCDM model remain small for most scales until the reconstructed spectra reach a characteristic

noise spectrum for ` & 1500 where the different values of N converge. At these high multipoles,

the ILC solution is dominated by residual instrumental noise. We see the biggest impact from

directionality at intermediate multipoles (from ` = 400 to ` = 1500). For comparison, we plot the

SMICA power spectrum. In further support to the discussion in § 2.6, SILC matches the performance

of SMICA. We note that, as with the simulations in § 2.7, directionality changes the reconstructed

CMB power spectrum most significantly at intermediate multipoles around ` = 800.

2.9 Discussion

The comparisons in § 2.6 demonstrate that SILC matches the performance of two previous meth-

ods, NILC and SMICA, in both maps and power spectra, with particular similarity between the

axisymmetric limit of SILC and NILC, as expected. Both map residuals and power spectra in § 2.7
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Figure 2.12: Planck data. Left: CMB temperature anisotropies reconstructed using SILC with

different values of N (FWHM = 5’, Nside = 2048). Right: differences between CMB temperature

maps reconstructed using different values of N minus the axisymmetric limit N = 1. The maps

have been smoothed to FWHM = 80′ and downgraded to Nside = 128. In both columns: the grey

pixels are the point source mask (downgraded in resolution as appropriate). From top to bottom:

(a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5.
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Figure 2.13: Planck data. TT angular power spectra comparing different values of N from 1 to 5

and SMICA. The top panel (a) shows point source masked spectra. The middle panel (b) shows

residuals after subtracting the best-fit ΛCDM model from the Planck 2015 likelihood. The bottom

panel (c) shows the same residuals at low multipoles only (` < 1500).
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and § 2.8 show that switching on directionality changes CMB reconstruction most significantly at

intermediate multipoles ` = 400 – 1500. There appears to be little benefit in localising the ILC with

directional wavelets at the very smallest scales, where the ILC result is noise-limited. We also adopt

an axisymmetric scaling function on the very largest scales, meaning that there is no directionality at

` < 32. In Fig. 2.11, we show the large CMB reconstruction errors arising from using directionality

on the largest scales. This motivates the use of an axisymmetric scaling function, which significantly

reduces the errors as seen in Fig. 2.10. In § 2.7, we sketched out an argument that attributes these

errors to empirical CMB cancellation (§ 2.5). However, the precise source and exact magnitude of

any ILC errors are best estimated through suites of simulations.

We have presented this analysis by producing CMB maps (in § 2.7 and § 2.8) each with a

different single value of N at all wavelet scales. Our method can be simply extended to allow

different values of N at each wavelet scale. In the same way that each wavelet scale has different

harmonic band-limits, they can also have different azimuthal band-limits, optimised as identified

above to reduce foreground and noise residuals.

The negative ILC power spectrum biases discussed in § 2.5 must be quantified in parallel to this

directionality optimisation if using the resulting map for power spectrum analyses. It is possible

to estimate variance biases in the data through suites of realistic simulations. However, we can

also calculate this using the data itself and a fiducial CMB spectrum. In wavelet space, the variance

estimator at each wavelet coefficient is 〈W ILCW ILC†〉 = ω†〈WW†〉ω = ω†Rω = (a†R−1a)−1 =

(
∑Nc

c,c′=1(R−1)cc
′
)−1, where each equality follows by applying in turn Eqs. (2.11), (2.14) and (2.13)

(from § 2.4.5) and then expanding the vector notation (the vectors span the space defined by the

number of input channels; explicitly, we assume unit CMB calibration a = (1, 1, 1, 1, 1, 1, 1, 1, 1)).

In order to calculate the variance bias in the ILC, we can subtract the expected CMB variance
∑
`m C`|Ψ

j
`m|

2
. If analysis was done in wavelet space, the above would define the variance bias. If

only considering the diagonal terms in wavelet space, it is possible to straightforwardly transform

this estimate to real space through an inverse wavelet transform as in Eq. (2.10), substituting Φ(n̂)

and Ψj(ρ̂) respectively for |Φ(n̂)|2 and |Ψj(ρ̂)|2. However, for a full treatment of the variance bias

including off-diagonal terms, full wavelet space covariances need to be calculated. Although many

off-diagonal terms would decay, this would still be computationally demanding and will be the

focus of future research. However, we reiterate that if analysis is carried out in wavelet space, then

variance biases can be straightforwardly calculated from the information already contained in the

results.
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2.10 Conclusions

We have presented SILC, a new form of internal linear combination that uses directional, scale-

discretised wavelets to localise the ILC weighting according to the frequency, spatial, harmonic and,

for the first time, morphological information in the CMB and its foregrounds. This is motivated by

the anisotropic or filmentary morphology of both the CMB and astrophysical foregrounds in the

microwave sky. We have tested SILC on 2015-release Planck data and simulations, demonstrating

comparable performance to two existing component separation algorithms, NILC and SMICA, and

investigated how to optimise the use of morphological information through directionality. We have

explored increasing the amount of directionality in the algorithm, showing that on the largest and

the smallest scales, the axisymmetric limit of the ILC works well, while at intermediate multipoles

(from ` = 400 – 1500), increasing N (the number of directions per scale) leads to lower residuals.

At high multipoles (` & 1500), the input data are already noise-limited, as is the ILC reconstruction,

and directionality does not reduce the reconstruction error, as instrumental noise has no directional

structure. We adopt an axisymmetric scaling function to analyse the largest scales, meaning that we

use no directionality for ` < 32. This is motivated by the observation that increasing directionality

on large scales gives increased reconstruction errors over the axisymmetric limit. We argue that

these errors are due to empirical CMB cancellation in the ILC calculation, though the exact source

must be estimated through large suites of realistic simulations. Allowing N to vary with wavelet

scale is analogous to the choice of different harmonic band-limits at different scales.

We conclude that the introduction of directional wavelets allows greater flexibility in the ILC to

make use of morphological information at targeted scales. Our multiprocessing implementation

takes advantage of the wavelet scales to allow large-scale results to be analysed while small scales

are still being processed. Moreover, our wavelet transforms are quick and exact, using MW sampling

and fast Fourier transforms (see § 2.3). As discussed in § 2.5, the ILC is prone to several sources of

error and variance bias, including empirical CMB cancellation. This bias can be estimated through

suites of Monte Carlo simulations, but we have also outlined (in § 2.9) the ability to estimate

biases directly from the data, most straightforwardly in wavelet space. We make our map products

available at http://www.silc-cmb.org16.

This work on scalar signals (i. e., the temperature I component of the CMB) can be extended to

spin signals (i. e., the polarisation Q and U components of the CMB, or, equivalently, the E and B

modes), by using spin wavelets (Leistedt et al., 2015; McEwen et al., 2014; McEwen et al., 2015b).

16The DOI for our data release is 10.5281/zenodo.44373.
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These are an extension of directional, scale-discretised wavelets to represent spin signals, such as

CMB polarisation, a spin ±2 signal. We expect that the directionality will be particularly suited

to the anisotropic, filamentary nature of polarised foregrounds when observed on the sky, and in

future work will present the application of SILC to CMB polarisation data.
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3
Spin-SILC: CMB polarisation component separation

with spin wavelets

3.1 Abstract

We present Spin-SILC, a new foreground component separation method that accurately extracts

the cosmic microwave background (CMB) polarisation E and B modes from raw multifrequency

Stokes Q and U measurements of the microwave sky. Spin-SILC is an internal linear combination

method that uses spin wavelets to analyse the spin-2 polarisation signal P = Q+ iU . The wavelets

are additionally directional (non-axisymmetric). This allows different morphologies of signals

to be separated and therefore the cleaning algorithm is localised using an additional domain of

information. The advantage of spin wavelets over standard scalar wavelets is to simultaneously

and self-consistently probe scales and directions in the polarisation signal P = Q + iU and in

the underlying E and B modes, therefore providing the ability to perform component separation

and E-B decomposition concurrently for the first time. We test Spin-SILC on full-mission Planck

simulations and data and show the capacity to correctly recover the underlying cosmological E and

B modes. We also demonstrate a strong consistency of our CMB maps with those derived from

existing component separation methods. Spin-SILC can be combined with the pseudo- and pure E-B

spin wavelet estimators presented in a companion paper to reliably extract the cosmological signal in

the presence of complicated sky cuts and noise. Therefore, it will provide a computationally-efficient

method to accurately extract the CMB E and B modes for future polarisation experiments.
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3.2 Introduction

The polarisation of the cosmic microwave background (CMB) is a powerful cosmological observable,

providing deep insights into the physics of the early universe. The decomposition of the linear

polarisation into curl-free (E mode) and divergence-free (B mode) components allows the detection

of tensor perturbations to the metric. Specifically, a non-zero BB power spectrum on degree

scales would support the existence of a stochastic background of gravitational waves predicted

by inflationary theory (Kamionkowski et al., 1997; Seljak and Zaldarriaga, 1997). Accurate

measurement of B mode polarisation on arcminute scales also gives strong constraints on the

neutrino sector via the weak gravitational lensing of CMB E modes (Zaldarriaga and Seljak, 1998).

There are numerous existing and planned ground-based, balloon-borne and satellite experiments

designed to precisely measure CMB polarisation (see e. g., Errard et al. 2015 for a recent forecast on

the cosmological constraining power of current and upcoming missions). However, as in measuring

the temperature T anisotropies of the CMB, the polarised background needs to be separated from

instrumental noise and signals due to astronomical foregrounds (in particular, synchrotron radiation

and thermal radiation from Galactic dust). This foreground component separation is more difficult

compared with the case of CMB temperature, due to the relative strength and morphological

complexity of polarised foregrounds, which are poorly understood.

Foreground component separation has been performed in numerous ways but, on real obser-

vational data, always by removing foreground contamination from scalar signals. For example, in

the polarised setting, foreground contamination is removed from the Stokes Q and U or from E

and B mode maps by treating Q and U or E and B as independent scalar fields. We presented a

thorough discussion of blind and non-blind component separation methods in Rogers et al. (2016)

(see also e. g., Bobin et al. 2013; Delabrouille et al. 2009 for reviews). In this work, we highlight

only the four component separation methods employed in Planck Collaboration et al. (2015c).

Commander (Eriksen et al., 2006, 2008) and SEVEM (Fernández-Cobos et al., 2012; Leach et al.,

2008; Mart́ınez-González et al., 2003) operate on the Q and U maps, while NILC (Delabrouille

et al., 2009) and SMICA (Cardoso et al., 2008) operate on the E and B mode maps.

Recently, Fernández-Cobos et al. (2016) explored an extension of the Internal Linear Combina-

tion (ILC) method to act fully on the spin-2 signal formed by the Q and U maps and applied their

method to simulations. In general, the ILC method estimates the CMB as a weighted sum of maps of

the sky at different microwave frequencies. The weights are constrained to conserve the CMB signal

but minimise foreground and noise residuals by minimising the variance of the output map. The
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weights can be localised in various domains, but most usefully in wavelet space (e. g., Rogers et al.,

2016), which allows the weights to vary simultaneously with position on the sky and harmonic

scale. Fernández-Cobos et al. (2016) minimised the covariant quantity 〈|P |2〉, where P = Q+ iU ,

in map space. Consequently, they do not consider any harmonic localisation.

In this work, we introduce the Spin, Scale-discretised, directional wavelet ILC or Spin-SILC.

This is an extension of the SILC method we introduced in Rogers et al. (2016), where to analyse

spin signals such as CMB polarisation we now use spin scale-discretised wavelets, the complete

construction of which is presented in McEwen et al. (2015b) (see also Leistedt et al., 2015; McEwen

et al., 2014). Wavelets are functions that are localised in both real and harmonic space and, in

particular, scale-discretised wavelets satisfy excellent localisation properties (McEwen et al., 2015a).

In the scalar SILC method, we use directional scale-discretised wavelets (McEwen et al., 2013;

McEwen et al., 2015b; Wiaux et al., 2008). Directional wavelets are spatially and harmonically

localised and additionally “directionally-localised,” i. e., the spatial kernels are non-axisymmetric

and can be rotated to pick out a preferred direction on the surface of the sphere. Rogers et al. (2016)

gives an introductory summary of directional wavelets. The spin wavelets we use are still spatially,

harmonically and directionally localised but are now constructed in the space of spin spherical

harmonics. When spin wavelets are convolved with spin signals defined on the sphere, the output

wavelet coefficients isolate signal structure of different scale and orientation, while maintaining the

spatial information. The spin can in general be arbitrary, but since we are interested in analysing

the spin-2 signal P = Q+ iU we adopt spin-2 wavelets. By the particular construction of the spin

wavelets, the complex spin-2 wavelet coefficients can be separated (by their real and imaginary

parts) into scalar wavelet coefficients of the E and B fields, where the scalar wavelet coefficients

correspond to a scalar wavelet that is a spin-lowered version of the original spin-2 wavelet (McEwen

et al., 2015b). Hence, the spin-2 wavelet transform at the heart of Spin-SILC performs E-B

decomposition from input Q and U maps. The ILC method is then applied to the complex wavelet

coefficients, with complex weights, and jointly minimises the variance of the reconstructed E and

B fields. Moreover, the weights vary spatially, harmonically and according to different orientations,

fine-tuning the cleaning algorithm to remove foreground and noise contamination.

It follows that Spin-SILC introduces two main novelties to CMB polarisation component separa-

tion. Firstly, the use of spin scale-discretised wavelets allows the full analysis of the polarisation spin

signal P . By their construction, we can then perform component separation and E-B decomposition

simultaneously and self-consistently. Secondly, the use of directional wavelets allows the additional

flexibility to localise the foreground removal according to the morphological structure of the CMB
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and the foregrounds.

There is a third novel attribute to Spin-SILC of interest to future polarisation observations.

Although in this work, we have tested Spin-SILC on the full-sky multifrequency maps provided by

the Planck Collaboration, these frequency maps are dominated by instrumental noise and hence so

are also our estimates of the CMB polarisation. Future polarisation measurements will have high

signal-to-noise, but will usually cover only a fraction of the sky. However, E-B decomposition (from

the measured Q and U modes) on the cut-sky is not uniquely defined unlike the full-sky case. This

leads to leaking or mixing between the E and B modes. This is of particular concern in extracting

the B field since the E field is orders of magnitude larger. As presented in a companion paper

(Leistedt et al., 2016), the spin scale-discretised wavelets we use can be employed to construct pure

estimators of the masked E and B modes (pure E (B) modes are orthogonal to all B (E) modes on

the partial sky, respectively). This builds on the work of Bunn et al. (2003); Ferté et al. (2013); Grain

et al. (2012); Lewis et al. (2002); Smith and Zaldarriaga (2007) (see in particular Bunn et al. 2003

for a discussion of pure modes at the map level). This only requires calculating additional wavelet

transforms of the input data subject to a suitably apodised mask. One of the main advantages of

this approach is the possibility of optimising the mask as a function of scale and direction, therefore

yielding a more efficient cancellation of the systematic E-B mixing due to masking (Leistedt et al.,

2016). Hence, Spin-SILC can produce accurate estimates of the cosmological E and B fields, even

on the cut-sky, in conjunction with the E-B estimators presented in Leistedt et al. (2016). More

details of how Spin-SILC can operate on partial sky observations are given in § 3.4.8.

We provide an introduction to spin scale-discretised wavelets in § 3.3. In § 3.4, the Spin-SILC

algorithm is explained in detail. We test the method on Planck simulations in § 3.5 and Planck data

in § 3.6. In § 3.7, we compare our method to previous component-separation methods. We discuss

the results in § 3.8 and conclude in § 3.9.

3.3 Spin wavelets

Spin, directional, scale-discretised wavelets on the sphere that support exact reconstruction have

been constructed in McEwen et al. (2015b) (and discussed briefly in Leistedt et al. 2015; McEwen

et al. 2014). These are an extension of the scalar, directional wavelets developed in McEwen

et al. (2013); Wiaux et al. (2008), which are used in the scalar version of the SILC method for the

analysis of CMB temperature anistropies (Rogers et al., 2016). They maintain the properties of

spatial, harmonic and directional localisation, but can now additionally analyse spin fields by being
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Figure 3.1: The spatial localisation on the sphere of spin, directional, scale-discretised wavelets. The

top row shows larger scale wavelets than the bottom row. The left column shows the real part of the

wavelet, the middle column shows the imaginary part of the wavelet and the right column shows

the absolute value of the wavelet. The number of directions per wavelet scale N = 5. Therefore, for

complete reconstruction at each scale, the above wavelets would be complemented by four more

wavelets of the same size but of a different orientation on the sphere. The spin number s = 2, which

is what is required for the analysis of Stokes Q and U modes. This figure is adapted from McEwen

et al. (2015b).
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Figure 3.2: The harmonic localisation of the spin wavelets used in this work (κj` as defined in

Eq. (3.11)), where j specifies the wavelet scale. Increasing j corresponds to a smaller wavelet

kernel and so a multipole range on smaller scales (i. e., larger multipoles `). The largest wavelet

scale (Scal.) is the scaling function (§ 3.4.4). This choice of wavelets deliberately ensures exact

reconstruction only for ` ≤ 2048. The tapering of the smallest wavelet for 2048 < ` ≤ 2253

suppresses the smallest-scale power within the algorithm. The band-limits of the above wavelets

are given in Table 3.1.
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Figure 3.3: An illustration of the spin, directional wavelet decomposition of the CMB Stokes Q and

U maps and the E - B separation that automatically occurs as a consequence. The top row shows

example input Q and U maps, simulated with lensed scalar perturbations, with zoomed regions

to show structure in the fields. The middle row shows the real and imaginary parts of the spin,

directional wavelet coefficient maps, formed by the spin-2 wavelet transform of P = Q+ iU . The

ILC algorithm acts on such wavelet coefficients (calculated for multiple polarisation channels) and

produces clean wavelet coefficients of the CMB polarisation. By the construction of the wavelets,

the real and imaginary parts are respectively equal to scalar wavelet transforms of the E and B

fields (with a different scalar wavelet). The bottom row shows the output E and B maps, also with

zoomed regions, formed respectively by inverse scalar wavelet transforms of the real and imaginary

parts of the wavelet coefficient maps. In our Spin-SILC analysis we include wavelets on smaller

scales than those used in the simple demonstration shown above.
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Table 3.1: The harmonic band-limits [`jmin, `
j
max] of the spin wavelets used in this work. `jpeak is the

multipole at which each wavelet has its maximum response. The final column shows the number of

equiangular samples per wavelet coefficient map N j
samp.

Wavelet scale j `jmin `jpeak `jmax N j
samp

Scal. 0 64 64 8,385
0 32 64 128 33,153
1 64 128 256 131,841
2 128 256 512 525,825
3 256 512 706 998,991
4 542 705 918 1,688,203
5 705 917 1193 2,850,078
6 917 1192 1551 4,815,856
7 1192 1550 2015 8,126,496
8 1550 2015 2253 10,158,778

constructed on the basis of spin spherical harmonics. In particular, spin-2 wavelets can be convolved

with the spin-2 field P = Q + iU , where Q and U are the Stokes parameters of the CMB’s linear

polarisation. Figure 3.1 shows an example of the spatial localisation of spin wavelets. Unlike scalar

wavelets which are real-valued, spin wavelets are complex-valued. Figure 3.2 shows an example of

the harmonic localisation of spin wavelets (for the wavelets used in this work). Figure 3.3 shows an

example of spin-2 wavelet decomposition as applied to a simulated CMB polarisation field P . By the

construction of the spin-2 wavelets, the real and imaginary parts of the complex wavelet coefficient

maps of P are respectively scalar wavelet transforms of E and B fields (with a different scalar

wavelet). It can be seen that the spin-2 wavelet transform in the Spin-SILC method carries out the

decomposition of the CMB polarisation into E and B modes. Details about the use of Spin-SILC on

partial sky observations are given in § 3.4.8.

3.4 Method

We start by outlining the Spin-SILC algorithm. The steps are explained in more detail in the

subsequent subsections (§ 3.4.1 to 3.4.7). The use of Spin-SILC on partial sky observations is

discussed in § 3.4.8. We discuss our numerical implementation in § 3.4.9.

(1). The raw input data are full-sky frequency maps of the anisotropies in the linear polarisation of

the CMB, i. e., StokesQ and U fields. These maps use the HEALPix format (Górski et al., 2005).

(See § 3.4.1.) The model we employ for the raw data is explained in § 3.4.2.

(2). The maps are “pre-processed” by inpainting in a small point source mask and each convolved
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to have the same effective beam (see § 3.4.3).

(3). At each frequency band, the complex spin-2 polarisation field P = Q+ iU is formed. Each P

map is converted into a set of complex-valued spin-2 wavelet coefficient maps. This separates

both the scale and orientation of structure within each map. These wavelet coefficient maps

are sampled according to the sampling theorem of McEwen et al. (2015). (See § 3.4.4.)

(4). A spin-2 ILC method is then applied separately to each wavelet scale and orientation. For

each scale and orientation, the multifrequency wavelet coefficient maps are weighted and

added to form a single (complex-valued) wavelet coefficient map that contains mainly CMB

signal, as well as some residual foreground and noise. These weights are allowed to vary at

each wavelet coefficient. The calculation of these weights is explained in § 3.4.5.

(5). By the construction of the spin-2 wavelets we use, the real and imaginary parts of the final ILC

wavelet coefficient maps are respectively ILC estimates of the scalar wavelet transforms of the

CMB E and B maps (with a different scalar wavelet). Therefore, the real and imaginary parts

are separately synthesised with scalar wavelets to form the final products: full-sky maps of

the CMB E and B anisotropies (with some residual foreground and noise). (See § 3.4.7.) Q

and U maps are also formed by a standard spin-2 inverse wavelet transform of the ILC results

(see § 3.4.6). All final maps use the HEALPix format.

3.4.1 Input data

Our CMB polarisation map products use full-mission 2015 release Planck Q and U polarisation

maps as their input1 (Planck Collaboration et al., 2015b,i). All seven polarisation frequency

channels are used. At 70 GHz, we use the higher-resolution version at Nside = 2048. As noted

in Planck Collaboration et al. (2015a), the 100, 143 and 217 GHz polarisation maps have been

high-pass filtered due to insufficient characterisation of residual systematic effects on large scales,

in particular leakage between temperature and polarisation measurements. We therefore follow

Planck Collaboration et al. (2015c) in also high-pass filtering the spherical harmonic coefficients of

1http://pla.esac.esa.int/pla
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our output data products with a harmonic cosine filter:

w` =





0, if ` < 20,

1
2

[
1− cos

(
π
20 (`− 20)

)]
, if 20 ≤ ` ≤ 40,

1, otherwise.

(3.1)

We use the full-mission Full Focal Plane 8 (FFP8) simulations (Planck Collaboration et al., 2015h)

with lensed scalar perturbations and without bandpass mismatch. These consist of a superposition of

a CMB realisation, a noise realisation and full simulations of diffuse and point source astrophysical

foregrounds.

While we do not expect an algorithm developed for next generation precision CMB polarisation

observations to demonstrate its full capabilities with the Planck dataset, this setting comprises the

best publicly-available simulations and data, and benefits from the availability of comparison data

products from well-studied and highly tested component separation algorithms used by the Planck

Collaboration. Thus we use the Planck setting to benchmark our algorithm.

3.4.2 Data model

Each of the full-sky Stokes Q and U polarisation maps (X = Q,U) can be independently2 physically

modelled (e. g., Basak and Delabrouille, 2013) as

XOBS,c(n̂) =

∫

n̂′
dn̂′Bc(n̂, n̂′)XSIG,c(n̂′) +XN,c(n̂), (3.2)

where the signal component can further be decomposed as

XSIG,c(n̂) = acXCMB(n̂) +XFG,c(n̂). (3.3)

XCMB(n̂) is the CMB component at a point on the sky n̂. XFG,c(n̂) and XN,c(n̂) are respectively the

foreground and detector noise components for frequency channel c. ac is the calibration coefficient

for the CMB for each channel. The overall signal component is smoothed by a beam function

Bc(n̂, n̂′) due to the finite resolution of the observations. However, the noise component is not

smoothed by the beam. Here we assume the beam to be circularly symmetric. Therefore, the beam

2The independent modelling is based on the accurate assumption that any mixing ofQ and U modes in their measurement
has been previously corrected in any given experiment.
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can be represented as a sum over Legendre polynomials,

Bc(n̂, n̂′) =

∞∑

`=0

2`+ 1

4π
Bc`P`(n̂.n̂

′). (3.4)

We can recast Eq. (3.2) in the scalar spherical harmonic representation as

0a
OBS,c
`m = acBc` 0a

CMB
`m +Bc` 0a

FG,c
`m + 0a

N,c
`m (3.5)

where 0a`m are the coefficients of scalar spherical harmonics 0Y `m(n̂).

The above is a useful representation for the data pre-processing in § 3.4.3. However, the novelty

of Spin-SILC is to develop a component separation algorithm that directly makes use of the spin

properties of the CMB polarisation field. The Stokes Q and U parameters are defined with respect to

a fixed coordinate system on the sky. They can be identified by their respective ‘+’ and ‘×’ patterns,

as seen in the top row of Fig. 3.3. However, there is no rotationally-invariant measure of the power

as a function of scale. In order to address this, we can first form the complex-valued, spin ±2

polarisation field

P±2 (n̂) = Q(n̂)± iU(n̂)

=
∑

`m

a±2 `m Y±2 `m (n̂).
(3.6)

The spin ±2 property implies that ±2P (n̂) transforms under local rotations of angle ψ via ±2P →

e−isψ ±2P , where spin number s = ±2. The second equality therefore follows by expanding the

spin field ±2P (n̂) in the basis of spin spherical harmonics ±2Y `m(n̂) with spin spherical harmonic

coefficients ±2a`m.

We can then define the scalar E and pseudo-scalar B fields in harmonic space as

0E`m = −1

2
(2a`m + −2a`m)

0B`m =
i

2
(2a`m − −2a`m).

(3.7)

By construction, the E andB fields are real-valued and allow the calculation of rotationally-invariant

angular power spectra. E modes are identified by the polarisation strength increasing in a direction

parallel or perpendicular to the sense of the polarisation; it is the curl-free component of the spin-2

signal. B modes are identified by the polarisation strength increasing in a direction unaligned to the

sense of the polarisation; it is the divergence-free component of the spin-2 signal. E and B modes
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therefore respectively separate the underlying field into parity-even and parity-odd components.

3.4.3 Data pre-processing

The input frequency Q and U maps are diffusively inpainted in a small point source mask following

the method employed by Planck Collaboration et al. (2015g). This recognises that the ILC fails when

the CMB is obscured by bright extragalactic polarised sources. The inpainting removes these sources

and replaces them with an extrapolation of the surrounding signal. The mask is the union of the

Planck LFI and HFI point source masks, which are constructed from the Second Planck Catalogue of

Compact Sources (PCCS2) (Planck Collaboration et al., 2015f)3. It masks about 0.6% of the whole

sky, predominantly along the Galactic equator.

After the inpainting, we convert all the input frequency maps to the same resolution by perform-

ing a deconvolution/convolution procedure that gives scalar spherical harmonic coefficients

0a
c
`m =

BEFF
`

Bc`
0a

OBS,c
`m , (3.8)

where BEFF
` is the beam transfer function giving the resolution at which we perform the ILC. For

Planck data, we use a Gaussian beam with a FWHM of 5’ as our input beam. Our final map products

are re-convolved to a 10’ beam in order to suppress residual noise. The beams we deconvolve

Bc` are taken from the Reduced Instrument Model (RIMO)4. For the LFI beams, we use Gaussian

approximations with FWHM 32.33’, 27.01’ and 13.25’ for 30, 44 and 70 GHz respectively. Following

Planck Collaboration et al. (2014c); Rogers et al. (2016), the deconvolved beams are thresholded

such that the Bc` is set to the value given in the RIMO or 0.001, whichever is larger. This suppresses

noise within the ILC method.

3.4.4 Spin wavelet analysis

The spin wavelet ILC method requires the decomposition of each band-limited, complex-valued

polarisation map 2P
c(n̂) (as formed by Eq. (3.6)) into a set of spin wavelet coefficient maps W 2Ψj

P .

We use the spin, directional, scale-discretised wavelets of Leistedt et al. (2015); McEwen et al.

(2014); McEwen et al. (2015b). Following an introductory summary in § 3.3, we now discuss

some of the technical details of our wavelet implementation. We drop the c superscript on 2P (n̂)

3The details of their construction are given within the FITS files. They can be downloaded from http://pla.esac.esa.

int/pla.
4Planck 2015 Release Explanatory Supplement: The 2015 instrument model (http://wiki.cosmos.esa.int/

planckpla2015/index.php/The_RIMO).
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for the rest of this subsection since each frequency map is analysed using the same wavelets. We

concentrate on the spin-2 wavelet transforms we use in Spin-SILC, but the wavelets we use can be

generalised to arbitrary spin.

The spin wavelet coefficients are defined as the directional convolution of 2P with spin wavelets

2Ψj defined on the sphere S2 (specifically those shown in Fig. 3.2), where index j denotes the

wavelet scale. Like the scalar case (McEwen et al., 2013; Wiaux et al., 2008), spin, directional

wavelets yield coefficients W 2Ψj

P (ρ̂) that live on the space of three-dimensional rotations, i. e., the

rotation group SO(3):

W 2Ψj

P (ρ̂) ≡ 〈2P |Rρ̂ 2Ψj〉 =

∫

S2
dn̂ 2P (n̂)(Rρ̂ 2Ψj)∗(n̂), (3.9)

where dn̂ is the usual invariant measure on the sphere and ·∗ denotes complex conjugation. The

rotation operator is defined by

(Rρ̂ 2Ψj)(n̂) ≡ 2Ψj(R−1
ρ̂ n̂), (3.10)

where Rρ̂ is the three-dimensional rotation matrix corresponding to Rρ̂. In Eqs. (3.9) and (3.10),

ρ̂ = (θ, φ, χ) ∈ SO(3) denotes the Euler angles (in the zyz convention) with colatitude θ ∈ [0, π],

longitude φ ∈ [0, 2π) and direction χ ∈ [0, 2π). In other words, the wavelet coefficients probe

directional structure in 2P with χ corresponding to the orientation about each point (θ, φ) on the

sphere.

Spin, directional wavelets are defined by their spin spherical harmonic coefficients in factorised

form:

Ψ j
2 `n ≡

√
2`+ 1

8π2
κj` ζ2 `n , (3.11)

where κj` sets the harmonic localisation (Fig. 3.2) and ζ2 `n sets the directional localisation. Their

spin properties are maintained by being built on the basis of spin spherical harmonics. Full details

of their construction are given in McEwen et al. (2015b). As in Rogers et al. (2016), we flexibly

control the harmonic localisation by using different values of the wavelet dilation parameter λ

in different multipole regions. For the wavelets we use in Fig. 3.2, we use λ = 2, 1.3, 1.1 with

transitions at multipoles ` = 512, 2015. The harmonic bounds of each wavelet for scale j are

given by (`jmin, `
j
max) = (λj

′−1, λj
′+1), taking account of the different values of λ we use and the

stitching-together of wavelets at λ transitions. The index j′ refers to the original index of the

wavelet scale as if only that single value of λ was used. Their peak response is at λj
′
. The details of

our harmonic tiling are given in Table 3.1. A single parameter N (at all scales) defines the number
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of directions into which each wavelet scale is localised.

We also use an axisymmetric scaling function 2Φ to form scaling coefficients W 2Φ
P which

characterise the largest-scale information (in this work for ` < 64) and live on the sphere. This

is motivated by testing in Rogers et al. (2016) that showed that the use of directionality on large

scales in the ILC is not effective for CMB reconstruction. These wavelets (and the scaling function)

satisfy the standard admissibility criterion for exact reconstruction, i. e., no information is lost in the

wavelet and inverse wavelet transforms of a band-limited spin signal. For the chosen band-limit,

the smallest wavelet is harmonically-truncated. We choose not to use this wavelet, which means

that exact reconstruction is only satisfied for ` ≤ 2048. This allows the tapering of the smallest

remaining wavelet (for 2048 < ` ≤ 2253) to suppress the smallest-scale power in the algorithm.

In order to apply the ILC algorithm, the above continuous wavelet coefficients must be discretised.

Since they live on the rotation group SO(3), we represent them using the sampling scheme of

McEwen et al. (2015), which is itself a generalisation of the sampling scheme of McEwen and Wiaux

(2011). Since the wavelets are band-limited, we use a multi-resolution scheme where each wavelet

scale j is pixellated with a minimal number of samples. This means that each wavelet coefficient map

W 2Ψj

P (band-limited at `jmax) is only evaluated at samples (θjt , φ
j
p, χn), where t ∈ {0, 1, . . . , `jmax},

p ∈ {0, 1, . . . , 2`jmax} and n ∈ {0, 1, . . . , N − 1}. In this way, each spin wavelet coefficient map can

be separated into N spin, directional wavelet coefficient maps W 2P
jnk according to the value of n,

where k indexes pixel number according to samples (θjt , φ
j
p) on the sphere. It follows that each input

frequency P map has been decomposed into wavelet coefficient maps, each localised according

to harmonic scale j and orientation of structure n, while maintaining spatial localisation (pixel

number k). (See Fig. 3.3 for a demonstration of this decomposition.)

3.4.5 ILC method

Following the spin, directional wavelet analysis of the input P maps (see § 3.4.4), there is a

spin, directional wavelet coefficient map W 2P,c
jnk for each channel c, scale j and orientation n with

a pixel index k. With this compact notation, we conflate the scaling coefficient maps with the

wavelet coefficient maps as the ILC method applies in exactly the same way. We develop the spin

wavelet ILC method by an extension of the scalar wavelet ILC method we developed in Rogers

et al. (2016) to operate on the complex-valued wavelet coefficient maps we now have. Similar to

Fernández-Cobos et al. (2016), we consider the complex spin signal ±2P rather than considering

scalar fields independently (e. g., Q and U independently or E and B independently). However,

105



unlike Fernández-Cobos et al. (2016), who work jointly on Q and U maps in real space, we work

in wavelet space, where spatial, scale and directional localisation is possible. The most general

extension of the scalar ILC is to estimate the CMB at each wavelet scale and orientation as a sum of

wavelet coefficient maps for each frequency with complex-valued weights ωcjnk:

W 2P,ILC
jnk ≡

Nc∑

c=1

ωcjnkW
2P,c
jnk , (3.12)

where Nc is the number of input channels.

In order to recover an unbiased estimate of the CMB, we impose a constraint on the weights

such that
Nc∑

c=1

acωcjnk = 1 + 0i, (3.13)

where we remind the reader that ac is the real-valued set of calibration coefficients for the CMB Q

and U maps introduced in Eq. (3.3). In order to calculate the weights at each pixel k, we choose

to minimise the covariant quantity
〈∣∣W 2P,ILC

jnk

∣∣2
〉

with respect to the complex-valued weights ωcjnk

themselves, under the constraint in Eq. (3.13). This minimisation can be carried out with complex

Lagrange multipliers (similarly to the scalar case) giving complex-valued weights

ωcjnk =

∑Nc

c′=1(R−1
jnk)cc

′
ac

′

∑Nc

c=1

∑Nc

c′=1 a
c(R−1

jnk)cc′ac′
, (3.14)

where the true covariance matrices at scale j, orientation n and pixel k, (Rjnk)cc
′

=
〈
W 2P,c
jnk

∗
W 2P,c

′

jnk

〉

(where the angled brackets indicate an ensemble average, although in practice we empirically

estimate these covariances as explained below). In this work, we assume ac = 1, ∀ c, i. e., that the

CMB is perfectly calibrated in the data we use.

There are two main consequences from minimising the quantity we choose. First, as in scalar

SILC, we assume that the CMB and foregrounds and the CMB and noise are respectively uncorrelated.

It follows that the ensemble cross-term between CMB and residual contamination is zero and, since

the CMB is conserved by the constraint in Eq. (3.13), we are minimising only the variance of the

error in CMB reconstruction. Second, by minimising the variance of the full complex-valued spin-2

wavelet coefficients using complex weights, we are in turn jointly minimising the variance of the E

and B modes. This is thanks to the construction of the spin wavelets we use, as discussed in § 3.4.6.

Unlike a foreground cleaning algorithm acting on the Q and U or E and B maps separately, this

approach ensures that all the information (i. e., from the multiple polarisation channels and the Q
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and U cross terms) is used to jointly construct clean CMB polarisation P and its E and B modes.

As in scalar SILC, we estimate the covariance matrices (Rjnk)cc
′

empirically on the data. We

achieve this by replacing the appropriate ensemble average with a weighted average of the sur-

rounding pixels. Specifically, we smooth the maps of covariance matrix elements with a Gaussian

kernel in harmonic space. The size of this kernel is proportional to the size of the wavelet used at

each scale5. Full details of this empirical estimation of covariances and possible optimisations to the

method are given in Rogers et al. (2016).

3.4.6 Spin wavelet synthesis to Stokes Q and U modes

Although a novelty of Spin-SILC is to simultaneously perform E-B decomposition and component

separation (i. e., to synthesise the ILC results directly to E and B maps as explained in § 3.4.7),

one can also form Q and U maps. This is carried out by a single spin-2 inverse wavelet transform.

After the ILC method (see § 3.4.5) has been applied to the frequency wavelet coefficient maps,

there is one ILC estimate of the CMB P field (with some residual foreground and noise) at each

wavelet scale and orientation W 2P,ILC
jnk . Multiple orientations χ0, χ1, . . . , χN−1 are combined at

each scale to form wavelet coefficient maps W 2Ψj ,ILC
P (ρ̂) that live on SO(3). We also have the

scaling coefficient map W 2Φ,ILC
P (n̂) that lives on the sphere (and characterises the largest scales).

In order to calculate our real space estimate of the CMB polarisation spin field 2P
ILC(n̂) (and hence

the Stokes parameters QILC(n̂) and U ILC(n̂)), we perform the following spin-2 inverse wavelet

transform:

2P
ILC(n̂) =QILC(n̂) + iU ILC(n̂)

=

∫

S2
dn̂′W 2Φ,ILC

P (n̂′)(Rn̂′ 2Φ)(n̂)

+
∑

j

∫

SO(3)

dρ̂W 2Ψj ,ILC
P (ρ̂)(Rρ̂ 2Ψj)(n̂),

(3.15)

where dρ̂ is the usual invariant measure on the rotation group. We have used the same spin wavelets

as in the wavelet analysis in § 3.4.4. The final ILC Q and U maps are pixellated in the HEALPix

format.

5FWHMj = 50
√

1200

N
j
samp

. This value is the same as used in the NILC implementation on Planck data.
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3.4.7 Scalar wavelet synthesis to E and B modes

A considerable advantage of the Spin-SILC method is that it simultaneously removes foreground and

noise contamination from the cosmological signal and carries out the E-B decomposition discussed

in § 3.4.2. It achieves the latter by using a property of the spin scale-discretised wavelets that

relates W 2Ψj

P (ρ̂), the spin-2 wavelet transform of P to W 0Ψj

Ẽ
(ρ̂) and W 0Ψj

B̃
(ρ̂), the scalar wavelet

transforms of Ẽ and B̃:

W 0Ψj

Ẽ
(ρ̂) = −Re[W 2Ψj

P (ρ̂)]

W 0Ψj

B̃
(ρ̂) = −Im[W 2Ψj

P (ρ̂)].

(3.16)

The intermediate fields Ẽ and B̃ are respectively related to E and B by a harmonic normalisation

of their scalar spherical harmonic coefficients:

E0 `m =
1

N`,2
Ẽ0 `m

B0 `m =
1

N`,2
B̃0 `m ,

(3.17)

where N`,s =
√

(`+s)!
(`−s)! .

The straightforward E-B decomposition is achieved by the construction of the wavelets and is

discussed in detail in McEwen et al. (2015b) and Leistedt et al. (2016). In Eq. (3.16) the scalar

wavelets 0Ψj are spin-lowered versions of the spin-2 wavelets 2Ψj:

0Ψj(n̂) = ð2

2Ψj(n̂). (3.18)

(An equivalent equation links the scalar and spin scaling functions.) ð is a first-order differential

operator known as the spin-lowering operator since it lowers the spin of spherical harmonic

functions: ð sY `m(n̂) = 1
N`,s s−1Y `m(n̂).

By applying Eq. (3.16), we can separate the spin wavelet coefficient maps W 2Ψj ,ILC
P (ρ̂) (defined

in § 3.4.6) into scalar wavelet coefficient maps of the intermediate Ẽ and B̃ modes W 0Ψj ,ILC
Y (ρ̂),

where Y = Ẽ, B̃. An equivalent separation forms the scaling coefficient maps W 0Φ,ILC
Y (n̂). In order

to calculate our real space estimates of the CMB Ẽ and B̃ modes 0Y
ILC(n̂), we perform inverse

scalar wavelet transforms with the (spin-lowered) scalar scaling function 0Φ and scalar wavelets
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0Ψj (as defined in Eq. (3.18)):

0Y
ILC(n̂) =

∫

S2
dn̂′W 0Φ,ILC

Y (n̂′)(Rn̂′ 0Φ)(n̂)

+
∑

j

∫

SO(3)

dρ̂W 0Ψj ,ILC
Y (ρ̂)(Rρ̂ 0Ψj)(n̂).

(3.19)

The output scalar spherical harmonic coefficients can be renormalised to the usual E and B fields

by applying Eq. (3.17). The final ILC E and B maps are pixellated in the HEALPix format.

3.4.8 Spin-SILC on partial sky observations

We have outlined above the Spin-SILC method specifically as it applies on the full sky. However,

Spin-SILC is being primarily developed for application to future CMB polarisation experiments,

which will have greater signal-to-noise and/or resolution, but will typically observe only part of

the sky. The decomposition of Stokes Q and U measurements into E and B modes is essential for

cosmological analyses, in particular for a measurement of the BB angular power spectrum. This is

strictly well-defined only on the whole sky, as in Eq. (3.7).

This decomposition is not well-defined if the input measurements only cover a part of the sky.

However, following Bunn et al. (2003), a polarisation field on the cut-sky can be decomposed into

a complete orthonormal basis defined by “pure E”, “pure B” and “ambiguous” modes. Pure E

modes have vanishing curl and are orthogonal to all B modes on the partial sky. Pure B modes

have vanishing divergence and are orthogonal to all E modes on the partial sky. Ambiguous

modes are all other modes, which will have both vanishing divergence and curl. It is the inability

to distinguish ambiguous modes which leads to the problem of E-B leakage where ambiguous

modes are erroneously counted as E or B. However, following, e. g., Bunn et al. (2003); Smith

and Zaldarriaga (2007), if the pure B modes can be isolated, they will form an estimate of the

cosmological B power, unbiased by E-B leaking.

Leistedt et al. (2016) have shown how the spin wavelets we use can be employed to construct

estimates of the pure modes defined above on a masked sky. This builds on the work of, e. g., Grain

et al. (2012); Lewis et al. (2002); Smith and Zaldarriaga (2007). In particular, the spin wavelet

pure-mode estimation of Leistedt et al. (2016) requires only two additional wavelet transforms

of the input Q and U data and a suitably apodised mask. The Spin-SILC method can be applied

on partial sky observations by coherently combining the full-sky method with the pure mode

estimation. The application of Spin-SILC to partial sky observations will be investigated in future
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SILC (N = 1) - input [FFP8] [Q]

-2 2µK

SILC (N = 1) - input [FFP8] [U ]

-2 2µK

Figure 3.4: Planck simulations. Differences between output ILC and input CMB maps from FFP8

simulations with lensed scalar perturbations. The maps have been smoothed to FWHM = 80′

and downgraded to Nside = 128. The grey pixels are the UPB77 confidence mask from Planck

Collaboration et al. (2015c), which masks the Galactic region in FFP8 simulations where foreground

emission is strongest. From top to bottom, we show differences in (a) Stokes Q and (b) Stokes U

maps.
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work, providing the first integrated pipeline to simultaneously carry out E-B decomposition and

foreground component separation for future CMB polarisation experiments.

3.4.9 Numerical implementation

Spin-SILC is implemented in Python and is parallelised. At full Planck resolution (Nside = 2048,

`max = 2253), when run on a 60-core symmetric multiprocessor (SMP) with 1.5 TB RAM and a

24-core cluster node with 256 GB RAM6, the pipeline takes approximately 1.5 hours per direction.

The wavelet transforms in Spin-SILC are carried out using the latest version of the S2LET7 code

(Leistedt et al., 2013; McEwen et al., 2015), written in C with Python wrappers. This employs SSHT8

(McEwen and Wiaux, 2011) and SO39 (McEwen et al., 2015) to compute spin spherical harmonics

and Wigner transforms exactly and efficiently. Spin-SILC is developed from the scalar SILC10 code

(Rogers et al., 2016) (which performs component separation on the temperature anisotropies of the

CMB).

3.5 Application to Planck simulations

We tested Spin-SILC on the fiducial full-mission Planck FFP8 simulated Stokes Q and U sky maps.

We use simulations with lensed scalar perturbations. Figure 3.4 shows the differences between

the reconstructed CMB (using N = 1) and the input simulated CMB. The two panels show the

differences in Q and U maps, as this most directly compares to the input data. The most striking

features are the reductions in residuals in the top left and bottom right corners, aligning with

the Ecliptic poles. This reflects reduced noise residuals because there is less noise in the input

data due to the scanning strategy of the Planck satellite, which integrated for longer in those

directions. In general, the difference maps are consistent with noise residuals. This is a consistent

attribute of the Planck polarisation datasets. Figure 3.5 compares the full-sky angular power spectra

(D` = `(` + 1)C`/2π) of the same reconstructed CMB and the input signal. The three panels

respectively compare the EE, BB and EB spectra, as these are the cosmologically-interesting

observables. The EE and BB spectra are consistent with significant residual noise power due to

the noisiness of the input maps, although the first four acoustic peaks of the EE spectrum are

6The exact specification for our infrastructure is an Intel Xeon E7-4890 2.8 GHz SMP with 4 × 15-core CPUs with 25.6
GB RAM per core, and an Intel Xeon E5-2697 2.7 GHz node with 2 × 12-core CPUs with 10.7 GB RAM per core.

7http://www.s2let.org
8http://www.spinsht.org
9http://www.sothree.org

10http://www.silc-cmb.org

111

http://www.s2let.org
http://www.spinsht.org
http://www.sothree.org
http://www.silc-cmb.org


10−2

10−1

100

101

102

103

104
D
E
E

`
[µ

K
2
]

10−2

10−1

100

101

102

103

D
B
B

`
[µ

K
2
]

SILC (N = 1) [FFP8]
Input

0 500 1000 1500 2000

Multipole `

−15

−10

−5

0

5

10

15

D
E
B

`
[µ

K
2
]

Figure 3.5: Planck simulations. From top to bottom, (a) EE, (b) BB and (c) EB angular power

spectra comparing output ILC in the axisymmetric limit (N = 1) to input CMB from FFP8 simulations

with lensed scalar perturbations. In the top panel (a), the thin red line shows residuals after

subtracting the input CMB spectrum.
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Figure 3.6: Planck simulations. Differences between angular power spectra of different values of

N minus the axisymmetric limit (N = 1). The input data are FFP8 simulations with lensed scalar

perturbations. From top to bottom, we show differences in (a) EE and (b) BB spectra. We note the

small amplitude of the reductions in reconstruction residuals from increasing N .
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Spin-SILC [E]

-15 15µKµK

Spin-SILC [B]
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Figure 3.7: Planck data. From left to right, (a) the CMB polarisation E map and (b) the CMB

polarisation B map reconstructed using Spin-SILC in the axisymmetric limit (N = 1,FWHM =

10′, Nside = 1024).

discernible nonetheless. The reconstructed EB spectrum is consistent with the zero input value.

We tested the impact of using directional spin wavelets in the Spin-SILC method with the

simulated dataset. Figure 3.6 compares the differences in full-sky power spectra between the

directional case (for N = 5, 10) minus the axisymmetric limit (N = 1). The two panels compare

EE and BB spectra. It can be seen that using more directional wavelets per wavelet scale reduces

power spectrum reconstruction residuals with respect to the axisymmetric limit, very modestly on

large scales and more so on small scales. However, the magnitude of these reductions is very small

compared to the total power in the output ILC maps, which are dominated by residual instrumental

noise; in the BB spectrum, the reduction is comparable to the magnitude of the input lensing

signal. These results are fully expected following Rogers et al. (2016), where it was found that

the gains in component separation efficacy from employing directionality was marginal in the low

signal-to-noise (S/N) regime.

3.6 Application to Planck data

After testing Spin-SILC on the simulated dataset, we apply as input data the real full-mission Planck

Stokes Q and U maps. Figure 3.7 shows our main output data products: full-sky ILC estimates

of the CMB polarisation E and B modes using Spin-SILC in the axisymmetric limit (N = 1). We

show E and B maps in order to highlight the E-B decomposition from input Q and U maps that

Spin-SILC automatically carries out thanks to the construction of the spin wavelets that we use (see

§ 3.4.4). We reiterate that these maps have been high-pass filtered (for ` < 40) in order to mitigate
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for residual systematics in the Planck polarisation data (see § 3.4.1). The maps are consistent with

large levels of residual instrumental noise, with the scanning pattern of the Planck satellite clearly

visible. We also note the poor reconstruction in the Galactic plane, particularly towards the Galactic

centre, where foreground emission is strongest and most complex.

3.7 Comparison to previous work

Having presented the main results of applying Spin-SILC to Planck data, we can perform a validation

check by comparing to other component separation reconstructions of the CMB from the same

dataset. For this purpose, we concentrate on the methods NILC (Delabrouille et al., 2009) and

SMICA (Cardoso et al., 2008), which are two of the four methods used internally by the Planck

Collaboration (Planck Collaboration et al., 2015c): the former because it is the most similar method

to Spin-SILC and the latter because it is the baseline method adopted by the Planck Collaboration

for high-resolution analyses. Like Spin-SILC, NILC is an internal linear combination (ILC) method

performed in wavelet space. Unlike Spin-SILC, NILC uses scalar axisymmetric wavelets, specifically

scalar needlets (Baldi et al., 2009; Marinucci et al., 2008; Narcowich et al., 2006), rather than the

spin directional wavelets we use (Leistedt et al., 2015; McEwen et al., 2014; McEwen et al., 2015b)

(although spin needlets (Geller et al., 2008) and mixed needlets (Geller and Marinucci, 2011) have

also been developed). This means that in its extension to polarisation (Basak and Delabrouille,

2013; Planck Collaboration et al., 2015c), NILC acts independently on input E and B maps, having

been previously decomposed from the original Stokes Q and U data. Similarly to ILC methods,

SMICA forms a linear combination of multifrequency data, but in harmonic space. Unlike blind ILC

methods which require no physical modelling of the sky components, SMICA is only semi-blind

in that on large scales, rather than empirically estimating covariances on the data (as on small

scales), a fit is performed to a model of the component covariances, with the option to constrain

these covariances. This is extended to polarisation by performing a joint processing of the E and B

modes in harmonic space. A further difference between ILC methods and SMICA is that SMICA has

no spatial localisation in its component separation, although a wavelet implementation of SMICA

does exist (Moudden et al., 2005). Indeed, Spin-SILC localises with regard to the greatest number

of domains of information, allowing spatial, harmonic and morphological localisation through the

use of directional wavelets (see Rogers et al. 2016 for a discussion of the morphological localisation

properties of directional wavelets in the SILC method). A significant advantage of Spin-SILC over

existing component separation methods (including NILC and SMICA) is the use of spin wavelets,
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Figure 3.8: Planck data. Differences between the axisymmetric limit (N = 1) of Spin-SILC, NILC

and SMICA. The maps have been smoothed to FWHM = 80′ and downgraded to Nside = 128.

The grey pixels are the UPB77 confidence mask from Planck Collaboration et al. (2015c), which

masks the regions of the NILC and SMICA maps not recommended for cosmological analysis. The

differences are (from top to bottom) (a) SILC (N = 1) - NILC, (b) SILC (N = 1) - SMICA and (c)

NILC - SMICA; and in (from left to right) (i) Stokes Q and (ii) Stokes U maps.
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Figure 3.9: Planck data. From top to bottom, (a) EE, (b) BB and (c) EB angular power spectra

comparing the axisymmetric limit (N = 1) of Spin-SILC to NILC and SMICA. In the top panel (a), the

thin lines show residuals after subtracting the best-fit ΛCDM model from the Planck 2015 likelihood.

117



which allows simultaneous component separation and E-B decomposition.

We can empirically compare the three methods with an analysis of the CMB maps reconstructed

from the (full-mission 2015 release) Planck data and full-sky power spectra measured from those

maps. Figure 3.8 shows the differences between the CMB reconstructed by Spin-SILC (in the

axisymmetric limit N = 1), NILC and SMICA. We show differences in Q and U maps as this most

directly compares to the map products provided by the Planck Collaboration. The differences

between the three methods are small in magnitude in both Q and U and mostly concentrated at the

edges of the Galactic mask towards the Galactic centre, where foreground emission is most intense

and complex. Quantitatively, we can compare the mean values and standard deviations of the

full-sky difference maps. The mean values of the Q difference maps in Figs. 3.8 (i) (a), (b) and (c)

(from top to bottom on the left-hand side) are respectively 5.2×10−5, 4.3×10−5 and −9.3×10−6 µK,

while the standard deviations are 0.34, 0.37 and 0.34 µK2. The mean values of the U difference

maps in Figs. 3.8 (ii) (a), (b) and (c) (from top to bottom on the right-hand side) are respectively

6.4 × 10−5, −6.9 × 10−5 and −1.3 × 10−4 µK, while the standard deviations are 0.33, 0.37 and

0.31 µK2. These values are small and similar, suggesting a strong consistency between the three

methods. As discussed in § 3.4.1, some of the input Planck data are high-pass filtered and so are

also the output results of all three methods (for ` < 40). This means that any comparison can only

be carried out for ` ≥ 40.

Figure 3.9 compares full-sky power spectra measured from component separation maps with

CMB spectra derived from the Planck 2015 TT and low TEB likelihood11. The three panels

respectively compare EE, BB and EB spectra. As with the simulated results in § 3.5, the EE and

BB spectra from all three methods are consistent with significant residual noise power due to the

noisiness of the input maps. The only discernible difference is marginally less power in the SMICA

maps at multipoles around ` = 250. This could be attributed to the semi-blindness of SMICA better

characterising the noise properties of the Planck data. The two blind methods, Spin-SILC and NILC

have near-identical spectra at all multipoles. The EB spectra of all three methods are consistent

with zero.

The comparison of Spin-SILC to existing methods NILC and SMICA has strongly validated the

results we showed in § 3.6. An analysis of maps and power spectra shows an internal consistency

between the three algorithms. It also shows that the power of Spin-SILC and other component

separation methods is limited by the low S/N of the Planck polarisation data, with large amounts of

11The parameters come from the base plikHM TT lowTEB likelihood. The values are available in the Planck 2015 Release
Explanatory Supplement: 2015 Cosmological parameters and MC chains (http://wiki.cosmos.esa.int/planckpla2015/
images/f/f7/Baseline_params_table_2015_limit68.pdf).
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residual noise in the reconstructed CMB. The full potential of the Spin-SILC method thus awaits the

input of higher-S/N polarisation data available from upcoming CMB observations.

3.8 Discussion

The testing of Spin-SILC on Planck simulations in § 3.5 and data in § 3.6 shows that the use of spin

wavelets in CMB polarisation component separation can successfully reconstruct the cosmological

background. This is particularly true of the EE power spectrum with the clear detection of the first

four acoustic peaks in both simulations and real data. The residual maps to the input simulated

CMB (Fig. 3.4) and power spectra estimated from the SILC maps (Fig. 3.5) show high levels of

residual noise, reflecting the relatively low S/N of the Planck data we used. In § 3.7, we carried

out a comparison of the Spin-SILC method with two of the most accurate existing component

separation algorithms, NILC and SMICA. We validated our main results by showing a strong internal

consistency in reconstructed CMB maps (Fig. 3.8) and power spectra measured from those maps

(Fig. 3.9). However, this comparison also revealed high levels of residual noise in the CMB estimated

by all three methods, due to the S/N limitations of the Planck polarisation data.

We also tested the use of directional spin wavelets in the Spin-SILC method on the simulations

in § 3.5. We found very modest reductions in reconstructed residual power (Fig. 3.6) as the amount

of directionality was increased. However, given the low S/N input data, the magnitude of these

reductions is much smaller than the overall amount of residual power, though at the accuracy

required to reconstruct the cosmological BB signal, this level of power reduction may become

relevant in the high S/N regime. As discussed in Rogers et al. (2016) in the scalar SILC method,

instrumental noise has no particular directional structure and thus in the low S/N regime the use of

directionality is expected to only have a small effect on the estimate of the reconstructed CMB. The

community is only just beginning to accurately characterise polarised foregrounds at high resolution

at a range of frequencies. If the foregrounds are complex in high S/N observations, the ability

to use directional wavelets may prove useful in localising component separation according to the

morphology of the CMB and foregrounds.

Spin-SILC introduces a number of novelties into CMB polarisation component separation. Most

notably, the use of spin wavelets allows simultaneous E-B decomposition and the joint minimisation

of E and B auto-correlations in residual contamination. Moreover, the use of directionality allows

the fine-tuning of the cleaning algorithm according to the morphology of the local signal. As

discussed in Rogers et al. (2016), there are various sources of error in the ILC method, which will
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affect the spin-ILC in an equivalent fashion. Of particular note is the ILC bias, corresponding to the

empirical cancellation of CMB modes due to chance correlations with foregrounds and noise (see

Delabrouille et al. 2009 for a fuller discussion of this effect), which will also affect the reconstruction

of the CMB polarisation. The amount of cancellation may increase with the amount of directionality

used within the method. In Rogers et al. (2016), we showed that this can be mitigated either

directly from the data or through suites of simulations.

3.9 Conclusions

We have presented Spin-SILC, a foreground component separation method specifically developed

for the analysis of CMB polarisation data. The use of spin wavelets allows the full analysis of the

spin-2 polarisation signal P = Q+ iU , formed by the Stokes Q and U parameters. By the particular

construction of the spin wavelets we use, Spin-SILC carries out the decomposition of the polarisation

signal into E and B modes by separating the real and imaginary parts of the complex spin-2 wavelet

coefficients. This occurs simultaneously to the component separation, where the auto-correlations

of E and B modes are jointly minimised in residual contamination to the reconstructed CMB.

Moreover, the wavelets we use are directional. This allows different directional morphologies of

CMB and polarised foreground to be separated. This extra information can then be used to better

localise the Spin-SILC cleaning algorithm.

We have tested Spin-SILC on full-mission Planck simulations and data. We showed that the

method can accurately extract cosmological information from input Q and U maps. We also

validated our main results with a comparison to the internal Planck methods, NILC and SMICA,

showing a strong consistency in both CMB maps and power spectra, with small residuals compared

to the two. However, we note that the analysis in this paper is limited by the low S/N of the Planck

polarisation data. Our final E and B maps (as well as those of NILC and SMICA) are dominated by

residual instrumental noise. Moreover, the full power of the use of directionality in Spin-SILC cannot

be fully explored due to the high level of noise in the Planck input data. If polarised foregrounds

have complex morphology in the high S/N regime, then the use of directionality may prove a useful

extra tool in extracting the CMB. In general, it will be interesting to test Spin-SILC further with

the high S/N data of upcoming CMB polarisation observations. We make our Q, U , E and B maps

available at http://www.silc-cmb.org12.

Furthermore, Spin-SILC can be combined with the estimators of Leistedt et al. (2016) to perform

12The DOI for our data release is 10.5281/zenodo.50579.
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component separation on the cut-sky and give accurate estimates of pure E and B modes (pure

E (B) modes are orthogonal to all B (E) modes on the cut-sky, respectively). It achieves this in

a straightforward fashion (with only two additional wavelet transforms of the input data) due to

the construction of the spin wavelets (see Leistedt et al. 2016 for more details about pure mode

estimation on the cut-sky using spin wavelets). This is of particular importance for the upcoming

high resolution, high S/N CMB polarisation experiments, which will typically make partial-sky

observations. Spin-SILC will provide a computationally-efficient algorithm to perform simultaneous

E-B decomposition and accurate foreground component separation for these next-generation

experiments.
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4
Simulating the effect of high column density absorbers

on the one-dimensional Lyman-alpha forest flux power

spectrum

4.1 Abstract

We measure the effect of high column density absorbing systems of neutral hydrogen (HI) on the

one-dimensional (1D) Lyman-alpha forest flux power spectrum using cosmological hydrodynamical

simulations from the Illustris project. High column density absorbers (which we define to be

those with HI column densities N(HI) > 1.6× 1017 atoms cm−2) cause broadened absorption lines

with characteristic damping wings. These damping wings bias the 1D Lyman-alpha forest flux

power spectrum by causing absorption in quasar spectra away from the location of the absorber

itself. We investigate the effect of high column density absorbers on the Lyman-alpha forest using

hydrodynamical simulations for the first time. We provide templates as a function of column density

and redshift, allowing the flexibility to accurately model residual contamination, i. e., if an analysis

selectively clips out the largest damping wings. This flexibility will improve cosmological parameter

estimation, e. g., allowing more accurate measurement of the shape of the power spectrum, with

implications for cosmological models containing massive neutrinos or a running of the spectral

index. We provide fitting functions to reproduce these results so that they can be incorporated

straightforwardly into a data analysis pipeline.
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4.2 Introduction

The Lyman-alpha forest (a series of neutral hydrogen absorption lines in the spectra of quasars) is a

uniquely powerful probe of the clustering of matter at redshifts from about z = 2 to z = 6 (Croft

et al., 1998; Iršič et al., 2016; McDonald et al., 2000, 2005b; Palanque-Delabrouille et al., 2013; Viel

et al., 2013) and from sub-Mpc to hundreds of Mpc scales. The one-dimensional (1D) Lyman-alpha

forest flux power spectrum (along the line of sight) is particularly sensitive to small-scale clustering

in the quasi-linear regime and provides important constraints on extended cosmological models that

suppress small-scale power (Armengaud et al., 2017; Iršič et al., 2017a,b; Palanque-Delabrouille

et al., 2015; Seljak et al., 2005; Yeche et al., 2017), notably those containing massive neutrinos and

warm dark matter. This small-scale information complements the larger scales probed by the angular

power spectrum of the cosmic microwave background (CMB). For example, the best upper limit

on the sum of neutrino masses (Palanque-Delabrouille et al., 2015) comes from combining CMB

data from the Planck Collaboration (Planck Collaboration et al., 2016f) with the 1D Lyman-alpha

forest power spectrum as measured from Sloan Digital Sky Survey (SDSS)-III/Baryon Oscillation

Spectroscopic Survey (BOSS) Data Release 9 (DR9) quasar spectra (Dawson et al., 2013; Eisenstein

et al., 2011; Palanque-Delabrouille et al., 2013).

Future surveys like the Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al.,

2016a,b) will further improve constraints on extended cosmological models. Font-Ribera et al.

(2014b) forecast one-sigma errors on a DESI measurement of the sum of neutrino masses to be

0.017 eV1. Considering that the lower limit on the sum of neutrino masses from neutrino oscillation

experiments is 0.06 eV (Esteban et al., 2017; Forero et al., 2014; Gonzalez-Garcia et al., 2014), this

would constitute at least a three-sigma detection. Furthermore, the 1D Lyman-alpha forest flux

power spectrum probes the primordial power spectrum on the smallest currently accessible scales,

k ∼ 4 Mpc−1. Including Lyman-alpha forest data will improve constraints on the running of the

spectral index (which quantifies deviations from a pure power-law spectrum) by a factor of two,

reaching one-sigma errors of ±0.002 (Font-Ribera et al., 2014b). This would provide new insights

into early universe physics, potentially ruling out classes of models of inflation. Importantly, it will

also provide a unique independent cross-check at small scales of the primordial power spectrum

shape inferred from CMB measurements at large scales.

Achieving these limits requires marginalisation over the uncertain impact of a number of

1This is the full forecasted constraint considering a combination of Planck CMB data, DESI broadband galaxy power
spectrum, DESI broadband Lyman-alpha forest flux power spectrum and ∼ 100 high-resolution Lyman-alpha forest quasar
spectra.
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astrophysical effects on the 1D Lyman-alpha forest power spectrum. In particular, this includes

broadened absorption features from high column density absorbers. High column density absorbers

are usually classified as either damped Lyman-alpha absorbers (DLAs), with column densities N(HI)

exceeding 2×1020 atoms cm−2 (Wolfe et al., 1986), or Lyman-limit systems (LLS), which correspond

to 2 × 1020 atoms cm−2 > N(HI) > 1.6 × 1017 atoms cm−2. Both types of system produce broad

damping wings which extend to large distances in redshift space. If not accounted for, they will bias

cosmological parameter estimation from the Lyman-alpha forest. The systems are formed at peaks

of the underlying density distribution; consequently, they cluster more strongly than the forest itself

(Font-Ribera et al., 2012b).

To remove the bias induced by damped absorbers, one can fit a model for their effect on power

spectra. The most widely used approach (McDonald et al., 2005a) is now more than a decade

old. Although this model was adequate for the data available at the time, future surveys will be

substantially more constraining and therefore demand tighter control over systematics. Furthermore,

there have been significant improvements in theoretical modelling of these systems (e. g., Bird et al.,

2015; Pontzen et al., 2008). An updated model for the effects of high column density absorbers is

therefore both timely and essential in order to achieve the forecasted cosmological constraints from

future surveys.

Different column densities correspond to gas at different physical densities, so that simulations

suitable for modelling the forest are often not suited to reproducing high column density systems.

The Lyman-alpha forest is largely insensitive to the physics of galaxy formation since it is sourced

by gas at below mean density; the primary uncertainties arise from cosmological parameters and

the thermal history of the intergalactic medium. Conversely, high column density absorbers arise

largely from regions within or around galaxies and are thus very sensitive to the physics of galaxy

formation and less sensitive to large-scale cosmology. It is consequently essential to model the effect

of high column density absorbers using simulations which include detailed galaxy formation physics

and can thus reproduce their characteristics and statistics.

In Lyman-alpha forest studies, damping wings are sometimes “clipped” (i. e., removed or masked)

from quasar spectra (e. g., see Lee et al., 2013, for details of the process for BOSS DR9 spectra).

However, not all damping wings are identified and many will remain in the spectra, especially in

noisier spectra where they are harder to spot and for lower-density absorbers (i. e., LLS) which have

narrower wings. Therefore, in the final cosmological parameter estimation from the 1D Lyman-

alpha forest power spectrum, the effect of residual high column density absorbers is modelled as a

multiplicative scale-dependent bias of the power spectrum with an amplitude (reflecting the level of
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residual contamination) that is fitted and marginalised (Palanque-Delabrouille et al., 2015). The

functional form of this model (i. e., its scale and redshift dependence) is based on the measurements

made in McDonald et al. (2005a).

McDonald et al. (2005a) investigated the effect with lognormal model mock quasar spectra (i. e.,

generated without hydrodynamical simulations; details of their generation are given in McDonald

et al., 2006), since the numerical simulations available at the time were not large enough to generate

spectra encompassing the full width of damping wings. They then probe the effect of high column

density absorbers on the Lyman-alpha forest by inserting damping wings in mock spectra at the

peaks of the lognormal field, based on the observationally-determined column density distribution

function (CDDF). They find a systematic effect on the observed 1D Lyman-alpha forest power

spectrum that is maximised on scales corresponding to the width of a damped system and which has

negligible redshift evolution (considering three redshift slices at z = [2.2, 3.2, 4.2]). They provide

a single template to fit their bias measurement, including the effect of all LLS and DLAs together.

However, as discussed above, in current data analysis pipelines, damping wings are removed from

quasar spectra in a way that preferentially removes higher density systems. Therefore, when

the template is used in parameter inference, it may not correctly model the bias of the residual

contamination, which will have a different CDDF to the total — the clipping of the survey spectra

changes the survey CDDF. The bias will have a different scale-dependence (not just amplitude),

since this is driven by the distribution of the widths of damping wings remaining in quasar spectra.

In this work, we investigate the effect of high column density absorbers on the 1D Lyman-alpha

forest power spectrum as a function of their column density and redshift using hydrodynamical

simulations of galaxy formation from the Illustris project (Nelson et al., 2015; Vogelsberger et al.,

2014a). Comparison to relevant observations has shown that Illustris reproduces the observed CDDF

and spatial clustering of high-density systems (Bird et al., 2014; Vogelsberger et al., 2014a, see

§ 4.4.1 for more details) at the 95% confidence level. Spectra are generated from this simulation,

then separated into categories according to the maximum column density within each spectrum

(see § 4.3 for more details). We measure the 1D flux power spectrum of each of these types of

spectrum and measure the (multiplicative) bias of each type compared to the power spectrum of

the Lyman-alpha forest alone. We make this measurement at multiple redshifts and so probe the

redshift evolution of this effect.

We discuss high column density absorbers in more detail in § 4.3. In § 4.4, our methodology

in going from hydrodynamical simulations to measurements of the 1D flux power spectrum is

explained. We present our main results in § 4.5. These results are discussed in § 4.6 and in § 4.7,
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Table 4.1: The neutral hydrogen (HI) column density limits [N(HI)min, N(HI)max] that define the

categories of absorbing systems used in this work. The columns on the right show the percentage

of spectra (at each redshift z that is considered) in our (106.5 Mpc)3 simulation box (Nelson et al.,

2015; Vogelsberger et al., 2014a, Illustris-1) where the highest-density system belongs to a given

category.

Category
N(HI)min N(HI)max % of spectra in (106.5 Mpc)3 simulation at

[atoms cm−2] z = 2.00 z = 2.44 z = 3.01 z = 3.49 z = 4.43
Forest 0 1.6× 1017 77.7 69.6 57.4 45.7 22.0
LLS 1.6× 1017 1× 1019 10.6 14.9 21.8 27.0 36.6

Sub-DLA 1× 1019 2× 1020 5.9 8.1 11.4 14.3 20.1
Small DLA 2× 1020 1× 1021 3.1 4.1 5.5 7.8 12.8
Large DLA 1× 1021 ∞ 2.7 3.3 3.9 5.2 8.5

we present the templates that we have fitted to our measurements. Finally, conclusions are drawn

in § 4.8.

4.3 Damped Lyman-alpha absorbers and Lyman-limit systems

High column density absorbers are regions of neutral hydrogen (HI) gas that are above a column

density threshold of N(HI) > 1.6× 1017 atoms cm−2. By contrast, lower column density absorbers

form the Lyman-alpha forest. The absorption lines formed by high column density absorbers are

broadened, forming damping wings and hence absorption in the spectrum away from the location

of the absorbing gas. The damping wings have a characteristic Voigt profile, which is a convolution

of a Gaussian profile (caused by Doppler broadening) and a Lorentzian profile (caused by natural

or collision broadening). The width of these wings in velocity space increases with the column

density of the absorbing system. High column density absorbers are then usually classified as

either damped Lyman-alpha absorbers (DLAs), whose damping wings are considered significantly

broadened and which correspond to N(HI) > 2× 1020 atoms cm−2 (Wolfe et al., 1986); or Lyman-

limit systems (LLS), which correspond to column densities in the range 2 × 1020 atoms cm−2 >

N(HI) > 1.6× 1017 atoms cm−2.

In this work, we aim to investigate the effect of high column density absorbers (and especially

their damping wings) on the one-dimensional Lyman-alpha forest flux power spectrum, as a function

of their column density (and redshift). We therefore use a more refined classification of high column

density absorbers based on their column densities, in particular accounting for the fact that higher

density LLS do have wide damping wings. Table 4.1 shows the column density limits that define our
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categories, as well as the percentage of simulated spectra (see § 4.4.1) where the highest-density

system is a given type and hence is the main contaminant. The overall percentage of spectra

contaminated by high column density absorbers (LLS, sub-DLAs, small and large DLAs) increases

with redshift because the HI CDDF increases at higher densities at higher redshifts, but always there

are more LLS than DLAs.

4.4 Method

We first outline the method we have used and then explain the steps in more detail in the following

subsections (§ 4.4.1 to 4.4.3).

(1). We use a cosmological hydrodynamical simulation from the Illustris project (Nelson et al.,

2015; Vogelsberger et al., 2014a) and generate mock spectra on a grid (562 500 in total,

each at a velocity resolution of 25 km s−1 and with a typical length of ' 8 000 km s−1). We

repeat this for a number of redshift slices at which the Lyman-alpha forest is observed

(z = [2.00, 2.44, 3.01, 3.49, 4.43]). (See § 4.4.1.)

(2). For each redshift slice, we separate the spectra according to the highest column density system

within that spectrum using the absorber categories defined in Table 4.1. For each absorber

category (and the total set of spectra), we measure the one-dimensional (1D) flux power

spectrum (i. e., along the line of sight, integrating over transverse directions) using a fast

Fourier transform (FFT). (See § 4.4.2.)

(3). We then measure the (multiplicative) bias of the flux power spectra from each category

relative to the 1D flux power spectrum of the Lyman-alpha forest, as a function of absorber

type (i. e., maximum column density) and redshift (see § 4.4.3). We fit parametric models to

these bias measurements and provide these templates in § 4.7.

4.4.1 Hydrodynamical simulations and mock spectra

Our main results make use of snapshots from the highest-resolution (in terms of both dark matter

particles and hydrodynamical cells) cosmological hydrodynamical simulation from the Illustris

project (Nelson et al., 2015; Vogelsberger et al., 2014a, Illustris-12). The simulation adopts

the following cosmological parameters: Ωm = 0.2726, ΩΛ = 0.7274, Ωb = 0.0456, σ8 = 0.809,

ns = 0.963 and H0 = 100h km s−1 Mpc−1, where h = 0.704 (Vogelsberger et al., 2014b). The
2The simulation we use is publically available at http://www.illustris-project.org/data.
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box has a volume in comoving units of (106.5 Mpc)3 and we consider snapshots at redshifts

z = [2.00, 2.44, 3.01, 3.49, 4.43].

The Illustris simulations use the moving mesh code AREPO (Springel, 2010). The galaxy formation

physics implemented is of relevance to dense regions of neutral hydrogen gas, and therefore we

describe it briefly here. The subgrid models include prescriptions for supernova (Springel and

Hernquist, 2003; Vogelsberger et al., 2013) and active galactic nuclei (AGN) (Sijacki et al., 2007;

Springel et al., 2005) feedback (Bird et al. 2014 showed that the properties of DLAs are quite

insensitive to the details of AGN feedback); radiative cooling; star formation and metal enrichment

of gas. Self-shielding is implemented as a correction to the photoionization rate, which is a function

of hydrogen density and gas temperature. The potential ionising effect of local stellar radiation

within the most dense absorbers (i. e., large DLAs) (e. g., Fumagalli et al., 2011) is neglected.

Pontzen et al. (2010) found this effect to be negligible and accurate calculations in any case require

physics on parsec scales, well below the resolution of the simulation (it can then be viewed as

part of the unresolved physics included in the above feedback prescriptions). More details of these

models are given in Bird et al. (2014); Vogelsberger et al. (2013). Gravitational interactions are

computed using the TreePM approach (Springel, 2005).

We require that these simulations accurately reproduce the necessary statistics of high column

density absorbers that are observed in surveys. As a means of quantifying this, we can first consider

the CDDF of neutral hydrogen over relevant column densities (N(HI) > 1.6 × 1017 atoms cm−2).

Vogelsberger et al. (2014a) make a comparison of the CDDF as produced by Illustris centered at

z = 3 to the distribution observed in a number of surveys [Prochaska et al. (2010) for LLS; Zafar

et al. (2013) for sub-DLAs; Noterdaeme et al. (2009) for DLAs]. In particular, the distributions are

consistent with the feature in the CDDF around the DLA threshold, where the distribution rises,

being reproduced well (the results of Bird et al. 2017 from SDSS-III DR12 spectra are also consistent

for DLAs). Bird et al. (2014) showed that the AREPO code with the above hydrodynamical models

can produce values of the DLA halo bias (at z = 2.3) which are in agreement with measured values

from real surveys (Font-Ribera et al., 2012b), indicating that the clustering of high column density

absorbers is well reproduced. Bird et al. (2015) compared the distribution function of velocity

widths of low ionization metal absorbers associated with DLAs as produced by the simulations at

z = 3 to the distribution observed in Neeleman et al. (2013). The data points are within the 68%

confidence interval of the simulated distribution. This suggests that the simulations are reproducing

the kinematics, and thus the host halo distribution, of high column density absorbers. One potential

caveat is that these simulations are found to produce too high a total incidence rate of DLAs when
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compared to observations (Noterdaeme et al., 2012) at z = 2 (Bird et al., 2014). However, the

overall incidence rate is absorbed into a normalisation that must in any case be allowed to float

during analysis of clipped spectra (as discussed in § 4.6).

For each snapshot, we generate mock spectra containing only the Lyman-alpha absorption

line (i. e., with a rest wavelength of 1215.67Å) from neutral hydrogen. We do this on a square

grid of 562 500 spectra, in the plane perpendicular to a direction that we define as the line

of sight. Each spectrum extends the full length of the simulation box with periodic boundary

conditions, giving a size in velocity (or “redshift”) space of {7111, 7501, 8000, 8420, 9199} km s−1

respectively at z = [2.00, 2.44, 3.01, 3.49, 4.43]3. We first measure the optical depth τ in velocity

bins of size 25 km s−1 along the spectrum4. We further convolve our spectra with a Gaussian

kernel of FWHM = 8 km s−1, setting the simulated spectrographic resolution. We then calculate

the transmitted flux F = e−τ . In this way, the spectra we have constructed are insensitive

to contamination from other absorption (or emission) lines, estimation of the emitted quasar

continuum (which here is effectively set to unity) or instrumental noise. In each spectrum pixel,

we are also able to measure the column density (integrated along the line of sight in each bin)

of neutral hydrogen, which we use in measuring the maximum density systems in each spectrum

(§ 4.4.2).

4.4.2 One-dimensional flux power spectrum

We separate our spectra into the absorber categories (Lyman-alpha forest, LLS, sub-DLAs, small and

large DLAs) defined in Table 4.1 according to the maximum column density system within each

spectrum. We search for the highest column density integrated over any four neighbouring velocity

bins; this amounts to a comoving length along the line of sight of {1.50, 1.42, 1.33, 1.27, 1.16}Mpc

respectively at z = [2.00, 2.44, 3.01, 3.49, 4.43]. The categorisation is insensitive to the number of

neighbouring velocity bins that we use, as the boundaries between categories differ by orders of

magnitude in column density. Moreover, the method is efficient in identifying high column density

absorbers since they are vastly more dense than the surrounding gas forming the Lyman-alpha

forest5. We have chosen a length that is much larger than the most extensive DLAs as found by

recent studies (Krogager et al., 2012) and so we are sure to integrate over the full length of any

high column density absorbers. Our definition of high column density absorbers includes blends,
3We convert the comoving length of the box to a proper velocity by the Hubble law.
4For comparison, BOSS DR9 spectra are binned at a velocity resolution of 69.02 km s−1 (Lee et al., 2013).
5We have explicitly tested the impact of doubling or halving the number of neighbouring velocity bins we use on the

1D flux power spectra we measure in each absorber category. We find that the maximum absolute difference in any power
spectrum bin is a negligible 0.2%.
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where a number of smaller, lower column density systems have been added together. In this way,

we have associated with each spectrum the most dominant absorbing system and in the case where

high column density absorbers are identified, these are the main contamination to the spectrum

through their associated damping wings. The percentage of spectra in each absorber category at

each redshift slice is given in Table 4.1.

We measure the 1D flux power spectrum of all the spectra and each absorber category at each

redshift slice. The 1D power spectrum P 1D(k||, z) is defined as the integral of the three-dimensional

(3D) power spectrum P 3D(k||,k⊥, z) over directions perpendicular to the line of sight:

P 1D(k||, z) =

∫
P 3D(k||,k⊥, z)

dk⊥
(2π)2

, (4.1)

where the wavevector k = [k||,k⊥] is conjugate to velocities in real space and so is measured in

units of inverse velocity (e. g., s km−1). We also use the convention of absorbing the 2π into the

conjugate variable6.

To measure P 1D for an individual line of sight, we first calculate the fluctuation in each velocity

v|| bin δF (v||) =
F(v||)

〈F〉 − 1, where 〈F〉 is the average flux over all spectra at each redshift (Croft

et al., 1998). We calculate the 1D Fourier transform along the line of sight δ̂F (k||) using a fast

Fourier transform (FFT)-based method since we have evenly-spaced velocity bins. We then estimate

the 1D flux power spectrum for each sightline P 1D
Raw(k||) = |δ̂F (k||)|2. Finally, we estimate the 1D

flux power spectrum in Eq. (4.1) for each absorber category i by (e. g., Palanque-Delabrouille et al.,

2013)

P 1D
i (k||, z) =

〈
P 1D

Raw(k||, z)

W 2(k||,∆v,R)

〉

i

, (4.2)

where we explicitly indicate that the raw 1D power spectra depend on redshift z. The average is

taken over spectra of a given category (or all spectra for the total power spectrum) at each redshift

slice. The window function W (k||,∆v,R) that is divided out arises from the binning in velocity

space (∆v) and the simulated spectrographic resolution R:

W (k||,∆v,R) = exp

(
−1

2
(k||R)2

)
× sin (k||∆v/2)

k||∆v/2
, (4.3)

where ∆v = 25 km s−1 and R = 3.40 km s−1 (not to be confused with the spectrographic resolving

power; see § 4.4.1). We then have an estimate of the 1D flux power spectrum for each absorber

category of spectra at each redshift slice.

6I. e., we define the Fourier transform as δ(k) =
∫
δ(x)e−ikxdx.
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4.4.3 Modelling the effect of high column density absorbers

The total 1D flux power spectrum of a set of spectra P 1D
Total(k||, z) can be expressed as a weighted

sum of the 1D flux power spectra calculated in Eq. (4.2) for each absorber category i:

P 1D
Total(k||, z) =

∑

i

αi(z)P
1D
i (k||, z), (4.4)

where αi(z) are the fraction of spectra in each absorber category at each redshift (as given in Table

4.1 for our simulated ensemble of spectra). In a real survey, αi(z) may change from their raw values

due to the attempt to clip (i. e., remove) high column density absorbers discussed in § 4.2. We can

rearrange Eq. (4.4) to isolate the 1D flux power spectrum of the Lyman-alpha forest alone:

P 1D
Total(k||, z) = P 1D

Forest(k||, z)


αForest(z) +

∑

i 6=Forest

αi(z)
P 1D
i (k||, z)

P 1D
Forest(k||, z)


 . (4.5)

In this way, we have isolated the effect of spectra containing high column density absorbers on the

1D flux power spectrum of the Lyman-alpha forest as a multiplicative bias (i. e., the terms in square

brackets)7. This matches the general form of modelling this effect in previous studies, as explained

in Palanque-Delabrouille et al. (2015) (based on the results in McDonald et al. 2005a), but now

additionally probing the bias as a function of column density (i. e., by using the different absorber

categories). We discuss in more detail in § 4.6 our motivations for using this particular form of the

bias (as opposed to e. g., an additive bias). Using the 1D flux power spectra we have calculated in

§ 4.4.2, we are able to measure the fractions in Eq. (4.5) (P 1D
i (k||, z)/P 1D

Forest(k||, z)) and we present

the results in § 4.5.

4.5 Results

Figure 4.1 shows the 1D flux power spectra of different subsets of sightlines that we have measured

from our simulations [see § 4.4.2 and in particular Eq. (4.2)] at redshift z = 2.00. The different

subsets shown are: the total as would be measured if no distinction between different types of spectra

was made; spectra containing only Lyman-alpha forest (i. e., the ensemble that is uncontaminated

by high column density absorbers); and spectra contaminated by different categories of high column

density absorber, as defined in Table 4.1. We first note that the total 1D flux power spectrum at

7We could simplify this form further by asserting the fact that
∑

i αi(z) = 1 to remove the parameter αForest(z), but it
is useful to keep this form as we explain in § 4.7.
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Figure 4.1: The one-dimensional flux power spectra of different categories of spectra, as a function

of line-of-sight scale k|| at redshift z = 2.00. The different categories are: the total from our full

simulated sample of spectra; spectra containing only Lyman-alpha forest; and spectra contaminated

by different types of high column density absorber [LLS, sub-DLAs, small and large DLAs]. The

vertical dashed line shows the largest scale probed by the BOSS DR9 1D Lyman-alpha forest flux

power spectrum; by comparison, the largest scale probed by our analysis at this redshift is larger at

9× 10−4 s km−1. The definitions of the different categories of absorber are given in Table 4.1. (See

§ 4.7 for the full intermediate redshift evolution.)
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any redshift slice can be reconstructed as a weighted sum of the other 1D flux power spectra for

each absorber category at that redshift (see § 4.4.3 and in particular Eq. (4.4)). The weights are the

fraction of spectra in each category (the values we measure for our simulated ensemble are given in

Table 4.1). We can estimate the fractional (1σ) statistical error on each power spectrum data-point

as 1/
√
Ni, where Ni is the number of input modes (i. e., simulated spectra) per data-point i. This

assumes that data-points and input modes are independent. This is largest for the large DLA power

spectrum at z = 2.00, which has 15,188 input simulated spectra giving an error of 0.81%, and

smallest for the forest power spectrum at z = 2.00, which has 437,063 input simulated spectra,

giving an error of 0.15%. All the other uncertainties for each measured power spectrum range

in-between these values and can be computed from Table 4.1.

The total power spectrum deviates from the Lyman-alpha forest power spectrum at all redshifts,

showing there is a bias from contamination of spectra by high column density absorbers. This bias

can be deconstructed as a function of column density by looking at the power spectra of different

absorber categories. The power spectra of high column density absorbers have a distinctive increase

on large scales (small k||). This is caused by self-correlations across the width of damping wings,

which (as discussed in § 4.3) can be modelled by a Voigt profile (a convolution of a Gaussian and

a Lorentzian). Therefore, the power spectrum of high column density absorbers (on large scales)

is connected to the Fourier transform of a Voigt profile. This increases for higher column density

systems since there is more line broadening, and starts on larger scales for higher column density

systems since the damping wings are wider. (See Appendix A.1 for more analysis and discussion of

the Voigt profile model.) On small scales, all the power spectra converge to a scaled version of the

Lyman-alpha forest flux power spectrum. This reflects the fact that contaminated spectra do contain

some uncontaminated spectral pixels. The amplitude of the small-scale power spectrum reflects

the fraction of spectra that is uncontaminated, increasing for lower-column density systems since

their damping wings are narrower. There is some sensitivity to the length of our simulated spectra,

which primarily manifests in our results as the amplitude of the small-scale residual Lyman-alpha

forest power in the contaminated power spectra. This is because longer simulated contaminated

spectra would have a larger fraction with residual Lyman-alpha forest. This is discussed further and

explicitly modelled such that this effect is removed in § 4.7.

Figure 4.2 shows 1D flux power spectra as in Fig. 4.1, but for more of the redshift slices that we

consider (z = [2.00, 2.44, 3.49, 4.43]), for spectra containing only Lyman-alpha forest and spectra

contaminated by large DLAs. The Lyman-alpha forest flux power spectrum has the expected shape,

amplitude and redshift evolution, matching observations (e. g., Palanque-Delabrouille et al., 2013)
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Figure 4.2: As Fig. 4.1, but showing more of the redshift slices that we consider (for z =

[2.00, 2.44, 3.49, 4.43]), for spectra containing only Lyman-alpha forest and spectra contaminated by

large DLAs.
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and reflecting the fact that it is an integral of a (biased) matter power spectrum. A peculiarity of

the Lyman-alpha forest flux power spectrum is that its amplitude increases with redshift (unlike

the linear matter power spectrum); this is because neutral hydrogen is more abundant at higher

redshift and so there is more absorption in quasar spectra (i. e., the Lyman-alpha forest becomes

a more negatively biased tracer of the matter distribution). By contrast, it can be seen that the

large-scale correlations associated with the large DLAs are converging to a single point as redshift

changes. This reflects the fact that these correlations arise from individual damping wings, which

do not evolve with redshift.

Figure 4.3 shows the same 1D flux power spectra as in Figs. 4.1 and 4.2, but now as ratios

between the flux power of spectra contaminated by high column density absorbers and the flux

power of spectra containing only Lyman-alpha forest, for z = 2.00 and z = 4.43. These ratios are the

quantities to which we fit our templates (see § 4.7) as part of our bias model (see § 4.4.3). Plotted

in this form, it is clear that the large-scale corrections associated with damping wings increase

with column density of the damped system. The corrections also decrease with increasing redshift

because the Lyman-alpha forest flux power spectrum (on the denominator of the ratio) increases

with redshift. On small scales, the ratios converge to a constant value, which reflects the fraction of

a line of sight that is uncontaminated (see above). The redshift evolution of this constant value

is driven by the transformation from comoving to velocity space: spectra are longer in velocity

space at higher redshift (despite being drawn from the same comoving length of the simulation).

Conversely, the width of damping wings does not change with redshift (for a given column density)

because this width just arises from the physical processes within the hydrogen gas (rather than

cosmological evolution). Therefore, the fraction of spectra uncontaminated by the damping wings

increases with redshift.

4.6 Discussion

We first discuss and summarise the results we have presented in § 4.5. Using our measurements from

cosmological hydrodynamical simulations, we have been able to confirm and characterise the effect

of high column density absorbers on the 1D Lyman-alpha forest flux power spectrum as a function

of column density, scale and redshift. There are distinctive large-scale correlations across the widths

of individual damping wings (a “one-halo” term) arising from high column density absorbers that

are seen to bias the 1D flux power spectrum of a set of spectra, relative to the power spectrum of

the Lyman-alpha forest alone (Fig. 4.1). These correlations persist for all the high column density
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Figure 4.3: The multiplicative bias of high column density absorbers to the one-dimensional Lyman-

alpha forest flux power spectrum, as a function of line-of-sight scale k|| and redshift z, i. e., the ratio

of the 1D flux power spectrum of spectra contaminated by high column density absorbers [LLS,

sub-DLAs, small and large DLAs] over spectra containing only Lyman-alpha forest. The vertical

dashed line shows the largest scale probed by the BOSS DR9 1D Lyman-alpha forest flux power

spectrum. The definitions of the different categories of high column density absorber are given in

Table 4.1. The different line styles correspond to different redshift slices, showing the maximum

and minimum redshifts that we consider. (See § 4.7 for the full intermediate redshift evolution.)
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absorbing systems that we identify (i. e., for all column densities N(HI) > 1.6× 1017 atoms cm−2).

Our results can be further understood by relating the shape and amplitude of the large-scale power

spectrum of spectra contaminated by high column density absorbers to the Fourier transform of the

Voigt profile that is normally used to model damping wings (due to the combination of physical

effects that broaden absorption lines; see Appendix A.1). We find evidence in our simulation results

that the 1D flux power spectrum of high column density absorbers does not evolve with redshift

(Fig. 4.2). This reflects the fact that the Voigt profiles of damping wings depend only on column

density (i. e., the physical processes within high column density absorbing regions) and not redshift

(i. e., cosmological evolution) (see Eq. (A.1)).

The most recent previous investigation into the effect of high column density absorbers on

the Lyman-alpha forest was performed by McDonald et al. (2005a) (see also Croft et al., 1999;

Viel et al., 2004a). These authors measured a single bias function for the 1D Lyman-alpha forest

flux power spectrum (at each redshift they consider) that includes the combined effect of all high

column density absorbers (i. e., all LLS and DLAs). Our results are qualitatively similar to those of

the previous study; however, by investigating different absorber categories based on column density

ranges (Table 4.1), we have shown that the form of the bias as a function of wavenumber depends

strongly on column density.

This will have implications for any parameter inference from the 1D flux power spectrum. For

instance, the analysis by Palanque-Delabrouille et al. (2015) uses a single multiplicative bias model

for the Lyman-alpha forest flux power spectrum based on the results in McDonald et al. (2005a)8.

The model has a free amplitude that is allowed to vary (reflecting the level of contamination in a

given survey) and is then marginalised. The shape of this model is therefore based on the observed

CDDF of high column density absorbers. However, as discussed in § 4.2, in the measurement of

the 1D flux power spectrum, high column density absorbers in the quasar spectra are clipped out

in the hope of removing noise (Lee et al., 2013; Palanque-Delabrouille et al., 2013). This process

changes the CDDF of high column density absorbers by preferentially removing higher column

density systems which are easier to spot in the noisy spectra. Hence, the shape of the bias from

residual high column density absorbers is different (as we have shown in § 4.5) and the model used

by Palanque-Delabrouille et al. (2013) may not be flexible enough to account for this, especially at

the level of accuracy required by future surveys. Our measurements provide a set of templates for

the effect of different absorber categories as a function of column density. By using our templates

8The model is reported in Palanque-Delabrouille et al. (2015) as 1− 0.2αDLA [1/(15000.0 k|| − 8.9) + 0.018], where
αDLA is the free amplitude.
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as part of the model in Eq. (4.5), it is now possible to more accurately characterise the bias of the

residual contamination. We also find evidence for redshift dependence of the fractional effect of

high column density absorbers on the forest power spectrum (driven by the changing amplitude of

the forest power spectrum), which is also not included in the current model, but is incorporated

into our templates. Fits allowing incorporation of our new results into future pipelines are described

in § 4.7.

We now discuss our motivations for some of the choices made in our analysis. We have chosen

to present our main results as the 1D flux power spectra of different sets of simulated spectra,

where we have categorised spectra according to the maximum column density system within each

spectrum. This means that we are measuring the power spectra of ensembles of spectra that

are contaminated to similar extents, rather than the flux power spectra of high column density

absorbers alone. Furthermore, a consequence of this categorisation is that within the spectra of a

given category, there may be high column density absorbers of a lower column density (e. g., there

may be LLS in the large-DLA category of spectra). In the first instance, this does not affect our

results because the power spectrum measurements we have made (§ 4.5) and the templates that we

construct (§ 4.7) include the effect of this possible additional lower column density contamination.

A subtlety arises because the amount of additional lower column density contamination will be

partly sensitive to the length of simulated spectra, since longer spectra have a greater chance of

being contaminated. However, the damping wings of the highest column density systems already

produce zero transmitted flux over a significant fraction of the length of our simulation box, so that

the presence of possible additional high column density absorbers will make very little difference in

any case. We tested this by inserting an LLS into a spectrum contaminated by a large DLA, which

reduced the total transmitted flux by 0.07%. By carrying out this insertion test with a “control”

scenario without the additional contamination, we are able to show that this subtlety will have

negligible impact on our conclusions and the validity of our templates.

Finally, we comment on the particular form of our preferred model for the bias of high column

density absorbers to the 1D Lyman-alpha forest flux power spectrum (as shown in Eq. 4.5). We

model the bias as a multiplicative correction, rather than e. g., an additive form. First, this matches

the form of the currently-used model (as shown in Palanque-Delabrouille et al., 2015). Moreover,

an additive form would require either the separation of high column density absorbers and the

Lyman-alpha forest in the simulated spectra or a complete physical understanding of how the two

components interact at the ensemble level. The former is not trivial for our analysis since we are not

inserting high column density absorbers (as previous studies have done), but are simultaneously
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Table 4.2: Best-fit values of the parameters in our templates for the bias of spectra contaminated by

high column density absorbers on the one-dimensional Lyman-alpha forest flux power spectrum.

The template parameters are defined in Eqs. (4.6) and (4.7). Values are shown for each high

column density absorber category. The definitions of the different categories of high column density

absorber are given in Table 4.1.

Absorber category
Template parameter values

a0 a1 b0 b1 c0 c1
LLS 2.2001 0.0134 36.449 -0.0674 0.9849 -0.0631

Sub-DLA 1.5083 0.0994 81.388 -0.2287 0.8667 0.0196
Small DLA 1.1415 0.0937 162.95 0.0126 0.6572 0.1169
Large DLA 0.8633 0.2943 429.58 -0.4964 0.3339 0.4653

simulating the low and high column density regions of gas. We avoid the latter due to any remaining

physical uncertainties and instead form a parametric multiplicative model based on our simulated

results (see § 4.7).

4.7 Templates for the effect of high column density absorbers

To aid incorporation in future pipelines, we have produced fits to the biases induced by contaminants

in our different column density bins. The parametric form of our templates is

P 1D
i (k||, z)

P 1D
Forest(k||, z)

=

(
1 + z

1 + z0

)−3.55

× 1

(a(z)eb(z)k|| − 1)2
+ c(z), (4.6)

where

a(z) = a0

(
1 + z

1 + z0

)a1
; b(z) = b0

(
1 + z

1 + z0

)b1
; c(z) = c0

(
1 + z

1 + z0

)c1
; (4.7)

and the pivot redshift z0 = 2.00. [a0, a1, b0, b1, c0, c1] are free parameters that we fit simultaneously

in k|| and z space for each absorber category i ∈ {LLS, sub-DLA, small DLA, large DLA}. We fit

using the Levenberg-Marquardt algorithm (Levenberg, 1944; Marquardt, 1963)9.

Figure 4.4 shows the result of these fits (dashed lines) with the raw ratios measured from the

simulation (solid lines); the corresponding parameter values are given in Table 4.2. These can be

used to reconstruct a final model for the bias of spectra containing high column density absorbers

by using Eq. (4.5). The model described by Eq. (4.6) characterises the results we have measured in

our simulations and through Eq. (4.7) allows interpolation of our results to intermediate redshifts

9We were able to further validate our modelling by initially fitting using a subset of the available redshift slices and
using this preliminary fit to predict the results at z = 3.01. We found the model to accurately predict the results at this
intermediate redshift, acting as a form of successful blind test for our model. Our final best-fit parameters use all available
data.
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Figure 4.4: The multiplicative bias of high column density absorbers to the one-dimensional Lyman-

alpha forest flux power spectrum, as a function of line-of-sight scale k|| and redshift z, i. e., the ratio

of the 1D flux power spectrum of spectra contaminated by high column density absorbers [LLS,

sub-DLAs, small and large DLAs] over spectra containing only Lyman-alpha forest. The solid lines

are these ratios as measured in the hydrodynamical simulations; the dashed lines are our best-fitting

templates to these measurements. The functional form of our templates is given in Eq. (4.6) and the

best-fit values of the model parameters are given in Table 4.2. The vertical dashed lines show the

largest scale probed by the BOSS DR9 1D Lyman-alpha forest flux power spectrum. The definitions

of the different categories of high column density absorber are given in Table 4.1. From top to

bottom, we show the templates for simulated results at increasing redshift [(a): z = 2.00; (b):

z = 2.44; (c): z = 3.01; (d): z = 3.49; (e): z = 4.43].
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that we have not explicitly probed. (Use of the model outside the limits of redshift and scale we

have considered would constitute an extrapolation, but this should not be necessary since our

measurements bracket the main redshifts and scales of interest to Lyman-alpha forest studies.) No

strong physical meaning should be attached to its terms, although we can motivate the first term on

the right-hand side of Eq. (4.6) as being the (reciprocal of the) main term of the redshift evolution

of P 1D
Forest(k||, z) as found by Palanque-Delabrouille et al. (2013) (using a maximum likelihood

estimator). In this way, the parametric form isolates the redshift evolution from P 1D
Forest(k||, z) and

then fits the residual redshift evolution using the terms in Eq. (4.7). The best-fit values of the

exponents in Eq. (4.7) (as given in Table 4.2) are small, indicating that most of the redshift evolution

can indeed be ascribed to the expected cosmological evolution of P 1D
Forest(k||, z).

Our results are dependent on the length of our simulated spectra. This manifests in the value of

the constant that the ratios P 1D
i (k||, z)/P 1D

Forest(k||, z) have at high k||, which is set by the fraction

of the length of contaminated spectra which are unaffected by damping wings and contain only

Lyman-alpha forest. Since the incidence rates of high column density absorbers are such that one

per contaminated spectrum is most likely, a longer spectrum will have a larger fraction that is

uncontaminated, causing the constant value at high k|| to rise with spectrum length. However,

in an analysis of observational data this will be absorbed into a free parameter. We have used a

parametric form for our templates such that all this dependency is measured by the term c(z)10. By

inserting Eq. (4.6) into Eq. (4.5), it can be seen that the term c(z) is degenerate with αForest(z) and

hence these terms can be combined and allowed to vary. It follows that the full parametric form of

our model for the effect of high column density absorbers on the 1D Lyman-alpha forest flux power

spectrum is

P 1D
Total(k||, z) = P 1D

Forest(k||, z)

[
α0(z)

+
∑

i 6=Forest

αi(z)

(
1 + z

1 + z0

)−3.55

× 1

(a(z)eb(z)k|| − 1)2


 .

(4.8)

When using this model in inference from the 1D Lyman-alpha forest power spectrum P 1D
Forest(k||, z),

it will be necessary to vary five free parameters α0 and αi, where i indexes each high column density

absorber category. In this way, the column density, scale and redshift dependence of the effect of

high column density absorbers is fully determined by our templates, while the relative impact of

each absorber category is fitted since this is specific to the survey at hand, as well as the details of

10It can then be understood why we do not factor out the redshift evolution of P 1D
Forest(k||, z), as we do for the first term

on the right-hand side of Eq. (4.6).
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any clipping of damping wings that changes the survey CDDF. (See § 4.6 for more discussion of

these details.) Note that the parameter α0 is degenerate with factors that rescale the mean flux and

could be omitted in an end-to-end analysis.

Figure 4.5 compares the model we have constructed to the existing model presented in Palanque-

Delabrouille et al. (2015) and based on the results in McDonald et al. (2005a). There is broad

agreement between the existing model and our model for the total contamination of high column

density absorbers, although our model is less steep in its scale dependence. We also show our

model applied to a possible “residual” contamination, i. e., under the assumption that all DLAs are

identified and clipped out in an analysis, leaving only contamination from LLS and sub-DLAs (e. g.,

as assumed by Bautista et al. 2017). The model for this lower column density residual contamination

has a shallow scale dependence that the model of McDonald et al. (2005a) is unable to characterise.

The use of our more flexible model will avoid potential biases due to mischaracterisation of the

scale dependence of the residual contamination, thus improving estimation of cosmological effects

such as massive neutrinos or the tilt of the primordial power spectrum.

We now discuss the prior probability distributions that can be adopted for αi(z) in any inference

using the model we have presented. The αi(z) are technically not independent parameters, but

are each related to integrals of the HI CDDF for a particular survey over the appropriate column

density ranges (and absorption distance per sightline). The effect of spectrum clipping which

changes the survey CDDF can be modelled by applying a weighting function to the CDDF, which

down-weights higher column densities, which are easier to spot and remove. If one wanted to

reduce the dimensionality of these nuisance parameters, in particular in redshift space, they could

be replaced by a parameterisation which quantifies deviations from the expected redshift evolution

of the CDDF with only one or two parameters (rather than a parameter for each redshift bin

considered). We leave the details of the construction of prior distributions to individual analyses,

since the precise considerations will be survey-specific.

To conclude this section, we present a summary of the steps required to incorporate our final

model for the effect of high column denisty absorbers into future 1D Lyman-alpha forest analyses:

• Our model describes the effect of quasar spectra contaminated by high column density

absorbers as a multiplicative bias to the 1D Lyman-alpha forest flux power spectrum, as

given by Eq. (4.8). It can therefore be incorporated into a pipeline at the stage of flux power

spectrum interpretation to marginalise over effects of these absorbers.

• The free parameters are αi(z), where i indexes different categories of high column density
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Figure 4.5: A comparison of the existing multiplicative bias model (McDonald et al., 2005a;

Palanque-Delabrouille et al., 2015) for the effect of high column density absorbers on the 1D

Lyman-alpha forest power spectrum and the model constructed in this paper using our results

from hydrodynamical simulations. For our model, we show an example weighting of the different

absorber categories for the full contamination from high column density absorbers on our simulated

ensemble of spectra; and an example based on a possible “residual” contamination after the clipping

of DLAs (i. e., only LLS and sub-DLAs remaining). For comparison, the model of McDonald et al.

(2005a) is rescaled to have the same amplitude on the largest and smallest scales considered.
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absorber (as given in Table 4.1). Our model is of use to any Lyman-alpha forest survey that

contains spectra which may be contaminated by high column density absorbers (both LLS and

DLAs). The relative impacts of different categories of high column density absorbers will be

determined in the estimation of posterior distributions of these nuisance parameters. While

normalisation is necessarily floating, the model fully specifies the scale, column density and

redshift dependence of the effect of high column density absorbers, using the results we have

measured from hydrodynamical simulations.

• In a survey which does not clip its quasar spectra, strong priors can be given for the free

parameters of our model, based on the expected or measured HI CDDF.

• In a survey which does clip its quasar spectra in an attempt to remove high column density

absorbers (and therefore changes the survey CDDF), strong priors can still be given for our

model parameters, assuming a model can be constructed for the effect of the clipping process

on the CDDF. This will constitute some re-weighting of the CDDF.

• In order to reduce the dimensionality of our nuisance parameters, rather than having a

separate parameter for each redshift bin in a given analysis, one could parameterise the

redshift evolution by a simple deviation from the CDDF with only one or two numbers.

4.8 Conclusions

We have used a cosmological hydrodynamical simulation (Illustris; Nelson et al., 2015; Vogelsberger

et al., 2014a) to investigate the effect of high column density absorbing systems of neutral hydrogen

and their associated damping wings on the 1D Lyman-alpha forest flux power spectrum. We find

that the effect of high column density absorbers on the Lyman-alpha forest flux power spectrum is a

strong function of column density. Accounting for this change in scale-dependence with column

density will remove a source of bias in cosmological inference from the Lyman-alpha forest. Previous

models (Palanque-Delabrouille et al., 2015) combine the effect of all high column density absorbers

together (i. e., all neutral hydrogen column densities N(HI) > 1.6× 1017 atoms cm−2) based on the

column density distribution function (CDDF) in the raw spectra (McDonald et al., 2006). However,

the damping wings of some high column density absorbers are clipped out in the final analysis

(Lee et al., 2013), which preferentially removes higher density systems (because they are easier to

spot) and changes the column density distribution in the residual contamination. Our results apply

for both clipped and unclipped survey spectra, since we separately model the effect for different

144



column densities of the dominant absorber, allowing us to accurately account for the contamination

in the 1D flux power spectrum. We discuss in § 4.7 the practicalities of employing our model in

future analyses.

The shape and amplitude of the distortions in the power spectrum due to a damped absorber

depend on its column density because they are driven by the width of the damping wings; i. e., the

dominant effect is a “one-halo” term. We defer investigation of potential “two-halo” terms to future

work where we measure the effect of high column density absorbers on the 3D Lyman-alpha forest

flux power spectrum.

We anticipate that our model will help realise forecasted cosmological constraints from upcoming

surveys like DESI. E. g., Font-Ribera et al. (2014b) forecast that DESI will have the constraining

power to make a ∼ three-sigma detection of the sum of neutrino masses (in combination with

Planck CMB data); and they show the power of the 1D Lyman-alpha forest power spectrum in

probing the primordial power spectrum, e. g., halving the one-sigma error on the running of the

spectral index, with implications for inflationary models. It will be necessary to use the models

we have presented here, alongside carefully constructed priors on the residual CDDF, to remove

degeneracies between the effect of high column density absorbers and cosmological effects.
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5
Correlations in the three-dimensional Lyman-alpha

forest contaminated by high column density absorbers

5.1 Abstract

Correlations measured in three dimensions (3D) in the Lyman-alpha forest are contaminated by the

presence of the damping wings of high column density (HCD) absorbing systems of neutral hydrogen

(HI; having column densities N(HI) > 1.6× 1017 atoms cm−2), which extend significantly beyond

the redshift-space location of the absorber. We measure this effect as a function of the column

density of the HCD absorbers and redshift by measuring 3D flux power spectra in cosmological

hydrodynamical simulations from the Illustris project. Survey pipelines exclude regions containing

the largest damping wings. We find that, even after this procedure, there is a scale-dependent

correction to the 3D Lyman-alpha forest flux power spectrum from residual contamination. We

model this residual using a simple physical model of the HCD absorbers as linearly biased tracers of

the matter density distribution, convolved with their Voigt profiles and integrated over the column

density distribution function. We recommend the use of this model over existing models used in

data analysis, which approximate the damping wings as top-hats and so miss shape information in

the extended wings. The simple “linear Voigt model” is statistically consistent with our simulation

results for a mock residual contamination up to small scales (|k| < 1hMpc−1), even though it

cannot account for the effect of the highest column density absorbers (which are in any case

preferentially removed from survey data) on the smallest scales (e. g., |k| > 0.4hMpc−1 for small

DLAs; N(HI) ∼ 1021 atoms cm−2). Our model is appropriate for an accurate analysis of the baryon

acoustic oscillations (BAO) feature and it is additionally essential for reconstructing the full shape

of the 3D flux power spectrum, assuming that the highest column density absorbers are removed.
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5.2 Introduction

Absorption lines of the Lyman-alpha forest can be mapped in three dimensions (3D) (i. e., line-of-

sight direction along the lengths of quasar spectra and transverse direction in the angular positions

of the spectra on the sky) to trace the fluctuations in the cosmological density field. Correlations in

the Lyman-alpha forest are a powerful probe of high redshifts (z > 2), before dark energy came

to dominate the evolution of the Universe. In particular, measurement of the 3D correlations on

large scales (separations r ∼ 100 Mpch−1) in the Lyman-alpha forest allows a measurement of

the baryon acoustic oscillations (BAO) in the distribution of matter at z ∼ 2.3 (Bautista et al.,

2017; Busca et al., 2013; Delubac et al., 2015; Kirkby et al., 2013; Slosar et al., 2011, 2013).

3D correlations between the Lyman-alpha forest and the distribution of quasars have also been

measured, including the detection of BAO (du Mas des Bourboux et al., 2017; Font-Ribera et al.,

2013, 2014a). This has been achieved thanks to the large number of quasar spectra from the Baryon

Oscillation Spectroscopic Survey (BOSS; Dawson et al., 2013; Eisenstein et al., 2011) (157,783

were suitable for analysis in Data Release 12; DR12) and the large sky area they cover (the footprint

in DR12 covers approximately one quarter of the sky). Consequently, Lyman-alpha forest analyses

are no longer restricted to measurements of the one-dimensional flux power spectrum (along the

line-of-sight only; Armengaud et al., 2017; Iršič et al., 2017a,b; Palanque-Delabrouille et al., 2015;

Seljak et al., 2005; Yeche et al., 2017), which probes smaller-scale clustering (k|| > 0.1hMpc−1)

and constrains cosmological models that suppress small-scale power, e. g., those containing massive

neutrinos or warm dark matter (WDM).

Current measurements of the 3D correlations in the Lyman-alpha forest reconstruct the correla-

tion function, where the BAO feature is most distinguishable. However, ongoing analyses in the

extended Baryon Oscillation Sky Survey (eBOSS; Abolfathi et al., 2017) and future surveys like the

Dark Energy Spectroscopic Instrument (DESI; DESI Collaboration et al., 2016a,b) will also measure

its Fourier-space counterpart, the 3D flux power spectrum (Font-Ribera et al., 2017). A measure-

ment of the 3D Lyman-alpha forest power spectrum will probe the full shape on a wide range of

scales (0.01hMpc−1 < k < 1hMpc−1). On large scales (k < 0.1hMpc−1), e. g., the 3D flux power

spectrum can be used to determine the cosmological geometry through the Alcock-Paczyński test

(Alcock and Paczynski, 1979; Hui et al., 1999; McDonald, 2003; McDonald and Miralda-Escudé,

1999). The 3D forest power spectrum on large scales can also be used to study fluctuations in the

ultraviolet (UV) ionising background (Pontzen, 2014; Pontzen et al., 2014).

On smaller scales (0.1hMpc−1 < k < 1hMpc−1), the 3D flux power spectrum adds comple-
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mentary information to that from the 1D flux power spectrum. Font-Ribera et al. (2017) show that

the 3D flux power spectrum for the BOSS survey is more constraining than the 1D counterpart

up to a maximum k = 1hMpc−1. Only for k > 1hMpc−1 does the 1D power spectrum contain

essentially all information. For future surveys such as DESI, where there will be a higher density of

lines of sight, one may anticipate 3D information to even higher k, underscoring the importance

of working with the 3D spectrum wherever possible. This will provide more power to constrain

cosmological models with additional components (e. g., massive neutrinos, WDM or fuzzy dark

matter), or modifications to a simple power-law primordial power spectrum (e. g., running of the

primordial spectral index). In addition to providing greater statistical power, the 3D flux power

spectrum is sensitive to different systematics than the 1D flux power spectrum (e. g., in correlations

with metal absorption lines). (See e. g., Font-Ribera et al. 2014b for forecasts of the constraining

power of the 3D flux power spectrum with DESI.)

As with the 1D Lyman-alpha forest flux power spectrum (McDonald et al., 2005a; Rogers et al.,

2017), 3D correlations in the Lyman-alpha forest are biased by the presence in quasar spectra

of high column density (HCD) absorbers and their associated broadened absorption lines (Font-

Ribera and Miralda-Escudé, 2012; McQuinn and White, 2011; Slosar et al., 2011). HCD absorbers

are defined as regions of neutral hydrogen (HI) gas with a column density N(HI) exceeding

1.6 × 1017 atoms cm−2, and are usually identified with the gas in or around galaxies. They form

at the peaks of the underlying density distribution and so cluster more strongly than the Lyman-

alpha forest (Font-Ribera et al., 2012b; Pérez-Ràfols et al., 2017). The absorption lines of the

highest column density systems are broadened, with large damping wings causing absorption in

the spectrum away from the physical location of the absorber. These wings have a characteristic

Voigt profile, a convolution of a Gaussian profile (caused by Doppler broadening) and a Lorentzian

profile (caused by natural or collisional broadening). They are traditionally sub-classified as either

damped Lyman-alpha absorbers (DLAs; N(HI) > 2×1020 atoms cm−2) or Lyman-limit systems (LLS;

1.6× 1017 atoms cm−2 < N(HI) < 2× 1020 atoms cm−2), according to the width of their damping

wings (Wolfe et al., 1986). However, as noted in e. g., Font-Ribera and Miralda-Escudé (2012);

McDonald et al. (2005a); Rogers et al. (2017), systems with N(HI) exceeding 1× 1019 atoms cm−2

have significant wings, which we classify as sub-DLAs. In Lyman-alpha forest analyses, it is usual to

attempt to “clip” out HCD absorbers by identifying their damping wings in spectra, masking the

central absorption region and then correcting the wings (e. g., see Lee et al. 2013 for details of

the process for BOSS DR9 spectra). Nonetheless, there is always a residual contamination of HCD

absorbers, since the smallest damping wings are hard to identify amongst instrumental noise and

148



indeed the superposed Lyman-alpha forest itself. Estimates of the upper limit in column density

for this residual contamination range from 1020 to 1021atoms cm−2 (e. g., Bautista et al., 2017).

It is therefore necessary to model the effect of this residual contamination to allow for robust

cosmological inference from the Lyman-alpha forest (Bautista et al. 2017; du Mas des Bourboux

et al. 2017 were the first to model this component in a 3D correlation analysis).

There is a small literature on modelling the effect of (residual) HCD absorbers on correlations in

the 3D Lyman-alpha forest. In Appendix B of McQuinn and White (2011), a linear model for the 3D

flux power spectrum of HCD absorbers convolved with their (Voigt) absorption profiles is considered,

allowing for their auto-correlation and cross-correlation with the Lyman-alpha forest. They show

that this “linear Voigt model” predicts that the cross-correlation is the dominant component of the

HCD absorbers’ correction to the 3D Lyman-alpha forest power spectrum. Font-Ribera and Miralda-

Escudé (2012) measure the effect of HCD absorbers on the 3D Lyman-alpha forest correlation

function using mock (quasar) spectra (details of their generation are given in Font-Ribera et al.

2012a). They find the cross-correlation of HCD absorbers and the Lyman-alpha forest to indeed be

the dominant systematic error on the Lyman-alpha forest auto-correlation. They additionally identify

as significant terms the HCD absorber auto-correlation and a three-point correlation between two

Lyman-alpha forest modes and an HCD absorber mode.

An approximate model for HCD absorbers is used in the measurement of the 3D Lyman-alpha

forest correlation function with BOSS DR12 spectra (Bautista et al., 2017) and the cross-correlation

with the quasar distribution (du Mas des Bourboux et al., 2017). It is (the Fourier transform of) a

biased linear power spectrum, with separate bias and redshift space distortion parameters for HCD

absorbers, convolved with a top-hat filter in real space (i. e., a sinc function in Fourier space) to

approximate the profiles of HCD absorbers (hereafter, the “BOSS model”). The large-scale bias of

dark matter halos hosting DLAs can be constrained through the cross-correlation of DLAs in spectra

with the Lyman-alpha forest using BOSS spectra (Font-Ribera et al., 2012b; Pérez-Ràfols et al.,

2017). This halo bias can then be related to the absorber flux transmission bias.

In this study, we measure the effect of HCD absorbers on correlations in the 3D Lyman-alpha

forest using the 3D flux power spectrum in cosmological hydrodynamical simulations for the first

time. We use simulation boxes from the Illustris project (Nelson et al., 2015; Vogelsberger et al.,

2014a), which have been shown to reproduce the observed column density distribution function

and spatial clustering of HCD absorbers at the 95% confidence level (Bird et al., 2014; Vogelsberger

et al., 2014a). We measure the full anisotropic effect as a function of column density and redshift.

We then consider how well the linear Voigt model characterises our results and identify the regimes
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where this simple model breaks down. We also compare this model to the approximate BOSS model

discussed above. Our results will improve the robustness of modelling HCD absorbers and hence

improve cosmological inference for future Lyman-alpha forest surveys (e. g., eBOSS/DESI).

We briefly explain the theory of the models that we consider for the Lyman-alpha forest and

HCD absorbers in § 5.3. In § 5.4, our methodology in measuring the 3D flux power spectrum from

hydrodynamical simulations and our modelling procedure are explained. We present our main

results in § 5.5. These results are discussed and compared to previous work in § 5.6 and in § 5.7,

we draw our conclusions.

5.3 Theory

5.3.1 Lyman-alpha forest

Fluctuations in the transmitted flux of the Lyman-alpha forest are given as δForest(x) = FForest(x)
〈FForest〉 −11,

where the transmitted flux FForest = e−τForest , τForest is the optical depth and 〈FForest〉 is the average

flux over all spectral pixels. We then follow the standard treatment of the Lyman-alpha forest on large

scales and model these fluctuations as a biased tracer of the underlying matter density fluctuation

field with redshift-space distortions (by analogy with other tracers of the matter distribution like

galaxies or galaxy clusters; Kaiser, 1984, 1987). It therefore follows that the 3D Lyman-alpha forest

flux power spectrum can be modelled as

P 3D
Forest(|k|, µ, z) = b2Forest(1 + βForestµ

2)2P 3D
Linear(|k|, z)DNL(|k|, µ), (5.1)

where (following Arinyo-i-Prats et al., 2015; McDonald, 2003) we introduce a parametric function

DNL(|k|, µ) to characterise deviations from linear theory due to non-linear effects; P 3D
Linear(|k|, z) is

the linear theory matter power spectrum; bForest is the (linear) bias parameter of the Lyman-alpha

forest; and βForest is its redshift space distortion parameter. For the wavevector k (conjugate to x),

we use a spherical coordinate system with its zenith direction along the line-of-sight such that power

spectra are functions of |k| and µ, which is the cosine of the angle between the wavevector and the

line-of-sight. P 3D
Forest is a function of redshift z and in general, so are bForest and βForest. Constraints

on the redshift evolution of the Lyman-alpha forest power spectrum largely come at present from

the 1D flux power spectrum (although there was some analysis of the redshift evolution of the

1For the 3D comoving spatial coordinate x, the line-of-sight component x|| is transformed from the line-of-sight velocity
space of spectra by the Hubble law.
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Figure 5.1: A comparison of three-dimensional power spectra (averaged over all angles) as predicted

by linear theory, measured from dark matter particles in a hydrodynamical simulation and measured

from the transmission flux of the Lyman-alpha forest in redshift space from mock spectra generated

from the same simulation. Although the Lyman-alpha forest is a biased tracer of linear theory, it

remains linear to much smaller scales than other probes, including the power spectrum of dark

matter, which is affected by non-linear gravitational evolution from scales larger than 1hMpc−1. The

simulation used is a (75 Mpch−1)3 box at redshift z = 2.44 from the Illustris project (Vogelsberger

et al., 2014a).
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3D power spectrum in Slosar et al. 2011). It is currently assumed (e. g., Bautista et al., 2017)

that bForest ∝ (1 + z)γ , where γ = 2.9, and that βForest does not depend on redshift such that

b2ForestP
3D
Linear ∝ (1 + z)3.8, roughly matching the evolution observed in the 1D flux power spectrum

(e. g., Palanque-Delabrouille et al., 2013). These assumptions are broadly supported by results from

hydrodynamical simulations, although βForest is found to decrease with increasing redshift (e. g.,

Arinyo-i-Prats et al., 2015).

The bias parameters of the Lyman-alpha forest differ from the biases of point objects like

galaxies or halos in that denser regions of matter will have less transmitted flux (due to increased

absorption by HI gas) and so bForest is negative. Figure 5.1 compares the 3D Lyman-alpha forest

flux power spectrum (averaged over all angles) as measured in redshift space from our simulation

(see § 5.4.1) to the linear theory matter power spectrum. The flux power spectrum appears to be

a scaled version of the theory power spectrum, remaining so to much smaller scales than, e. g.,

the dark matter power spectrum, which is strongly affected by non-linear gravitational evolution

for |k| > 1hMpc−1. However, there is some small deviation from being a scaled version of the

linear theory on small scales; in Eq. (5.1), this is characterised by the function DNL, which is

calibrated from hydrodynamical simulations. This function allows for the isotropic growth in power

due to non-linear growth, isotropic suppression by pressure on very small scales and suppression

by non-linear peculiar velocities and temperature towards the line-of-sight. For consistency with

Bautista et al. (2017), we use the fitting function of McDonald (2003) with the parameter values

given in the first row of their Table 1. The parameters of this function have not been measured from

data or previous simulations at the higher redshift that we consider (z = 3.49), and we are not able

to do so with our simulations due to insufficient constraining power. Therefore for simplicity, we

use the same parameter values in this function as at the lower redshift in the high redshift setting.

Arinyo-i-Prats et al. (2015), in any case, found the shape of their simplest non-linear fitting function

to evolve weakly in the redshifts they consider (2.2 ≤ z ≤ 3).

5.3.2 High column density absorbers

We follow Bautista et al. (2017); Font-Ribera and Miralda-Escudé (2012); McQuinn and White

(2011) in modelling the 3D correlations of HCD absorbers on large scales as the convolution of

a linear model in real space that does not include the damping wings of HCD absorbers [akin to

Eq. (5.1)] with the profiles of the wings. Therefore, the 3D flux power spectrum of a set of HCD
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absorbers with column densities in the interval [N(HI)min, N(HI)max] is given as

P 3D
HCD(|k|, µ, z) = b2HCD(1 + βHCDµ

2)2P 3D
Linear(|k|, z)F 2

HCD(k||, z), (5.2)

where bHCD and βHCD are the bias and redshift space distortion parameters of the absorption

caused by HCD absorbers (these will in general depend on redshift z). FHCD is a function of the

line-of-sight wavenumber k|| = |k|µ, since it is caused by the absorption profiles of HCD absorbers

which only manifest along the line-of-sight:

FVoigt
HCD (k||, z) =

∫ N(HI)max

N(HI)min

dN(HI)f(N(HI), z)V (k||, N(HI)). (5.3)

Here, V (k||, N(HI)) is the Fourier transform of the HCD absorbers’ wing profiles as they manifest

in the flux fluctuation field and f(N(HI), z) is the column density distribution function (CDDF).

The model we consider in this study uses the profile of HCD absorbers, which is a Voigt function in

optical depth (see e. g., Appendix A of Rogers et al. 2017 for the full expression), the convolution of

a Gaussian profile (caused by Doppler broadening) and a Lorentzian profile (caused by natural or

collisional broadening). We will also consider the approximation made by the BOSS Collaboration

(Bautista et al., 2017; du Mas des Bourboux et al., 2017) that the absorption profiles of HCD

absorbers are top-hat filters [“BOSS model”]:

FBOSS
HCD (k||, z) =

sin(LHCDk||)

LHCDk||
, (5.4)

where LHCD is a free parameter setting the effective width of these filters.

By combining Eqs. (5.1) and (5.2) (and additionally remembering the cross-correlation between

the Lyman-alpha forest and HCD absorber fields), the 3D flux power spectrum for the Lyman-alpha

forest contaminated by a set of HCD absorbers is given as:

P 3D
Contaminated(|k|, µ, z) = P 3D

Linear(|k|, z)

[b̃2ForestDNL(|k|, µ) + 2b̃Forestb̃HCD + b̃2HCD],

(5.5)

where b̃Forest = bForest(1 + βForestµ
2) and b̃HCD = bHCD(1 + βHCDµ

2)FHCD(k||, z). If there was

uncertainty in the CDDF of a given sample of spectra, it will be preferable to sub-divide the column

density integrals evaluated in the calculation of FHCD in Eq. (5.3) and allow for extra terms in
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Eq. (5.5), with bias parameters (b̃HCD,i) for the N categories of HCD absorbers:

P 3D
Contaminated(|k|, µ, z) = P 3D

Linear(|k|, z)
[
b̃2ForestDNL(|k|, µ)

+

N∑

i=1


2b̃Forestb̃HCD,i +

N∑

j=1

b̃HCD,ib̃HCD,j




 .

(5.6)

We mention also two possible additions that could be made to this model. First, the model

in Eq. (5.5) does not consider any non-linear evolution in the clustering of HCD absorbers2.

Second, as noted in Font-Ribera and Miralda-Escudé (2012), in the two-point function of the total

contaminated flux, there will arise three- and four-point functions of the Lyman-alpha forest and

HCD absorber fluctuations. This is because the forest and HCD absorption terms are multiplied:

〈FTotal〉(1 + δTotal) = 〈FForest〉(1 + δForest)〈FHCD〉(1 + δHCD). It follows that in the total flux power

spectrum (Eq. (5.5)), there will be three- and four-point correlations involving δForest and δHCD. The

model presented in Eq. (5.5) only accounts for the leading two-point correlations; Font-Ribera and

Miralda-Escudé (2012), however, found that the three-point term 〈δForest(x1)δHCD(x1)δForest(x2)〉

is an important term on smaller scales (separations r < 40 Mpch−1). We discuss the possible impact

of this additional term in § 5.6.

5.4 Method

We first outline the method we have used and then explain the steps in more detail in the following

subsections (§ 5.4.1 to 5.4.4).

(1). We use a cosmological hydrodynamical simulation from the Illustris project (Nelson et al.,

2015; Vogelsberger et al., 2014a) and generate mock spectra on a grid (562,500 in total,

each at a velocity resolution of 10 km s−1 and with a typical length of ∼ 8, 000 km s−1). We

calculate these at two redshift slices (z = [2.44, 3.49]). (See § 5.4.1)

(2). The mock spectra we generate contain absorption from the Lyman-alpha forest and HCD

absorbers. For our analysis, it is useful to have a set of spectra containing only the Lyman-

alpha forest (still forming a regular grid to allow the use of fast Fourier transforms; FFTs).

To achieve this, we replace spectra contaminated by HCD absorbers by a nearby spectrum

2Indeed, the full “BOSS model” as used by Bautista et al. (2017); du Mas des Bourboux et al. (2017) multiplies the last
two terms in Eq. (5.5) by DNL, the non-linear function calibrated by simulations of the Lyman-alpha forest only. We do not
in the first instance include this correction to the linear Voigt model.
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containing only the forest. Furthermore, we are able to construct boxes of spectra containing

only the Lyman-alpha forest and a particular category of HCD absorber (i. e., restricted to a

particular column density interval) by replacing back the original spectra containing only that

category of contamination. The details of this HCD “dodging” procedure are explained in

§ 5.4.2.

(3). For each box of spectra that we generate, we measure the three-dimensional (3D) flux power

spectrum using an FFT. (See § 5.4.3.)

(4). Using these measurements of 3D flux power spectra, we fit the proposed model [Eq. (5.5)]

using a Markov chain Monte Carlo (MCMC) method. (See § 5.4.4 and Appendix B.2.)

5.4.1 Hydrodynamical simulations and mock spectra

We use snapshots from the highest-resolution cosmological hydrodynamical simulation of the

original Illustris project (Nelson et al., 2015; Vogelsberger et al., 2014a, Illustris-13). The simulation

adopts the following cosmological parameters: Ωm = 0.2726, ΩΛ = 0.7274, Ωb = 0.0456, σ8 = 0.809,

ns = 0.963 and H0 = 100h km s−1 Mpc−1, where h = 0.704 (Vogelsberger et al., 2014b). The box

has a comoving volume of (106.5 Mpc)3 and we consider snapshots at redshifts z = 2.44 and

3.49. The simulations are in broad agreement with observations of the HI CDDF (Vogelsberger

et al., 2014a), the clustering of DLA halos (Bird et al., 2014) and the kinematics of HCD absorbers

(Bird et al., 2015). For a summary of the relevant physics in the simulation and comparisons to

observations, see Rogers et al. (2017).

For each snapshot, we generate mock spectra (using the fake spectra code; Bird, 2017)

containing only the Lyman-alpha absorption line, on a square grid of 562,500 spectra. Each

spectrum extends the full length of the simulation box with periodic boundary conditions, giving

a size in velocity space of 7, 501 and 8, 420 km s−1 respectively at z = 2.44 and 3.49. We measure

the optical depth τ in velocity bins of size 10 km s−1 along the spectrum. We then calculate the

transmitted flux F = e−τ . We convolve our spectra with a Gaussian kernel of FWHM = 8 km s−1,

setting the simulated spectrographic resolution.

5.4.2 Dodging high column density absorbers

We associate with each mock spectrum that is contaminated by HCD absorbers a nearby spectrum

containing only Lyman-alpha forest absorption. Indeed, if the transverse distance necessary to
3The simulation we use is publically available at http://www.illustris-project.org/data.
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“dodge” the contaminating HCD absorber is small (as is expected considering the physical sizes of

HCD absorbers, Krogager et al., 2012), the large-scale cosmological modes (i. e., the Lyman-alpha

forest modes) in the replacement spectrum should be identical to the original spectrum and the

difference will be the HCD absorber modes only. The “dodging” procedure iteratively proposes

a nearby replacement spectrum until one is found with no HCD absorber contamination (i. e.,

there are no column densities, integrated over 100 km s−1 4, exceeding 1.6× 1017atoms cm−2, the

threshold for HCD absorbers). It searches for replacement spectra by successively generating spectra

further away in a transverse direction from the original spectrum in steps of 10 kpch−1 until a

suitable spectrum is found. In this way, we are able to generate a box of spectra containing only the

Lyman-alpha forest.

We are also able to generate boxes of spectra containing Lyman-alpha forest and HCD absorbers

of a certain category (i. e., column densities in a certain interval) by replacing back original spectra

containing this particular category. We categorise spectra according to the maximum column density

(again integrated over 100 km s−1) in each spectrum; there may be less dense HCD absorbers in

each category but their effect will be sub-dominant since their damping wings are narrower.

Having generated these new boxes of spectra, we compute FFTs (§ 5.4.3), ignoring the transverse

dodging distances and assuming that the dodged spectra lie on the original grid. Since the dodging

distances are in general small (we find only ∼ 1% to be > 500 kpch−1; see Appendix B.1), the

error associated with this approximation is restricted to small scales, i. e., large |k|. We conduct

an analysis of the error that arises from the irregular grid resulting from the dodging distances in

Appendix B.1. Following these tests, we study only scales |k| < |k|max, where |k|max = 1hMpc−1;

at these small values of |k|, the dodging error is negligible compared to the effect of HCD absorbers

that we wish to measure (see Fig. 5.3).

5.4.3 Three-dimensional flux power spectrum

We measure the 3D flux power spectrum at each redshift slice for our Lyman-alpha forest box of

spectra (P 3D
Forest) and for our contaminated boxes of spectra for a number of HCD absorber categories

(P 3D
Contaminated), the column density ranges of which we give in Table 5.1. We estimate the 3D flux

power spectrum in bins of |k| and µ, P 3D
Flux,i = 1

Ni

∑
n |δ̂Flux(kn)|2, where kn lie within a given

(|k|, µ) bin and Ni are the number of modes in each bin i. δ̂Flux(k) is the Fourier transform of the

4This is the same integration length as we used in our 1D flux power spectrum analysis in Rogers et al. (2017) and it
amounts to ten neighbouring bins or a comoving length much larger than the most extensive HCD absorbers (Krogager
et al., 2012). In Rogers et al. (2017), we also tested our sensitivity to the size of this integration length and found it made
negligible difference to power spectrum estimates.
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Table 5.1: The neutral hydrogen (HI) column density limits [N(HI)min, N(HI)max] that define the

categories of absorbing systems used in this work. The columns on the right show the percentage

of spectra (at each redshift z that is considered) in our (106.5 Mpc)3 simulation box (Nelson et al.,

2015; Vogelsberger et al., 2014a, Illustris-1) where the highest-density system belongs to a given

category.

Absorber category
N(HI)min N(HI)max % of spectra in box at

[atoms cm−2] z = 2.44 z = 3.49
Lyman-α forest 0 1.6× 1017 69.6 45.7

LLS 1.6× 1017 1× 1019 14.9 27.0
Sub-DLA 1× 1019 2× 1020 8.1 14.3

Small DLA 2× 1020 1× 1021 4.1 7.8
Large DLA 1× 1021 ∞ 3.3 5.2

flux fluctuation field δFlux(x) = F(x)
〈F〉 − 1. Here, for the mean flux 〈F〉 we always use the mean flux

of the original box of spectra (with no dodging) so that our modelling assumption that the flux

fluctuations can be sub-divided into different absorber categories δTotal =
∑
i δi holds true, where i

indexes the different absorber categories. We use the convention of absorbing the (2π)3 into the

conjugate variable, i. e., we define the Fourier transform as δ(k) =
∫
δ(x)e−ikxdx.

5.4.4 Modelling and Markov chain Monte Carlo sampling

We optimise the parameters of our model (the Lyman-alpha forest and HCD contamination biases

and redshift-space distortion parameters) using MCMC sampling. The details of the construction of

our likelihood function and prior probability distributions are given in Appendix B.2. We use MCMC

sampling in order to estimate parameter uncertainties and to understand parameter degeneracies.

The results are shown in § 5.5.2.

5.5 Results

5.5.1 Measuring the effect of HCD absorbers

Figure 5.2 shows the measured 3D flux power spectra as a function of scale |k| and the cosine of the

angle away from the line-of-sight µ 5. The anisotropic behaviour arises due to linear redshift-space

distortions on larger scales (enhancing power towards the line-of-sight) and non-linear effects on

smaller scales (suppressing power along the line-of-sight due to non-linear peculiar velocities and

thermal broadening of absorption lines). The non-linear effects are more manifest in the bottom

5I. e., µ = 1 is along the line-of-sight and µ = 0 is transverse to the line-of-sight.
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Figure 5.2: Above: the three-dimensional power spectra of the total flux from the Lyman-alpha

forest and HCD absorbers (solid lines); and of the flux from the Lyman-alpha forest only (dashed

lines); and the total linear theory matter power spectrum. For the flux power spectra, we show the

anisotropic behaviour as a function of µ. Below: the flux power spectra in ratio to the linear power

spectrum. Flux measurements are made from a simulation box at redshift z = 2.44.

158



panel, where the flux power spectra are shown in ratio to the linear theory matter power spectrum.

On the largest scales, these ratios should tend towards constant values (i. e., b2(1 + βµ2)2 for the

linear models presented in § 5.3). However, we are only able to probe a small number of these

large scale modes in our 75 Mpch−1 simulation box and so our measurement of large-scale bias

has a large variance. The isotropic enhancement of power due to non-linear collapse of structure is

broadly observable on larger scales; the anisotropic suppression of power towards the line-of-sight

mentioned above is clearly observable for scales |k| > 1hMpc−1, leading to the characteristic

cross-over in the curves on small scales (Arinyo-i-Prats et al., 2015; McDonald, 2003).

Figure 5.2 also compares the 3D flux power spectra of contaminated and uncontaminated

Lyman-alpha forest absorption (solid and dashed lines respectively; see § 5.4.2 for more details

about how a box of spectra without HCD absorber contamination is constructed). The effect of HCD

absorber contamination adds power in some regimes (especially in the transverse direction) and

suppresses power in others (especially on smaller scales towards the line-of-sight). Following the

tests of the error caused by the dodging procedure in forming the Lyman-alpha forest box of spectra

(see Appendix B.1 and § 5.4.2), we cut our data-vectors at |k|max = 1 and we will throw away

smaller scales in our following analysis. The forest flux power spectra shown in Fig. 5.2 (dashed

lines) do not quantify the additional systematic and statistical error arising from the dodging (which

is only significant for |k| > 1hMpc−1).

Figure 5.3 shows the fractional effect of HCD absorber contamination on the 3D Lyman-alpha

forest flux power spectrum. The fractional effect of the full ensemble of HCD absorbers [panel (a)]

can be as large as a 60% correction to P 3D(|k|) at |k| = 0.1hMpc−1 in the transverse direction.

The fractional effect is smaller at higher redshift because the Lyman-alpha forest power spectrum

(in the denominator) has a larger amplitude (since neutral hydrogen is more abundant and so there

is stronger Lyman-alpha absorption). There is a larger fractional effect in the transverse direction

driven also by the Lyman-alpha forest power spectrum, which has less power in this direction due

to redshift-space distortions. The scale-dependence in Fig. 5.3 is partly driven by the non-linear

effects in the Lyman-alpha forest power spectrum discussed above; in particular, the Lyman-alpha

forest power spectrum is boosted on small scales due to non-linear growth and so the fractional

effect decreases.

The bottom panel Fig. 5.3 (b) shows the equivalent effects but for a mock residual contamination

of HCD absorbers after the largest HCD absorbers have been “clipped” out (i. e., only LLS and

sub-DLAs remaining). The same trends are observed as above, but the overall amplitude is smaller

since the largest damping wings have been removed. Nonetheless, the effect at |k| = 0.1hMpc−1
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Figure 5.3: The change in the flux power spectrum from contamination of quasar spectra by HCD

absorbers, as a fraction of the Lyman-alpha forest power spectrum. (a) above: the effect of the

total contamination from all HCD absorbers in our simulation box; (b) below: the effect of a mock

residual contamination after the largest HCD absorbers have been “clipped” from quasar spectra

(i. e., only LLS and sub-DLAs remaining).
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in the transverse direction still constitutes a 15% correction; it is therefore necessary to model this

effect for robust cosmological inference from the Lyman-alpha forest (see § 5.5.2).

5.5.2 Modelling the effect of HCD absorbers

We carry out the modelling as explained in § 5.4.4, using the simulated measurements of 3D flux

power spectra we have presented in § 5.5.1. In particular, we investigate the linear Voigt model

presented in Eq. (5.5) for the 3D flux power spectra contaminated by different categories of HCD

absorber (LLS, sub-DLAs, small and large DLAs, as defined in Table 5.1); the Lyman-alpha forest

bias parameters are additionally constrained by the forest-only 3D flux power spectrum (see § 5.4.4

for more details).

We show the maximum posterior values of the linear Voigt model and the measurements made

in our simulations in Fig. 5.4. To emphasise the effect of HCD absorbers, we compare the part of the

model for the auto-correlations of HCD absorbers and their cross-correlation to the Lyman-alpha

forest [i. e., the last two terms in Eq. (5.5)] to the difference between the 3D flux power spectra of

the contaminated and uncontaminated boxes of spectra. We plot the results as a function of column

density (by showing the effect for different HCD absorber categories from top to bottom) and as a

function of redshift (from left to right). The widths of the error bars are the widths of the 1σ credible

intervals of the model’s posterior distribution. (This can be estimated from the distribution of the

samples formed by evaluating the model at the parameter values of the samples from the parameter

MCMC chains.) In this way, the uncertainty shown at each point in the data-space quantifies the

full likelihood function that we have constructed and the prior information that we have assumed;

thereby coherently propagating errors and correlations.

A measure of the goodness-of-fit is the values of the reduced chi-squared statistic: from top to

bottom, left to right, χ2
red = (a) 1.55; (b) 1.56; (c) 1.57; (d) 1.73; (e) 1.04; (f) 1.03; (g) 1.21; (h) 1.24,

all indicating a good fit for the linear Voigt model for all the column densities and redshifts we

have considered, excluding certain regimes as explained below. The number of degrees of freedom

is (a), (b), (e), (f): 34; (c), (g): 26; (d), (h): 22. We wish to emphasise that this is an estimate

of the goodness-of-fit of the full model (as given by Eq. (5.5)). This should not be compared to

a “chi-by-eye” on Fig. 5.4, which is deliberately constructed to show an interesting sub-set of the

model. The linear Voigt model is discrepant with the simulation results for a small part of the data

space (|k| & 0.4hMpc−1 for small DLAs and |k| & 0.25hMpc−1 for large DLAs); these exceptions

are indicated by the dotted lines in Fig. 5.4 and are restricted to small scales (particularly towards
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Figure 5.4: The change in the flux power spectrum from contamination of quasar spectra by

different categories of HCD absorbers, in ratio to the linear power spectrum. The points are

measurements from our simulation boxes. The lines are maximum posterior values of our preferred

model. From top to bottom, we show the effect of different categories of HCD absorbers; from left

to right, we show the effect at different redshifts z. The vertical dotted lines for the two largest

HCD absorber categories indicate the smallest scale which we include in our data-vector from our

HCD-contaminated simulation boxes for those categories. Our preferred model does not correctly

characterise the simulation results for these categories on smaller scales towards the line-of-sight.

The dotted lines show an extrapolation of this model, highlighting the discrepancy.
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the line-of-sight) for the largest HCD absorbers (small and large DLAs). Indeed, we exclude these

parts of the data-vector for the contaminated 3D flux power spectra in our parameter inference; we

discuss the implications of this small-scale discrepancy for the highest column density absorbers in

§ 5.6.

There is further discrepancy between the best-fit model and (simulated) data points in regions

of data-space which are not excluded. In particular, it is noteworthy that the yellow data-point

second from the left in each panel is discrepant by several sigmas. This is possibly a reflection of

an over-strong prior on the HCD absorber bias parameters in this part of the data-space. Indeed,

without the prior information, the uncertainty on this data point is very large because of the very

small number of large-scale modes and the model and data would (naively) be more consistent. Our

prior distributions are constructed from the latest inferred values from observations, in the absence

of previous such analyses with simulations. Considering that there are observed differences between

the values of the Lyman-alpha forest bias parameters inferred from observations and simulations, it

would not be surprising if this extended to the high-density biases. A future solution to this problem

would be to measure the large-scale absorber bias of HCD systems on a larger simulation box (than

is currently available). We however reiterate that although the amplitude of our best-fit model is

determined by our prior information, the scale-dependence is physically determined. Furthermore,

the effective absorber bias of HCD systems will ultimately be survey-specific after the attempted

removal of the largest damping wings. There is also a discrepancy on small scales towards the

line-of-sight in some of the un-excluded data-space; this is part of the same problem that persists

in the excluded data-space. It reflects a fundamental limitation of the simple linear model we

are testing. We discuss in some detail in § 5.6 the limitations of this simple model and possible

sophistications that could be made. We highlight here however that the fundamental limitation of

this analysis is an insufficient physical understanding of the small-scale (non-linear) effect of HCD

absorbers (rather than the statistics of our analysis). We finally note that part of the discrepancy

between simulation and model in Fig. 5.4 is also driven by the range of µ values within each µ bin.

For completeness, we quote the maximum (marginalised) posterior values and 1σ credible

intervals of the (linear) bias parameters of the Lyman-alpha forest6 at z = 2.44:

bForest(1 + βForest) = −0.270± 0.004; βForest = 1.722± 0.072

6Rather than bForest, following e. g., Bautista et al. (2017); Slosar et al. (2011), we sample the combination bForest(1 +
βForest), which is less correlated with βForest.
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and at z = 3.49:

bForest(1 + βForest) = −0.511± 0.006; βForest = 1.249± 0.043.

The posterior on βForest at z = 2.44 is in 1σ agreement with the best-fit value from BOSS DR12

spectra (Bautista et al., 2017), βBOSS
Forest = 1.663± 0.085 at a central redshift of z = 2.3. However, the

posterior on bForest(1 + βForest) is lower than the value measured from data bBOSS
Forest(1 + βBOSS

Forest) =

−0.325± 0.004 at z = 2.3; this difference has been observed in other studies with hydrodynamical

simulations (e. g., Arinyo-i-Prats et al., 2015). The redshift evolution in bForest observed in our

simulations (modelled as bForest ∝ (1 + z)γ) implies γ = 3.1, roughly matching the value currently

assumed in data analyses γBOSS = 2.9 (see § 5.3.1). We find that βForest decreases at higher redshift,

also as observed in previous studies with simulations (Arinyo-i-Prats et al., 2015). In Appendix

B.3, we test the sensitivity of our inference of the bias parameters of the Lyman-alpha forest to the

smallest scale included in our analysis |k|max; we find that our inferences are overall insensitive to

this, suggesting that our results are robust to our modelling of non-linear effects. We also recover

the same posterior distributions on the Lyman-alpha forest bias parameters for each of the HCD

absorber categories of contaminated flux power spectra that we consider. These parameters also

match those inferred from the 3D Lyman-alpha forest flux power spectrum only.

As discussed in § 5.4.4, we place Gaussian priors on the bias parameters of the different categories

of HCD absorber (but not the forest biases), which are otherwise poorly constrained, since the

amplitude of their effect is sub-dominant to the Lyman-alpha forest flux power spectrum. These

prior distributions are returned almost exactly in the marginalised posteriors. The scale-dependence

of the effect of HCD absorbers, meanwhile, is fully determined by the physics of their absorption

profiles and the appropriate CDDF.

Figure 5.5 compares the maximum posterior values of the linear Voigt model to the effect of a

mock residual contamination of HCD absorbers on the 3D flux power spectrum, at the two redshifts

we consider. This mock residual contamination (of LLS and sub-DLAs) approximately matches

the column densities assumed remaining in BOSS spectra (Bautista et al., 2017) after the largest

damping wings have been removed. We find that the linear Voigt model is in statistical agreement

with our simulation measurements (χ2
red = (a) 1.56; (b) 1.03). The number of degrees of freedom is

(for both panels) 34. We highlight this configuration because, although Fig. 5.4 shows that there are

some small scales towards the line-of-sight for the largest HCD absorbers where the simple linear

Voigt model is not appropriate, these are the HCD absorber categories most efficiently removed in
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Figure 5.5: As Fig. 5.4, but for a mock residual contamination after the largest HCD absorbers have

been “clipped” from quasar spectra (i. e., only LLS and sub-DLAs remaining). From top to bottom,

we show the effect at different redshifts z.
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the “clipping” process in data analysis.

5.6 Discussion

In § 5.5.2, we showed the regimes in scale and column density where the simple linear Voigt model

(see § 5.3.2) can characterise the effect of HCD absorber contamination on correlations in the 3D

Lyman-alpha forest. The linear Voigt model is probably the simplest model that can be constructed

to take account of the true absorption line profiles of HCD absorbers, convolving a linear model of

HCD absorbers (as a biased tracer of the matter density distribution with redshift-space distortions)

with the Voigt profiles of HCD absorbers’ damping wings, integrated over the CDDF of the HCD

absorbers. The linear Voigt model manifests as a suppression in power due to damping wings

which remove structure in the spectra. This effect is stronger towards the line-of-sight since this

is the direction in which the wings appear. The scales at which the suppression starts (and the

overall amplitude) are larger for more dense absorber categories since their wings are wider. The

suppression is such that it overcomes the boost in power towards the line-of-sight on large scales

due to redshift-space distortions; consequently, there is a characteristic cross-over in the different

curves for each absorber category. The effect of HCD absorbers transverse to the line-of-sight is

scale-independent, since there is no projection of the damping wings in this direction (our lowest µ

bin does include some modes slightly away from the transverse direction). The amplitude increases

with redshift, mainly because the cross-correlation with the Lyman-alpha forest is stronger (there

being overall more absorption at higher redshift).

However, on small scales towards the line-of-sight for the largest HCD absorber categories

(|k| & 0.4hMpc−1 for small DLAs and |k| & 0.25hMpc−1 for large DLAs), the linear Voigt model

cannot characterise our simulation results. Power is suppressed towards the line-of-sight more

strongly than our model allows such that there is less power than without the HCD absorbers.

We consider two possible causes of this discrepancy with the linear Voigt model (as mentioned in

§ 5.3.2). First, our model does not consider any non-linear clustering of the gas or halos associated

with HCD absorbers. A comprehensive model for the clustering of HCD absorbers should certainly

account for this effect, but we found no preference for a parametric form (akin to that used for the

Lyman-alpha forest; Arinyo-i-Prats et al., 2015; McDonald, 2003) that would improve the fit to our

simulation results, suggesting that such a closed form cannot alone account for the discrepancy.

Second, we consider the non-linear effect of a three-point correlation between a Lyman-alpha

forest fluctuation and an HCD absorber fluctuation at the same position and a Lyman-alpha forest
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fluctuation at a second position (see § 5.3.2). This term was shown by Font-Ribera and Miralda-

Escudé (2012) to be at least as significant as the HCD absorber auto-correlation on small scales

(separations r < 40 Mpch−1) and to have the correct (negative) sign to account for the additional

suppression of power observed on small scales towards the line-of-sight for small and large DLAs.

(This is because it is the correlation between three negatively-biased tracers.) It is intuitively

understood as the effect of the damping wings in masking regions of the Lyman-alpha forest and so

suppressing auto-correlations in the Lyman-alpha forest that would otherwise occur on scales within

the widths of individual wings. This effect will be stronger for more dense HCD absorbers since

their damping wings are wider and so mask more of the Lyman-alpha forest; stronger on scales

smaller than the widths of wings; and stronger towards the line-of-sight since this is the direction

in which the masking occurs. This seems a qualitative match to the observed discrepancies with

the linear Voigt model, but as yet there exists no simple model for this higher-order effect and we

have not explicitly tested whether it can account for the observed discrepancies. As discussed above

and in § 5.5.2, the effect is restricted to the highest column densities, which are in any case mostly

removed in the clipping pre-processing of spectra.

Figure 5.6 compares the linear Voigt model as inferred from our simulations contaminated by a

mock residual contamination of HCD absorbers (only LLS and sub-DLAs remaining, approximating

the effect of clipping out the damping wings of more dense absorbers as is done with survey

spectra), with the model used by the BOSS Collaboration (Bautista et al., 2017; du Mas des

Bourboux et al., 2017) for the same effect. This “BOSS model” approximates the damping wings

as top-hats and so the effect on the Fourier space correlations (i. e., the flux power spectrum) is a

sinc function (see § 5.3.2). We rescale the BOSS model to have the same bias and redshift-space

distortions as inferred in our simulation box (for a fair comparison to the linear Voigt model), but

use the shape parameter as found in BOSS mock spectra with a residual contamination and in

data (LHCD = 24.341 Mpch−1)7. We extrapolate the BOSS model to smaller scales than considered

in their analysis, where the minimum separations measured were r = 10 Mpch−1. Although our

inference on the linear Voigt model is only constrained by the scales accessible in our simulation

box, we extrapolate this model to larger scales of relevance to a BAO analysis. Although we are

not able to explicitly test the model on these larger scales, it is expected to correctly characterise

the effect as it constitutes the physical expectation on large scales. We conclude from Fig. 5.6 that

7We use this shape parameter value because the shape parameter of the BOSS model as inferred from our simulation
box was considerably smaller than the BOSS best-fit value (in order to fit the small-scale correlations) and gave unphysical
results on scales larger than the size of our box (i. e., the curves were flat on large scales, indicating no effect of damping
wings in contradiction to the physical linear Voigt model).
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Figure 5.6: A comparison of the existing model as used by the BOSS Collaboration (Bautista et al.,

2017; Pérez-Ràfols et al., 2017) and the linear Voigt model presented in this study for the additive

effect of residual HCD absorbers (after the “clipping” of the largest absorbers from quasar spectra)

on the three-dimensional flux power spectrum. For the linear Voigt model, we show the maximum

posterior values as inferred from a mock residual contamination in our simulation box at z = 2.44.

For the BOSS model, we rescale to match the bias and redshift-space distortions inferred in our box,

but use the best-fit value of the shape parameter as found in BOSS mock spectra with a residual

contamination and data. The maximum posterior value of the BOSS model as inferred from our

simulation gives unphysical results on scales larger than the size of our box.

168



the BOSS model constitutes a good approximation for scales of relevance for a BAO analysis, but

that on smaller scales, the linear Voigt model should be used in order to account for the effect of

extended damping wings for a residual contamination of HCD absorbers.

5.7 Conclusions

We have measured the effect of contamination of quasar spectra by the damping wings of high

column density (HCD) absorbing regions of neutral hydrogen on correlations in the 3D Lyman-

alpha forest. We accomplished this by measuring 3D flux power spectra from a cosmological

hydrodynamical simulation (Illustris; Nelson et al., 2015; Vogelsberger et al., 2014a) as a function

of the column density of the HCD absorber contamination and redshift. We found that, even after

the largest damping wings have been removed (as performed by survey pipelines), that the effect of

the residual contamination can be as large as a 15% correction to the 3D Lyman-alpha forest flux

power spectrum (at |k| = 0.1hMpc−1). We found that the effect of this residual contamination can

be characterised by a simple linear model (with bias and redshift-space distortions) convolved with

the Voigt profiles of the damping wings and integrated over the column density distribution function

of the HCD absorbers. This model also successfully characterises the contamination effect on large

scales for the highest column densities; however, on smaller scales (e. g., |k| > 0.4hMpc−1 for small

DLAs) towards the line-of-sight, the model fails possibly due to additional suppression in power

by the most massive systems due to the effective masking of auto-correlations in the Lyman-alpha

forest by their damping wings. Font-Ribera et al. (2017) found that there is much more constraining

power in the 3D flux power spectrum than the 1D power spectrum for BOSS for |k| < 1hMpc−1,

underlying the importance of accurately modelling systematics up to small scales. We therefore

find that this linear Voigt model will help with precision measurements of BAO in future surveys

(eBOSS/DESI) and will be essential for reconstructing the power spectrum shape beyond BAO.
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A
Appendex to Chapter 4

A.1 One-dimensional flux power spectrum of a Voigt profile

As discussed in § 4.3, the broadened absorption lines of high column density absorbers are usually

modelled by a Voigt profile. A Voigt profile is a convolution of a Lorentzian profile and a Gaussian

profile. It therefore appropriately models the combination of the main physical processes that

broaden atomic transition lines: the Lorentzian profile from e. g., natural or collisional broadening

and the Gaussian profile from e. g., Doppler broadening. The optical depth as a function of

wavelength τ(λ) is the product of the line-of-sight column density N and the atomic absorption

coefficient α(λ) (e. g., Humlicek, 1979)1:

τ(λ) = Nα(λ) = N

√
πe2

4πε0mec2
fλ2

t

∆λD
u(x, y), (A.1)

where the fundamental physical constants have their usual meaning, f is the oscillator strength of

the atomic transition, λt is the transition wavelength and the Doppler wavelength “shift” associated

with a gas of temperature T for an ion of mass mion,

∆λD =
λt

c

(
2kBT

mion

) 1
2

. (A.2)

u(x, y) is an unnormalised form of the Voigt function (the normalisation is already expressed in the

pre-factors of Eq. (A.1)), specifically the real part of the Faddeeva function:

w(z) = e−z
2

erfc(−iz) = u(x, y) + iv(x, y), (A.3)

1Eq. (A.1) is valid in SI units.
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Figure A.1: The one-dimensional flux power spectra of Voigt profiles of broadened Lyman-alpha

absorption lines as generated by different column densities of neutral hydrogen N(HI), as a function

of line-of-sight scale k|| (the units of N(HI) are atoms cm−2).
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where erfc(x) is the complementary error function and z = x + iy. x and y are respectively the

wavelength difference from the line centre λc and the natural width of the transition, in units of the

Doppler shift:

x(λ) =
λ− λc

∆λD
; y =

Γλ2
t

4πc

1

∆λD
, (A.4)

where Γ is the damping constant of the transition, i. e., the inverse of the time scale for the electron

to remain in the upper level of the transition in the vacuum. For the Lyman-alpha transition,

f = 0.4164, λt = 1215.67Å, mion = mproton and Γ = 6.265×108 Hz (Morton, 2004). For the column

densities that we consider, we assume a gas temperature T ≈ 104K. In order to calculate the 1D

flux power spectrum arising from these Voigt profiles, the same procedure is followed as in § 4.4.2,

i. e., we form flux spectra and carry out a Fourier transform. We transform from wavelengths to

velocities by ∆v/c = ∆λ/λ.

Figure A.1 shows the 1D flux power spectra of Voigt profiles as given by Eq. (A.1) for the

Lyman-alpha absorption line for three different column densities of neutral hydrogen N(HI) =

[1019, 1020, 1021] atoms cm−2, spanning the column densities for LLS and DLAs. This figure should

be compared with Fig. 4.1 in § 4.5, which shows the 1D flux power spectra we have measured in the

hydrodynamical simulations. The trends in Fig. A.1 broadly support the arguments made in § 4.6,

relating the large-scale power spectrum of simulated spectra contaminated by high column density

absorbers to the power spectrum of relevant Voigt profiles. The shape of the large-scale power

spectrum of the Voigt profiles is similar in amplitude and scale-dependence as the excesses on large

scales for the 1D flux power spectra of simulated spectra in high column density absorber categories.

Moreover, these excesses get steeper, increase in amplitude and become prominent on larger scales

for higher column densities, both in the simulated and analytic spectra. This reflects the fact that

a higher column density means wider damping wings and so correlations on larger scales. In the

analytic power spectra in Fig. A.1, we observe oscillations in the power spectrum on smaller scales

that rapidly decrease in amplitude. These are not observed in the fully-simulated power spectra

since the oscillations are orders of magnitude lower in amplitude than the flux power spectrum of

residual Lyman-alpha forest (see Fig. 4.1). Furthermore, in our results, we are effectively averaging

over a number of column densities in each column density bin (or absorber category) that we

consider; this will have the additional effect of averaging out these smaller-scale oscillations in the

power spectrum to form a smoother scaling.
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B
Appendex to Chapter 5

B.1 Tests of HCD absorber dodging

In this Appendix, we test the effect of replacing simulated spectra contaminated by HCD absorption

with nearby uncontaminated spectra on our measurements of 3D flux power spectra. The measure-

ments of these power spectra are made computationally simple by the use of FFTs, which in turn

require a regular grid of samples. However, the transverse HCD absorber “dodging” of some spectra

makes this grid irregular. An error therefore arises from treating this irregular grid as the original

regular grid (i. e., to ignore the transverse dodging distances) in computing the necessary FFTs.

Figure B.1 shows the distribution of the transverse dodging distances required to find replace-

ment mock spectra uncontaminated by HCD absorbers, for the simulation boxes at the two redshifts

we consider. (See § 5.4.2 for more details about why and how we dodge HCD absorbers.) Replace-

ment spectra are trialled increasingly further away from the original spectrum in steps of 10 kpch−1

until an uncontaminated spectrum is found. Many of the final replacement spectra require many

iterations to be found; this is exacerbated by dodging one HCD absorber but then finding another

HCD absorber elsewhere along the spectrum which then requires further dodging. More dodging is

required at higher redshift because neutral hydrogen is more abundant.

We then replicate the exact movement of lines-of-sight as we carry out in our simulations to

dodge HCD absorbers on the estimation of a cosmological power spectrum (the same as input to the

simulations) from a Gaussian random field (in order to approximate the effect on the flux power

spectrum). An error is introduced in estimating the power spectrum and ignoring the transverse

distances that some of the samples of the field have moved (this error could be avoided if we didn’t

rely in the calculation of power spectra on FFTs which require evenly sampled functions). Figure

B.2 shows the fractional error from this effect for the dodges we carry out at the different redshifts
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Figure B.1: Histogram of the transverse comoving distances “dodged” by each simulated spectrum

in order to avoid HCD absorbers. The total number of spectra at each redshift z is 562,500. The

number of spectra remaining un-dodged at z = 2.44 and 3.49 is respectively 391,500 (69.6%) and

257,063 (45.7%). There is a tail of large dodging distances, much larger than the physical size

of the most massive HCD absorbers because sometimes, in dodging one absorber, the proposed

replacement spectrum will coincide with another absorber, somewhere else along the line-of-sight,

requiring further dodging.

174



None

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06
(P

3
D

O
ri

gi
n

al
−
P

3
D

D
o
d

g
ed

)/
P

3
D

D
o
d

g
ed

0 < µ < 0.25

0.25 < µ < 0.5

0.5 < µ < 0.75

0.75 < µ < 1

10−1 100 101

|k| [hMpc−1]

−0.06

−0.04

−0.02

0.00

0.02

0.04

0.06

(P
3D O

ri
gi

n
al
−
P

3D D
o
d

ge
d
)/
P

3D D
o
d

ge
d

(a): z = 2.44

(b): z = 3.49

Decreasing µ

Decreasing µ

Figure B.2: The fractional error in the estimation of the power spectrum of a Gaussian random field

(GRF) due to “dodging” lines-of-sight. We replicate in a GRF the exact movement of lines-of-sight

that we carry out in our simulation box in order to dodge HCD absorbers. We then calculate the error

in the estimation of the power spectrum due to ignoring the changes in position of lines-of-sight

when calculating the necessary (fast) Fourier transforms. We note that the error remains small

(sub-percent) for scales of interest in our study (|k| < 1hMpc−1). (a) above: we replicate the

dodging in our box at z = 2.44; (b) below: at z = 3.49.
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we consider. There is more error at higher redshift because there is more dodging (see Fig. B.1),

but the error remains sub-percent for scales of interest for our study (|k| < 1hMpc−1). This figure

should be compared to Fig. 5.3 (b) (the fractional effect of a mock residual contamination of HCD

absorbers on the 3D Lyman-alpha forest flux power spectrum); for the scales of interest, the effect

of the HCD absorbers that we wish to measure remains much larger than the error arising from the

dodging. We therefore ignore only scales smaller than this cut-off in our analysis.

B.2 Details of modelling and MCMC sampling

In § 5.4.4, we wish to sample the joint posterior probability distribution of the parameters of our

proposed model in Eq. (5.5), given our measured 3D flux power spectra. We therefore require a

likelihood function for our simulated data given the model. We use a Gaussian likelihood function

and assume the covariance matrix to be diagonal (i. e., we ignore correlations between power

spectrum bins). Each δ̂Flux(kn) is well approximated by a Gaussian random variable and so, as

explained in § 5.4.3, our flux power spectrum estimates in each bin i are the sums of the squares of

Ni such variables. It follows that each of the elements of our data-vector is chi-squared distributed

(ignoring the slightly different amplitudes of and possible correlations between the Fourier modes

within each bin):1

P 3D
Flux,i ∼

P 3D
True,i

Ni
χ2(Ni), (B.1)

where P 3D
True,i is the true (ensemble) value of the 3D flux power spectrum in bin i. The variance

of this distribution is 2(P 3D
True,i)

2/Ni and these form the (diagonal) elements of our covariance

matrix (substituting P 3D
Flux,i for P 3D

True,i, which is otherwise a priori unknown). To constrain the

contamination parameters while marginalising over intrinsic Lyman-alpha forest bias parameters,

we combine the likelihoods for the P 3D
Contaminated and P 3D

Forest data-vectors (using Eq. (5.1) to model

P 3D
Forest); we ignore correlations between the two data-vectors and simply add the log-likelihoods.

This is sufficient for the level of accuracy of our study.

Our model requires evaluation of P 3D
Linear in each bin; to improve the comparison to P 3D

Flux,i, we

similarly evaluate P 3D
Linear at each individual mode and bin in the same way. We associate with

each bin the average values of |k| and µ from the contributing modes. We use uniform prior

probability distributions for the Lyman-alpha forest bias parameters bForest and βForest and use

Gaussian priors for the HCD absorber bias parameters bHCD and βHCD, which are otherwise poorly

1For practical purposes, for Ni > 50, the distribution is close to a Gaussian distribution.
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constrained. The mean and 1σ values of the Gaussian priors on bHCD are (following the best-fit

values on the total bHCD from Bautista et al. 2017) from top to bottom, left to right in Fig. 5.4,

(a)−0.0005±0.0002; (b)−0.003±0.001; (c)−0.007±0.003; (d)−0.016±0.006; (e)−0.0007±0.0002;

(f) − 0.005± 0.002; (g) − 0.012± 0.004; (h) − 0.022± 0.009. They are estimated by dividing the

total bHCD from Bautista et al. (2017) by the relative rest-frame equivalent widths of the damping

wings of each absorber category; they are scaled up at higher redshift by the increased amount

of HCD absorption (estimated from the fraction of contaminated spectra). Following the best-fit

values found by Bautista et al. (2017), we place a Gaussian prior on βHCD = 0.7± 0.2. Our prior

distributions for these contamination parameters are almost exactly returned in their marginalised

1D posterior distributions (details are given in § 5.5.2), i. e., we are very insensitive to the amplitude

of the effect of HCD absorbers. The shape of the scale-dependent bias is fully determined by the

physics of the Voigt absorption profiles and the CDDF (see § 5.3.2). We investigate the suitability of

our model for the scale-dependent bias arising from the absorption profiles of HCD absorbers as a

function of column density by repeating the posterior sampling for the P 3D
Contaminated constructed for

each HCD absorber category.

We sample the posterior distributions using a Markov chain Monte Carlo method, specifically

emcee (Foreman-Mackey et al., 2013), an implementation of the affine-invariant MCMC sampler.

We initialise our chains uniformly within the (non-zero) bounds of our prior distributions and test

for convergence using the Gelman-Rubin statistic (Brooks and Gelman, 1998; Gelman and Rubin,

1992).

B.3 Tests of robustness of inference of bias parameters of the

Lyman-alpha forest

Figure B.3 shows the results of testing how changing the smallest scale that we include in our

analysis |k|max affects the (marginalised 1D) posterior distributions inferred for the bias parameters

of the Lyman-alpha forest. The 1σ credible intervals on the combination bForest(1 + βForest) and

βForest increase as |k|max decreases because the number of modes remaining on scales larger than

|k|max falls off quite sharply as |k|max is reduced. Although the combination bForest(1 + βForest)

is sampled, rather than bForest alone, because it is less correlated with βForest, there is evidently

still correlation: as βForest decreases with |k|max, so does also the amplitude of bForest(1 + βForest).

Nonetheless, the posteriors of both bias parameters are statistically consistent for all the values of
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Figure B.3: The maximum posterior values with the 1σ credible intervals of the bias bForest (above)

and redshift space distortion βForest (below) parameters of the Lyman-alpha forest, as inferred from

our simulation box at z = 2.44, using different values of |k|max, the smallest scale included in our

analysis. Following e. g., Bautista et al. (2017); Slosar et al. (2011), we sample the combination

bForest(1 + βForest), which is less correlated with βForest. We find that our marginalised parameter

posteriors are statistically consistent, irregardless of the smallest scale at which we cut our data

vector.
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|k|max that we consider, suggesting a degree of robustness in our inference on these parameters.

Moreover, our conclusions on the scale-dependence of the effect of HCD absorbers on correlations

in the 3D Lyman-alpha forest are insensitive to the overall amplitude, including the biases of the

Lyman-alpha forest.
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S. Bird, I. Cholis, J. B. Muñoz, Y. Ali-Häımoud, M. Kamionkowski, E. D. Kovetz, A. Raccanelli, and
A. G. Riess. Did LIGO Detect Dark Matter? Physical Review Letters, 116(20):201301, May 2016.
doi: 10.1103/PhysRevLett.116.201301.

S. Bird, R. Garnett, and S. Ho. Statistical properties of damped Lyman-alpha systems from Sloan
Digital Sky Survey DR12. MNRAS, 466:2111–2122, Apr. 2017. doi: 10.1093/mnras/stw3246.

J. Bobin, Y. Moudden, J.-L. Starck, J. Fadili, and N. Aghanim. SZ and CMB reconstruction using
generalized morphological component analysis. Statistical Methodology, 5:307–317, July 2008.
doi: 10.1016/j.stamet.2007.10.003.

J. Bobin, J.-L. Starck, F. Sureau, and S. Basak. Sparse component separation for accurate cosmic
microwave background estimation. A&A, 550:A73, Feb. 2013. doi: 10.1051/0004-6361/
201219781.

N. W. Boggess, J. C. Mather, R. Weiss, C. L. Bennett, E. S. Cheng, E. Dwek, S. Gulkis, M. G. Hauser,
M. A. Janssen, T. Kelsall, S. S. Meyer, S. H. Moseley, T. L. Murdock, R. A. Shafer, R. F. Silverberg,
G. F. Smoot, D. T. Wilkinson, and E. L. Wright. The COBE mission - Its design and performance
two years after launch. ApJ, 397:420–429, Oct. 1992. doi: 10.1086/171797.

J. R. Bond and G. Efstathiou. The statistics of cosmic background radiation fluctuations. MNRAS,
226:655–687, June 1987.

H. Bondi and T. Gold. The Steady-State Theory of the Expanding Universe. MNRAS, 108:252, 1948.
doi: 10.1093/mnras/108.3.252.

A. M. Brooks and A. Zolotov. Why Baryons Matter: The Kinematics of Dwarf Spheroidal Satellites.
ApJ, 786:87, May 2014. doi: 10.1088/0004-637X/786/2/87.

S. P. Brooks and A. Gelman. General methods for monitoring convergence of iterative simulations.
Journal of Computational and Graphical Statistics, 7(4):434–455, 1998. doi: 10.1080/10618600.
1998.10474787.

E. F. Bunn, M. Zaldarriaga, M. Tegmark, and A. de Oliveira-Costa. E/B decomposition of finite
pixelized CMB maps. Phys. Rev. D, 67(2):023501, Jan. 2003. doi: 10.1103/PhysRevD.67.023501.

N. G. Busca, T. Delubac, J. Rich, S. Bailey, A. Font-Ribera, D. Kirkby, J.-M. Le Goff, M. M. Pieri,
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The Linear Theory Power Spectrum from the Lyα Forest in the Sloan Digital Sky Survey. ApJ,
635:761–783, Dec. 2005b. doi: 10.1086/497563.

P. McDonald, U. Seljak, S. Burles, D. J. Schlegel, D. H. Weinberg, R. Cen, D. Shih, J. Schaye, D. P.
Schneider, N. A. Bahcall, J. W. Briggs, J. Brinkmann, R. J. Brunner, M. Fukugita, J. E. Gunn,
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N. Palanque-Delabrouille, C. Yèche, J. Baur, C. Magneville, G. Rossi, J. Lesgourgues, A. Borde,
E. Burtin, J.-M. LeGoff, J. Rich, M. Viel, and D. Weinberg. Neutrino masses and cosmology with
Lyman-alpha forest power spectrum. J. Cosmology Astropart. Phys., 11:011, Nov. 2015. doi:
10.1088/1475-7516/2015/11/011.

C.-G. Park, J.-c. Hwang, and H. Noh. Axion as a cold dark matter candidate: Low-mass case.
Phys. Rev. D, 86(8):083535, Oct. 2012. doi: 10.1103/PhysRevD.86.083535.

J. A. Peacock, S. Cole, P. Norberg, C. M. Baugh, J. Bland-Hawthorn, T. Bridges, R. D. Cannon,
M. Colless, C. Collins, W. Couch, G. Dalton, K. Deeley, R. De Propris, S. P. Driver, G. Efstathiou,
R. S. Ellis, C. S. Frenk, K. Glazebrook, C. Jackson, O. Lahav, I. Lewis, S. Lumsden, S. Maddox, W. J.
Percival, B. A. Peterson, I. Price, W. Sutherland, and K. Taylor. A measurement of the cosmological
mass density from clustering in the 2dF Galaxy Redshift Survey. Nature, 410:169–173, Mar. 2001.

196



R. D. Peccei and H. R. Quinn. Constraints imposed by CP conservation in the presence of pseudo-
particles. Phys. Rev. D, 16:1791–1797, Sept. 1977a. doi: 10.1103/PhysRevD.16.1791.

R. D. Peccei and H. R. Quinn. CP conservation in the presence of pseudoparticles. Physical Review
Letters, 38:1440–1443, June 1977b. doi: 10.1103/PhysRevLett.38.1440.

P. J. E. Peebles and J. T. Yu. Primeval Adiabatic Perturbation in an Expanding Universe. ApJ, 162:
815, Dec. 1970. doi: 10.1086/150713.

A. A. Penzias and R. W. Wilson. A Measurement of Excess Antenna Temperature at 4080 Mc/s. ApJ,
142:419–421, July 1965. doi: 10.1086/148307.
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