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ABSTRACT 

Prior to and during movement afferent input to the cortex is reduced (Cohen and Starr, 

1987; Hughes et al., 2013; Hughes and Waszak, 2011; Starr and Cohen, 1985).  This robust 

phenomenon of sensory attenuation has been proposed to distinguish between 

biologically salient external sensations and our highly predictable self-generated sensory 

input.  However, a recent theoretical framework, active inference, posits that this sensory 

gating may actually represent a necessary mechanism for movement initiation.  Brown et 

al (2013) hypothesise that sensory attenuation “is a necessary consequence of reducing 

the precision of sensory evidence during movement to allow the expression of 

proprioceptive predictions that incite movement” (Brown et al., 2013; K. Friston et al., 

2011; Friston et al., 2010).  This theory predicts that estimates of the gain, or precision 

(inverse uncertainty), surrounding the ascending afferent input to sensorimotor cortex 

must be reduced in order to allow movements to be initiated (Brown et al., 2013).  The 

mechanism underlying this theory comes from applying the ideas of predictive coding and 

Bayesian inference, that have been readily used to describe perception in multiple sensory 

modalities, to the sensorimotor system.  However, this theory is grounded in 

computational and theoretical work, which is lacking empirical evidence.  In this PhD, I 

conducted a series of experiments using behavioural tasks and electroencephalography 

(EEG) in humans to test specific predictions from this overarching hypothesis.  More 

specifically, I aimed to better characterise somatosensory attenuation, determine the 

neurophysiological correlate of sensory precision in the cortex and determine the 

consequences of modulating sensory precision on behaviour and cortical oscillatory 

activity.  As well as offering new insights into how we control movements, this PhD offers 

novel avenues for understanding movement disorders, in particular Parkinson’s disease 

(PD), and generates a number of testable hypotheses for future clinical work. 
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CHAPTER 1  

INTRODUCTION 

When a rabbit hears a rustle of leaves in the woods, she must immediately determine the 

cause of the sound: was it the familiar scurrying of the critters in the forest; was it the patter 

of her feet on the forest floor; or the sound of a fox lurking nearby? 

Much like the rabbit, we constantly receive a barrage of ambiguous sensory information 

that we must process and understand in order to respond appropriately.  The attribution 

of sensory information to familiar or expected causes allows the brain to process only 

salient and unexpected stimuli.  In this way the rabbit can ignore the familiar rustle of 

leaves caused by her own movements or the smaller creatures in the forest and react 

quickly to the unexpected noise from a large predator.  Sensory attenuation describes the 

filtering or dampening of irrelevant sensory information and offers a mechanism by which 

self-generated sensations can be distinguished from more salient external stimuli.  Indeed, 

afferent input is attenuated prior to and during movement (Cohen and Starr, 1987; 

Desantis et al., 2012; Hughes et al., 2013; Hughes and Waszak, 2011; Starr and Cohen, 

1985; Weiss et al., 2011) and self-generated sensations are perceived as less intense than 

externally generated sensations (Bays et al., 2006, 2005; Blakemore et al., 2000; Shergill et 

al., 2003). 

However, active inference, a recent theoretical framework, hypothesises that sensory 

attenuation is not a purely perceptual phenomenon, but in fact plays a necessary role in 

movement initiation.  Brown et al., (2013) posit that sensory attenuation “is a necessary 

consequence of reducing the precision of sensory evidence during movement to allow the 

expression of proprioceptive predictions that incite movement” (Brown et al., 2013; K. 

Friston et al., 2011; Friston et al., 2010).  This theory predicts that we must divert our 

attention away from ascending afferent input (i.e. reduce sensory precision or gain) in 

order to allow movements to be initiated.  An inability to accurately attenuate sensory 

information over sensorimotor cortex has been associated with akinetic symptoms 

(Brown et al., 2013; A Macerollo et al., 2015; Macerollo et al., 2016). 

However, this theory is grounded in computational and theoretical work, which is lacking 

empirical evidence.  In this PhD, I have conducted a series of experiments using 

behavioural tasks and electroencephalography (EEG) in humans to test specific 
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predictions from this overarching hypothesis.  More specifically, I aimed to better 

characterise somatosensory attenuation, determine the neurophysiological correlate of 

sensory precision over sensorimotor cortex and determine the consequences of 

modulating sensory precision in the proprioceptive and visual domains on behaviour and 

cortical oscillatory activity. 

1.1. The importance of Bayesian predictive coding 

The active inference theory provides a unifying account to describe how we perceive and 

act in the world.  It generalises the ideas of predictive coding, which have traditionally 

been applied to sensory systems, to the motor system.  In order to understand how active 

inference can be used to explain motor control, it is important to first visit the underlying 

principles of predictive coding and Bayesian inference. 

1.1.1. Predictive coding and Bayesian inference 

It has long been proposed that we do not perceive exactly what we see, but our brains 

infer what we expect to see based on prior experience (Helmholtz and König, 1896).  

Visual illusions provide a perfect example of this: the ability to see a 3D face or a hollow 

mask by simply manipulating the light and shade on a 2D image is due to a prior 

conception that light sources generally come from above (Gregory, 1980).  When 

interacting in the world we receive a constant stream of sensory information; however, for 

any given sensory input there are multiple causes, therefore it is difficult to determine the 

true cause of the sensory data.  In order to solve this inverse problem and understand the 

world around us, it has been proposed that the brain acts as an inference machine (Dayan 

et al., 1995; Helmholtz and König, 1896; Rao and Ballard, 1999).  Within such frameworks 

a generative model is employed, which incorporates our prior beliefs about how different 

causes interact, to produce an estimate of what the sensory input should look like if these 

causes were correct.  This can then be inverted to identify the true cause of a given 

sensation (Friston, 2008, 2005).  This Bayesian approach is thought to underlie how the 

brain enables us to understand the world around us and has been proposed to form the 

basis of predictive coding frameworks (Dayan et al., 1995; Doya, 2007; Friston and Kiebel, 

2009; Knill and Pouget, 2004; Körding and Wolpert, 2006). 

There are a number of studies that have shown the brain uses Bayesian statistics for 

perceptual inference across different sensory modalities (Ernst and Banks, 2002; Ernst 

and Bülthoff, 2004; Kersten et al., 2004; Knill, 1998; Körding and Wolpert, 2004; van Beers 

et al., 1999; Wolpert et al., 1995).  A central component of these studies is how the brain 
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represents uncertainty and how optimal inferences are made in a world rife with 

ambiguity.  There are multiple sources of uncertainty in the world: the sensory input we 

receive will be more uncertain when driving on a foggy day compared to a clear day; there 

may be uncertainty in our model of the world and thus our prior beliefs if we enter a novel 

environment, such as an astronaut entering anti-gravity for the first time; and 

unpredictable changes to the environment create volatility uncertainty emerging from the 

stability of the world.  The brain needs to be able to understand and characterise different 

forms of uncertainty at these different hierarchical levels in order to achieve optimal 

perceptual and motor performance. 

Bayesian statistics allows us to formally quantify this uncertainty and use it to make 

optimal inferences.  Prior beliefs about the probability of a given state or variable are 

combined with estimates of the likelihood of sensory input given possible states of the 

world.  This produces an optimal estimation of the state given the sensory input received 

(‘posterior’; Figure 1.1).  These sources of information (‘prior’ and ‘likelihood’) are 

represented as probability distributions such that the variance of these distributions gives 

an estimate of the uncertainty surrounding their mean values.  This is important for 

determining the degree to which prior beliefs are updated given a particular sensory 

input.  The posterior distribution represents the optimal estimate of hidden states of the 

world.  The relative variance of the prior and likelihood estimates determines which 

estimate the posterior distribution will more readily reflect (Figure 1.1).  Importantly, the 

posterior distribution produced using Bayes theorem has much lower uncertainty than if 

sensory information alone were used; therefore Bayesian inference provides an optimal 

method to reduce uncertainty when trying to understand the causes of the sensations we 

receive.  However, the brain cannot produce priors de novo, therefore empirical Bayes is 

employed whereby prior beliefs are based on sensory data and passed down from the 

hierarchical level above.  For example, the posterior distribution from one level will form 

an empirical prior for the level below.  Empirical priors act to reduce the many-to-one 

problem facing the inversion of the generative model and provide a better estimate of the 

true cause of the sensory input.  The Bayesian model evidence (or prediction error) is a 

probability distribution, which represents how accurately the generative model was able 

to predict the true sensory input. 
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Within predictive coding frameworks, backward projections pass predictions (based on 

empirical priors) down the cortical hierarchy and compares these with the afferent input 

at each level.  If these predictions are incorrect the difference between these values 

produces a prediction error, which is then passed back up the hierarchy via reciprocal 

forward connections (Bastos et al., 2012; Rao and Ballard, 1999).  This continues until the 

prediction error is minimized producing a Bayes-optimal estimate of the causes of the 

sensory input.  Importantly, the influence of bottom-up prediction errors on higher levels 

of processing is adjusted by modulating the ‘volume’ or gain of prediction errors, which is 

termed precision.  As indicated above, this is how uncertainty is represented in this 

framework and has a large influence over how meaningful the prediction error produced 

is.  This is analogous to a paired sample t-test: the mean difference between the two 

samples (the predicted and actual sensory input) represents the prediction error; the 

standard error pooled across both samples represents the precision; and the t-statistic 

represents the precision-weighted prediction error.  In this way, the variance of each 

sample is essential in determining if the mean difference is significant and thus the 

precision-weighting determines how readily the prediction error will update the model 

(Adams et al., 2013a; C. Palmer et al., 2016; Palmer and Macerollo, 2015).  The Bayesian 

model evidence reflects this precision-weighted prediction error. 

 
Figure 1.1 Schematic illustrating 
the importance of precision 
when forming posterior beliefs 
and expectations. Prior beliefs, 
posterior beliefs and the likelihood 
of sensory evidence are 
represented here as Gaussian 
probability distributions.  The 
dotted line corresponds to the 
posterior expectation, while the 
width of the distributions 
corresponds to their variance. 
Precision is the inverse of this 
variance and is used to weight the 
effect the prior and likelihood 
functions have on the posterior 
belief.  As can be seen from the 
graphs the posterior distribution 
will be biased towards the more 
precise belief, therefore 
modulating the precision of the 
sensory evidence can manipulate 
the posterior distribution.  Sensory 
attenuation is thought to reflect a 
decrease in the precision of this 
likelihood function.  Figure taken 
from Adams et al (2013). 
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1.1.2. Active Inference and the Free Energy Principle 

As highlighted, Bayesian inference and predictive coding play a fundamental role in 

explaining perception across a number of sensory modalities; however, these principles 

had not been used to explain sensorimotor control.  Active inference applies the ideas of 

predictive coding to the sensorimotor system and provides a unifying theory to explain 

both perception and action in a single framework.  This theory is embedded within a wider 

principle: the free energy principle.  The free energy principle, generated from information 

theory, posits that biological agents resist a tendency to disorder; therefore they aim to 

minimize the entropy (surprise/uncertainty) in their sensory states.  As entropy cannot be 

directly measured “free energy” is defined as the upper bound on the long term average of 

surprise or the lower bound on the negative log of the Bayesian model evidence(Friston 

and Kiebel, 2009; Friston et al., 2010).  The Bayesian model evidence simply describes 

how well the generative model has accurately explained the sensory data, therefore, in 

simpler terms free energy can be likened to prediction error.  Minimising free energy, or 

prediction error, therefore provides the motivation for how we perceive and behave.  We 

can minimize prediction error by either: 1) changing our predictions to match our sensory 

input (perception); or, 2) changing our sensory input to match our predictions (action; 

Adams et al., (2013); Friston et al., (2011)).  The former refers to perceptual inference 

described above and the latter to active inference.  This framework posits that the ideas 

used to explain perception in exteroceptive sensory domains can also be applied to 

proprioception with the specific hypothesis that Bayesian inference in this domain can 

directly result in movement. 

One key component of this theory is that the motor cortex does not produce motor 

commands; the descending input from the motor cortex to the spinal cord transmits a 

proprioceptive prediction about the sensory consequences of the movement, which is 

produced by a hierarchical generative model in the motor cortex.  This prediction is then 

compared with proprioceptive input from muscle afferents in the spinal cord and any 

difference between the expected and actual proprioceptive signal produces a 

proprioceptive prediction error.  This activates the classical motor reflex arc in the spinal 

cord, which resolves the prediction error by fulfilling the proprioceptive prediction.  The 

neurophysiological mechanism by which this occurs is reflective of the equilibrium point 

hypothesis (EPH; Feldman, 1986). 

The EPH states that the descending signals to the alpha and gamma motor neurons in the 

spinal cord specifies a threshold for the tonic stretch reflex, which determines the 

relationship between muscle force and muscle length.  When the muscle is lengthened 
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more than expected above this threshold, the increased firing from the 1a afferents 

activates alpha motor neurons and causes the muscle to contract (e.g. the knee jerk reflex).  

The level of activation of the alpha motor neurons increases with the difference between 

the actual muscle length and the threshold.  For voluntary movement to occur, descending 

signals change the equilibrium point, which therefore requires a change in muscle length 

and force to reach the equilibrium.  Active inference applies predictive coding ideas and 

Bayesian inference to this theory in order to explain how movements occur as a result of a 

proprioceptive prediction error in the spinal cord.  Descending proprioceptive predictions 

are compared with the afferent input at the level of the spinal cord and, via the same 

mechanism as highlighted in the EPH, muscles are activated in relation to the difference 

between these inputs. 

Importantly, active inference highlights that prediction errors can also be produced at 

other levels of the anatomical pathway in the sensorimotor system, at any point where 

descending predictions and ascending afferent input can converge, for example the spinal 

cord, the ventral posterior nucleus of the thalamus or the sensorimotor cortex.  Applying 

predictive coding ideas to the sensorimotor system generates specific predictions about 

the anatomical and physiological connections that need to be present.  Adams et al., 

(2013a) review this literature and argue that it is neurobiologically plausible for the 

sensorimotor system to function according to the principles of the predictive coding 

framework, namely that the descending inputs from the motor cortex have the 

neurophysiological hallmarks of backward connections thought to represent predictions.  

This thesis will focus on testing the mechanisms involved in active inference in the 

sensorimotor cortex. 

Active inference highlights how the mechanisms involved in perceptual inference can 

influence motor output (Brown et al., 2013).  Descending predictions from the motor 

cortex to the spinal cord describe the proprioceptive consequences of the intended 

movement trajectory; these, plus other somatosensory consequences, such as predicted 

cutaneous reafference, are also transmitted to the somatosensory cortex.  In this way, the 

motor cortex can be described as a multimodal sensory area, which predicts both 

proprioceptive and exteroceptive consequences of movement rather than a purely motor 

area (Hatsopoulos and Suminski, 2011).  At this level of the hierarchy prediction errors 

can be produced from the comparison of somatosensory predictions from primary motor 

cortex (M1) and somatosensory reafferance from the periphery, which allows for 

perceptual inference in the somatosensory domain in relation to movement.  Indeed, area 

3a is anatomically positioned to receive descending input from M1 (Witham et al., 2010) 

and ascending proprioceptive information from the motor nuclei of the thalamus 
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(Huffman and Krubitzer, 2001).  According to active inference, prediction errors at this 

level must also be resolved in one of two ways: 1) by updating the predictions in M1 

(perception); or, 2) by generating movement through descending projections to the spinal 

cord (action).  The precision-weighting of prediction errors in somatosensory cortex is 

therefore essential in determining whether movement occurs. 

In addition, the active inference framework posits that sensory attenuation occurs across 

all sensory modalities with self-generated movement (Brown et al., 2013).  There is 

experimental evidence to demonstrate that the perceived intensity of visual (Cardoso-

Leite et al., 2010; Hughes and Waszak, 2011) and auditory (Desantis et al., 2012; Hughes et 

al., 2013; Martikainen et al., 2005; Weiss et al., 2011) sensations is reduced during 

movement, which supports this statement.  However, it is not clear how sensory 

attenuation in other modalities directly modulates movement.  Brown et al (2013) 

specifically address how a down-weighting of somatosensory input (proprioceptive and 

cutaneous) is essential for movement initiation; although similar mechanisms could be 

applied to other sensory modalities. 

1.1.3. The role of modulating precision in movement initiation 

according to active inference 

One specific hypothesis of the active inference framework is that sensory precision must 

be down-weighted in order to initiate movements: this is the central prediction tested in 

this PhD.  Descending predictions and ascending afferent input are thought to converge on 

superficial pyramidal cells in the cortex, which are therefore described as prediction error 

units.  Precision is modulated by altering the post-synaptic gain on these units such that 

prediction errors weighted by this precision are transmitted up the cortical hierarchy 

(Friston, 2005; K. Friston et al., 2011; Friston and Kiebel, 2009).  This synaptic gain can be 

altered in two ways: 1) by modulating the uncertainty of the sensory input, for example by 

adding noise to the afferent signal; or, 2) through a top-down attentional mechanism.  

Prediction errors produced in the sensorimotor cortex following the production of a 

proprioceptive prediction to move must be resolved and the mechanism by which this 

occurs is determined by the relative precision-weighting of top-down predictions and 

bottom-up prediction errors.  Active inference posits that in order to fulfil a future state, 

and thus reduce prediction error, an individual can either move, employing descending 

proprioceptive predictions, or the sensory environment can change and update the future 

state via an ascending sensory prediction error (Adams et al., 2013a).  However, for top-

down predictions that incite movement to be preferentially selected, the sensory gain of 

bottom-up prediction errors must be down-weighted.  This is explained schematically in 
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Figure 1.2.  When planning a movement there is a prediction error between the current 

proprioceptive state and the future proprioceptive state.  In order to minimise this 

prediction error, somatosensory precision must be decreased in order to favour top-down 

proprioceptive predictions that incite classical motor reflex arcs.  This modulation in 

synaptic gain is thought to underlie the sensory attenuation seen prior to and during 

movement in somatosensory cortex (Brown et al., 2013).  It is unclear how sensory 

attenuation in other modalities can directly affect motor initiation, but it is likely to do 

with the integration of exteroceptive input in the motor cortex needed to produce accurate 

proprioceptive predictions; decreasing the precision of exteroceptive inputs to the motor 

cortex may increase the relative precision of proprioceptive predictions to move. 

By building a generative model that determines the causes of externally and internally 

generated sensations, Brown et al (2013) have demonstrated this permissive role of 

somatosensory attenuation in motor initiation.  The generative model was based on three 

main assumptions: 1) the free energy principle, which states that the brain aims to 

minimise the free energy of sensory inputs defined by the generative model; 2) the 

generative model used by the brain is hierarchical, nonlinear and dynamic; 3) the most 

likely state of the world (under this model) is encoded by neuronal firing rates.  For this 

simulation the agent was given a prior belief about the hidden cause of an internally 

generated movement under a model with high sensory attenuation.  The prior belief, with 

high precision, generated a posterior belief about the magnitude of an internally generated 

force.  This caused an increase in the conditional expectation of an internal force.  Sensory 

precision in this model was linked to the magnitude of this conditional expectation; 

therefore the attenuation of this precision was shown by an increase in the confidence 

intervals surrounding this hidden state (internal force).  This resulted in movement as the 

proprioceptive prediction was fulfilled using the classical motor reflex arc (Figure 1.3A).  

In a second simulation, the magnitude of sensory attenuation was reduced such that the 

sensory precision remained higher than the precision of the prior beliefs about the 

internal hidden causes.  This resulted in a predominance of bottom-up sensory prediction 

errors over top-down proprioceptive predictions and therefore the posterior belief did not 

represent an increase in the conditional expectation of the hidden internal force to reflect 

the hidden cause.  Perceptual inference rather than active inference occurred.  This led to a 

lack of proprioceptive predictions about the sensory consequences of movement and thus 

a failure to move (Figure 1.3B).  This has been used to explain hypokinetic symptoms seen 

in patients with Parkinson’s Disease (PD). 
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Figure 1.2. Schematic Illustrating Movement Initiation within the Active Inference Framework. In 
the schematic, each panel depicts both the actual and the predicted sensory inputs. The character shows the 
action that is currently being performed (left) alongside the predicted action (right). The width of the 
distributions below and the clarity of the figure illustrate the uncertainty in these values. Before we start to 
plan a new movement, our prediction of our sensory input and the actual sensory input are equivalent (left 
panel). According to the active inference framework, when we start to prepare a movement, we generate a 
prediction of what the sensory input of this movement will be and this creates a prediction error between 
the current and the predicted sensory states (second panel). To minimize this error, an individual can: (i) 
stay still and update their prior beliefs (within the forward model) so that the predicted sensory input 
matches the actual sensory input (top row); or (ii) move, so that the actual sensory input matches the 
predicted sensory input (bottom row). Modulating the relative uncertainty in these sensory states will 
determine which option is selected. For example, to initiate movement [option (ii)], the uncertainty in the 
current sensory state is increased such that the individual will shift to the predicted sensory state with the 
lowest uncertainty. Figure taken from Palmer et al (2016). 
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Figure 1.3. Simulations from a generative model demonstrating the permissive role of sensory 
attenuation in action.  In column A the model was set to have high sensory attenuation emulating a 
healthy, human agent.  A prior belief was given to the model about an internally generated movement (Vi).  
This generated a posterior belief about the magnitude of forces generated internally (Xi) and externally 
(Xe) and the somatosensory (Ss) and proprioceptive consequences of the movement (Sp).  The conditional 
expectation about an internally generated force increased following the hidden cause.  Sensory precision 
decreased with an increase in the internally generated force shown by an increase in the confidence 
intervals surrounding the conditional expectation.  Action was then enslaved to fulfil the prediction errors.  
In the second simulation, in column B, sensory attenuation was reduced such that sensory precision 
remained higher than the precision surrounding the hidden cause of the internally generated movement.  As 
per perceptual inference, the posterior belief following the generation of this hidden cause did not reflect an 
increase in the conditional expectation of the internal force.  With no proprioceptive prediction and 
therefore no prediction error between the current and predicted proprioceptive state, there was no 
movement.  This demonstrates that akinesia can occur if sensory attenuation is reduced. Figure adapted 
from Brown et al (2013). 
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It has been posited that precision is modulated by attentional mechanisms under the 

control of neuromodulators (Feldman and Friston, 2010).  Previous evidence suggests that 

increased attention towards sensory information (increased sensory precision) during 

particular motor tasks can lead to impairments in movement.  This supports the 

simulations demonstrating that increased sensory precision can cause akinetic symptoms.  

For example, sportspeople have been known to “choke” under pressure if they place too 

much attention on over-learned movements making them unable to perform properly 

(Beilock and Carr, 2001).  Experimentally when healthy participants are asked to attend to 

the production of an overlearned sequence of key presses performance is impaired.  This 

is associated with increased activation of prefrontal and anterior cingulate cortex during 

the attended vs unattended sequence production (Jueptner et al., 1997). 

As previously highlighted active inference is employed as a hierarchical model in which 

prediction errors update predictions at each level of the cortical hierarchy; therefore, 

modulating sensory precision at different levels in this hierarchy will have different 

behavioural consequences.  Simulations using a cortical model with nodes throughout the 

visual and motor systems demonstrate this using a cued reaching task (K. J. Friston et al., 

2011).  A sequence of lights cued an agent on where to reach.  The generative model 

(similar to above) predicted when each light would come on and generated a series of 

predictions in a hierarchy, for example, indicating the properties of the cue and the 

proprioceptive consequences of moving the agent’s finger.  The agent then moved to the 

cue in order to minimise the prediction errors generated.  When the sequence was 

reversed, the predictions of the model were then incorrect and prediction errors were 

used to update expectations to produce correct movements over a series of trials.  

Crucially, Friston et al then perturbed the model and simulated the resultant behaviour.  

Removing the modulation of precision (by removing dopaminergic modulatory 

connections) in the superior colliculus, which encodes the salience of cues, generated 

perseverate behaviour similar to that seen in PD.  Prediction errors were constantly down-

weighted such that they had a minimal effect on updating prior expectations causing a 

failure to recognise that the sequence had changed and a greater number of movement 

errors.  In contrast, removing precision at both high and low levels of the hierarchy 

resulted in a lack of confidence in how to respond to the cues resulting in slower reaction 

times (RTs) and unsure movements.  This study highlights the complexity of the 

sensorimotor system and the importance of precision at different points of the cortical 

hierarchy.  Decreasing precision at the lowest level of this hierarchy increased RTs, 

however the active inference framework posits that a reduction in precision at this level 

should decrease RTs.  Importantly, this study involves a model, which integrates visual 
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and proprioceptive information to generate movements; whereas the predictions 

regarding movement initiation focus on the somatosensory domain.  In this thesis I will 

modulate precision within the visual and somatosensory domains to measure the 

consequence of this on motor control and oscillatory activity in sensorimotor cortex. 

From these computational studies there is a clear hypothesis that the modulation of 

sensory precision is important in motor control.  Modelling studies aiming to 

understand how active inference could be implemented in the brain demonstrate 

the different outcomes of modulating precision in different sensory domains at 

different levels of the cortical hierarchy.  However, there is a lack of direct empirical 

evidence to support that behaviour and neural activity is modulated in accordance 

with this framework.  This thesis tests a series of hypotheses that emerge from this 

framework regarding the role of modulating sensory precision in motor control. 

1.2. What is the role of sensory attenuation in perception 

and action? 

There is a plethora of work showing that afferent input to the cortex across sensory 

modalities is suppressed prior to and during a movement (Cohen and Starr, 1987; Hughes 

et al., 2013; Hughes and Waszak, 2011; Starr and Cohen, 1985).  Active inference suggests 

that this sensory attenuation is a necessary step in order to allow movements to occur.  

However, there appears to be a dissociation in the literature between those who study 

sensory attenuation as a perceptual phenomenon and those who study this as a 

physiological phenomenon.  This has important implications for defining the function of 

sensory attenuation in perception and action and also for determining the 

neurophysiological mechanism by which afferent input is attenuated.  Here I review the 

previous literature measuring the functional role of somatosensory attenuation and 

motivate the main aim of the experimental work in study one (chapter three), which was 

to dissociate these forms of somatosensory attenuation in a single paradigm.  This was 

essential foundation work for later determining the necessity of this phenomenon for 

movement initiation. 

1.2.1. What is sensory attenuation? 

Noise within the afferent sensory signal, variability in actions produced and a constant 

changing environment generate a sensory input full of uncertainty.  Ambiguities in sensory 

processing and unpredictability of the environment fuel the need for a system which is 
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able to filter out irrelevant information and select the most salient information to aid 

action selection (Bays and Wolpert, 2007).  Sensorimotor integration is therefore essential 

in fine-tuning this process and, as previously suggested, it is has been proposed that 

Bayesian inference underlies this.  The specific role of somatosensory attenuation within 

this framework remains controversial.  This is partly driven by the methods used to 

measure somatosensory attenuation.  There are two fields within the literature that 

remain very isolated.  One field characterises perceptual somatosensory attenuation using 

behavioural paradigms and fMRI, which quantifies how our somatosensory percept 

appears less intense when the somatosensory consequences of a given action are more 

predictable; for example, when we attempt to tickle ourselves we appear far less ticklish 

then when someone else tickles us.  In contrast, there are a number of studies describing 

somatosensory attenuation as a physiological phenomenon that occurs prior to and during 

movement.  This is defined as a decrease in the amplitude of the primary and secondary 

components of the somatosensory evoked potential (SEP) generated by peripheral nerve 

stimulation.  It has been hypothesised that this physiological phenomenon may represent 

the mechanism underlying perceptual somatosensory gating, however these two forms of 

attenuation have never been measured within a single paradigm, therefore it is unknown 

whether they have distinct functional roles.  Indeed, there are competing theories 

describing the functional role of somatosensory attenuation, which may be reconciled if 

these two forms of somatosensory attenuation are shown to be distinct. 

1.2.2. The central cancellation theory for perceptual somatosensory 

attenuation 

It has been proposed that the primary purpose of perceptual somatosensory attenuation is 

to make externally produced sensations more salient, which is why we appear more 

ticklish when someone else tickles us compared to when we try to tickle ourselves.  The 

predictability of our own actions means they are less salient and therefore we readily 

attenuate the consequences of our own actions.  A secondary related proposed function is 

to distinguish between self-generated and externally-generated actions for the correct 

perception of agency.  This has been measured quantitatively in a force-matching 

paradigm.  Participants were given a target force on their left hand and asked to match 

that force in two ways: 1) by pushing down on the same hand until they perceived the 

same force (self-condition); 2) by using an external joystick to control the force production 

on the hand that received the target force until they perceived the same force (external 

condition).  This produces a highly replicable and robust result: participants consistently 

overestimate the matched force in the self-condition compared to the veridical target 
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force, yet accurately match the target force in the external condition.  It is argued that this 

is because somatosensory attenuation occurs in the self-condition where the relationship 

between the force being produced and the force being perceived is well understood and 

predictable, but not the external condition where the relationship between the movement 

of the joystick and the robot producing the force is not known.  Interestingly, 

schizophrenic patients match the force accurately in both conditions demonstrating that 

they have no somatosensory attenuation in the self-condition; this suggests the 

misattribution of agency which is typical in schizophrenia may be due to an inability to 

accurately predict the sensory consequences of one’s own actions (Shergill et al., 2005).  A 

relationship between scores of delusional ideation and the magnitude of somatosensory 

attenuation (difference between target force and matched force) has also been found in 

the general population (Teufel et al., 2010).  This supports the role for perceptual 

somatosensory attenuation in distinguishing between sensations that are a result of our 

own actions and those that come from others. 

A central cancellation theory has been proposed as a mechanism to achieve this function 

(Blakemore et al., 1998; Franklin and Wolpert, 2011) (Figure 1.4A).  During a self-

generated movement an efference copy of the motor command is produced, which is input 

into a forward model used to predict the consequences of that action.  The predicted and 

actual sensory consequences are then compared.  As there is no difference between the 

predicted and actual sensory feedback (no prediction error) in the self-condition, any 

reafferent input is cancelled out or attenuated leaving only externally produced afferent 

information; this allows an individual to distinguish externally produced sensations from 

their own.  Similar mechanisms have been highlighted throughout the other sensory 

systems.  Locating an object’s position in space requires knowledge of the retinal location 

of the object as well as eye gaze direction; with no sensory receptors in the eye Helmholtz 

suggested an efference copy of the motor command used to control eye movement is 

required to predict the sensory consequences of eye movement (Helmholtz and König, 

1896).  (Blakemore et al., 1999) manipulated the predictability of a self-generated tactile 

stimulus to test this theory.  Either a temporal delay was added between the self-

generated movement and the subsequent tactile stimulation or an angular perturbation 

was added between the direction of the movement and the direction of the stimulus: 

participants rated the sensations as more intense or ticklish the greater the delay or 

perturbation, which suggested that the magnitude of somatosensory attenuation was 

directly linked to the magnitude of the prediction error.  (Bays et al., 2005) further showed 

that increasing the delay between a tapping motion and the subsequent perception of a 

tap on the finger decreased somatosensory attenuation due to the decrease in 
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predictability of the somatosensory consequences.  Attenuation occurred when the 

consequences of the tapping action were given up to 300ms before the action was 

completed suggesting somatosensory attenuation is a predictive mechanism that occurs 

before the sensory input is received (Figure 1.4B,C). 

 

 

Figure 1.4. Central cancellation theory of sensory attenuation. A) In this framework, when a motor 
command is produced an efference copy of that command is sent to a forward model.  This model predicts 
the sensory consequences of the movement.  The predicted and actual sensory input are compared and a 
sensory prediction error generated.  In the case of a self-generated movement, the sensory consequences are 
highly predictable, therefore it is hypothesised that this reafferent information is attenuated.  B) Bays et al 
(2005, 2006) tested how adjusting the predictability of the afferent feedback modulated sensory 
attenuation.  Participants produced an active tap with their right hand (RH) on a force transducer, which 
generated a test tap on the participants left hand (LH) at different delays following the movement.  
Participants compared the magnitude of the test tap with a comparison tap.  C)  With no delay the mean 
perceived magnitude of the test tap compared to the comparison tap was reduced due to sensory 
attenuation (black bar); however, adding a delay and increasing the sensory prediction error reduced 
attenuation (white bar).  When participants made a movement but it made no contact with the force 
transducer the perceived magnitude of the test tap was still reduced (grey bar), which suggests the 
mechanism involved in sensory attenuation is predictive.  However, as sensory attenuation occurred when 
an implicit prediction error was present in this last condition, this has been used as evidence against the 
central cancellation theory. Figure adapted from Bays et al, 2005, 2006. 
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Neuroimaging studies have been conducted to highlight where in the brain this 

attenuation occurs.  The difference between externally and self-generated tactile 

stimulation correlated with a decrease in the BOLD signal over bilateral secondary 

somatosensory cortex (SII), the anterior lobe of the cerebellum and the anterior cingulate 

(Blakemore et al., 1998).  The authors highlighted the potential role of the cerebellum as 

the comparator which receives the efference copy of the motor command and signals any 

prediction error to SII where activity is attenuated (Blakemore and Sirigu, 2003).  

Increasing the delay between a movement and a subsequent tap on the target hand 

increased the BOLD signal in SII (Shergill et al., 2013).  This suggests that modulating the 

predictability of the tactile stimulus, reduced activity in SII.  Other studies have highlighted 

SII as being important for distinguishing between expected and non-expected tactile 

stimuli given at various body locations (Drevets et al., 1995) and also between attended 

and unattended touch (Johansen-Berg et al., 2000), which emphasises that a change in 

neural activity in SII most likely underlies perceptual somatosensory attenuation. 

However, there are clear differences between the central cancellation theory and active 

inference.  Central cancellation suggests that the percept of intensity is encoded by 

prediction error, however within Bayesian predictive coding frameworks this is unlikely.  

Top-down predictions are compared with bottom-up sensory input to produce a 

prediction error, which is then fed forward to update current state estimations and future 

predictions; it is not the percept.  The percept is thought to be a combination of prior 

beliefs and sensory input: the posterior (Friston and Kiebel, 2009).  Moreover, movements 

that should result in a sensation but do not cause somatosensory attenuation despite the 

presence of an implicit prediction error (Bays et al., 2006); although this prediction error 

may be too small to see a perceivable difference in somatosensory attenuation.  

Somatosensory gating has also been found to occur up to 400ms before movement onset 

at which point predictions cannot have been made from the motor command, or efference 

copy (Bays et al., 2006, 2005; Voss et al., 2008), which weakens the foundations of the 

central cancellation theory.  Finally, this theory is lacking as it does not explain 

physiological somatosensory attenuation, which occurs prior to and during movement 

regardless of the sensory consequences of that movement.  This may not necessarily 

matter though if these phenomena are dissociable. 

1.2.3. Active inference and somatosensory attenuation 

Active inference has been used to describe both physiological and perceptual 

somatosensory attenuation within a single unifying framework.  Physiological 

somatosensory attenuation, in contrast to perceptual somatosensory attenuation, is 
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defined by a decrease in the amplitude of the primary and secondary components of the 

SEP generated by giving peripheral nerve stimulation prior to and during movement 

(Cohen and Starr, 1987; Starr and Cohen, 1985).  Neurophysiological recordings in 

macaque monkeys highlight this gating in both the spinal cord and cortex (Chapman et al., 

1988; Seki and Fetz, 2012).  Importantly, SEP gating in the primary somatosensory cortex 

also occurs in response to passive movement (Rushton et al., 1981): no predictions can be 

made about the consequences of passive movement, therefore the efference copy does not 

seem to play a fundamental role in SEP gating.  This gating appears to occur centrally as 

direct intracortical microstimulation of M1 in the monkey causes an attenuation of the SEP 

in the absence of any EMG activity (Jiang et al., 1990).  Repetitive stimulation of M1 

reduces the magnitude of perceptual somatosensory attenuation in a force matching task 

(Voss et al., 2007), which suggests that perceptual somatosensory attenuation also occurs 

via a central mechanism. 

As previously stated, active inference posits that somatosensory attenuation is the 

necessary consequence of reducing the precision of somatosensory evidence during 

movement to allow the expression of proprioceptive predictions that incite movement.  

The correlative evidence described above suggests that physiological somatosensory 

attenuation is associated with movement initiation (active movement) and also the 

modulation of proprioception (passive movement), which supports this theory.  Moreover, 

patients with PD and functional movement disorders have impaired SEP attenuation, 

which improves with dopaminergic medication and improvement in motor symptoms (A 

Macerollo et al., 2015; Macerollo et al., 2016).  There is evidence to suggest that attentional 

processes, which are thought to modulate sensory precision, can attenuate the amplitude 

of the SEP.  SEP attenuation with passive movement is decreased if somatosensory 

information in the limb being used becomes important and relevant for an alternative task 

(Staines et al., 2002, 2000).  In addition, when tactile information was used to guide a 

movement the primary components of the SEP were greater when that somatosensory 

information was unpredictable rather than predictable (Legon and Staines, 2006).  In the 

unpredictable context, prediction errors are highly informative to guide movement, 

therefore predictive coding theories would predict that the precision-weighting of this 

signal would be increased.  This supports that the attentional modulation of 

somatosensory precision may be reflected in the amplitude of components of the SEP.  

Interestingly, patients with prefrontal lesions have the inability gate irrelevant sensory 

inputs (Knight et al., 1999), which supports that this modulation is driven by top-down 

mechanisms. 
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The same framework has been used to describe perceptual somatosensory attenuation.  

According to this theory, during self-generated movement the predictability of the 

somatosensory reafferance means this input can be down-weighted by reducing the post-

synaptic gain on pyramidal cells in the cortex that receive this input.  This results in the 

requirement of an increased stimulus intensity for an equal neuronal response.  When 

processing externally generated sensations, we have no prior information to aid the 

perception of this afferent input, therefore the precision of this signal is increased in the 

cortex.  In this way the precision of ascending reafferance to the cortex selects the relative 

importance of top-down to bottom-up information.  Indeed, during a mismatch negativity 

paradigm there is usually an enhanced ERP to a deviant “oddball” response, which can be 

explained due to an increase in sensory precision; however, this ERP is absent if the 

stimulus is self-generated because the precision of exogenous sensory evidence has been 

reduced (Curio et al., 2000). 

Using the same generative model as described previously, (Brown et al., 2013) describe 

how perceptual somatosensory attenuation occurs in this framework.  They demonstrate 

that the hidden state of an internally generated force has broader 90% confidence 

intervals than the hidden state of an externally generated force due to a reduction in 

somatosensory precision; therefore, if asked to report the somatosensory sensation at 

90% confidence, the externally generated sensation would be more readily detected than 

the internally generated sensation.  This suggests a modulation in d-prime, or sensitivity, 

caused by a modulation of sensory precision, which matches empirical psychophysical 

differences in detection rate when comparing internally and externally generated forces 

(Juravle and Spence, 2011; Van Hulle et al., 2013).  The same model was also used to 

demonstrate how the results of the force matching illusion can be obtained by reducing 

somatosensory precision in the self-condition.  As highlighted above, the posterior percept 

of the hidden state of the internally generated force had increased confidence intervals 

due to the decrease in somatosensory precision.  In this simulation it was assumed that 

the subjective intensity of a stimulus would be at the lower bound of the 90% confidence 

interval surrounding this posterior percept.  Therefore, due to the increased confidence 

intervals around the posterior, the perceived external force was always lower than the 

magnitude of the internally generated force and an increase in the internally generated 

force was needed for the magnitude of this perceived external force to equal the target 

force (prior belief) given.  Giving prior beliefs at different target forces replicated the self-

generated results recorded empirically by Shergill et al.,(2005, 2003). 

Although this model explains how differences in somatosensory attenuation can generate 

behaviour in the self-condition of the force matching task, it does not describe the 
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veridical matching seen in the external condition of this task in healthy participants where 

participants match target forces using an external joystick.  Furthermore, Brown et al fix 

the model to produce a particular outcome by yoking the perceived external force to the 

lower bound of the internally generated force thus ensuring the internally generated force 

would always be larger than that of the matched force replicating the force matching 

illusion.  This model would be more convincing if the resultant matched force wasn’t 

manipulated in this way. 

There is clearly a lack of direct evidence to suggest that a modulation in synaptic 

gain, or sensory precision, underlies perceptual somatosensory attenuation.  There 

is also a lack of experimental work in which these two types of somatosensory 

attenuation have been measured within a single paradigm to determine if they are 

functionally or mechanistically distinct.  In this PhD, I aimed to determine the 

relationship between these two forms of somatosensory attenuation, which is vital 

in potentially dissociating their functional roles.  This is also necessary in order to 

better understand the neurophysiological correlate of somatosensory attenuation. 

1.3. Bayesian models, uncertainty and sensorimotor control 

One fundamental assumption of the central hypothesis of this thesis is that the brain uses 

a hierarchical generative model to predict the sensory consequences of movements and 

updates this based on precision-weighted prediction errors.  There is a plethora of 

evidence from the motor control literature to suggest that forward models are 

implemented in the sensorimotor system (Bastian, 2006; Blakemore and Sirigu, 2003; 

Miall et al., 1993; Paulin, 1993; Wolpert and Miall, 1996).  For example, it has been shown 

that during a reaching movement, saccades move to a position in advance of the current 

hand position, which suggests that we predict the future sensory consequences of our 

motor commands (Ariff et al., 2002).  Moreover, there is evidence demonstrating that the 

brain integrates estimates of uncertainty into these models in a Bayesian manner in the 

sensorimotor system.  In one example participants were trained to reach towards a target 

shifted to the left of the true target location with no visual feedback.  Giving visual 

feedback midway through the movement shifted the end point towards the real target 

location.  Increasing the uncertainty (visual blur) in this feedback reduced the influence of 

the sensory data on the final reaching position.  Increasing the uncertainty in the sensory 

evidence, increased participants’ reliance on their prior estimation of where the target 

was in line with Bayesian statistics (Körding and Wolpert, 2004).  There are multiple 

different frameworks of how Bayesian models control movement and how they may be 
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implemented in the brain.  In particular, active inference offers an alternative approach to 

sensorimotor control then the current leading framework, Optimal Control Theory (OCT).  

There is a lack of empirical evidence to support the hypotheses produced by the active 

inference framework, however it offers an alternative outlook from which novel 

predictions and experimental paradigms can be tested. 

1.3.1. Active inference vs Optimal Control 

OCT is a popular theory describing how we control movements.  This theory tries to 

address a key problem in motor control: how does the brain select the most optimal action 

out of several possible movement trajectories? (Franklin and Wolpert, 2011; Wolpert and 

Ghahramani, 2000).  Within this Bayesian framework, a forward model estimates the 

current state of the body by combining predicted and current sensory input.  This state 

estimation is then used to update optimal control functions, which rank possible actions 

based on cost functions aiming to minimise musculature noise whilst ensuring optimal 

achievement on the task at hand.  Motor commands are generated via an inverse model, 

which reduces a future cost.  An efference copy of these commands is sent to the forward 

model to predict changes in hidden states using sensory predictions.  A number of studies 

have shown how that this model can accurately explain behaviour (Harris and Wolpert, 

1998; Haruno and Wolpert, 2005; Todorov, 2004; Todorov and Jordan, 2002).  However, 

this theory lacks a specific understanding of how each component could map onto 

neurophysiological connections in the brain; active inference tries to do this. 

There are also some fundamental differences between OCT and active inference.  Firstly, it 

has been argued that it is unlikely for movements to be specified with single learned cost 

functions (Friston, 2011); active inference replaces cost functions with prior beliefs that 

emerge naturally from perceptual inference.  Secondly, OCT states that descending signals 

to the spinal cord transmit motor commands, whereas in active inference these 

descending signals are proprioceptive predictions about the proprioceptive consequences 

of the movement.  This is an important difference as the type of connection described has 

implications for the neurobiology.  In predictive coding frameworks, predictions are 

backward connections, whereas commands are driving, forward connections.  Adams et al 

(2013) argue that the anatomical and physiological characteristics of the descending 

motor input to the spinal cord suggests that they are of the backward-type and more likely 

represent predictions rather than commands themselves.  Finally, OCT places an inverse 

model within motor cortex, which generates motor commands, whereas in active 

inference predictions are generated by a hierarchical generative model and these are 

converted into motor commands within the spinal cord.  Indeed, the EPH (described 
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earlier) shares many of these characteristics with active inference.  The main advantage of 

active inference and the EPH is their solution to the redundancy problem of action 

selection: the correct motor command is automatically produced from the deviation of the 

descending control signal from the threshold point in the spinal cord, so there is no need 

for an inverse model in the cortex.  Importantly, the active inference framework, unlike the 

EPH, can provide a unifying hypothesis of how predictive coding is implemented in the 

brain across a number of processes from perception and cognition to motor control.  

However, there is a lack of empirical evidence that movements are controlled according to 

the active inference framework.  In particular, there is a lack of evidence demonstrating 

that neurophysiological correlates of the components important for predictive coding 

exist in the sensorimotor cortex. 

1.3.2. Bayesian Models and sensorimotor learning 

Sensorimotor adaptation paradigms offer a useful method to measure predictive coding 

within the sensorimotor system.  Perturbations to movement trajectories generate 

prediction errors between the predicted and actual sensory consequences of the action 

and the neurophysiological correlate of these parameters can be measured.  Bayesian 

models also provide a particularly useful account to explain sensorimotor learning in the 

presence of uncertainty.  There are a number of different models which have been used to 

explain participant’s behaviour on these types of tasks.  Traditional reinforcement-

learning models explain how an animal receives new information, which is then used to 

update its beliefs about the environment in proportion to prediction errors: the prediction 

error must be multiplied by a learning rate to determine the degree to which a given belief 

is updated (Rescorla and Wagner, 1972; Sutton and Barto, 1998).  Models, such as the 

Rescorla-Wagner (RW) learning model, are simple, computationally efficient and used 

widely in cognitive neuroscience; however, do not incorporate estimates of uncertainty 

which are integral for optimal perception and action. 

Bayesian accounts of learning formalise how beliefs are updated based on new data and 

suggest that learning rates are dependent on current levels of uncertainty of prior beliefs 

relative to sensory input.  Indeed, using a visuomotor adaptation task, (Wei and Körding, 

2010) demonstrated that increasing uncertainty in the visual feedback of a cursor end-

point position reduced learning rates, such that participants did not adapt to a visuomotor 

rotation as quickly.  Here the Kalman filter was used for Bayesian estimation of hand 

position and best explained the experimental data suggesting that we do adapt to 

visuomotor perturbations in a Bayesian manner and respond to visual noise as predicted.  

Importantly, uncertainty can arise from a number of sources, not solely surrounding the 
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sensory input.  In particular, (Yu and Dayan, 2005) suggest that the volatility of the 

environment (“unexpected uncertainty”) will dictate the learning rate: in a fast-changing, 

volatile environment where more recent experience is important, the learning rate will be 

large, such that prediction errors have a large influence on the update of prior beliefs; 

however, if historical information is more important, such as in a stable environment, the 

learning rate will be smaller and require a larger prediction error to update prior beliefs.  

There have been a number of studies using Bayesian learning models to understand how 

humans use Bayesian inference to track reward probabilities in a changing environment 

and actively adapt their learning rate to this (Behrens et al., 2008, 2007).  However, the 

approach used in these studies is computationally expensive and the learning process is 

assumed to be identical across participants. 

An alternative approach has recently been suggested which applies Bayesian updating in a 

computationally efficient manner using one-step update equations designed to minimise 

free energy in a biologically plausible way.  The Hierarchical Gaussian Filter (HGF), 

designed based on probability theory, explains how a participant learns about their 

environment from the sensory information available given their own generative model.  

The internal generative model represents how the participant believes sensory 

information is generated in the world; an inversion of this model produces a posterior 

probability distribution, which represents this belief and predicts what sensory 

information is expected.  The HGF consists of two models.  The perceptual model describes 

how these beliefs update over time in order to explain how a participant learns about an 

unknown, continuous variable that modulates over time.  The response model then 

describes how the participant should behave given those beliefs by mapping the beliefs 

onto actions.  Here participant-specific parameters dictate individual learning rates that 

modulate over time based on the participant’s trial-wise behaviour unlike traditional 

reinforcement learning models, which have a fixed learning rate across time.  Importantly, 

the perceptual model of the HGF is hierarchical and each level is coupled to higher levels 

by the variance in the modulation of the underlying hidden state; therefore, the volatility 

of the hidden state at the second level is dictated by the variance at the first level.  In this 

way different forms of uncertainty can be captured at different levels of the hierarchy.  For 

example: the first level captures irreducible uncertainty unaffected by learning in which 

an unexpected stimulus requiring an unexpected response generates a sensory prediction 

error; the second level represents estimation uncertainty in the stimulus transition 

probabilities describing how likely it is that the stimulus presented will be different from 

expected and generates a contingency prediction error; and the third level describes the 

volatility uncertainty that arises from the stability of the environment and generates a 
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volatility prediction error.  The HGF produces individual time series of how beliefs evolve 

over time at each level of the hierarchy, therefore offers the opportunity to separate 

prediction, prediction error and precision parameters at different hierarchical levels.  This 

is important as the active inference framework makes specific predictions about the 

presence of these parameters of predictive coding within the sensorimotor system and 

their role in motor control. 

In this PhD, I used the HGF to explain participant’s behaviour on a visuomotor 

adaptation paradigm and recorded EEG to determine the presence of these 

predictive coding parameters in the sensorimotor system specifically using a model 

underpinned by the active inference framework.  The visuomotor adaptation 

paradigm used offers a useful tool to measure and manipulate parameters of 

predictive coding and has previously been used to assess neurophysiological 

correlates of predictive coding in the sensorimotor cortex (Tan et al., 2014a, 2016).  

The active inference framework aims to generalise ideas from predictive coding to 

the sensorimotor system, therefore this study will offer an important insight into 

the plausibility of this hypothesis. 

1.4. The neurophysiological correlate of sensory precision 

The active inference framework posits that a down-weighting of sensory precision is 

necessary for motor initiation.  One aim of this thesis was to determine the 

neurophysiological correlate of sensory precision within the sensorimotor system.  I 

aimed to modulate uncertainty of visual and somatosensory inputs to sensorimotor cortex 

to determine the resultant effect on oscillatory activity and behaviour. 

In the active inference framework, precision (inverse variance or uncertainty) is encoded 

by synaptic gain (post-synaptic responsiveness) of superficial pyramidal cells in the 

cortex, which are responsible for transmitting prediction errors up the hierarchy (Friston, 

2005; Friston and Kiebel, 2009).  It has been suggested that neuromodulatory networks 

may act to modulate this synaptic gain via top-down attentional processes (Friston, 2005; 

Schroeder et al., 2001).  Within the sensorimotor system, dopamine has been highlighted 

as an important neuromodulator for sensorimotor control and appears to modulate the 

precision-weighting of prediction errors.  Indeed, pharmacological D1 and D2 receptor 

blockade in healthy participants specifically impaired participants’ ability to react to 

unexpected events that generated large sensory prediction errors by replacing a prepared 

action with another action (Bestmann et al., 2014).  The authors suggest that dopamine 

depletion led to an overreliance on top-down predictions, therefore there was a 
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diminished response to low-level sensory prediction errors.  This can be likened to a 

reduction in the precision-weighting of sensory prediction errors. 

In addition, it has been suggested that fast, synchronous oscillatory activity recorded in 

local field potentials (LFPs) or at the scalp with M/EEG can modulate synaptic gain and the 

synaptic gain of coupled neuronal populations determines the frequency of their 

oscillatory behaviour (Chawla et al., 1999; Friston et al., 2015).  This suggests that 

oscillatory activity can have a mechanistic impact on neuronal processing and may not 

simply be an epiphenomenon of population activity.  The timing of neuromodulatory 

changes in the brain can be quite slow, therefore it is likely that rapid attentional 

mechanisms that appear to modulate responses under different levels of uncertainty most 

likely rely on an interaction between neuromodulatory and electrophysiological 

mechanisms.  It has been suggested that directed oscillatory coupling between different 

cortical areas or between laminar layers within a cortical region establishes a functional 

hierarchy: within both the visual and auditory systems, dynamic causal modelling (DCM) 

has highlighted a dominance of theta and gamma oscillatory activity in signalling bottom-

up prediction errors and beta oscillations as signalling top-down predictions (Arnal et al., 

2011; Arnal and Giraud, 2012; Bastos et al., 2012).  The post-synaptic gain, corresponding 

to the estimated precision, is thought to be essential for selecting the influence of 

ascending information over descending information within these canonical cortical 

microcircuits.  (Bressler and Richter, 2015) found that beta oscillations from extrastriate 

cortex to primary visual cortex in the monkey predicted the strength of evoked potentials 

in V1 suggesting this oscillatory activity may represent a gain control mechanism.  

Alternatively, (Bauer et al., 2014) found that attention-dependent pre-stimulus alpha band 

oscillations tracked stimulus predictability in a simple attentional RT paradigm, whereas a 

proxy for surprise, or prediction error, was tracked by attention dependent gamma band 

oscillations.  This provides empirical evidence for an attention-dependent gain control, 

which is represented or controlled by oscillatory activity.  These studies suggest that high 

frequency gamma oscillatory activity may more readily modulate precision, however 

these studies were not directly testing hypotheses regarding the role of oscillatory activity 

in modulating precision in the sensorimotor system. 

Within the sensorimotor system beta oscillations (~12-30Hz) are dominant and appear to 

have an important, yet contentious, role in sensorimotor control (Davis et al., 2012; Engel 

and Fries, 2010; Little and Brown, 2014).  I hypothesise that this frequency of oscillatory 

activity could correlate and potentially modulate sensory precision.  The motivation for 

this hypothesis comes from circumstantial evidence, which suggests that modulations in 

sensorimotor beta power with movement readily reflect the time course of SEP 
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attenuation with movement (Cohen and Starr, 1987; Pfurtscheller, 1981).  The modulation 

of sensorimotor beta power with movement and afferent input correlates with predictions 

from the active inference framework regarding the modulation of sensory precision. 

Moreover, PD patients with disrupted dopamine signalling (previously hypothesised as a 

modulator of sensory precision) show abnormal sensorimotor beta oscillatory activity and 

have impaired motor control.  PD is a neurodegenerative disorder caused by degeneration 

of dopaminergic neurons in the substantia nigra pars compacta (SNc) of the basal ganglia 

(Ehringer and Hornykiewicz, 1960).  The hypokinetic motor symptoms of PD include 

tremor, rigidity, akinesia (inability to initiate movements) and bradykinesia (slowness of 

movements).  Electrophysiological recordings from electrodes in the STN and sensors over 

the scalp demonstrate that PD patients have increased beta power and increased beta 

coherence across the cortico-subcortical loop, which correlates with the motor symptoms 

of PD (Brown, 2007, 2003; DeLong and Wichmann, 2007; Little et al., 2012).  High 

frequency deep brain stimulation (DBS) of the STN improves motor symptoms in PD and 

has a greater efficacy when paired with an adaptive algorithm in which the stimulation is 

triggered by peaks in beta power (Little et al., 2013).  As DBS shows optimal efficacy when 

it directly modulates beta activity, this suggests beta oscillatory activity plays a causal role 

in the motor symptoms of PD.  In addition, dopaminergic medication reduces beta power 

and improves the motor symptoms of PD, which suggests that dopamine may play an 

important role in the modulation of beta oscillations (George et al., 2013; Jenkinson and 

Brown, 2011).  One hypothesis is that a maladaptive or abnormal change in the processing 

of somatosensory precision caused by changes in dopaminergic signalling could underlie 

the increase in beta power seen in PD.  Alternatively, this increase in beta power could 

mechanistically affect synaptic gain of somatosensory prediction errors.  These changes in 

oscillatory activity and somatosensory precision would be hypothesised to directly 

contribute to the motor symptoms of PD in line with predictions from the active inference 

framework. 

1.4.1. Current theories regarding the functional role of sensorimotor 

beta oscillations 

Here I outline current theories regarding the functional role of sensorimotor beta 

oscillations in motor control to determine whether the hypothesis that this activity could 

represent sensory uncertainty is plausible.  It has been known for a long time that beta 

oscillations over sensorimotor cortex desynchronise prior to and during movement and 

resynchronise following a movement (Gastaut, 1952; Hari and Salmelin, 1997; Jasper and 

Penfield, 1949; Jasper and Andrews, 1936; Pfurtscheller, 1981).  However, the functional 
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role of this activity remains controversial.  Motor control theories suggest that this 

modulation of beta oscillatory activity actively controls movement rather than being an 

epiphenomenon of movement.  Evidence for this comes from patients with PD outlined 

above.  However, the beta event-related desynchronization (ERD) during movement is not 

modulated by different types of movement execution, such as the speed of movement 

(Stancák and Pfurtscheller, 1995), index vs fourth-finger flexion (Salmelin et al., 1995) or 

ballistic vs sustained wrist movements (Alegre et al., 2003) and there is no difference in 

the ERD depending on whether participants are focusing on speed rather than accuracy in 

a reaching task (Pastötter et al., 2012).  Moreover, sensorimotor beta power can be 

decreased by motor imagery (McFarland et al., 2000; Nakagawa et al., 2011), the 

observation of movement (Babiloni et al., 2002; Koelewijn et al., 2008), passive movement 

(Keinrath et al., 2006) and tactile stimulation (Cheyne et al., 2003; Gaetz and Cheyne, 

2006), which suggests that the beta ERD is not purely associated with motor execution.  

On the other hand, the pre-movement decrease in beta power does appear to be related to 

movement preparation (J. Kilner et al., 2005): predictive warning cues revealing which 

hand to respond within a RT task leads to a greater decrease in beta power suggesting a 

role for beta oscillations in response selection (Doyle et al., 2005; van Wijk et al., 2009).  

However, other studies suggest this beta decrease is modulated more readily by 

experimental conditions in a task rather than specific movement parameters (Alegre et al., 

2003; Cassim et al., 2000; Sanes and Donoghue, 1993; Stancák and Pfurtscheller, 1995).  

The literature on modulations of this pre-movement beta decrease is inconsistent and 

variable; however the consensus is that beta oscillations are not solely involved in motor 

execution. 

It has been suggested that beta oscillations over sensorimotor cortex act to maintain the 

status quo of the system (Engel and Fries, 2010).  Following the termination of a 

movement there is an increase in beta power due to a post-movement beta 

synchronisation (PMBS).  This is thought to recalibrate the motor system and prevent the 

generation of any new movements.  This is supported by the finding that corticospinal 

excitability is reduced during this period (Chen et al., 1998) and GABA levels in the motor 

cortex correlate with the magnitude of the PMBS (Gaetz et al., 2011).  Indeed, beta 

oscillations appear to have an active akinetic process as spontaneous increases in beta 

power have been shown to slow movements (Gilbertson et al., 2005) and cortical 

stimulation of sensorimotor cortex in the beta frequency band has been shown to reduce 

motor output (Joundi et al., 2012; Pogosyan et al., 2009).  Further evidence that the PMBS 

may encode proprioceptive error feedback (Tan et al., 2014a, 2014b) supports the idea 

that beta oscillations monitor and maintain the status of the sensorimotor system.  In 
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addition, beta power increases during static postural maintenance and motor unit activity 

in the periphery is phase-locked to sensorimotor beta oscillations during postural 

maintenance supporting the idea that beta oscillations aim to maintain the state of the 

sensorimotor system by encoding cortical reafferance (Baker et al., 1997).  This theory 

closely resembles predictions about how modulations in sensory precision would affect 

motor output: the precision-weighting of prediction errors determines their effect on 

current processing in sensorimotor cortex and therefore this precision-weighting acts to 

maintain the status of the system.  This supports that sensorimotor beta power may 

correlate with this uncertainty estimate. 

One assumption of this hypothesis is that sensorimotor beta oscillations have one distinct 

role that can be generalised across all changes in beta power.  However, there are multiple 

distinct beta components prior to, during and following a movement, which suggests this 

assumption may not be correct.  In warned RT tasks, there is often an increase in beta 

power prior to the cue onset, which appears to be separate from the PMBS following the 

previous trial.  (Saleh et al., 2010) show a modulation in this power between two tasks 

with differing complexity (colour association vs simpler spatial cueing task), but the same 

timing and movement requirements.  This suggests that here beta oscillations may act as 

part of a large-scale visuomotor attentional network to upregulate sensorimotor 

processing beyond somatosensation.  This could be a distinct role from the beta ERD 

during movement.  In addition, several studies have highlighted a decrease in beta power 

after the onset of a warning cue that is distinct from the preparatory decrease in beta 

power prior to movement (Alegre et al., 2006; Tzagarakis et al., 2010; van Wijk et al., 

2009).  This has been shown to modulate with uncertainty in the direction of the 

upcoming movement, such that there is a greater decrease in beta power on trials with the 

least uncertainty (Tzagarakis et al., 2015, 2010) and this is also reflected in a subthalamic 

beta power decrease which is greater following predictive warning cues which are likely 

to have less uncertainty compared to non-predictive warning cues (Williams et al., 2003).  

There is no confirmed hypothesis for what this post-warning-cue beta decrease is 

functionally involved in, however I hypothesise that this may be involved in the 

attentional modulation of synaptic gain shown previously to encode uncertainty.  It will be 

important to determine if beta power both prior to and after a movement correlates with 

changes in sensory precision as predicted by a single unifying hypothesis or if this 

hypothesis only holds true for certain beta components. 
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1.4.2. The role of beta oscillations in predictive coding 

Recently, there has been an increase in evidence to suggest that sensorimotor beta 

oscillations, specifically the PMBS, may have an important role in predictive coding.  In 

particular the PMBS occurs at the same point in which error feedback or Bayesian 

updating following the movement may occur (Alegre et al., 2008).  Indeed increasing 

evidence suggests that suppression of the PMBS is associated with error feedback (Luft et 

al., 2014).  (Tan et al., 2014a) demonstrated this using a visuomotor adaptation task.  

Participants were instructed to make goal-directed movements to a target and the sensory 

feedback was perturbed using a visuomotor angular rotation causing participants to make 

large initial angular errors, which reduced over time with adaptation.  They found that the 

PMBS increased as the initial angular movement error decreased.  They also found a 

significant interaction between presentation order and perturbation angle such that trials 

with the same angular perturbation had a greater PMBS if they were presented later 

during the experiment despite the initial angular error of the response being equal.  This 

suggests that the PMBS was not only modulated by the size of the error but by the salience 

of error; the variance in the PMBS from trial-to-trial was best explained by a Bayesian 

model which incorporated a prediction error weighted by the past history of errors rather 

than the prediction error on the current trial alone.  This suggests the PMBS was tracking 

the uncertainty surrounding the presence of a prediction error and could therefore 

mediate Bayesian inference in motor adaptation. 

A follow up study by (Torrecillos et al., 2015) replicated Tan and colleagues finding 

regarding the PMBS, but in addition highlighted that during motor preparation on the 

subsequent trial a pre-movement beta enhancement was differentially modulated 

compared to the PMBS.  This foreperiod beta enhancement correlated with the adjustment 

of the motor command necessary to produce a more accurate movement on the next trial.  

Therefore, it appears that modulations in beta oscillatory activity during movement 

preparation were directly related to the updating of the motor command or the prediction 

for the upcoming trial rather than the prediction error. 

As previously addressed prediction errors, within the active inference framework, are 

transmitted as precision-weighted prediction errors dependent on the synaptic gain of the 

cells transmitting this information.  In the above paradigms this precision-weighting could 

not be dissociated from the prediction error signal.  We cannot conclude whether or not 

the PMBS represented this precision parameter or simply represented the magnitude of 

the prediction error or whether these parameters are even dissociable.  To help address 

this, (Tan et al., 2016) modulated expected uncertainty (known variability in the 
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environment) and estimation uncertainty (uncertainty in feedforward estimations) within 

the same experimental paradigm in order to determine whether the PMBS more readily 

correlated with uncertainty estimates or angular error (Figure 1.5).  In a random priming 

condition, where the visuomotor angular rotation changed randomly from trial-to-trial, 

both expected and estimation uncertainty were high such that any observation that 

deviated from expected would have a very low probability of updating the model 

parameters and no adaptation would occur; in contrast, for the constant prime condition 

the same visuomotor rotation was given on every trial, therefore estimation uncertainty 

was low and participants successfully adapted to the rotation.  At the end of this priming 

block the PMBS on average was much larger for the constant condition compared to the 

random condition; however, here, uncertainty and error could not be dissociated.  

Crucially, when both conditions were then given a new constant visuomotor rotation, 

there was a large decrease in estimation uncertainty for the constant but not the random 

condition and this was reflected in a significant decrease in the amplitude of the PMBS 

across these early trials following the constant block, but not the random block.  

Importantly, the angular error between conditions was equal in these trials, therefore the 

only variable modulating the PMBS amplitude was the estimation uncertainty.  The 

authors suggest that the PMBS indexes the confidence surrounding feedforward 

estimations, which can then allow for more flexibility and the revision of motor plans.  

This is potentially modulated by dopamine within the basal ganglia in line with the 

research described earlier. 

However, this account for the role of the PMBS does not generalize easily to explain all 

known modulations in sensorimotor beta oscillations. For example, if this account was 

applied to the beta ERD prior to and during movement, then the conclusion would be that 

we have the highest uncertainty in our model while we move, which would seem unlikely.  

Although the literature suggests that different components of the sensorimotor beta 

modulations may have different functional roles, a unifying hypothesis able to explain all 

components would be more appealing and convincing.  Importantly, uncertainty is not 

only estimated for parameters of the forward model; an estimate of uncertainty in the 

actual sensory input is also required for Bayesian inference.  The resulting precision-

weighting of prediction errors is a ratio between prior precision and sensory precision; 

importantly, active inference highlights that an increase in the estimate of the uncertainty 

of the actual sensory input is an essential step for being able to move.  However, the 

neurophysiological correlates of this change in uncertainty are unknown.  In this thesis I 

hypothesise that sensorimotor beta power might be either the neurophysiological 

correlate of this estimate of sensory uncertainty or causally modulating this uncertainty.  
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Indeed, there is compelling evidence to predict that sensorimotor beta power and 

estimates of sensory precision might be positively correlated. 

 

 

Figure 1.5. Experimental paradigm and results adapted from Tan et al (2016) showing the 
relationship between the PMBS and estimation uncertainty.  A) Participants were required to reach 
from a central start position to a target.  An angular rotation was added between the actual joystick 
movement and the cursor on the screen.  Participants completed the task under two conditions: a random 
priming condition where the angular rotation changed magnitude randomly across trials for the first block; 
and a stable priming condition where the angular rotation remained constant over the first block.  The 
same 60o rotation was then applied to both conditions after 80 trials.  B) A Bayesian learning model was 
used to dissociate the estimated mean, estimation uncertainty and expected uncertainty on each trial.  For 
the stable priming condition (red) there was a large increase in estimation uncertainty following the first 
constant block, which was not seen in the random priming condition (blue).  C)  Changes in estimation 
uncertainty negatively correlated with the magnitude of the PMBS.  In particular, over the first 20 trials of 
the adaptation block, there was a significant difference in the magnitude of the PMBS between conditions, 
which reflected this difference in estimation uncertainty.  There was no significant difference in angular 
error at this time point, which could explain the modulation in the PMBS. 
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1.4.3. Could beta oscillations originate in the somatosensory cortex and 

represent an afferent signal? 

Importantly, if sensorimotor beta power correlates with somatosensory precision as 

hypothesised, then it would be expected that this oscillatory activity would be modulated 

by afferent input and would potentially be generated in somatosensory cortex.  There is a 

plethora of correlative evidence to suggest that sensorimotor beta oscillations may 

represent a somatosensory signal.  Firstly, the beta ERD over sensorimotor cortex occurs 

in response to peripheral tactile stimulation (Cheyne et al., 2003; Gaetz and Cheyne, 2006), 

passive movement (Parkkonen et al., 2015) and motor imagery (Kühn et al., 2006a; 

McFarland et al., 2000; Nakagawa et al., 2011), therefore an active motor command is not 

necessary to modulate sensorimotor beta power.  Secondly, electrically stimulating the 

periphery causes a resynchronisation in the beta frequency over sensorimotor cortex 

(Hari et al., 1998; Müller et al., 2003; Pfurtscheller, 1981), which supports evidence that 

beta power signals cortical reafference.  This rebound decreases with movement, the 

observation of movement (Hari et al., 1998) and the observation of sensory stimulation 

(Muthukumaraswamy and Johnson, 2004), which further suggests that sensorimotor beta 

oscillations are sensitive to somatosensory events.  Finally, deafferented patients have 

decreased beta oscillatory activity within the motor system (Cassim et al., 2001). 

Moreover, there is correlative evidence within the literature to suggest that modulations 

in sensorimotor beta oscillations may reflect changes in synaptic gain that could reflect 

somatosensory precision, as hypothesised in this thesis.  Prior to and during movement 

the amplitude of SEPs recorded over sensorimotor cortex decreases (Cohen and Starr, 

1987; Seki and Fetz, 2012) and this somatosensory attenuation is reminiscent of the 

modulation of sensorimotor beta oscillations with movement (Jasper and Penfield, 1949; 

Pfurtscheller, 1981).  Passive movement also causes a reduction in SEP amplitude 

(Rushton et al., 1981; Seki and Fetz, 2012; Staines et al., 2000) and beta power (Keinrath 

et al., 2006; Müller et al., 2003).  During periods of active holding, beta power increases 

(Baker et al., 1997) as does the amplitude of cutaneous SEPs over sensorimotor cortex 

(Rushton et al., 1981; Seki and Fetz, 2012); during this period sensorimotor beta 

oscillations are phase-locked to peripheral motor unit activity, which is important for 

postural maintenance and suggests the beta oscillations encode cortical reafference 

(Baker, 2007).  Beta bursts have also been shown to enhance SEP amplitude following 

peripheral nerve stimulation (Lalo et al., 2007) and enhance transcortical stretch reflexes 

(Gilbertson et al., 2005).  In addition, PD patients, who have abnormally high resting beta 

power, show a reduced modulation of sensorimotor beta oscillations with movement and 
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also have impaired SEP attenuation, both of which improve with dopaminergic medication 

(Macerollo et al., 2016). 

Finally, the exact cortical origin of the beta ERD is still disputed with some studies 

reporting the source to be in the anterior bank of the central sulcus (Jasper and Penfield, 

1949; Salmelin and Hari, 1994), others the postcentral bank (Jurkiewicz et al., 2006) and 

other studies have found both (Papakostopoulos, 1980; Sochůrková et al., 2006; Szurhaj et 

al., 2003).  The PMBS has been localized to primary motor cortex and the supplementary 

motor area (Brovelli et al., 2002; Salmelin and Hämäläinen, 1995), however ECoG studies 

suggest the PMBS comes from a distributed cortical network including the whole 

sensorimotor and premotor area (Crone et al., 1998; Ohara et al., 2000; Pfurtscheller et al., 

2003).  It is difficult to conclude the origin of sensorimotor beta oscillations using source 

localisation methods as these methods are biased to the primary motor cortex due to the 

uniqueness of its cytoarchitecture.  Betz cells in layer V of the primary motor cortex are 

giant pyramidal cells thought to be the largest cells in the cortex (Betz, 1874) and are most 

concentrated in area 4 on the crown of the precentral gyrus and reduce in number moving 

into the central sulcus towards areas 3a and 3b (Meyer, 1987).  Due to this unique cellular 

physiology the same signal in M1 and S1 is likely to appear larger in M1 biasing source 

localisation methods. 

Despite having a different cellular composition, both somatosensory and motor cortex 

have cellular physiology that promotes the generation of beta oscillations.  In 

somatosensory cortex, layer V pyramidal neurons have gap junctional connections that 

allow for strong electrical coupling and can produce stable population oscillations (20-

30Hz) even if synaptic potentials are pharmacologically blocked (Roopun et al., 2006).  In 

primary motor cortex, intracellular recordings revealed a specific shape of the neuronal 

hyperpolarisation trajectory, which causes neurons to rhythmically fire within the beta 

frequency band; however, the specialised post-spike membrane potential changes seen in 

M1 neurons are not necessary to produce oscillatory activity in the beta band (Baker, 

2007).  Sensorimotor beta oscillations could therefore represent modulations in the 

precision-weighting of prediction errors in primary somatosensory cortex driven by the 

proprioceptive prediction to move.  Indeed, corticomotor neurons, which are thought to 

carry predictions about the precision of proprioceptive input to gamma motor neurons in 

the spinal cord are present both in M1 and area 3a (Rathelot and Strick, 2009, 2006) 

where these signals can modulate the gain of the classical motor reflex arc in the spinal 

cord (Adams et al., 2013a).  This provides a potential mechanism by which modulations of 

somatosensory precision in somatosensory cortex could modulate motor control and how 

this could be encoded by beta oscillatory activity. 
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1.5. A change in direction: does the sensory system drive 

the motor system? 

The active inference theory predicts that a down-weighting of somatosensory information 

is required in order to initiate movements.  Historically it has been argued that the role of 

the somatosensory system in motor control is to provide feedback to update and correct 

movements.  However, increasing evidence suggests that the somatosensory system may 

play a more significant role in driving motor function.  Beta power in LFPs of primates was 

shown to be stronger in S1 than M1 (Witham and Baker, 2007) and it has been found that 

neurons in somatosensory cortices fire coherently with M1 oscillations and a quarter of an 

oscillatory cycle before M1, which suggests that M1 oscillatory activity could be driven by 

the neuronal activity in S1 (Baker et al., 2003).  A strong information drive from post-

central to pre-central gyrus in the beta frequency band has also been found during 

isometric contraction in monkeys (Brovelli et al., 2004), which supports the hypothesis 

that sensorimotor beta oscillations represent a cortical reafferance or proprioceptive 

signal.  However, these studies lack a measure of how this information drive then causally 

effects movement.  For example, in mice, the primary somatosensory cortex directly drives 

the primary motor cortex for whisker retraction (Matyas et al., 2010). 

Sensory processing deficits are prominent in PD but are disguised by severe motor 

symptoms.  One hypothesis is that the motor impairments seen in PD are the result of an 

inability to correctly integrate proprioceptive and motor information (Konczak et al., 

2009).  Indeed, proprioception is impaired in PD causing patients to rely far more on 

visual cues to guide movement than healthy controls: when visual feedback is removed 

patients produce inaccurate movements and often undershoot targets (Klockgether et al., 

1995).  Numerous psychophysical studies suggest that kinesthesia (the conscious 

awareness of the position or movement of the limb) is altered in PD: patients with PD have 

a decreased sensitivity to detect small changes in limb position (Maschke et al., 2003), 

finger position (Putzki et al., 2006) and limb motion (Konczak et al., 2007) compared to 

healthy controls and this impairment has been shown to correlate with disease severity 

(Maschke et al., 2003).  It has been suggested that these deficits in proprioception may 

play a more primary role in causing the motor symptoms in PD. 

According to active inference, somatosensory attenuation is necessary to initiate 

movements.  If decreases in beta power are correlated with this decrease in synaptic gain, 

and in turn a decrease in SEP amplitudes, then it may be theorised that the increased beta 

power in PD may reflect an inability to down-weight incoming sensory information.  This 
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may be responsible for the akinetic symptoms and in turn should correlate with a lack of 

somatosensory attenuation.  Indeed, SEP attenuation is reduced in PD patients and 

dopaminergic medication normalises SEP attenuation and improves motor symptoms 

(Macerollo et al., 2016).  Similar results have been found in patients with functional 

movement disorders (A Macerollo et al., 2015).  Moreover, PD patients have abnormal 

gating of 1a afferents in the spinal cord (Hiraoka et al., 2005; Morita et al., 2000): it is this 

circuitry that is hypothesised to play a central role in movement initiation in active 

inference and be mediated by modulations of precision in the cortex (Adams et al., 2013a).  

One way of testing the theory that sensory precision is related to motor initiation and 

modulations in sensorimotor beta power, would be to modulate the uncertainty of the 

afferent input in order to artificially change estimates of sensory precision and quantify 

the effect of this on movement parameters and oscillatory activity.  One method of 

reducing sensory precision in this way would be to apply high frequency vibration to the 

periphery, which is assumed to modulate the proprioceptive signal and increase the 

uncertainty in sensory estimates of this input. 

1.5.1. Using vibration to modulate sensory precision 

Peripheral vibration has been used to investigate the role of muscle spindle activity in a 

variety of motor control tasks.  Primary muscle spindle endings are readily activated by 

vibration of the muscle at the optimal vibration frequency of ~80Hz (Ribot-Ciscar et al., 

1998; Roll et al., 1989).  Vibration does not selectively activate Ia afferents, however 

secondary endings are activated much less readily at high vibration frequencies.  

Prolonged high amplitude vibration from 30-100Hz can produce an increase in muscle 

contraction referred to as the tonic vibration reflex (TVR).  This reflects an increase in 

activity from afferent nerve fibers that activate monosynaptic and polysynaptic reflex arcs 

to cause the muscle to contract (Hagbarth and Eklund, 1966).  Interestingly, when a TVR is 

produced there is a depression in the tendon jerk reflex and the H-reflex (De Gail et al., 

1966; Delwaide, 1973).  As there is concomitant muscle activity, this suggests that the 

vibration increases the tonic presynaptic inhibition of the afferent signal.  Indeed, 

hindlimb vibration in the cat causes a depolarisation of primary afferents, which is 

reminscient of this presynaptic inhibition and the reflex depression seen in humans 

(Barnes and Pompeiano, 1970; Gillies et al., 1969).  Therefore, peripheral vibration 

appears to modulate the gating of proprioceptive signals from the muscle spindles in the 

spinal cord.  In addition, peripheral vibration at 60Hz causes an attenuation of early 

components of the cortical and cervical SEP (Abbruzzese et al., 1980; Cohen and Starr, 

1985) further reflecting the role of vibration in modulating sensory gating.  However, 50 
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Hz cutaneous vibration between the thumb and finger and 20 Hz vibration at the wrist 

does not produce significant SEP attenuation, which suggests that muscle spindle 

activation is necessary to evoke sensory attenuation (Kakigi and Jones, 1986; Legon and 

Staines, 2006). 

It has previously been shown that high frequency vibration of forearm muscle tendons, 

which selectively activates muscle spindles (Brown et al., 1967; Burke et al., 1976; Roll et 

al., 1989), produces the illusion that the arm is moving or has been displaced (Craske, 

1977; Goodwin et al., 1972; McCloskey, 1973).  The central nervous system incorrectly 

interprets the increased firing rate of muscle spindles as if the affected muscle is 

lengthening, which generates uncertainty in estimates of the position of the limb.  This has 

been demonstrated in a number of position-matching and pointing tasks all of which show 

increased error, or reduced accuracy, following high-frequency peripheral vibration 

(Capaday and Cooke, 1983; Cordo et al., 1995, 2005; Inglis and Frank, 1990; Tsay et al., 

2016).  The illusion of arm extension following muscle vibration is largest at a vibration 

frequency of 80-100Hz (McCloskey, 1973) reflecting the optimal frequency for activating 

the primary spindle endings, which supports the role of Ia afferents in producing this 

illusion.  In PD patients, vibration-induced illusions appear no different between patients 

and healthy controls (Moore, 1987); however, when asked to make a voluntary movement 

to a target during vibration, PD patients undershoot the target less than healthy controls, 

which suggests the illusion is reduced in PD patients (Khudados et al., 1999; Rickards and 

Cody, 1997).  There is no evidence for any abnormalities within the fusimotor system and 

the muscle spindles in PD, therefore it is likely that the reduced response to vibration in 

PD is due to a reduction in the central gating of the afferent signal in the spinal cord. 

Peripheral vibration provides a non-invasive, easily available tool to activate muscle 

spindle discharge and potentially modulate the gating of afferent input.  The 

proprioceptive illusions generated by peripheral vibration appear to increase uncertainty 

in the proprioceptive input to the cortex due to the mismatch between incorrect 

kinesthetic information and EMG activity supporting theoretical predictions that 

increasing sensory uncertainty modulates sensory gating.  Evidence from 

neurophysiological studies suggests that vibration causes an increase in the presynaptic 

inhibition of afferent input in the spinal cord and attenuates cervical and cortical sensory 

signals.  This may reflect a descending central mechanism designed to down-weight this 

uncertain proprioceptive information according to the active inference framework.  

Importantly, it has been posited that this sensory gating is necessary for movement to 

occur.  Indeed, PD patients show reduced somatosensory gating in the spinal cord and the 

somatosensory cortex, which is correlated with impairments in motor control and an 
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increase in beta oscillations.  Interestingly, peripheral vibration has been extensively 

studied as a treatment for PD, suggesting a link between the modulation of afferent input 

and motor initiation (Arias et al., 2009; Chouza et al., 2011; Ebersbach et al., 2008; Haas et 

al., 2006; Kapur et al., 2012; King et al., 2009); however, the results have been inconsistent 

due to differences in the vibration protocol used, the muscles targeted, the behaviours 

being measured and the patient groups studied.  Recent work from this lab suggests that 

high frequency peripheral vibration decreases RTs and movement time in PD patients and 

healthy controls (under submission).  With the assumption that vibration reduces 

somatosensory precision, I hypothesise that this gating places the motor system in a 

“ready-to-move” state and this may be associated with a decrease in sensorimotor beta 

oscillations. 

1.6. Specific aims and hypotheses of this PhD 

The active inference framework states that sensory attenuation, the gating or filtering of 

irrelevant sensory information, “is a necessary consequence of reducing the precision of 

sensory evidence during movement to allow the expression of proprioceptive predictions 

that incite movement” (Brown et al., 2013; K. Friston et al., 2011; Friston et al., 2010).  

From this prediction a number of specific testable hypotheses emerge regarding the 

functional role of sensory attenuation and the neurophysiological correlate of changes in 

sensory precision. 

The first aim of this PhD (study one; chapter three) was to better characterise 

somatosensory attenuation.  Somatosensory attenuation has been studied as a perceptual 

and physiological phenomenon in two isolated fields.  The first study in this thesis tested 

the hypothesis that these two forms of somatosensory attenuation were functionally and 

neurophysiologically distinct by measuring perceptual and physiological somatosensory 

attenuation within a single paradigm.  This is important foundation work needed to better 

characterise the specific definition of somatosensory attenuation that is integral to then 

understanding how this phenomenon could be involved in movement initiation as 

predicted by the active inference framework. 

The second aim of this PhD (study two; chapter four; and study three; chapter five) was to 

modulate somatosensory precision and determine the effect of this on movement 

initiation and sensorimotor beta oscillatory activity.  I aimed to decrease estimates of 

proprioceptive precision, by applying high frequency peripheral vibration to the wrist.  

This stimulus has been previously shown to activate muscle spindles causing unexpected 

firing of 1a afferents and kinaesthetic illusions of muscle lengthening, which create 
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uncertainty in the proprioceptive state (Cordo et al., 1995, 2005; Roll et al., 1989; Tsay et 

al., 2016).  I tested the following hypotheses: 1) vibration would reduce proprioceptive 

accuracy in line with a decrease in proprioceptive precision; 2) vibration would decrease 

RTs in accordance with the active inference theory, which posits that a reduction in 

somatosensory precision is necessary for movement initiation; 3) vibration would 

decrease sensorimotor beta power under the assumption that this neural activity 

correlates with changes in somatosensory precision. 

The final aim of this PhD (study four; chapter six) was to determine whether the 

neurophysiological correlate of parameters of predictive coding could be found within the 

sensorimotor system.  The active inference framework provides a unifying hypothesis 

which generalises ideas from predictive coding to the sensorimotor system.  I therefore 

used a visuomotor adaptation paradigm, from which estimates of parameters in predictive 

coding could be easily tracked, to test whether sensorimotor beta activity readily 

correlated with these parameters.  Specifically, I hypothesised that sensorimotor beta 

power would correlate with modulations in sensory precision induced by adding noise 

into the visual feedback of participant’s movements.  According to active inference, 

sensory attenuation occurs across all sensory channels, therefore if sensorimotor beta 

power represents the downstream effect of this attenuation, which then modulates 

movement, I would expect the attenuation of visual input to also modulate beta oscillatory 

activity over sensorimotor cortex.  The hypotheses of this PhD are summarised in Figure 

1.6. 

The experiments described in this thesis will have implications for our 

understanding of sensorimotor control and provide much needed empirical 

evidence to determine the veracity of the active inference framework.  The findings 

will also have implications for understanding the sensorimotor symptoms in 

movement disorders, such as PD, which could be reframed within this model.  This 

may open up new avenues for potential treatments.  

  



Chapter 1 - Introduction 

49 
 

 

Figure 1.6. Schematic of the hypotheses tested in this PhD.  The active inference framework posits that 
a down-weighting of sensory precision is necessary in order to allow the proprioceptive predictions that 
incite movement to be fulfilled.  Sensorimotor beta oscillations are thought to play an important role in 
executing movement and there are several correlative examples in the literature, which suggest that 
sensorimotor beta power could be the neurophysiological correlate of these modulations in sensory 
precision.  For example, the time course of SEP attenuation with movement is very similar to the 
desynchronisation of beta oscillations with movement and there are many sensory inputs that modulate 
beta power.  Study one (chapter three) of this thesis will aim to better characterise somatosensory 
attenuation, which has been described in both physiological and perceptual domains; this will aim to better 
determine whether these forms of sensory attenuation are neurophysiologically and likely functionally 
distinct.  Studies two and three (chapters four and five) use peripheral vibration to modulate sensory 
precision in the proprioceptive domain in order to determine the relationship between sensory precision 
and movement initiation and sensorimotor beta power.  Active inference provides a unifying account to 
explain perception and action in the brain and generalises the fundamentals of predictive coding to the 
sensorimotor system.  In study four (chapter six) I used a hierarchical generative model to estimate 
parameters involved in active inference and determine the neurophysiological correlates of those hidden 
beliefs over sensorimotor cortex.  Active inference posits that sensory attenuation occurs across all sensory 
channels during movement; therefore, in this experiment I modulated sensory precision in the visual 
domain to determine the effect of this on motor behaviour and sensorimotor beta power. 
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CHAPTER 2  

GENERAL METHODS 

A range of behavioural, neurophysiological and computational modelling techniques were 

used throughout this PhD some of which are common to multiple results chapters.  This 

chapter will give an overview of some common methods.  The specific parameters for the 

implementation of each method will be given within each results chapter.  For studies 1, 2 

and 4 (chapters 3, 4 and 6) EEG was recorded during or alongside a behavioural task in 

order to answer questions regarding the functional role of sensorimotor beta oscillations.  

Below I outline the fundamentals of understanding the EEG signal and the background of 

different analysis methods used in this thesis. 

2.1. What is EEG measuring? 

When an action potential reaches a cortical pyramidal neuron the movement of ions into 

and out of the neuron generates a post-synaptic potential, which propagates along the 

pyramidal dendrites generating an intracellular current.  This current flow produces an 

electric field surrounding the neuron and it is this extracellular volume current that is 

conducted through the cortical tissue, cerebrospinal fluid and skull and recorded by 

external electrodes on the scalp (Figure 2.1A).  These electrodes record the electrical 

potential difference (voltage) across two electrodes by summing the charge produced by 

these extracellular currents at the scalp.  The region of negative ions at one end of the 

neuron is referred to as the sink and the region of positive ions at the other end of the 

neuron is the source.  Together this is referred to as a dipole.  A positive or negative 

deflection on the scalp will reflect the sum of the charges closest to that electrode and will 

thus depend on the polarity of the dipole.  An excitatory postsynaptic potential (EPSP) 

arriving at the apical dendrites will cause the extracellular fluid to become negative near 

the scalp and positive near the soma creating a negative deflection on the scalp; whereas 

an EPSP arriving near the cell soma will reverse this polarity (Figure 2.1B).  The opposite 

will be true for IPSPs, therefore EEG cannot distinguish between the cellular mechanisms 

that may generate different charges at the scalp.  Importantly, the orientation of the 

pyramidal neuron with respect to the cortical surface and the position of the electrodes 

will alter the deflections measured on the scalp.  As electrodes measure the sum of charges 

in the vicinity, a potential difference will only be detected if the electrode is nearer one 



Chapter 2 – General Methods 

51 
 

end of the dipole (Figure 2.1C,D).  EEG can detect both tangential and radial dipoles in the 

brain, therefore is sensitive to neuronal sources in both cortical gyri and sulci. 

 

 

Figure 2.1. The neurophysiology underlying the EEG signal.  A) Post-synaptic potentials generate both 
intracellular and extracellular currents caused by the movement of ions into and out of the neuron.  The 
distribution of ions creates a dipole characterised by a region of positive charge (source) in the 
extracellular space at one end and negative charge (sink) at the other end.  B) Electrodes record the 
potential difference (voltage) across two electrodes by summing the charges produced by the extracellular 
currents nearest the scalp.  The location of the sink or source nearest the scalp depends on the type of post-
synaptic potential (EPSP or IPSP) and the location of the synapse which generated it (dendrites or cell 
soma); however, the EEG signal cannot determine between these options.  C+D) Different signals are 
recorded dependent on the orientation of the neuron to the scalp and the position of the electrode.  E) 
Volume conduction allows the signal to be transmitted through the brain to the dura.  From this point a 
capacitance stack is created by the charges pushing against either side of the insulating layers to reach the 
electrode.  In order for the charge to be large enough to be detected, pyramidal neurons must be 
synchronously active and arranged in parallel to ensure the charges sum and do not cancel out.  Figure 
adapted from (Jackson and Bolger, 2014). 
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The dipole produced from a single EPSP or IPSP is too small to be detected by electrodes 

at the scalp, therefore electrodes sum the charges from thousands of pyramidal cells.  

Pyramidal cells must be arranged in parallel in order for charges to be summed and not 

cancel out and neurons must be synchronously active to create a large enough signal.  

Importantly, the cortex is arranged in this way.  Brain activity from deep structures such 

as the basal ganglia and hippocampus are difficult to measure with EEG because pyramidal 

cells are not always oriented parallel to the cortical surface and the electrical signal decays 

exponentially as it is conducted through other brain tissue to the scalp.  Dipoles that are 

further away from the electrodes will produce potential differences of low amplitude with 

a broad distribution. 

Volume conduction occurs by pools of ions of the same charge repelling pools of ions of 

the opposite charge repeatedly; however, this method cannot be used outside of the brain 

for the signal to reach the electrode and will stop as soon as the volume (cortical tissue) 

ends and an insulating layer is reached.  Here insulating layers from the dura to the skull 

to the electrode gel create capacitors where ions of the same charge push against one side 

of the layer and attract ions of the opposite charge on the other side of the layer (Figure 

2.1E).  This creates a stack of capacitors that carry the signal to the electrode.  Hair, air and 

skin cells are poor conductors, therefore electrode gel is necessary to create a path of good 

conductance from the skull to the electrode.  It is important to note that as electrodes sum 

nearby charges at the scalp, the signal recorded will be influenced by a number of different 

sources of activity at different positions in the cortex, which is referred to as spatial 

smearing. 

2.2. EEG Data collection 

EEG data is recorded by placing electrodes over the scalp.  All EEG data collected for this 

thesis was recorded using a BioSemi 128 active electrode system (Biosemi, Amsterdam, 

Netherlands) at a sampling frequency of 2048Hz.  Two external reference electrodes were 

placed on the subjects’ earlobes.  The active electrodes used have an amplifier integrated 

into them to improve the signal-to-noise ratio (SNR) of the EEG signal (Rijn et al., 1990). 

Maximising the SNR is an important issue with EEG as the signal from the brain is very 

small compared to the multiple sources of internal and external noise.  Tools to distinguish 

between signal and noise are very important.  The power supply in buildings serving 

electrical equipment is often the greatest source of noise for EEG.  Active electrodes work 

by placing an amplifier next to the electrode on the scalp to minimise the impact of 

electrical noise that may be added to the signal as it passes along the wire to the computer 
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thus maintaining the SNR.  The amplifier will have a high input impedence, which aims to 

maximise the voltage that is measured and transferred to the computer.  Impedence can 

be discussed in a similar way to resistance.  According to Ohm’s law the voltage (V) 

recorded across two points is equal to the current (flow of charge between points; I) and 

resistance (R): V=IR.  Importantly, voltage drops when measured across a resistor and the 

size of this drop refers to the proportion of the total resistance attributed to that resistor; 

the sum of voltage drops across resistors in a circuit equals the total voltage in the circuit.  

The amplifier inserts a very large resistor into the circuit, in the same way as a voltmeter, 

such that it represents almost all of the resistance in the circuit and so all of the voltage 

will drop across it.  In this way the amplifier can maximise as much voltage measured as 

possible.  Reducing the impedence between the scalp and the electrode using electrode gel 

acts to ensure as much signal as possible reaches the amplifier; here a large impedence is 

then used to measure the voltage.  Internal noise from the participant’s heartbeat, 

breathing or eyeblinks also reduces the SNR, but is difficult to reduce during data 

collection therefore must be removed offline during the preprocessing of the EEG data.  

The external reference electrodes can be used to deduct any physiological signals from the 

EEG data that are not deemed as brain activity. 

2.3. EEG analysis techniques 

EEG activity, measured as microvolts (µV), is recorded as the potential difference from one 

electrode relative to a reference electrode, therefore represents a relative value, which is 

difficult to interpret.  Different analysis techniques, such as baseline subtraction, and the 

hardware used to record the signal can alter the absolute µV values and the µV is likely to 

be different between participants due to differences in skull shape and thickness for 

example.  However, these are global factors that will affect all trials and conditions, 

therefore µV can be compared across conditions within participants, but not between 

participants or studies.  The excitability of neuronal populations fluctuates over time and 

this oscillatory activity changes the polarity of the voltage measured.  Rhythmic activity 

can therefore be seen within the raw, unfiltered EEG data; however time-frequency 

analyses are used to determine the specific effects of different aspects of this oscillatory 

activity.  Before anything meaningful can be interpreted from the EEG data, a number of 

general pre-processing steps are required: 

 Filtering.  When the frequency of the signal of interest is known or hypothesised, 

filters can be applied to remove noise from the EEG data.  High-pass filters 

attenuate signals of frequencies below a specified cut-off and low-pass filters 



Chapter 2 – General Methods 

54 
 

attenuate signals above a specified cut-off.  Notch filters can be used to remove 

50Hz noise from the electrical power supply. 

 Averaging.  When designing an EEG experiment it is important to have multiple 

trials in which a stimulus is presented and the resultant EEG signal is recorded.  

This is because the neural response to a single event is usually very small; 

therefore, by averaging over multiple trials the SNR is increased.  However, it is 

important to note that averaging will have differential effects depending on 

whether the neural activity of interest is time-locked or phase-locked to the 

stimulus (see below). 

 Baseline correction.  Throughout EEG recording, the signal will slowly shift over 

time due to artefacts such as muscle tension and sweating, which means that the 

zero line between electrodes and trials may be different.  It is therefore vital 

(particularly when doing evoked potential analyses) to subtract the mean signal 

over a baseline time window from the data of interest in order to correct for this.  

This baseline time window should precede the onset of the stimulus and be consist 

across trials and conditions.  In this way any differences in the amplitude of the 

neural signal following the onset of the stimulus cannot be confounded by data not 

related to the stimulus. 

After preprocessing, EEG data can then be analysed either in the time-domain by 

quantifying evoked potentials (ERPs) averaged over trials or in the time-frequency 

domain where the power or phase of oscillations at different frequencies are analysed 

over time.  In most experimental studies, EEG data are analysed with respect to stimuli 

that are presented at specific times during a task in order to quantify task related changes 

in neural activity.  EEG data are epoched into small time windows around these stimuli. 

2.4. Evoked vs induced brain responses 

When a stimulus is presented, EEG data can either be time-locked or phase-locked to the 

stimulus or neither.  This has implications for the analysis method that can be employed to 

measure the EEG response (Figure 2.2).  Phase-locked data refers to activity in which the 

phase of the signal is aligned to the onset of the stimulus and this phase alignment will be 

the same across all trials: this is referred to as an ‘evoked’ response.  This data can be 

averaged across trials in the time and time-frequency domains to produce a measurable 

ERP and time-frequency power spectra.  Non-phase locked activity, referred to as 

‘induced’ activity, can only be averaged in the time-frequency domain, because in the time 

domain the peaks and troughs of the data will cancel out.  Non-time locked activity occurs 
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at different time points following a stimulus and can be measured with time-frequency 

power, however the results will be smoothed and temporally less precise than time-locked 

analyses. 

 

Figure 2.2. Trial averaging can have differing results dependent on whether the brain response 
measured is evoked or induced.  Evoked activity is phase-locked to the stimulus such that the phase of the 
signal is aligned across trials to the onset of the stimulus.  Evoked potentials (ERPs) can only be analysed 
from averaging over multiple trials of phase-locked and time-locked EEG data, because if the peaks and 
troughs of the signal are not aligned over trials then they will cancel out.  Induced activity is non-phase-
locked and can only be averaged in the time-frequency domain.  If the activity is also not time-locked i.e. it 
can occur at different time points following the stimulus across trials, then the results in the time-frequency 
domain will be smoothed and temporally less precise.  Figure adapted from Cohen, (2014) 

2.4.1. ERP analysis 

ERPs represent time-locked and phase-locked EEG signals that are optimally seen when 

several trials are averaged to improve the SNR.  ERPs contain a series of peaks and troughs 

at particular time intervals, which may represent activity from different cortical areas 

associated with specific functions.  The neurophysiological mechanisms underlying these 

waveforms are not well understood.  An additive model suggests ERPs elicited by an 

external source represent a distinct internal event that is dissociable from the background 

EEG activity.  In this model there is a distinction between the neurophysiological event 

that produces the ERP and that which produces oscillations (Mäkinen et al., 2005; 

Mazaheri and Jensen, 2006; Mazaheri and Picton, 2005; Shah et al., 2004).  An alternative 

model is the phase reset model, which suggests that an ERP emerges from the sudden 

alignment of phases of ongoing oscillations caused by a perturbation to the ongoing 

activity by the stimulus.  When these phase-locked trials are then averaged the result is a 

component of the ERP (Gruber and Müller, 2005; Klimesch et al., 2006; Makeig et al., 2002; 
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Penny et al., 2002).  There is evidence for and against both of these theories; therefore the 

neural dynamics underlying ERPs are not well understood.  However, recent evidence 

suggests that ERPs may represent a by-product of averaging travelling waves across 

multiple trials (Alexander et al., 2013).  Travelling waves represent activations and 

deactivations that move through the brain.  Current neuroimaging techniques often 

assume that the neural activity being measured is either stationary in space (analyse 

temporal data from a single electrode) or stationary in time (analyse topography of the 

neural signal across the brain at given time point).  However, recent evidence suggests this 

may be incorrect and neuroimaging analysis methods need to be altered to truly 

understand brain dynamics and how changes in neural activity modulate voltage recorded 

at the scalp (Alexander et al., 2015). 

In study one (chapter three) of this thesis the somatosensory evoked potential (SEP) was 

analysed over an ROI over sensorimotor cortex.  This was generated by electrical 

stimulation of the median nerve at the wrist.  SEPs were analysed by averaging over 

multiple trials.  The difference between the amplitude of neighbouring peaks was used to 

quantify the magnitude of the primary, secondary and late components of the SEP.  These 

values were then compared across conditions to determine if perceptual somatosensory 

attenuation modulated the amplitude of the SEP.  In this study, I assume that the 

amplitude of the SEP relates to the synaptic gain of the pyramidal cells receiving the 

afferent input in the somatosensory cortices; an increased gain for the same afferent input 

(produced by the peripheral nerve stimulation) would result in a greater post-synaptic 

potential in pyramidal neurons and a greater response recorded at the scalp.  This is 

thought to reflect changes in somatosensory precision.  However, it must be noted that 

SEP amplitude can also be affected by increased synchronisation and neuronal 

recruitment, therefore this is not a pure measure of synaptic gain. 

2.4.2. Time-frequency analysis 

As previously stated, oscillatory activity of neuronal populations contributes to the EEG 

activity recorded.  Oscillations can be described with three variables: frequency 

(measured in Hz) describes the speed with which the oscillation fluctuates; power reflects 

the amount of energy in a given frequency band; and, phase (measured in radians or 

degrees) is the position along the sine wave at any given point in time.  Signal processing 

methods, such as a Fourier transformation, can be applied to EEG data to divide the 

activity into multiple frequency bands.  In this way we can quantify how an experimental 

manipulation may specifically modulate certain frequencies of oscillatory activity.  

Traditionally brain rhythms are divided into the following frequency bands: delta (2-4Hz), 
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theta (4-8Hz), alpha (8-12Hz), beta (12-30Hz), lower gamma (30-80Hz) and upper gamma 

(80-150Hz).  Power and phase can then be calculated for oscillations in the frequencies of 

interest.  Power and phase are considered independent variables and reveal different 

characteristics about the underlying neural dynamics.  In this thesis, I will only analyse the 

power of oscillatory activity.  I hypothesise that changes in oscillatory activity, specifically 

within the beta frequency band, may represent modulations in synaptic gain; therefore, 

there is a clear prediction of how changes in synaptic gain could enhance the amplitude of 

the summed post-synaptic potential in a neuronal population, which could modulate 

oscillatory power calculated as the squared amplitude of the oscillation. 

In this thesis, all data was time-locked to a specific event and epoched according to the 

experimental design of each study.  Time-frequency analyses were conducted on EEG data 

between 1-99Hz in order to measure experimental effects in the entire spectrum; 

however, all hypotheses stated are with regard to the power of beta oscillations (~12-

30Hz).  Oscillatory phase was not analysed in this thesis.  Time-frequency analyses 

represent the power of oscillatory activity at different frequency bands over time; data 

was averaged over selected electrodes of interest (specific to each study) in order to 

represent data in 2D time-frequency plots. 

There are multiple different methods for time-frequency decomposition that have been 

taken from signal processing methods used in multiple areas of science and engineering 

and are used in this thesis. 

Fourier Transform (FT).  The Fourier transform (FT) represents the basic underlying 

principle used to extract frequency, power and phase information from a time series of 

data.  The FT works by computing the dot product (the similarity between two vectors) 

between the time series, in this case the EEG signal, and sine waves of different 

frequencies.  This produces the phase and power of the signal at each frequency specified 

(Figure 2.3).  The Nyquist theorem states that at least two points per cycle are needed to 

measure a sine wave and therefore the fastest frequency that can be measured in any 

epoch of data is calculated by: number of data samples/2+1.  This is important to ensure 

epoched data have enough samples to calculate the fastest specified frequency.  However, 

the FT method lacks temporal localisation i.e. the FT does not show how frequency 

characteristics change over time, and therefore assumes stationarity of the data across the 

epoch, which is unlikely to be true for EEG data.  Therefore, other time-frequency 

decomposition methods that are based on the same underlying principles of the FT, but 

take this into account may be more suited for analysing EEG data. 
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Short-time FT (SFT).  The short time FT compensates for this lack of temporal localisation 

by computing the dot product between sine waves of different frequencies with short time 

segments of EEG data that overlap temporally.  A taper (e.g. Hanning taper) should be 

applied to the EEG data to attenuate the amplitude of the EEG signal at the beginning and 

end of the time window in order to prevent edge artefacts.  In this thesis I use a version of 

this method called Welch’s method applied using the Matlab function ‘pwelch’.  This 

function returns the Power Spectral Density (PSD) estimate for discrete time segments 

using Welch’s averaged, modified periodogram method.  In each window a discrete FT 

produces a periodogram and the squared magnitude of this represents power.  Using this 

method the temporal and frequency smoothing remain fixed, therefore wavelet 

convolution is potentially a better method where smoothing can be controlled. 

 

 

Figure 2.3. Demonstration of the variables that can be extracted from the Fourier Transform (FT).  
A) Simulated time series data.  B) A 3D representation of the results from the FT.  The FT produces a value 
of the power (C) and phase (D) of the signal at each specified frequency collapsed over time.  Figure 
adapted from Cohen, (2014). 

There are several options to calculate how power and phase change as a function of both 

frequency and time.  These involve convolving a kernel with the EEG time series.  This 

means sliding the kernel along the time series data, such that the dot product is calculated 

between the kernel and the corresponding segment of data for each time step.  The 

corresponding dot product at each time point is placed at the centre of the kernel, 
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therefore zero padding needs to be added either side of time series data to ensure the two 

vectors compared are the same length (Figure 2.4).  One optimal kernel for this 

convolution is the Morlet wavelet. 

 

Morlet wavelet analysis.  Morlet wavelets are produced by placing a Gaussian window over 

a sine wave of a specified frequency and a specified number of cycles.  The wavelet acts 

like a bandpass filter around the peak central frequency (Figure 2.5A); multiple wavelets 

with specified peak frequencies are used to extract data from the whole frequency 

spectrum.  In order to extract power and phase information from this band-pass filtered 

signal, complex wavelets must be used.  The convolution of a complex wavelet with the 

EEG signal produces a series of complex dot products that therefore have a real and 

imagined component.  Power and phase are calculated based on the magnitude and angle 

of the complex dot product in polar space (Figure 2.5B).  The number of cycles of the 

wavelet determines the trade-off between temporal and frequency smoothing.  Figure 2.5C 

shows that for a low number of cycles, 3, the temporal precision is greater than for a 

higher number of cycles, 10; however, the frequency precision is greater for 10 cycles 

compared to 3.  Therefore, the number of cycles can be adjusted depending on the 

requirement of the hypothesis to have high temporal or high frequency precision.  In 

addition, if the number of cycles remains constant, the length of the time window will 

Figure 2.4. Overview of 
convolution.  The signal is 
weighted by the kernel by 
computing the dot product 
between the kernel and the 
signal.  The dot product 
represents the similarity 
between two vectors and is 
calculated by multiplying the 
kernel and the corresponding 
window of time series data then 
summing the result.  This 
produces a single data point.  
The kernel is then moved over 
one time-step and a second dot 
product is calculated.  This 
continues for the whole time 
series.  However, as the dot 
product at each point is placed 
at the central point of the kernel, 
the resultant weighted signal is 
shorter than the original.  Zero-
padding is therefore added on 
either side of the original time 
series in order to recreate a 
weighted signal that is the same 
length as the time series. Figure 
adapted from Cohen, (2014) 
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decrease with increasing frequency such that temporal precision will increase and the 

frequency precision will decrease.  To maintain a balance between temporal and 

frequency precision throughout the time-frequency decomposition then the number of 

cycles can be set to vary as a function of frequency. 

 

 

Figure 2.5. Overview of the Morlet Wavelet analysis method.  A) The Morlet wavelet acts as a band pass 
filter only extracting data from the peak central frequency of the wavelet.  B) In order to extract phase and 
power from the band-pass filtered signal a complex wavelet must be used which has both real and 
imaginary parts.  By imagining the dot product from the convolution of the wavelet and signal plotted in 
complex space, the calculation of phase and power can be understood.  The squared length of the vector 
from the origin to the dot product is power and the angle of the vector with respect to the positive real axis 
is the phase.  This is repeated with wavelets of different peak frequencies to complete the time-frequency 
plot.  C) The number of cycles of the wavelet determines the trade-off between the temporal and frequency 
smoothing of the resultant time-frequency data.  A low number of cycles will have better temporal precision 
(upper panel) and a high number of cycles will have better frequency precision (middle panel).  By changing 
the number of cycles as a function of frequency, the balance between these precisions can be maintained 
(lower panel).  Figure adapted from Cohen, (2014). 
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Multitaper analysis. Multitapers offer another time-frequency decomposition method in 

which short time segments are multiplied by tapers with different spectral characteristics 

in a very similar way to the wavelet analysis (Figure 2.6).  However, here the time window 

remains the same over all frequencies.  The longer temporal support for higher 

frequencies means there is a better estimate of power, therefore this method is optimal for 

high frequency activity, however this occurs at the expense of temporal precision.  Both 

time-frequency methods are correct, but simply differ in their trade-off between temporal 

and frequency smoothing. 

 

 

Figure 2.6. Overview of Multitaper analysis.  Tapers of different frequencies are convolved with the 
signal to produce power spectra at the specified frequencies.  The multitaper method is an extension of the 
SFT method designed to increase the SNR.  Overlapping segments of time in the SFT will still produce edge 
artefacts, therefore by using several tapers with different temporal characteristics this is reduced.  The 
phase values refer to the phase of the sine wave collapsed over the tapered time window rather than 
representing a changing phase-angle with each time step.  Figure adapted from Cohen, (2014) 

In this thesis both the Morlet wavelet analysis and the Multitaper analysis are used in 

different chapters using inbuilt SPM functions and custom written MATLAB code. 

2.4.3. Baseline Normalisation 

Importantly, raw power values produced by time-frequency decomposition are very 

difficult to interpret.  The power law means power decreases with increasing frequency 

making it difficult to visualise power across a large range of frequency bands and difficult 

to make quantitative comparisons of power across frequency bands.  Raw power is also 

modulated by individual differences in skull thickness and cortical anatomy and values are 

not normally distributed meaning parametric statistics cannot be applied directly to raw 

power values.  However, these limitations can be overcome by normalising the data.  This 

makes power easier to interpret by displaying power as a change from a specified baseline 

period, transforms all power values onto the same scale and ensures the data is normally 
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distributed.  The specific method of baseline normalisation used for each analysis is 

specified in each chapter. 

2.5. EEG Statistical Analyses 

2.5.1. General Linear Model 

To analyse the time-frequency data produced in this thesis I have used a General Linear 

Model (GLM) from within the SPM toolbox.  The underlying principle of the GLM is linear 

regression: Y=X*β1+β0+ε.  This equation describes the linear model which best explains 

the relationship between the variables Y and X.  The intercept (β0) is a constant which 

describes the value of Y when X=0.  The slope or gradient (β1) describes the predicted 

change in Y for every one unit change in X; this explains how these two variables are 

related.  The residual error (ε) describes how far each data point sits from the estimated 

model; the linear model selected is the model that minimises the sum of squared errors 

(SSE).  The GLM expands this simple situation so that each term includes a set of variables.  

This multiple regression therefore allows us to include a greater number of predictors that 

can be used to explain the observed data, which when used for neuroimaging is the neural 

activity.  In this case, X represents a design matrix where each column represents a 

hypothesised regressor of interest and each data point or row is coded based on how that 

variable was modulated during the experimental task.  For example (Figure 2.7), in a 

mismatch negativity task, all the trials in which a participant heard a standard tone would 

be coded 1 in column X1 whereas all the trials in which a participant heard a deviant tone 

would be coded 1 in column X2.  For each column of the design matrix, Xi, the GLM 

estimates the relationship between the regressor and the observed neural activity, which 

produces the parameter βi.  It is also important to include regressors of no interest, which 

may explain some of the variance in the observed data, but not be directly relevant to the 

task, for example eye movements or breathing rate.  Including these in the model will 

decrease the residual errors and improve the model fit for each regressor of interest.   

At the first level, the GLM is conducted for each voxel in the time-frequency image for each 

participant.  In this thesis all analyses are conducted over a region of interest (ROI) over 

sensorimotor cortex.  The estimated time-frequency images (βi) for each regressor of 

interest for each participant are then brought forward to the second level.  At this level, in 

most cases in this thesis, a one sample t-test was used to determine if the relationship 

between the neural activity and the regressor of interest was consistent across 

participants.  For example, if post-movement beta activity positively correlated with the 
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first regressor of interest in the majority of participants, then this activity would be 

significantly greater than 0 at the second level.  A statistical parametric map (SPM) is then 

produced, which represents the t-statistic at each voxel in the time-frequency image. 

 

 

Figure 2.7. Overview of the General Linear Model (GLM) used in a first-level analysis.  Example 
mismatch negativity experiment to demonstrate the use of a GLM in determining whether any activity in 
the time-frequency data could be predicted by the deviant or standard tones presented.  Y = observed data 
from one voxel of the time-frequency data for each trial.  X1 = regressor of standard trials. X2 = regressor of 
deviant trials. β1 and β2 = gradient of the model which best explains the relationship between these 
regressors and Y.  β0 = constant term.  ε = residual error of the model.  The GLM is repeated for every voxel 
in the time-frequency image, which produces a 2D plot for each estimated fit (β1 and β2).  These β images 
can then be used in a second-level analysis to compared these model fits between subjects and determine if 
there were any consistent relationships between the time-frequency data and the experimental variables.  
Regressors of no interest can also be included to explain some of the variance in the EEG data, which will 
improve the model fits for the regressors of interest. 

 

2.5.2. Multiple comparisons problem 

2.5.2.1. Random Field Theory for SPM 

The multiple comparisons problem (MCP) must be addressed any time multiple t-tests are 

conducted on an experimental dataset as described above.  The fundamental basis of this 

problem is that for any statistical test in which the alpha for rejecting the null hypothesis 

is 0.05, there is a 1 in 20 chance of reporting a false positive; as the number of tests 

increases, the probability of making a type 1 error increases.  The Bonferroni method 

corrects for this by changing the alpha threshold for rejecting the null hypothesis to be 

higher: alpha/number of tests.  However, for neuroimaging data this is far too 

conservative, because each voxel in a SPM is often highly correlated with neighbouring 

voxels (especially after spatial smoothing), therefore the data violate an underlying 

assumption of the Bonferroni method that the tests performed are independent.  Random 

Field Theory (RFT) is an alternative method of correcting for multiple comparisons for 

neuroimaging (J. M. Kilner et al., 2005).  The method calculates the expected Euler 



Chapter 2 – General Methods 

64 
 

characteristic (EC) for each t-threshold of an image, which states how many peaks are 

likely to appear above that threshold given the resolution of the image.  From this we can 

determine the threshold at which the expected EC is 0.05; therefore, if any peaks remain 

after thresholding the image at this value, then the probability of those occurring by 

chance is less than 0.05.  In this thesis, I have reported whether significant peaks of 

activation remained following correction by RFT. 

 

2.5.2.2. Statistical Non-parametric Mapping (SnPM) 

An alternative solution to the multiple comparisons problem for functional neuroimaging 

is to use non-parametric statistics.  Statistical non-parametric mapping (SnPM) offers an 

alternative method for analysing neuroimaging data, which has been shown to be more 

robust and sensitive to identifying significant areas of activation in particular contexts 

(Holmes et al., 1996; Nichols and Holmes, 2002).  SnPM analyses are based on the 

principles of permutation testing.  For activation of a single voxel across multiple testing 

conditions, the null hypothesis of a permutation test states that the labels assigned to the 

different conditions being compared are arbitrary, therefore the activation in that voxel in 

each condition is the same.  To test this a permutation distribution is generated by either 

randomly shuffling the condition labels, or randomly assigning the activation data to 

different conditions over a large number of different permutations.  For each permutation 

a t-statistic is produced and the p-value is determined as the proportion of t-statistics in 

the distribution greater or equal to the t-statistic of the observed data.  Therefore, at an α-

level of 0.05, the null hypothesis is rejected if the observed t-statistic falls within the 95th 

percentile of the permuted distribution and thus it is highly unlikely that the activation in 

that voxel occurred by chance.  Using this non-parametric analysis, there are no 

assumptions regarding the distribution of the data, therefore this type of analysis is more 

robust if the observed data is not normally distributed, which is likely with neuroimaging 

data. 

If the above analysis was repeated for all voxels in the brain or within an image of interest 

than the p-values produced would need to be corrected for multiple comparisons.  To 

avoid the MCP the single voxel observed t-statistic can instead be compared to a maximum 

statistic generated across the whole image of interest.  One method of generating this 

maximum statistic is to set a maximum suprathreshold cluster size (STCS), which acts as a 

critical threshold for detecting interconnected voxels of activity: clusters.  Using the same 

logic as single voxel permutation tests, a permutation distribution can be generated from 

shuffling the labels of each voxel t-statistic within the image and determining the 

maximum STCS for each permutation.  If the maximum STCS of the observed data is within 
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the 95th percentile of the permuted distribution than the observed cluster is unlikely to 

have occurred by chance.  By comparing to this maximum statistic, the MCP is avoided. 

This method is more sensitive than using RFT or the Bonferroni correction, therefore is 

less likely to produce Type II errors.  By comparing these different methods the likelihood 

of a Type II error having occurred can be determined.  For example, in chapter three of 

this thesis, a significant cluster of activity identified with SPM was no longer significant 

when corrected for using RFT; however, this was significant when the same analysis was 

repeated with SnPM, which suggests that using RFT may have been too conservative and 

produced a Type II error. 
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CHAPTER 3  

Study One: Investigating the neurophysiological 
correlate of somatosensory attenuation using a 
force matching paradigm and median nerve 
stimulation 

3.1. INTRODUCTION 

Somatosensory attenuation, the top-down filtering or central gating of afferent 

information, has been extensively studied in two fields: physiologically and perceptually.  

Physiological somatosensory attenuation is represented as a decrease in the amplitude of 

the primary and secondary components of the somatosensory evoked potential (SEP), 

generated using median nerve stimulation, during and prior to movement of the 

stimulated limb (Rushton et al., 1981).  Perceptual somatosensory attenuation is described 

using the analogy of a persons’ inability to tickle oneself (Blakemore et al., 2000).  This has 

been attributed to a central cancellation of the reafferent somatosensory signal by the 

efference copy of the motor command prior to making the tickling action.  When someone 

else produces the tickling sensation, there is no efference copy to cancel out or reduce the 

incoming afferent signal, therefore the sensory information is not attenuated (Blakemore 

et al., 1999, 1998).  It has been suggested that “movement-induced somatosensory gating 

may be the physiological correlate of the decreased sensation associated with self-

produced tactile stimuli in humans” (Blakemore et al., 2000).  However, the relationship 

between these two forms of somatosensory attenuation has never been formally tested.  

This was the aim of the study in this chapter. 

Specific predictions about the neurophysiological correlates underlying the perceptual 

phenomenon have not been addressed.  fMRI studies have attempted to localise the 

networks involved in somatosensory attenuation and suggest that perceptual attenuation 

may be driven by activity in the secondary somatosensory cortex (SII; Blakemore et al., 

1998; Shergill et al., 2013).  This is in contrast to SEP attenuation where it is has been 

shown that the early SEP components, which are attenuated during movement, originate 

from activity in the primary somatosensory cortex (SI; Jiang et al., 1990).  Indeed, studies 

measuring neurophysiological attenuation to action-driven and externally-driven 

sensations in the auditory and visual domains have highlighted differences in the locus 
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and timing of attenuation dependent on the nature of the task (Bäss et al., 2008; Hughes et 

al., 2013; Roussel et al., 2014), therefore this may demonstrate a potential dissociation in 

mechanism depending on whether the task is low-level (e.g. active movement) vs high-

level (e.g. force matching).  Although it has been suggested that movement-induced SEP 

attenuation may underlie perceptual somatosensory attenuation, the relationship between 

the two may be more complex based on the structure of the cortical hierarchy. 

This study aimed to measure perceptual and physiological somatosensory attenuation in a 

single paradigm to determine the relationship between these phenomena.  The force 

matching task (Pareés et al., 2014; Shergill et al., 2005, 2003) was used to measure 

perceptual attenuation.  Participants were asked to match target forces either by pressing 

on themselves (self-generated condition) or by using an external robot to manipulate the 

force applied (externally generated condition).  Median nerve stimulation was given at 

specific time points throughout the behavioural task and EEG was recorded to quantify the 

relationship between SEP amplitude and perceptual sensory attenuation.  Firstly, in line 

with the literature, I hypothesised that participants would overestimate the matched force 

in the self-condition compared to the external condition.  Secondly, I hypothesised that 

SEPs evoked during force generation would be attenuated relative to SEPs evoked during 

a steady-state contraction once the matched force level was reached and being held.  

Finally, I hypothesised that if this physiological gating was the mechanism underlying 

perceptual somatosensory attenuation then the magnitude of SEP attenuation would be 

modulated by behavioural task condition; however, if these two forms of somatosensory 

attenuation were dissociable and potentially functionally distinct then SEP amplitudes 

would not be modulated by the behavioural task. 

3.2. METHODS 

3.2.1. Participants 

18 healthy participants (male=9; female=9) aged 20-56 years old (mean ±SD: 28.24 ±8.53) 

took part in this study. Participants had no history of neurological or psychiatric illness. All 

participants were right handed and gave written informed consent prior to taking part. 

This study was approved by the UCL Research Ethics Committee and all testing took place 

at the UCL Institute of Neurology, Queen Square.  2 participants were excluded due to 

noisy EEG data. 
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3.2.2. Experimental setup 

Participants sat at a desk with their left hand supernated and index finger extended under 

a force transducer.  Two haptic robots were positioned in front of the participant (Figure 

3.1A).  One robot was stationed above the force transducer and directly produced forces 

on the left index finger.  The second robot was positioned over a pliable object and 

controlled the force produced by the first robot in the “external” condition (see Task 

Procedure: Force Matching Task).  The force transducer recorded all forces exerted on the 

left finger using Spike2 v6.17.  The target forces applied were: 1N, 1.5N, 2N, 2.5N.  A 

peripheral nerve stimulator was used to stimulate the median nerve at the left or right 

wrist at specific time points throughout the experiment.  EEG data were recorded using a 

BioSemi 128 active electrode system at a sampling frequency of 2048Hz.  Two external 

reference electrodes were placed on the participants’ earlobes. 

3.2.3. Task Procedure: Force Matching Task 

To measure perceptual sensory attenuation a classic force-matching task was used (Pareés 

et al., 2014; Shergill et al., 2005).  Participants received a force (produced by robot 1) on 

their left index finger for 3s.  They were instructed to match the intensity of that force on 

the same finger by either pushing down on robot 1 to emulate the force produced (“self” 

condition) or by pushing down on robot 2 (“external” condition; see Figure 3.1A).  Robot 2 

was linearly connected to robot 1 such that a 1cm movement in robot 2 produced a 1.25N 

downward force on robot 1.  Once the participants had produced the appropriate force 

they were instructed to hold the matched force until they heard the stop signal (4.5s). The 

inter-trial-interval (ITI) was 1s. Instructions for the behavioural task appeared on a 

computer screen in front of the participant throughout the experiment.  Median nerve 

stimulation (MNS) was either given whilst holding the matched force only (x3 every 

500ms from 3s after the GO signal; 32 trials per block; “Hold stimuli”) or additionally 

during force production (x5 stimuli every 500ms from GO signal 12 trials per block; 

“Phasic stimuli”; see Figure 3.1B).  Participants completed alternate blocks of each 

condition counterbalanced across participants.  There were 44 trials in each block 

containing equal numbers (x11) of each target force (ratio of trials with and without 

phasic stimuli=3:8).  There were 4 blocks of each condition in one session.  Participants 

completed the same behavioural task in two sessions (mean (±SD) time between sessions: 

2.8 days ±3.4).  The stimulated wrist alternated between sessions and the order was 

counterbalanced across participants. 
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Figure 3.1. Experimental set up and task design for the force matching paradigm. A) Self condition 
(upper panel): robot 1 was fixed onto a force transducer.  Robot 1 produced a target force on the left index 
finger; this was matched by pushing down on robot 1 using the right index finger.  External condition 
(bottom panel): robot 2 was linearly connected to robot 1 such that any force exerted on robot 2 was felt on 
the left index finger.  The gain was altered so that more force was required in this condition to produce the 
same fore output across conditions.  B) Schematic of the trial design for a single trial. The top line is the 
force output from the force transducer during the target and matched forces. The top middle line shows the 
timing of the hold stimuli relative to the force output; behavioural data were only used for these trials.  The 
bottom middle line shows trials that additionally received phasic stimuli and the timing of these relative to 
the force output.  The bottom line is a time axis in seconds aligned to the start of the target force at 0s.  The 
red dotted lines mark the time period in which the magnitude of the matched force for each trial was 
calculated. 

3.2.4. Task Procedure: Movement Control 

To record a measure of SEP attenuation during movement independent from the 

behavioural task, participants completed a movement control task in both sessions.  The 

task consisted of alternating blocks of movement and rest.  When participants saw the 

word “MOVE” presented on a computer screen accompanied by an auditory go signal, 

participants were instructed to make a rapid, large and frequent tapping motion of the 

index finger of the wrist being stimulated.  When they saw the word “REST” participants 

were instructed to remain as still and relaxed as possible.  During each block participants 

received 25 electrical pulses to the wrist at a frequency of 2Hz.  There were 20 blocks in 

total in each session (10 rest, 10 movement) resulting in 250 SEPs per condition for each 

wrist. 

3.2.5. Median Nerve Stimulation 

Two electrodes were placed on the surface of the skin in the centre of the wrist above the 

median nerve with the cathode more distal just below the crease of the wrist.  The 

intensity of the stimulation at threshold (slight thumb twitch) was identified and then 
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increased by 1mA to produce a definite thumb twitch.  The intensity remained the same 

throughout the experiment with a pulse width of 0.2µm. 

3.2.6. Behavioural Data Analysis 

Force values were extracted from Spike into MATLAB.  Trials in which median nerve 

stimulation was given during force production in the matching phase (phasic stimuli) 

were removed from the behavioural analysis.  Mean force output per trial was calculated 

from a specific time window of 2.5-3s after the GO signal to start matching (Figure 3.1B).  

Median nerve stimuli were not given until 3s in these trials (no phasic stimuli given) and 

therefore would have had no interference with the behavioural data during this time 

window.  The mean force output during the target force was also recorded in the same 

time window in order to determine the relationship between the voltage output of the 

force transducer and the force applied by the robot given in Newtons.  A calibration 

procedure was then used to scale the force output (V) to determine the true magnitude 

difference in N from the given target force. 

It has previously been shown that people with schizophrenia were impaired on the force 

matching task such that they did not overestimate force in the self condition (Shergill et 

al., 2005). In addition, the magnitude of perceptual sensory attenuation in a population of 

healthy controls negatively correlated with their scores of delusional ideation (a measure 

of schizotypy). To replicate previous findings we hypothesised that the magnitude of force 

matching would be negatively correlated with schizotypy scores.  All participants 

completed the Peter’s Delusion Inventory (PDI) prior to taking part in the experiment.  An 

overcompensation score for the force matching task was calculated for each participant by 

finding the difference between the matched force and the target force in the self condition.  

Parametric and non-parametric correlation analyses measured the relationship between 

overcompensation scores and PDI scores (one-tailed) across participants. 

3.2.7. EEG Data Analysis: Pre-processing 

Data were pre-processed using SPM 12.  EEG data were re-referenced, by deducting data 

from two external electrodes attached to the participants’ earlobes. The data were then 

filtered using a highpass filter at 0.1Hz.  For analysis of the time x frequency data only, a 

low pass filter at 100Hz was also used.  A trigger was sent to the EEG system at the time of 

every median nerve stimulus.  The data were epoched around the time of median nerve 

stimulation with a time window of -100ms to 250ms for the SEP data.  For the time-

frequency analysis epochs were generated from the first median nerve stimulus given 
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after force matching in trials with hold stimuli only with a time window of -7500ms to 0; 

in this way we could ensure that there were no stimulus artefacts in the window of 

interest.  The different experimental blocks were merged into a single file.  For the time-

frequency analysis the power of the EEG signal at each frequency from 1 to 99Hz in steps 

of 2 was estimated using the Multitaper spectral estimation in SPM with a sliding time 

window of 400ms that moved in steps of 50ms.  The data were transformed using the Log 

rescale function and baseline corrected using a 50ms window from the first 100ms of the 

epoched time window. 

3.2.8. EEG Data Analysis: SEP analysis 

The epoched EEG data were averaged over trials and the topography examined to 

determine a ROI over sensorimotor cortex.  Individual ROIs over sensorimotor cortices 

were selected based on electrodes that showed a negative peak at ~20ms and a positive 

peak ~30-45ms after the stimulus.  For each participant electrodes for analysis were 

selected from SEP data averaged over all conditions and the same ROI was used for all 

analyses for that participant.  Epoched data were sub-divided dependent on whether the 

median nerve stimulation was given during the phasic part of the force matching or whilst 

holding the matched force.  Five well characterised peaks of the SEP were identified and 

used for analysis: N20, P30, P45, N55 and P100.  For each participant an average SEP 

across all conditions over the specified ROI was generated and from this the latency of 

each peak was identified; the same latencies were then used for all subsequent analyses.  

Mean latencies left hemisphere (ms): N20=20.4±1.2, P30=29.6±3.3, P45=45±3.7, 

N55=64±8.0, P100=95.1±10.7. Mean latencies right hemisphere (ms): N20=21.3±3.7, 

P30=31.4±6.2, P45=45.2±5.0, N55=61.8±8.9, P100=94.6±13.6.  These latencies were used 

to calculate the amplitude of each peak in the SEP for each condition so there was no 

experimenter bias in determining peak amplitudes (Kilner, 2013).  The amplitude 

difference between neighbouring peaks generated the dependent variable for each 

component of the SEP: primary complex = N20-P30; secondary complex = P45-N55; and 

the later component = N55-P100. 

To replicate previous neurophysiological data showing SEP attenuation with movement, 

the mean amplitude difference of each SEP component was compared for MNS given 

during movement vs rest in the control task.  To determine the effect of task condition on 

SEP attenuation the mean amplitude difference of each component was compared in a 2x2 

repeated measures ANOVA with the following factors: self vs external task condition; and 

hold vs phasic stimuli.  The contrast between hold vs phasic stimuli was included to 

provide a measure of physiological SEP attenuation (most commonly seen comparing 
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movement and rest) within the behavioural paradigm with the rationale that SEP 

components should show a greater decrease in amplitude during force generation (phasic 

stimuli) compared to those produced during an isometric contraction (hold stimuli).  A 

significant interaction between task condition and MNS time point would therefore 

suggest greater physiological SEP attenuation in one task condition compared to the other. 

To further substantiate the relationship between perceptual and physiological sensory 

attenuation, non-parametric and parametric correlations were also carried out between 

the magnitude of physiological sensory attenuation (difference between SEP amplitudes 

during the hold phase of force matching and the phasic phase) for each component of the 

SEP (N20-P30, P45-N55 and N55-P100) and PDI scores for both hemispheres. 

3.2.9. EEG Data Analysis: Time-Frequency Analysis 

A time-frequency analysis was conducted to investigate whether there was any aspect of 

the oscillatory neural signal that significantly correlated with the behavioural data.  The 

time-frequency data files were converted into images for statistical analysis in SPM.  

Images were created of the average of all trials for each condition (SELF, EXTERNAL) and 

force level (1N, 1.5N, 2N, 2.5N) creating 8 images in total per participant.  The time-

frequency data were averaged over the ROI previously selected in the SEP analysis to 

remove the dimension of “scalp” for both hemispheres independently.  The EEG data were 

then regressed against the behavioural outcomes of the task for each condition: 1) the 

magnitude of sensory attenuation (the target force – the matched force); 2) the target 

force given.  The latter covariate was used to control for any changes in neural activity as a 

result of force applied to the left finger.  A beta image was created for each participant and 

used in a one sample t test at the group level to determine in which voxels the regressions 

at the first level were either positively or negatively significantly different from 0. To test 

for any significant clusters in the time-frequency images we ran a permutation analysis 

using the SnPM toolbox within SPM with 500 permutations.  

3.3. RESULTS 

3.3.1. Behaviour: Participants overestimate force in the self condition 

compared to the external condition 

As expected, there was significant perceptual sensory attenuation across participants in 

the force matching task replicating previous findings meaning that participants 

significantly overestimated the matched force in the self condition compared to the 
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external condition.  A 2x4 repeated measures ANOVA comparing condition (self vs 

external) and force level (1N, 1.5N, 2N, 2.5N) for the matched force revealed a significant 

main effect of condition (F(1,15)=19.43,p<0.001), a significant main effect of force level 

(F(3,45)=79.23,p<0.001) and a significant interaction (F(3,45)=3.10,p=0.036).  Overall 

participants produced significantly greater force output in the self condition 

(M±SD=2.34±0.41N) compared to the external condition (M±SD=1.80±0.79N; Figure 3.2A) 

demonstrating significant perceptual sensory attenuation.  Pairwise comparisons between 

the two conditions at each force level showed that despite the significant interaction the 

matched force produced in the self condition was significantly larger than the external 

condition at each force level (p<0.002; corrected for multiple comparisons).  Comparing 

the matched force and the target force against force level for each condition separately 

using two 2x4 rmANOVA revealed a significant difference between the matched force and 

the target force in the self condition (F(1,15)=26.31,p<0.001), but no significant difference 

between the matched force and the target force in the external condition (p=0.168).  Both 

conditions showed a significant interaction between force level and the difference 

between the matched and the target force (self: F(3,45)=25.19,p<0.001; external: 

F(3,45)=21.63,p<0.001). As can be seen in Figure 3.2B, there was a greater difference 

between the matched force and the target force at lower force levels compared to higher 

force levels.  Replicating previous findings by Teufel et al (2010), we found a significant 

negative correlation between the overall magnitude of perceptual sensory attenuation and 

scores of delusional ideation using the nonparametric Spearman’s correlational analysis 

(rs=-0.56, p=0.012; one-tailed; Figure 3.2C).  Here we have shown that we were able to 

demonstrate significant behavioural sensory attenuation, replicating previous results, and 

critically, demonstrate that MNS given after matching did not abolish this effect.  
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Figure 3.2. Behavioural data: greater overall force output in the self condition compared to the 
external condition.  A) Graph A plots the mean matched force for each target force level given (1N, 1.5N, 
2N and 2.5N) for the self condition (purple, solid) and the external condition (blue, solid).  The dotted black 
line represents the input target forces and the coloured dotted lines represent the mean force output 
calculated during the target force for each condition.  The force output has been converted from voltage (V) 
to Newtons (N).  B) Graph B plots the same data as graph A before it has been converted to N and having 
been mean corrected to demonstrate the statistical differences between the conditions. C) Correlation 
between the magnitude of perceptual sensory attenuation and scores of delusional ideation taken from the 
PDI replicating Teufel et al (2010)’s findings (parametric: r=-0.35, p=0.092; non-parametric: r=-0.56, 
p=0.012; both one tailed). 

 

3.3.2. Neurophysiology: Movement attenuates the primary and 

secondary complexes of the SEP 

To ensure we could measure standard SEP attenuation previously recorded in response to 

movement, participants performed a simple control task in which we compared SEP 

amplitudes at rest and during movement.  We were able to successfully replicate previous 

findings.  SEPs recorded over sensorimotor cortex contralateral to the moving hand being 

stimulated were attenuated during movement compared to rest in a movement control 

task (Figure 3.3).  The mean amplitude of the primary complex, N20-P30, from SEPs 

recorded over the hemisphere contralateral to movement, significantly decreased when 

the stimulated index finger was moving compared to rest; this was conducted separately 
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for right and left wrist MNS (left hemisphere: t(15)= -3.83,p=0.002; right hemisphere: 

t(15)=-5.68,p<0.001).  The same result was found for the secondary component, P45-N55 

(left hemisphere: t(15)= 2.70,p=0.017; right hemisphere: t(15) = 3.15,p=0.007).  

Individual ROIs were selected for each participant based on SEP data averaged across all 

conditions. Figure 3E shows the overlap of selected electrodes over each hemisphere. 

 

 

Figure 3.3. Movement decreases SEP amplitudes relative to baseline.  A+C) Average SEP traces in 
response to median nerve stimulation from a ROI over the right (A) and left (C) sensorimotor corticies for 
the rest (orange) and movement (pale orange) conditions of the movement control task.  B+D) The 
magnitude of the mean SEP amplitude for N20 – P30 and P45 – N55 across all subjects is shown for the rest 
(orange) and movement (pale orange) conditions for the right (B) and left (D) sensorimotor cortices. E) 
Individual ROIs were selected for each subject based on SEP data averaged across all conditions, therefore 
the scalp map shows the overlap of selected electrodes over each hemisphere.  The colour bar represents the 
number of participants for which that electrode (area) was selected for analysis. SEPs were baseline-
corrected using the average amplitude in a 50ms pre-stimulus time window from -100ms.  S = median nerve 
stimulus. 
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3.3.3. Neurophysiology: SEP attenuation of the primary and secondary 

components was not modulated by behavioural task condition 

MNS was given at two time points during the behavioural task: “phasic stimuli” were given 

directly after the GO cue to start matching during force generation; and “hold stimuli” 

were given during steady-state contraction when the target force was matched (see Figure 

3.1B).  We hypothesised that mean SEP amplitudes would be smaller for phasic SEPs 

compared to hold SEPs as it has been previously shown that there is greater physiological 

sensory attenuation during force generation compared to an isometric contraction.  This 

contrast was used to demonstrate standard physiological SEP attenuation seen with 

movement during the behavioural task.  We then compared mean SEP amplitudes at these 

time points and across conditions in the behavioural task using a 2x2 repeated measures 

ANOVA (condition: self vs external, x, stimulation time: phasic SEPs vs hold SEPs) with the 

hypothesis that a significant interaction between stimulation time and task condition 

would demonstrate a direct modulation of SEP attenuation with task condition. 

Over left sensorimotor cortex, contralateral to the moving hand, there was a significant 

effect of stimulation time for both the primary (N20-P30: F(1,15)=15.93,p=0.001) and 

secondary (P45-N55: F(1,15)=10.62, p=0.005) components of the SEP.  For both 

components the mean amplitude was greatest for the hold SEPs compared to the phasic 

SEPs demonstrating significant SEP attenuation during the behavioural task (Figure 

3.4A,B,C).  However, there was no significant effect of condition for either component 

(N20-P30: p=0.183, P45-N55: p=0.516) and no significant interaction (N20-P30: p=0.430, 

P45-N55: p=0.893) suggesting SEP attenuation of the primary and secondary components 

was not modulated by task condition. 

Interestingly, similar results were found over right sensorimotor cortex, ipsilateral to the 

moving hand and contralateral to the finger receiving the matched force.  There was no 

significant effect of stimulation time for the primary component (N20-P30: p=0.902); 

however, there was a significant effect of stimulation time for the secondary complex 

(P45-N55: F(1,15)=11.94, p=0.004).  The mean amplitude for the hold SEPs was greater 

than the phasic SEPs (Figure 3.4E,F,G).  Again there were no significant effects of condition 

(N20-P30: p=0.157, P45-N55: p=0.565) and no significant interactions (N20-P30: p=0.724, 

P45-N55: p=0.389).  Attenuation of the primary and secondary components of the SEP was 

not significantly modulated by the behavioural task condition. 
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Figure 3.4. Attenuation of SEP amplitudes with stimulation time and behavioural task condition. 
The left column (A-D) represent data taken from left sensorimotor cortex; the right column (E-H) represent 
data taken from right sensorimotor cortex.  Graphs A+E show the average SEP traces across all subjects for 
the four experimental conditions: self hold stimuli (dark purple); self phasic stimuli (light purple); external 
hold stimuli (dark blue); and external phasic stimuli (light blue).  The remaining graphs show the 
magnitude amplitude difference between adjacent SEP components for each condition for N20-P30 (B+F), 
P45-N55 (C+G) and N55-P100 (D+H).  Graphs B,C+G show a significant effect of stimulation time 
representing significant attenuation but no significant effect of behavioural task condition.  Graphs D+H 
show no significant effect of stimulation time but a significant effect of behavioural task condition.  SEPs 
were baseline-corrected using the average amplitude in a 50ms pre-stimulus time window from -100ms. 
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To ensure there were no specific modulations of SEP attenuation with force level, the same 

analysis used for the behavioural data was conducted.  A 2x4 repeated measures ANOVA 

compared the magnitude of SEP attenuation (hold – phasic) at each force level for the self 

and external conditions.  This was conducted separately for the primary and secondary 

SEP components and for both hemispheres.  There were no significant main effects of 

condition (left hemisphere: N20-P30 p=0.238, P45-N55 p=0.766; right hemisphere: N20-

P30 p=0.505, P45-N55 p=0.848), no significant main effects of force level (left hemisphere: 

N20-P30 p=0.404, P45-N55 p=0.401; right hemisphere: N20-P30 p=0.300, P45-N55 

p=0.398) and no significant interactions between condition and force level (left 

hemisphere: N20-P30 p=0.233, P45-N55 p=0.923; right hemisphere: N20-P30 p=0.890, 

P45-N55 p=0.563). 

To provide further support that SEP attenuation is not related to perceptual sensory 

attenuation, we found no significant correlations between attenuation of individual SEP 

components and scores of delusional ideation across either hemisphere, unlike with 

perceptual sensory attenuation, using non-parametric Spearman’s analysis (left 

hemisphere: N20-P30 r=0.093, p=0.73, P45-N55 r=-0.040, p=0.88; right hemisphere: N20-

P30 r=0.22, p=0.42, P45-N55 r=-0.17, p=0.52). 

3.3.4. Neurophysiology: Attenuation of a later SEP component, N55-

P100, was modulated by behavioural task condition 

In contrast to the results regarding the primary and secondary SEP components, analysis 

of a later SEP component, N55-P100, using the same rmANOVA revealed a significant main 

effect of condition for both the left sensorimotor cortex, F(1,15)=10.72,p=0.005 (Figure 

3.4D), and right sensorimotor cortex, F(1,15)=8.25, p=0.012 (Figure 3.4H).  In both 

hemispheres the mean N55-P100 amplitude for the self condition (left hemisphere: M±SD 

= 2.02±1.93; right hemisphere: M±SD = 3.17±2.94) was significantly less than in the 

external condition (left hemisphere: M±SD = 2.53±1.86; right hemisphere: M±SD = 

3.72±3.26). However, there was no significant interaction between the behavioural 

condition and the stimulation time for either hemisphere (left hemisphere: p=0.460; right 

hemisphere: p=0.216) and no significant main effect of stimulation time (left hemisphere: 

p=0.059; right hemisphere: p=0.123).  Overall, the mean amplitude of the N55-P100 

component was smaller over both hemispheres for the self-condition compared to the 

external condition suggesting that attenuation of this later SEP component correlated with 

perceptual sensory attenuation 
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To investigate whether attenuation of this later SEP component was modulated by force 

level, the same analysis used for the behavioural data and for the early SEP components 

was conducted.  As the main ANOVA revealed a significant main effect of condition but no 

interaction or main effect of stimulation time, a 2x4 repeated measures ANOVA was 

conducted to compare the mean SEP amplitude across hold and phasic SEPs combined at 

each force level for the self and external conditions.  For both hemispheres, there was a 

significant main effect of condition (left hemisphere: F(1,15)=6.11, p<0.026; right 

hemisphere: F(1,15)=4.88, p=0.043) with a lower SEP magnitude difference for the self-

condition (left hemisphere: M±SD=2.01±2.22µV; right hemisphere: M±SD=3.03±3.05µV) 

compared to the external condition (left hemisphere: M±SD=2.55±2.12µV; right 

hemisphere: M±SD=3.54±3.59µV).  However, there was no modulation of SEP amplitude 

with force level (p=0.974) and no significant interaction between condition and force level 

(p=0.426). 

In addition, there was no significant correlation between attenuation of the N55-P100 SEP 

component and scores of delusional ideation across either hemisphere, unlike with 

perceptual sensory attenuation, using non-parametric Spearman’s analysis (left 

hemisphere:  N55-P100 r=-0.25, p=0.34; right hemisphere:  N55-P100 r=-0.15, p=0.59). 

3.3.5. Time-frequency Analysis: Negative correlation between gamma 

band activity and the magnitude of perceptual sensory 

attenuation 

Having demonstrated no significant co-modulation of the SEP components with the 

behavioural data we next tested whether there were any modulations in the time-

frequency domain that correlated with the behaviour.  To this end a time-frequency 

analysis was carried out to identify whether any oscillatory activity over sensorimotor 

cortex correlated with the magnitude of perceptual sensory attenuation to provide a 

potential neurophysiological marker for this behavioural phenomenon.  At the single 

participant level, the average magnitude of sensory attenuation (difference between the 

target force and the matched force) for each force level and each condition (2 x 4; average 

of all trials at each level of each factor; see methods for more details) was regressed 

against the EEG activity in the previously specified ROI across all frequencies and across 

the full time window of a single trial to determine if any neurophysiological activity 

correlated with the behavioural data.  The target force averaged over the same trials was 

also included in the model to regress out the effect of target force.  A one sample t-test at 

the second level revealed a significant cluster over the right sensorimotor cortex within 
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the gamma frequency band with a peak at 54Hz (cluster-level: p=0.004, corrected; peak-

level:  t=4.24,p<0.001,uncorrected).  A non-parametric permutation analysis run with the 

SnPM toolbox confirmed this cluster to be significant at the corrected p<0.05 level. This 

activity was negatively correlated with the magnitude of perceptual sensory attenuation 

and occurred 422ms before the auditory GO signal to start matching (Figure 3.5).  As 

perceptual sensory attenuation increased, i.e. matching became less veridical (self 

condition), the power of oscillatory activity within the gamma frequency band decreased. 

 

 

Figure 3.5. Negative correlation between gamma band oscillatory activity and the magnitude of 
perceptual sensory attenuation prior to force matching.  Time-frequency plot averaged over a 
preselected ROI showing the value of the t-statistic resulting from a one sample t-test at the group level of 
beta images from regression analyses between EEG data and behavioural data at the single subject level.  
This data represents a negative contrast i.e. in which voxels the mean regression across subjects was 
negative.  Gamma oscillatory activity (peak 54Hz) significantly negatively correlated with perceptual 
sensory attenuation in the time period just before the auditory GO cue to match the target force was 
produced (-3422ms before the first MNS).  A non-parametric permutation analysis using the SnPM toolbox 
revealed a significant cluster of activity (outlined in a white dotted line) at the corrected p<0.05 level. 
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3.4. DISCUSSION 

It has previously been proposed that movement-induced cortical gating of SEPs may be 

the mechanism underlying perceptual somatosensory attenuation measured using a force-

matching paradigm.  This study aimed to correlate physiological somatosensory 

attenuation of cortical SEPs with perceptual somatosensory attenuation to test this 

hypothesis.  Primary, N20-P30, and secondary, P45-N55, components of the SEP showed 

significant attenuation during the behavioural task with force production, but this 

attenuation was not significantly modulated by task condition.  This suggests physiological 

attenuation of early SEP components does not underlie perceptual somatosensory 

attenuation.  However, analysis of a later SEP component, N55-P100, demonstrated an 

overall decrease in mean amplitude throughout the self-condition compared to the 

external condition, which suggests attenuation of this component may have a causal 

influence over perception in the force matching task. 

Cortical SEP attenuation of the primary and secondary complexes was clearly seen during 

a movement control task and during the force matching paradigm.  Previous research has 

demonstrated that SEP attenuation is greatest 200-400ms after EMG onset (Starr and 

Cohen, 1985; Wasaka et al., 2012) and increases with the velocity and magnitude of the 

movement (Rushton et al., 1981); therefore, I hypothesised, and subsequently 

demonstrated, significant attenuation of SEPs (over sensorimotor cortex contralateral to 

the moving hand) generated during force production (phasic stimuli) compared to an 

isometric force (hold stimuli).  Interestingly, SEP attenuation of the secondary component, 

P45-N55, was also identified in the right hemisphere, ipsilateral to the moving hand and 

contralateral to the hand receiving the matched force.  Previous research has found no 

attenuation of SEPs in the hemisphere ipsilateral to movement (Cohen and Starr, 1987; 

Kakigi, 1986); but have shown attenuation of early SEP components in response to tactile 

stimulation (Kakigi and Jones, 1986, 1985).  When phasic stimuli were given, the force on 

the left index finger was increasing compared to hold stimuli where the force did not 

change.  This suggests that applying a changing force to the periphery modulates sensory 

gating. 

We further hypothesised that if this physiological somatosensory attenuation was the 

mechanism underlying perceptual somatosensory attenuation then there would be an 

interaction between the amplitude of SEP components at these time points and the 

behavioural task condition with greater SEP attenuation in the self-condition.  However, 

we found no modulation of the early SEP components with behavioural task condition.  



Chapter 3 – Study One 

82 
 

This result is consistent with the hypothesis that these are two distinct forms of 

somatosensory attenuation. 

Interestingly, there was a significant decrease in the mean amplitude of the later N55-

P100 SEP component throughout the self-condition compared to the external condition.  It 

is perhaps not surprising that this later component is differentially modulated compared 

to the earlier components because there is more time for the signal to be influenced by 

interconnected cortical areas.  MEG studies in humans have highlighted that the earliest 

components of the SEP originate in contralateral area 3b, which has dense thalamocortical 

projections, and adjacently connected area 1 within the primary somatosensory cortex 

(Hoshiyama et al., 1997; Kakigi, 1994).  Connections between area 3b and the primary 

motor cortex (M1) and the supplementary motor area (SMA) provide a physiological 

pathway by which early SEP components can be attenuated in response to movement 

preparation and execution (Krubitzer and Kaas, 1990) or could alternatively drive changes 

in motor cortex for movement initiation in accordance with the active inference 

framework.  In contrast, later SEP components are thought to originate from bilateral 

dipoles in SII (Hoshiyama et al., 1997; Kakigi, 1994); therefore attenuation of the N55-

P100 SEP component may be driven by activity in SII. 

It has previously been shown that self-generated movement resulting in tactile sensation 

causes a significant decrease in the BOLD signal in bilateral SII (Blakemore et al., 1999) 

and is decreased as the sensory input becomes less predictable (Shergill et al., 2013).  This 

is thought to be driven by activity in the cerebellum, which is thought to represent the 

prediction error signal from comparing predicted and actual sensory input.  This 

mechanism may be reflected in the attenuation of the N55-P100 SEP component.  It could 

be argued that the N55-P100 attenuation is confounded by the greater force produced in 

the self-condition compared to the external condition, however this is unlikely as this 

component is not significantly modulated by force level.  Attenuation of this component 

may demonstrate a change in the state of the somatosensory cortex which then modulates 

subsequent perception.  It is harder to interpret the functional role of later components as 

there is more time to be modulated by other inputs and the peaks are less distinct and 

more difficult to quantify.  Nevertheless, the dissociation between the source of the early 

and late SEP components and the behavioural outcomes of physiological and perceptual 

somatosensory attenuation suggests that these forms of sensory gating are not only 

dissociable but have distinct functional roles. 

SEPs provide an assay to measure modulations in somatosensory activity however 

analysis is limited to the time in which median nerve stimuli were given.  In order to 
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investigate modulations in somatosensory activity that may correlate with perceptual 

somatosensory attenuation throughout the entire trial, exploratory time-frequency 

analyses measuring oscillatory activity over sensorimotor cortex were conducted.  Time-

frequency analyses highlighted a significant negative correlation between gamma band 

activity (~40-90Hz) and the magnitude of perceptual somatosensory attenuation over the 

right sensorimotor cortex contralateral to the hand receiving the matched force.  This 

occurred before the auditory cue to start matching rather than during the matching period 

as might be expected.  This signal may therefore be in a position to causally modulate the 

gain of incoming somatosensory information in preparation for receiving the matched 

force, which in turn may modulate subsequent perception, rather than representing the 

perception itself.  It could be argued that this result is confounded by the increased force 

produced in the self-condition, however this is unlikely due to the location of the activity 

(ipsilateral to the hand producing the force) and the timing of this modulation (before 

force production). 

Interestingly, this oscillatory finding supports theoretical accounts of perceptual 

somatosensory attenuation, which posit that the difference in somatosensory attenuation 

between the self and external task conditions is due to a difference in the ability to predict 

the sensory consequences of our own actions, but not others (Blakemore et al., 1999). 

When our predictions are highly accurate (as in the self-condition) prediction error is low 

and somatosensory attenuation is high and vice versa when our predictions are not 

accurate (external condition).  Therefore, it follows that the magnitude of prediction error 

will negatively correlate with the magnitude of somatosensory attenuation.  If we assume 

that gamma oscillations represent the forward (ascending) connections carrying 

prediction errors, as has been previously suggested (Arnal and Giraud, 2012; Bastos et al., 

2012; Bauer et al., 2014), then this data supports the hypothesis that a changing 

prediction error, represented by gamma band activity, is underlying the perceptual 

differences measured.  Trials with less perceptual somatosensory attenuation have higher 

gamma band activity prior to matching the force and have lower prediction error in line 

with the theory. 

However, it is important to note that prediction errors are precision-weighted.  This 

means that an estimate of the (inverse) variance of the predicted and actual sensory input 

is incorporated into the prediction error signal.  In line with the alternative hypothesis 

which posits that sensory attenuation is caused by a reduction in sensory precision 

represented by a decrease in the synaptic gain of superficial pyramidal cells transmitting 

prediction error signals (Adams et al., 2013b; Brown et al., 2013), we can see that there 

would also be a negative correlation between somatosensory precision and perceptual 
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somatosensory attenuation, which could explain this oscillatory finding.  It has been 

proposed that gamma band oscillations are responsible for altering the synaptic gain of 

cells transmitting prediction errors, which in turn decreases somatosensory precision 

(Friston et al., 2015).  Whether the gamma band activity represents changes in precision, 

or prediction error, or the precision-weighted prediction error, the same result would be 

found.  However, these exploratory analyses were post-hoc therefore specific hypothesis-

driven experimental work, optimally using patient populations, is needed to elucidate the 

necessity and sufficiency of this neural signal for perceptual somatosensory attenuation.  

Moreover, there are many different neuronal mechanisms besides changes in synaptic 

gain that can modulate the amplitude of evoked potentials and oscillatory activity, such as 

differences in synchronisation and recruitment; therefore, simultaneous invasive and non-

invasive electrophysiological recordings are needed to better elucidate the underlying 

neuronal mechanisms. 

In this thesis, I hypothesise that sensorimotor beta oscillations may represent changes in 

sensory precision necessary for movement initiation.  In the current study there was no 

significant correlation between perceptual somatosensory attenuation and beta oscillatory 

activity.  However, this study also found no relationship between physiological 

somatosensory attenuation and perceptual sensory attenuation.  This suggests that these 

two phenomena may be functionally distinct and thus may be controlled by different 

frequencies of population activity.  One hypothesis is that gamma oscillatory activity 

modulates the synaptic gain of cells transmitting prediction error signals for perception, 

however sensorimotor beta oscillations act to modulate the gain of pyramidal cells 

transmitting proprioceptive prediction errors for action; there may be a differentiation 

depending on whether the prediction error relates to exteroceptive or proprioceptive 

input and this may be reflected in the cortical source of the oscillatory activity.  Although 

this does not fit with current predictive coding ideas, the sensorimotor system may not 

conform to the canonical message passing that has been shown in the visual system.  

Alternatively, sensorimotor beta oscillations may represent the precision of 

proprioceptive predictions, which would be increased following a decrease in sensory 

precision.  The literature shows that cortical beta oscillations are coherent with beta 

activity in the periphery; therefore sensorimotor beta oscillations may play a particularly 

specialised role in controlling this descending peripheral circuit for movement. 

In this study I have demonstrated that physiological somatosensory attenuation of the 

primary and secondary SEP components in response to movement is not correlated with 

perceptual somatosensory attenuation.  This is consistent with the hypothesis that these 

two forms of somatosensory attenuation are functionally distinct.  The active inference 



Chapter 3 – Study One 

85 
 

framework suggests that gating of the afferent signal may be due to a reduction in 

somatosensory precision which is a necessary step in movement initiation (K. Friston et 

al., 2011).  This same mechanism has also been used to explain perceptual somatosensory 

attenuation (Brown et al., 2013).  However, it is clear from this study that at the level of 

the primary somatosensory cortex any gating of the afferent signal or theorised 

modulation of somatosensory precision does not explain behavioural attenuation in the 

force matching task.  That said, it may be the case that perceptual somatosensory 

attenuation occurs via the same mechanism (a reduction in somatosensory precision) but 

at a different level of the cortical hierarchy, for example SII.  Indeed the later SEP 

component, N55-P100, thought to originate in SII, was significantly modulated by 

perceptual somatosensory attenuation in the current study, which supports this 

hypothesis. 

Abnormal perceptual somatosensory attenuation has been highlighted in patients with 

schizophrenia (Shergill et al., 2005) and functional movement disorders (Pareés et al., 

2014) and abnormal physiological somatosensory attenuation has been highlighted in 

patients with functional movement disorders (A Macerollo et al., 2015) and Parkinson’s 

Disease patients (Macerollo et al., 2016).  Identifying how these deficits in somatosensory 

gating interact and where they dissociate to cause particular cognitive and motor 

symptoms in differing patient populations will be invaluable for highlighting the key 

functional role(s) of somatosensory gating and may give novel insights into the 

neurobiological mechanisms of these symptoms.  In the following chapters I aim to 

modulate sensory precision in the proprioceptive and visual domains to determine the 

effect of this on behaviour and oscillatory activity over sensorimotor cortex. 
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CHAPTER 4  

Study Two: Investigating the effect of a peripheral 
vibrating stimulus on oscillatory activity over 
sensorimotor cortex 

4.1. INTRODUCTION 

In the previous chapter, I showed that perceptual and physiological somatosensory 

attenuation did not have the same underlying neurophysiological correlate, therefore may 

be functionally distinct phenomena.  Physiological somatosensory attenuation is thought 

to play an important and necessary role in motor initiation.  The active inference 

framework posits that a decrease in sensory precision (increase in sensory uncertainty) 

must occur in order to allow proprioceptive predictions to incite movement (Brown et al., 

2013; K. Friston et al., 2011; Friston et al., 2010).  The decrease in the amplitude of the 

somatosensory evoked potential (SEP) with movement is thought to reflect this down-

weighting of somatosensory information via a change in synaptic gain on superficial 

pyramidal cells in the primary somatosensory cortex.  However, evoked potentials only 

reflect the activation of particular circuits at a very specific time point and, in this case, in 

response to an artificial stimulus.  SEPs therefore lack the ability to describe how activity 

over a population of neurons varies over time during a particular behaviour.  Moreover, it 

has been suggested that oscillatory activity could causally modulate synaptic efficacy 

(Chawla et al., 1999; Friston et al., 2015), therefore identifying the neurophysiological 

correlate of physiological somatosensory attenuation in the spectral domain could further 

our understanding of the potential mechanism by which this change in synaptic gain could 

affect motor control.  In the introduction I have outlined the correlative and theoretical 

evidence that suggests sensorimotor beta oscillations may encode this decrease in 

somatosensory precision and therefore could be the oscillatory correlate of physiological 

somatosensory attenuation necessary for movement initiation.  This chapter aims to test 

this theory. 

There is a plethora of evidence to suggest that modulations in beta power over 

sensorimotor cortex prior to and during movement may represent changes in 

somatosensory precision.  Firstly, the time course of this modulation is very similar to the 

time course of SEP attenuation with movement (Cohen and Starr, 1987; Jasper and 
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Penfield, 1949; Pfurtscheller, 1981; Seki and Fetz, 2012).  Secondly, during periods of 

active holding, beta power increases (Baker et al., 1997) as does the amplitude of 

cutaneous SEPs over sensorimotor cortex (Rushton et al., 1981; Seki and Fetz, 2012),  

Thirdly, beta bursts have been shown to enhance SEP amplitude following peripheral 

nerve stimulation (Lalo et al., 2007) and enhance transcortical stretch reflexes (Gilbertson 

et al., 2005).  Finally, recent evidence suggests that beta power may reflect different types 

of uncertainty, which is the inverse of precision (Tan et al., 2016; Tzagarakis et al., 2015, 

2010). 

Moreover, the evidence demonstrating that sensorimotor beta power may be 

mechanistically involved in motor control supports the hypothesis that this frequency of 

oscillatory activity could mediate somatosensory gating, which according to the active 

inference framework is necessary for movement (reviewed in introduction).  Abnormally 

high resting beta power is a prominent feature of Parkinson’s Disease (PD) and correlates 

with motor symptoms, such as an inability to initiate movement (akinesia) and a slowness 

of movement (bradykinesia) (Little and Brown, 2014).  High frequency deep brain 

stimulation (DBS) of the STN improves motor symptoms in PD and has a greater efficacy 

when paired with an adaptive algorithm in which the stimulation is triggered by peaks in 

beta power (Little et al., 2013), which suggests beta oscillatory activity may play a causal 

role in the motor symptoms of PD.  Moreover, SEP attenuation is impaired in patients with 

functional movement disorders (A Macerollo et al., 2015) and PD patients (Macerollo et al., 

2016) and improves with dopaminergic medication (Macerollo et al., 2016). 

In order to determine the necessity of somatosensory attenuation for movement initiation 

I designed an experiment to manipulate somatosensory precision and sought to determine 

its effect on a motor control task and on sensorimotor beta power.  Estimates of sensory 

precision in the brain can be reduced either by making the sensory input more uncertain 

or by a top-down attentional mechanism.  In this study I used high frequency peripheral 

vibration to increase the uncertainty in the proprioceptive state, which would in turn 

reduce estimates of somatosensory precision.  Previous research (outlined in the 

introduction) demonstrates that vibration, specifically at high frequencies, increases firing 

of 1a afferents (Ribot-Ciscar et al., 1998; Roll et al., 1989) and induces kinaesthetic 

illusions by activating muscle spindles in the vibrated muscle that signal to the cortex that 

the muscle is lengthening when it is not (Goodwin et al., 1972; McCloskey, 1973).  This 

therefore creates uncertainty in the perceived position of the limb and generates an 

unexpected afferent input.  Peripheral vibration also causes a decrease in SEP amplitudes 

(Cohen and Starr, 1985), which supports the assumption that this manipulation would 

decrease estimates of somatosensory precision in the cortex. 
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Previous work in the lab demonstrated that giving a peripheral vibrating stimulus at 80Hz 

significantly improved task performance on a number of standardised movement tasks 

including a simple RT task and the clinically well characterised nine-hole peg task (Grice et 

al., 2003) (under submission).  However, vibration at 20Hz did not have the same effect, 

potentially due to muscle spindles not being optimally activated at this frequency.  In this 

study I hypothesized that peripheral vibration at 80Hz would: 1) decrease completion 

time on the nine-hole peg task, replicating this previous result; 2) decrease beta power 

over sensorimotor cortex during and post-vibration; 3) and that this decrease would 

correlate with improvements in motor performance on the behavioural task. 

4.2. METHODS 

4.2.1. Participants 

18 healthy participants (male=5; female=13) aged 18-55 years old (mean ±SD: 26.06 

±9.64) took part in this study.  Participants had no self-reported history of neurological or 

psychiatric illness.  All participants were right handed and gave written informed consent 

prior to taking part.  This study was approved by the UCL Research Ethics Committee and 

all testing took place at the UCL Institute of Neurology, Queen Square.  One subject was 

excluded for noisy EEG data. 

4.2.2. Apparatus 

An upright vibrating stimulator resting on a surface was used to provide the vibratory 

stimulus throughout the task.  Participants were asked to rest the posterior surface of 

their wrist on top of the vibrating stimulus, just proximal to the crease in the wrist, so it 

was lightly touching.  The frequency was either 80Hz or 20Hz.  The gain was always 1.  A 

128 active electrode Biosemi system was used to collect the EEG data at a sampling 

frequency of 2048Hz.  Triggers indicating the start of each trial were sent to the data 

acquisition PC using MATLAB 2013a. 

4.2.3. Task Procedure 

During the EEG recording participants were asked to fixate on a small white cross on a 

black background and stay relaxed.  Their arm was positioned on the vibrating stimulus 

and supported using a pillow.  Recording was divided into 4 blocks of 10 minutes with 5 

trials in each block.  Each trial consisted of 30s rest followed by 30s peripheral vibration 

followed by 60s rest.  Two blocks used 80Hz vibration and the other two blocks used 20Hz 
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vibration.  The order in which vibration was given was counterbalanced across 

participants. 

To provide a measure of the effect of vibration on motor performance, participants 

completed the 9-hole peg task (Grice et al., 2003).  In this task participants were instructed 

to place 9 pegs, held within a small well, into 9 holes as fast and as accurately as possible.  

Participants completed this task 3 times in 3 conditions: 1) after 80Hz vibration; 2) 20Hz 

vibration; and, 3) no vibration.  The order in which vibration was given was 

counterbalanced across participants. 

4.2.4. EEG Preprocessing and Analysis 

The data were high-passed filtered at 0.1 Hz, low pass filtered at 100 Hz and down-

sampled to 400 Hz.  The data were epoched around the onset of the vibration in a 120s 

time window of -30s to 90s.  Prior to time-frequency analysis, the data for each of the 10 

trials for both vibration conditions were concatenated into one file.  To calculate the 

power spectra, for each of the 10 trials, the time series was divided into 5 second non-

overlapping windows (24 total) and the power spectra were calculated over each window 

using Welch’s averaged periodogram method.  This resulted in a time-frequency power 

spectrum with a power spectrum every 5 seconds with 1 Hz resolution. The resulting 

power spectra were then averaged over trials, log-transformed and were baseline 

corrected by subtracting the mean power in the 15 seconds before vibration onset for each 

frequency. 

An initial analysis focused on modulations in beta power. To this end for each subject for 

each electrode the time-frequency data were averaged over the 15-30 Hz frequency range 

across both vibration conditions and converted to an image, creating one scalp map for 

each of the 24 power spectra over time. These 3D images were smoothed and analysed in 

SPM12. To test for differences in beta power between the conditions over the scalp for 

each participant the scalp-time images of the beta power modulation for the 80 Hz 

vibration was subtracted from the 20 Hz vibration and any difference between the two 

was tested using the standard mass univariate approach in SPM12.  The results of this 

analysis revealed where on the scalp beta power was modulated during vibration and, 

from this, electrodes of interest were selected (Figure 4.1A-C). Subsequent analyses were 

conducted on the average time-frequency images over these electrodes of interest. To test 

for time-frequency differences between the conditions for each subject the time-frequency 

images for the 80 Hz vibration were subtracted from the 20 Hz vibration and any 

difference between the two was tested using the standard mass univariate approach in 
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SPM12. In addition, modulations in the 80 Hz vibration condition were compared to the 

baseline power by testing for differences from 0 for just the 80 Hz condition using the 

standard mass univariate approach in SPM12. All statistical thresholds were corrected for 

multiple comparisons using random field theory approach on the peak voxel using a small 

volume correction over 15-30Hz (J. M. Kilner et al., 2005). 

A Pearson correlation analysis was used to test if there was any relationship between beta 

power modulation and behavioural performance following the peripheral vibration.  Beta 

power was averaged over 15-30Hz in the 10s following 80Hz vibration for each 

participant; this represents the change in beta power from the baseline period 15s before 

vibration onset.  This was correlated against the change in completion time on the nine-

hole peg task following 80Hz peripheral vibration: the average completion time following 

80Hz vibration minus the average baseline completion time. 

4.3. RESULTS 

4.3.1. Beta oscillations were significantly decreased during 80Hz but 

not 20Hz peripheral vibration 

An initial analysis tested the hypothesis that there was a significant attenuation of power 

in the 15-30 Hz range during the period when 80 Hz vibration was applied compared with 

20 Hz vibration. Beta power was significantly lower at the onset of 80 Hz vibration 

compared with onset of 20 Hz vibration specifically at electrodes overlying the left 

sensorimotor cortex (peak voxel t(1,16) = 4.87, p<0.05 corrected for FWE; Figure 4.1A-C).  

Subsequent analyses focused on the average time-frequency plots overlying the electrodes 

of interest where beta power was significantly attenuated. The time course of beta power 

modulation averaged over the electrodes of interest and across the beta frequency range 

(15-30 Hz) revealed that beta power was attenuated at the onset and offset of the 30 

seconds vibration period (Figure 4.1F). To investigate this further, the time frequency 

plots averaged over the electrodes of interest were compared. This analysis revealed a 

significant attenuation of oscillatory power at 20 Hz at the onset of 80 Hz vibration 

compared with 20 Hz vibration (t(1,16) = 5.13, p<0.05 FWE corrected; Figure 4.1D). One 

possible explanation for these results is that the decrease in power in the beta frequency 

range reflects an increase in beta power during the 20 Hz vibration, reflecting the power 

at the frequency of vibration. To exclude this hypothesis, we tested whether there was a 

significant attenuation of power in the 80Hz condition compared to baseline. This analysis 
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revealed two clusters of significant attenuation one at the onset of the vibration (t(1,16) = 

4.7 peak at 27 Hz and one at the offset (t(1,16) = 4.59 peak at 23 Hz; p<0.05 FWE 

corrected) (Figure 4.1E). 

4.3.2. 80Hz peripheral vibration increased movement speed in the nine-

hole peg task 

A one way repeated measures ANOVA revealed a significant main effect of vibration, 

F(2,34)=32.75,p<0.001,Eta2=0.66.  Post-hoc pairwise comparisons corrected for multiple 

comparisons with the Bonferroni method revealed a significant difference between mean 

completion time following 80 Hz vibration (M±SD=10.71±1.40s) and no vibration 

(M±SD=12.36 ± 1.04seconds), t(17)=7.480, p< 0.05, and 80 Hz vibration and 20 Hz 

vibration (M±SD=11.87 ± 1.22 seconds), t(17)=-5.529, p<0.05.  There was no significant 

difference between mean completion time following baseline and 20Hz vibration 

(p=0.069).  Participants completed the task quicker following 80Hz vibration compared to 

the other conditions (Figure 4.2A+B).  

4.3.3. No significant correlation between beta power modulation and 

behavioural performance following 80Hz peripheral vibration 

I hypothesise that the decrease in beta power seen following 80Hz vibration was 

potentially responsible for the behavioural improvements seen the nine-hole peg task 

following 80Hz vibration.  I correlated the modulation in beta power from baseline 

averaged over 10s following vibration for each participant against the change in 

completion time following 80Hz vibration compared to baseline on the nine-hole peg task.  

There was no significant correlation: r=0.012, p=0.965 (Figure 4.2C). 
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Figure 4.1. Beta power over sensorimotor cortex decreased at the onset and offset of 80Hz 
peripheral vibration. A&B) Topography of the EEG activity averaged over 15-30Hz during vibration.  
White circles show electrodes which showed a significant attenuation of beta power during vibration 
superimposed on (A) the t-statistic scalp image and (B) the contrast image.  C) ROI selected for subsequent 
time-frequency analyses. (D-E) Time-frequency t-statistic images within an ROI over contralateral 
sensorimotor cortex for (D) the difference between 80Hz and 20Hz vibration conditions, and (E) the 
difference between 80Hz vibration and a baseline window.  Data is shown in the period prior to, during and 
following vibration.  F) Change in beta power relative to the average beta power in a 15s time window prior 
to vibration onset shown across time before, during and after 80Hz vibration (red) and 20Hz vibration 
(blue).  The shaded block represents the time when vibration was on. 
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Figure 4.2. Behavioural effect of peripheral vibration.  A+B) Bar graphs showing (A) the completion 
time and (B) mean-corrected completion time for the nine hole peg task. C) Correlation between the mean 
beta power over the 10s following 80Hz peripheral vibration (relative to the average beta power over the 
15s prior to vibration onset) and the magnitude of improvement in completion time on the nine hole peg 
task following 80Hz vibration compared to baseline. 

 

4.4. DISCUSSION 

In this study I aimed to modulate somatosensory precision in order to determine the effect 

of this on sensorimotor beta power and motor control.  Sensory precision can be 

modulated in two ways: 1) by making the afferent input noisier and thus more uncertain; 

or, 2) through a top-down attentional mechanism.  Here I hypothesised that the peripheral 

vibrating stimulus would increase the uncertainty in the proprioceptive state and thus 

decrease somatosensory precision.  I hypothesised that this would be reflected in a 

decrease in beta power and lead to enhanced motor initiation in line with the active 

inference framework.  Indeed, 80Hz peripheral vibration applied to the wrist of healthy 

participants improved performance on a dextrous motor task.  The EEG data revealed a 

significant decrease in beta oscillatory activity (15-30Hz) over the contralateral 

sensorimotor cortex at the onset and offset of 80Hz vibration.  In contrast, peripheral 

vibration at 20Hz had no effect on motor performance and caused no modulation in beta 

oscillatory activity.  This data suggests that the mechanism by which high frequency 

vibration improved behavioural performance could be through the modulation of 

sensorimotor beta oscillations.  This supports the hypothesis that sensorimotor beta 

oscillations may represent changes in somatosensory precision. 
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In this study, modulations in behaviour and oscillatory activity were only seen with 80Hz 

vibration and not 20Hz vibration.  As muscle spindles are optimally activated at 80Hz, one 

hypothesis is that the results in this study were driven by a decrease specifically in the 

precision of the proprioceptive input (Ribot-Ciscar et al., 1998; Roll et al., 1989).  Muscle 

afferent fibres provide an essential source of information about the dynamic position of 

the muscle necessary for optimal proprioceptive feedback.  Previous studies have shown 

that 80Hz peripheral vibration impairs performance on a number of proprioceptive tasks 

(Bullen and Brunt, 1986; Capaday and Cooke, 1981; Cordo et al., 1995; Inglis and Frank, 

1990; Tsay et al., 2016), which is thought to be driven by an increase in the uncertainty in 

the proprioceptive input.  Indeed, activating these muscle spindles at 80Hz produces the 

illusion that the implicated muscle is contracting in the absence of any EMG activity by 

transmitting incorrect kinesthetic information to the brain and spinal cord (Cordo et al., 

2005; Craske, 1977; Naito et al., 1999; Seizova-Cajic et al., 2007).  The modulation of beta 

oscillations with high frequency vibration in the current study supports the hypothesis 

that this beta activity may reflect changes in uncertainty in the proprioceptive input.  This 

is in line with the hypothesis that sensorimotor beta oscillations encode modulations in 

somatosensory precision.  Although there was no direct measure of uncertainty or 

proprioceptive illusions in this study, I assume that proprioceptive uncertainty has been 

modulated.  The next chapter will aim to directly quantify the effect of peripheral vibration 

on proprioceptive uncertainty. 

In the current study I found a significant decrease in beta oscillatory activity at the onset 

and offset of 80Hz peripheral vibration.  Muscle spindles in general are rapidly adapting 

and respond to relative changes in muscle stretch rather than sustained stretch, 

potentially reflecting this pattern of activity.  However, microneurographic studies have 

shown that 1a afferents respond to vibration in a 1:1 mapping such that the afferent firing 

rate matches that of the vibration frequency and this remains constant throughout the 

period of vibration (Ribot-Ciscar et al., 1998; Roll et al., 1989); therefore, it is unlikely that 

this beta modulation directly reflects this afferent firing rate.  There is evidence that the 

motor system adapts to a constant vibratory stimulus and this potential top-down 

adaptation may be reflected in the modulation of beta power in this study.  For example, 

there is a clear reduction in muscle spindle activity up to 40s following the offset of 

vibration compared to baseline (pre-vibration) (Ribot-Ciscar et al., 1998) and during this 

period participants often experience illusory aftereffects i.e. the vibrated muscle appears 

to move in the opposite direction to that experienced during the vibration (Seizova-Cajic 

et al., 2007).  This adaptation likely occurs via a central mechanism.  The modulations in 
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beta power at the onset and offset of the vibratory stimulus in the current study may 

represent this central adaptation process. 

Indeed, this pattern of oscillatory activity could represent the updating of estimates of 

sensory precision that are likely to occur with this adaptation process.  For example, at the 

onset of vibration an unexpected proprioceptive input causes a decrease in estimates of 

sensory precision; as the constant vibratory stimulus then becomes predictable, estimates 

of sensory precision are increased over time as the sensorimotor system adapts to the 

stimulus; another update is then required when the stimulus is turned off.  This 

modulation in the sensorimotor beta power may therefore represent a top-down 

adaptation command, which may be used to gate afferent input depending on its 

uncertainty.  This supports my hypothesis that sensorimotor beta oscillations modulate 

with changes in sensory precision.  This also suggests that beta oscillatory activity may 

represent estimates of somatosensory precision at a higher level of the cortical hierarchy.  

This idea is explored later in this thesis. 

Vibration also activates cutaneous mechanoreceptors, therefore it is difficult to rule out 

the possibility that the changes in sensorimotor beta power recorded reflect an adaptation 

to the cutaneous input.  Indeed, previous research has shown that beta power is 

modulated by a purely tactile stimulus (Cheyne et al., 2003; Gaetz and Cheyne, 2006).  

However, mechanoreceptors are generally activated at either lower frequencies (30-50Hz) 

or much higher frequencies of vibration (250-350Hz; Purves et al., 2001a) and it is 

unlikely that this effect would be specific to 80Hz vibration.  Muscle oscillatory activity in 

the beta frequency range has been shown to be coherent with 1a afferent firing, but not 

cutaneous afferent firing (Baker et al., 2006), and there is coherence between the EMG and 

cortical oscillatory activity in the beta band (Kilner et al., 1999); this suggests that the 

effects recorded in this study are likely due to muscle spindle activity.  Microneurographic 

studies are needed to determine the effect of peripheral vibration on the firing of specific 

types of afferent fibers and EEG to elucidate the contribution of cutaneous vs muscle 

afferent input on cortical oscillatory activity. 

The active inference framework posits that in order to initiate a movement, we must 

decrease the certainty in our current sensory state through attenuation of the afferent 

signal (Brown et al., 2013; K. Friston et al., 2011).  Here I have shown that high frequency 

peripheral vibration thought to activate 1a afferents decreases completion time on the 

nine-hole peg task and it has previously been shown to decrease reaction times across a 

number of motor control tasks (under submission), which supports this hypothesis.  

However, any improvements on this task during the current study were not correlated 
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with the decrease in beta power that occurred following 80Hz peripheral vibration.  This 

is not surprising as these two measures were taken at different time points during testing.  

This finding merely suggests that individuals do not show a consistent trait-like 

modulation of beta power following vibration, which can explain the average behavioural 

improvement seen on a separate motor control task.  It will be important to correlate trial-

wise modulations in beta power following vibration and subsequent response times or 

completion times from a behavioural task in order to conclude whether the change in beta 

power following vibration may be causally modulating behavior on a trial-by-trial basis. 

According to the active inference theory, the behavioural changes seen here are due to 

increased sensory attenuation (which may be driven by sensorimotor beta oscillations).  

Indeed, previous research has demonstrated that high frequency peripheral vibration 

causes somatosensory attenuation, as indicated by a decrease in the amplitude of SEPs 

evoked by electrical stimulation of the afferent nerve.  Peripheral vibration at 60Hz causes 

an attenuation of early components of the cortical and cervical SEP (Abbruzzese et al., 

1980; Cohen and Starr, 1985).  Yet, 50 Hz cutaneous vibration between the thumb and 

finger and 20 Hz vibration at the wrist does not produce significant somatosensory 

attenuation (Kakigi and Jones, 1986; Legon and Staines, 2006).  However, another study 

found the opposing result with no attenuation of the cortical SEP to 60Hz tendon 

vibration, but clear attenuation with 60Hz cutaneous stimulation (Hoshiyama and Kakigi, 

2000).  Nevertheless, in the spinal cord afferent input is attenuated with peripheral 

vibration demonstrated by a decrease in the tendon jerk reflex and the electrically 

stimulated H-reflex (De Gail et al., 1966; Delwaide, 1973) and a similar inhibition is seen in 

the cat (Gillies et al., 1969).  This is thought to be driven by a top-down presynaptic 

inhibition of the 1a afferent volley.  The introduction of an unexpected firing pattern in 1a 

afferents using peripheral vibration may therefore activate this top-down inhibition 

providing a neurophysiological pathway by which peripheral vibration could modulate 

sensory gating.  It would be interesting to measure SEPs at different time points 

throughout prolonged vibration in order to quantify whether changes in cortical SEP 

amplitude match the pattern of modulation of sensorimotor beta power measured here to 

further elucidate the role of sensorimotor beta power in sensory gating.  Indeed, this 

cortical adaptation to vibration may explain opposing results in the literature describing 

the effect of peripheral vibration on SEP amplitudes: previous studies have either only 

measured SEPs at a single time point during vibration or averaged over multiple SEPs 

given throughout the vibratory period, which would hide any temporal modulation of SEP 

amplitudes that may correlate with the changes in beta power seen here.  However, the 
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need for multiple peripheral nerve stimuli to generate a reliable average SEP makes this 

difficult to conduct practically. 

Moreover, the relationship between SEP attenuation and motor initiation again supports 

that this is likely to be the mechanism by which movements are improved following 

vibration and the mechanism by which changes in sensorimotor beta power could 

modulate movement.  During normal gait initiation the H-reflex of the soleus is inhibited, 

however the magnitude of this inhibition reduces with symptom severity in PD (Hiraoka 

et al., 2005; Morita et al., 2000).  In addition, attenuation of the primary and secondary 

components of the SEP is reduced in PD and improves with dopaminergic medication 

(Macerollo et al., 2016).  This supports the idea that the attenuation of somatosensory 

input is closely involved in motor control.  The basal ganglia is placed in a prime location 

to integrate motor commands and afferent input and therefore could control this top-

down gating mechanism.  Indeed, electrophysiological evidence from primates suggests 

that proprioceptive information is represented within the basal ganglia and that the 

synchrony of neural activity in this brain region may modulate this gain control 

(Klockgether et al., 1995).  Due to these findings vibration has been employed as a 

therapeutic intervention for PD, but the results have been inconsistent (Arias et al., 2009; 

Chouza et al., 2011; Ebersbach et al., 2008; Haas et al., 2006; Kapur et al., 2012; King et al., 

2009).  A better mechanistic understanding of how peripheral vibration could modulate 

movement could help refine and extend these studies to improve the clinical potential of 

peripheral vibration for symptom management in PD. 

In summary, this study showed that high frequency peripheral vibration increased 

movement speed on a motor control task and decreased sensorimotor beta power.  With 

the assumption that this stimulus reduced somatosensory precision, these findings 

support the prediction from the active inference framework that a reduction in the 

estimate of somatosensory precision is necessary for movement initiation.  The temporal 

modulation of beta power at the onset and offset of movement suggests that beta 

oscillations may play a role in the adaptation of the motor system to an unexpected 

proprioceptive stimulus.  This supports the hypothesis that sensorimotor beta power may 

represent estimates of somatosensory precision.  This neuroimaging result sheds some 

light on the mechanism underlying the behavioural improvement seen following 80Hz 

peripheral vibration.  One hypothesis is that the decrease in beta power at the offset of 

movement attenuates the afferent input to the cortex, therefore placing the sensorimotor 

cortex in a more “ready-to-move” state; this may then increase the participant’s ability to 

subsequently initiate a movement.  However, more work is needed to elucidate the 

relationship between beta power modulation and changes in sensory uncertainty.  
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Moreover, in this study there was no direct measure of the effect of high frequency 

vibration on proprioceptive uncertainty, therefore this will be addressed in the following 

chapter. 
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CHAPTER 5  

Study Three: Investigating the effect of a peripheral 
vibrating stimulus on proprioceptive accuracy  

5.1. INTRODUCTION 

In the previous chapter I showed that sensorimotor beta power was reduced at the onset 

and offset of 80Hz peripheral vibration.  Participants were also quicker to complete a 

dextrous motor task following 80Hz peripheral vibration compared to baseline or 20Hz 

vibration.  I hypothesise that the changes in sensorimotor beta power with vibration likely 

underlie this behavioural change.  I argue that the increased movement speed following 

vibration was due to changes in estimates of somatosensory precision.  This is in line with 

the active inference framework, which states that in order to move we must reduce our 

estimate of sensory precision to allow proprioceptive predictions to incite movement 

(Brown et al., 2013).  Therefore, I argue that peripheral vibration specifically at 80Hz 

reduces somatosensory precision by making the proprioceptive input to the cortex more 

uncertain.  However, in the previous study there was no direct measure of proprioceptive 

uncertainty to support this mechanism.  In the current study I aimed to quantify 

proprioceptive accuracy in order to determine the effect of peripheral vibration of 

different frequencies on proprioceptive uncertainty. 

In the current study participants were asked to direct a robot arm to specific targets on a 

horizontal plane with no visual feedback after 80Hz, 40Hz or no peripheral vibration.  I 

hypothesised that participants would be less accurate at this task following 80Hz vibration 

due to the increase in proprioceptive uncertainty.  This accuracy was measured in two 

ways: 1) by the overall error magnitude from the target to each end point; and, 2) by the 

variability in end point errors.  In order to probe how specific these effects might be to 

80Hz vibration and provide an active vibration control, I included trials with 40Hz 

vibration.  In this condition 1a afferents, responsible for transmitting proprioceptive 

information to the brain, should be activated to a lesser extent than 80Hz vibration; I 

therefore expected to find a reduced behavioural effect following 40Hz vibration.  There 

have been a number of studies that have shown a decrease in proprioceptive accuracy 

following high frequency vibration supporting the hypotheses put forward here (Cordo et 

al., 1995, 2005; Inglis and Frank, 1990; Tsay et al., 2016). 
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In this task, unlike the previous studies, I also asked participants to rate how confident 

they were in the accuracy of their end position after each trial.  These ratings determined 

how aware participants were of their proprioceptive state and of the accuracy of their 

reaching movements.  The reason for including this measure was to determine if conscious 

estimates of the proprioceptive state are dissociable from the true proprioceptive state.  

For Bayesian inference we compute an estimate of the distribution of our prior state and 

the likelihood of our current state.  If our estimates are accurate they will readily reflect 

the true nature of the behavioural or neural data from which they were made; however, if 

our estimates are inaccurate there may be a dissociation between the true and estimated 

states.  In order to measure this dissociation experimentally we could assume that the true 

state is reflected in our behavioural or neural data, but our estimated state is reflected in 

our conscious awareness or belief about this data.  It is unknown whether our cortical 

estimates of sensory precision accurately reflect our actually sensory state i.e. if the actual 

afferent input is made more uncertain, does our estimate of that state readily reflect this?  

This creates interesting hypotheses for the role of sensorimotor beta oscillations.  

Modulations in sensorimotor beta power with vibration appear to reflect a central 

adaptation process; therefore, this activity may more readily reflect estimates of sensory 

precision, which can be determined through confidence judgements, rather than true 

changes to the precision of the afferent input in the periphery.  In the current study I 

aimed to determine if I could accurately record these two estimates of sensory precision 

and determine the relationship between these facets in healthy participants.  Future work 

will aim to continue this into PD patients where the exact role of sensorimotor beta power 

has important implications; the application of this idea to PD will be discussed in the 

general discussion. 

5.2. METHODS 

5.2.1. Participants 

19 healthy participants completed the study (15 female; mean age: 23; range: 20-40).  All 

participants were right-handed and naïve to the purpose of the task.  Written, informed 

consent was obtained from all participants.  2 participants were excluded from all 

analyses.  1 participant had a large proportion of missing data due to a technical problem 

and 1 participant had a large proportion of bad trials (19.8% bad; the mean percentage of 

bad trials for all other participants was 0.1%).  Bad trials were defined in two ways: 1) if 

the end point error magnitude from the target was greater than 3 standard deviations 

away from the mean end point error (collapsed across conditions); or, 2) if the position of 
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the end point on the Z axis was more than 1cm away from the virtual horizontal plane on 

which participants were instructed to move.  All subsequent analyses were carried out 

with 17 participants. 

5.2.2. Experimental setup 

Participants were seated at a table with a Phantom Haptik robot directly in front of them 

(Figure 5.1A).  The robot had a mechanical arm that could move freely in all directions 

within a 3D space.  Participants held a spherical attachment fixed to the end of the robot 

arm and used their thumb and index finger to manoeuvre the robot arm.  A horizontal 

mirror was fixed above the robot at a ~45o angle to the table and reflected the contents of 

a computer screen hung directly above the mirror in parallel.  The computer task was then 

reflected onto a virtual plane directly above the robot and horizontal to the table.  In this 

way participants could move the robot to positions in space that directly corresponded to 

the position of targets on this virtual plane without being able to see their hand or the 

robot.  A foam headrest and arm rest were used to ensure all participants were sat in the 

same position with the same view of the virtual plane.  A vibration device (Vibrasens 

VB115, Technoconcept) was attached to the right wrist of the participant throughout the 

experiment. 

5.2.3. Experimental Design 

Participants completed a computer task coded in MATLAB (version 2013b).  Before each 

trial, 5s of vibration or rest was given dependent on the experimental condition of the 

block.  Participants completed 4 blocks of 32 trials.  The first block was a training block in 

which participants had visual feedback of the position of the robot throughout the task 

and received no vibration.  Data from this block was not analysed.  For the 3 experimental 

blocks no visual feedback of the robot was given during the task except for when finding 

the start position at the beginning of each trial.  The vibration conditions of the 3 

experimental blocks were: 1) no vibration; 2) 40Hz vibration; 3) 80Hz vibration.  The 

presentation order of the 3 experimental blocks was counter balanced across participants.  

Short rest breaks were given halfway through each block and between blocks. 

5.2.4. Task Design 

The task was coded in MATLAB (version 2013b) using Cogent and Haptik Lib toolboxes.  

At the start of each trial a fixation cross was presented in the centre of the screen for 5 

seconds whilst participants either received peripheral vibration or rested.  A home 
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position (blue square) then appeared at the bottom of the screen and participants were 

instructed to move the robot arm so that they were directly beneath the home square.  A 

cursor representing the end of the robot arm was used to guide participants into the start 

position, however this only appeared when participants moved to within a 2.5cm radius 

circle of the home position to avoid giving participants additional feedback about where 

they were at the end of the previous trial.  After 1 second of being positioned in the home 

square a target (red square) appeared at one of four possible locations.  All targets were 

positioned 4cm from the central home position and arranged on an arc at the following 

angles: -150o, -110o, 110o and 150o.  Participants were instructed to move the robot arm so 

that the spherical attachment at the end of the arm was directly beneath the target.  There 

was no visual feedback of the position of the robot.  Once the participant had positioned 

the robot they verbalised this to the experimenter who recorded the final position using 

the MATLAB script.  The participants were then asked to report how confident they were 

that they had placed the robot arm directly beneath the target location on a scale of 0-100 

(Figure 5.1B). 

Throughout the experiment a virtual plane was created by generating a force output from 

the robot at a specific point in the Z axis.  Participants were instructed to move the robot 

arm up to this plane and move along it.  This created the illusion that any target on the 

screen was resting on this plane to make it easier to match the target location and remove 

any participant error in the Z axis.  Participants would only be recorded as being in the 

correct start position if they held the robot arm in the correct location on this virtual 

plane.  Any trials in which the Z coordinate of the final position recorded was greater than 

1cm away from this plane were discounted as bad trials. 
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Figure 5.1. Experimental set up and task design.  A) Participants were seated at a table and held the 
robot arm in their right hand.  The vibrating device was attached to the wrist and their arm was rested on a 
support.  A computer screen was placed parallel to a mirror which reflected the contents of the computer 
screen onto the dotted line marked virtual plane.  Participants looked at this through the mirror as shown.  
The robot produced a downward force at this height to create a horizontal plane for the participants to 
move along so that proprioceptive errors could only occur in 2 dimensions.  B) Schematic of the visual 
stimuli seen by participants throughout the task. 

 

5.2.5. Data analysis 

5.2.5.1. Vibration and Proprioceptive Error Analysis 

For each trial I recorded: 1) the end-point coordinate of the position of the robot arm 

when the participant reported they were directly matched with the target location; 2) the 

confidence rating of the participant; and 3) the participant’s movement trajectory and 

velocity from the start position.  The first analysis aimed to determine if vibration had any 

effect on the end point of participant’s movements.  Firstly, end point errors were 

calculated by determining the Euclidean distance between the target location and each 

end point.  The median of these values was compared across condition and target.  I also 

calculated error values separately along the X and Y axes in Cartesian space relative to the 

targets in order to determine if there were any consistent shifts in these errors in a 

particular direction.  Secondly, the variability in the distribution of end-point coordinates 

was analysed.  A custom written MATLAB function (by Marco Davare) generated a 

confidence variability ellipse around the distribution of end-point coordinates for each 

target for each condition.  From this I extracted the surface area of the ellipse at 95% 

confidence limits as a measure of the variability of the distribution of end-points.  Error 

differences were positive for an overshoot (movement outside the arc that the targets 

were located on) and negative for an undershoot (movement towards the central start 

position).  All dependent variables were analysed using a 3x4 (vibration: no vibration, 

40Hz vibration, 80Hz vibration; x target: targets 1-4) repeated measures ANOVA. 
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5.2.5.2. Confidence, Proprioceptive Error and Vibration Analyses 

The mean confidence rating for each target for each condition for each participant was 

also analysed in a 3x4 (vibration x target) repeated measures ANOVA.  I then aimed to 

confirm whether confidence ratings were related to proprioceptive error in a more 

specific analysis.  I calculated error values using four different methods then measured the 

relationship between confidence and error.  The four types of error were as follows: 1) 

Actual Error (the Euclidean distance between the end point and the actual target location); 

2) Precision-weighted Actual Error (the Euclidean distance between the end point and the 

actual target normalised by the standard deviation of the distribution of end points; 3) 

Perceived Error (the Euclidean distance between the end point and the median of the 

distribution of end points); 4) Precision-weighted Perceived Error (the Euclidean distance 

between the end point and the median of the distribution of end points normalised by the 

standard deviation of the distribution).  All errors were ranked across trials and grouped 

into 4 bins from high to low end-point error separately for each condition, but collapsed 

across targets.  Confidence ratings were mean corrected across all trials to account for any 

between subject differences in how participants used the scale.  Corresponding confidence 

ratings in each bin were averaged.  I conducted four 3x4 (vibration x bin) repeated 

measures ANOVAs for mean confidence binned according to each error calculation method 

to determine if there was any consistent modulation of confidence with error across 

participants. 

5.2.5.3. Analysis of Distribution of End Points 

The Euclidean distance from the target location to each end point was calculated 

separately for end points around each target.  A 30x30mm grid with 5mm bins was 

created and centred upon the true target location.  I calculated the number of end points 

that fell within each bin in the grid to create a 2D representation of the spread of end 

points from each target.  I then converted this number to a percentage of the total number 

of end points that fell within the grid and averaged each grid across participants for each 

target.  To determine if there was a significant difference in the width of these 

distributions in the X and Y axes I conducted a paired sample t-test on the standard 

deviation of the X values of all the end points and the Y values of all the end points across 

participants.  To plot the probability density functions (PDFs) I fitted a probability 

distribution to the X and Y values for each end point (separately for each target) using the 

MATLAB function ‘fitdist’.  I then normalised this by dividing the PDF by the maximum 

value of the PDF. 
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5.2.5.4. Vibration and Movement Parameters Analysis 

In order to determine if there were any other effects of vibration on participants’ 

movements in the task I calculated three movement parameters: initial velocity, reaction 

time (RT) and average velocity.  Velocity was calculated by dividing the change in the 

robot position at each sample point by the change in time between samples.  This was then 

convolved with a Gaussian kernel with a FWHM of 80ms.  A circular boundary of 2cm 

diameter was generated around the start position.  RT was recorded as the time in which a 

participant crossed this boundary with the robot arm and initial velocity was recorded as 

the velocity at this point.  Average velocity was calculated as the total path length from the 

point of crossing this boundary to the end point divided by the total movement time minus 

the RT.  These parameters were then analysed using a 3x4 (vibration x target) repeated 

measures ANOVA. 

5.3. RESULTS 

5.3.1. Vibration increases proprioceptive error by causing participants 

to overshoot the target 

In this experiment I hypothesised that high frequency peripheral vibration would increase 

participants’ uncertainty in their proprioceptive state resulting in either increased error 

or increased variability in movement end points.  Firstly, I calculated error magnitude as 

the Euclidean distance between the target and the end point on each trial and found the 

median error value for each condition and target location.  A vibration (no vibration, 40Hz 

vibration, 80Hz vibration) by target (1 to 4) repeated measures ANOVA demonstrated a 

significant main effect of vibration, F(2,32)=4.17, p=0.025, ηp
2=0.21 (Figure 5.2A).  

Although none of the pairwise comparisons were significant when corrected for multiple 

comparisons, there was a trend towards a significant difference between the no vibration 

condition (M±SD=20.14±6.11mm) and the 80Hz vibration condition 

(M±SD=24.22±9.00mm; p=0.083).  There was no significant main effect of target (p=0.483; 

Figure 5.2B) and no significant interaction between target and vibration (p=0.627). 

High frequency vibration significantly increased error magnitude from the target to each 

end point, however this analysis does not dissociate if the errors produced were in a 

consistent direction.  I therefore calculated the distance between the target and each end 

point separately along the X and Y axes.  There was a significant main effect of vibration 

for the median end point error calculated along the Y axis, F(2,32)=5.65, p=0.008, ηp2=0.26 

(Figure 5.2C).  This was driven by a significantly greater error for the 80Hz vibration 



Chapter 5 – Study Three 

106 
 

condition (M±SD=19.87±9.80mm) compared to the no vibration condition 

(M±SD=14.17±7.67mm; p=0.024 Bonferroni corrected).  There was a trend towards a 

significant difference between the 40Hz vibration condition (M±SD=18.87±9.34mm) and 

the no vibration condition (p=0.082), however there was no significant difference between 

the 40Hz vibration condition and the 80Hz vibration condition (p>0.9).  The positive mean 

values mean that participants were on average overshooting the targets along the Y axis.  

There was no significant main effect of target (p=0.186; Figure 5.2D) and no significant 

interaction (p=0.381).  For the median end point error along the X axis, there were no 

significant main effects of vibration (p=0.641; Figure 5.2E) or target (p=0.234) and there 

was a trend towards a significant interaction between vibration and target (p=0.092).  

From these results I conclude that vibration caused participants to significantly overshoot 

the targets compared to no vibration. 
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Figure 5.2. 80Hz peripheral vibration increased overshooting along the Y axis.  To measure the effect 
of vibration and target location on proprioceptive error a repeated measures ANOVA with factors vibration 
and target was used.  The bar graphs in the left column (A,C,E) represent the main effect of vibration (80Hz 
vibration (black bar), 40Hz vibration (grey bar) and no vibration (white bar)) on a number of different 
error measurements.  The bar graphs in the right column (B,D,F) represent the main effect of target on a 
number of different error measurements.  Solid lines represent main effects.  Dotted lines represent 
significant pairwise comparisons.  The different measures of error analysed were: A+B) median error 
magnitude (Euclidean distance) calculated from the target to each end point; C+D) median error from the 
target to each end point along the Y axis; and, E+F) median error from the target to each end point along 
the X axis.  There was a significant main effect of vibration on the error magnitude (A; p=0.025) and errors 
along the Y axis (C; p=0.008).  This latter effect was driven by a larger overshoot of the target along the Y 
axis following 80Hz vibration compared to no vibration (p=0.024, corrected).  There were no significant 
main effects of target (p>0.05). 
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Secondly, I hypothesised that high frequency vibration would lead to an increased 

variability in the distribution of end points.  To measure this, I conducted a variability 

analysis in which I produced a confidence variability ellipse around the distribution of 

end-point coordinates for each condition and target.  Here the surface area of the ellipse at 

95% confidence limits provided a measure of the spread of the end-point coordinates (see 

Figure 5.3A for example participant).  A vibration (no vibration, 40Hz vibration, 80Hz 

vibration) by target (1 to 4) repeated measures ANOVA demonstrated no significant main 

effect of vibration (p=0.864; Figure 5.3B) and no significant interaction between vibration 

and target (p=0.999).  There was a significant main effect of target (F(3,48)=4.16, p=0.011, 

ηp2=0.21).  This was driven by a significant difference between target 1 and target 3 

(p=0.038, Bonferroni corrected) where target 1 (M±SD=869±527mm2) had more 

variability than target 3 (M±SD=531±296mm2).  Qualitatively, the two outer targets (1 and 

4) appeared to have greater variability than the inner targets (2 and 3) (Figure 5.3C); 

however, this was not modulated by vibration.  

Overall, peripheral vibration did not modulate error variability, however across vibration 

conditions end point errors were more variable for the outer targets compared to the 

inner targets.  In addition, on average, high frequency vibration caused participants to 

overshoot the targets particularly in the Y direction. 
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Figure 5.3. Effect of vibration and target on error variability.  A) End points across trials for example 
participant.  Black circles represent the targets numbered from 1-4 from left to right.  Crosses show the end 
points for each trial colour coded by condition (red = 80Hz vibration; green = 40Hz vibration; blue = no 
vibration).  Error variability analysis which produces ellipses around each distribution of end points at the 
95% confidence limits. B) Bar graph showing no significant main effect of vibration on the mean surface 
area of the ellipses (at 95% CI) across participants (p>0.05). C) Bar graph showing the significant main 
effect of target on the mean surface area of the ellipses (at 95% CI) across participants (p=0.011).  This was 
driven by a significant difference between target 1 and target 3 after Bonferroni correction for multiple 
comparisons (p=0.038). 

 

5.3.2. Confidence ratings are modulated by precision-weighted 

proprioceptive errors 

Participants were asked to report their confidence in how accurately they had placed the 

robot under the target on each trial.  I hypothesised that any increases in proprioceptive 

end-point error with vibration would be associated with a decrease in confidence.  Here I 

conducted a vibration by target repeated measures ANOVA on participant’s mean 

confidence ratings.  Despite the increased error seen with 80Hz vibration, there was no 

significant main effect of vibration (p=0.186; Figure 5.4A) and no significant interaction 

between vibration and target (p=0.235).  There was a significant main effect of target, 
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F(3,48)=3.61, p=0.02, ηp2=0.18 (Figure 5.4B), however none of the pairwise comparisons 

were significant following correction for multiple comparisons.  There was however a 

trend towards a significant difference between targets 1 and 3 (p=0.074) where 

participants were on average more confident for target 3 (M±SD: 63.08±12.98) compared 

to target 1 (M±SD: 58.04±14.50.  This may reflect the changes in error variability seen 

between targets.  There were also no significant effects of vibration or target on the 

variability of participant’s confidence ratings as measured using the standard deviation of 

confidence across trials for each condition (vibration main effect: p=0.797; target main 

effect: p=0.147; vibration-x-target interaction: p=0.439; Figure 5.4C+D).  Therefore, 

despite 80Hz vibration causing participants to overshoot the targets, participants did not 

modulate their confidence ratings accordingly. 

 

 

Figure 5.4. High frequency peripheral vibration did not modulate mean confidence ratings.  To 
measure the effect of vibration and target location on confidence a repeated measures ANOVA with factors 
vibration and target was used.  The bar graphs in the left column (A+C) represent the main effect of 
vibration (80Hz vibration (black bar), 40Hz vibration (grey bar) and no vibration (white bar)) on the mean 
confidence ratings (A) and the standard deviation of confidence ratings (C).  The bar graphs in the right 
column (B+D) represent the main effect of target on the mean confidence ratings (B) and the standard 
deviation of confidence ratings (D).  Solid lines represent main effects.  There were no significant main 
effects of vibration on the mean or standard deviation of confidence ratings (p>0.05).  There was only a 
significant main effect of target for the mean confidence ratings (p=0.02); however, there were no 
significant pairwise comparisons after correction for multiple comparisons. 
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The above result is surprising as it suggests that participants did not readily modulate 

their confidence ratings with changes in error.  However, the change in error between the 

no vibration and 80Hz vibration condition was small in magnitude; therefore it may be 

that a larger error was required before participants modulated their confidence 

accordingly.  I therefore carried out a series of subsequent analyses to determine if there 

was a relationship between confidence ratings and proprioceptive error across all trials.  

Proprioceptive error in this task can be calculated in a number of ways.  By comparing the 

relationship between error and confidence calculated under different models of error, I 

could determine what information was being used to generate confidence ratings.  

Previous work suggests that confidence ratings reflect the perceived probability of being 

correct on a given task (Kepecs and Mainen, 2012; Meyniel et al., 2015; Navajas et al., 

2017; Pouget et al., 2016).  Confidence ratings in this task may therefore more readily 

correlate with error values calculated from the median of the participant’s distribution of 

end points (where they think the target is; ‘Perceived Error’) compared to error values 

calculated from actual target location (‘Actual Error’).  In addition, other work has 

suggested that confidence judgements can reflect the precision of the sensory evidence 

presented during perceptual decision-making tasks (Aitchison et al., 2015; Friston and 

Kiebel, 2009; Meyniel et al., 2015; Navajas et al., 2017).  Indeed, in this task there was a 

significant difference in the mean width of the distribution of end points around targets 2 

and 3 for the X axis compared to the Y axis and a trend towards significance for targets 1 

and 4 (paired sample t-tests at the group level - target 1: p=0.09; target 2: p<0.001; target 

3: p<0.001; target 4: p=0.057; Figure 5.5).  This suggests that end point errors were more 

varied along the Y axis compared to the X axis and therefore confidence judgements may 

be modulated in accordance with the inverse of these variances: the precision.  

I tested the relationship between confidence ratings and four different models of error: 1) 

Actual Error (Euclidian distance from target location to end points); 2) Precision-weighted 

Actual Error (median Euclidian distance from target location to end points normalised by 

the standard deviation of the of the distribution of end points; 3) Perceived Error 

(distance from the centre (median) of the distribution of end points); 4) Precision-

weighted Perceived Error (distance from the median of the distribution of end points 

normalised by the standard deviation of the distribution).  For each model I divided the 

error values into 4 bins from smallest to largest and averaged the confidence ratings for all 

the trials within each bin separately for each condition.  I then conducted a repeated 

measures ANOVA with vibration and bin number as factors.  I hypothesised that if 

confidence ratings were dependent on proprioceptive error then there would be a 

significant modulation of confidence with bin number.  The effect size of this relationship 
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would then determine which method of error calculation explained the most variance in 

the modulation of confidence ratings. 

 

 

Figure 5.5. Distribution of end points across participants has a greater precision in the X axis 
compared to the Y axis.  A,C,E,G) Heat maps show the frequency of end points (percentage of total number 
of end points) that occurred within 5mm bins arranged in a 30x30mm grid representing the distance in mm 
from the actual target location for target 1 (A), target 2 (C), target 3 (E) and target 4 (G).  The centre of the 
grid (0,0) represents the true location of the target.  B,D,F,H) Probability density functions of the 
distribution of end points along the Y axis of the 30x30mm grid (black line) and the X axis (purple line) for 
target 1 (B), target 2 (D), target 3 (F) and target 4 (H).  There was a significant difference between the 
width of the X and Y axis distributions for targets 2 and 3 (p<0.001) and a trend towards significance for 
target 1 (p=0.09) and target 4 (p=0.057). 
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For the first analysis confidence ratings were binned based on actual error.  I averaged the 

confidence ratings for all the trials in each bin and conducted a 3x4 (vibration by bin) 

repeated measures ANOVA.  I hypothesised that if confidence ratings were dependent on 

proprioceptive error then there would be a significant modulation of confidence with bin 

number.  There was no significant main effect of vibration (p=0.182), no significant main 

effect of bin number (p=0.763; Figure 5.6A) and no significant interaction (p=0.260).  This 

suggests that confidence was not modulated by absolute error magnitude from the target.  

However, it may be the case that more variance in the modulation of confidence ratings 

would be explained if these judgements were binned based on the Precision-weighted 

Actual Error.  For this second model, there was no significant main effect of bin (p=0.148; 

Figure 5.6B), however, the p-value was closer to reaching significance compared to the 

statistical test using non-normalised error values and the effect size was larger.  There was 

also no significant main effect of vibration (p=0.190) and no significant interaction 

(p=0.164). 

Models 1 (Actual Error) and 2 (Precision-weighted Actual Error) assume that a 

participant’s own representation of where they think the target is, is the same as its true 

location.  As hypothesised above, changes in confidence may be more readily based on 

differences in error from a prior location of where the participant thinks the target is 

rather than the error distance from the actual target.  For the third analysis I binned 

confidence judgements based on participant’s Perceived Error.  A 3x4 repeated measures 

ANOVA showed that there was a significant main effect of bin number, F(3,48)=3.95, 

p=0.013, ηp2=0.20 (Figure 5.6C).  This was driven by a significantly lower confidence in bin 

4 compared to bin 3 (mean difference in confidence: 3.07; p=0.037, corrected).  This 

suggests that on average confidence ratings were significantly lower when error was 

greater.  The interaction between vibration and bin trended towards significance 

(p=0.056).  There was no significant main effect of vibration (p=0.190).  It is clear that 

modulations in confidence were more readily modulated by Perceived Error rather than 

Actual Error. 

As before, I hypothesised that the precision of the distribution of end points may also be 

important in determining subjective confidence ratings.  For the fourth analysis, I binned 

confidence ratings based on Precision-weighted Perceived Error.  There was a significant 

main effect of bin number, F(3,48)=5.49, p=0.003, ηp2=0.26 (Figure 5.6D).  This again was 

driven by a significantly lower mean confidence rating for bin 4 (largest error) compared 

to bin 3 (mean difference: 3.41; p=0.005, corrected).  There was also a significant 

interaction between vibration and bin number, F(6,96)=2.53, p=0.026, ηp2=0.14.  For the 

no vibration condition there were no significant pairwise differences between bins; 
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however, following 40Hz vibration, mean confidence ratings were significantly reduced in 

bin 4 compared to bin 1 (mean difference: 4.53; p=0.017, corrected) and bin 3 (mean 

difference: 3.99; p=0.007, corrected); and following 80Hz vibration, mean confidence 

ratings were significantly reduced in bin 4 compared to bin 3 (mean difference: 4.27; 

p=0.021, corrected).  There was no significant main effect of vibration (p=0.193). 

 

 

Figure 5.6. Mean confidence was most readily modulated by errors relative to the median and 
precision of the distribution of end points.  A-D) The four different models used to calculate 
proprioceptive error to compare with mean confidence ratings: A) Actual Error (error magnitude from 
each target); B) Precision-weighted Actual Error (error magnitude from each target weighted by the 
standard deviation of the distribution); C) Perceived Error (error magnitude from the median of the 
distribution of end points); D) Precision-weighted Perceived Error (error magnitude from the median of the 
distribution of end points weighted by the standard deviation of the distribution).  E-H) Bar graphs show 
the modulation of mean confidence (mean corrected) binned relative to absolute errors calculated 
according to the corresponding model shown.  Solid lines represent the significance of the main effect of 
confidence and bin number.  Dotted lines show the significance of post-hoc pairwise comparisons between 
bins corrected for multiple comparisons with the Bonferroni method.  The effect sizes of the main effects 
represented in the graphs increased from left to right.  The most variance in the modulation of confidence 
with error was explained when confidence was binned based on precision weighted errors calculated from 
the median of the distribution of end points (D). 
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Table 5.1 shows the effect sizes of the results of the effect of bin number on mean 

confidence ratings for the four models tested.  It is clear from this summary that, on 

average, the effect size for the modulation of confidence with bin number was greater 

when error values were calculated based on each participant’s prior distribution of end 

points and these errors were weighted by the precision of that distribution.  This suggests 

that confidence ratings in this task were more readily based on the size of precision-

weighted proprioceptive errors relative to the participant’s own distribution of end points 

rather than absolute errors. 

 

 

 

 

 

 

 

Table 5.1. Effect sizes depicting the variance of the modulation in mean confidence ratings 
explained by bin number organised by different types of proprioceptive error.  Rows show the 
different models used to calculate the error values.  Effect sizes are of the main effect of bin number from 
the 3x4 (vibration x bin number) ANOVA used to analyse mean confidence values.  *=significant main effect 
of bin number on mean confidence. 

 

5.3.3. Vibration did not modulate any other movement parameters 

Based on previous literature and our previous work I hypothesised that high frequency 

vibration would decrease movement time.  However, this task was not optimal for testing 

this hypothesis as participants were not under any time pressure and end-point accuracy 

was the only factor stipulated in the instructions to participants.  Nevertheless, for 

completeness I analysed initial and average movement velocity and RT to determine if 

these parameters were modulated by the vibration conditions.  These parameters were 

averaged over vibration condition and target for each participant and analysed in a 3x4 

(vibration x target) repeated measures ANOVA.  For initial velocity, there was no 

significant main effect of vibration (p=0.19) and no significant interaction between 

vibration and target (p=0.549); however, there was a significant main effect of target 

(F(3,48)=5.74, p=0.002, ηp2=0.26).  Post-hoc pairwise comparisons showed that initial 

 ERROR MODEL EFFECT SIZE 

1 Actual Error calculated 

from target locations 

0.024 

2 Precision-weighted 

Actual Error calculated 

from target locations 

0.11 

3 Perceived Error 

calculated from median 

end point 

0.20* 

4 Precision-weighted 

Perceived Error 

calculated from median 

end point 

0.26* 
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velocity was greater for target 4 (M±SD: 75.65±49.64mm/s) compared to target 2 (M±SD: 

65.98±46.66mm/s; p=0.006, Bonferroni corrected) and trended towards a significant 

difference with target 1 (M±SD: 66.71±42.90mm/s; p=0.071).  Similar results were found 

for RT.  There was no significant main effect of vibration (p=0.726) and no significant 

interaction between vibration and target (p=0.661); however, there was a significant main 

effect of target (F(3,48)=5.30, p=0.003, ηp2=0.25).  Post-hoc pairwise comparisons showed 

that RTs were significantly slower for target 1 (M±SD: 0.70±0.28s) compared to target 4 

(M±SD: 0.63±0.21s; p=0.046; Bonferroni corrected).  Unlike with RT and initial velocity, 

average velocity showed no significant effects (main effect of vibration: p=0.785; main 

effect of target: p=0.877; interaction effect: p=0.539).  These results demonstrated that on 

average participants had slower initial movements and reacted more slowly towards 

targets presented on the left compared to targets presented on the right, but this was not 

reflected in the average velocity.  There was no effect of vibration on any movement 

parameters. 

5.4. DISCUSSION 

The main hypothesis for this study was that peripheral vibration would increase the 

uncertainty in the proprioceptive state and this would lead to an increase in 

proprioceptive errors or error variability on a proprioceptive reaching task.  I have shown 

that, across all conditions, participants overshot the targets in the Y axis and this occurred 

to a significantly greater extent following 80Hz peripheral vibration compared to the no 

vibration condition.  There was no effect of vibration on error variability or on a number 

of movement parameters, such as RT, initial velocity and average velocity.  Participants 

rated how confident they were that they had accurately placed the robot under the target 

following each trial.  There was no significant modulation of confidence with vibration 

despite an increase in proprioceptive error.  Confidence ratings were most readily 

modulated by perceived errors from the centre of each participant’s distribution of where 

they thought the target was rather than the true location of the target.  Moreover, the most 

variance in the modulation of confidence ratings was explained when confidence was 

binned based on errors weighted by the precision of the prior distribution of end points. 

Across all conditions participants consistently overshot the targets in the Y direction, 

which is consistent with previous studies using a very similar matching task (Beers et al., 

1999; van Beers et al., 1998).  In these studies, participants were asked to match visual 

and proprioceptive targets by placing their left finger on the underside of the table 

beneath a target.  In the visual condition they could see the target, but not their matching 
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hand; in the proprioceptive condition, the participant’s right hand acted as a target on top 

of the table and participants were blindfolded.  This research showed that when the visual 

target was available to guide movements the variance in the distribution of end points in 

the azimuth (~X axis) dimension was very small, but the variance in the radial plane (~Y 

axis) was larger.  The authors suggest that this was due to the angle at which the person 

was viewing the target and the movement of the hand away from the body; we are less 

accurate when reaching to visual targets that are far away (Bays and Wolpert, 2007).  In 

the current study, the distribution of end points for targets 2 and 3 was narrow along the X 

axis and wide along the Y axis, which reflects this result and suggests that participants 

were using a visually guided motor plan to guide the robot arm towards the targets.  In 

addition, in the previous study, when participants were blindfolded and only able to use 

proprioceptive information, the opposite result was found.  There was a greater variability 

of end points in the azimuth (~X axis) dimension due to the geometry and precision of the 

angles of our joints, but a much lower variability of end points in the radial (~Y-axis) 

dimension.  In the current study, there was more variability along the X axis for targets 1 

and 4 compared to targets 2 and 3, which was most likely due to the greater change in the 

angle of the wrist required to move to these targets. 

According to this previous literature, we weight visual and proprioceptive information 

differently depending on the direction of movement.  Therefore, when reaching along the 

Y axis in the current study, proprioceptive information would have been relatively more 

precise than the prior visuomotor plan and would have been weighted to a greater extent.  

This generates an interesting explanation for why high frequency peripheral vibration 

generated proprioceptive errors specifically along the Y axis.  According to Bayesian 

inference, we weight our sensory estimates and prior beliefs differently depending on 

their uncertainty and this relative precision-weighting determines whether the posterior 

distribution more closely represents our sensory or prior estimates (Körding and Wolpert, 

2004).  One hypothesis is that the vibration increased the uncertainty in the 

proprioceptive feedback, therefore participants relied more on their prior visuomotor 

plan about where the target was to determine when to stop moving in the Y axis.  This 

would cause them to overshoot the targets.  However, in the current task the prior and 

likelihood estimates cannot be separated and I did not model the integration between 

visual and proprioceptive information, therefore it is difficult to confirm this hypothesis.  

It would be interesting to repeat this study by training participants to have a specific prior 

distribution of end points (using a similar method to Körding and Wolpert, (2004)) and 

then manipulate the uncertainty in the proprioceptive feedback.  Bayesian modelling can 

then be used to determine how increasing proprioceptive uncertainty effects the posterior 
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distribution of end points.  It is important to note that the previous studies described here 

measured the distribution of end points along the axis of movement relative to the 

participant; however, in this study I have measured the distributions relative to the targets 

in external space.  It will therefore be useful to repeat these analyses using an egocentric 

frame of reference for a more precise exploration of how vibration affects end point 

accuracy. 

It is also important to hypothesise how vibration induced proprioceptive errors from a 

neurophysiological perspective.  I suggested in the previous chapter that estimates of 

sensory input are represented within beta oscillatory activity over sensorimotor cortex.  

Therefore, one hypothesis would be that vibration modulated sensorimotor beta power by 

activating 1a afferents unexpectedly, which then decreased the gain of proprioceptive 

information relative to visual information used to generate a motor plan.  An alternative 

hypothesis would be that vibration modulated the perception of the initial start position of 

the hand due to the kinesthetic illusions caused by the activation of muscle spindles.  

Previous tasks have shown that tendon vibration causes the illusory percept that the 

muscle being vibrated is lengthening in the absence of any EMG activity; therefore, when 

the muscle extensor is vibrated for example, participants consistently undershoot targets 

in the extension direction; the opposite result is found when flexor muscles are vibrated 

(Capaday and Cooke, 1981; Cordo et al., 1995, 2005; Goodwin et al., 1972; McCloskey, 

1973).  Following vibration offset, after effects have been recorded such that participants 

perceived an illusory movement in the opposite direction to that perceived during 

vibration (Seizova-Cajic et al., 2007).  In this task, vibration was applied to the inside of the 

wrist before each movement, therefore an illusory aftereffect would have created the 

perception of wrist flexion.  If participants perceived the initial position of their hand to be 

in this orientation then they would overshoot the targets as recorded, which suggests that 

this illusion could underlie participant’s behaviour.  However, I did not record the 

presence or magnitude of any vibration-induced illusions in this study, therefore it is 

difficult to confirm whether an altered perception of this start position was the reason for 

the increased proprioceptive errors seen in this task.  Moreover, participants had to 

orientate their hand to the start position using a cursor on the screen after vibration prior 

to each trial, which makes this hypothesis unlikely; however, this cursor only specified the 

location of the robot arm, therefore it is feasible that participants thought their wrist was 

more flexed than it was when in this start position. 

It is difficult to determine from the current results whether there was a frequency specific 

effect of vibration.  There was a trend towards a significant difference between 40Hz 

vibration and no vibration and there was no significant pairwise difference between the 
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40Hz and 80Hz vibration conditions.  Therefore, no firm conclusions can be made about 

the effect of vibration frequency on proprioceptive errors.  It is known that 80Hz vibration 

optimally stimulates 1a afferents (Roll et al., 1989), therefore it is likely that 40Hz 

vibration did activate muscle spindles, but to a lesser extent, which may explain the slight 

but reduced behavioural effect.  Alternatively, the similarity between the behaviour in the 

40Hz and 80Hz conditions may suggest that proprioceptive errors were driven by the 

transmission of unexpected cutaneous rather than muscle reafferance to the cortex.  

Indeed, it has been argued that slowly adapting mechanoreceptors in the skin may play a 

role in proprioception.  Interestingly, in the rubber hand illusion synchronous tactile 

stimulation of a rubber hand and the real hidden hand causes the perception that the 

rubber hand belongs to the participant, such that the participant reports a perceived shift 

in their real hand towards the position of the rubber hand (Botvinick and Cohen, 1998; 

Kammers et al., 2009; Tsakiris and Haggard, 2005).  This proprioceptive drift supports the 

hypothesis that position sense is generated by an integration of exteroceptive, 

somatosensory and proprioceptive inputs.  Indeed, in the current task participants moved 

the robot arm along a virtual plane, therefore could also have been using somatosensory 

information from the force feedback of the robot along this plane to determine when to 

stop moving.  Based on the distribution of end points and the previous literature, it 

appears that in this task participants were integrating visual information with either 

proprioceptive and/or somatosensory information to determine the final end position, 

therefore a disruption in either of these two latter domains could have potentially 

generated the behavioural errors seen. 

In addition to proprioceptive error, confidence ratings were recorded on each trial to 

provide a measure of how accurately participants thought they had placed the robot under 

the target.  This determined how aware participants were of their proprioceptive state.  As 

this study was conducted with young, healthy individuals, I hypothesised that participants 

would have a high awareness of their proprioceptive state and thus any increase in errors 

that occurred as a result of the high frequency peripheral vibration would be associated 

with a decrease in confidence ratings.  However, there was no significant main effect of 

vibration on mean confidence scores.  There are a number of reasons why this may be the 

case.  Firstly, the overshooting error caused by the 80Hz vibration was very small (~5mm 

on average), therefore one hypothesis is that this error was not large enough for 

participants to consciously notice.  Interestingly, this error was within the mean standard 

deviation of all errors in the Y axis across participants, therefore although vibration 

caused a consistent overshoot, this was within the normal distribution of movements.  

This supports the hypothesis that confidence ratings were more readily based on 
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perceived error from their own distribution of end points.  Secondly, the peripheral 

system may be more sensitive to changes in afferent input than our conscious awareness 

of that input.  Reflexes are constantly activated in the body without our conscious 

awareness of them, which demonstrates a dissociation between the sensitivity of different 

levels of the cortical hierarchy to changes in afferent input.  Thirdly, this method of 

assessing confidence may not be sensitive enough within the current experimental design.  

As the task difficulty didn’t change from trial to trial and no feedback was given 

throughout the task, there were limited reasons why a participant would modulate their 

confidence trial-by-trial within a block.  However, the random sequence in which different 

targets were presented added some variability within blocks.  Finally, previous research 

has highlighted individual differences in metacognitive ability across a sample of 

participants with similar performance accuracy (Fleming et al., 2010).  Therefore, the lack 

of an effect here could be due to between subject variance in metacognitive awareness. 

Confidence judgements are traditionally used within the decision-making literature to 

calculate scores of metacognitive sensitivity, which describe how well a participant knows 

when they are correct or incorrect following a perceptual decision.  This is often based on 

a direct read out from the quality or strength of the stimuli perceived such that when this 

signal is degraded beyond a certain threshold or the accumulation of evidence for a 

particular decision threshold is slower a decision is made with lower confidence (Galvin et 

al., 2003; Kiani and Shadlen, 2009; Lau and Rosenthal, 2011).  Within this literature choice 

certainty is very closely related to performance accuracy and the sensory input.  However, 

the analyses used in these studies cannot be applied to the current task as the dependent 

variable (end point error) is continuous, therefore no binary decision is made and end 

point errors cannot be classed as correct or incorrect.  In order to use these analyses, the 

current task will need to be repeated in a two-alternate choice discrimination paradigm in 

which participants must determine if they are closer or further away from two targets. 

Nevertheless, the current results showed that confidence judgements were related to 

participant’s perceived error from where they thought the target was normalised by the 

precision of the distribution of end points.  This result fits with hierarchical predictive 

coding frameworks, which hypothesise that confidence is related to the precision (inverse 

variance) of higher-order beliefs about internal states and external sensations (Friston 

and Kiebel, 2009).  Previous research has shown that confidence can be modulated whilst 

performance accuracy is maintained, which suggests a domain-general mechanism used to 

calculate confidence, which is separate from the primary task (Fleming et al., 2015).  For 

example, increasing sensory noise in the task stimuli whilst maintaining task difficulty has 

been associated with decreased confidence ratings for the same task performance (Spence 
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et al., 2016).  In addition, Friston and colleagues suggest that neuromodulatory circuits 

modulate the sensory gain on pyramidal cells transmitting bottom-up input such that this 

gain modulation determines the precision of the estimates encoded by those connections 

and this precision can therefore modulate confidence ratings.  In support of this, recent 

evidence has found that noradrenergic systems and bodily arousal modulate confidence 

without disrupting task performance potentially be modulating the precision surrounding 

afferent input (Allen et al., 2016; Hauser et al., 2017). 

The results in the current study provide novel evidence that confidence ratings in the 

sensorimotor domain (and in a task that does not involve explicit decision-making) are 

also related to the precision of the afferent input (i.e. are readily modulated in line with 

the distribution of movements) adding to this body of work, which suggests there is a 

global mechanism used to generate metacognitive judgements based on precision.  

However, a recent study argues that confidence ratings based on the precision of sensory 

input are domain-specific as they rely on the variance along a particular dimension: the 

precision in one domain will not necessarily be the same as in another domain.  Indeed the 

authors found that confidence judgements calculated using an equivalent method were 

not correlated across two tasks in different domains: orientation discrimination and 

numerical discrimination (Navajas et al., 2017).  Nonetheless, the mechanism underlying 

how that confidence rating is generated may be domain-general i.e. across domains the 

same computation may be used dependent on the synaptic gain across the neuronal 

population encoding the domain-specific sensation being reported on.  In the current 

study, I did not formally model how confidence ratings were generated or quantify how 

this could vary between individuals.  However, this would be an important next step to 

determine the underpinnings of confidence values about the proprioceptive state.  It 

would be especially interesting to find a task or patient population in which confidence 

ratings and task performance were dissociable within the proprioceptive domain.  From 

this we could determine whether sensorimotor beta oscillations more readily correlate 

with changes in sensory precision at the lowest level or represent our conscious estimate 

of sensory precision driven by frontal areas involved in metacognitive judgements.  The 

application of this to PD is discussed in the general discussion. 

In summary, this chapter demonstrates that high frequency peripheral vibration increases 

proprioceptive error by causing participants to overshoot visual targets.  One mechanism 

for this effect is that vibration increases the uncertainty (decreases the precision) of 

bottom-up proprioceptive input, therefore more weight is placed on the prior visuomotor 

plan to determine the movement end point.  A specially designed task with Bayesian 

modelling is required to test this hypothesis.  Despite inducing a proprioceptive error, 
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peripheral vibration did not cause a decrease in confidence ratings as hypothesised.  This 

is most likely due to the size of the error remaining within the normal distribution of end 

points across participants.  Confidence ratings were readily modulated by precision-

weighted end point errors from the median of each participant’s distribution of end points 

rather than absolute error values from the target locations.  This provides evidence to 

support global theories of metacognition, which suggest confidence judgements are based 

on the precision of internal and external states. 
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CHAPTER 6  

Study Four: Orthogonalising the parameters of 
predictive coding using a visuomotor adaptation 
task and the Hierarchical Gaussian Filter (HGF)  

6.1. INTRODUCTION 

The active inference framework aims to create a unifying hypothesis that can explain 

perception and action in the brain by generalising the principles of predictive coding to 

the sensorimotor system.  It is hypothesised that a hierarchical generative model exists in 

the motor cortex that predicts the sensory consequences of movement.  Proprioceptive 

predictions are compared with ascending reafferent input to generate prediction errors 

(PE) at multiple levels of the sensorimotor system from the spinal cord to the cortex.  PEs 

are precision-weighted, meaning that the generative model uses an estimate of the 

variance (uncertainty or inverse precision) of the sensory input to dictate how readily the 

PE will update the model.  This precision-weighting determines the relative influence of 

descending proprioceptive predictions compared to ascending proprioceptive PEs, which 

is hypothesised to be integral for the initiation of movement. 

At the neuronal level, it is hypothesised that this precision-weighting is determined by the 

post-synaptic gain on superficial pyramidal cells thought to transmit PEs up the cortical 

hierarchy (Friston and Kiebel, 2009).  It is therefore difficult to independently measure 

precision and PE.  However, the magnitude of the PE and the precision estimate serve 

different functions in Bayesian inference, therefore it is highly likely that the brain has a 

mechanism to dissociate these.  For this study I have designed a paradigm to orthogonalise 

the parameters involved in Bayesian inference, namely predictions, PE and sensory 

precision, in order to determine their neurophysiological correlates. 

In the introduction I highlighted the recent evidence that sensorimotor beta oscillations 

(~12-30Hz) appear to be correlated with parameters of Bayesian inference.  In brief, 

previous studies have demonstrated that the post-movement beta synchronisation 

(PMBS) correlated with both changes in PE and uncertainty in the predictions produced 

by the internal model (Tan et al., 2016, 2014b, 2014a; Torrecillos et al., 2015) and the 

increase in beta power seen prior to a task-related movement has been shown to correlate 
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with the adjustment of the motor command necessary to produce a more accurate 

movement on the next trial (Torrecillos et al., 2015). 

In this thesis, I specifically hypothesise that modulations in sensorimotor beta oscillations 

with movement may be explained by modulations in sensory precision.  Indeed, in study 

two (chapter four) I demonstrated that sensorimotor beta power decreased in response to 

a decrease in proprioceptive precision.  The reasoning for this hypothesis (outlined in full 

in the introduction) is demonstrated by the close correlation between the modulation of 

beta power and sensory attenuation with movement (Cohen and Starr, 1987; Davis et al., 

2012; Engel and Fries, 2010; Starr and Cohen, 1985).  Moreover, evidence suggests beta 

power is modulated by somatosensory information, therefore may not be solely related to 

movement parameters (Baker, 2007; Baker et al., 2006; Lalo et al., 2007). 

In order to test this hypothesis, I recorded EEG whilst participants carried out a modified 

visuomotor adaptation task.  It is thought that adaptation in these tasks occurs via a 

model-based mechanism involving error feedback (Thoroughman and Shadmehr, 1999).  

Angular visuomotor rotations of differing sizes were added into the feedback of a cursor to 

generate PEs throughout the task.  Each perturbation would remain constant for 10-15 

repetitions before a new perturbation was introduced in order to allow for behavioural 

adaptation.  Sensory precision was modulated in blocks by altering the amount of noise, or 

uncertainty, in the sensory feedback given; this aimed to decrease the influence of the 

precision-weighted PEs on updating the internal model leading to a decreased behavioural 

adaptation rate as shown previously (Burge et al., 2008; Wei and Körding, 2010).  In 

addition, prior precision was independently modulated by altering the probability with 

which the next trial in a sequence would require the same movement.  For example, 

participants were told that a new angular perturbation would be introduced on a random 

trial following at least 7 repetitions of the same perturbation (see Task Procedure: 

Visuomotor Adaptation Task for more details).  The probability of a new perturbation 

occurring increased following 7 repetitions of the same perturbation, therefore I 

hypothesised that participant’s prior precision would track this probability.  In many 

active inference and predictive coding schemes precision-weighting is afforded only to 

PEs; however, the hierarchical model employed in this study dissociates between the 

precision of prior predictions and the precision of sensory input both of which are used to 

determine the precision-weighting of PEs. 

I hypothesised that behaviour would be updated on a trial-by-trial basis using Bayes 

theorem and thus the task parameters I modulated would represent hidden beliefs 

involved in Bayesian updating.  For example, I hypothesised that the initial angular error 
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of the movement would decrease over repetitions of the same perturbation with 

adaptation; therefore, repetition number could be used as a proxy for PE.  In addition, the 

block wise changes in visual noise represented a proxy for sensory uncertainty (inverse 

sensory precision) used to weight the PE.  Under high visual noise there would be lower 

sensory precision, therefore PEs would have less impact on changing the motor prediction 

on the next trial.  The task design variables that served as proxies for these hidden beliefs 

were regressed with EEG data before and after each trial in order to determine their 

neurophysiological correlates. 

For a more specific measure of how these hidden beliefs actually evolved over time, the 

Hierarchical Gaussian Filter (HGF) was used to model these beliefs using each 

participant’s behavioural data.  The HGF is a hierarchical generative model that estimates 

how specific hidden beliefs about hidden states of the world (pertaining to estimates of 

predictions, PEs, and their precision) at different levels of the established hierarchy evolve 

over time based on specific task demands and individual participant’s behavioural 

responses.  It incorporates a perceptual model, which is used to estimate hidden beliefs, 

and a response model, which maps these hidden beliefs onto behavioural responses.  The 

trajectories of how these hidden beliefs changed over time were then regressed against 

EEG data in a second regression analysis to verify and extend the original findings based 

on the design variables.  Using this method this study aimed to deduce the 

neurophysiological correlates underlying the trial-wise modulation of a number of hidden 

beliefs involved in Bayesian inference during a visuomotor adaptation task. 

6.2. METHODS 

6.2.1. Participants 

24 healthy participants (female=12) aged 21-37 years old (mean ±SD: 25.46 ±4.56) took 

part in this study. Participants had no history of neurological or psychiatric illness by self-

report.  All participants were right handed and gave written informed consent prior to 

taking part.  This study was approved by the UCL Research Ethics Committee and all 

testing took place at the UCL Institute of Neurology, Queen Square.  5 participants were 

excluded for showing no visuomotor adaptation in the behavioural task (no significant 

difference in angular error between the error trial and the following tenth trial, p>0.1; see 

Behavioural Data Analysis for more details).  This suggested they were not following the 

task instructions correctly.  All subsequent analyses were carried out on 19 participants 

(female=9) aged 21-34 years old (mean ±SD: 25.53±4.03). 
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6.2.2. Experimental Setup 

Participants were seated in front of a laptop with their dominant hand resting on a 

trackpad (Sway MultiTouch Trackpad, Speedlink, London) under a box, which hid their 

arm from view.  The sampling rate was capped at the 60Hz refresh rate of the monitor.  

The position of the tip of their finger on the trackpad was shown as a circular cursor on 

the screen during the task.  Participants completed a visuomotor adaptation task (custom 

code using Cogent 2000 in Matlab 2013b).  EEG data were recorded using a BioSemi 128 

active electrode system at a sampling frequency of 2048Hz.  Two external reference 

electrodes were placed on the participants’ earlobes. 

6.2.3. Task Procedure: Visuomotor Adaptation Task 

The task design can be seen in Figure 6.1 and was adapted from similar tasks used 

previously (Tan et al., 2016, 2014a, 2014b; Torrecillos et al., 2015).  A start position (red 

circle) was presented at the bottom of a black screen at the start of a trial for 4s.  The start 

position turned orange indicating a READY signal and remained on screen for 1.5s.  At the 

GO signal, the start position disappeared and a single target appeared 20cm above the 

start position.  The target consisted of a small filled in circle at the centre of a larger outer 

circle.  A circular cursor appeared on screen at the position of the tip of the participants’ 

index finger on the trackpad.  Participants were instructed to move the cursor into the 

target zone following the most direct path as quickly and accurately as possible.  On 

reaching the target participants were instructed to remain still for 2s and then when given 

the RETURN signal were instructed to return to the start position without visual feedback.  

A tactile marker on the track pad indicated to the participant that they were back in the 

start position.  The ISI between the RETURN signal and the READY signal for the next trial 

was 4s.  There were 387 trials in total with 43 trials per block and 9 blocks.  The first block 

was a training block and was not included in subsequent analyses.  Participants were 

given a few minutes rest between blocks. 

The visual feedback of the cursor given during the trial was perturbed in two ways, which 

were independent from each other.  Firstly, an angular rotation was introduced on certain 

trials such that the position of the cursor on the screen did not always directly emulate the 

position of the participant’s finger on the trackpad.  The angular rotation in the cursor was 

either 30 degrees, 60 degrees or was veridical with the participant’s finger position.  When 

an angular rotation was introduced this remained constant for 10 trials and then at a 

random trial number between 11 and 15 a new angular rotation was introduced.  

However, participants were told that a new angular rotation could be introduced at any 
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point after 7 trials.  The sequence of angular rotations was pseudorandomised but the 

number of different changes in angular rotation was controlled such that there were an 

equal number of small and large error trials.  Change in angular rotation was considered 

large if the rotation changed from 0o to 60o or vice versa and was considered small if the 

rotation changed from 0o to 30o or 30o to 60o and vice versa.  Secondly, a random 

displacement in the X-axis was added into the visual feedback of the cursor in “high visual 

noise” blocks.  This made it difficult to accurately determine the exact position of the 

cursor.  In “no visual noise” blocks the cursor accurately tracked the participant’s finger 

position without any added displacement except for the angular rotation.  The type of 

block alternated and the noise level of the first block was counterbalanced across 

participants, except for the training block which was always a “no visual noise” block. 

The sequence of changes in angular rotation was pseudorandomised to ensure it was 

different for each participant, but there were an equal number of small and large changes.  

Each block started with the adapted angular rotation from the previous block and a new 

rotation was given after 3 trials.  This was to ensure that the noise perturbation and an 

angular perturbation did not occur at the same time.  Participants were explicitly told this 

and the first 3 trials of each block were excluded from data analysis. 

 

 

Figure 6.1. Visuomotor adaptation task design.  Participants were instructed to move the cursor from 
the start position to the target via the most direct path using a touchpad.  A visuomotor rotation was added 
to the feedback of the cursor.  Participants were told to wait at the target until the return signal when 
participants were asked to move back to the start position, which was signalled with a tactile marker: no 
visual feedback was given.  Participants then waited for 4s until the ready signal was given then another 
1.5s until the go signal was given for the next trial. 

 

6.2.4. Behavioural Data Analysis 

Data were analysed using custom code written in MATLAB (version 2013b; MathWorks).  

The main dependent variable in this task was angular error at maximum velocity.  Velocity 

was calculated from the differentiated cursor position and convolved with a Gaussian 
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kernel with a FWHM of 40ms.  Angular error was calculated as the angle between a line 

connecting the start position and the target and a line connecting the start position and the 

point of maximum velocity.  Movement initiation was calculated as the point in which the 

cursor crossed a semi-circular boundary with a radius of 5mm from the start position.  

Movement offset was defined as the time at which the cursor reached the outer circle of 

the target zone.  Movement time was calculated as the difference between the time of 

movement offset and the time of movement initiation.  Path length was calculated as the 

sum of the differentiated cursor position from the time of movement initiation to the time 

of movement offset.  A 2x2x10 repeated measures ANOVA with factors change in angular 

rotation, visual noise and repetition number was used to analyse each dependent variable.  

All comparisons were corrected for multiple comparisons using the Bonferroni method 

where applicable.  Where assumptions of sphericity were not met the Greenhouse-Geisser 

correction was applied. 

6.2.5. Behavioural modelling using the Hierarchical Gaussian Filter 

(HGF) 

I aimed to determine the neurophysiological correlates of hidden beliefs modelled using a 

two-level HGF (Figure 6.2).  In this model Bayesian updating occurs at multiple levels in a 

hierarchy and the volatility, or uncertainty, at each level of the hierarchy is determined by 

the volatility of the hidden state at the level below.  Hidden states evolve over time at each 

level via a Gaussian random walk and the variance (volatility or step size) of this is 

coupled to the level above such that different levels of uncertainty are represented at 

different levels of the hierarchy.  The HGF consists of two models.  The perceptual model 

determines how beliefs evolve over time given specific task inputs.  The response model 

then maps those beliefs onto actions by determining how a subject should behave given 

those inputs.  This model uses participant’s behavioural data to estimate specific 

parameter values that best explain how these beliefs influence that individual’s behaviour.  

For example, individual estimates of learning rate based on the behavioural data 

determine how quickly a participant will adapt to changes in perturbation level across 

trials.  The output of the HGF is several time-series, which demonstrate the trial-wise 

evolution of hidden beliefs throughout the task that are individual to each subject.  These 

trajectories were then correlated with neurophysiological data to understand how these 

beliefs were represented in the brain in this task. 
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Figure 6.2. Overview of the HGF used in this study.  In this study a 2 level HGF was employed. At the first 
level, the perceptual model estimates how participant’s beliefs about the perturbation level u modulate 
trial-by-trial i.e. what perturbation level governs that trial.  This prediction depends on the current task 
representation level and the magnitude of noise in the visual feedback 𝛼 (assumed to be constant for a given 
block).  Sensory PEs at this level represent the error between this prediction and the actual perturbation 
level that is weighted by the sensory uncertainty.  At the second level, the perceptual model estimated the 
probability with which the perturbation level would change over trials, x2.  Participants were told this 
would occur after at least 7 repetitions of a given perturbation level, however the change in perturbation 
occurred implicitly.  This level describes the validity of the perturbation level and the variance of this 
depends on the individualised learning step size ω.  Task representation PEs produced at this level are 
weighted by the predicted precision from the level below and the precision at the second level.  The response 
model maps these hidden beliefs onto observed movement times in order to estimate individual parameters 
that dictate learning rate based on Vossel et al (2014). 

 

6.2.5.1. The Perceptual Model 

In this model beliefs about hidden states were updated over time using Bayes theorem.  

Hierarchical levels were linked by the predictions of hidden states at lower levels, and the 

ensuing precision-weighted PEs updated the predictions at higher levels.  Estimates of 

uncertainty and individual learning rates were used to weight PEs at different levels of the 

hierarchy to explain the behavioural data.  In this task, the manipulation of uncertainty 

was twofold: (1) which visuomotor perturbation level would govern a given trial; and (2) 

how much noise there would be in the visual feedback.  The perturbation level changed 

implicitly over the course of the experiment, while feedback noise was manipulated 

explicitly and presented in separate blocks.  The model estimated the participants’ trial-

by-trial beliefs about the perturbation level, corresponding to the lowest level in the 

model, denoted by u.  Participants were told that the perturbation would change on a 

random trial between 7-15 trials after it was introduced.  Over the course of the 

experiment, participants could learn when the perturbation level was more likely to 

change; accordingly, the beliefs about the higher-level structure of the task are denoted by 
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x2. The inferred beliefs constitute the hidden states of an observation model (Mathys et al., 

2011) and evolve as a Gaussian random walk. The generative model is hierarchical, i.e., the 

hidden states at a given level determine the variance of the random walk at the level 

below:  

(1) 𝑝 (𝑢|𝑥2
(𝑘)

) =  𝑁 (𝑢; 𝑥2
(𝑘)

, 𝛼), 

(2) 𝑝 (𝑥2
(𝑘)

|𝑥2
(𝑘−1)

) = 𝑁 (𝑥2
(𝑘)

; 𝑥2
(𝑘−1)

, exp(𝜔)). 

At the lower level (Eq. 1), the prediction of the visuomotor rotation depended on the 

current task representation level and visual feedback noise 𝛼 (assumed to be constant for 

a given block). At the higher level (Eq. 2), the inferred task representation level in a given 

trial 𝑥2
(𝑘)

 was normally distributed around the validity level from the previous trial 𝑥2
(𝑘−1)

, 

with the variance of this distribution depending on the learning step size .  In this 

paradigm the validity of the visuomotor perturbation was fixed at 100% (i.e., all trials 

governed by e.g. a 30o rotation required a 30o displacement of the motor action relative to 

the visual input to accurately hit the target), however the second level of the observation 

model can efficiently learn about probabilistic validity levels (cf. e.g.(Vossel et al., 2014)).  

This model can in principle be extended with further hierarchical levels (Mathys et al., 

2014) describing e.g. the volatility of the perturbation level; however, in our paradigm no 

further manipulations of uncertainty were introduced. 

During the fitting of the model to the data, one can estimate the trial-by-trial time-series 

(at each level i) of the participants’ beliefs 𝜇
𝑖

(𝑘)
 (i.e., posterior means of states 𝑥𝑖

(𝑘)
) and the 

updates on these beliefs 휀𝑖
(𝑘)

 (precision-weighted PEs) after observing an outcome. The 

variational approximation in the HGF provides analytic update equations describing these 

time-series: 

(3) 𝜇2
(𝑘+1)

 −  𝜇2
(𝑘)

 ~ 𝜓2
(𝑘)

𝛿1
(𝑘)

=  휀2
(𝑘)

, 

(4) 𝜓2
(𝑘)

=
�̂�1

(𝑘)

𝜋2
(𝑘), 

(5) 𝜋2
(𝑘)

=
1

𝜎2
(𝑘), 

(6) 𝛿1
(𝑘)

=
 𝜎1

(𝑘)
+(𝜇1

(𝑘)
−𝜇1

(𝑘−1)
)

2

𝜎1
(𝑘−1) − 1. 

As shown in equations 3-6, in each trial, a belief update at the second level, about the task 

representation 𝜇
2

(𝑘+1)
 −  𝜇

2

(𝑘)
 is proportional to the PE at the level below 𝛿1

(𝑘)
, weighted by 
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a precision ratio 𝜓
2
(𝑘).  This precision ratio depends on the precision (inverse variance) of 

the prediction at the level below, �̂�1
(𝑘)

, and the precision at the current level 𝜋2
(𝑘)

.  The 

superscript ^ denotes the prediction before observing the trial outcome; accordingly, �̂�𝑖
(𝑘)

 

is the precision of this prediction. At the lower level, the updates take a similar form.  The 

numerator of the precision term includes the parameter of sensory uncertainty and 

therefore the precision weighting modulates according to the noise level of the visual 

feedback. 

(7) 𝜇1
(𝑘+1)

 −  𝜇1
(𝑘)

 =
�̂�1

(𝑘)
+𝛼

�̂�1
(𝑘) 𝛿𝑢

(𝑘)
, 

(8) �̂�1
(𝑘)

=  
1

𝜎1
(𝑘−1)

+𝑒𝜔
, 

(9) 𝛿𝑢
(𝑘)

=  𝑢(𝑘) − �̂�1
(𝑘)

= 𝑢(𝑘) − 𝜇1
(𝑘−1)

. 

At the lower level, the PE about the observed perturbation level 𝛿𝑢
(𝑘) is simply the 

difference between the actual and the predicted outcome, where the prediction is 

inherited from the previous trial (Eq. 9).  This PE, weighted by its variance and sensory 

noise alpha, is used to update the predictions about the outcome in the next trial (Eq. 7).  

At the higher level, the PE about the visuomotor perturbation level is used to update the 

prediction of its validity in the next trial (Eq. 3). These HGF-derived time-series – fitted to 

each participant’s behavioural data – were used as regressors in subsequent analysis of 

EEG data.  Prior variance log(𝜎1,2
(0)

) were treated as free parameters. 

6.2.5.2. The Response Model 

To map the estimated hidden states (beliefs) onto the observed behavioural data, I 

specified a response model for the measured movement time (MT).  Visuomotor 

adaptation studies have previously controlled for movement speed, such that the only 

variable to vary from trial to trial is angular error, and this is used as a measure of 

adaptation.  However, the speed in which a participant moves contains a lot of important 

information related to how confident they are, which is thought to reflect estimates of 

precision.  I therefore decided to use movement time as our dependent variable for the 

response model as this encompasses both speed and accuracy in a single variable and 

therefore produces a more holistic summary of how participants behaved.  The response 

model was based on the trial-by-trial estimate of surprise, S (Vossel et al., 2014):  

(10) 𝑀𝑇 = 휁0 + 𝑢(휁𝑝 + 휁2𝑆) + (1 − 𝑢)(휁𝑛 + 휁2(1 − 𝑆)), 

(11) 𝑆 =
1

1+𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒(�̂�1)
=

1

1−log2(�̂�1)
 . 
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Inputs u were coded such that they mapped onto a range {0, 1} corresponding to {0o, 60o} 

displacement. Responses MT were calculated as response speed, i.e., the reciprocal of 

reaction times. A time-resolved value S represents attentional resources, scales with 

Shannon surprise associated with the target stimulus, and respects the same boundary 

conditions as responses and inputs, i.e., is confined to the {0,1} interval with S = 0.5 when 

�̂�1 = 0.5. Parameters 휁 quantify each participant’s MT values (휁0: baseline; 휁1𝑝 and 휁1𝑛: MT 

contribution after increasing and decreasing the perturbation level respectively), with 휁2 

denoting the weight of the attentional resources onto a given trial’s estimated MT. 

6.2.5.3. Model comparison 

To test whether the participants’ behaviour in this task can be assumed to follow Bayesian 

learning, I compared two observation models (HGF and a standard reinforcement learning 

model; cf. Rescorla and Wagner, (1972)) using Bayesian Model Selection.  The Rescorla-

Wagner (RW) learning model demonstrates how the association between a conditioned 

stimulus (CS) and an unconditioned stimulus (US) is learned over time.  This association is 

updated in a trialwise manner depending on a prediction error weighted by a constant 

salience term that does not vary over time, but allows the learning rate to vary on an 

individual basis.  In this experiment the CS can be likened to the angular rotation in the 

visuomotor mapping and the US is the subsequent motor action; on each trial the subject 

predicts the optimal motor action from the visual feedback from the previous trial.  In the 

RW learning model equations below (eq 12 and 13) a prediction error, 𝛿, is generated on 

each trial from the difference between the sensory input, u , and the change in association 

between the CS and US on the previous trial, 𝑣(𝑘−1), (eq 12).  The change in association for 

the current trial, 𝑣(𝑘), is determined by weighting the prediction error by the salience of 

the CS, α , and adding this to the change in association from the previous trial (eq 13).  This 

update equation modulates the association between the CS and US based on the given 

sensory input and a constant, individual learning rate. 

(12) 𝛿(𝑘) = 𝑢(𝑘) − 𝑣(𝑘−1) 

(13) 𝑣(𝑘) = 𝑣(𝑘−1) +  𝛼 ∗ 𝛿(𝑘) 

Each model provides a goodness of fit measurement, which states how well the model 

predicted each participant’s behavioural data.  In this study, this was the log model 

evidence (LME), which is calculated based on the negative variational free energy.  I 

compared the LME across participants and these two models using the function 

“SPM_BMS” (Stephan et al., 2009). 
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6.2.6. EEG Data Analysis: Pre-processing 

Data were pre-processed using SPM 12.  EEG data were filtered using a highpass filter at 

1Hz and a low pass filter at 100Hz and downsampled to 400Hz.  Bad channels were 

identified using the ‘threshold z-scored difference data’ detection algorithm in SPM with a 

threshold of 8.  If 20% of the continuous data for a channel was above this threshold, it 

was flagged as a bad channel and removed from analysis at a later stage.  Due to the length 

of the trials being analysed topography-based artefact correction was applied to the 

continuous data to remove eyeblinks.  Epoched EEG data were aligned to: 1) the onset of 

the GO signal with a time window of -6000ms to 1000ms to investigate foreperiod EEG 

activity, and 2) to movement offset, defined as the time the participant reached the target, 

with a time window of -1000ms to 2000ms to investigate post-movement EEG activity.  

For the time-frequency analysis the power of the EEG signal at each frequency from 1 to 

99Hz was estimated using the wavelet transform in SPM.  A Morlet wavelet with 7 cycles 

for each frequency was used. 

To measure topographic changes in beta oscillatory activity over time, time frequency data 

was averaged over 15-30Hz.  Data was log transformed and mean corrected such that the 

data at each sample point represented the change in beta power from the total average 

beta power for each channel.  A region of interest (ROI) over sensorimotor cortex was 

selected by highlighting electrodes in which there was a significant event-related decrease 

in beta power during motor preparation at the onset of the GO signal and also a significant 

event-related increase in beta power at 1000ms post-movement (Figure 6.3).  To measure 

time-frequency changes over sensorimotor cortex, EEG data were averaged over the ROI 

electrodes selected, log transformed and mean corrected such that the data at each sample 

point at each frequency band represented the change in the power from the total average 

power for that frequency. 

For 18 subjects a technical error during recording meant that the rebound period for one 

condition (no angular perturbation, high visual noise) was 1s less than the other 

conditions; therefore, these trials (n=53) were removed from the EEG analysis for 

movement offset only for these participants.  However, this did not affect the main results 

as regression analyses were used and there was still a large number of remaining trials.  It 

is important to note that this did not affect the pre-movement results. 
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Figure 6.3. Beta power (15-30Hz) modulated over sensorimotor cortex with movement.  A) A 
schematic demonstrating the change in hand velocity throughout the task with each signal.  This highlights 
the points at which participants were moving and the points they remained still.  B+C) Solid line represents 
the change in beta power (15-30Hz) from the total average beta power for each channel averaged over all 
trials over a selected ROI and over all subjects in an epoch aligned to movement offset (B) and the GO signal 
(C).  Shaded area represents ±s.e.m across subjects.  D+E) Time-frequency plots demonstrating the average 
change in power over time across 1Hz frequency bands from 1-60Hz averaged over subjects.  EEG data were 
epoched around movement offset (D) and the GO signal (E).  F-H) An ROI was selected over sensorimotor 
cortex.  The white dotted line represents the ROI selected as shown in H.  This incorporated both the average 
ERD over subjects at the onset of the GO signal (F) and the average ERS over subjects 1s after movement 
offset (G).  The white dotted squares indicate the windows of interest that were used for small volume 
correction for statistical analyses.  
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6.2.7. EEG Data Analysis: Statistical analysis 

The time-frequency data files for each trial were converted into images for statistical 

analysis in SPM.  At the single subject level, images aligned to the GO signal or movement 

offset were regressed against the behavioural task trajectories of either the design 

variables or the HGF variables using a GLM (see Figure 6.4 for details of the regressors 

used).  For the images aligned to the GO signal, the first trial of the EEG data was deleted 

and the last trial of each behavioural regressor was deleted in order to see the effect of the 

behaviour from the previous trial on the EEG activity in the foreperiod of the next trial. 

For the design trajectories, both GLMs included regressors of repetition number, noise 

level and visuomotor rotation.  For the HGF trajectories, specific regressors from each 

level of the hierarchy were used to analyse EEG data before and after a movement.  For 

images aligned to movement offset the following HGF trajectories were used at the first 

level: sensory PE (δu), precision (ψ1) and the posterior mean of the prediction (u1); and 

from the second level: task representation PE (δ1), precision (ψ2) and the posterior mean 

of the prediction (x2).  For images aligned to the GO signal the following HGF trajectories 

were used at the first level: the prediction mean regarding the expected visuomotor 

rotation for the current trial (�̂�1) and prior precision (�̂�1).  The prediction (𝑥2) and prior 

precision (�̂�2) at the second level lacked any probabilistic structure, therefore these 

regressors were not analysed.  The contrast images from these analyses for each 

participant were smoothed used the “SPM_smooth” function with a Gaussian kernel with a 

FWHM of 2Hz and 150ms.  The smoothed contrast images for each regressor of interest 

were then analysed at the group level using a one sample t-test to identify any EEG activity 

in the time-frequency domain that showed a consistent correlation with each regressor of 

interest across participants. 

I hypothesised that there would be correlations between the regressors of interest and 

beta power within the frequency band 12-30Hz in two windows of interest based on the 

task design and the average change in beta power over time across participants.  For 

images aligned to the GO signal, a window of interest was selected between the ready 

signal and GO signal in order to measure activity in this time period that may be relevant 

for motor preparation, therefore a small volume correction with a 18Hz by 1000ms 

window centered at -500ms and 21Hz (mid-way between 12Hz and 30Hz) was used.  For 

images aligned to movement offset the average time-frequency spectrum showed a 

significant increase in beta power post-movement with the peak voxel at 21Hz and 

1133ms therefore a small volume correction in a 18Hz by 2000ms window centred on 

here was used to include the whole rebound period (see Figure 6.3). 
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Figure 6.4. The trial-wise trajectories of task inputs or hidden beliefs estimated by the HGF.  A) The 
task was designed to manipulate perturbation level and visual noise orthogonally.  Repetition number 
follows the implicit changes in perturbation level.  Repetition 1 is the first introduction of a new 
perturbation: the error trial.  Visual noise was modulated in blocks of high and low visual noise.  Angular 
rotation denotes the size of the perturbation level introduced (0o, 30o or 60o), which stayed constant over 
subsequent repetitions of that perturbation.  These regressors were used in a GLM to explain sensorimotor 
beta power following a movement and before a movement.  B) The HGF estimated trajectories for how 
different hidden beliefs evolved over time throughout the task are shown for an example participant.  
Hidden beliefs estimated after sensory input was received were used to explain the post-movement beta 
synchronisation (upper panels) and predictions made before sensory input was received were used to 
explain preparatory beta power before movement onset (lower panels).  These trajectories were produced 
at both the first level (left panels) and second level (right panels) of the HGF. 

 

6.3. RESULTS 

6.3.1. Behavioural results: Participants behaved differently under high 

and low visual noise 

Out of 24 participants, 19 successfully adapted their behaviour to the visuomotor rotation 

as shown by a significant mean decrease in initial angular error from the first error trial to 

the tenth repetition of that perturbation (all p<0.05).  The 5 participants that did not show 

a significant difference in angular error by the tenth repetition were excluded from 

subsequent analyses for not completing the task appropriately.  In the remaining sample 

of 19 participants, a 2x2x10 repeated measures ANOVA, comparing visual noise (no or 



Chapter 6 – Study Four 

137 
 

high), size of change in angular rotation on an error trial (small, 30o or large, 60o) and 

repetition number, was conducted for initial angular error.  As expected there was a 

significant main effect of repetition number (F(2.58,46.48)=104.15, p<0.001, ηp
2=0.85; 

Figure 6.5A).  Participants adapted quickly to the perturbation over repetitions of the 

same visual rotation: overall mean angular error significantly decreased from repetition 1 

to repetition 3 and then remained stable for subsequent repetitions.  Angular error was 

also modulated by the size of the perturbation as expected i.e. a large change in 

perturbation (0o to 60o or vice versa) generated a larger angular error than a small change 

in perturbation (0o to 30o or 30o to 60o and vice versa), but this was only significant for the 

error trial and the subsequent trial (size of angular rotation x repetition number: 

F(4.68,84.30)=30.32, p<0.001, ηp
2=0.63; large change in rotation: M±SD on error 

trial=47±6.7; small change in rotation: M±SD on error trial=26.9±5.1). 

Similar results were found for the other behavioural variables measured.  Movement time 

was greatest on error trials and decreased with adaptation (F(2.02,36.39)=29.24, p<0.001, 

ηp2=0.62; Figure 6.5B).  This was driven by a decrease in average velocity and an increase 

in path length on error trials.  Movement time was longer following a large change in 

perturbation compared to a small change (F(1,18)=11.17, p=0.004, ηp2=0.38) and this was 

significantly different for the error trial and the subsequent two trials (angular rotation x 

repetition number: F(9,162)=6.58, p<0.001, ηp2=0.27). 

Path length was greatest on error trials and decreased with adaptation 

(F(2.37,42.73)=71.16, p<0.001, ηp2=0.80; Figure 6.5C).  Path length was greatest following 

a large change in angular rotation compared to a small change (F(1,18)=8.90, p=0.008, 

ηp2=0.33) and this was only significant for the error trial and repetition 3 (angular rotation 

x repetition number: F(4.66,83.94)=16.46, p<0.001, ηp2=0.48).  Average velocity was not 

significantly modulated by the size of the change in perturbation (p=0.069), however this 

was significantly modulated by repetition number (F(2.2,40.26)=7.57, p<0.001, ηp2=0.30).  

Participants significantly slowed down on error trials and sped up over subsequent trials 

(Figure 6.5D). 

I hypothesised that introducing uncertainty into the visual feedback of the cursor would 

lead to reduced movement speeds and a decreased rate of adaptation.  Indeed under high 

visual noise compared to no visual noise mean movement time increased (main effect of 

noise: F(1,18)=64.10, p<0.001, ηp2=0.78) and overall average velocity decreased (main 

effect of noise: F(1,18)=11.75, p=0.003, ηp2=0.40).  The rate of increase in average velocity 

after an error trial was smaller under high visual noise compared to no visual noise.  I infer 

that under high visual noise participants were not as confident in their movements and 
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therefore moved slower.  Indeed, participants did not adapt as quickly or as fully under 

high visual noise as demonstrated by an overall increase in initial angular error (main 

effect of noise: F(1,18)=11.47, p=0.003, ηp
2=0.39) and path length (main effect of noise: 

F(1,18)=31.81, p<0.001, ηp
2=0.64) throughout high noise blocks. 

 

Figure 6.5. The visuomotor rotation and visual noise significantly modulated behaviour.  All 
behavioural variables were averaged over all perturbation sizes for the noise (green) and no noise (black) 
blocks and for each repetition of a perturbation.  A) Angular error was maximal on an error trial and 
decreased over subsequent repetitions with adaptation. B) Movement time was on average greater for high 
visual noise compared to no visual noise conditions. C) Path length modulated in a very similar way to 
angular error decreasing with repetition number.  On average path length was significantly greater for 
high visual noise compared to no visual noise conditions. D) Average velocity decreased on error trials and 
increased over subsequent repetitions with adaptation.  Average velocity was significantly less under high 
visual noise compared to no visual noise. 

I designed the current task so that all the experimental manipulations were independent 

from each other in order to determine the specific neurophysiological correlates for each 

task parameter.  In particular, I aimed to dissociate the effects of PE and sensory precision 

on sensorimotor beta oscillatory activity.  Errors were introduced using visuomotor 

rotations and, as can be seen from the behavioural data, were reduced over subsequent 

repetitions under blocks of high and no visual noise.  I entered regressors of the task 

parameters (repetition number, visual noise and perturbation level) into a GLM to identify 

the neurophysiological correlates of these independent parameters prior to movement 

and at the end of each movement. 
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6.3.2. Neurophysiological result: post-movement beta synchronisation 

(PMBS) increased over repetition number with adaptation 

Across participants, there was a significant positive correlation between repetition 

number and the PMBS such that beta power was decreased following an error trial and 

increased with subsequent repetitions of the same perturbation (Figure 6.6A,D; peak voxel 

at 12Hz, 545ms: t=7.10, p=0.001 FWE).  There was a significant positive correlation 

between beta power and visual noise such that high noise blocks had higher post-

movement beta power than no noise blocks; however this did not survive correction for 

multiple comparisons (peak voxel 23Hz, 828ms: t=3.77, p=0.080 FWE, p=0.001 

uncorrected; Figure 6.6B,E).  There was no significant correlation between post-

movement beta power and the perturbation level (Figure 6.6C,F).  Here the majority of the 

variance in the PMBS could be explained by repetition number; however, some variance 

was also accounted for by visual noise. 

6.3.3. Neurophysiological result: pre-movement beta power decreased 

more following an error trial and increased with adaptation 

Task parameters from the previous trial were used to identify the neurophysiological 

effects of these on preparation for the next trial.  I found a significant positive correlation 

between repetition number and beta power in the preparatory period following the ready 

signal and prior to the GO signal (peak voxel at 21Hz, -420ms, t=4.76, p=0.018 FWE; 

Figure 6.6G,J).  Beta power was significantly reduced in this preparatory period following 

an error trial and increased with subsequent repetitions.  There was no significant effect of 

visual noise and no significant effect of the perturbation level on beta power (p>0.1 FWE; 

Figure 6.6H,I,K,L). 

These results demonstrate that beta desynchronisation prior to movement and beta 

synchronisation post-movement were significantly reduced following an error trial and 

increased over subsequent repetitions of the same perturbation.  To formally probe the 

relationship between PE and precision further I modelled the behaviour from this task 

using the HGF in order to produce individual trajectories of how hidden beliefs evolved 

throughout the task.  In particular, I modelled prediction, PE, precision and the posterior 

mean of the prediction and then repeated the EEG analyses to determine the 

neurophysiological correlates of these estimated beliefs. 
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6.3.4. Modelling result: the HGF readily explained participant’s 

behaviour compared to a non-Bayesian learning model 

The task used in this study involves integrating uncertainty estimates to optimise 

behaviour, therefore it is likely that a Bayesian learning model would readily describe 

participant’s behaviour.  However, it is important to compare the Bayesian HGF used in 

this study with an alternative non-Bayesian learning model (e.g. the Rescorla-Wagner 

model, (Rescorla and Wagner, 1972)) to confirm that the HGF captured more variance in 

participant’s behaviour that would otherwise be unaccounted for.  The log model evidence 

(LME) from each model was compared across participants using the Bayesian Model 

Selection function in SPM.  The behavioural data used for these models was movement 

time as this encapsulated both the size of the angular error (due to increased path length) 

and any uncertainty in the movement that may be captured in participant’s movement 

speed.  Across participants, movement time was better explained using the HGF compared 

to the RW model (protected exceedance probability = 0.89 i.e. the HGF was 89% more 

likely to explain the data better).  This suggests that participants behaved in a Bayesian 

manner and this justifies the use of the HGF for subsequent analyses. 
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Figure 6.6. Beta power before and after a movement correlated with repetition number.  A-C, G-I) A 
GLM involving the design regressors (repetition number, visual noise and angular rotation) measured the 
correlation between EEG activity and each regressor of interest for each subject individually for the time 
period after each movement (A-C) and before each movement (G-I).  Here the time-frequency plots show the 
t-statistic from a series of one sample t-tests measuring the consistency of these relationships across 
participants.  The results show areas in which the data was consistently positively correlated (warm 
colours) or negatively correlated (cool colours) with the regressor of interest across participants.  D-F, J-L) 
These graphs display the change in beta power (12-30Hz) from the total average beta power in each 
channel averaged over the ROI and across participants over trials in a particular condition.  D+J) Beta 
power averaged over error trials (or error trials+1 for pre-movement period) and adapted trials (error 
trial+10 or error trials+11 for pre-movement period) to compare activity on trials with a large error and no 
error.  E+K) Beta power averaged over high visual noise and low visual noise blocks.  F+L) Beta power 
averaged over all trials with a particular sized angular rotation: 0 degrees, 30 degrees or 60 degrees.  The 
upper two rows show data corresponding to the post-movement period and the bottom two rows 
correspond to the pre-movement period.  White dotted lines show significant activity thresholded at t=3.61, 
p<0.001 uncorrected. 
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6.3.5. Modelling and neurophysiology: post-movement beta 

synchronisation (PMBS) correlated with parameters involved in 

Bayesian updating at the sensory level 

GLMs were used to identify the neurophysiological correlates of model parameters at each 

level of the HGF.  For the post-movement period, for the first level of the HGF, a GLM 

including the following regressors was used: sensory PE (δu), precision ratio (ψ1) and the 

posterior mean of the prediction (x1).  There was a significant negative correlation 

between the PMBS and sensory PE (peak at 15Hz, 768ms; t=6.72, p=0.001 FWE; Figure 

6.7A).  Beta power was significantly reduced following an error trial and increased with 

adaptation as PE decreased; this mirrors the finding with repetition number.  Beta power 

was also significantly negatively correlated with the precision ratio (peak at 16Hz, 

1788ms; t=5.44, p=0.005 FWE; Figure 6.7B).  When sensory precision was low, for 

example during blocks of high visual noise, the beta rebound was much larger.  In addition, 

the posterior mean indicating the updated belief about the size of the visuomotor rotation 

(which is then used as the prediction for the next trial) significantly negatively correlated 

with the PMBS (peak at 18Hz, 508ms; t=4.94, p=0.016 FWE; Figure 6.7C).  The data 

provides evidence that the parameters involved in Bayesian updating following a 

movement may be encoded within the PMBS. 

At the second level of the HGF, a GLM including the following regressors was used: task 

representation PE (δ1), precision ratio (ψ2) and the posterior mean of the prediction (x2).  

The only regressor that showed a significant correlation with the PMBS was the precision 

ratio (peak at 23Hz, 813ms; t=4.23, p=0.037 FWE; Figure 6.7E).  Here, as for the first level, 

the PMBS was larger when this precision-weighting was low.  There was no significant 

correlation between beta power and the task representation PE or the posterior mean of 

the prediction at the second level (p>0.05; Figure 6.7D,F).  This suggests that beta power 

over the sensorimotor cortex most likely encodes parameters of Bayesian updating at the 

lowest sensory level of Bayesian updating relevant to the magnitude of PE rather than its 

validity, or that the task did not introduce enough variability in validity over time. 
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Figure 6.7. Post-movement beta synchronisation correlates with multiple components of Bayesian 
updating.  Two GLMs involving regressors estimated from the first level of the HGF (upper row) or the 
second level of the HGF (lower row) measured the correlation between EEG activity following a movement 
and each regressor of interest for each subject individually.  Here the time-frequency plots show the t-
statistic from a series of one sample t-tests measuring the consistency of these relationships across 
participants.  There was a significant consistent negative correlation between the PMBS and prediction 
error (A), the precision ratio (B) and the posterior mean (C) estimated at the first level of the HGF across 
participants.  There was a significant consistent correlation between the precision ratio (E) and high 
frequency beta power in the PMBS.  There was no significant correlation between the PMBS and prediction 
error (D) and posterior mean (F) estimated at the second level.  White dotted lines show significant activity 
thresholded at t=3.61, p<0.001 uncorrected. 

 

6.3.6. Modelling and neurophysiology: preparatory beta power 

inversely correlated with precision 

I hypothesised that beta power in the preparatory period before a trial would be 

correlated with both the model prediction of the visuomotor rotation for that trial and the 

predicted precision surrounding this.  Here I focused my analysis on the period between 

the ready signal (-1500ms) and the GO signal (0ms) where there was a gradual decrease in 

beta power in preparation to make the upcoming movement.  A GLM using the following 

regressors at the first level was analysed: predicted visuomotor rotation before any 

sensory input (𝑥1) and prior precision (�̂�1).  I found a significant negative correlation 

between prior precision and beta power in this time window (peak at 14Hz, -250ms; 

t=4.66, p=0.011 FWE; Figure 6.8A), showing that beta power was suppressed to a greater 
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extent under high prior precision (least uncertainty).  There was no significant correlation 

between beta power and the estimated prediction mean (p>0.05, Figure 6.8B). 

The prior precision value in the HGF is taken from the variance of the posterior from the 

previous trial, which is updated based on the previous trial PE; therefore, the prior 

precision value incorporates the magnitude of the previous PE and an estimate of sensory 

uncertainty.  I wanted to explore further the relationship between beta power, uncertainty 

and error in this preparatory period.  In order to do this I conducted a series of 

exploratory analyses to look at the interaction between error, visual noise and beta power.  

For this I extracted the values of beta power in the significant cluster highlighted above 

(Figure 6.8A white dotted outline; 12-20Hz, -500-0ms) for trials immediately following an 

error trial and trials 10 repetitions after an error trial (behaviour fully adapted) under 

both high and no visual noise.  A 2x2 repeated measures ANOVA revealed a significant 

interaction between trial number and visual noise at this time point (F(1,18)=5.19, 

p=0.035, ηp
2=0.22), but no significant main effects (p>0.1).  Under no visual noise there 

was a significant difference in the preparatory suppression of beta power following an 

error trial compared to the later repetition (p=0.036, corrected); beta suppression was 

greatest following an error trial and increased with adaptation.  There was no significant 

modulation of beta power with trial number for the high noise blocks (p=0.32, corrected) 

(Figure 6.8C).  A correlation analysis of beta power over repetitions following an error 

trial revealed a significant positive correlation between the beta power and repetition 

number for no noise blocks (r=0.63, p=0.026; one-tailed) and no significant correlation for 

high noise blocks (r=0.19, p=0.31; one-tailed) (Figure 6.8D).  This analysis dissociates the 

precision-weighting from the magnitude of the previous error and therefore supports the 

hypothesis that preparatory beta power in the 500ms prior to the GO signal readily 

modulates depending on movement uncertainty or prior precision. 
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Figure 6.8. Preparatory beta power inversely correlated with prior precision.  A+B) Time-frequency 
plots showing the results of a one sample t-test measuring the consistency of the correlation between the 
estimated parameters of the HGF and the EEG data.  Low-frequency beta power (12-20Hz) was consistently 
negatively correlated across participants with prior precision (A).  There were no significant consistent 
correlations for the prediction mean (B).  C) Beta power (12-30Hz) represented as a change in beta power 
from the total average beta power in each channel was averaged over the ROI and time window of interest 
(-500-0ms; white dotted line in A).  The bar graph shows the mean (±s.e.m) beta power across participants 
for four conditions in a 2x2 factorial design (visual noise level (high vs low); repetition number (error trial 
+1 vs error trial +11).  There was a significant interaction between visual noise and repetition number 
(p=0.035, Eta2=0.22).  D) There was a significant correlation between repetition number and beta power 
for the no noise condition (r=0.63, p=0.026; one-tailed): beta power increased with adaptation over 
repetitions of the same perturbation.  There was no significant correlation between repetition and beta 
power for the high noise condition (r=0.19, p=0.31; one-tailed).  White dotted lines show significant activity 
thresholded at t=3.61, p<0.001 uncorrected. 

 

6.4. DISCUSSION 

The aim of this study was to orthogonalise the parameters of predictive coding in a 

visuomotor adaptation paradigm in order to determine their neurophysiological 

correlates within the sensorimotor system.  I modulated visual noise independently from 

an angular perturbation and used the HGF to estimate trial-wise modulations in hidden 

beliefs (prediction, PEs and precision), which explained the effect of these task inputs on 

participant’s behaviour.  I found that beta power prior to and following a movement 

readily correlated with angular error and estimates of sensory PE, which is consistent with 
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previous literature (Tan et al., 2016, 2014a, 2014b; Torrecillos et al., 2015).  In addition, 

the variance in the PMBS following a movement was also explained by trial-wise changes 

in the precision-weighting of PEs and the posterior mean of the prediction.  This suggests 

that the PMBS does not solely modulate with PE, which also supports previous research 

(Tan et al., 2016).  Moreover, the preparatory decrease in beta power prior to a movement 

correlated with uncertainty in the motor prediction, which was readily modulated by 

sensory uncertainty.  Overall, the data suggests that sensorimotor beta power may readily 

reflect the precision-weighting afforded to PEs, which are used to update future 

predictions about the sensory consequences of a movement. 

Participants readily adapted to the angular perturbation within 10-15 repetitions and 

participants, on average, fully adapted by the third repetition of a perturbation.  This 

suggests that the task was quite easy, therefore to make the task more difficult multiple 

targets in different positions could have been used as seen in previous tasks (Tan et al., 

2016, 2014a, 2014b); however, for this task it was important that adaptation occurred 

over a small number of trials in order to include multiple error trials without having a very 

lengthy testing session.  The addition of visual noise to the feedback of participant’s 

movements caused participants to move slower.  Unlike previous studies, I chose not to 

restrict participant’s movement speed.  This is more ecologically valid and can provide 

important information regarding participant’s model confidence: previous research has 

shown that people move slower when they are less confident in a task or decision (A. 

Macerollo et al., 2015; C. E. Palmer et al., 2016; Patel et al., 2012).  I hypothesised that 

participants would modulate their movement speed with repetition number following a U 

shape based on the confidence in their movements (model precision): i.e. movement 

velocity would increase with adaptation and then decrease again in anticipation that a 

new perturbation would be introduced.  In this way PE and model precision would be 

orthogonal; however, this latter decrease in velocity did not occur suggesting that 

participants were not tracking trial number and were simply waiting to respond to the 

perturbation.  Making the trial number explicit or adding a penalty for responding to a 

perturbation may have ensured participants adjusted their model precision in anticipation 

of a change in visuomotor mapping.  It is therefore difficult to dissociate angular error and 

model precision in the current design as they modulated in the same way across trials.  

However, importantly, sensory precision was modulated orthogonally to angular error (or 

model precision), which was the main aim for this study. 

Compared to the RW learning model, the HGF better explained participant’s behaviour in 

this task.  This supports previous work that suggests humans are Bayesian learners and 

confirms that estimates of uncertainty were used in this task.  The RW learning model uses 
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a fixed learning rate across time whereas the HGF, more optimally, estimates an individual 

learning rate based on each participant’s behavioural data that depends on trial-by-trial 

PE magnitude.  From this, individualised trajectories of hidden beliefs were estimated 

from the HGF.  These trajectories of how each hidden belief evolved over the course of the 

task were then correlated with the EEG data, which aimed to provide compelling evidence 

for a relationship between parameters of Bayesian inference and sensorimotor beta 

power.  In the current study the response model in the HGF used participant’s movement 

time to map the hidden beliefs produced by the perceptual model onto actions.  For this I 

adjusted a previous response model based on reaction times (Vossel et al., 2014).  

Movement time was selected because it indirectly incorporates both angular error 

(through increased path length) and movement speed information in a single variable 

providing more information for parameter estimation. 

Previous studies have consistently found a correlation between the PMBS and PE during 

sensorimotor learning tasks, which is supported by the findings here.  The PMBS was 

modulated by repetition number suggesting, as in previous studies, that the PMBS tracks 

adaptation error.  Indeed, the PMBS significantly negatively correlated with sensory PE, 

from the first level of the HGF, across participants.  There was no corrected significant 

correlation between visual noise and the PMBS, however there was a consistent negative 

correlation between the precision ratio and the PMBS.  The significant relationship with 

the precision ratio, but not the visual noise regressor may be due to individual differences 

in how participants responded to the visual noise; therefore, using the output from the 

HGF explained more variance in the PMBS than the design regressor.  This demonstrates 

the potential advantage of estimating latent variables from experimental manipulations 

using computational modelling; these estimates offer a more specific interpretation for 

how the experimental perturbations could modulate behaviour and a mechanism by 

which the brain could be processing these task inputs. 

It has previously been suggested that the PMBS more readily correlates with uncertainty 

than PE (C. Palmer et al., 2016; Tan et al., 2016) and indeed I found that both were 

represented in the PMBS.  However, it is particularly difficult to dissociate which form of 

uncertainty may be encoded due to the relationship between these parameters in this 

model.  The precision ratio produced by the HGF is a ratio of sensory precision from the 

level below (numerator) and prior precision from the level being updated (denominator), 

which denotes the weighting given to the PE and dictates how readily the model will be 

updated.  Manipulating sensory and prior precision has opposing effects on this precision-

weighting.  Tan et al (2016) found that increasing model uncertainty correlated with a 

decrease in the average power of the PMBS.  According to the HGF, decreasing prior 
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precision in this way would increase the precision-weighting of PEs creating a negative 

relationship between precision-weighting and the PMBS.  Indeed, in the current study 

where sensory precision was modulated, there was also a negative correlation between 

the precision-weighting and the PMBS.  This suggests that despite whether the model 

uncertainty or sensory uncertainty is modulated, the PMBS negatively correlates with the 

resultant precision-weighting afforded to PEs.  Sensorimotor beta oscillations may 

therefore represent the summation of these different uncertainty values, which are 

potentially encoded by different inputs into the sensorimotor cortex. 

One hypothesis is that decreasing sensory precision at the first level, increases the relative 

contribution of model precision at higher levels of the cortical hierarchy.  It may be 

possible to test this by separating these types of uncertainty using different levels of a 

model, such as the HGF.  In the HGF a different type of PE is produced at each level of the 

hierarchy and this is weighted by a precision ratio consisting of different precision terms.  

At the first level, sensory PEs are heavily influenced by uncertainty within the sensory 

input (sensory precision), whereas at the second level task representation PEs reflect 

learned probabilistic stimulus transitions modulated by estimation uncertainty (prior 

precision).  In this study, beta power appeared to more readily correlate with hidden 

beliefs at the first level, which suggests that sensorimotor beta power may more readily 

reflect bottom-up processing of sensory stimuli.  This is supported by the location of the 

activity over primary sensorimotor cortices.  It has also been suggested that dopamine is 

important in responding to low-level sensory PEs in stimulus outcomes (Bestmann et al., 

2014; Iglesias et al., 2013).  Evidence from PD patients demonstrates a link between the 

loss of dopamine and increased beta power, which supports the proposal that beta power 

is related to the processing of low-level sensory PEs. 

There was also a significant correlation between the precision ratio and beta power at the 

second level of the HGF, however the regressors here lacked a probabilistic structure.  The 

behavioural data and the HGF model regressors show no evidence that model precision 

was modulated across repetition number as expected at this level (Figure 6.4).  This 

precision term appeared to decrease gradually across the course of the experiment 

suggesting that inferences at the second level were not as useful in completing the task 

and more attention was placed on the first level inferences.  It will be interesting to repeat 

this study with independent manipulations at higher levels of this computational 

hierarchy to determine whether different brain areas or different frequencies of 

oscillatory activity correlate with parameters of Bayesian inference at different 

hierarchical levels.  Indeed, a recent study which involved a complex implicit probabilistic 

RT task found that a pharmacological manipulation of dopamine altered estimates of 
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volatility at the third level of the HGF (Marshall et al., 2016).  Perhaps for more complex 

tasks beta power is more readily modulated by estimation uncertainty whereas for 

simpler tasks differences in sensory uncertainty may have a greater influence over beta 

power. 

As PE magnitude, the precision ratio and the posterior mean of the prediction all 

correlated with the PMBS in this study, it could be suggested that the computations 

involved in Bayesian updating occur within this frequency band of oscillatory activity at 

this time point.  Although the oscillatory activity at the macro-scale can be modelled with 

these equations and therefore we infer that Bayesian updating most likely occurs within 

this post-movement time window and frequency band of activity, there is little evidence to 

demonstrate exactly how the brain computes these variables and equations at a cellular 

level and how these components are then represented in synchronous activity across the 

population.  This will be discussed in more depth in the general discussion.  However, all 

of the components required for Bayesian updating appear to be present in the PMBS, 

therefore we can infer that this computation or the results of this computation are 

represented in some manner within this frequency band of activity. 

It is important to note, however, that results of the correlation between PE and the PMBS 

could be confounded by differences in behaviour: movement time and path length 

modulated over trials in a very similar way to this regressor, therefore it is difficult to 

determine if it was PE (or prior precision) rather than a movement execution parameter, 

which was responsible for the modulation of beta power.  However, the current findings 

support those of other studies in which these parameters have been controlled for.  

Importantly, these behavioural differences do not affect results regarding the modulation 

of pre-movement beta power.  Another movement was required to move back to the home 

position (with no visual feedback) after the PMBS and the inter-trial interval was very long 

(4s), therefore EEG results in the pre-movement time window cannot be confounded by 

any execution parameters of the previous movement and this is where the novel results of 

this study were found. 

Pre-movement preparatory beta power between the ready signal and the GO signal 

correlated with precision in the prediction of the sensory consequences of movement, but 

not with the estimated prediction mean.  Following the ready signal there was a decrease 

in beta power in preparation to move and this decrease was greater for trials with higher 

prior precision (less model uncertainty).  This is in line with previous findings that beta 

power during motor preparation was dependent on directional uncertainty such that beta 

power decreased more when there was less uncertainty (Tzagarakis et al., 2015).  This 
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prior precision parameter produced by the HGF is the predicted model precision before 

any sensory input has been received and comes from the posterior precision from the 

previous trial.  This regressor therefore readily modulated with the precision-weighting of 

the previous PE, which was heavily influenced by the external changes in sensory 

uncertainty, therefore does not purely represent prior precision without any influence of 

sensory uncertainty.  Indeed, this regressor modulated very closely with the block-wise 

changes in visual noise. 

To probe the relationship between error, uncertainty and preparatory beta power further, 

I carried out additional analyses in this time window by comparing beta power on trials 

with high and low error and high and low visual noise in a 2x2 factorial design.  This aimed 

to orthogonalise the effects of error and noise on beta power.  I found a significant 

interaction between these factors over a 500ms time window before the GO signal to 

move.  Beta power was suppressed significantly more under no visual noise than high 

visual noise on the trial immediately following an error trial despite the same initial 

angular error being produced in the previous trial; however, this difference disappeared 

with adaptation.  This suggests that preparatory beta power was not specifically 

modulated by sensory uncertainty or error.  As model uncertainty is thought to modulate 

with error in this task, these results, in line with the HGF findings, suggest that pre-

movement beta power reflects the relative contribution of sensory and model uncertainty 

estimates as represented in the precision ratio.  When there is no visual uncertainty, a new 

perturbation immediately increases the weighting on sensory information such that the 

precision-weighted PE more readily updates the model and adapts to the new context.  

This is associated with a large decrease in beta power, which then increases with 

adaptation.  However, under high visual noise, sensory precision is suppressed such that 

model precision remains high despite the introduction of an angular perturbation and 

does not change as readily over subsequent trials due to the decreased precision-

weighting of PEs.  Beta power remains high over subsequent trials despite the magnitude 

of the PE changing with adaptation.  This suggests that beta power more readily tracks this 

precision-weighting (in an inverse relationship) rather than the magnitude of the PE. 

A recent study by Vilares and Kording, (2017) found that dopamine depletion in PD 

patients caused patients off medication to place less weight on the current sensory 

information needed to make Bayes optimal decisions in a visual discrimination task.  

Giving dopaminergic medication increased this sensory weighting.  Moreover, a lack of 

dopamine reduced patient’s ability to react to changes in sensory uncertainty.  This is 

supported by another study suggesting that dopamine is important for motor flexibility 

(Galea et al., 2012).  Dopamine depletion in PD patents is associated with an increase in 
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resting beta power and a lack of modulation of beta power with movement (Little et al., 

2012).  Here I found that beta power negatively correlated with the precision-weighting 

afforded to sensory information, therefore PD patients with increased beta power should 

place less weight on sensory information in line with the results by Vilares and Kording 

(2017). 

According to this hypothesis it would be expected that PD patients would adapt more 

slowly to changes in visuomotor mapping compared to controls due to this decreased 

weighting on sensory information.  However, the results are mixed.  Some studies suggest 

that PD patients have impaired visuomotor adaptation (Contreras-Vidal and Buch, 2003; 

Paquet et al., 2008), others suggest PD patients adapt the same as controls (Marinelli et al., 

2009; Weiner et al., 1983), but have impaired consolidation when retested (Marinelli et al., 

2009), and another suggested that PD patients actually adapt quicker than controls 

(Semrau et al., 2014).  However, there are multiple different types of adaptation protocols 

that are used.  Indeed it seems that PD patients are only impaired when sudden 

perturbations are introduced (in a similar way to the current study) compared to a 

gradual implicit perturbation task (Mongeon et al., 2013; Venkatakrishnan et al., 2011).  

This suggests that PD patients may lack the conscious awareness to explicitly respond to a 

perturbation by selecting a high cost action that is necessary to adapt.  In the current task, 

perturbations were implicit, but were obvious and introduced suddenly, therefore we can 

infer that sensorimotor beta power may be involved in the explicit adaptation process.  

Pharmacological and neuroimaging studies in PD patients and healthy controls are 

required to probe this idea further. 

This study demonstrates that sensorimotor beta oscillations may play an important role in 

Bayesian updating during visuomotor adaptation tasks.  Modulations in beta power both 

prior to a movement and following a perturbed movement correlate with precision 

estimates, which supports hypotheses that sensorimotor beta oscillations may encode 

uncertainty.  However, it is not clear from this study whether beta oscillations actually 

have an active role in processing uncertainty or reflect an epiphenomenon of the 

underlying cognitive processes.  Here I conclude that sensorimotor beta oscillations most 

likely represent the precision-weighting of PEs, which is represented following a 

movement during Bayesian updating and in the precision surrounding the predictions of a 

movement before the next trial.  However, this negative correlation between precision-

weighting and beta power is the opposite to what I have proposed given the predictions of 

the active inference framework.  In this thesis I posit that a decrease in the precision-

weighting of PEs (which is thought to be necessary for movement) will correlate with a 

decrease in sensorimotor beta power.  Indeed, in study two (chapter four) a decrease in 
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proprioceptive precision caused a decrease in sensorimotor beta power; whereas in this 

study a decrease in precision-weighting caused an increase in beta power.  This is likely 

due to the specific domain in which sensory precision was modulated in both of these 

studies.  The sensorimotor cortex has been proposed to act as a multisensory hub 

integrating exteroceptive and proprioceptive information to readily predict the sensory 

consequences of movement (Adams et al., 2013a).  Therefore, modulating precision in the 

visual domain compared to the proprioceptive domain appears to have different effects on 

beta power.  An interrogation of the different results in this thesis may provide a novel 

interpretation of the role of sensorimotor beta power in motor control.  This will be 

discussed in detail in the general discussion. 
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CHAPTER 7  

DISCUSSION 

In this thesis I have tested the hypothesis that sensory attenuation is a necessary step for 

movement initiation to occur.  Prior to and during movement, sensory input to the cortex 

is reduced.  The active inference framework posits that this sensory attenuation “is a 

necessary consequence of reducing the precision of sensory evidence during movement to 

allow the expression of proprioceptive predictions that incite movement” (Brown et al., 

2013; K. Friston et al., 2011; Friston et al., 2010).  Estimates of sensory precision (inverse 

of uncertainty) must be down-weighted by reducing the synaptic gain on superficial 

pyramidal cells transmitting prediction errors up the cortical hierarchy; this occurs in 

order to allow the proprioceptive predictions that incite movement to prevail.  In this 

thesis, I carried out a series of experiments using different behavioural tasks and EEG to 

test specific predictions that emerge from this hypothesis.  Below I will summarise the 

hypotheses and main findings from each study. 

In study one (chapter three), I aimed to determine if the two forms of somatosensory 

attenuation referred to in the literature were neurophysiologically distinct.  I found that 

the decrease in SEP amplitude that occurs with force production did not correlate with 

perceptual somatosensory attenuation measured in a force matching paradigm; however, 

a later component of the SEP did.  This demonstrated a dissociation between physiological 

and perceptual somatosensory attenuation and suggested that these may occur at 

different levels of the cortical hierarchy with separable functions.  Previous research 

suggests that perceptual somatosensory attenuation plays an important role in 

dissociating externally and internally generated sensations for the correct perception of 

agency and most likely occurs in the secondary somatosensory cortex.  Physiological 

somatosensory attenuation on the other hand appears to occur in the primary 

somatosensory cortex and has been hypothesised to play an important role in movement 

initiation.  One hypothesis is that SEP attenuation represents a reduction in estimates of 

somatosensory precision, which is necessary for movement initiation.  Due to the close 

correlation between the time course of SEP attenuation with movement and the decrease 

in sensorimotor beta power with movement, I hypothesised that modulations in 

sensorimotor beta oscillations may represent changes in estimates of somatosensory 

precision that are predicted to be necessary for movement initiation. 
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In study two (chapter four), I aimed to modulate estimates of somatosensory precision in 

order to determine the effect of this on motor control and sensorimotor oscillatory 

activity.  High frequency (80Hz) peripheral vibration was applied to the wrist of 

participants to increase uncertainty in the proprioceptive state by activating muscle 

spindles in the absence of any overt muscle lengthening and thus generating uncertainty 

in the position of the limb.  In line with previous results from our lab and predictions from 

the active inference framework, I hypothesised that increasing proprioceptive uncertainty 

using this method would decrease estimates of somatosensory precision and lead to 

decreased reaction times (RTs) on a motor task.  In addition, I hypothesised that this 

decrease in the estimate of somatosensory precision would be associated with a decrease 

in sensorimotor beta power.  I demonstrated that high frequency peripheral vibration 

readily decreased participants’ completion time on a motor control task.  Moreover, I 

showed that the same peripheral vibrating stimulus caused a significant decrease in 

sensorimotor beta power at the onset and offset of the stimulus.  The adaptation of 

sensorimotor beta power that occurred may reflect the adaptation of estimates of 

somatosensory precision that would occur in response to the unexpected firing of 1a 

afferents.  This result provides evidence that modulations in somatosensory precision are 

important for movement initiation and that sensorimotor beta oscillations readily reflect 

changes in sensory precision.  However, there was no direct measure that the vibrating 

stimulus used in this experiment did modulate somatosensory precision. 

In study three (chapter five), I tested the hypothesis that a peripheral high frequency 

vibrating stimulus applied to the wrist would increase proprioceptive uncertainty on a 

proprioceptive reaching task.  This aimed to test whether a modulation in proprioceptive 

uncertainty was the mechanism by which movement times and sensorimotor beta power 

were decreased in the previous study.  In a reaching task with no visual feedback, I found 

that vibration caused participants to significantly overshoot the targets demonstrating 

that peripheral vibration decreased proprioceptive accuracy, but had no effect on error 

variability.  The distribution of end points around the targets was consistent with previous 

literature suggesting that participants weight visuomotor information and proprioceptive 

feedback in a direction dependent manner.  The overshooting errors produced were 

consistent with a reduced weighting of proprioceptive information compared to a prior 

visuomotor prediction when determining the end point of the movement.  This result 

suggests that the vibratory stimulus decreased the precision in estimates of 

proprioceptive feedback.  In this study I also showed that the modulation of confidence 

ratings readily reflected the distribution of precision-weighted end point errors relative to 

the participant’s own model of where the target was.  This suggests that confidence ratings 
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may be generated based on the precision-weighting of sensory estimates in line with 

previous research in other domains (Aitchison et al., 2015; Friston and Kiebel, 2009; 

Navajas et al., 2017).  However, the lack of modulation of confidence with vibration 

suggests that the central nervous system is more sensitive to changes in precision than our 

conscious awareness of those estimates.  This may also suggest that confidence 

judgements are likely based on precision terms at higher levels of the cortical hierarchy. 

Active inference posits that there is a hierarchical generative model in sensorimotor 

cortex that produces proprioceptive predictions that incite movement.  This prediction 

comes from the generalisation of the predictive coding framework to the sensorimotor 

system.  Moreover, active inference suggests that sensory attenuation occurs across all 

sensory channels during movement.  In study four (chapter six), I aimed to test whether a 

hierarchical generative model, based on the free energy principle, could readily predict 

motor behaviour in response to changes in visual uncertainty in a visuomotor adaptation 

paradigm.  I then measured the neurophysiological correlates of estimates from this model 

to determine whether these hidden beliefs were represented within the sensorimotor 

system.  I manipulated sensory precision by adding visual noise to the feedback of a 

participant’s movement and generated prediction errors by adding an angular rotation 

between the true position of the participant’s hand and the cursor on the screen.  I 

modelled the parameters of Bayesian predictive coding using the Hierarchical Generative 

Filter (HGF).  I demonstrated that both the post-movement beta synchronisation (PMBS) 

and the pre-movement beta desynchronization negatively correlated with the precision-

weighting afforded to sensory prediction errors.  This confirmed my hypotheses and 

supported findings in the literature, which have suggested that components necessary for 

predictive coding are represented within sensorimotor beta oscillatory activity (Tan et al., 

2016, 2014a, 2014b; Torrecillos et al., 2015). 

However, the pre-movement beta power decrease and the precision-weighting term were 

negatively correlated in this study; this was the inverse relationship to predicted where a 

decrease in beta power was hypothesised to correlate with a decrease in sensory precision 

prior to movement.  However, it may be hypothesised that increasing uncertainty in the 

visual domain increased the reliance on proprioceptive information; this would therefore 

support the hypothesis that sensorimotor beta power is positively correlated specifically 

with changes in proprioceptive precision.  Despite sensory attenuation occurring across all 

sensory modalities during movement, it is likely that a reduction specifically in 

somatosensory precision is represented by sensorimotor beta power and is necessary for 

motor initiation. 
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In summary, the results in this thesis provide support for some of the predictions that 

emerge from the active inference framework.  Firstly, I have shown that modulating 

proprioceptive uncertainty using a high frequency peripheral vibrating stimulus can 

decrease movement times on a motor control task providing support for the hypothesis 

that a decrease in sensory precision is necessary for movement initiation to occur.  

Secondly, I have shown that sensorimotor beta oscillations may reflect modulations in 

estimates of sensory precision.  Beta power was decreased in response to the peripheral 

vibrating stimulus and correlated with estimates of precision produced by a hierarchical 

generative model.  Beta power was also differentially modulated by proprioceptive and 

visual uncertainty; I suggest that beta power more readily reflects the precision afforded 

to proprioceptive reafferance, which is modulated by the integration between 

proprioceptive and visual information in sensorimotor cortex.  The role of beta oscillations 

in motor control further provides support that modulations in sensory precision may have 

an important role in controlling movement as hypothesised by the active inference 

framework. 

7.1. Is sensory attenuation necessary for movement 

initiation? 

The active inference framework predicts that a decrease in estimates of sensory precision 

are necessary in order to initiate a movement.  In order to test this hypothesis, it is 

important to assess whether sensory precision can be experimentally manipulated and 

measured using a behavioural or neurophysiological correlate; this was one of the main 

focuses of this PhD.  Active inference posits that precision is determined by the post-

synaptic gain of superficial pyramidal cells that transmit precision-weighted prediction 

error signals up the cortical hierarchy (Friston, 2005; Friston and Kiebel, 2009).  This is 

thought to be controlled by neuromodulators, such as dopamine and acetylcholine, and/or 

synchronous neural activity that modulates synaptic gain via spike-timing dependent 

plasticity(Friston et al., 2015; K. J. Friston et al., 2011).  Both of these mechanisms can be 

modulated through top-down attentional processes or by increasing the uncertainty in the 

afferent input used to generate prediction errors.  In this thesis I used the latter option and 

chose to modulate sensory precision in two ways: by adding noise into visual feedback 

used to guide movements and using high frequency peripheral vibration to increase 

uncertainty in the proprioceptive state.  It is difficult to directly measure synaptic gain in 

healthy humans at the macroscale, therefore I used changes in behaviour, Bayesian 

modelling and recorded EEG in order to determine whether the manipulations used 
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readily modulated sensory precision.  This could then provide support for specific 

predictions from the active inference framework.  However, it must be noted that the 

behavioural and neural data recorded in this thesis may have been modulated by an 

alternative neuronal mechanism to a change in synaptic gain, such as an increase in 

neuronal synchronisation or recruitment; therefore, simultaneous invasive and non-

invasive electrophysiological recordings are needed to better elucidate the underlying 

neuronal mechanism employed. 

In study four (chapter six), adding noise into the visual feedback of visually-guided 

movements in a visuomotor adaptation task caused participants to adapt more slowly to 

the visuomotor perturbation, which suggests that the increased uncertainty reduced the 

precision-weighting of sensory prediction errors.  Indeed, this was confirmed by estimates 

produced by the HGF, which showed that the precision ratio used to weight sensory 

prediction errors at the first level decreased when visual uncertainty increased.  In study 

three (chapter five), I showed that increasing proprioceptive uncertainty using high 

frequency peripheral vibration decreased proprioceptive accuracy on a behavioural task.  

Based on previous literature (Bays and Wolpert, 2007; van Beers et al., 1999, 1998), the 

overshooting errors in this behavioural task can be explained by a reduction in 

proprioceptive precision relative to precision in the prior visuomotor plan, which 

supports the hypothesis that this stimulus modulated proprioceptive precision.  However, 

Bayesian modelling is needed to simulate the effect of modulating proprioceptive and 

visual precision in this behavioural task in order to provide evidence that this was the 

mechanism by which vibration affected behaviour. 

The most direct evidence for the role of sensory precision in motor initiation comes from 

study two (chapter four).  Here I showed that high frequency peripheral vibration reduced 

completion time on a motor control task replicating previous results found in the lab 

(under submission).  However, the task used here (nine-hole peg task) required 

coordination across a number of modalities, therefore it is difficult to deduce that the 

vibration specifically altered motor initiation; it could have equally affected motor 

preparation.  The decreased precision in the proprioceptive state may have caused 

participants to rely more on a prepared movement trajectory and less on the afferent 

feedback, which could explain the improved performance.  However, a previous study 

from the lab did find a significant decrease in reaction times on a simple reaction time task 

following high frequency peripheral vibration, which suggests the mechanism involved in 

movement initiation may have been modulated. 
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Peripheral nerve stimulation can be used to determine synaptic efficacy.  SEP attenuation 

with movement is thought to reflect changes in synaptic gain that may reflect modulations 

in estimates of sensory precision.  Previous studies have shown that high frequency 

peripheral vibration decreased SEP amplitudes (Cohen and Starr, 1985), which supports 

the prediction that peripheral vibration reduced sensory precision.  It would have been 

useful to confirm the effect of vibration and visual noise on synaptic efficacy by giving 

peripheral nerve stimuli throughout the experiments used in this thesis.  Moreover, 

correlating SEP attenuation in response to vibration with changes in reaction time on a 

simple motor task will be important to determine whether this behavioural effect was 

driven by a change in synaptic efficacy in somatosensory cortex.  However, in order to 

produce a reliable SEP the response from multiple stimuli must be averaged, therefore 

hundreds of movement trials averaged across different experimental conditions will be 

necessary.  Determining alternative neurophysiological correlates of sensory precision 

that can be easily recorded in humans at the macroscale will be essential to testing the 

hypothesis that reducing sensory precision is important for motor control. 

The role of vibration in these studies has been to directly modulate proprioceptive 

uncertainty.  However, cortical somatosensory prediction errors from S1 to M1 that are 

proposed to be attenuated prior to movement represent a broad reafferent signal 

including both proprioceptive and cutaneous information (Adams et al., 2013a; Brown et 

al., 2013).  It is difficult to determine whether peripheral vibration in these studies 

influenced behaviour by attenuating activity of muscle afferents or cutaneous afferents or 

both and whether dissociating between these is important.  According to the active 

inference theory proprioceptive prediction errors in the spinal cord are resolved via the 

classical motor reflex arc; however, a descending control signal from the sensorimotor 

cortex directly modulates the gain of this reflex and somatosensory attenuation prior to 

movement occurs at multiple levels of the cortical hierarchy (Adams et al., 2013a).  It is 

therefore difficult to determine the necessity of attenuating proprioceptive vs cutaneous 

information for motor initiation.  Previous work using peripheral vibration has shown that 

muscle spindles are optimally activated at 80Hz and the increased firing of 1a afferents is 

associated with kinesthetic illusions (Ribot-Ciscar et al., 1998; Roll et al., 1989).  However, 

in this thesis there was no direct measure of muscle spindle activity or of the presence or 

magnitude of kinesthetic illusions.  I inferred that the reduction in beta oscillatory power 

following peripheral vibration was due to a specific down-weighting of proprioceptive 

prediction errors in the sensorimotor cortex, however this could equally be explained by a 

reduction in the precision of cutaneous reafferance. 
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Using different frequencies of vibration served to act as an active control for the cutaneous 

effect of vibration and to determine the specificity of muscle spindle activity on the 

outcomes measured.  In study two (chapter four), 20Hz vibration had no effect on 

behaviour or on sensorimotor beta power; however, 20Hz is within the beta frequency 

range analysed in the cortex, therefore it is difficult to know whether this confounded the 

EEG result.  In study three (chapter five), there was no behavioural difference between 

proprioceptive accuracy following 40Hz compared to 80Hz vibration, but there was also 

no significant difference between 40Hz and no vibration.  This suggests that the 40Hz 

vibration potentially activated muscle spindles but not as efficiently as the optimal 

vibration frequency of 80Hz; however, it equally could suggest that there was no 

frequency specific effect, therefore the optimal activation of muscle spindles may not be 

integral for reducing beta power and estimates of somatosensory precision.  It will be 

important to repeat the experiments in chapters two and three directly comparing a 

purely cutaneous peripheral stimulation with a purely proprioceptive one (if possible) and 

include microneurographic recordings from 1a afferents; this will aim to determine the 

specificity of reducing cutaneous vs proprioceptive precision for the modulation of 

sensorimotor beta power and movement initiation and thus further inform the predictions 

of the active inference framework. 

There are other methods of manipulating sensory precision, which were not used in this 

thesis but could offer an important insight to assess the veracity of the predictions from 

the active inference framework.  Dopamine has been highlighted as a potential candidate 

to modulate synaptic gain and thus sensory precision (Friston, 2005; K. J. Friston et al., 

2011); therefore, future experiments using pharmacological manipulations of dopamine 

or measuring the behaviour of PD patients, in which dopamine in the basal ganglia is 

depleted, may offer a greater insight into the role of sensory precision in movement 

initiation.  Interestingly, however, the current literature exploring the role of dopamine in 

predictive coding and motor control suggests that reducing dopamine reduces the 

precision-weighting of sensory prediction errors and this is associated with increased 

reaction times and bradykinetic symptoms in PD; this is the opposite to that hypothesised 

by the active inference framework.  Dopamine has been highlighted as a potential 

modulator of motor flexibility, such as the ability to inhibit a prepared response and 

replace it with the correct action (Bestmann et al., 2014; Galea et al., 2012).  PD patients 

with a specific loss of dopamine have impaired motor flexibility, which is improved with 

dopaminergic medication (Galea et al., 2012).  Moreover, pharmacological D1 and D2 

receptor blockade in healthy subjects specifically impaired participant’s ability to react to 

unexpected events that generated large sensory prediction errors by replacing a prepared 
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action with another action (Bestmann et al., 2014).  The authors suggest that dopamine 

depletion leads to an overreliance on top-down predictions, therefore there is a 

diminished response to low-level sensory prediction errors.  This can be likened to a 

reduction in the precision-weighting of sensory prediction errors.  In order to reconcile 

these findings with predictions from the active inference framework it is important to 

address the exact neurobiological connections that are modulated and the role of 

prediction errors in the tasks used. 

Friston et al (2012) created a generative model across a number of motor areas with 

dopaminergic projections acting to modulate the synaptic gain on cortical projections 

transmitting prediction errors.  The authors simulated dopaminergic depletion as a 

reduction in synaptic gain at multiple levels of this hierarchical model and found 

differential effects depending on the location of the reduction in gain.  Reducing the gain in 

the motor cortex (encoding proprioception) and superior colliculus (encoding salience) 

lead to increased RTs.  This task simulated reaching movements to a learned sequence of 

visual cues that was then altered.  Similarly, the above tasks describe motor flexibility and 

selecting appropriate actions in response to visual information.  Therefore, in these 

contexts dopamine may be acting to reduce the precision-weighting of exteroceptive 

information in the motor cortex.  If this information is useful, such as in a cued reaction 

time task, reducing the weighting of this information with a dopaminergic block will 

increase RTs as shown.  It is likely that a reduction in precision-weighting of 

somatosensory reafferance from S1 to M1 is most important specifically for motor 

initiation.  For proprioceptive predictions to be preferentially selected, prediction errors 

from somatosensory cortex must be down-weighted; if the precision afforded to these 

prediction errors is too high than the cortex will try to resolve these by changing the 

prediction to move.  One hypothesis is that beta oscillations specifically represent the 

modulation of somatosensory precision which is modulated directly by highe frequency 

vibration or indirectly through visual noise. 

Synaptic gain can also be modulated by synchronous neuronal activity and the synaptic 

gain of coupled neuronal populations determines the frequency of their oscillatory 

behaviour, therefore EEG can be a useful tool to identify a neurophysiological correlate of 

sensory precision.  In this thesis I hypothesise that sensorimotor beta oscillations may 

correlate with changes in sensory precision.  Determining whether this oscillatory activity 

can represent a robust marker of sensory precision, therefore offers another method to 

modulate and measure this precision estimate to test the hypothesis that changes in 

sensory precision are important for movement initiation.  Indeed, modulations in 

sensorimotor beta power with movement readily correlate with SEP attenuation: both of 
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these neurophysiological markers decrease prior to and during movement and increase 

after movement (Cohen and Starr, 1987; Davis et al., 2012; Engel and Fries, 2010; Starr 

and Cohen, 1985).  In Parkinson’s Disease (PD) a loss of dopamine in the basal ganglia 

results in increased resting beta power across the cortico-striatal loop (Little et al., 2012; 

Little and Brown, 2014) and dopaminergic medication is associated with a decrease in 

beta power and improved motor symptoms (Kühn et al., 2006b).  As previously stated, it is 

posited that dopamine may play a role in modulating synaptic gain: changes in beta power 

and motor control may therefore directly reflect changes in sensory precision driven by 

this neuromodulator.  How well the evidence in this thesis supports this hypothesis is 

discussed in the next section.  With the assumption that sensorimotor beta power readily 

reflects sensory precision, the well characterised relationship between sensorimotor beta 

oscillations and motor control in patients with PD and healthy controls supports the 

prediction that sensory precision may play an important role in movement.  However, 

more work is needed to better elucidate the specific relationship between beta oscillatory 

activity and sensory precision.  Moreover, it is important to model and understand how 

beta oscillations may be generated at the cellular level; from this we can determine 

whether this oscillatory activity can causally modulate synaptic gain and thus have a 

mechanistic role in information processing or simply reflects an epiphenomenon of 

population activity. 

7.2. Does sensorimotor beta power reflect estimates of 

sensory precision? 

Circumstantial evidence regarding the similar relationship between SEP attenuation and 

the beta ERD with movement suggests that sensorimotor beta oscillations may reflect 

estimates of sensory precision in accordance with the active inference framework.  In this 

PhD, I aimed to directly test this hypothesis by modulating sensory precision and 

measuring the effect of this on sensorimotor beta oscillations.  Oscillations measured at a 

macroscopic level using M/EEG represent the cumulative summation of synchronous post-

synaptic potentials on a group of apical dendrites of pyramidal cells in layer V of the 

cortex, which are thought to transmit prediction errors up the cortical hierarchy (Friston, 

2005; Friston and Kiebel, 2009).  The magnitude of these post-synaptic potentials will be 

modulated by the post-synaptic gain thought to represent changes in precision.  From this 

it has been suggested that precision can only be measured at the macroscale by its effect 

on the prediction error signal; therefore, synchronous oscillatory activity from these cells 

most likely represents precision-weighted prediction errors. 
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Indeed, in study four (chapter six) of this thesis beta power readily correlated with both 

prediction error and precision following a movement.  However, inferences from this data 

are limited by the resolution of EEG.  Biophysical modelling and multi-unit recordings in 

primates will give a better understanding of how neuronal firing rates and population 

dynamics can encode precision and prediction error and therefore determine how 

independent these parameters are in the brain.  This will be useful to determine exactly 

what is being represented by sensorimotor beta activity measured at the scalp.  Moreover, 

it will be important to determine whether sensorimotor beta oscillatory activity has a 

specific role in modulating synaptic gain in order to suggest that this activity specifically 

encodes sensory precision.  Transcranial alternating current stimulation (tACS) has been 

used to entrain the motor cortex in a beta rhythm and caused participants to move slower 

in a motor task (Pogosyan et al., 2009).  The mechanism by which beta oscillatory activity 

reduced movement speed may be through increasing sensory precision in accordance 

with the active inference framework.  By recording SEPs during and following beta tACS, it 

may be possible to determine whether sensorimotor beta oscillatory activity can actually 

modulate synaptic gain and provide further evidence that changes in movement that 

correlate with changes in beta power are driven by changes in synaptic gain. 

In this thesis I found evidence to support the hypothesis that sensorimotor beta power 

would be positively correlated with changes in sensory precision.  In study two (chapter 

four), a reduction in proprioceptive precision caused by high frequency vibration to the 

wrist led to a decrease in sensorimotor beta power in line with this hypothesis.  In study 

four (chapter six), the post-movement beta synchronisation (PMBS) negatively correlated 

with estimates of prediction error, the posterior mean and the precision-weighting 

attributed to sensory prediction errors at the first level of the HGF; and the beta power 

decrease prior to movement negatively correlated with estimates of the precision-

weighting of prediction errors.  This relationship was the opposite to hypothesised.  There 

are three different explanations that can reconcile these results. 

Firstly, in study two (chapter four) I modulated uncertainty in the somatosensory domain, 

whereas in study four (chapter six) I modulated uncertainty in the visual domain.  The 

active inference framework posits that the generative model in the motor cortex converts 

visuospatial predictions in extrinsic coordinates into proprioceptive predictions in 

intrinsic coordinates; therefore, the motor cortex acts as a multisensory integration hub 

and incorporates information from exteroceptive and proprioceptive inputs to predict the 

sensory consequences of subsequent movements (Adams et al., 2013a).  If we assume that 

exteroceptive and proprioceptive information are integrated in a Bayesian manner within 

the motor cortex (as has been previously suggested; Bays and Wolpert, 2007), then 
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decreasing precision in the exteroceptive domain would increase the relative precision in 

the somatosensory domain.  Therefore, if sensorimotor beta oscillations are positively 

correlated with somatosensory precision, then preparatory beta power should inversely 

correlate with visual precision as shown.  It has previously been shown that the end point 

accuracy of reaching movements is influenced by visuomotor and proprioceptive 

information differently depending on the precision weighting of these inputs (van Beers et 

al., 1999); indeed, the behavioural effect in study three (chapter five) was explained in 

light of this idea.  To test the hypothesis that beta oscillations specifically represent the 

relative precision of proprioceptive inputs compared to other exteroceptive inputs to 

motor cortex, M/EEG should be recorded during a behavioural task in which these inputs 

need to be integrated and can be independently modulated. 

Secondly, an alternative explanation for the findings in this thesis is that beta power 

actually correlates with the precision surrounding proprioceptive predictions produced in 

the motor cortex rather than prediction errors.  Previous research suggests that beta 

power correlates readily with uncertainty in the forward model that generates motor 

commands (Tan et al., 2016).  In addition, studies in the visual domain have suggested that 

predictive coding occurs via a canonical circuit in the brain in which predictions are 

transmitted via backward connections in the beta frequency band and prediction errors 

are transmitted via forward connections in theta and gamma frequency bands (Bastos et 

al., 2012; Bauer et al., 2014).  This hypothesis therefore fits with other models of 

predictive coding in the brain that beta power should represent predictions and not 

prediction errors.  In study four (chapter six), reducing the precision in visual information 

used to guide movement would theoretically increase the reliance on top-down prior 

proprioceptive information to inform predictions about the sensory consequences of the 

movement; therefore, if beta power more readily reflects the precision of these 

predictions, this would explain the inverse correlation between pre-movement beta power 

and visual precision. 

However, when somatosensory precision is reduced (using vibration) in a context where 

only proprioceptive information is needed to inform proprioceptive predictions, as in 

study two (chapter four) (at rest with no task), then paradoxically this could reduce the 

precision of subsequent proprioceptive predictions.  This is because empirical priors are 

posterior distributions passed down from the level above (here I hypothesise that this is 

from S1 to M1) and the precision of this posterior will already have been influenced by the 

proprioceptive input.  Therefore, the decrease in sensorimotor beta power with peripheral 

vibration may actually reflect changes in the precision of proprioceptive predictions.  The 

relative precision of prior and sensory information is hypothesised to be combined into a 
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single modulation of post-synaptic gain, therefore it is difficult to dissociate these forms of 

uncertainty neurobiologically and is further complicated by the multisensory integration 

necessary to form accurate proprioceptive predictions.  One method to tease apart the 

neurophysiological correlates of these forms of uncertainty would be to independently 

modulate or correlate estimates of precision at different hierarchical levels with 

oscillatory activity.  In study four (chapter six) sensorimotor beta power correlated readily 

with estimates from the first level of the HGF; however, it is difficult to know if this was 

simply because the task did not effectively modulate parameters at the second level. 

A final hypothesis is that there is not a single unifying hypothesis for the functional role of 

sensorimotor beta oscillations.  The correlation between precision and beta power in 

study four (chapter six) occurred prior to the GO signal in the visuomotor adaptation task 

and was the inverse relationship to that predicted by the active inference framework.  This 

suggests that modulations in precision may not have been necessary for motor initiation.  

Sensorimotor beta power at this time point more likely represent computations involved 

in motor preparation that are effected by visual uncertainty; however, this could be 

separate from the computations that occur at movement initiation during the beta ERD.  

Recent behavioural evidence suggests that motor preparation and motor initiation are 

independent processes that likely involve different neural computations (Haith et al., 

2016).  As oscillatory activity represents the summation of post-synaptic potentials across 

pyramidal neurons in a cortical region, one could assume that different inputs to those 

pyramidal neurons could create the same oscillatory signal; however, this activity may be 

dominated more by inputs from different cortical regions at slightly different time points.  

In line with this, beta power could represent both changes in precision that are associated 

with motor preparation and those associated with motor initiation.  This would suggest 

that beta power in the motor cortex more readily reflects an epiphenomenon of the 

computational processes occurring in the region rather than being mechanistically 

involved in the processes. 

Importantly, I have assumed that the beta power measured in chapters two and four has 

the same cortical source; however, neurophysiological evidence suggests that the 

machinery is present in both primary motor and primary somatosensory cortices to 

generate beta oscillations.  Beta power could theoretically represent precision in both 

cortical areas; however, this precision could relate to a different input.  In somatosensory 

cortex, afferent feedback providing somatosensory prediction errors is likely to be the 

most important input; therefore, beta power in this area may reflect the precision of this 

signal.  This could be what was reflected in the modulation of beta power with peripheral 

vibration.  The primary motor cortex, on the other hand, has a primary role in generating 
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motor commands or in this case proprioceptive predictions for movement.  Therefore, 

beta power in this region could directly reflect the precision of proprioceptive predictions 

for movement.  This may have been modulated in the visuomotor adaptation task in study 

four (chapter six).  It will be interesting to carry out studies manipulating different forms 

of exteroceptive and proprioceptive uncertainty using high-spatial resolution MEG 

(Bonaiuto et al., 2017; Meyer et al., 2017).  This could potentially isolate sources of 

different components of beta power that may be modulated differently depending on the 

type of sensory uncertainty manipulated and thus have differential effects on behaviour.  

These recent techniques have even been able to dissociate sources of activity from 

superficial and deep layers of the cortex, which would provide even more information 

regarding the functional role of beta power in predictive coding in the sensorimotor 

system. 

To further elucidate whether sensorimotor beta oscillations may reflect changes in 

sensory precision and potentially whether this activity could causally modulate sensory 

precision, it is important to understand how this activity can be generated in the brain at 

the cellular level.  As we can only record macroscopic changes in oscillatory activity on the 

scalp using M/EEG in healthy human participants, mathematical models are key to 

hypothesising how this activity might be generated.  A number of biophysical models 

based on the intrinsic membrane properties and neuronal firing rates of specific types of 

neurons within a network demonstrate that the neuronal machinery exists within both the 

motor and somatosensory cortices to produce beta oscillatory activity (McCarthy et al., 

2008; Roopun et al., 2006).  These models are supported by electrophysiological 

recordings from animal studies measuring single cell firing and local field potentials 

(LFPs) simultaneously.  The abnormal increase in sensorimotor beta oscillations following 

dopamine depletion in PD patients has led to the hypothesis that beta oscillations are 

generated subcortically.  The STN-GPe pacemaker hypothesis describes how reciprocal 

connections between excitatory STN neurons and inhibitory GPe neurons with synaptic 

transmission delays equivalent to a beta period can generate beta oscillations.  This 

system requires a strong excitatory drive from the cortex (Holgado et al, 2010), which has 

been confirmed by extracellular recordings from the STN and GPe in Parkinsonian rats 

(Holgado et al, 2014).  In humans, simultaneous MEG and STN-LFP recordings revealed a 

strong functional drive from the cortex to the STN (Litvak et al., 2011); however, this 

coherence was in the upper beta band (25-30Hz), whereas pathological increases in beta 

power in PD occur in the lower beta band (18-20Hz).  This suggests that different 

frequencies of beta oscillatory activity may represent different functions within the 

sensorimotor system.  DCM studies have been used to demonstrate that pathological beta 
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activity in PD is caused by an increase in the cortical drive to the STN and this is associated 

with changes in the coupling between STN and GP neurons (Marreiros et al., 2013; Moran 

et al., 2011).  Interestingly, the abnormal neuromodulation in the basal ganglia caused by a 

loss of dopaminergic input into the striatum was associated with changes in synaptic gain 

on DCMs that produced beta synchrony in the STN.  This supports the hypothesis that 

changes in beta activity in PD may represent modulations in precision caused by changes 

in synaptic gain.  However, it is not known how changes in beta activity in the basal 

ganglia and the STN can then actually modulate movements. 

An interesting new theory regarding the generation of beta oscillations in the cortex 

suggests that cortical beta oscillatory activity is driven by an exogenous drive likely to 

come from the thalamus.  (Sherman et al., 2016) have proposed that beta oscillations do 

not represent a sustained network rhythmicity as inferred from time-locked data averaged 

over multiple trials; instead MEG and LFP recordings from humans, mice and monkeys 

have revealed transient beta events (<150ms) that have a consistent, stereotypical 

waveform and duration.  The authors generated a biophysical model of the somatosensory 

cortex that could produce post-synaptic currents in apical dendrites of pyramidal neurons 

that could be directly compared with M/EEG and LFP data.  The model revealed that a 

weak and broad proximal drive from layer IV to the proximal dendrites of pyramidal 

neurons and coupled inhibitory interneurons in layers 2/3 and layer V, alongside a 

simultaneous strong drive to the distal dendrites of those neurons could produce beta 

events with the exact waveform seen in the experimental data.  Giving a 20Hz drive 

indicative of entrainment of the cortex from beta activity in the basal ganglia did not 

produce the same beta events nor did introducing an M-current.  This study suggests that 

beta oscillatory activity can be produced in the cortex independently from the basal 

ganglia and has a number of implications for our understanding of the generation and 

function of sensorimotor beta power. 

Firstly, the authors stipulate the requirement of two exogenous drives to the cortex to 

generate beta oscillations and postulate two distinct pathways from the thalamus to the 

cortex in primates, which could provide these inputs: 1) “a focally projecting…”driving” 

pathway that carries sensory information from the periphery”; and, 2) “a widespread, 

nonspecific modulatory pathway projecting directly to supragranular layers.”  One 

hypothesis is that the first input represents sensory prediction errors, whereas the second 

input serves to set the precision of the prediction errors.  Indeed, the second 

neuromodulatory pathway has been suggested to modulate overall activity without 

eliciting any spikes in the recipient area in line with the role of precision in active 

inference.  This suggests that somatosensory beta power could readily represent 
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precision-weighted prediction errors and is supported by the finding in study two 

(chapter four) where the variance in sensorimotor beta power was explained by both 

modulations in the magnitude and precision-weighting of prediction errors. Moreover, the 

ventromedial or pallidal thalamus has been shown to project to the supragranular layers 

in sensory and motor cortex, therefore offers a pathway whereby an aberrant signal from 

the basal ganglia in PD could increase beta power in the cortex (Herkenham, 1980); 

however, as stipulated by Sherman et al (2016) the beta events described do not occur via 

a 20Hz entrainment of the cortex by the basal ganglia. 

Secondly, this paper suggests that current analyses of oscillatory activity in the brain 

incorrectly suggest that oscillations are rhythms which are sustained over time for 

multiple cycles, which therefore has implications for hypotheses regarding the mechanism 

by which this activity may influence information processing.  This paper, and others 

(Feingold et al., 2015; Jones et al., 2010; Lundqvist et al., 2016; Parkkonen et al., 2015) 

demonstrate that oscillatory activity occurs as discrete, transient events across trials.  

When these events are averaged across trials in the spectral domain, the averaged signal 

represents the accumulation of these induced signals, because power is non-negative and 

therefore the signals do not cancel out.  This suggests that high power activity in the 

average likely reflects the frequency of oscillatory events occurring at that time point over 

trials.  The role of oscillatory activity in cognitive and motor tasks may therefore be best 

explained by the probability with which these bursts occur.  This mechanism lends itself 

readily to encoding parameters in Bayesian inference, which are represented as 

probability distributions.  One hypothesis could be that the probability of a beta event 

occurring in M1, potentially generated by a forward drive from S1, may represent the 

precision-weighting of the prediction error signal; a decreased likelihood of these beta 

events may reflect decreased precision-weighting such that the forward signal has less 

influence over other computational processes and may therefore allow, for example, the 

activation of the descending proprioceptive signal that will then initiate movement in the 

spinal cord.  In line with this research, future work should aim to characterise the 

presence and frequency with which these beta events occur on a trial-by-trial basis and 

correlate this with trial-wise performance on a simple motor task. 

The study by Sherman et al (2016) is a seminal piece of work that highlights a number of 

important fundamental issues in neuroimaging that have been recently explored by De 

Wit et al (2017).  It is very common for neural signals to be analysed and interpreted from 

the perspective of the experimenter without an informed understanding of how the brain 

could receive and decode those signals.  Shannon’s original formulation of information 

states that information can only be quantified relative to a transmitter and receiver; 
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therefore, without tracking the flow of neural activity between cortical areas and 

understanding how a different brain region could interpret the recorded signal, inferences 

regarding the functional role of the neural signal in information processing are obsolete.  

Averaging over trials of neuroimaging data highlights this misunderstanding: the brain 

will only ever see and respond to trial-wise changes in neural activity.  Indeed, beta 

oscillatory activity is wrongly assumed to occur as a sustained rhythm in the brain due to 

an artefact of averaging power (Sherman et al., 2016) and ERPs are likely a by-product of 

averaging caused by the interaction of travelling waves (Alexander et al., 2013).  The 

neuroimaging results in this thesis can be criticised for being interpreted with the 

“experimenter-as-receiver”. 

To understand whether beta oscillations have a mechanistic impact on information 

processing, and in this case motor initiation, it is important to use effective connectivity 

analyses to determine whether the changes to beta power in M1 readily predict changes in 

oscillatory activity in other cortical regions.  In addition, it is important to track how 

feedforward activity transmitting visual or proprioceptive prediction errors, or 

neuromodulatory activity, could modulate beta activity in sensorimotor cortex.  There 

have been a number of DCM studies to determine how predictions and prediction errors 

may be transmitted in different frequencies of oscillatory activity throughout the cortex 

(Bastos et al., 2012; Kerkoerle et al., 2014), but this work is missing from the sensorimotor 

system.  In particular, more work with high-spatial resolution techniques is needed to 

understand the connectivity between somatosensory and motor cortices either side of the 

central sulcus and potentially dissociate the functional role of beta oscillations separately 

in each area by determining the effect of this activity on downstream targets.  Moreover, 

all the work in this thesis has focused on beta power, however previous studies have 

suggested that more information is carried in the phase of oscillatory activity (Schyns et 

al., 2011).  Future work should dissociate whether phase, power or frequency of this 

oscillatory activity is most important for predicting activity in downstream targets that are 

important for motor initiation. 

7.3. Implications for understanding and treating 

Parkinson’s Disease (PD) 

According to the hypothesised relationship between sensory precision, sensorimotor beta 

power and motor initiation, I hypothesise that PD patients have increased precision in 

their proprioceptive state and this explains the akinetic and bradykinetic symptoms 

typical of PD.  By placing too much weight on their current proprioceptive state, 
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proprioceptive predictions about the sensory consequences of movement are not fulfilled.  

In support of this hypothesis, SEP attenuation is reduced in PD patients and dopaminergic 

medication normalises SEP attenuation and improves motor symptoms (Macerollo et al., 

2016).  Similar results have been found in patients with functional movement disorders (A 

Macerollo et al., 2015).  Moreover, PD patients have abnormal gating of 1a afferents in the 

spinal cord: it is this circuitry that is hypothesised to play a central role in movement 

initiation in active inference and be mediated by modulations of precision in the cortex.  

The central control of descending inputs on 1a afferents can be measured using the size of 

the H-reflex: this is a reactionary muscle contraction elicited by electrical stimulation of Ia 

afferents from muscle spindles, which activates the monosynaptic stretch reflex (Angel 

and Hofmann, 1963; Purves et al., 2001b).  Descending presynaptic inhibition of the Ia 

afferent volley onto alpha motor neurons in the spinal cord modulates the gain of this 

reflex (Delwaide, 1973; Zehr and Stein, 1999).  During gait initiation, the H-reflex of the 

soleus muscle is reduced, which suggests the gain of this circuit is reduced.  The 

magnitude of this reduction inversely correlated with disease severity in PD such that 

those with more severe symptoms showed less H-reflex attenuation, similar to that seen 

with SEPs at the scalp (Hiraoka et al., 2005).  Moreover, using a specifically designed 

conditioning paradigm, (Morita et al., 2000) showed that PD patients have less presynaptic 

inhibition of Ia afferents compared to healthy controls (suggesting an increase in the gain 

of the H-reflex) and found that the degree of presynaptic inhibition correlated with 

bradykinesia and the time to walk 10m in PD patients.  In addition, the amount of 

presynaptic inhibition increased with levodopa treatment along with an improvement in 

bradykinesia, which suggests that dopamine may modulate this central descending 

afferent gating in the spinal cord.  Stimulation of the sensorimotor cortex in the cat has 

been shown to decrease presynaptic inhibition at Ia afferent terminals (Lundberg and 

Vyklický, 1963; Rudomín et al., 1983), which suggests that this gain is modulated by a 

central descending signal.  Indeed, Adams et al (2013) posit that modulations of precision 

are transmitted from the somatosensory cortex to the spinal cord via a descending input, 

which supports that PD patients may have increased somatosensory precision and this 

may influence their motor symptoms. 

Based on these studies, the experiments in this thesis could be extended by measuring the 

effects of modulating sensory precision on the H reflex, the SEP, cortical oscillatory activity 

and motor initiation simultaneous.  In this way the mechanism by which somatosensory 

precision can causally effect motor control can be better understood.  Importantly, testing 

novel mechanisms by which motor symptoms could occur in PD generates novel avenues 

for therapeutic interventions.  Deep Brain Stimulation (DBS) is currently the leading 
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treatment for PD, however this is extremely invasive and is not suitable for all PD patients 

(Okun et al., 2004; Okun and Foote, 2010).  One hypothesis is that this high frequency 

stimulation in the basal ganglia interferes with the reafferant signal reaching the 

somatosensory cortex and reduces the precision of somatosensory prediction errors.  

Indeed, DBS of the pedunculopontine nucleus has been shown to reduce the amplitude of 

the H reflex (Pierantozzi et al., 2008).  However, much more work needs to be done to test 

this hypothesis especially as the exact pathways affected by DBS will depend on the site of 

stimulation.  Modulating somatosensory precision, non-invasively in the periphery, may 

offer an alternative method for symptom management in PD for those who cannot receive 

DBS.  Indeed, there has been a long history of using vibration to treat PD since Charcot’s 

“Vibrating Chair” (Charcot, 1892), but the results have been mixed (Arias et al., 2009; 

Chouza et al., 2011; Ebersbach et al., 2008; Haas et al., 2006; Kapur et al., 2012; King et al., 

2009).  This is likely due to differences in the vibration protocols used, the muscles 

targeted, the behaviors being measured and the patient groups studied.  A better 

understanding of the mechanism by which this therapy could work and the advancement 

in wearable technology may allow this method to be refined offering a novel therapeutic 

avenue for PD. 

However, the pathology in PD suggests that these patients may have reduced rather than 

increased proprioceptive precision.  Numerous psychophysical studies suggest that 

kinesthesia (the conscious awareness of the position or movement of the limb) is reduced 

in PD: patients with PD have a decreased sensitivity to detect small changes in limb 

position (Maschke et al., 2003), finger position (Putzki et al., 2006) and limb motion 

(Konczak et al., 2007) compared to healthy controls and this impairment has been shown 

to correlate with disease severity (Maschke et al., 2003).  Interestingly, patients with 

spinocerebellar ataxia do not show the same impairment and perform comparably to 

healthy controls, which suggests that the basal ganglia may play an important role in 

kinesthesia (Maschke et al., 2003).  Electrophysiological recordings from primate models 

of PD and PD patients demonstrate that the processing of proprioceptive information in 

the basal ganglia is noisier and less precise in PD.  Pallidal cells in a Parkinsonian primate 

model show increased firing during passive movement at multiple joints compared to 

healthy primates demonstrating a lack of specificity in the tuning of pallidal cells to 

specific joints (Filion et al., 1988).  The tuning of the receptive field of thalamic neurons 

receiving input from the basal ganglia is also broadened in PD suggesting noisier and less 

differentiated proprioceptive information is sent to cortical regions (Pessiglione et al., 

2005).  Moreover, neurons within the basal ganglia are more synchronised in PD, which 

suggests a reduced responsiveness to signals related to a particular context or action 
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further implying that the SNR of basal ganglia neural processing is reduced in PD (Bar-Gad 

and Bergman, 2001). 

It has previously been suggested that PD is a disorder of gain control of sensorimotor 

integration (Kaji, 2001; Kaji et al., 2005) and that dopamine may act to modulate a gain 

control for the responsiveness of the organism to the environment (Schultz, 2007), which 

supports ideas within the active inference framework.  However, this evidence suggests 

PD patients have reduced rather than increased precision-weighting of afferent signals 

from the basal ganglia.  In order to reconcile this with the hypothesis that PD patients have 

increased proprioceptive precision in the cortex and spinal cord, I hypothesise that 

cortical estimates of sensory precision in PD do not readily reflect the true proprioceptive 

state.  There are two mechanisms by which this could occur.  Firstly, this may be part of 

the pathology; the increased synchronicity in the beta band in the basal ganglia may lead 

to abnormal increased beta in the cortex, which is interpreted as an increased estimate of 

somatosensory precision.  Secondly, the brain may attempt to resolve the state of disorder 

caused by the aberrant input from the basal ganglia by increasing the estimate of sensory 

precision in the cortex via a top-down mechanism.  According to the active inference 

framework, reduced proprioceptive precision caused by dopamine depletion in the basal 

ganglia would increase the relative weighting on top-down proprioceptive predictions to 

move.  This biases the system towards the top-down predictions, which would most likely 

result in aberrant movements; therefore, the Parkinsonian state may reflect the brain 

trying to overcompensate and correct for this by increasing the precision weighting of 

other sensory inputs to the cortex.  In this way the increased beta power acts as a brake on 

movement and indeed previous research has shown that increasing beta power has an 

inhibitory effect on motor control (Pogosyan et al., 2009).  Interestingly, the deafferented 

patient IW reports “suddenly I found myself in a hospital bed to all intents and purposes 

paralysed from the neck down” (“Pride and a Daily Marathon,” n.d.).  This is perhaps an 

example of the brain trying to correct for the sudden uncertain afferent input and the 

result is an inability to move.  After a short-time the brain adapts to the lack of a clear 

afferent input by placing more weight on visual information to be able to move. 

However, it is difficult to test this idea experimentally as patients already have the disease 

when they are tested.  One hypothesis would be that this increased somatosensory 

precision in the sensorimotor cortex, potentially modulated by frontal areas, would be 

reflected in higher-order measures of precision, such as confidence ratings.  PD patients 

may produce large proprioceptive errors, but may be unaware and overly confident in 

those movements.  A recent study showed that OCD patients had a dissociation between 

their confidence judgements and actions, such that they were able to integrate the history 
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of sensory evidence to accurately estimate confidence ratings, but their actions were 

based only on the most recent sensory evidence (Vaghi et al., 2017).  This suggests that it 

is feasible in a diseased state to have an uncoupling between these facets.  To my 

knowledge, there is currently no evidence to suggest that PD patients have intact 

metacognitive awareness of their proprioceptive ability.  It will be interesting to repeat the 

proprioceptive target matching task in study three (chapter five) in PD patients to quantify 

this relationship. 

Moreover, it will be important to further quantify the role of sensorimotor beta power in 

representing sensory precision by determining if this information readily contributes to 

the generation of confidence ratings.  This will aim to determine exactly what level of the 

hierarchy sensorimotor beta oscillations represent the processing of motor information.  

Indeed, within the sensorimotor system the sensorimotor cortex is at the higher end of the 

hierarchy, therefore it is likely that activity in this area could mediate conscious awareness 

of the sensorimotor state, which is dissociable from activity in downstream areas of this.  

It has recently been reported that individual differences in confidence ratings can be 

determined by the relative weighting individuals give to two computations of confidence: 

1) the probability of the given decision or action being correct; 2) the precision of the 

sensory evidence used to make the decision (Navajas et al., 2017).  The precision term 

used has a specific dimension relevant to the task measured, therefore the authors suggest 

this represents a domain-specific computation, which is likely fed-forward to frontal areas 

involved in generating metacognitive judgements.  In this thesis, I found that mean 

confidence judgements across participants in a proprioceptive reaching task were based 

on precision-weighted proprioceptive errors, which suggests that the proprioceptive 

precision is likely used to generate metacognitive judgements in the sensorimotor domain.  

It will be important to correlate confidence ratings and beta power particularly in a task 

and population where confidence and performance may dissociate.  Moreover, it will be 

important to determine whether this oscillatory activity predicts, or is predicted by, 

activity in frontal areas, which have been shown to be important for metacognition 

(Fleming et al., 2010; Fleming and Dolan, 2012).  This “cortex-as-receiver” design will 

provide evidence that this beta power is mechanistically important and that it plays a 

functional role in generating domain-specific confidence judgements about the 

sensorimotor system.  It may also be important to extend this further to include a task that 

dissociates confidence within the somatosensory system and motor system to determine 

whether sensorimotor beta power more readily reflects one of these domains. 
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7.4. The role of modelling in cognitive neuroscience 

In this thesis I have used computational modelling to understand the function of neuronal 

oscillations in the brain.  The integration of computational neuroscience into functional 

neuroimaging has allowed us to access latent variables, assumed to have a functional role 

in neuronal processing, and use these to predict neural responses observable with M/EEG 

or fMRI.  This method therefore extends previous work in which experimental variables 

are used as proxies for computational estimates in order to provide more specific 

hypotheses about the mechanisms underlying particular behaviours and their 

neurophysiological correlates.  However, this method cannot address the underlying 

neuronal dynamics which play an integral role in neuronal processing.  Biophysical models 

aim to understand the causes of neural responses by modelling the intrinsic and extrinsic 

connections within and between cortical sources of activity.  DCMs therefore allow 

experimenters to hypothesise how experimental perturbations influence effective 

connectivity between regions and the balance of excitatory and inhibitory connections 

within brain areas.  Sophisticated neural mass models are based on electrophysiological 

data and therefore provide a more realistic inference about the mechanisms that explain 

observed neuronal responses.  This is an important step to advance our current 

understanding of the brain and ensure that we focus our interpretations of neuroimaging 

data in terms of what information the brain can see, use and communicate. 

DCMs use Bayesian inversion to determine the efficacy of the generative model, therefore 

Bayesian model comparison can be used to determine the model that best explained the 

data based on the Bayesian model evidence.  However, this highlights a fundamental 

problem with the current use of modelling in neuroimaging and cognitive neuroscience: 

there is no guarantee that the true model was amongst those tested.  It is therefore 

difficult to conclude anything about how the brain actually works from these methods.  We 

rely on the assumptions of the models we use being correct with no guarantee that they 

are.  The use of biophysical models has the advantage that the models are built in 

accordance with current empirical evidence from electrophysiological studies; however, 

these will only be as accurate as the latest cellular evidence and recording techniques. 

The models referred to in this thesis are Bayesian, therefore the inferences I have made 

allude to the brain acting as a Bayesian inference machine.  However, there is a lack of 

understanding of how Bayesian inference is computed in the brain.  Bayesian models have 

proved very useful at predicting people’s behaviour across a number of contexts including 

sensorimotor control (Ernst and Banks, 2002; Gopnik et al., 2004; Knill, 1998; Körding and 

Wolpert, 2004; Tenenbaum et al., 2006; van Beers et al., 1999; Wolpert et al., 1995).  
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However, these studies do not demonstrate that the brain actually uses Bayesian statistics 

to integrate information; non-Bayesian models could also be used to explain the 

integration of information (Gigerenzer and Brighton, 2009; Juslin et al., 2009).  In order to 

determine if the brain uses Bayesian inference, it is imperative to demonstrate that 

neurons encode uncertainty or probability distributions, however the current literature is 

not conclusive (Deneve, 2007; Knill and Pouget, 2004; Ma et al., 2006; Rao, 2004).  In this 

thesis, I have demonstrated that sensorimotor beta oscillations correlate with uncertainty 

estimates, which supports previous studies regarding the role of this activity (Tan et al., 

2016); however, this work fails to demonstrate whether and how the brain utilises this 

information.  Even if the machinery is present for the brain to be able to compute Bayesian 

statistics, this doesn’t mean that the brain actually does.  More work needs to focus on 

identifying how neuronal firing rates can integrate information at the neuronal and 

population levels across different domains and how this information is transmitted 

between cortical regions potentially by using DCMs.  Before these fundamental studies 

have been completed, we cannot confirm that Bayes-optimal behaviours are actually 

Bayesian. 

One issue with Bayesian models, and a key criticism of the active inference framework, is 

that they are so flexible, they cannot be falsified.  Bayesian models have numerous free 

parameters and degrees of freedom, which allow the modeller to generate any predictions 

they want.  Indeed, Brown et al (2013) created a generative model designed to explain 

how a decrease in sensory precision is necessary for movement by linking these 

parameters such that an increased expectation of an internally generated force would 

decrease sensory precision.  In this way, the authors could guarantee the model would be 

able to explain existing evidence of perceptual and physiological sensory attenuation 

based on this hypothesis.  Indeed, the active inference framework was built upon existing 

literature about the neurophysiology of connections within the sensorimotor system, 

therefore novel empirical work to test the model will most likely confirm these findings 

and thus the model becomes self-fulfilling.  Moreover, the framework accommodates new 

data to generate and extend the model; it is therefore difficult to design an experiment that 

will definitively disprove this theory.  Nevertheless, this theory generates a number of 

novel predictions, which will increase the number of new paradigms developed and can 

only enhance our understanding of the brain further.  It is imperative that we 

acknowledge the flexibility of many models in cognitive neuroscience and therefore design 

stringent and constrained experiments to provide empirical evidence for well-defined 

experimental predictions. 
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7.5. CONCLUSION 

In this thesis, I tested a specific prediction from the active inference framework that a 

reduction in sensory precision is necessary to allow movement initiation to occur.  The 

evidence in this thesis supports this hypothesis, but is far from conclusive.  I have shown 

that sensory attenuation can occur at different levels of the cortical hierarchy and the level 

at which this modulation in sensory precision occurs will determine the functional impact 

of this change in synaptic efficacy.  I have also shown that sensorimotor beta oscillations 

readily correlate with modulations in proprioceptive and visual uncertainty and 

computational estimates of sensory precision.  I have shown that those changes in 

uncertainty modulate behaviour in accordance with the active inference framework.  

However, there are a number of underlying assumptions of the work in this thesis that 

must be corroborated before conclusions can be drawn about the validity of the 

predictions from the active inference framework.  Firstly, it is not clear whether or how 

changes in the uncertainty of afferent input modify synaptic gain, and thus sensory 

precision.  It will be important to use brain stimulation, microneurography and in vivo 

electrophysiological recordings in primates to determine the effect of peripheral vibration 

on synaptic efficacy in the cortex and spinal cord.  Secondly, it will be important to 

determine whether beta oscillatory activity, potentially transmitted from another cortical 

region, plays a role in modulating synaptic gain or is a consequence of a change in synaptic 

gain caused by a cellular mechanism, such as spike-timing dependent plasticity.  Finally, it 

will be important to use a wide range of alternative Bayesian and non-Bayesian models to 

explain the integration of visual and proprioceptive information in sensorimotor cortex 

under different levels of uncertainty to determine whether generative models designed to 

optimise free energy optimally explain behavioural data and neural oscillations. 

The active inference framework is a novel theory that aims to produce a unifying 

hypothesis for how the brain integrates sensory information for perception and action.  

The framework uses a hierarchical generative model, which incorporates the 

computational principles of predictive coding and Bayesian inference, to understand the 

causes of sensory input and motivate behaviour.  Unlike other models of sensorimotor 

control, this theory attempts to map the components of this computational mechanism 

onto the machinery of the brain in order to determine how the brain functions.  The 

flexibility of this computational work makes this model difficult to falsify; however, the 

complexity of the brain requires a framework that can be moulded to explain new data. 

One major challenge caused by the incorporation of computational modelling into our 

understanding of how the brain works is that we move further away from recording and 
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understanding what is actually happening in the brain; instead we infer functionality from 

parameters and estimates that we as modellers have crafted.  It is imperative that we use 

multi-modal neuroimaging, from single cell recordings to M/EEG, to ensure that the 

fundamental assumptions underlying the models we use are accurate and combine these 

with connectivity analyses to ensure the information we are measuring from the brain is 

interpretable and useful for the brain. 
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APPENDICES 

I have attached the two papers I have published as part of this PhD.  The first paper is 

study one (chapter three) from this thesis which was published in the Journal of 

Neuroscience.  The second paper is a commentary on the paper by Tan et al (2016), which 

was published in Trends In Cognitive Science. 
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Physiological and Perceptual Sensory Attenuation Have
Different Underlying Neurophysiological Correlates

X Clare E. Palmer,1 X Marco Davare,1,2 and James M. Kilner1

1Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London WC1N 3BG, United
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Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and
perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of
the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of
a persons’ inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the
central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating
these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimula-
tion to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to
determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable
neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological
disorders in which one form of sensory attenuation but not the other is impaired. Time–frequency analyses revealed a negative correla-
tion over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is
consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory
attenuation.

Key words: electroencephalography; force matching; gamma oscillations; median nerve stimulation; sensory attenuation;
somatosensory cortex

Introduction
During movement, peripheral sensory receptors are stimulated,
which activates sensory pathways in the CNS to relay information

about our proprioceptive state and our surrounding environ-
ment to the cortex. Sensory attenuation is the top-down filtering
of this afferent information to limit how much feedback is re-
ceived. It has been proposed that the role of this sensory gating is
to differentiate between sensations created by one’s own move-
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Significance Statement

We demonstrate that there are two functionally and mechanistically distinct forms of sensory gating. The literature regarding
somatosensory evoked potential (SEP) gating is commonly cited as a potential mechanism underlying perceptual sensory atten-
uation; however, the formal relationship between physiological and perceptual sensory attenuation has never been tested. Here,
we measured SEP gating and perceptual sensory attenuation in a single paradigm and identified their distinct neurophysiological
correlates. Perceptual and physiological sensory attenuation has been shown to be impaired in various patient groups, so under-
standing the differential roles of these phenomena and how they are modulated in a diseased state is very important for aiding our
understanding of neurological disorders such as schizophrenia, functional movement disorders, and Parkinson’s disease.
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ments and those created from external stimuli to highlight the
biologically more salient and less predictable external sensory
input (Wolpert et al., 1995; Wolpert and Miall, 1996; Shergill et
al., 2005). An alternative hypothesis posits that sensory attenua-
tion is a necessary preparatory step to allow movement initiation
to occur (Brown et al., 2013). However, due to the nature in
which sensory attenuation has been studied previously, the role
of this mechanism remains highly contested. Sensory attenuation
has been studied extensively across the perceptual and physiolog-
ical domains and it has been suggested that “movement-induced
somatosensory gating may be the physiological correlate of the
decreased sensation associated with self-produced tactile stimuli
in humans” (Blakemore et al., 2000); however, the relationship
between the two has never been formally tested. This was the aim
of the work described here.

Physiological somatosensory attenuation can be explored us-
ing electrical stimulation of the median nerve. This produces a
somatosensory evoked potential (SEP) recordable at multiple
levels of the somatosensory pathway to provide a measure of
the magnitude of the afferent volley. Cortical EEG recordings
have shown that there is a suppression of the primary and sec-
ondary complexes of the SEP during active and passive move-
ment (Rushton et al., 1981). Attenuation of SEPs has also been
shown during motor preparation before EMG onset of active
movement (Starr and Cohen, 1985; Jiang et al., 1990; Seki
and Fetz, 2012), suggesting that this gating occurs via central
mechanisms.

Perceptual sensory attenuation is described as a reduction in
the perception of the afferent input of a self-produced tactile
sensation and is referred to as the inability to tickle oneself. This
has been attributed to a central cancellation of the reafferent
sensory signal by the efference copy of the motor command be-
fore making the tickling action. When someone else is producing
the tickling sensation, there is no efference copy to cancel out or
reduce the incoming afference, so the sensory information is not
attenuated (Blakemore et al., 1998, 2000). This has been pro-
posed to distinguish between self-generated and externally gen-
erated sensations. Similar results were found in a force-matching
paradigm, which provides a more quantitative method to assess
sensory gating at a perceptual level. When asked to match a force
by pressing on themselves (self-generated), participants signifi-
cantly overestimated the matched force compared with when a
robot was manipulated to produce the force (externally gener-
ated) (Shergill et al., 2003; Pareés et al., 2014). In addition, when
the finger receiving the force was given an anesthetic to prevent
any reafference from skin and joint receptors, attenuation still
occurred, suggesting that, as with SEP gating, the sensory signal
was modified using top-down processes (Walsh et al., 2011).

To date, the neurophysiological correlates underlying perceptual
sensory attenuation have not been addressed. fMRI studies have
attempted to localize the networks involved in somatosensory atten-
uation and have suggested that perceptual attenuation may be
driven by activity in the secondary somatosensory cortex
(Blakemore et al., 1998; Shergill et al., 2013). This is distinct from
SEP attenuation, in which it is has been shown that the early SEP
components that are attenuated during movement originate from
activity in SI. Indeed, studies measuring neurophysiological attenu-
ation to action-driven and externally driven sensations in the audi-
tory and visual domains have highlighted differences in the locus and
timing of attenuation dependent on the nature of the task (Bäss et al.,
2008; Hughes et al., 2013; Roussel et al., 2014); this may demonstrate
a potential dissociation in mechanism depending on whether the
task is low level (e.g., active movement) or high level (e.g., force

matching). Therefore, although it has been suggested that move-
ment-induced SEP attenuation may underlie perceptual sensory at-
tenuation, the relationship between the two may be more complex.
Here, we delivered median nerve stimulation at specific time points
throughout a force-matching paradigm and recorded the EEG to
determine whether physiological sensory attenuation was correlated
with perceptual sensory attenuation, as has been proposed previ-
ously, or if these two forms of sensory attenuation are dissociable and
therefore potentially functionally distinct.

Materials and Methods
Subjects
Eighteen healthy participants (male � 9; female � 9) age 20 –56 years
(mean � SD: 28.24 � 8.53) took part in this study. Participants had no
history of neurological or psychiatric illness. All participants were right
handed and gave written informed consent before taking part. This study
was approved by the University College London (UCL) Research Ethics
Committee and all testing took place at the UCL Institute of Neurology.
Two subjects were excluded due to noisy EEG data.

Experimental setup
Participants sat at a desk with their left hand supernated and index finger
extended under a force transducer. Two haptic robots were positioned in
front of the subject (Fig. 1A). One robot was stationed above the force
transducer and produced forces directly on the left index finger. The
second robot was positioned over a pliable object and controlled the
force produced by the first robot in the “external” condition (see “Task
procedure”). The force transducer recorded all forces exerted on the left
finger using Spike2 version 6.17 software. The target forces applied were
1, 1.5, 2, and 2.5 N. A peripheral nerve stimulator was used to stimulate
the median nerve at the left or right wrist at specific time points through-
out the experiment. EEG data were recorded using a BioSemi 128 active
electrode system at a sampling frequency of 2048 Hz. Two external ref-
erence electrodes were placed on the subjects’ earlobes.

Task procedure
Force-matching task. To measure perceptual sensory attenuation, a classic
force-matching task was used (Shergill et al., 2005; Pareés et al., 2014).
Subjects received a force ( produced by robot 1) on their left index finger
for 3 s. They were instructed to match the intensity of that force on the
same finger by either pushing down on robot 1 to emulate the force
produced (“self” condition) or by pushing down on robot 2 (“external”
condition; Fig 1A). Robot 2 was linearly connected to robot 1 such that a
1 cm movement in robot 2 produced a 1.25 N downward force on robot
1. Once the subjects had produced the appropriate force, they were in-
structed to hold the matched force until they heard the stop signal (4.5 s).
The intertrial interval was 1 s. Instructions for the behavioral task ap-
peared on a computer screen in front of the participant throughout the
experiment. Median nerve stimulation (MNS) was either given while
holding the matched force only (�3 every 500 ms from 3 s after the GO
signal; 32 trials per block; “Hold stimuli”) or additionally during force
production (�5 stimuli every 500 ms from GO signal 12 trials per block;
“Phasic stimuli”; Fig. 1B). Subjects completed alternate blocks of each
condition counterbalanced across participants. There were 44 trials in
each block containing equal numbers (�11) of each target force (ratio of
trials with and without phasic stimuli � 3:8). There were four blocks of
each condition in one session. Subjects completed the same behavioral
task in 2 sessions (mean � SD time between sessions: 2.8 � 3.4 d). The
stimulated wrist alternated between sessions and the order was counter-
balanced across participants.

Movement control. To record a measure of SEP attenuation during
movement independently from the behavioral task, participants com-
pleted a movement control task in both sessions. The task consisted of
alternating blocks of movement and rest. When subjects saw the word
“MOVE” presented on a computer screen accompanied by an auditory
“GO” signal, they were instructed to make a rapid, large, and frequent
tapping motion of the index finger of the wrist being stimulated. When
they saw the word “REST,” participants were instructed to remain as still
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Figure 1. Experimental setup and task design for the force-matching paradigm. A, Self-condition (top): robot 1 was fixed onto a force transducer. Robot 1 produced a target force on the left index
finger, which was matched by pushing down on the subject pushing down on robot 1 using the right index finger. External condition (bottom): robot 2 was linearly connected to robot 1 such that
any force exerted on robot 2 was felt on the left index finger. The gain was altered so that more force was required in this condition to produce the same force output across conditions. B, Schematic
of the trial design for a single trial. The top line is the force output from the force transducer during the target and matched forces. The top middle line shows the timing of the hold stimuli relative
to the force output; behavioral data were only used for these trials. The bottom middle line shows trials that additionally received phasic stimuli and the timing of these relative to the force output.
The bottom line is a time axis in seconds aligned to the start of the target force at 0 s. The red dotted lines mark the time period in which the magnitude of the matched force for each trial was
calculated.

Palmer et al. • Dissociable Forms of Sensory Attenuation J. Neurosci., October 19, 2016 • 36(42):10803–10812 • 10805



and relaxed as possible. During each block, participants received 25 elec-
trical pulses to the wrist at a frequency of 2 Hz. There were 20 blocks in
total in each session (10 rest, 10 movement), resulting in 250 SEPs per
condition for each wrist.

Median nerve stimulation
Two electrodes were placed on the surface of the skin in the center of the
wrist above the median nerve with the cathode more distal just below the
crease of the wrist. The intensity of the stimulation at threshold (slight
thumb twitch) was identified and then increased by 1 mA to produce a
definite thumb twitch. The intensity remained the same throughout the
experiment with a pulse width of 0.2 �m.

Behavioral data analysis
Force values were extracted from Spike into MATLAB. Trials in which
median nerve stimulation was given during force production in the
matching phase ( phasic stimuli) were removed from the behavioral anal-
ysis. Mean force output per trial was calculated from a specific time
window of 2.5–3 s after the GO signal to start matching (Fig. 1B). Median
nerve stimuli were not given until 3 s in these trials (no phasic stimuli
given), so they would have had no interference with the behavioral data
during this time window. The mean force output during the target force
was also recorded in the same time window to determine the relationship
between the voltage output of the force transducer and the force applied
by the robot given in Newtons. A calibration procedure was then used to
scale the force output (voltage) to determine the true magnitude differ-
ence in Newtons from the given target force.

It has been shown previously that people with schizophrenia are im-
paired on the force-matching task such that they did not overestimate
force in the self-condition (Shergill et al., 2005). In addition, the magni-
tude of perceptual sensory attenuation in a population of healthy con-
trols negatively correlated with their scores of delusional ideation (a
measure of schizotypy). To replicate previous findings, we hypothesized
that the magnitude of force matching would be negatively correlated with
schizotypy scores. All subjects completed the Peter’s Delusion Inventory
(PDI) before taking part in the experiment. An overcompensation score
for the force-matching task was calculated for each participant by finding
the difference between the matched force and the target force in the
self-condition. Parametric and nonparametric correlation analyses mea-
sured the relationship between overcompensation scores and PDI scores
(one-tailed) across subjects.

EEG data analysis
Preprocessing. Data were preprocessed using SPM 12. EEG data were
rereferenced by deducting data from two external electrodes attached to
the subjects’ earlobes. The data were then filtered using a high-pass filter
at 0.1 Hz. For analysis of the time � frequency data only, a low-pass filter
at 100 Hz was also used. A trigger was sent to the EEG system at the time
of every median nerve stimulus. The data were epoched around the time
of median nerve stimulation with a time window of �100 ms to 250 ms
for the SEP data. For the time–frequency analysis, epochs were generated
from the first median nerve stimulus given after force matching in trials
with hold stimuli only with a time window of �7500 to 0 ms. In this way,
we could ensure that there were no stimulus artifacts in the window of
interest. The different experimental blocks were merged into a single file.
For the time–frequency analysis, the power of the EEG signal at each
frequency from 1 to 99 Hz in steps of 2 was estimated using the multita-
per spectral estimation in SPM with a sliding time window of 400 ms that
moved in steps of 50 ms. The data were transformed using the log rescale
function and baseline corrected using a 50 ms window from the first 100
ms of the epoched time window.

SEP analysis. The epoched EEG data were averaged over trials and the
topography examined to determine a ROI over sensorimotor cortex.
Individual ROIs over sensorimotor corticies were selected based on
electrodes that showed a negative peak at �20 ms and a positive peak
�30 – 45 ms after the stimulus. For each subject, electrodes for analysis
were selected from SEP data averaged over all conditions and the same
ROI was used for all analyses for that subject. Epoched data were subdi-
vided dependent on whether the median nerve stimulation was given
during the phasic part of the force matching or while holding the

matched force. Five well characterized peaks of the SEP were identified
and used for analysis: N20, P30, P45, N55, and P100. For each subject, an
average SEP across all conditions over the specified ROI was generated
and the latency of each peak was identified from this. The same latencies
were then used for all subsequent analyses. Mean latencies of the left
hemisphere were as follows (in milliseconds): N20 � 20.4 � 1.2, P30 �
29.6 � 3.3, P45 � 45 � 3.7, N55 � 64 � 8.0, and P100 � 95.1 � 10.7.
Mean latencies in the right hemisphere were as follows (in milliseconds):
N20 � 21.3 � 3.7, P30 � 31.4 � 6.2, P45 � 45.2 � 5.0, N55 � 61.8 � 8.9,
and P100 � 94.6 � 13.6. These latencies were used to calculate the
amplitude of each peak in the SEP for each condition so that there was
no experimenter bias in determining peak amplitudes (Kilner, 2013).
The amplitude difference between neighboring peaks generated the
dependent variable for each component of the SEP: primary complex �
N20 –P30, secondary complex � P45–N55, and the later component �
N55–P100.

To replicate previous neurophysiological data showing SEP attenua-
tion with movement, the mean amplitude difference of each SEP com-
ponent was compared for MNS given during movement versus rest in the
control task. To determine the effect of task condition on SEP attenua-
tion, the mean amplitude difference of each component was compared in
a 2 � 2 repeated-measures ANOVA (rmANOVA) with the factors self-
versus external task condition and hold versus phasic stimuli. The con-
trast between hold versus phasic stimuli was included to provide a
measure of physiological SEP attenuation (most commonly seen com-
paring movement and rest) within the behavioral paradigm with the
rationale that SEP components should show a greater decrease in ampli-
tude during force generation (phasic stimuli) compared with those pro-
duced during an isometric contraction (hold stimuli). A significant
interaction between task condition and MNS time point would therefore
suggest greater physiological SEP attenuation in one task condition com-
pared with the other.

To further substantiate the relationship between perceptual and phys-
iological sensory attenuation, nonparametric and parametric correla-
tions were also performed between the magnitude of physiological
sensory attenuation (difference between SEP amplitudes during the hold
phase of force matching and the phasic phase) for each component of the
SEP (N20 –P30, P45–N55, and N55–P100) and PDI scores for both
hemispheres.

Time–frequency analysis. A time–frequency analysis was conducted to
investigate whether there was any aspect of the oscillatory neural signal
that correlated significantly with the behavioral data. The time–fre-
quency data files were converted into images for statistical analysis in
SPM. Images were created of the average of all trials for each condition
(self, external) and force level (1, 1.5, 2, or 2.5 N), creating 8 images
in total per subject. The time–frequency data were averaged over the ROI
selected previously in the SEP analysis to remove the dimension of
“scalp” for both hemispheres independently. The EEG data were then
regressed against the behavioral outcomes of the task for each condition:
the magnitude of sensory attenuation (the target force � the matched
force) and the target force given. The latter covariate was used to control
for any changes in neural activity as a result of force applied to the left
finger. A �-image was created for each subject and used in a one-sample
t test at the group level to determine in which voxels the regressions at the
first level were either positively or negatively significantly different from
0. To test for any significant clusters in the time–frequency images, we
ran a permutation analysis using the SnPM toolbox within SPM with 500
permutations.

Results
Behavior: participants overestimated force in the
self-condition compared with the external condition
As expected from previous findings, there was significant percep-
tual sensory attenuation across subjects in the force-matching
task, meaning that subjects significantly overestimated the
matched force in the self-condition compared with the external
condition. A 2 � 4 rmANOVA comparing condition (self vs
external) and force level (1, 1.5, 2, or 2.5) for the matched force
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revealed a significant main effect of condition (F(1,15) � 19.43,
p � 0.001), a significant main effect of force level (F(3,45) � 79.23,
p � 0.001), and a significant interaction (F(3,45) � 3.10, p �
0.036). Overall, participants produced significantly greater force
output in the self-condition (mean � SD � 2.34 � 0.41 N)
compared with the external condition (mean � SD � 1.80 � 0.79
N; Fig. 2A), demonstrating significant perceptual sensory atten-
uation. Pairwise comparisons between the two conditions at each
force level showed that, despite the significant interaction, the
matched force produced in the self-condition was significantly
larger than the external condition at each force level (p � 0.002,
corrected for multiple comparisons). Comparing the matched
force and the target force against force level for each condition
separately using a 2 � 4 rmANOVA revealed a significant differ-
ence between the matched force and the target force in the self-
condition (F(1,15) � 26.31, p � 0.001), but no significant
difference between the matched force and the target force in the
external condition (p � 0.168). Both conditions showed a signif-
icant interaction between force level and the difference between
the matched and the target force (self: F(3,45) � 25.19, p � 0.001;

external: F(3,45) � 21.63, p � 0.001). As can be seen in Figure 2B,
there was a greater difference between the matched force and
the target force at lower force levels compared with higher
force levels.

Replicating previous findings by Teufel et al. (2010), we found
a significant negative correlation between the overall magnitude
of perceptual sensory attenuation and scores of delusional ide-
ation using the nonparametric Spearman’s correlational analysis
(rs � �0.56, p � 0.012 one-tailed; Fig. 2C).

Here, we were able to demonstrate significant behavioral sensory
attenuation, replicating previous results and, critically, demonstrat-
ing that MNS given after matching did not abolish this effect.

Neurophysiology: movement attenuated the primary and
secondary complexes of the SEP
To ensure that we could measure standard SEP attenuation pre-
viously recorded in response to movement, participants per-
formed a simple control task in which we compared SEP
amplitudes at rest and during movement. We were able to repli-
cate previous findings successfully. SEPs recorded over sensori-

Figure 2. Behavioral data: greater overall force output in the self-condition compared with the external condition. A, Mean matched force for each target force level given (1, 1.5, 2, and 2.5 N)
for the self-condition (purple, solid) and the external condition (blue, solid). The dotted black line represents the input target forces and the colored dotted lines represent the mean force output
calculated during the target force for each condition. The force output has been converted from voltage (V) to Newtons (N). B, Same data as graph A before they were converted to Newtons and mean
corrected to demonstrate the statistical differences between the conditions. C, Correlation between the magnitude of perceptual sensory attenuation and scores of delusional ideation taken from
the PDI replicating Teufel et al. (2010)’s findings (parametric: r � �0.35, p � 0.092; nonparametric: r � �0.56, p � 0.012; both one-tailed).
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motor cortex contralateral to the moving hand being stimulated
were attenuated during movement compared with rest in a
movement control task (Fig. 3). The mean amplitude of the pri-
mary complex, N20 –P30, from SEPs recorded over the hemi-
sphere contralateral to movement decreased significantly when
the stimulated index finger was moving compared with rest; this
was conducted separately for right and left wrist MNS (left hemi-
sphere: t(15)� �3.83, p � 0.002; right hemisphere: t(15) � �5.68,
p � 0.001). The same result was found for the secondary compo-
nent, P45–N55 (left hemisphere: t(15) � 2.70, p � 0.017; right
hemisphere: t(15) � 3.15, p � 0.007). Individual ROIs were se-
lected for each subject based on SEP data averaged across all
conditions. Figure 3E shows the overlap of selected electrodes
over each hemisphere.

Neurophysiology: SEP attenuation of the primary and
secondary components was not modulated by behavioral
task condition
MNS was given at two time points during the behavioral task:
“phasic stimuli” were given directly after the GO cue to start

matching during force generation and “hold stimuli” were given
during steady-state contraction when the target force was
matched (Fig. 1B). We hypothesized that mean SEP amplitudes
would be smaller for phasic SEPs compared with hold SEPs be-
cause it has been shown previously that there is greater physio-
logical sensory attenuation during force generation compared
with an isometric contraction. This contrast was used to demon-
strate standard physiological SEP attenuation seen with move-
ment during the behavioral task. We then compared mean SEP
amplitudes at these time points and across conditions in the be-
havioral task using a 2 � 2 rmANOVA comparing condition (self
vs external) and stimulation time (phasic SEPs vs hold SEPs) with
the hypothesis that a significant interaction between stimulation
time and task condition would demonstrate a direct modulation
of SEP attenuation with task condition.

Over the left sensorimotor cortex contralateral to the moving
hand, there was a significant effect of stimulation time for both
the primary (N20 –P30: F(1,15) � 15.93, p � 0.001) and secondary
(P45–N55: F(1,15) � 10.62, p � 0.005) components of the SEP.
For both components, the mean amplitude was greatest for the

Figure 3. Movement decreases SEP amplitudes relative to baseline. A, C, Average SEP traces in response to median nerve stimulation from a ROI over the right (A) and left (C) sensorimotor
corticies for the rest (orange) and movement (pale orange) conditions of the movement control task. B, D, Magnitude of the mean SEP amplitude for N20 – P30 and P45 – N55 across all subjects is
shown for the rest (orange) and movement (pale orange) conditions for the right (B) and left (D) sensorimotor corticies. E, Individual ROIs were selected for each subject based on SEP data averaged
across all conditions; therefore, the scalp map shows the overlap of selected electrodes over each hemisphere. The color bar represents the number of participants for which that electrode (area) was
selected for analysis. S, Median nerve stimulus.
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hold SEPs compared with the phasic SEPs, demonstrating signif-
icant SEP attenuation during the behavioral task (Fig. 4A–C).
However, there was no significant effect of condition for either com-
ponent (N20–P30, p � 0.183; P45–N55, p � 0.516) and no signifi-
cant interaction (N20–P30, p � 0.430; P45–N55, p � 0.893),
suggesting that SEP attenuation of the primary and secondary com-
ponents was not modulated by task condition.

Interestingly, similar results were found the over right senso-
rimotor cortex ipsilateral to the moving hand and contralateral to
the finger receiving the matched force. There was no significant
effect of stimulation time for the primary component (N20 –P30,
p � 0.902); however, there was a significant effect of stimulation
time for the secondary complex (P45–N55, F(1,15) � 11.94, p �
0.004). The mean amplitude for the hold SEPs was greater than
the phasic SEPs (Fig. 4E–G). Again, there were no significant
effects of condition (N20 –P30, p � 0.157; P45–N55, p � 0.565)
and no significant interactions (N20 –P30, p � 0.724; P45–N55,
p � 0.389). Attenuation of the primary and secondary compo-
nents of the SEP was not modulated significantly by the behav-
ioral task condition.

To ensure that there were no specific modulations of SEP
attenuation with force level, the same analysis used for the behav-
ioral data were conducted. A 2 � 4 rmANOVA compared the
magnitude of SEP attenuation (hold � phasic) at each force level
for the self- and external conditions. This was conducted sepa-
rately for the primary and secondary SEP components and for
both hemispheres. There were no significant main effects of con-
dition (left hemisphere: N20 –P30, p � 0.238; P45–N55, p �

0.766; right hemisphere: N20 –P30, p � 0.505; P45–N55,
p � 0.848), no significant main effects of force level (left hemi-
sphere: N20 –P30, p � 0.404; P45–N55, p � 0.401; right hemi-
sphere: N20 –P30, p � 0.300; P45–N55, p � 0.398) and no
significant interactions between condition and force level (left
hemisphere: N20 –P30, p � 0.233; P45–N55, p � 0.923; right
hemisphere: N20 –P30, p � 0.890; P45–N55, p � 0.563).

To provide further support that SEP attenuation is not related
to perceptual sensory attenuation, we found no significant corre-
lations between attenuation of individual SEP components and
scores of delusional ideation across either hemisphere, unlike
perceptual sensory attenuation, using nonparametric Spear-
man’s analysis (left hemisphere: N20 –P30, r � 0.093, p � 0.73;
P45–N55, r � �0.040, p � 0.88; right hemisphere: N20 –P30, r �
0.22, p � 0.42; P45–N55, r � �0.17, p � 0.52).

Neurophysiology: attenuation of a later SEP component,
N55–P100, was modulated by behavioral task condition
In contrast to the results regarding the primary and secondary
SEP components, analysis of a later SEP component, N55–P100,
using the same rmANOVA revealed a significant main effect of
condition for both the left sensorimotor cortex (F(1,15) � 10.72,
p � 0.005; Fig. 4D) and right sensorimotor cortex (F(1,15) � 8.25,
p � 0.012; Fig. 4H). In both hemispheres, the mean N55–P100
amplitude for the self-condition (left hemisphere: mean � SD �
2.02 � 1.93; right hemisphere: mean � SD � 3.17 � 2.94) was
significantly less than in the external condition (left hemisphere:
mean � SD � 2.53 � 1.86; right hemisphere: mean � SD �

Figure 4. Attenuation of SEP amplitudes with stimulation time and behavioral task condition. A–D, Top, Data taken from left sensorimotor cortex. E–H, Bottom, data taken from right
sensorimotor cortex. Graphs A and E show the average SEP traces across all subjects for the four experimental conditions: self-condition hold stimuli (dark purple); self-condition phasic stimuli (light
purple); external condition hold stimuli (dark blue); and external condition phasic stimuli (light blue). The remaining graphs show the magnitude amplitude difference between adjacent SEP
components for each condition for N20 –P30 (B, F ), P45–N55 (C, G), and N55–P100 (D, H ). Graphs B, C, and G show a significant effect of stimulation time representing significant attenuation, but
no significant effect of behavioral task condition. Graphs D and H show no significant effect of stimulation time, but a significant effect of behavioral task condition.
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3.72 � 3.26). However, there was no sig-
nificant interaction between the behav-
ioral condition and the stimulation time
for either hemisphere (left hemisphere,
p � 0.460; right hemisphere, p � 0.216)
and no significant main effect of stimula-
tion time (left hemisphere, p � 0.059;
right hemisphere, p � 0.123). Overall, the
mean amplitude of the N55–P100 compo-
nent was smaller over both hemispheres
for the self-condition compared with the
external condition, suggesting that atten-
uation of this later SEP component corre-
lated with perceptual sensory attenuation.

To investigate whether attenuation of
this later SEP component was modulated
by force level, the same analysis used for
the behavioral data and for the early SEP
components was conducted. Because the
main ANOVA revealed a significant main
effect of condition but no interaction or
main effect of stimulation time, a 2 � 4
rmANOVA was conducted to compare
the mean SEP amplitude across hold and
phasic SEPs combined at each force level
for the self- and external conditions. For
both hemispheres, there was a significant
main effect of condition (left hemisphere:
F(1,15) � 6.11, p � 0.026; right hemi-
sphere: F(1,15) � 4.88, p � 0.043), with a
lower SEP magnitude difference for the
self-condition (left hemisphere: mean �
SD � 2.01 � 2.22 mV; right hemisphere:
mean � SD � 3.03 � 3.05 mV) compared
with the external condition (left hemi-
sphere: mean � SD � 2.55 � 2.12 mV; right hemisphere:
mean � SD � 3.54 � 3.59 mV). However, there was no modula-
tion of SEP amplitude with force level (p � 0.974) and no significant
interaction between condition and force level (p � 0.426).

In addition, there was no significant correlation between at-
tenuation of the N55–P100 SEP component and scores of delu-
sional ideation across either hemisphere, unlike perceptual
sensory attenuation, using nonparametric Spearman’s analysis
(left hemisphere: N55–P100, r � �0.25, p � 0.34; right hemi-
sphere: N55–P100, r � �0.15, p � 0.59).

Time–frequency analysis: negative correlation between
gamma-band activity and the magnitude of perceptual
sensory attenuation
Having demonstrated no significant comodulation of the SEP
components with the behavioral data, we next tested whether
there were any modulations in the time–frequency domain that
correlated with the behavior. To this end, a time–frequency anal-
ysis was performed to identify whether any oscillatory activity
over sensorimotor cortex correlated with the magnitude of
perceptual sensory attenuation to provide a potential neurophys-
iological marker for this behavioral phenomenon. At the single-
subject level, the average magnitude of sensory attenuation
(difference between the target force and the matched force) for
each force level and each condition (2 � 4; average of all trials at
each level of each factor; see Materials and Methods for more
details) was regressed against the EEG activity in the previously
specified ROI across all frequencies and across the full time win-

dow of a single trial to determine whether any neurophysiological
activity correlated with the behavioral data. The target force av-
eraged over the same trials was also included in the model to
regress out the effect of target force. A one-sample t test at the
second level revealed a significant cluster over the right sensori-
motor cortex within the gamma-frequency band with a peak at 54
Hz (cluster-level: p � 0.004, corrected; peak-level: t � 4.24, p �
0.001,uncorrected). A nonparametric permutation analysis run
with the SnPM toolbox confirmed this cluster to be significant at
the corrected p � 0.05 level. This activity was negatively corre-
lated with the magnitude of perceptual sensory attenuation and
occurred 422 ms before the auditory GO signal to start matching
(Fig. 5). As perceptual sensory attenuation increased, that is, as
matching became less veridical (self-condition), the power of
oscillatory activity within the gamma-frequency band decreased.

Discussion
It has been proposed previously that movement-induced cortical
gating of SEPs may be the mechanism underlying perceptual sen-
sory attenuation measured using a force-matching paradigm.
This study aimed to correlate physiological sensory attenuation
of cortical SEPs with perceptual sensory attenuation to test this
hypothesis. Primary (N20 –P30) and secondary (P45–N55) com-
ponents of the SEP showed significant attenuation during the
behavioral task with force production, but this attenuation was
not modulated significantly by task condition. This suggests that
physiological attenuation of early SEP components does not un-
derlie perceptual sensory attenuation. However, analysis of a later
SEP component (N55–P100) demonstrated an overall decrease

Figure 5. Negative correlation between gamma-band oscillatory activity and the magnitude of perceptual sensory attenuation
before force matching. Shown is a time–frequency plot averaged over a preselected ROI showing the value of the t-statistic
resulting from a one-sample t test at the group level of � images from regression analyses between EEG data and behavioral data
at the single-subject level. These data represent a negative contrast; that is, in which voxels the mean regression across subjects
was negative. Gamma-band oscillatory activity (peak 54 Hz) was significantly negatively correlated with perceptual sensory
attenuation in the time period just before the auditory GO cue to match the target force was produced (�3422 ms before the first
MNS). A nonparametric permutation analysis using the SnPM toolbox revealed a significant cluster of activity (outlined in a white
dotted line) at the corrected p � 0.05 level.
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in mean amplitude throughout the self-condition compared with
the external condition, suggesting that attenuation of this com-
ponent may have a causal influence over perception in the force-
matching task.

Cortical SEP attenuation of the primary and secondary com-
plexes was seen clearly during a movement control task and
during the force-matching paradigm. Previous research has dem-
onstrated that SEP attenuation is greatest 200 – 400 ms after EMG
onset (Starr and Cohen, 1985; Wasaka et al., 2012) and increases
with the velocity and magnitude of the movement (Rushton et al.,
1981); therefore, we hypothesized, and subsequently demon-
strated, significant attenuation of SEPs (over sensorimotor cortex
contralateral to the moving hand) generated during force pro-
duction (phasic stimuli) compared with an isometric force (hold
stimuli). Interestingly, SEP attenuation of the secondary compo-
nent, P45–N55, was also identified in the right hemisphere ipsi-
lateral to the moving hand and contralateral to the hand receiving
the matched force. Previous research has found no attenuation of
SEPs in the hemisphere ipsilateral to movement (Kakigi, 1986;
Cohen and Starr, 1987), but has shown attenuation of early SEP
components in response to tactile stimulation (Kakigi and Jones,
1985, 1986). When phasic stimuli were given, the force on the left
index finger was increasing compared with hold stimuli, in which
the force did not change. This suggests that applying a changing
force to the periphery modulates sensory gating.

We further hypothesized that, if this physiological sensory atten-
uation were the mechanism underlying perceptual sensory attenua-
tion, then there would be an interaction between the amplitude of
SEP components at these time points and the behavioral task condi-
tion with greater SEP attenuation in the self-condition. However, we
found no modulation of the early SEP components with behavioral
task condition. This result is consistent with the hypothesis that these
are two distinct forms of sensory attenuation.

Interestingly, there was a significant decrease in the mean am-
plitude of the later N55–P100 SEP component throughout the
self-condition compared with the external condition. It is per-
haps not surprising that this later component is modulated dif-
ferentially compared with the earlier components because there
is more time for the signal to be influenced by interconnected
cortical areas. MEG studies in humans have highlighted that the
earliest components of the SEP originate in contralateral area 3b,
which has dense thalamocortical projections, and adjacently con-
nected area 1 within the primary somatosensory cortex (Kakigi,
1994; Hoshiyama et al., 1997). Connections between area 3b and
the primary motor cortex and the supplementary motor area
provide a physiological pathway by which early SEP components
can be attenuated in response to movement preparation and ex-
ecution (Krubitzer and Kaas, 1990). In contrast, later SEP com-
ponents are thought to originate from bilateral dipoles in SII
(Kakigi, 1994; Hoshiyama et al., 1997); therefore, attenuation of
the N55–P100 SEP component may be driven by activity in SII. It
has been shown previously that self-generated movement result-
ing in tactile sensation causes a significant decrease in the BOLD
signal in bilateral SII (Blakemore et al., 1999) and is decreased as
the sensory input becomes less predictable (Shergill et al., 2013).
This is driven by activity in the cerebellum, which is thought to
represent the prediction error signal from comparing predicted
and actual sensory input. This mechanism may be reflected in the
attenuation of the N55–P100 SEP component. It could be argued
that the N55–P100 attenuation is confounded by the greater force
produced in the self-condition compared with the external con-
dition; however, this is unlikely because this component is not
modulated significantly by force level. Attenuation of this com-

ponent may demonstrate a change in the state of the sensory
cortex, which then modulates subsequent perception. It is harder
to interpret the functional role of later components because there
is more time to be modulated by other inputs and the peaks are
less distinct and more difficult to quantify. Nevertheless, the
dissociation between the source of the early and late SEP compo-
nents and the behavioral outcomes of physiological and perceptual
sensory attenuation suggests that these forms of sensory gating are
not only dissociable, but also have distinct functional roles.

SEPs provide an assay with which to measure modulations in
somatosensory activity, but analysis is limited to the time in
which median nerve stimuli were given. To investigate modula-
tions in somatosensory activity that may correlate with percep-
tual sensory attenuation throughout the entire trial, exploratory
time–frequency analyses measuring oscillatory activity over
sensorimotor cortex were conducted. Time–frequency analyses
highlighted a significant negative correlation between gamma-
band activity and the magnitude of perceptual sensory attenua-
tion over the right sensorimotor cortex contralateral to the hand
receiving the matched force. This occurred before the auditory
cue to start matching rather than during the matching period, as
might be expected. This signal may therefore be in a position to
modulate the gain of incoming sensory information causally in
preparation for receiving the matched force, which in turn may
modulate subsequent perception rather than representing the
perception itself. It could be argued that this result is confounded
by the increased force produced in the self-condition; however,
this is unlikely due to the location of the activity (ipsilateral to the
hand producing the force) and the timing of this modulation
(before force production).

Interestingly, this oscillatory finding supports theoretical ac-
counts of perceptual sensory attenuation, which posit that the dif-
ference in sensory attenuation between the self- and external task
conditions is due to a difference in the ability to predict the sensory
consequences of our own actions but not others (Blakemore et al.,
1999). When our predictions are highly accurate (as in the self-
condition), prediction error is low and sensory attenuation is high
and vice versa when our predictions are not accurate (external con-
dition). Therefore, it follows that the magnitude of prediction error
will correlate negatively with the magnitude of sensory attenuation.
If we assume that gamma oscillations represent the forward (ascend-
ing) connections carrying prediction errors, as has been suggested
previously (Arnal and Giraud, 2012; Bastos et al., 2012; Bauer et al.,
2014), then these data supports the hypothesis that a changing pre-
diction error, represented by gamma-band activity, underlies the
perceptual differences measured. Trials with less perceptual sensory
attenuation have higher gamma-band activity before matching the
force and, consistent with the theory, have lower prediction error.

However, it is important to note that prediction errors are preci-
sion weighted. This means that an estimate of the (inverse) variance
of the predicted and actual sensory input is incorporated into the
prediction error signal. Consistent with the alternative hypothesis
positing that sensory attenuation is caused by a reduction in sen-
sory precision caused by a decrease in the synaptic gain of superficial
pyramidal cells transmitting prediction error signals (Adams et al.,
2013; Brown et al., 2013), we can see that there would also be a
negative correlation between sensory precision and perceptual sen-
sory attenuation that could explain this oscillatory finding. It has
been proposed that gamma-band oscillations are responsible for al-
tering the synaptic gain of cells transmitting prediction errors, which
in turn decreases sensory precision (Friston et al., 2015). Whether
the gamma-band activity represents changes in precision or predic-
tion error or the precision-weighted prediction error, the same result
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would be found. However, these exploratory analyses were post hoc,
so specific hypothesis-driven experimental work, optimally using
patient populations, is needed to elucidate the necessity and suffi-
ciency of this neural signal for perceptual sensory attenuation.

In this study, we have demonstrated that physiological sensory
attenuation of the primary and secondary SEP components in
response to movement is not correlated with perceptual sensory
attenuation. This is consistent with the hypothesis that these two
forms of sensory attenuation are functionally distinct. The active
inference framework suggests that gating of the afferent signal
may be due to a reduction in sensory precision, which is a neces-
sary step in movement initiation (Friston et al., 2011). This same
mechanism has also been used to explain perceptual sensory at-
tenuation (Brown et al., 2013). However, it is clear from this
study that, at the level of the primary sensorimotor cortex, any
gating of the afferent signal or theorized modulation of sensory
precision does not explain behavioral attenuation in the force-
matching task. That said, it may be the case that perceptual sen-
sory attenuation occurs via the same mechanism (a reduction in
sensory precision), but at a different level of the cortical hierarchy
(e.g., SII). Indeed, the later SEP component, N55–P100, thought
to originate in SII, was significantly modulated by perceptual
sensory attenuation in the current study, supporting this hypoth-
esis. Abnormal perceptual sensory attenuation has been high-
lighted in patients with schizophrenia (Shergill et al., 2005) and
functional movement disorders (Pareés et al., 2014) and abnor-
mal physiological sensory attenuation has been highlighted in
patients with functional movement disorders (Macerollo et al.,
2015) and Parkinson’s disease (Macerollo et al., 2016). Identify-
ing how these deficits in sensory gating interact and where they
dissociate to cause particular cognitive and motor symptoms in
differing patient populations will be invaluable for highlighting
the key functional role(s) of sensory gating and may give novel
insights into the neurobiological mechanisms of these symptoms.
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Crucially, the effect of nostalgia on crea-
tivity was transmitted via openness.

Nostalgia Kindles Prosocial
Behavior
Given its inherent sociality, nostalgia ought
to manifest its motivational potency in the
social domain as well. It does. Following
nostalgia induction, we assessed, in sepa-
rate experiments, four indices of prosocial
behavior: physical proximity, helping, don-
ations to charity, and willingness for inter-
group contact. First, nostalgia decreases
proximity between oneself and another
person. Participants were led to believe that
they would interact with a person waiting in
an adjacent room. In preparation, they were
instructed to place two chairs (one for
themselves, one for the other person) in
that room. Nostalgic (relative to control)
participants placed the chairs in closer
proximity to each other [5]. Second, nos-
talgia facilitated helping. A confederate
walked into the experimental room while
participants were in wait and clumsily
dropped pencils on the floor. Nostalgic
participants helped more (i.e., picked up
a higher number of pencils) than controls
[5]. Third, nostalgia increases donations to
charity. Nostalgic participants evinced
stronger donation intentions toward a
children's charity and donated more
money to it compared with controls [10].
Finally, nostalgia facilitates intergroup con-
tact. Participants reflected either nostalgi-
cally or not on an encounter with an
outgroup member – in this case, an over-
weight person. Nostalgic (vs control) par-
ticipants expressed more trust toward the
outgroup member and reported less inter-
group anxiety (e.g., if they had to interact
with an outgroup person, they would feel
less ‘self-conscious’, ‘awkward’, or ‘defen-
sive’). Critically, nostalgic participants
reported stronger willingness for intergroup
contact with an outgroup member (e.g.,
‘talk to them’, ‘find out more about them’).
Further, the effect of nostalgia on willing-
ness for intergroup contact was transmit-
ted via increased outgroup trust and
reduced intergroup anxiety. These findings
were conceptually replicated when the

outgroup member was a person with men-
tal illness [11,12]. Taken together, nostalgia
for an encounter with an outgroup member
breeds trust for, and curtails anxiety about,
the entire outgroup, culminating in stronger
willingness for contact with the outgroup.

Concluding Remarks
Burgeoning experimental evidence indi-
cates that nostalgia does not deserve its
gloomy reputation. Far from being a fee-
ble escape from the present, nostalgia is
a source of strength, enabling the indi-
vidual to face the future. Notably, like
experimentally induced nostalgia, dispo-
sitional nostalgia proneness is positively
associated with approach motivation [5],
optimism [7], inspiration [8], and creativ-
ity [9]. Nostalgia, then, is a deposit in the
bank of memory to be retrieved for future
use. This was indeed Homer's original
view of nostalgia in his portrayal of his-
tory's most famous itinerant. Finally,
nostalgia has managed to come full
circle.
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Spotlight
A New Framework
to Explain
Sensorimotor Beta
Oscillations
Clare Palmer,1

Laura Zapparoli,2 and
James M. Kilner1,*

Oscillatory activity in the beta fre-
quency range from sensorimotor
cortices is modulated by move-
ment; however, the functional role
of this activity remains unknown. In
a recent study, Tan et al. tested a
novel hypothesis that beta power
reflects estimates of uncertainty in
parameters of motor forward
models.

It is well established that oscillatory activity
originating from sensorimotor cortices in
the beta frequency range (�15–30 Hz) is
modulated by movement. Beta power
decreases when we move and is transiently
increased once the movement has stopped
(postmovement beta synchronization,
PMBS) [1]. However, despite extensive
research into these neuronal oscillations,
their functional role is not known [2]. In a
recent study, Tan et al. [3] tested a novel
theory of the functional role of sensorimotor
PMBS that provides an important link
between theoretical models of motor con-
trol and neurophysiological measures of
sensorimotor activity.

Every movement we make stimulates
peripheral sensory receptors that provide
sensory feedback of the motor act. It is
thought that, when we move, we predict
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the sensory consequences of that move-
ment (through forward models) and com-
pare this prediction to the actual sensory
input [4,5]. Any difference between the
predicted and actual sensory input will
result in a prediction error, which is used
to update the forward model for more
accurate future predictions. To determine
the relevance of any prediction errors, the
model requires estimations of both the
uncertainty in the motor prediction and
the uncertainty of the actual sensory input
[6]. This can be likened to a two-sample
t-test: a measure of the variance (uncer-
tainty) of each sample is essential to deter-
mine whether any difference between the
sample means is significant. Tan et al. [3]
manipulated task uncertainty to modulate

the uncertainty in parameters of the model
and tested the hypothesis that PMBS was
correlated with these parameters.

The authors measured cortical activity with
EEG from 17 healthy participants while they
performed a visuomotor adaptation task.
Participants were instructed to move a joy-
stick to direct a cursor from the centre of a
circle to a target located at one of eight
points on the circumference of the circle.
Participants completed 80 trials of either: (i)
a random prime, in which a random angular
error varying from trial to trial was added
between the actual movement of the joy-
stick and the visual feedback of the cursor
(–608 to 608); or (ii) a stable prime in which
the perturbation (08) remained stable

across trials. Afterwards, all participants
performed 150 trials of a constant 608 per-
turbation, followed by another 80 trials of no
perturbation, for each condition. The
authors predicted that, during the random
priming block, participants’ uncertainty in
parameters of the forward model (estima-
tion uncertainty) would be high due to their
inability to correctly predict future move-
ments, whereas when the perturbation
was stable, this uncertainty would be low.
They predicted that PMBS would correlate
with this uncertainty rather than with the
movement error. A Bayesian learning
model, which uses the mean and variance
of the movement error across trials to
estimate this uncertainty, was applied to
the behavioural data. The authors then
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uncertainty

Predic�on
error

Future
propriocep�ve

state

Movement. Modulate uncertainty es�mates so that the uncertainty
es�mate of the actual sensory input is greater than the predicted value 

No movement. Modulate uncertainty es�mates so that the uncertainty
es�mate of the actual sensory input is lower than the predicted value
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Model
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Model
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uncertainty

Model
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Increased sensory
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Movement
prepara�on

Figure 1. Schematic Illustrating Movement Initiation within the Active Inference Framework. In the schematic, each panel depicts both the actual and the
predicted sensory inputs. The character shows the action that is currently being performed (left) alongside the predicted action (right). The width of the distributions below
and the clarity of the figure illustrate the uncertainty in these values. Before we start to plan a new movement, our prediction of our sensory input and the actual sensory
input are equivalent (left panel). According to the active inference framework, when we start to prepare a movement, we generate a prediction of what the sensory input of
this movement will be and this creates a prediction error between the current and the predicted sensory states (second panel). To minimize this error, an individual can: (i)
stay still and update their prior beliefs (within the forward model) so that the predicted sensory input matches the actual sensory input (top row); or (ii) move, so that the
actual sensory input matches the predicted sensory input (bottom row). Modulating the relative uncertainty in these sensory states will determine which option is selected.
For example, to initiate movement [option (ii)], the uncertainty in the current sensory state is increased such that the individual will shift to the predicted sensory state with
the lowest uncertainty.
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correlated the magnitude of the PMBS in
each condition with the estimated values
of uncertainty. They reported that the
amplitude of the PMBS over sensorimotor
cortex was negatively correlated with
this uncertainty variable. This result is con-
sistent with a novel functional role of PMBS,
which suggests that beta oscillations are
related to the uncertainty of the parameters
of generative models that underlie motor
control.

Although this paper introduces a new func-
tional account for PMBS, this account does
not generalize easily to explain all known
modulations in sensorimotor beta oscilla-
tions. For example, it is known that beta
power decreases during movements. If the
new account is applied to this desynchro-
nisation, then the conclusion would be that
we have the highest uncertainty in our
model while we move. This would seem
unlikely. However, uncertainty is not only
estimated for parameters of the forward
model. According to motor control theory,
an estimate of uncertainty in the actual sen-
sory input is also required. The importance
of the estimate of uncertainty at both of
these levels was highlighted in a recent
theoretical account of motor control and
movement initiation: active inference [7].
Within this framework, it has been pro-
posed that an increase in the estimate of
the uncertainty of the actual sensory input is
an essential step for being able to move
(Figure 1). However, the neurophysiological

correlates of this change in uncertainty are
unknown. The study by Tan et al. [3] makes
it possible to hypothesise that sensorimotor
beta oscillatory power might be either
the neurophysiological correlate of the esti-
mate of uncertainty or causally modulating
the uncertainty. Indeed, prima facie there is
compelling evidence to predict that senso-
rimotor beta power and estimates of sen-
sory uncertainty might be negatively
correlated. For example, sensorimotor beta
oscillations are known to be attenuated
during motor preparation and execution
[8], when active inference would predict
an increase in sensory uncertainty. Simi-
larly, increases in sensorimotor beta power
are associated with the inhibition of exe-
cuted actions [9], when active inference
would require a decrease in somatosensory
uncertainty to inhibit an action. Finally,
sensorimotor beta power is augmented
in patients with Parkinson's disease com-
pared with healthy controls [10], when
active inference would predict a lower level
of sensory uncertainty in patients with Par-
kinson's disease compared with healthy
controls.

Tan et al. [3] have provided the first dem-
onstration of a link between a key param-
eter in theoretical models of motor control,
uncertainty, and modulations in sensori-
motor beta power. Future work will be
required to investigate whether the mod-
ulations in beta power are best accounted
for by modulations in the uncertainty of the

actual sensory input, the uncertainty of the
model space, or the relative uncertainties
of the two.
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