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ABSTRACT 
 
Periodic paralysis (PP) is a disorder characterised by episodic attacks of paralysis, caused by 

mutations of skeletal muscle voltage gated ion channels. Although episodes eventually 

subside, patients develop progressive muscle weakness and frequently, myopathy. The 

relationship between this progression and the associated mutations is not understood. I 

propose that the longer term defect might result from disordered calcium signalling 

secondary to altered excitability, and its impact on mitochondrial function. I sought models 

where these aspects of muscle signalling could be studied. These were: 
 

A genetic model derived from patients: patient derived fibroblasts were virally transduced 

with MyoD to generate myoblasts, which were differentiated into myotubes with patient 

specific gene mutations.  
 

A pharmacological model: generated by treating neonatal rat myotube cultures with 

barium (an inhibitor of potassium channels) and low extracellular potassium to simulate 

attacks of PP. Treated cultures displayed more frequent spontaneous calcium fluctuations. 

Mitochondrial membrane potential was not affected by the treatment, but expression of 

TFAM (mitochondrial transcription factor A; a regulator of mitochondrial transcription and 

biogenesis) was upregulated, suggesting activation of retrograde signalling pathways.  
 

A mouse model: collaborators at MRC Harwell generated  mice carrying a mutation 

(c.1744A>G; p.Ile582Val) equivalent to a novel point mutation in SCN4A, one of the ion 

channel genes associated with PP. Measurements in vivo established that affected mice 

show muscle weakness and delayed fatigue during tetanic responses. Calcium handling and 

mitochondrial function were analysed in single isolated myofibres. Calcium handling was not 

affected, however mitochondrial membrane potential was reduced in fibres from the PP 

mice and distribution was also affected, with fewer intermyofibrillar mitochondria, 

indicating altered mitochondrial bioenergetics.  
 

Thus I describe several approaches to investigate mechanisms that cause progressive 

weakness and myopathy in PP, and assess the relative merits of each approach. 

Furthermore, results suggest that a shift toward a more oxidative phenotype is taking place. 
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1. INTRODUCTION 

Muscle disease is a major cause of disability. There are a number of hereditary muscle 

diseases where a genetic cause has been identified but the pathophysiological mechanisms 

that underlie the progression of the disease are not clear. This limits the development of 

suitable treatments and disease management strategies and such development may be 

facilitated by the use of appropriate experimental models. Periodic Paralysis (PP) is a genetic 

muscle disease resulting from mutations of the skeletal muscle cation channels. Patient’s 

quality of life is severely impaired by episodic attacks of paralysis which can last from 

minutes to days, while intermittent muscle strength is maintained. Attacks of paralysis 

typically present in the first decade of life and reduce in frequency after the fifth when 

progressive weakness and in some cases also myopathy begin to develop. A suitable model 

is sought for investigating the pathophysiology leading to weakness and myopathy in PP. 

1.1 PERIODIC PARALYSIS 

1.1.1 The periodic paralysis mutations and classification 

Periodic Paralysis (PP) results from mutations in skeletal muscle voltage gated ion channels. 

Disorders originating in ion channel dysfunction are known as channelopathies and result 

from dysfunction of ion channels either on the membranes of cells or organelles, ranging 

from congenital to autoimmune disorders. PP is an autosomal dominant congenital disorder 

resulting from mutations in the voltage gated sodium channels (NaV1.4; Rojas et al., 1991), 

voltage gated calcium channels (CaV1.1; Jurkat-Rott et al., 1994) or voltage gated potassium 

channels. 

There are several different subcategories of PP which display distinct characteristics. 

Mutations in the potassium channel are associated with Anderson Tawil Syndrome and 

those in CaV1.1 channels with HypoPP. Mutations in NaV1.1 channels can be associated 

with paramyotonia congenita (PMC), HyperPP or HypoPP, depending on which residues of 

the channel protein have been affected. 
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Figure 1: Clinical spectrum of periodic paralysis and myotonia. Clinical spectrum of PP and myotonia 

indicating which channels are associated with each condition, adapted from a review by Cannon 

(Cannon, 2006). 

 

As the figure above demonstrates, a range of conditions come under the general definition 

of PP. In this thesis I focus on HyperPP and HypoPP, nevertheless much of the methodology 

should be applicable to paramyotonia congenita and Anderson Tawil syndrome, and 

likewise to other muscle diseases. 

 

1.1.2 HyperPP and HypoPP mutations and classification 

HyperPP mutations occur at different locations of the NaV1.4 alpha subunit (Rojas et al, 

1991; Ptacek et al., 1991), whereas most known HypoPP mutations occur at a highly 

conserved region of the S4 segment of the alpha subunit of either NaV1.4 or CaV1.1 

channels (Grosson et al, 1996; Bulman et al, 1999). This is despite their distinct roles in cell 

signalling. NaV1.4 allows the passage of sodium ions into excitable cells, and thereby allows 

for the propagation of action potentials. CaV1.1 associates with RyRs to facilitate the release 

of calcium from intracellular stores during excitation contraction coupling as demonstrated 

in figure 6. Both NaV1.4 and CaV1.1 feature positively charged arginine residues in the 

conserved S4 segment of the alpha subunit (see figure 2), which encodes the voltage sensor 

of the channel. Loss of positive charge in the voltage sensor leads to formation of an 

aberrant proton pore in the channel as described in section 1.1.4 (Matthews et al, 2009).  
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Figure 2: The periodic paralysis mutations in NaV1.4 and CaV1.1. Diagram showing the location of 

PP mutations in the alpha subunit of NaV1.4 and CaV1.1 (Cannon, 2006; Sternberg et al, 2001). 

Orange circles indicate the locations of HypoPP mutations, and green circles indicate the locations of 

HyperPP mutations. 

 

HyperPP and HypoPP are subcategorised according to the level of serum potassium present 

during attacks. In cases where attacks occur during periods of high serum potassium, the 

disease is referred to as HyperPP (Gamstorp 1956; Gamstorp et al., 1957), whereas 

individuals with HypoPP typically experience attacks when their serum potassium levels are 

low (Aitken et al., 1937; Talbott, 1941; McArdle, 1956; Conn & Streeten, 1960).  
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1.1.3  The direct effects of HyperPP mutations  

The HyperPP mutations are considered “gain-of-function” mutations, as they increase the 

probability of the sodium channel being open. This subsequently promotes depolarisation. 

In HyperPP, depolarisation can result from defective NaV1.4 slow inactivation (Bendahhou 

et al, 2002; Cannon et al., 1991; Silva & Goldstein, 2013) or from activation at more 

hyperpolarised conditions (Cummins et al., 1993). A study on a HyperPP patient with an 

L689I point mutation in domain II of the S4-S5 linker, for example, indicates that slow 

inactivation is associated with immobilisation of the voltage sensor in domains I, II and III 

(Silva & Goldstein, 2013). This study shows that the onset of slow inactivation is most 

influenced by immobilisation of domains I and II, whereas domain III is more associated with 

recovery from slow inactivation (Silva & Goldstein, 2013). 

Overall, such gain-of-function alterations in sodium channel gating mode are promoted by 

elevated extracellular potassium levels. Increases in extracellular potassium levels thus 

promote depolarisation and are associated with attacks of paralysis in HyperPP (Cannon et 

al, 1999). 

1.1.4 The direct effects of HypoPP mutations  

Excitable cells have a bi-stable relationship with extracellular potassium concentration, 

whereby reducing potassium levels leads to two different ranges of V-rest values. One is 

linked to the potassium equilibrium potential and the other occurs between -50 and -60 

millivolts (see figure 3b below). Consequently, although reducing extracellular potassium 

initially hyperpolarises cells, further reduction of the potassium concentration can result in 

depolarisation. This second depolarisation is thus considered to be paradoxical. Mutations 

associated with HypoPP result in the formation of an aberrant cation pore distinct from the 

voltage sensor areas of CaV1.1 and NaV1.4 channels (Tombola et al., 2005). The threshold 

for paradoxical depolarisation is potentiated by this aberrant gating pore (Struyk et al, 

2007). In unaffected cells a reduction in extracellular potassium concentration only 

promotes depolarisation if it reaches below 2mM and not under normal physiological 

conditions. The addition of the proton current, however, allows for the second stable 

condition to occur at more physiological potassium concentrations. Consequently small 
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drops in potassium concentration can lead to paradoxical depolarisation and thereby to 

attacks of paralysis.  

 

      
 

Figure 3: The cation leak in HypoPP. (A) The I-V relationship of mutant (dotted line) compared to 

control (solid line) channels. From Struyk (Struyk et al, 2007) where a computer simulation of 

responses is used to predict the consequences of the cation leak in HypoPP. (B) The potassium 

dependence of V-rest in cells with a HypoPP mutation (dotted line) compared to controls (solid line). 

This figure demonstrates that small changes in the current voltage relationship can lead to large 

effects on the depolarisation threshold. From Struyk (Struyk et al, 2007) where a computer simulation 

of responses is used to predict the consequences of the cation leak in HypoPP.  

 

1.2 MUSCLE STRUCTURE AND PHYSIOLOGY 

1.2.1 Muscle structure 

Muscles are composed of long tubular multinucleated cells called muscle fibres which are 

formed by fusion of myoblasts. The fibres have a diameter of 50-100µm. During 

differentiation distinct stages of recognition and adhesion allow for the myoblasts to align 

whereupon they withdraw from the cell cycle and fuse to form the muscle fibres (Knudsen 

& Horwitz, 1978; Knudsen et al, 1989).  Individual muscle fibres are bound by connective 

tissue called endomysium and the resultant groups of fibres (muscle fascicules) are further 

bound together by connective tissue called perimysium. A final coat of connective tissue 

called the epimysium binds the whole muscle together. Fibroblasts that lie between the 

muscle fibres are responsible for secreting these connective tissues. 

A B 
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Muscle fibres are composed of long structures called myofibrils which align along the fibre, 

each approximately 1µm in diameter. Many repeating units called sarcomeres attach end to 

end to make up these myofibrils. The characteristic striated appearance of skeletal muscle 

(see for example figure 35, page 114) results from alignment of these sarcomeres in 

adjacent myofibrils, as each sarcomere contains distinct bands of proteins. These bands are 

referred to as A-bands and I-bands. I-bands are composed of thin filaments in which actin 

protein is assembled along with troponin and tropomyosin. Within each I-band a line can be 

seen called a Z-line, adjacent Z-lines are held together by desmin and the region between 

two such Z-lines is defined as a single sarcomere. A-bands are composed of thick filaments 

in which myosin proteins are assembled. The myosin proteins are the most abundant 

proteins in muscle. Each myosin protein contains two myosin heavy chains (MHC) with a tail 

region and globular heads that are each associated with two light chains. A hinge region at 

the junction between the tail region and the globular myosin heads allows for thick 

filaments to shift relative to thin filaments and thereby facilitates muscle contraction 

(Hynes et al, 1987; Spudich, 2001).  
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Figure 4: Muscle structure. The organisation of skeletal muscle at various degrees of magnification, 

adapted from figure 7.2 in Pocock and Richards, 2006. The figure includes a whole muscle, a muscle 

fascicule, a muscle fibre, a myofibril and the organisation of thin and thick filaments in myofilaments. 

 

Each muscle fibre is bounded with a sarcolemma which has small indentations along its 

surface allowing it to stretch and contract, as well as deeper narrow indentations called 

transverse (T)-tubules which associate with the sarcoplasmic reticulum to form a complex 

known as a triad junction. CaV1.1 channels can be found along these T-tubules, where they 

sense voltage changes resulting from end-plate potentials.  Within the triad junction, Cav1.1 

channels on the T-tubules associate with Ryanodine receptors (RyR) on the sarcoplasmic 

reticulum. RyR are intracellular calcium conducting receptors. Activation of CaV1.1 leads to 

allosteric changes in RyRs which then facilitate calcium release from intracellular stores. 



22 
 

Many mitochondria lie beneath the sarcolemma along with the fibre nuclei, providing the 

muscle with ATP and proteins. 

1.2.2 Ionic influences on the resting membrane potential of a cell 

Cell function is largely influenced by the flow of sodium, potassium, calcium and chloride 

ions across the cell membrane. The flow of each ion across the plasma membrane is 

governed by its electrochemical gradient and the potential at which ion flow across the 

membrane is balanced, is called the equilibrium potential. The equilibrium potential of each 

ion can be predicted using the Nernst equation. 

 

𝐸 =  
𝑅𝑇
𝐹

𝑙𝑛
 [𝐶]𝑜  
[𝐶]𝑖

 

Equation 1: The Nernst equation. The Nernst equation, where E is the equilibrium potential, R, T and 

F are physical constants (gas, absolute temperature and Faraday constants respectively). Ln is the 

natural logarithm (loge) and [C]o and [C]i are the extracellular and intracellular concentrations of the 

ion. 

 

However the equilibrium potentials of each of the ions also influence each other, and thus 

the resting membrane potential of the cell. The resting membrane potential of a muscle cell 

typically lies close to the potassium equilibrium potential, but is also influenced by sodium 

and chloride ions. The potassium equilibrium potential provides a measure of the net flow 

of potassium ions into or out of a cell across the plasma membrane. The potassium 

equilibrium potential is governed by the high concentration of potassium inside the cell 

(approximately 140mM) relative to the outside (approximately 5mM) as well as by the 

negative membrane potential inside skeletal muscle relative to outside it (approximately -

90mV). Potassium ions leave the cell down their concentration gradient, and enter the cell 

down their electrical gradient as each potassium ion carries a single positive change.  

The relationship between potassium, sodium and chloride ions in a cell can be described by 

the Goldman equation, a modified version of the Nernst equation. The Goldman equation 

accounts for influences of multiple ion channels on the cell and predicts the membrane 

potential. 
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𝐸 =  
𝑅𝑇
𝐹

𝑙𝑛
𝑃𝑁𝑎[𝑁𝑎+]𝑜 + 𝑃𝐾[𝐾+]𝑜 + 𝑃𝐶𝑙[𝐶𝑙−]𝑖

𝑃𝑁𝑎[𝑁𝑎+]𝑖 + 𝑃𝐾[𝐾+]𝑖 + 𝑃𝐶𝑙[𝐶𝑙−]𝑜
 

 

Equation 2:  The Goldman equation. The Goldman equation, where E is the membrane potential, R, 

T and F are physical constants (gas, absolute temperature and Faraday constants respectively). Ln is 

the natural logarithm (loge). PNa, Pk and PCl are permeability coefficients of the membrane potential 

to sodium, potassium and chloride ions. [Na+]o and [Na+]i are extracellular and intracellular sodium 

concentrations, [K+]o and [K+]i are the same for potassium concentrations and [Cl+]o and [Cl+]i for 

chloride ion concentrations. 

 

1.2.3 Excitation-contraction coupling   

The direct effects of PP mutations have been shown to disrupt excitation-contraction 

coupling. This is the process by which excitation of a muscle fibre leads to its contraction 

(Sandow, 1952). Action potentials travel along motoneuron axons towards muscle fibres, 

leading to the depolarisation of muscle cells. Muscle cell depolarisation involves the opening 

and closing of voltage gated sodium and potassium ions, as demonstrated in figure 5 below. 

Within skeletal muscle these neurons branch out to supply single muscle fibres, the area 

where the muscle fibre and the neuron interact is called an end plate, and the space 

between them is the synaptic cleft. 
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Figure 5: Action potential dynamics. Upon depolarisation of a muscle cell, sodium channels open 

allowing the inward passage of positive sodium ions. This depolarises the cell from approximately -

90mV to approximately +35mV. Closure of the sodium channels and opening of voltage gated 

potassium ion channels results in efflux of positive potassium ions, leading to recovery of the 

depolarised state. The potassium channels remain open and the membrane potential briefly becomes 

hyperpolarised before returning to the resting membrane potential. 

 

At rest the sarcolemma has a voltage across it called the resting membrane potential. This is 

determined by concentration gradients of ions across the membrane and by membrane 

permeability to the ions through ion channels. Concentration gradients for sodium and 

potassium are established by the sodium-potassium ATPase. The membrane is more 

permeable to potassium than to sodium and the selective passage of potassium ions across 

the membrane drives the resting membrane potential toward the potassium equilibrium 

potential. Chloride ion permeability also contributes to the skeletal muscle resting 

membrane potential. Muscle contraction can lead to leakage of potassium ions and 

repeated stimulation can dissipate the potassium concentration gradient. The chloride 

permeability helps to maintain muscle activity during repeated stimulation (Hopkins, 2006).  

Arrival of an action potential at the axon terminal causes exocytosis of acetylcholine from 

the neuron end plate. The acetylcholine binds to acetylcholine receptors on the 
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postsynaptic muscle fibre membrane, causing cation influx into the cell. This response is 

graded, whereby release of a single vesicle containing acetylcholine will produce a miniature 

end plate potential, and the release of many vesicles will produce an end plate potential 

(EPP). If an EPP depolarises the postsynaptic membrane to a threshold level, voltage gated 

sodium channels on the membrane open generating a regenerative sodium current across 

the fibre membrane, and causing a rapid membrane depolarisation and the initiation of an 

action potential. The voltage gated potassium channels open more slowly, allowing for the 

membrane potential to peak before the positive ions begin to leave the cell down their 

electrochemical gradient. Following the action potential, the voltage gated ion channels 

become inactivated. The sodium channels become inactivated faster, such that for a short 

period there is a net efflux of potassium ions which leads to hyperpolarisation of the 

membrane, toward the potassium ion resting potential of approximately -100mV. 

During an action potential, the postsynaptic membrane is not responsive to further 

stimulation; a phase known as the absolute refractory period. During hyperpolarisation on 

the other hand, further action potentials can be induced, albeit with a greater level of 

activation. This phase is thus known as the relative refractory period. Following an action 

potential acetylcholine is removed from the synaptic cleft by the enzyme acetylcholine 

esterase to avoid repeated initiation of EPPs. 

Chloride ions also contribute to the regulation of muscle cell function; increased 

permeability to the ions leads to influx down their electrochemical gradient. This 

hyperpolarises the cell and makes depolarisation less likely to occur. 

The muscle cell membrane has indentations known as T-tubules which allow for 

depolarisation to spread along the membrane toward the centre of the cell. The T-tubules 

contain many CaV1.1s which come into direct contact with RyR on the sarcoplasmic 

reticulum (SR). Calcium ion uptake into the SR is mediated by sarcoplasmic/endoplasmic 

reticulum ATPases (SERCAs). Calcium is stored in the SR where it binds calcium binding 

proteins, primarily calsequestrin (Royer & Ríos, 2009). This lowers the free luminal calcium 

concentration and facilitates further calcium uptake through SERCAs. Calsequestrin binds 

with high capacity but low affinity; it thus enables the storage of large amounts of calcium 

as well as rapid calcium release from the SR upon stimulation. Calsequestrin is also involved 
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in regulating calcium release from the SR by sensing the SR calcium concentration (Györke 

et al, 2009). This calcium is released from the SR in response to membrane depolarisation 

which activates CaV1.1. Conformational changes in these channels promote the allosteric 

activation of RyR which open to mediate calcium release from the SR to the sarcoplasm 

(Proenza et al, 2002). The calcium binds to a calcium sensitive contractile protein known as 

troponin, which in turn initiates a conformational change in tropomyosin. This 

conformational change exposes myosin binding sites on actin, allowing myosin proteins in 

the fibres to interact with actin in a manner described by the sliding-filament theory.  
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Figure 6: The sliding filament theory. The sliding filament theory involves acetylcholine release from 

the axon terminal, the generation and propagation of action potentials down T-tubules, the release 

of calcium ions into the cytoplasm and the binding of these ions to troponin leading to exposure of 

myosin. 

 

The sliding filament theory describes how movement of actin filaments relative to myosin 

filaments can generate muscle tension (Figure 6; Huxley & Niedergerke, 1954; Huxley & 

Hanson 1954). Myosin moves forward to bind actin forming a cross bridge between the 

thick and thin filaments. The hinge region of the myosin then contracts making the myosin 

head shift. This movement of the myosin head is referred to as a power stroke. During a 

power stroke the thick filament stays in place and pulls the thin filament along 

approximately 10 nanometres. ATP hydrolysis to ADP and phosphate then provides energy 

1. Acetylcholine is released 
from axon terminals 

2. Action potentials are 
generated and travel 
down T-tubule  

3. Conformational changes 
in CaV1.1 activate RyR 

4. Calcium ions are 
released from 
sarcoplasmic reticulum 
and bind troponin 

5. Tropomyosin shifts 
position to expose the 
myosin binding site on 
actin 
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for myosin to release actin and re-establish its original conformation, ready to bind to actin 

again and produce a further power stroke. 

Following muscle contraction, calcium dissociates from Troponin. ADP is released and a 

further ATP molecule attaches allowing for actin and myosin to dissociate and resume their 

original positions.  Calcium is pumped back into the SR by the sarco/endoplasmic reticulum 

calcium-ATPase (SERCA), ready for the next action potential to arrive. Sodium-calcium 

exchangers (NCX) are also involved in the removal of calcium from the sarcoplasm following 

an action potential. NCXs can be found on the plasma membrane, mitochondria and SR of 

excitable cells, and extrude one calcium ion in exchange for three sodium ions. As with 

calsequestrin, it has both a low affinity and a high capacity, exchanging the ions when 

sarcoplasmic calcium or extracellular sodium concentrations are sufficiently elevated, such 

as after an action potential (Blaustein & Lederer, 1999). 

 

1.3 ALTERATIONS OF SKELETAL MUSCLE IN DISEASE AND WITH AGING 

1.3.1 Symptoms and progression of periodic paralysis  

Patients of PP experience periods of intense muscle weakness which can last for hours to 

days. Ke et al showed that there is greater penetrance of hypokalaemic periodic paralysis 

(HyperPP) in males (100%) than in females (less than 30%), and that attack frequency is 

greater in males than females (2013). Such an association has not been found in HyperPP 

(Neki et al, 2013). Attacks of paralysis occur sporadically, but certain factors including 

exercise and potassium ingestion are known to influence their occurrence (Hoskins et al., 

1975).  Whereas in HyperPP attacks begin in early childhood, HypoPP attacks may begin at 

any age, but typically in the second decade of life (Harirchian et al., 2003). Patients of both 

HyperPP and HypoPP experience a reduction in attack frequency around middle age.  

Although initially patients of both HyperPP and HypoPP are unaffected between attacks, this 

second phase of disease progression is typically accompanied by the development of muscle 

weakness (Walter et al., 1990). In patients of HyperPP this weakness is frequently coupled 

with myotonia, whereas in HypoPP presentation with myotonia is rare (see figure 1 for a 

schematic of the clinical overlap between conditions of myotonia and PP). Myotonia is the 

inability to relax voluntary muscle after strong exertion. The levels of weakness and 
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myotonia vary and may be unrelated to attack frequency or severity (Links, 1990; Buruma & 

Bots, 1978).  

  HypoPP  HyperPP  

Prevalence in 
England 

0.13/100, 000 
 

0.17/100, 000 
 

Age at onset  1st or 2nd decade  1st decade  

Reduction in 
attack 
frequency 

From ∼ age 35 
 
 

From ∼ age 50 
 
 

Duration of 
attacks  

Hours to days  
 

Hours  
 

Usual triggers  
 
 
 
 

Rest after exercise (∼67%), 
rest after large carbohydrate 
meal (∼45%), cold (∼24%), 
stress (∼12%), salt (∼11%) 

Cold (∼76%), rest after 
exercise (∼67%), stress or 
fatigue (∼47%), K-rich 
foods (∼35%), pregnancy 
(∼28% females) 

Ictal K  ↓  ↑ or normal  

Interictal 
muscle strength 

Normal 
 

Normal, mild myotonia in 
face and hands 

Response to 
potassium  

Improves weakness  
 

Triggers weakness  
 

Mutations  
 

CACNA1S (∼60%),  
SCN4A (∼20%) 

SCN4A (∼50%)  
 

 

Table 1. Clinical features of HyperPP and HypoPP. Adapted from Venance et al (2006) with 

additional information on prevalence (Horga et al, 2013) and on triggers (Weber et al, 2016) (Charles 

et al, 2013)  
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Figure 7: Progression of Periodic Paralysis. Patients of PP initially do not experience attacks of 

paralysis and weakness. During childhood or adolescence they begin experiencing sporadic attacks 

of paralysis with full recovery in between. Later in life these sporadic attacks reduce in frequency 

and patients develop progressive muscle weakness. 

 

1.3.2 Histological changes in periodic paralysis 

Histological changes that have been observed in muscle from patients of HypoPP include 

the formation of tubular aggregates and vacuoles and the centralisation of nuclei (Links et 

al, 1990). Central nuclei and the formation of tubular aggregates and vacuoles have also 

been reported to in HyperPP (Bradley et al, 1990). 

1.3.3 Sarcopenia and periodic paralysis 

Sarcopenia refers to the decline in skeletal muscle mass, strength and function associated 

with normal muscle ageing. As with PP, a reduction in type II fibres is a key feature of 

sarcopenia, with greater levels of atrophy of type IIb than of type IIa (Narici & Maffulli, 

2010). This and several other common features such as the development of tubular 

aggregates (Chevessier et al, 2004) in both sarcopenia and PP have led to the speculation 

that the PP mutations may accelerate the development of a sarcopenia phenotype. As such 

it may be instructive to relate progressive features of PP to those of sarcopenia and to 

employ similar treatment strategies. Regular mild exercise, for example, can serve as a 

preventative measure in both sarcopenia and PP. 

1.3.4 Fibre type switching and oxygen consumption 

Muscle is composed of muscle fibres, as described in section 1.2.1. Myosin is the most 

abundant protein in these fibres, and variation in myosin contractile force means that 
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different isoforms of the myosin protein are associated with different muscle types 

(Bottinelli & Reggiani, 2000). Fibres within skeletal muscle are broadly categorised as slow 

twitch (type I) and fast twitch (type II).  Muscle fibres rich in the slower MHC I isotype of 

myosin are considered slow twitch fibres and are referred to as type I fibres. Similarly, fibres 

rich in the fast MHC-IIa and -IIb isotypes of myosin are considered fast twitch fibres and are 

referred to as type IIa and IIb fibres, respectively.  Type IIa fibres are more oxidative and 

type IIb are more glycolytic. Muscles typically contain a mixture of fibres types, and myosin 

contractile properties can adapt without a shift in isotype (Bottinelli, 2001), nevertheless, 

muscle is considered as “slow” if it predominantly contains type I fibres and as “fast” if type 

II fibres predominate. 

Mitochondria have distinct features in different fibre types, and fibre type switching may be 

implicated during aging, under pathological conditions and in response to chronic changes in 

contractile demands. Different fibre types have varying metabolic demands, and synthesise 

distinct contractile and metabolic and regulatory proteins in order to meet those energy 

demands (Booth & Thomason, 1991). Skeletal muscle fibres contain many mitochondria in 

order to provide sufficient ATP for muscle contraction.  

Type I fibres are more oxidative – they contain more mitochondria and promote the 

phosphorylation of greater quantities of ADP. This also makes type I fibres more resistant to 

muscle fatigue, as they have a larger supply of ATP required for muscle contraction. In 

addition, type IIb fibres are more susceptible to fatigue due to their glycolytic metabolism 

which acidifies the muscle upon repeated stimulation.  

Changes in muscle activity can promote a shift in fibre type to meet the energy demands of 

the fibres, for example increased muscle activity can lead to increased mitochondrial 

biogenesis and thus to a shift toward a more oxidative (type I) fibre phenotype. Indeed fibre 

type switching may be promoted as a preventative measure in certain diseases linked to 

inactivity such as type 2 diabetes (Schiaffino and Reggiani, 2011).  

Fibre type switching from a fast to a slow fibre phenotype is associated with an increase in 

action potential frequency and the resultant increase in muscle activity. Slow fibres contain 

more intracellular free calcium than fast fibres due to more frequent neural stimulation. The 
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pathway linking calcium levels to fibre type involves calcineurin (a calcium dependent 

protein phosphatase), which up-regulates slow fibre specific gene expression (Chin et al, 

1998; Naya et al, 2000) and helps to prevent the atrophy of these fibres. Rhythmic muscle 

contractions activate calcineurin, leading to dephosphorylation and activation of NFAT 

(nuclear factor of activated T-cells). NFAT in turn promotes the expression of slow twitch 

muscle genes and inhibits the atrophy of slow oxidative fibres (Wang & Pessin, 2013). 

Indeed deletion or inhibition of the calcineurin/NFAT pathway can lead to a reduction in the 

number of type I fibres and impairs fast to slow fibre type transformation (Oh et al, 2005; 

Parsons et al, 2004). 

Conversely overexpression of calcineurin in skeletal muscle increases the number of slow 

twitch fibres and the expression of PGC-1α (Naya et al, 2000). PGC-1α co-activates MEF2 

transcriptional factors and promotes the expression of type I fibre proteins leading to an 

increase in slow twitch muscle fibres (Lin et al, 2002b). PGC-1α also prevents the atrophy of 

slow oxidative fibres and promotes mitochondrial biogenesis (Handschin et al, 2007; Lin et 

al, 2002b; Wu et al, 1999). 

The relative expression of type I, type IIa and type IIb fibres is indicated in table 2, below, for 

several different muscles. TA, EDL and FDB are fast twitch muscles with a high abundance of 

type II fibres, whereas the soleus muscle is slow, with more type I fibres (Wei-LaPierre et al, 

2013, Delp and Daun, 1996). Due to its role in promoting type one fibre expression, PGC-1 is 

likewise more abundant in the soleus and less so in type II rich fibres such as the EDL, TA 

and FDB (Lin et al, 2002a). This effect is not observed for the homologue PGC-1β (Lin et al, 

2002b). 
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  I  IIa  IIb 

TA 2% 39% 59% 

EDL 2% 29% 69% 

Sol 69% 29% 2% 

FDB 8% 88% 4% 

 

Table 2: Fibre type distribution. The percentage of fibre type expressed in four hind limb 

muscles; tibialis anterior (TA), extensor digitorum longus (EDL), soleus (Sol) and flexor 

digitorum brevis (FDB). Proportions of type I fibres, type IIa and type IIb fibres are expressed 

as percentage of total fibre content (created using values from Delp and Daun, 1996, Lucas 

et al, 2014 and Wei-LaPierre et al, 2013). 

 

Fibre type switching has also been observed in the hind limb muscles of mouse models of 

PP. The EDL and soleus muscles of M1592V mice for example, typically shift from type IIb 

rich fibres to the more oxidative type IIa rich fibres (Hayward et al, 2008; Khogali et al, 

2015). The M1592V mutation is equivalent to a human HyperPP associated mutation and 

the M1592V mice display characteristics of HyperPP as described in section 1.5.1(III). An 

equivalent shift has been described in TA muscles of mice with another HyperPP-associated 

sodium channel mutation (I588V; Corrochano et al, 2014). A further study on the M1592V 

mice indicated that such a shift in fibre type composition did not occur in the flexor 

digitorum brevis muscle (FDB) during the first 12 months of age (Lucas et al, 2014). Perhaps 

in FDB there is less pressure to shift from type IIb to type IIa muscle fibres because FDB 

already has a high proportion of type IIa fibres. 

 

1.4  MANAGEMENT AND TREATMENT OF PEERIODIC PARALYSIS 

1.4.1  Lifestyle changes  

For many patients attacks of paralysis can be largely avoided by making appropriate lifestyle 

choices and avoiding triggers of paralytic attacks. Both HyperPP and HypoPP attacks can be 

triggered by rest after intense exercise, by stress and by cold. HyperPP attacks can also be 
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triggered by ingestion of potassium rich foods such as bananas and potatoes. Attacks of 

paralysis in HyperPP are associated with high serum potassium levels which promote 

opening of voltage gated sodium channels leading to the depolarisation of muscle fibres as 

described in section 1.1.3. Ingestion of potassium rich foods increases serum potassium 

levels and thereby makes patients of HyperPP more susceptible to attacks of paralysis. 

Carbohydrate ingestion, on the other hand, can trigger attacks of paralysis in HypoPP 

patients, where episodes of paralysis are associated with low serum potassium levels. The 

ingestion of carbohydrates stimulates the release of insulin. Insulin activates sodium-

potassium ATPases causing potassium ions to enter cells and thereby reduces serum 

potassium levels. The carbohydrate ingestion thus lowers serum potassium levels, 

promoting paradoxical depolarisation in the patient’s skeletal muscle fibres. 

 1.4.2  Drug treatment of PP 

In many cases, such life-style choices are combined with treatments in order to ameliorate 

attacks and improve inter-attack strength as the disease progresses.  Both HyperPP and 

HypoPP are primarily treated with drugs that counter the elevated or reduced potassium 

levels associated with attacks of paralysis. Severity and frequency of attacks of paralysis in 

HypoPP patients can be reduced by potassium ingestion or by the use of drugs that increase 

serum potassium levels. Conversely, a reduction in serum potassium levels can ameliorate 

attacks of paralysis in HyperPP patients. This can be achieved by reducing potassium intake 

or through the use of drugs. Diuretics and carbonic anhydrase inhibitors are used in the 

treatment of PP; thiazide diuretics for HyperPP patients (Links 1994) and carbonic anhydrase 

inhibitors for both HyperPP and HypoPP patients (McArdle, 1956; Resnick et al. 1968). A 

loop diuretic is currently also being assessed for efficacy in HypoPP patients 

(ClinicalTrials.gov identifier: NCT02582476). 

I. Thiazide diuretics  

Thiazide diuretics act by reducing serum potassium levels associated with attacks of 

paralysis in HyperPP patients. Diuretics act on the kidneys and are traditionally used 

to lower blood pressure by increasing excretion of urine. Thiazide diuretics inhibit 

the action of sodium-chloride transporters in the distal tubule of the renal system. 

Reduced blood volume and the increased levels of sodium in the distal tubule 
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stimulate reabsorption of sodium in exchange for potassium and hydrogen ions 

which are then lost in the urine. The loss of hydrogen ions can lead to metabolic 

alkalosis while potassium loss can lead to hypokalaemia. 

II. Loop diuretics  

Loop diuretics also promote accumulation of sodium ions in collecting ducts of the 

distal tubule, and the subsequent loss of potassium and hydrogen ions. These may 

likewise be associated with hypokalaemia and metabolic alkalosis. Nevertheless loop 

diuretics can protect against symptoms of HypoPP. In particular, the loop diuretic 

bumetanide has been found to ameliorate weakness and loss of excitability 

associated with HypoPP. The drug inhibits a co-transporter of sodium, potassium and 

two chloride ions, preventing the accumulation of chloride in skeletal muscle 

(Russell, 2000). This is thought to improve the condition, because high 

concentrations of chloride ions promote depolarisation when potassium 

concentration is low (Foppen et al, 2002). The efficacy of Bumetanide has been 

demonstrated in two murine models of HypoPP – one with a NaV1.4 mutation 

(R669H; Wu et al, 2013) and one with a CaV1.1 mutation (R528H; Wu & Cannon, 

2013). The use of Bumetanide is currently being assessed in a clinical trial on 12 

patients with HypoPP mutations (ClinicalTrials.gov identifier: NCT02582476). 

III. Carbonic anhydrase inhibitors  

Carbonic anhydrase inhibitors are used to treat a number of different conditions 

including glaucoma and to control seizures in epilepsy. Acetazolamide and 

dichlorphenamide are two carbonic anhydrase inhibitors that are used to reduce 

attack frequency in PP patients. According to a study by Tawil (Tawil et al, 2000) 

dichlorphenamide is more efficacious than acetazolamide. However a systematic 

review of these treatments suggests that it is unclear which has higher efficacy or 

fewer side effects (Sansone et al, 2008). A more recent study indicates that 

dichlorphenamide improves attack frequency and severity in hypokalaemia, but such 

effects on hyperkalaemic patients are as yet inconclusive (Burge et al, 2016). 
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IV. Acetazolamide  

Acetazolamide has been used since 1956, and it was thought to work by reducing the 

elevated potassium levels (McArdle, 1956). However, acetazolamide has also been 

used to prevent paralytic attacks in HypoPP where attacks typically occur when 

serum potassium levels are reduced (Resnick et al. 1968). This suggests that another 

mechanism of action may be responsible for the therapeutic effects of 

acetazolamide in HypoPP patients. It has been suggested that metabolic acidosis 

induced by the drug reduces entry of potassium ions into muscle and thus reduces 

serum potassium concentration and the consequent paralysis (Vroom et al, 1975). 

However, this may not be the primary mechanism of action, as diuretics which cause 

alkalosis have also been found to ameliorate symptoms of the disease. Another 

proposed mechanism of action in HypoPP is that acetazolamide activates calcium 

activated potassium channels. Paralytic attacks in HypoPP are associated with a low 

level of potassium, however if serum potassium is increased when calcium levels are 

abnormally elevated, the firing of action potentials can be regulated (Tricarico et al., 

2006).  

Although acetazolamide has been found to reduce events in patients of HypoPP, 

approximately 50% of patients do not respond to the treatment. Those patients with 

mutations affecting the calcium channel are more likely to respond to treatment 

than those with sodium channel mutations according to a study investigating 

acetazolamide efficacy. The study found that 31 of 55 patients with calcium channel 

mutations responded to treatment, compared to only 3 of 19 patients with sodium 

channel mutations (Matthews et al, 2011). Furthermore, acetazolamide can cause an 

increase in attack frequency and severity (Torres et al, 1981), and long term use of 

acetazolamide can result in gastrointestinal disturbances, drowsiness and electrolyte 

imbalance (Sansone et al, 2008). 

V. Coenzyme Q10 

A more recent study of two patients with PP suggests that Coenzyme Q10 can also 

be used to successfully treat patients (Da et al, 2016). This enzyme is involved in a 

variety of processes in cell metabolism which may contribute to its therapeutic 
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effect. It promotes energy synthesis and antioxidant activity, and it regulates 

changes in fibre type and changes in gene expression.  

1.4.3  The choice of treatment 

There are currently no set guidelines regarding choice of medication for HyperPP and 

HypoPP (Sansone et al, 2008). While dichlorphenamide has been shown to be effective in 

patients of both HyperPP and HypoPP, there is variation in patient responses to the 

different therapies (Tawil et al, 2000). Such variations may be dependent on patient 

genotype. One study found that acetazolamide was a more effective treatment for HypoPP 

patients with mutations in the CaV1.1 channel than those where the NaV1.4 channel was 

affected (Matthews et al, 2014). This evidence that patients with the same mutations 

respond to the same treatments indicates that routine genotyping may help doctors 

prescribe more effective medication and thus improve treatment outcomes. 

1.5 METHODS OF INVESTIGATING MUSCLE DISEASE 

1.5.1  Current methods of investigating periodic paralysis  

Many initial investigations focussed on locating genes associated with PP (Ptácek et al., 

1991), and such investigations continue today due to the frequent discovery of novel 

mutations (see for example Zheng et al, 2016; Maggi et al., 2014). PP has been extensively 

investigated in simple cell models in order to observe direct effects of mutations on cell 

signalling. Patient observation has allowed for the identification of appropriate 

management of PP, and investigations performed on animals with equivalent mutations 

have helped to understand the relationship between PP-associated mutations and disease 

symptoms.  

I.  Observation of patients with periodic paralysis 

Patient observation has contributed much to the understanding of PP. Features such 

as triggers of attacks and patterns of disease progression can be recorded in detail 

and help to understand key features of the disease. In addition, genome wide 

analysis of patients has helped to identify genes that are associated with the disease 

(for example Cheung et al, 2012). Clinical trials have improved the advice that can be 

given to PP patients and have helped to identify effective therapies. For example 
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efficacy of dichlorphenamide was demonstrated in randomised trials with PP 

patients (Tawil et al, 2000). 

II.  Expression of periodic paralysis mutations in HEK and oocyte models 

Heterologous expression systems have been widely used in the investigation of PP. 

Mutant channels have been expressed in oocytes, human embryonic kidney cells 

(Struyk et al, 2000) and myotubes (Lehmann-Horn, 1995) in order to determine 

direct electrophysiological consequences of the mutations. One such study 

investigated the direct effects of expressing the M1592V mutation in oocytes, by 

recording sodium currents using two-electrode and cut-open oocyte voltage-clamp 

techniques (Rojas et al, 1999). The M1592V mutation is a mutation found in a mouse 

model of HyperPP, described below in section (III). 

Such studies provide valuable information relating to how ion currents are affected 

by ion channel mutations. However expression of human mutations in different 

species can have different functional consequences, for example due to the 

presence of different accessory subunits or due to altered post translational 

modifications. Co-expression of both NaV1.4 and CaV1.1 channels with auxiliary 

subunits can make current recordings through these channels more representative 

of the currents in their native environments. Co-expression of NaV1.4 with its 

subsidiary β subunit, for example, impedes slow inactivation of the channels (Webb 

et al, 2009). In CaV1.1 expression systems, such co-expression is further complicated 

because a high level of diversity of the subunit isoforms contributes to functional 

diversity of the channels (Campiglio & Flucher, 2015). 

Investigations on the effect of the mutations using heterologous expression systems 

must be limited to a direct effect on the current, as downstream effects in muscle 

tissue will depend on the presence of muscle specific cell content and structure. 

Heterologous expression studies are therefore frequently studied and interpreted 

alongside more physiological whole animal approaches, for example Struyk & 

Cannon (2007) and Wu et al (2011). 
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Investigations involving the expression of PP mutations in other cell types were of 

seminal importance in previous studies. They helped to clarify how the PP mutations 

can lead to abnormal activation patterns and thus to paralysis (Struyk & Cannon, 

2007). These studies are still valuable for characterising novel mutations (for 

example see Fan et al, 2017), but are less valuable in broadening our understanding 

of disease progression. 

III.  Animal models of periodic paralysis 

Several horse and mouse models of PP are available. HyperPP has become a growing 

problem in quarter horses (a breed of race horses) descending from a particular sire 

(Nayler, 1994). Four knock in mouse models of PP have also been developed. 

The HyperPP mutation in horses is autosomal dominant and occurs in the NaV1.4 

channels, as with the human disease (Rudolph et al 1992). The horses experience 

episodic attacks of muscle tremors, weakness and paralysis.  Attacks are associated 

with eating potassium rich food, fasting and stress (Steiss & Naylor 1986; Spier et al, 

1990). 

The first mouse model to be characterised with PP has a methionine (M) substituted 

for valine (V) at a chromosome position which is equivalent to the human 

chromosome position 1592. Chromosomal position 1592 corresponds to a position 

in domain IV of the NaV1.4 alpha subunit, and the M to V substitution results in 

HyperPP. M1592V mice exhibit myotonia at rest and potassium sensitive paralysis, 

they also have a more oxidative phenotype compared to controls (Hayward et al., 

2008).  

Two further mouse models of PP that have been characterised lead to a HypoPP 

phenotype. Both involve an arginine to histidine substitution; one (R669H; Wu et al, 

2011) at domain II of the NaV1.4 alpha subunit and one (R528H; Wu et al, 2012) at 

the same position in the CaV1.1 alpha subunit. These substitutions both lead to a 

loss of positive charge in the S4 segment of domain II of the affected channel. As 

with HypoPP mutations in patients (see section 1.1.4), the result is increased passage 

of cations through an aberrant pore in the channel. Consequently both of these 

mouse models have similar characteristics despite involving different ion channels. 
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Challenging either R669H or R528H mice with low extracellular potassium leads to 

reduced muscle excitability and to muscle weakness.   

Although these three mouse models exhibit features of PP progression, they have 

not been observed to suffer spontaneous attacks of paralysis, such as those that 

characterise PP patients. This may support the hypothesis that the long term muscle 

degeneration experienced in patients of PP is not directly linked to the frequency or 

intensity of paralytic attacks that they experience earlier in their life. However these 

mice were not monitored continuously and it is also possible that attacks of paralysis 

occurred but were not observed.  

The fourth mouse model was developed at Harwell (Corrochano et al, 2014) and is 

referred to as the Draggen (Dgn) model. The model was identified in an N-ethyl-N-

nitrosurea mutagenesis screen (Nolan et al, 2002; Acevedo-Arozena et al, 2008). This 

Dgn model has an isoleucine (I) to valine (V) substitution at a chromosome position 

which is equivalent to the human chromosome position 588. Chromosomal position 

588 corresponds to a position in domain II of the NaV1.4 alpha subunit, which has 

also been identified in one patient presenting with myotonia and PP.  

While the other mouse models show similar progression to patients, the Dgn mice 

also exhibit attacks of paralysis similar to those that characterise the human disease. 

I contribute to the experiments performed at Harwell where we confirm that the 

mutation leads to some aspects of the PP phenotype. I elaborate on these 

investigations in the results section (section 4.2.1). Potassium levels seem normal 

between attacks, but have not been measured during attacks, and as a result, it is 

not clear if the phenotype is one of HyperPP or HypoPP. In addition, the nuclei of 

Dgn muscle fibres are typically found in the centre of fibres rather than the 

periphery. This can be taken as an indicator of increased muscle repair in the 

mutants. Central nuclei are also a common feature of both HyperPP and HypoPP 

(Links et al, 1990; Fouad et al, 1997; Bradley et al, 1990). Such nuclear positioning 

may also contribute to the development of muscle weakness, for example by 

disrupting muscle fibre contractions (Folker & Baylies, 2013). 
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Species 
 

Mutation 
 

Substitution HyperPP/ 
HypoPP 

Channel  
 

Segment, 
domain, subunit 

Clinical features paper 

Mouse 
 
 
 
 
 

M1592V 
 
 

M to V HyperPP 
 
 

NaV1.4 
 
 

S6, IV, α Myotonia at rest, 
K-sensitive 
paralysis 

Hayward et 
al, 2008 

R669H 
 

R to H HypoPP 
 

NaV1.4 
 

S4, II, α  K-sensitive 
paralysis 

Wu et al, 
2011 

R528H 
 

R to H HypoPP 
 

CaV1.1 
 

S4, II, α K-sensitive 
paralysis 

Wu et al, 
2012 

I588V 
 
 

I to V HyperPP 
 
 

NaV1.4 
 
 

S4, II, α Episodic 
weakness, K-
sensitive paralysis 

Corrochano 
et al, 2014 

Horse 
 

E-HPP 
 

F to L HyperPP 
 

NaV1.4 
 

S4, III, α K-sensitive 
paralysis 

Cannon et 
al, 1995 

        

Table 3: Animal models of HyperPP and HypoPP. Summary of the mutations affecting different 

animal models of HyperPP and HypoPP, including key clinical features. 

 IV.  Drug induced periodic paralysis in rodents 

The low potassium responsible for attacks of paralysis in HypoPP can be simulated in 

animals by modifying their diet. This has been achieved in rats by feeding them a 

potassium deficient diet and giving them insulin which further depletes potassium. 

This produced some aspects of the PP phenotype including weakness and muscle 

paralysis. However this model is not ideal, as potassium levels remain normal in 

HypoPP in between attacks, and reduce only during attacks. The continued depletion 

of potassium in this model of HypoPP affects levels of other ions such as sodium and 

calcium in the skeletal muscle cells (Dengler et al, 1979). 

Barium has also been used to simulate HypoPP (Gallant, 1983). Extracellular barium 

acts by blocking the Kir2.1 channels (Gallant, 1983; Shieh et al, 1998). A reduction in 

the inwardly rectifying potassium conductance can potentiate the depolarisation 

threshold, so that challenge with low extracellular potassium is more likely to lead to 

depolarisation. In this manner blockade of the Kir2.1 channels can simulate the 

potentiation of paradoxical depolarisation observed in HypoPP. 

The sodium ionophore gramicidin has been used to simulate the cation leak present 

in HypoPP. Gramicidin forms a beta helix in the cell membrane and dimerises to span 

the membrane, providing a channel for the passage of monovalent cations. The 

passage of monovalent cations is further facilitated by two cation binding sites. 
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Divalent cations, on the other hand, block the channel (Hladky & Haydon, 1972). As 

with leaks presented by HypoPP mutations, the aberrant leak current created by 

addition of gramicidin potentiates the threshold for depolarisation in response to 

reduced extracellular potassium concentration (Jurkat-Rott et al, 2009). These drugs 

can be used to replicate features of PP in muscle models, allowing for muscle specific 

downstream effects to be monitored.  

V.  Cultured cells from patient biopsies 

The Institute of Neurology (UCL, London) is a referral centre for patients with PP and 

is thus visited by an exceptional number of individuals suffering from genetic muscle 

diseases including PP. Muscle cell cultures derived from human tissue can facilitate 

the expression of appropriate accessory subunits along with the channels, and allow 

for relevant post translational modifications to occur. Furthermore, myoblast 

cultures derived from skeletal muscle of patients have the advantage that they carry 

the exact mutations of the patients. Such cultures can be derived either directly from 

muscle biopsies (see section 1.5.2 (II)), or by growing fibroblasts or induced 

pluripotent stem cells and converting these to myocytes (see section 1.5.2 (III)). 

Under appropriate cultures conditions, myocytes then undergo a process of 

myogenesis (see section 1.5.2) whereby they fuse to form a syncytium of muscle 

cells (a myotube). The effects of specific mutations can then be investigated in the 

myotubes. 

1.5.2  Myogenesis  

Myogenesis is the formation of muscle tissue from mono-nucleated cells, either in vivo or in 

a laboratory context. In vivo, myogenesis is comprised of several steps involving exit from 

the cell cycle, alignment of mono-nucleated cells and fusion of the aligned cells (see table 4 

below). This process can also be observed in myoblast cultured in vitro. Furthermore, 

factors that are known to promote myogenesis can be used in vitro to artificially induce 

myogenesis in non-myogenic cells. This allows for experimental muscle models to be 

created from non-myogenic tissue such as human skin biopsies. 
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I. Myogenesis in vivo 

The initial stages of myogenesis in vivo are referred to as delamination and 

migration. Delamination involves segmentation of the paraxial mesoderm into 

somites, whereas migration involves the movement of these somites to the limb 

bud. Delamination and migration both occur in the presence of c-met, a tyrosine 

kinase receptor. Mutations in c-met, in its transcription factor (paired box 

protein 3; Pax3), or in its ligand (hepatocyte growth factor; HGF), result in the 

absence of limb muscles (Bladt et al, 1995; Maroto et al, 1997; Tajbakhsh et al, 

1997). 

Upon arrival at the limb bud, cells begin to proliferate, and this proliferation is 

partly maintained by continued expression of the transcription factor Pax3. The 

subsequent commitment and differentiation of cells to a myogenic phenotype 

involves the expression of a variety of factors. Four prominent factors in this 

process are members of the myogenic basic helix-loop-helix transcription factor 

family. These factors are myogenic determination factor 5 (Myf5), myogenic 

differentiation factor D (MyoD), myogenic regulatory factor 4 (Mrf4) and 

myogenin. Myf5, MyoD, Mrf4 and myogenin have overlapping roles during 

commitment and terminal differentiation (Rawls et al, 1998). Myf5 and MyoD are 

primarily involved in the commitment of multipotential somite cells to myogenic 

lineage (Maroto et al, 1997). Mrf4 is also transiently expressed during this 

determination phase of myogenesis. Mrf4 and MyoD are expressed again during 

differentiation. Together with myogenin they promote the terminal 

differentiation of committed muscle progenitor cells. Mrf4 continues to be 

expressed during postnatal development where it is thought to regulate muscle 

growth (Moretti et al, 2016). 

A study in mice showed that Myf5 is activated in somites earlier than MyoD (in 

day 8 embryos rather than day 10 embryos; Cossu et al, 1996). Furthermore, this 

study showed that expression of Myf5 was induced in progenitors of epaxial 

muscles and that expression of MyoD initially occurred in progenitors of hypaxial 

muscle. Hypaxial muscles are those that lie ventral to the septum of the 
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vertebrae whereas epaxial muscles lie dorsal to the septum. Progenitors of both 

epaxial and hypaxial cells eventually expressed both the Myf5 and the MyoD 

genes (Cossu et al, 1996). At this stage Myf5 and MyoD compensate for one 

another, such that a mutation or knock out of either gene does not prevent 

muscle differentiation (Rudnicki et al, 1993; Braun et al, 1994). Knockout of Myf5 

does however delay differentiation of epaxial muscles, because Myf5 is normally 

expressed earlier than MyoD. Differentiation is delayed until MyoD is expressed 

and can compensate for the lack of Myf5 (Braun et al, 1994). Knockout of both 

the Myf5 and the MyoD does, on the other hand prevent the development of 

skeletal muscle (Rudnicki et al, 1993). 

Stage of cell 
cycle 

MPC MPC myoblast myocyte myotube Myofibre 

Stage  of 
myogenesis 

Delamination Migration Proliferation Commitment Differentiation Maturation 

bHLH 
transcription 
factors 

   Myf5 (+) 
MyoD (+) 
Mrf4 (+) 

Mrf4 (+) 
MyoD (+) 
Myogenin (+) 

MHC (+) 
Mrf4 (+) 

Other 
signalling 
molecules 

c-met (+) c-met (+)  
Pax3 (+) 

Pax3 (+) 
Pax7 (+) 
Myostatin (-) 

Wnt (+) 
 
 

IGF2 (+) 
 

 

 
Table 4: Regulation of myogenesis. Embryonic myogenesis involves the highly orchestrated 

expression of numerous molecules with overlapping periods of expression. These molecules include 

kinases, growth factors and transcription factors. This table indicates some of the key signalling 

molecules involved in the different stages of myogenesis. A plus sign (+) indicates that the molecule 

promotes the correlating stage of myogenesis, and a minus sign (-) indicates negative regulation. 

MPC – myogenic precursor cell; bHLH – basic helix loop helix; Myf5 – myogenic determination factor 

5; MyoD – myogenic differentiation factor D; Mrf4 – myogenic regulatory factor 4; MHC – myosin 

heavy chain ; c-met – a receptor tyrosine kinase; pax3/7 – paired box protein 3/7; Wnt – wingless 

related integration site glycoproteins; IGF2 – insulin like growth factor 2. Summary of the above text 

with additional information (Olguín & Pisconti, 2012; Susuki et al, 2015) 
 

II. Myogenesis in vitro using cultured myoblasts 

As with myogenesis in vivo, myogenesis in vitro involves the expression of 

myogenic factors (Rajan et al, 2011). Furthermore, the expression pattern of 

these factors in cell lines can be similar to that observed in vivo. Due to the 
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overlapping roles of the myogenic factors, only a subset is expressed in many 

skeletal muscle cells line.  Typically either MyoD or myf5 is expressed 

constitutively whereas myogenin expression is initially repressed, and begins to 

be expressed during differentiation (Olson, 1990). MRF-4 on the other hand, is 

typically not expressed in muscle cell lines as it is more involved in muscle 

growth. 
 

III. Myogenesis in vitro using non-myogenic cells 

MyoD can be used to convert non myogenic cells such as fibroblasts, 

chondroblasts and retinal cells to myotubes (Choi et al, 1990). In this study I 

focus on the conversion of fibroblasts, because I have access to skin biopsies of 

PP patients. 
 

Forming myotubes from fibroblasts involves two separate stages; the conversion 

of the fibroblasts into myoblasts and the fusion and differentiation of myoblasts 

into multinucleated myotubes. The fibroblast to myoblast conversion can be 

triggered in culture by viral delivery of MyoD to the nucleus of the cell. MyoD 

coordinates the expression of muscle specific proteins and thereby promotes the 

differentiation of muscle (Lattanzi et al, 1998). Following expression of MyoD, 

cells withdraw from the cell cycle and their original differentiation programme is 

downregulated, allowing for myogenic differentiation to occur. Such 

differentiation includes the initiation of desmin synthesis (Choi et al, 1990). Once 

a myoblast culture is achieved and confluent enough for contact between cells to 

occur, the process of cell fusion can begin (Tanaka et al, 2011). 
 

IV. Factors that support differentiation in vitro 

As well as the involvement of the basic helix-loop-helix factors in myogenesis, 

myoblast adhesion and fusion are guided by a range of factors in vivo. Indeed, 

supplementing media with appropriate factors, rather than with serum, 

encourages differentiation to occur in culture (St Clair et al., 1992). Factors of 

particular importance in this regard include insulin, creatine, and epidermal 

growth factor (EGF). These factors can be added to the culture medium when 

differentiating cells, in combination with bovine serum albumin (BSA). The 
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albumin functions as a carrier protein; it transports growth factors and facilitates 

their steady supply to the cells (Francis, 2010). 

Insulin accelerates spontaneous myogenesis by induction of NF-kappaB (Conejo 

et al, 2001). Creatine enhances differentiation of myoblasts by promoting the 

phosphorylation of proteins including mitogen activated protein kinases and 

protein kinase B (Deldicque et al, 2007). EGF is typically included in culture to aid 

cell proliferation, however at low concentrations EGF can promote 

differentiation. 
 

V. Myogenesis and therapeutic approaches   

As well as being an integral part of muscle growth, myogenesis is important for 

the repair of injured muscle in vivo. This ability of muscle to regenerate can also 

be used therapeutically. Tissue from patients suffering from genetic muscle 

disease can be removed and converted into induced pluripotent stem (iPS) cells. 

Mutations in these iPS cell cultures can be corrected before converting them into 

myogenic progenitor cells and reintroducing the cells to the patients (reviewed in 

Tedesco et al, 2010). Although this line of investigation has not yet been explored 

for PP, it appears to have great potential in the treatment of other genetic 

muscle diseases including Duchenne muscular dystrophy (Maffioletti et al, 2015). 

In a study on dystrophic mice lacking α-sarcoglycan, for example, fibroblasts and 

myoblasts were reprogrammed to iPS cells which were then converted to 

mesoangioblasts-like cells. Viral introduction of the α-sarcoglycan gene to these 

mesangioblast-like cells meant that α-sarcoglycan expressing cells could be 

reintroduced into the α-sarcoglycan null mice. In these mice α-sarcoglycan was 

expressed and the dystrophic phenotype ameliorated (Tedesco et al, 2012). 

 

1.6  CALCIUM HANDLING AND MITOCHONDRIAL FUNCTION IN SKELETAL MUSCLE 

1.6.1  Calcium handling 

Calcium ions are vital second messengers, required for the regulation of a wide range of 

functions, including contraction, cell survival and cell death. The PP mutations interfere with 

normal propagation of action potentials, causing excessive cell depolarisation, which in turn 

results in excessive calcium fluctuations in the cell. Due to its seminal role in regulating cell 



47 
 

function, and in particular muscle cell function, intracellular calcium concentration is both 

dynamic and tightly regulated. Transport across the plasma membrane and across 

membranes of intracellular storage compartments is achieved by several regulated channels 

and pumps while intracellular calcium stores provide a means of rapid release and rapid 

sequestration of calcium.  

Disruption of calcium handling is consequently going to be a key consideration when 

searching for mechanisms involved in PP progression. In particular, it may be that the 

multiple periods of muscle over-activation and calcium accumulation experienced by 

patients lead to up or down regulation of ions, ion channels or organelle function (Green, 

1997). Indeed such relationships have been observed in other muscle diseases. Mutations in 

skeletal RyR associated with malignant hyperthermia (MH) and central core disease (CCD), 

for example, result in increased cytosolic calcium levels (McCarthy et al, 2000). In MH such 

rises in calcium concentration are acute and lead to muscle rigidity whereas in CCD they are 

chronic and are associated with mitochondrial damage and disorganisation of myofibrils. 

Given the wide range of effects that changes in calcium handling can have, investigations on 

calcium handling will also consider downstream consequences on organelle function and on 

the expression of other skeletal ion channels.  

1.6.2  Caffeine 

Caffeine is a pharmacological agonist which selectively binds to and opens RyR. RyRs 

mediate the release of calcium from SR to the cytosol of muscle cells. Caffeine is therefore a 

useful tool for the investigation of calcium handling in muscle. 

 

 

Figure 8: RyR open probability. Analysis of the open 

probability (PO) of RyRs in HEK293 cells (Kong et al, 

2008). The relationship between Po and cytosolic 

Ca2+ concentration is plotted in the presence and 

absence of caffeine. Data points were individual 

measurements obtained from 7 RyR2 channels in 

the presence of 2mM caffeine (solid circles) and 5 

RyR2 channels in the absence of caffeine. The 

average recording time was 93 seconds. 



48 
 

Concentrations of less than 2mM caffeine sensitise RyR to cytosolic calcium by increasing 

the frequency of channel opening. In contrast, higher concentrations of caffeine act by 

increasing the open time of the receptors (Porta et al, 2011). Low concentrations of caffeine 

are only effective in the presence of activating levels of cytosolic calcium (0.1 and 10µM), 

whereas more than 5mM caffeine is required to increase the open probability of the RyR at 

sub-activating concentrations of cytosolic calcium. Indeed low caffeine concentrations (less 

than 1mM) act by sensitising the RyR to cytosolic calcium, whereas higher concentrations 

(2.5mM caffeine or more) increase the sensitivity of the receptors to luminal calcium (Porta 

et al, 2011). 

1.6.3  Mitochondrial biogenesis 

The main function of mitochondria in a cell is to synthesise ATP by oxidative 

phosphorylation. It is also involved in the biosynthesis of various metabolites involved in 

oxidative phosphorylation. Levels of mitochondrial activity must therefore be regulated 

according to energy demands of the cell. Indeed greater levels of mitochondrial biogenesis 

occur in tissue with greater energy demands. Mitochondrial biogenesis is defined as the 

growth in mitochondrial size and mass as well as mitochondrial division and it depends on 

transcription of both mitochondrial and nuclear DNA. Each mitochondrion contains circular 

double stranded mitochondrial DNA (mtDNA). Single molecules of mtDNA are packaged by 

proteins, primarily TFAM (mitochondrial transcription factor A), into mitochondrial 

nucleoids which are approximately 100nm long in mammals. TFAM is a regulator of 

mitochondrial transcription and biogenesis. Nucleoids frequently contain only one copy of 

mtDNA, with an average of 1.4 mtDNA molecules per nucleoid (Kukat et al, 2011). MtDNA 

encodes only 13 respiratory subunits and mitochondrial biogenesis relies primarily on 

nuclear gene products.  

Two classes of transcriptional regulators of mitochondrial biogenesis are encoded in the 

nucleus; DNA binding (such as NRF-1 and 2) and non DNA binding transcriptional 

regulators. Non DNA binding regulators include peroxisome proliferator-activated 

receptor gamma coactivator-1 α and β (PGC-1α and PGC-1β); these interact with DNA 

bound transcriptional factors to co-activate the expression of genes. PGC-1α promotes 

the expression of nuclear gene products involved in oxidative phosphorylation including 
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NRF-1 and 2 and TFAM (Puigserver & Spiegelman, 2003). NRF-1 and 2 regulate 

transcription of nuclear genes associated with oxidative phosphorylation whereas TFAM 

regulates the transcription and replication of such genes encoded in the mitochondrial 

genome (Virbasius & Scarpulla, 1994). In addition TFAM maintains normal levels of mtDNA 

and regulates its aggregation and packaging (Ekstrand et al, 2004). TFAM contains 

consensus binding sites for NRF-1 and 2 and thus allows for the transcription of mtDNA 

and nuclear DNA encoded genes to be co-ordinated during mitochondrial biogenesis 

(Virbasius & Scarpulla, 1994). Furthermore TFAM expression is promoted by reactive oxygen 

species (ROS) which are a bi-product of respiration allowing for TFAM to respond to energy 

demands of the cell (Miranda et al, 1999). Indeed small increases in ROS may promote 

expression of genes involved in energy metabolism in order to rescue the affected cell. In 

this manner, ROS act as signalling molecules at non-toxic levels. Increased calcium levels 

activate ROS generating enzymes and the formation of free radicals (Gordeeva et al, 2003). 

Under oxidative stress, for example in pathology or during aging, larger increases in ROS can 

damage mtDNA and promote apoptosis by activating the mitochondrial permeability 

transition pore and by release  of pro-apoptotic proteins.   

Increased levels of mtDNA copy number per cell are associated with increased levels of 

oxidative stress in aged human skeletal muscle (Barriento et al, 1997; Barazzoni et al, 2000; 

Pesce et al, 2001), while mitochondrial function declines with aging (Short et al, 2005). 

AMPK acts as an energy sensor and its activity has been shown to decrease with age, which 

may contribute to decreased mitochondrial biogenesis and function with aging (Jornayvaz & 

Shulman, 2010). Indeed AMPK activation protects cells from oxidative stress, and the effect 

of aging on the tissue appears to be a result of oxidative stress in the tissue (Han et al, 

2016). Cultures present with increased mitochondrial mass both during later stages of 

proliferation and upon challenge with hydrogen peroxide. The increased mitochondrial mass 

depends on both the synthesis of nuclear DNA encoded proteins and their import into 

mitochondria which is determined by the mitochondrial membrane potential (Lee et al, 

2002). 
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1.6.4  Calcium and mitochondrial interplay 

Calcium and mitochondrial function are highly interrelated. A reduction in mtDNA 

(mitochondrial DNA) or disruption of mitochondrial membrane potential can influence 

calcium-dependant retrograde signalling from the mitochondria to the nucleus (Jahnke et al, 

2009). Conversely, calcium signalling influences mitochondrial function; it drives 

mitochondrial biogenesis and at higher concentrations can lead to mitochondrial damage 

and opening of the mitochondrial permeability transition pore (MPTP; Kim et al, 2007) 

causing a precipitation of cell death. The schematic below indicates some of the channels 

and transporters involved in mitochondrial calcium handling. 

 

Figure 9: Mitochondrial and associated calcium transporters. Schematic diagram of a 

mitochondrion with associated calcium ion (Ca2+) transporters. Voltage dependent anion channels 

(VDAC) on the outer mitochondrial membrane (OMM) control Ca2+ diffusion into the inter membrane 

space (IMS).  The electron transport chain (ETC) removes protons (H+) from the matrix. Ca2+s cross the 

inner mitochondrial membrane (IMM) and enter the matrix down the resultant electrochemical 

gradient through the mitochondrial calcium uniporter (MCU). Ca2+s are removed from the matrix by 

sodium calcium exchangers (NCX) and proton calcium exchanges (HCX). Ca2+s are released through 

the mitochondrial membrane via the mitochondrial permeability transition pore (PTP). Brief PTP 

openings facilitate rapid Ca2+ release, whereas prolonged openings can trigger apoptosis.  

 

Mitochondrial calcium levels are maintained under physiological conditions by cycling of 

calcium ions in and out of the mitochondrial matrix. Calcium enters through voltage 

dependant anion channels (VDAC) and through the mitochondrial calcium uniporter (MCU) 
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and it is transported back to the cytosol via NCX and HCX (the proton calcium exchanger). 

Calcium is released from the SR by activation of IP3Rs and RyRs. IP3Rs are enriched at ER-

mitochondrial contact sites and are connected to VDACs on the outer mitochondrial 

membrane (Rizutto et al, 1999; Sabadkai 2006). High calcium micro-domains consequently 

develop near MCUs, allowing calcium to enter the mitochondrial matrix via the MCU despite 

its low affinity for calcium uptake (Rizzuto et al, 2012).  

Under pathological conditions the association of SR and mitochondria can be tightened 

leading to mitochondrial calcium overload (Csordas et al, 2006). Mitochondrial calcium 

overload leads to the production of reactive oxygen species (ROS) and opening of the MPTP. 

MPTP opening leads to a sudden influx of ions and solutes, mitochondrial swelling, 

dissipation of the membrane potential and ultimately cell death. Opening of the MPTP leads 

to the downstream activation of apoptosis via release of cytochrome c into the cytosol. 

Cytochrome c binds to IP3Rs on the SR and prevents calcium from having an auto-inhibitory 

effect on the IP3Rs. This leads to the initiation of a feedforward mechanism whereby further 

calcium is released from the SR leading to further release of cytochrome c from 

mitochondria (Boehning et al, 2003). In addition to contributing to the opening of the MPTP, 

mitochondrial dysfunction and calcium influx can contribute to cell death by promoting the 

production of ROS which can then damage proteins, lipids and DNA (Wei et al, 1998). 

1.6.5 Oxidative phosphorylation  

Mitochondria promote phosphorylation of ADP to ATP in a process called oxidative 

phosphorylation. Energy for this phosphorylation is produced by the transfer of electrons 

between a series of complexes. These complexes are referred to together as the electron 

transport chain (ETC) or the electron transfer system (ETS; see figure 10 below). 

During oxidative phosphorylation, oxygen is transformed to water. Consequently oxidative 

phosphorylation can be monitored by taking measurements of oxygen consumption. The 

activity of each mitochondrial complex can be investigated by chemically targeting the 

complex while monitoring oxygen consumption. Inhibiting ATP synthase with oligomycin for 

example abolishes the flow of protons through the channel and thus inhibits respiration that 

is coupled to oxidative phosphorylation. The resultant reduction in oxygen consumption 

thus reflects the level of activity of ATP synthase. FCCP (carbonyl cyanide 4-
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(trifluoromethoxy)phenylhydrazon) is an ionophore that uncouples ETS facilitated 

respiration from oxidative phosphorylation in order to induce maximal ETS capacity. 

Rotenone inhibits complex I and can thus be used to deduce the contribution that this 

complex makes to respiration while antimycin inhibits complex IV mediated respiration, 

providing an estimate of non-mitochondrial respiration.  

 

Figure 10: The electron transfer system. The electron transfer system, adapted from E Gnaiger (E 

Gnaiger, 2007). NADH linked substrates provide complex I (CI) with electrons and succinate linked 

substrates provide complex II (CII) with electrons. From here electrons are passed to the Q junction (a 

ubiquinone linked enzyme; glycerol-3-phosphate dehydrogenase). Complex III (CIII) accepts electrons 

from the Q junctions and passes them to cytochrome C (C) which then passes them to complex IV 

(CIV). CIV catalyses the formation of H2O using oxygen provided by respiration, electrons from 

electron transfer and protons from the cell matrix. 
 

The role of the different mitochondrial complexes in the electron transfer system can also 

be monitored by in vitro analysis of tissue homogenates, where enzyme activity can be 

compared to activity of a control enzyme such as citrate synthase (Hargreaves et al, 1999).  

1.7 HYPOTHESIS 

I hypothesise that calcium handling and mitochondrial function will be affected. The 

frequent attacks of paralysis in PP are associated with unusually frequent and extensive 

calcium fluctuations within skeletal muscle. Such excessive calcium cycling could lead to 

mitochondrial damage through mitochondrial calcium overload and the associated 

production of ROS. ROS can lead to protein, lipid and DNA damage and may thus be 

associated with the generalised skeletal muscle tissue damage observed in PP. Calcium 

handling and mitochondrial function are measured in order to determine their role in the 

progression of PP. 
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2. AIMS 

2.1 AIMS 

The aim of the work described in this thesis is to improve the current understanding of 

how PP progresses from intermittent attacks of paralysis to a generalised muscle 

weakness and in some cases myotonia. This aim is approached by developing both cell 

and animal models of PP, as detailed below: 

I.  Fibroblast derived myotubes: fibroblasts are virally converted to myoblasts. 

These are then differentiated into myotubes. Culture conditions are optimised in 

order to improve efficiency of this transformation. 

II.  A mouse model of PP: This model is characterised in vivo and in vitro. 

In vivo testing of a mouse model of PP includes tension and fatigue tests and 

motor neuron counts.  

Ex vivo characterisation of the mouse model is carried out by isolating single 

fibres from the Flexor Digitorum Brevis (FDB) 

III.   A drug model of PP: The disease phenotype is simulated in neonatal cultures of 

Sprague Dawley rats by addition of barium chloride 

2.2  APPROACHES 

Previous approaches have focused primarily on direct electrophysiological effects of the 

PP mutations in heterologous expression systems and on in vivo physiological 

investigations. Effects downstream of the mutations that lead to the observed 

physiological effects have not been extensively investigated. The approaches pursued 

here allow for the roles of calcium handling and mitochondrial function in the 

development of physiological features of periodic paralysis to be investigated. The in 

vivo approach should allow for gross physiological changes in mutants to be determined, 

and thus inform the ex vivo work – so that ex vivo work can be conducted in tissue that 

is known to be affected. Ex vivo investigations should allow for trends in mitochondrial 

function and in calcium handling to be evaluated within the skeletal muscle fibre 

structure.  
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The ex vivo investigations focus on the specific effects of an animal mutation in animal 

tissue. Further analysis of mitochondrial function and calcium handling in patient 

derived cell culture models are employed to determine whether similar changes are 

associated with human mutations in human cells. Such investigations could confirm 

whether or not trends that are observed in the animal model are true effects of PP 

rather than effects that are specific to the animal mutation. 

The patient derived model could be particularly advantageous in this regard as it allows 

for the downstream effects of a wide range of mutations to be observed, by culturing 

cells from different patients. The patient model should thus be a useful genetic model of 

the disease. However features of the condition may not be observed in the cultured 

cells because culture conditions do not replicate the exact growth conditions in vivo. In 

particular, the cultured cells do not display attacks of paralysis.  

I will therefore compare observations from the mouse and patient derived models of 

the disease to a model produced by drug treatment of neonatal rat cultures. Treatment 

with barium and low potassium can be used to simulate attacks of hypokalaemic. The 

drug model may complement the investigation, as it is focused on whether or not 

attacks of paralysis associated with low potassium have downstream effects on calcium 

handling and mitochondrial function. 

Whereas pathophysiological outcomes are monitored in vivo, calcium handling and 

mitochondrial function are studied ex vivo, and in vitro (in isolated single fibres, in the 

fibroblast derived myotubes and in the drug treated myotubes). The spatiotemporal 

dynamics of calcium signals (upon stimulation with caffeine or high potassium or upon 

electrical stimulation) are characterised and the mitochondrial structure and 

mitochondrial membrane potential are monitored.  

The use of several different models of PP is important when testing for a common final 

pathway leading to myopathy in PP. If the different models lead to the same 

downstream pathway, this would suggest that the observed outcome was significant in 

the development of the myopathy. In particular, this could be assumed if the same 

features are seen both in models of HypoPP and HyperPP, because of the distinct direct 

effect of their mutations and the common downstream pathological characteristics.  
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3. MATERIALS AND METHODS 

3.1  ETHICS STATEMENT 

All animal studies were carried out in accordance with UK Home Office legislation 

and local ethical guidelines.  

3.2  REAGENTS 

The following reagents will be referred to in this text. 

I. 4-12% polyacrylamide gel (NuPAGE 4-12% Bis-Tris Protein gel, NP0322) 

II. Anti-fast skeletal myosin, mouse (SIGMA, M1570) 

III. Anti-MyoD, mouse (Millipore, MAB3878) 

IV. Anti-CaV1.1, rabbit (Santa-Cruz biotechnology, H-240) 

V. Anti-desmin, mouse (Invitrogen, 180016)  

VI. Anti-GAPDH, rabbit (SIGMA, G9545)  

VII. Anti-IRK2.1 (abcam, ab109750) 

VIII. Anti-mouse IgG conjugated to alexa Fluor 555, goat (Invitrogen, A32727) 

IX. Anti-SERCA1 ATPase, mouse (ABCAM, ab2819) 

X. Anti-TFAM, rabbit (Santa-Cruz biotechnology, H-203) 

XI. AraC (cytosine beta-D-arabinofuramoside, SIGMA, C1768) 

XII. Barium (Scientific Laboratory Supplies, B0750-100G) 

XIII. BCA Protein Assay Kit (Thermo Scientific Pierce, 23225) 

XIV. BSA (bovine serum albumin; SIGMA, A9418) 

XV. Caffeine (SIGMA ALDRICH, C0750) 

XVI. CEE (chick embryo extract; MP Biomedical, 2850145) 

XVII. Collagenase I (SIGMA, C0130) 

XVIII. Serum replacement 2 (SIGMA, S9388) 

XIX. Creatine (SIGMA, C0780) 

XX. Dispase (Invitrogen, 17105041) 

XXI. DMEM (DMEM+GlutaMAX-1, 4.5 g/L D-glucose, no pyruvate (GIBCO    

31960) 

XXII. DMSO (Dimethyl Sulfoxide, SIGMA, D8418 ) 
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XXIII. EGF (epidermal growth factor; SIGMA, E9644)  

XXIV. FBS (fetal bovine serum, GIBCO 10500) 

XXV. FLIPR Membrane Potential Assay Kit (Molecular Devices, R8128) 

XXVI. Fluo-4, AM, Cell permeant (Molecular Probes, F14201) 

XXVII. FluoVolt (Molecular Probes, F10488) 

XXVIII. Fluoromount aqueous mounting medium (SIGMA, F4680) 

XXIX. Formaldehyde solution (SIGMA, F8775) 

XXX. Gentamycin solution (SIGMA, G1272) 

XXXI. Gramicidin (SIGMA, G5002) 

XXXII. HBS (SIGMA-ALDRICH, 51558) 

XXXIII. Hoechst (Invitrogen , 33342) 

XXXIV. HS (horse serum, GIBCO, 16050) 

XXXV. IMDM (IMDM with Glutamax: Invitrogen, 31980022) 

XXXVI. Insulin (Invitrogen, 12585014)  

XXXVII. LDS sample buffer (NuPAGE, NP0007) 

XXXVIII. Matrigel Reduced factor (BD Biosciences, 354230)  

XXXIX. MOPS SDS running buffer (NuPAGE, NP0001)  

XL. Nitrocellulose membrane (Thermo Scientific, 88018) 

XLI. PBS (phosphate buffered saline, SIGMA, P4417)  

XLII. Phalloidin (Alexa Fluor 488 Phalloidin, Molecular Probes, A12379) 

XLIII. PI (BD Pharmingen, 556463) 

XLIV. PMSF protease inhibitor (phenylmethylsulfonyl fluoride; Thermo 

Scientific, 36978B)  

XLV. Protein ladder (Precision Plus Protein™ Dual Color Standards, Bio-Rad, 

1610374) 

XLVI. P/S (Penicillin/streptomycin, GIBCO 15070) 

XLVII. PVDF (Immobilon-P Membrane, IPVH00010 EMD MILLIPORE) 

XLVIII. RIPA lysis and extraction buffer (Thermo Scientific, 89900)  

XLIX. TMRM (Tetramethylrhodamine;  Invitrogen, I34361) 

L. Transfer buffer (NuPAGE, NP0006) 

LI. Triton x-100 (SIGMA, T8787) 

LII. Trypsin (0.05% Trypsin-EDTA, Gibco 25300) 



57 
 

3.2.1 Viral vectors of MyoD 

Two viral vectors were used to promote conversion of fibroblasts to myoblasts 

by delivering the transcription factor MyoD. These were an adenovirus and a 

lentivirus. The adenoviral vector was acquired from The Native Antigen Company 

(Ad5.f50.AdApt.MyoD).  The lentiviral vector was prepared as described below 

and in Kimura et al (2008). 

A transfer vector was a kind gift from Jeffrey Chamberlain. Briefly, the transfer 

vector was produced by inserting a modified oestrogen receptor responsive to 

tamoxifen and 4-hydroxytamoxifen into the NarI site (amino acid 173) in the 

middle of full length cDNA for mouse MyoD (Kimura et al, 2008). The Lentiviral 

vector was produced by inserting the corresponding coding sequences into the 

polylinker of the pRRL-cPPT-CMV-XPRE-SIN vector as described in Kimura et al 

(2008). The Lentiviral vector was produced by inserting the corresponding coding 

sequences into the polylinker of the pRRL-cPPT-CMV-XPRE-SIN vector as 

described in Kimura et al (2008). Fresh medium was applied to HEK293T cells two 

hours before addition of a plasmid DNA mixture. The plasmid DNA mixture was 

prepared by adding REV at 6.25 µg/µL, VSV-G at 7 µg/µL, Δ 8.74 at 16.25 µg/µL 

and the transfer vector plasmid at 30 µg/µL to purified nuclease free H2O (2:1). 

REV is a packaging plasmid which binds the Rev response element to facilitate 

nuclear export and VSV-G (vesicular stomatitis virus G protein) is an envelope 

plasmid used to pseudotype most lentiviral vectors.  Finally 125µL of 2.5M 

calcium chloride was added and the mixture incubated at room temperature for 

five minutes. A precipitate was then formed by dropwise addition of a 2x 

solution of HEPES buffered saline (HBS). After a further 15 minutes of incubation 

at room temperature the mixture was added to the 293T cells. Cells were 

incubated at 37 °C for 14 hours. The mixture was then replaced with fresh 

medium and supernatant was collected after a further 30 hours of incubation at 

37 °C. Media was filtered and the lentiviral vector was purified by 

ultracentrifugation for two hours at 20000 rpm at 20oC.  
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3.3  CELL CULTURE 

Cells were cultured at 37oC with 95% oxygen and 5% carbon dioxide.  

3.3.1  Fibroblast cell culture 

Skin biopsies were taken from control subjects and from patients. Fibroblasts 

from these were isolated and were cultured at the biobank of the MRC Centre 

for Neuromuscular Diseases. Fibroblasts from control subjects (biobank ID: 8203) 

and from patients (biobank ID: L937/1264F) were transfected and differentiated 

to produce myotubes. Although investigations with equivalent biopsies from 

muscle could be more straightforward, ethical approval for this project did not 

cover the removal of muscle biopsies from patients. 

Fibroblasts were grown in a proliferation medium of DMEM with 10% FBS and 

1% P/S and were sub-cultured upon reaching 90% confluency. In order to 

subculture cells, media was aspirated from flasks, cells were washed with PBS to 

remove serum and were incubated for 10 minutes in 0.05% Trypsin until round 

and freely moving. The trypsin was then inactivated by addition of further 

medium. At this point, cells were allowed to proliferate as before, frozen or 

seeded and differentiated on coverslips for imaging or in dishes for western 

blotting. 

I. Freezing cells: Cells were spun at a relative centrifugal force (RCF) for 500 

for 4 minutes, and supernatant was aspirated. Cells were aliquoted in 

cryovials with 1mL freezing medium of FBS with 10% DMSO per 

approximately one million cells. Cryovials were frozen in a Mr frosty 

(Nalgene) at -80oC. Cells were then stored at -80oC or in liquid nitrogen.  

II. Seeding cells: Coverslips were prepared for seeding by coating with 10% 

matrigel (BD Biosciences) in DMEM and incubating for 20 minutes. 

Matrigel was then aspirated, and cells were seeded at 100,000 cells per 

22mm coverslip (for live imaging) and 50,000 per 13mm coverslip (for 

fixed imaging). Cells were allowed to settle on coverslips for 10 minutes 

before addition of proliferation media. Alternatively cells were seeded 

directly into dishes for western blotting.  
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III. AV transduction: Upon reaching confluency, 1 to 2 days after seeding, 

cells were incubated with AV for 4 to 5 hours before changing to 

differentiation medium.   

IV. LV transduction: Lentivirus was introduced to cell cultures before 

seeding, and MyoD expression activated after seeding. Lentivirus was 

introduced by application to confluent cells at a concentration at 

8.6*10^8ptu/ml (MOI of 10). Cells were incubated with the lentivirus for 

24 hours and then grown in proliferation medium again until confluent. 

At this stage cells could be sub-cultured and seeded for investigations. 

Upon reaching confluency 0.1µM 4-OH tamoxifen (sigma) was applied to 

activate expression of MyoD. Cells were incubated with proliferation 

medium with tamoxifen for 24 hours and for a further 24 hours with 

differentiation medium of DMEM with 2% HS and tamoxifen. Fresh 

differentiation medium without tamoxifen was then applied. 

V. Differentiation: Differentiation medium was changed every 3 to 4 days, 

either complete changes of differentiation medium were made, or in 

some cases half of the medium was changed and half maintained. Cells 

were differentiated for a duration of 7 to 11 days whereupon cells were 

imaged or fixed for immunofluorescence assays. Three different 

differentiation media were tested: 

x 2% HS (containing DMEM with 2% HS and 1% P/S) 

x 1% HS (containing DMEM with 1% HS and 1% P/S) 

x SupM (containing DMEM supplemented with 0.05% BSA, 10 ng/mL 

EGF, 0.15 mg/mL Creatine 5 ng/mL Insulin and 1% P/S) 

3.3.2  Myoblast cell culture 

Control immortalised human myoblasts were received from the MRC biobank 

(biobank ID: i7403) produced at Institut Pasteur, Paris (Zhu et al, 2007). These 

cells were used between passage 4 and 12. Cells were grown in a proliferation 

medium of DMEM with 10% FBS and 1% P/S until confluent and differentiated in 

DMEM with 2% HS and 1% P/S for 7 to 10 days before imaging or fixing for 

immunofluorescence assays (see section 3.4.7). 
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The production of a greater proportion of multinucleated myotubes was 

supported by addition of 10mM β-D-arabinofuranoside (araC) during 

differentiation. AraC interferes with DNA production and therefore reduces the 

proportion of proliferating cells (myoblasts and fibroblasts) without affecting 

myotubes which have left the cell cycle.  

3.3.3   Primary neonatal cell culture 

P5 neonatal rats were sacrificed by cervical dislocation. The gastrocnemius and 

soleus were removed and placed in ice cold PBS. The PBS was then removed, and 

muscle was cut finely before digesting in an Eppendorf tube with 500uL digestion 

solution of 0.5mg/mL Collagenase and 3.5mg/mL Dispase and shaken vigorously 

for 50 minutes at 37oC. Digestion was inactivated by addition IMDM with 10% 

FBS and 0.1% gentamycin and myoblasts were purified by centrifugation. 

Undigested material was removed by centrifugation for 5 minutes at 70 RCF and 

then cells were extracted by centrifugation for 5 minutes at 340 RCF. The pellet 

was re-suspended in IMDM with 10% FBS and 0.1% gentamycin and strained 

through a 40µm mesh. The cells were then pre-plated for 45 minutes at 37oC to 

remove fibroblasts. Thereafter cells were centrifuged a final time for 9 minutes 

at 420rmp, and re-suspended in IMDM with 20% FBS and 1% CEE. Cells were 

seeded on 1% Matrigel Reduced Factor. Media was not changed for 2 to 5 days, 

until cells were approximately 80% confluent, and beginning to fuse. The 

proliferation medium was then removed and replaced with a differentiation 

medium of IMDM with 2% HS and 0.1% gentamycin. This medium was changed 

daily until cells were ready to image (typically after two days). 

 

3.3.4  Cell culture for drug model preparation  

The effects of treatment with low potassium and barium were tested in neonatal 

myotubes and in isolated single fibres, where treatment was applied both before 

and during imaging. The direct effects of gramicidin were also tested in neonatal 

myotubes. 
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For pre-treatment studies cells were incubated for one hour in medium 

containing 0.5mM, 1mM, 2mM or 5.3mM potassium, either with or without 

50µM barium. Cells were then incubated for a further three hours in normal 

conditions before imaging.  

The direct effects of drug treatment were studied by imaging while exposing cells 

to 0.5mM, 1mM, 2mM or 5.3mM potassium both in the presence and in the 

absence of 50µm barium and in the presence and absence of 0.1µM gramicidin 

while imaging. 

3.4 MICROSCOPY 

3.4.1 Confocal laser scanning fluorescence microscopy 

Confocal laser scanning microscopes increase optical resolution. The laser beam 

scans across a visual field in a series of lines. These microscopes feature a pinhole 

that is positioned in the confocal plane of the lens. The pinhole aperture can be 

adjusted to eliminate light from above or below the focal plane, ensuring that 

only light from the focal plane is detected. Depth can be achieved by scanning 

and combining information from several different planes. A collimator is 

introduced to achieve concentricity of the laser light on its path towards the 

specimen. Rotating mirrors allow for light to be directed between the dichroic 

mirror and the objective (not shown in figure below). A dichroic mirror is a mirror 

that can reflect or transmit light according to its wavelength, allowing for 

excitation light to be reflected toward the objective and emitted fluorescence to 

be transmitted back through the dichroic mirror toward the detection system. 

Any residual excitation light that is reflected back by the sample is reflected 

again by the mirror, preventing it from reaching the detectors. 

The detection system includes the pinhole aperture which allows light to pass to 

the detectors. Fluorescent light can be separated from reflected laser light by 

emission filters. Light reaching the detection system is amplified by a 

photomultiplier tube (PMT). PMTs detect photons emitted by the sample, 

amplify it around a million fold without introducing noise, and transform the 

light signal into an electrical one.  
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Figure 11: A confocal laser scanning fluorescence microscope. Light from the laser 

source is concentralised by a collimator and travels via a dichroic mirror toward the 

specimen. Fluorescence at the focal plane is directed toward the confocal pinhole where 

other sources of light can be excluded and the fluorescence is detected. 

Different lasers are used to detect fluorescence signals of different wavelengths.  

Cells were typically stained with Fluo-4 and TMRM, which emit fluorescence at 

wavelengths of 488nm and 555nm respectively. A transmitted light detector was 

also used in some cases to produce bright field images, in particular for 

confirming the presence of striations in single muscle fibres. 

3.4.2 Calcium imaging  

Fluo-4 is a labelled calcium indicator used to follow spatial dynamics of calcium 

signalling. Cells are loaded with the AM ester form of the indicator (Fluo-4, AM). 

The Fluo-4 molecules increase in fluorescence upon binding to calcium ions.  

3.4.3 Measuring mitochondrial membrane potential 

TMRM is a cell-permeant dye that accumulates in mitochondria of healthy cells 

as a result of the difference in electrical potential between the mitochondrial 

matrix and the cytosol. If mitochondrial membrane potential decreases, TMRM 

accumulation is reduced and the resulting signal becomes faint or disappears. 
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3.4.4 Plasma Membrane potential assays 

Changes in plasma membrane potential were studied in order to monitor the 

effects of the treatment with low potassium, barium and gramicidin. 

I. FluoVolt 

FluoVolt is a fluorescent sensor which acts by modulating photo-induced 

electron transfer via a synthetic molecular wire to a fluorophore (Miller et 

al, 2012). FluoVolt has an emission/excitation spectrum of 522/535nm. 

Neonatal cultures were grown as described above. Differentiation 

medium was removed and cells washed twice in recording solution 

before loading with FluoVolt for 30m minutes. FluoVolt was removed by a 

further two washes before imaging by confocal microscopy. Changes in 

membrane potential were followed upon challenge with 40mM 

extracellular potassium.  

II. FLIPR 

Changes in membrane potential upon treatment with low potassium and 

barium, was investigated using a Fluorescent Imaging Plate Reader 

(FLIPR). This dye, the FLIPR Membrane Potential Assay Kit (Molecular 

Devices) has a negative charge and thus enters the cell upon 

depolarisation following an inflow of positive ions which create an inward 

current. Hyperpolarisation on the other hand results in a decrease in 

fluorescence as positive ions flow out creating an outward current, 

followed by an outflow of the dye. A quenching dye is also included in the 

kit to reduce background fluorescence. There are two versions of the 

quenching dye, a red quencher and a blue quencher, and thus two 

versions of the assay kit – the “red” kit and the “blue” kit.  

Cells were grown and differentiated in a 96 well plate. Cells were bathed 

in HBSS with the membrane potential assay kit dye for half an hour 

before washing with 3 changes of HBSS without the dye. Cells were 

inserted into the FLIPR and control readings were collected for 10 

minutes. Solutions were then switched to a range of conditions and 
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further readings were taken for a duration of two hours – they were 

tested with 0.5, 1, 2 and 5mM potassium, both in the presence and in the 

absence of 50µM barium. Finally solutions were returned to control 

conditions and recordings were taken for a further 30 minutes. This 

investigation was repeated with both the "blue" and the "red" versions of 

the plasma membrane potential assay kit. 

3.4.5 Live cell imaging 

All fluorescence images were obtained using a Zeiss (Oberkochen, Germany) 700 

confocal laser scanning microscope with a 10×, 20x or 40× objective. Fluo-4, AM 

fluorescence was excited using a 488nm argon laser line, TMRM using 555nm 

and Hoechst using 405nm. Emitted light was collected at wavelengths of 510-

553nm, 559-700nm and 426-700nm respectively. Fluo-4 AM was used for 

imaging intracellular calcium, TMRM as a mitochondrial membrane potential 

stain and Hoechst was used to stain the nuclei. 

During live cell imaging, cells were kept in buffered physiological saline 

(recording solution) which consisted of 156mM NaCl, 3mM KCl, 2mM MgSO4, 

1.25mM KH2PO4, 2mM CaCl2, 10mM D-Glucose and 10mM HEPES, and this 

solution was adjusted to pH 7.4 using NaOH or HCl.  

Cells were loaded in the buffered physiological saline with TMRM and/or Fluo-4, 

AM for half an hour before imaging. TMRM was added both to the loading and 

the recording solutions at 25nM whereas Fluo4-AM was added at 5μM to the 

loading solution only, and washed off before imaging.  

3.4.6 Live cell stimulation 

Calcium release in response to several different stimuli was used to monitor 

calcium handling. 

I. High potassium: High potassium leads to increased cytosolic calcium by 

depolarising the cell. Potassium was applied at 40mM. 
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II. Caffeine: Caffeine is an agonist for RyRs on the SR, and potentiates the 

release of calcium from the SR to the cytosol. Caffeine was applied at 

10mM or less. 

III. Electrical stimulation: A lid with two electrodes was placed on the culture 

dish and a series of electrical stimuli applied. The stimuli were as follows 

unless stated otherwise. Stimuli from 20 V up to 60 V were given as five 

100ms pulses at a 1 Hz frequency increasing in 10 V increments with a 10 

second gap in between each subsequent voltage. 

 

3.4.7 Fixed cell imaging – Immunofluorescence 

The presence and localisation of several different proteins was determined by 

immunofluorescence. The following antibodies were used to test for proteins: 

anti-fast skeletal myosin, anti-MyoD, anti-CaV1.1, anti-desmin and anti-IRK2.1. 

Cells were seeded on glass coverslips and cultured as usual until ready for 

imaging. They were then fixed by washing twice with PBS and incubating at room 

temperature with 4% [W/V] formaldehyde for 10 minutes. Formaldehyde was 

removed by washing three times with PBS. Cells were incubated for 5 minutes 

and washed three times over 10 minutes with a permeabilising solution of 0.2% 

[V/V] Triton X-100 in PBS. At this point the antibody was added at the 

concentration indicated by the manufacturer in an antibody dilution media of 

PBS with 3% BSA and 0.2% Triton X-100. 50 μL were added per coverslip and 

incubated for 60 minutes. The antibody solution was removed by four changes of 

the permeabilising solution over 10 minutes, and labelled secondary antibody 

was added in the antibody dilution media at the concentration indicated by the 

manufacturer. A goat anti-mouse IgG conjugated to alexa Fluor 555 was used as 

a secondary antibody for both myosin and MyoD. As well as the labelled 

secondary reagent, Phalloidin conjugated to Alexa Fluor 488 was added to some 

coverslips at this point for imaging actin filaments. 50μL of secondary solution 

was added per coverslip, and coverslips were incubated for 30 minutes in the 

dark. The secondary solution was removed by three changes of permeabilising 

solution over 5 minutes, and Hoechst was added to the last wash at a 
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concentration of 5μg/mL and incubated for 5 minutes. After one final wash, 

coverslips were mounted onto coverslip slides using Fluoromount mounting 

medium and sealed with clear nail varnish. 

As with live cell imaging, all immunofluorescence images were obtained using a 

Zeiss 700 confocal laser scanning microscope with a 10×, 20x or 40× objective. 

3.5 WESTERN BLOTTING 

Expression of proteins can be tested by Western blotting. Protein from cells is 

extracted and separated out in bands along a gel according to size. The protein 

bands are then transferred to a nitrocellulose membrane and incubated with a 

primary antibody that targets the protein of interest. An enzyme labelled 

secondary antibody which associates with the primary antibody is applied. A 

substrate for the enzyme is then added to produce a detectable product. 

Relative amounts of the protein of interest can then be detected in each band. 

The protein identity is confirmed by the position it takes along the band, which is 

related to the protein size. 

For Western blotting cells were differentiated as described in section 3.3.1. 

Following trypsinisation cells were spun down and re-suspended in PBS, and 

spun again in order to remove supernatant. RIPA lysis and extraction buffer and 

PMSF protease inhibitor were added to the pellet (at a ratio of 100:1) and 

triturated and left on ice for 25 minutes. The solution was then spun at top speed 

for 5 minutes to remove solubilised protein (supernatant retained). 

At this stage the protein content of each sample was tested so that equal 

amounts of protein could be added to each well of the gel. A BCA Protein Assay 

Kit was used for this test, according to manufacturer’s instructions. 20 µg of each 

sample was mixed with 10µL loading dye (RIPA buffer with 5ul β-

Mercaptoethanol and LDS sample buffer) and put in a thermomixer at 800 RPM 

at 99oC for 5 minutes. The samples were then added to wells of a 4-12% 

polyacrylamide gel in a solution of MOPS SDS running buffer with a protein 

ladder in one of the wells. The gel was then run at 100 volts for approximately 
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two hours, until the dyes moved to the end of the gel. Proteins from the 

polyacrylamide gel were transferred to a PVDF membrane by placing them 

between two sets of filter papers and electrodes and applying an electric field of 

20 volts for one hour, in a solution of transfer buffer with 20% methanol. 

Membrane used in western blotting have a high affinity for proteins. Non-

specific sites were therefore blocked by rocking in a solution of PBS with 0.01% 

TWEEN 20 and 5% milk for one hour. Primary antibodies were then applied at a 

dilution indicated by the manufacturer in the milk buffer and rocked overnight. 

Primary antibodies used in this study include an IRK2.1 antibody and a TFAM 

antibody.  The membrane was then washed in PBS with 0.01% TWEEN 20 for 5 

minutes, changing solution twice. Before applying secondary antibodies (at a 

dilution indicated by the manufacturer) in the PBS/TWEEN solution and 

incubated at room temperature for one to two hours and washed before 

developing.  

The ECL western blot detection kit was used to view bands on the membrane in a 

ChemiDoc machine. The membrane was then washed again and treated with 

another primary antibody anti GAPDH as a loading control to determine relative 

changes in the primary antibody of interest in the different bands. 

3.6 COMPLEX ACTIVITIES 

Complex activities were analysed as described in Hargreaves et al (1999). Briefly, 

muscle biopsies were homogenized on ice, using a pre-chilled glass hand-held 

homogenizer. Briefly, the biopsies were homogenized 1:9 (w/v) in: 

320mMol/L, 1mmol/L ethylenediamine tetra acetic acid dipotassium salt, and 

10mmol/L Trizma-base, pH 7.4. 

Mitochondrial respiratory chain enzyme and citrate synthase (CS)  activities were 

determined in muscle homogenates which had been subjected to three cycles of 

freeze thawing to lyse the mitochondrial membranes  by spectrophotometric 

enzyme assay as described in the study by Duberley et al (2013).  

Complex IV (cytochrome c oxidase; EC 1.9.3. 1) activity was measured by the 

potassium cyanide sensitive oxidative of reduced cytochrome c at 550nm. CS (EC 
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2.3.3.1 ) activity was determined by the formation of 5-thio-2-nitrobenzoic 

following the incubation of tissue homogenate with acetyl-CoA, oxaloacetate and 

5,5¢-Dithiobis-(2-nitrobenzoic acid). 5-Thio-2-nitrobenzoic absorbs at 

412nm.  Complex IV activity was expressed as a ratio to CS (mitochondrial 

marker enzyme) activity to account for  the mitochondrial  enrichment of the 

sample (Selak et al, 2000). 

Complex I (NADH:ubiquinone reductase; EC 1.6.5.3) activity was measured  by 

the rotenone sensitive oxidative of NADH at 340nm. Complex II/III (succinate: 

cytochrome c reductase; EC 1.3.5.1 + EC 1.10.2.2) activity was measured 

by antimycin A sensitive succinate dependent reduction of cytochrome c at 

550nm. 

3.7 FLOW CYTOMETRY 

Flow cytometry or Fluorescence Activated Cell Sorting (FACS) can be used to 

count and analyse thousands of particles at a time, and as such may be a useful 

tool for assessing cell fusion. Each particle (in this case each cell) that passes 

through the machine, is exposed to a laser beam and causes the light from this 

beam to be refracted. Some of the light is refracted a little but still moves in a 

forward direction and is detected as “forward scattered light”. Some light is 

refracted more so that it hits detectors that are orthogonal to laser beam and 

such light is considered as “side scattered light”. Light that is not refracted is 

blocked by an obscuration bar and thus not detected. The forward scattered light 

provides an indication of overall cell size while the side scattered light is 

associated with internal cell complexity. In addition fluorescence staining can be 

quantified per particle. Flow cytometry is used here to detect PI fluorescence 

staining per particle. This indicates the relative quantity of nuclear material 

present in each detected particle, such that particles with more PI staining are 

assumed to contain a greater number of nuclei. 
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Figure 12: A flow cytometer. In a flow cytometer, cells are delivered single file into a 

chamber where they cross the path of a laser beam. Light from the beam is detected 

according to the manner in which it is scattered, where more sideways scattered light is 

correlated with internal cell complexity, and forward scattered light with cell size. Light 

that is not scattered at all is obscured. 

FACS was used to quantify cells with single and those with multiple nuclei. Cells 

were stained in a solution of 2, 10 or 20 μ g/mL propidium iodide (PI), a marker 

of nuclear DNA, and passed through the FACS machine (BD Accuri, Michigan). PI 

is commonly used in cell cycle analysis to quantify cells at different stages of the 

cell cycle. The DNA mass per particle indicates the number of copies of DNA per 

cell and can be used to determine whether the cell is in G0/1 phase (where DNA 

is in use and thus not replicated), G2/M phase (where DNA is doubled) or in S 

phase (where DNA is partially replicated).  

Cell preparation: Cells were first cultured as described above, and then 

trypsinised as for subculture. They were then centrifuged and the supernatant 

was discarded and cells re-suspended in PBS (while triturating to avoid clumping 

of cells). After centrifuging (5 minutes at 300 g) again and re-suspending in 0.5mL 

PBS, cells were added drop wise to 4mL of cold (-20oC) 70% ethanol. This was 

done while vortexing to ensure that cells did not aggregate during fixation. Cells 

were stored for a minimum of 2 hours at -20 before centrifuging (5 minutes at 

300 g) and discarding ethanol. Cells were re-suspended in 5mL PBS and 

centrifuged one last time (5 minutes at 200 g) before being re-suspended in 1mL 

PI staining solution and incubated at 37oC for 15 minutes. 
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Cells were detected as they passed through the FACS machine. The distribution 

of cell size and density was determined by detecting forward and side scatter of 

light. PI levels were determined using an FL2 laser (Hamamatsu, Japan). 

3.8 IN VIVO STUDIES 

In vivo investigations were performed in order to test the Draggen model for 

similarity to the human PP phenotype. This was part of a study performed at 

Harwell to verify the characterisation of their model. Tension tests indicate 

muscle strength, motor neuron count indicates condition of the nervous system, 

and fatigue investigations test whether or not endurance is affected.  

3.8.1 Mouse preparation 

70 to 80 week old mice were used. Mice were anaesthetised with chloral 

hydrate, at 1 μ L/0.1g mouse, which takes approximately 2 minutes to take 

effect. The responsiveness of each mouse was assessed by monitoring flinching 

(when its toe was pinched) or blinking (when its eye was stoked). If a response 

was seen, chlorohydrate was topped up at a quarter of the original dose. Once 

anaesthetised, the animal’s lower body was shaved, and its hind limbs were 

skinned. The tibialis anterior (TA) and flexor hallucis longus (FHL) tendons were 

then loosened, the EHL was cut, and the TA tendon was tied just below the TA 

muscle. The extensor digitorum longus (EDL) was then exposed and tied in a 

similar manner. The sciatic nerve was exposed and cut off, and the muscles and 

nerve were protected with moist cotton wool. The mouse was secured to a 

board, and the TA and EDL threads were attached to gauges while the sciatic 

nerve was connected to an electrode 

3.8.2 Tension tests 

In order to check if muscle strength was affected, the level of tension was 

compared in Draggen and control mice. The muscle was stimulated via the sciatic 

nerve, and contraction was quantified via the gauges which were connected to 

electronic transducers. An initial tetanic stimulation relaxed the muscle, and then 

the tension was adjusted manually to achieve maximal twitch response. Tension 
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responses to a single pulse and to tetani at 40, 80 and 100 Hertz were recorded 

for TA and EDL. 

3.8.3 Motor neuron count: In order to monitor changes in cell signalling, the number 

of motor neurons was compared in Draggen and control mice. The number of 

motor neurons that innervate the EDL was quantified by changing the voltage in 

small increments, while continually stimulating the muscle. Because the muscle 

contracted proportionally to the amount of motor neurons stimulating it, the 

amount of bands that resulted could be taken as an estimate of the number of 

motor neurons that were stimulated. Therefore, the number of motor neurons 

could be estimated. Control mice typically have near to 30 bands corresponding 

to 30 motor neurons connecting the sciatic to the EDL.  

3.8.4 Fatigue tests: In order to check if the time taken for muscle to fatigue is affected, 

changes in response to repeated stimuli were monitored in Draggen and control 

mice. Tetanic responses to repeated stimulations were then recorded and 

quantified. Stimulations were produced at 40 Hz, each lasting 251ms, at a rate of 

1 cycle per second for 180 seconds. 

3.9 EX VIVO STUDIES 

3.9.1 Tissue isolation: P20 mice were euthanised, and hind limbs were sprayed with 

70% ethanol. The flexor digitorum brevis (FDB) is a superficial muscle in the sole 

of the paw arising from the tendon of the plantaris. The FDB was isolated in PBS 

with 10% P/S (dissecting solution) and transferred to a tube containing 0.2% type 

I collagenase. The tissue was incubated at 37oC for 90 minutes with gentle 

agitation. It was then incubated in DMEM with 10% FBS and 1% P/S for 30 

minutes. The muscle was then carefully triturated using a polished thin-bore 

Pasteur pipette in order to separate individual fibres directly into 35mM 

FluoroDish (World Precision Instruments, FD35) dishes loaded with 10% matrigel 

reduced factor. Fibres were allowed to settle in a maintenance medium of 20% 

serum replacement solution in DMEM with 1% P/S.   

 



72 
 

3.9.2 Single fibre imaging 

Single fibres were imaged after 24 hours, by confocal microscopy. Mitochondrial 

membrane potential was studied by confocal microscopy using TMRM and 

analysed using Fourier transform techniques (see section 3.9.3). Calcium 

handling was followed during electrical stimulation (as described in section 3.4.6 

III.) of the fibres loaded with Fluo-4.           

3.9.3  Fourier transform analysis 

A Fourier transform calculates the amplitudes and frequencies of the different 

components of a signal. In an image, this gives an analysis of frequency 

distributions in space and intensity, generating a quantitative analysis of 

repetitive patterns in the image. The Fourier tranform image contains all the 

information required to make the original image, such that repeating a Fourier 

transform of the image will reproduce the original image. Therefore certain 

components of the original signal can be removed from the transformed signal, 

and the Fourier transform repeated in order to produce the original image with 

the correlating components missing. In this way the the subsarcolemmal 

mitochondria can be removed to produce an image of the intermyofibrillar 

mitochondria, or vice-versa (see below). Fourier transform has been used to 

analyse TMRM staining in muscle in other work, although using different 

methodology, and with different aims (Venable et al, 2013). 

Mitochondria can be found in muscle fibres in two different subcellular 

populations, one that runs along the fibre’s striations, called the subsarcolemmal 

mitochondrial population, and another that runs along the length of the fibres, 

which is referred to as the intermyofibrillar mitochondrial population (Smith et 

al, 2013). These subcellular populations were distinguished by Flourier transform 

analysis. 

Fourier transform analysis was carried out using Image J. The Fourier transforms 

had strips at 90o to each other, representing periodic signals in the original 

figures. Blocking out the strip correlating to intermyofibrillar mitochondria and 

repeating Fourier transform resulted in a figure showing the subsarcolemmal 
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mitochondria only, and vice-versa. Figures (A) and (B) show a sample original 

image of a single fibre with TMRM staining, and the associated Fourier 

transform. Figures (C) and (D) show the Fourier transform with the area 

associated with subsarcolemmal mitochondria blocked off, and the resulting 

image of intermyofibrillar mitochondrial. Conversely, figures (E) and (F) show the 

Fourier transform with the area associated with intermyofibrillar mitochondria 

blocked off, and the resulting image of subsarcolemmal mitochondrial. 
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Figure 13: Fourier transform analysis. Example of Fourier transform analysis of 

mitochondrial structure. (A) Original TMRM staining of a muscle fibre from FDB muscle 

of a Dgn mouse. (B) The transformed image. (C) Areas of the transform that correspond 

to subsarcolemmal mitochondria are obscured. (D) Intermyofibrillar mitochondria, 

produced by reverse-transform of C. (E) Areas of the transform that correspond to 

intermyofibrillar mitochondria are obscured. (F) Subsarcolemmal mitochondria, 

produced by reverse-transform of E. 
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C D 
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3.10 ELECTROPHYSIOLOGY 

Fresh patch pipettes were made on the day of recording using borosilicate glass 

capillaries. Thick walled capillaries were used for whole cell patching (GC150F-

7.5, Harvard Apparatus) and thinner ones with a filament for sharp electrode 

patching (30-0056F, Harvard Apparatus). Capillaries were polished briefly with a 

Bunsen burner to smooth ends and ensure they did not damage the electrode 

holder. The patch-pipettes were then fabricated in an electrode puller (Narashige 

PC10, Tokyo, Japan), producing thin tipped electrodes of 4-7MΩ for whole-cell 

recordings and 22-30 MΩ for sharp electrode recordings. 

Cover slips were positioned in the centre of the chamber. An external solution 

was applied to the bath by gravity driven perfusion. The external solution 

contained 125mM NaCl, 5mM/4mM/2mM/1mM KCl, 1.8mM CaCl2, 1mM MgCl2, 

25mM glucose and 10 HEPES, (pH 7.4, NaOH). Pipettes were filled with a filtered 

solution (0.2µm) containing 150mM Na Gluconate, 10mM HEPES, 10mM EGTA, 

1mM CaCl2, 1mM MgCl2, 5mM Glutathione and 1mM ATP/ (pH 7.2 with NaOH). 

Currents were recorded at room temperature. 

An isolated yet anchored cell was selected and approached by the electrode 

while applying positive pressure (to remove dust and cellular debris from the 

pipette tip). The pipette was moved down till contact was made with the cell, 

and negative pressure was applied to draw the membrane onto the patch 

pipette. Once a tight electrical seal had been achieved (cell attached mode), 

further negative pressure was applied, along with short pulses of suction. This 

ruptured the membrane allowing direct electrical access to the inside of the cell 

(whole-cell mode).  

The whole-cell capacitance and series resistance were estimated for whole cell 

investigations via the capacitance transients produced by a 5mV test pulse and 

the series resistance compensation circuit set to 80% compensation, and a 

computer controlled voltage-clamp protocol was initiated, where the membrane 

voltage was ramped (using WinWCP: Strathclyde Electrophysiology Software 
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V4.4.1.) at a rate of 100mV/s. After observing several control sweeps, control 

solution was replaced by a solution with low potassium, to test if this produced a 

change in the I-V relation of the cell. For Sharp electrode investigations 

recordings were made at a constant membrane potential value (Vm) which was 

achieved by setting current at zero and recording voltage on the screen. After 

achieving a seal, the cell was allowed to stabilize for 15 minutes, and thereafter 

each condition was allowed to equilibrate for at least 5 minutes before taking a 

reading. 

3.11 DATA ANALYSIS 

Data analysis was performed using Image J for live cell imaging and using C-Flow 

Plus for FACS investigations. Fixed, stained cells were counted directly while 

imaging. Data were then analysed using Microsoft Excel 2010 and GraphPad 

Prism 7. Statistical significance of the differences between two sets of results was 

assessed by unpaired Student’s t-test. Where more than two sets of results were 

being compared I used analysis of variance (ANOVA).  One-way ANOVA tests 

were carried out where one factor was being compared and two-way where two 

factors were compared. Groups which were significantly different according to 

the ANOVA test were identified by post hoc Tukey’s test. Error bars represent 

the mean +/- standard deviation (SD) or standard error of mean (SEM). 

Differences were considered to be statistically significant if the Student’s t-test or 

ANOVA test produced a probability value of less than 5% (P < 0.05). 
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4. RESULTS 
4.1  MUSCLE DISEASE INVESTIGATION USING FIBROBLAST DERIVED MYOTUBES 

At the Institute of Neurology we have access to patients with PP and thus have the 

opportunity to harvest patient specific skin biopsies. These provide a resource for 

investigating the effects of a range of mutations responsible for PP and other muscle 

diseases. However the PP mutations are expressed in skeletal muscle whereas the skin 

biopsies provide fibroblasts. In this chapter I describe how I optimised the process of 

generating myotubes from fibroblasts, and, to that end, developed methods of 

monitoring the efficiency of myotube formation. 

4.1.1 Evaluation of transduction with MyoD using lentivirus or adenovirus 

Investigations were carried out with both control and patient derived fibroblasts. Patient 

cells were taken from a 64 year old male with an M1592V mutation who experienced 

symptoms of HyperPP. Myoblasts were produced by viral application of MyoD-ER in order 

to transfect the fibroblasts with MyoD. Two viral vectors, an adenovirus and a lentivirus, 

were used to deliver the transcription factor MyoD. The adenoviral vector was acquired 

from The Native Antigen Company (Ad5.f50.AdApt.MyoD).  The lentiviral vector was 

prepared as described in methods section 3.2.1 and in Kimura et al (2008). 

The efficiency of transfection was measured by immunofluorescence using an anti-MyoD 

antibody to stain cells which were then assayed using confocal microscopy.  Cells were 

fixed and stained three days after application of the virus when MyoD expression reaches 

its peak (Fujii et al, 2006). All nuclei were labelled with Hoechst, I then counted the MyoD 

positive nuclei as a fraction of the total number of nuclei to determine the percentage of 

successfully transfected cells. An adenovirus (AV) was first tested with poor results, 

yielding a transfection efficiency of only 6.2% (n=4; MyoD expression was measured in 

100 cells per preparation for four separate preparations). The lentiviral (LV) construct was 

then tested with improved results, with a transfection efficiency of 31.7% (n=4; MyoD 

expression was measured in 100 cells per preparation; four separate preparations were 

tested). I applied the lentiviral vector onto fibroblasts once they were all fully adherent, at 

approximately 90% confluence and 0.1µM tamoxifen at full confluence.  Although the 

proportion of MyoD expressing cells was improved when using the LV compared to the 
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AV, it was still low. Other methods of improving efficiency could include transfection at 

different confluency of cells, or with higher concentrations of the virus or the tamoxifen. 

Indeed 1mM Tamoxifen has been successfully used in similar protocols, producing 

cultures of predominantly myogenic cells (Tedesco et al, 2012; Gerli et al, 2014; 

Maffioletti et al, 2015). 

   

Figure 14: MyoD expression – with adenovirus (AV) or lentivirus (LV). (A) Sample 

micrograph of myocytes stained with a MyoD antibody (green) and with Hoechst (blue). 

Cells were fixed three days after application of AV. (B) Scatter plot showing the mean 

relative levels of MyoD expressing cells ± SD three days after treatment with AV (6.2 ± 3.7 

%) or activation of LV (31.7 ± 5.9 %). Error bars indicate the standard deviation. Cells were 

imaged using a Zeiss 700 microscope with a 20x objective. N = 5; 100 cells were counted 

per preparation and five preparations were tested per condition. The difference in MyoD 

expression is statistically significant. ****P < 0.0001, unpaired t-test. 

 

4.1.2 Determining the optimal culture conditions for differentiation 

In subsequent experiments LV was used as the choice vector for transduction. I then 

sought cell culture conditions that would encourage higher levels of cell differentiation. 

Upon removal of the virus several different culture conditions were assessed in order to 

optimise myoblast to myotube differentiation. Although 2% horse serum (HS) is 

conventionally used for differentiation of myoblasts to myotubes, it has been argued that 

serum is not the most effective method for promoting this differentiation (Shoko et al, 

A B 
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1999). HS and serum free media were therefore compared. Cells were cultured either in 

DMEM with 2% HS or in SupM, a serum free medium supplemented with various growth 

factors to encourage differentiation. SupM includes insulin (Florini et al, 1989) and 

creatine (Deldicque et al, 2007) to encourage differentiation. It also contains BSA and EFG 

for the maintenance of myotube cultures (St Clair et al, 1992) and glutamine which can 

help to rescue suppressed differentiation (Girven et al, 2016).  

In addition, a collaborator observed that retaining half of the medium by only ever 

replacing half of it at a time, improved differentiation of her neonatal myocyte cultures 

prepared using CD-1 and C57BL-6 mice (Falcone, personal communication). Such a 

manipulation may be effective due to retention of growth factors that are important for 

differentiation within the medium. Therefore, the benefit of changing half rather than all 

of the medium in each well during differentiation was assessed for the fibroblast-derived 

myotubes (figure 16 and 20). Growth factors that are known to influence differentiation 

include fibroblast growth factor (FGF) and transforming growth factor-β (TGF-β) which 

inhibit differentiation, and insulin or insulin like growth factors (IGFs) which stimulate 

differentiation (Florini et al, 1989). Retaining part of the medium likely allowed for more 

IGFs to be retained and thus for differentiation to be promoted. HS does contain an IGF 

(Prosser and McLaren, 1992), and the SupM was supplemented with insulin, so both 

media already provided cells with this aid to differentiation. Nevertheless retention of the 

medium might allow cells to further accumulate IGFs and other factors that aid 

differentiation. 

In order to identify conditions that were optimal for production of myogenic cultures, 

cells containing three or more nuclei were considered to be myotubes, and indeed such 

myotubes did form during the treatments detailed above.  

As demonstrated in figure 14B, 31.7% of cells transduced with the LV expressed MyoD. 

Transfected cells were initially grown in proliferation medium, and upon reaching 

confluency, were transduced with tamoxifen. 24 hours after application of tamoxifen the 

proliferation medium was replaced with a differentiation medium. I tested whether the 

level of MyoD expression could be further improved by using SupM as a differentiation 

medium rather than 2% HS for the first few days of differentiation; however when SupM 
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was used instead of the HS medium, only 11% of cells expressed MyoD rather than 32% 

with HS (figure 15). 2% HS medium was therefore the choice differentiation medium 

during tamoxifen aided activation of MyoD expression. Transfection and differentiation 

methods using LV and AV are outlined in table 5, page 82.  

 

Figure 15: MyoD expression following treatment with supplemented medium (SupM) or 

horse serum (HS). Cells were fixed three days after activation of the lentivirus using 

tamoxifen. Cells were stained with a MyoD antibody and with Hoechst. This figure shows 

relative levels of MyoD expressing cells following three days of culture in either SupM 

(11%) or 2% HS medium (32%). N = 1; 100 cells were counted per preparation with one 

preparation monitored per condition, where each condition was tested once. 

 

Taking data from figure 15 into account, cells were treated with 2% HS for the initial 3 

days following tamoxifen application in order to encourage higher levels of MyoD 

expression. Following these three days, cells were cultured for a further seven days 

before fixation. I tested what culture conditions encourage the highest levels of 

differentiation during these seven days. I tested four different conditions; complete 

changes of SupM, complete changes of HS medium, part changes of SupM in order to 

retain half of the medium and part changes of HS medium. The level of differentiation 

was assessed by counting the number of cells expressing Myosin. 100 cells were observed 

per condition. Those treated with complete changes of the SupM had the highest 

proportion of Myosin expressing cells upon fixation (29%), compared to less than 20% for 

each of the other conditions (figure 16). 

0

5

10

15

20

25

30

35

SupM 2% HS

M
yo

D 
ex

pr
es

sio
n 

da
y 

3 
(%

 c
el

ls)
 



81 
 

 

 

Figure 16: Myosin expression. Cells were cultured in 2% HS for the initial three days 

following application of tamoxifen (where tamoxifen was used for activation of the 

lentivirus-delivered MyoD expression). Cells were then differentiated for seven days with 

either supplemented medium (SupM) or with 2% horse serum (HS). In addition, during 

treatment either half medium was replaced at a time (Half) or all of the medium (Comp). 

(A) Sample micrograph of fixed stained cells that were treated according to a “SupM, 

Half” protocol. Myosin was detected by antibody staining (green), actin by phalloidin 

staining (red) and nuclei with Hoechst (blue). Myosin was detected using a mouse anti-fast 

skeletal myosin antibody (SIGMA, M1570) (B) Bar graph showing relative levels of myosin 

expression under the four different conditions. N = 1; 100 cells were counted per 

preparation with one preparation monitored per condition, where each condition was 

tested once.  

0

10

20

30

SupM, Half 2% HS, Half SupM, Comp 2% HS, Comp

M
yo

sin
 e

xp
re

ss
io

n 
da

y 
10

 (%
 c

el
ls)

 

● Myosin  
● Nuclei (Hoechst) 
● Actin (Phalloidin) 

A 

B 



82 
 

In cases where SupM was not used, the proportion of myosin expressing cells (figure 16B) 

is lower than the proportion of MyoD expressing cells (figure 15). This suggests that MyoD 

negative cells have a proliferative advantage over MyoD positive cells. It has indeed been 

observed that MyoD has a negative effect on proliferation (Olson et al, 1992). This effect 

was rescued in cultures that were treated with SupM following the 3 days of HS 

treatment. It may be that factors in the SupM rescue cultures from the negative effects of 

MyoD. Together, figures 15 and 16 above suggest that myotube formation was most 

efficient when HS was used for the first three days (figure 15) followed by complete 

medium changes of SupM every 2-3 days (figure 16). This treatment protocol is 

summarised below in table 5, alongside the protocol used when transducing with the 

adenovirus. 

 

AV LV 

Pre-proliferation 
step  -   

Incubate cells that are 90% 
confluent in LV for 24 hours, then 
grow and subculture according to 

need 

Proliferation 
Seed cells and grow in 10% FBS until confluent, changing medium 

every 1-2 days 

Viral 
transduction 

Incubate in 10% FBS with AV for 
4-5 hours 

Incubate in 10% FBS with 0.1µm 
4-OH tamoxifen for 24 hours 

Further 
transduction   -  

Incubate in 2% HS with 0.1µm 4-
OH tamoxifen for further 24 hours 

Differentiation Change to 2% HS 

Further 
differentiation 

After 3 days change to SupM and 
change it every 2-3 days 

After two days change to SupM 
and change it every 2-3 days  

Test Test after 7 to 10 days 

 

Table 5: AV and LV transduction. The table charts two different protocols for transducing 

fibroblasts with MyoD and differentiating the transduced cells into myotubes. One 

approach uses an adenoviral vector (AV) and the other a lentiviral vector (LV). 
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Expression of muscle specific proteins was recorded in order to confirm that the 

fibroblasts were truly converting to a myoblast phenotype. Figure 17 below shows cells 

stained with SERCA1-ATPase. 

 
 

Figure 17: Myotube differentiation. Micrograph showing nuclei (blue; Hoechst) and 

SERCA1 ATPase (red; antibody staining). White arrows indicate multinucleated cells. The 

culture contains a mixed population of fibroblasts and myotubes derived from fibroblasts, 

following transfection with a LV to deliver MyoD to cells. Cells were cultured in 2% HS for 

three days followed by SupM for a further seven days before fixation. Cells were imaged 

using a Zeiss 700 microscope with a 40x objective. 

 

Staining of the muscle specific protein SERCA1 ATP-ase, along with Hoechst (figure 17) 

and of myosin (figure 16A) confirm that treated cells were fusing and developing at least 

some muscle characteristics.  

 

4.1.3 Culture conditions for optimal functional differentiation 

Having established the optimal culture conditions with regard to expression of myogenic 

factors, I investigated how these culture conditions influence functional differentiation. 

The functional differentiation was assessed by monitoring how calcium handling was 

influenced. Although myoblasts display minor calcium fluctuations in response to 

depolarisation, myotubes characteristically display larger and faster calcium fluctuations 
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than myoblasts (Morabito et al, 2010). I found a good correlation between culture 

conditions that promoted successful expression of myogenic factors and those that 

promoted successful functional differentiation. 

Cells were loaded with Fluo-4 as the AM ester, and images were acquired by fluorescence 

microscopy using a confocal microscope. Cells were stimulated with 40mM potassium in 

order to induce cell membrane depolarization. This develops because resting 

conductance is predominantly potassium selective, and the potassium equilibrium 

potential thus largely dictates the resting membrane potential. Initially there is a high 

concentration of potassium inside relative to outside of the cell and adding potassium to 

the extracellular solution reduces the outward flow of potassium ions. This shifts the 

potassium equilibrium potential in a positive direction sufficient to reach the threshold 

level for activation of voltage gated sodium and potassium channels.  In a separate set of 

experiments cells were stimulated with 10mM caffeine, which acts as an agonist for the 

RyR and thus triggers calcium release from intracellular stores. 

The dynamics of the calcium transients were monitored, in particular the rise time 

constant, the recovery time constant and the peak fluorescence levels reached.  Results 

presented in this section indicate conditions that promoted the largest fluctuations of 

cytosolic calcium. These were treatment with 2% HS for three days following viral 

transduction, followed by culture in the SupM for a further seven days. 
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Figure 18: Response to stimulation with 40mM potassium. An example of a response to 

application of 40mM potassium in myotubes derived from patient fibroblasts (MRC 

Biobank ID: L937/1264F). (A) Time line of calcium fluctuations in six cells. Cells were 

initially imaged for 20 seconds without any manipulation in order to identify any 

spontaneous activity. 40mM potassium was applied at 21 seconds as indicated, resulting 

in a rise in cytosolic calcium. Calcium concentration was determined by Fluo-4 

fluorescence and values were normalised relative to the baseline levels. (B) Micrograph of 

myotube during the baseline period as indicated. (C) Micrograph of myotube at the peak 

of the response. Cells were imaged using a Zeiss 700 microscope with a 40x objective 
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There is much variability in the cytosolic calcium levels reached during a calcium 

transient, as demonstrated in figure 18A. Imaging groups of cells, such as those in figure 

18 allows for trends in calcium handling to be measured, however it is also important to 

minimise such variance in order to detect significant differences between control 

preparations and those carrying PP mutations. I worked on optimising culture conditions 

because healthier cultures display more uniform responses. 

 

I tested whether differentiation in different media affect the function of the resultant 

cultures. In figure 19 I compare the use of SupM and HS medium between days 3 and 10 

of differentiation. Results indicate that using SupM rather than HS medium during 

differentiation does not have a statistically significant effect on peak cytosolic calcium 

levels reached in response to the application of 40mM potassium, on rise time or on 

recovery time (figure 19).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



87 
 

 

Figure 19: Calcium handling in myotubes treated with horse serum or supplemented 

medium. Analysis of calcium handing in myotubes derived from patient fibroblasts (MRC 

Biobank ID: L937/1264F). Cytosolic calcium was detected by confocal imaging of Fluo-4. 

(A) Scatter plot showing peak cytosolic calcium following application of high potassium 

(40mM); peak is given relative to a baseline of one. Mean ± SD values are indicated for 

cultures treated with 2% horse serum (1.159 ± 0.8842) and for cultures treated with the 

supplemented medium (2.151 ± 0.251) (B)  Scatter plot showing the rise and recovery time 

constants for the increase and decrease of cytosolic calcium in the cells. Mean ± SD values 

are indicated for the rise time (14.8 ± 9.935) and the recovery time (18.2 ± 15.1) of 

cultures treated with 2% horse serum and for the rise time (18.33 ± 9.866)  and the 

recovery time (24.17 ± 21.52) of cultures treated with the supplemented medium. 

Differences in peak, rise time and recovery time are not statistically significant. Unpaired 

Student’s t-tests, p =  0.11 for peak, and p > 0.6 for rise and recovery times. N = 3; five 

cultures were analysed for 2% HS treated cells and three for SupM treated cells. Between 

three and six cells were analysed per culture.  

 

Although comparison of differentiation in SupM and HS medium does not highlight any 

clear differences in calcium handling, I did find that cultures treated with SupM expressed 

higher levels of myosin (figure 16). I therefore had reason to believe that SupM might 

improve myogenicity. Myosin expression was only improved in cultures treated with 

complete changes of medium (figure 16). I went on to investigate whether retaining half 

of the medium during culture in SupM also improves physical characteristics of 

differentiation.  As indicated in figure 20, peak relative fluorescence, rise time constant 

and recovery time constant were not significantly affected by retention of medium during 

culture. It may be that the increased level of growth factors achieved by retaining part of 

A B 
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the medium was not effective, because factors such as those that would be retained in 

the medium are already present in the SupM. 

                                                                        

Figure 20: Calcium handling in cultures treated with complete or part medium changes. 

Calcium handing analysis of myotubes derived from control fibroblasts (MRC Biobank ID: 

8203). Cultures treated with full medium changes are compared to those where half of the 

medium was retained. Cytosolic calcium was detected by confocal imaging of Fluo-4. (A) 

Scatter plot showing mean peak cytosolic calcium ± SD following application of high 

potassium (40mM) for cultures that were treated with full changes of medium  (2.425 ± 

0.245) and for those where half of the medium was retained  (1.936 ± 0.195). The peak is 

given relative to a baseline of zero. (B) Scatter plot showing the cytosolic calcium rise and 

recovery time constants ± SD for cultures treated with full changes of medium (19.42 ± 

6.146 and 43.58 ± 10.89, respectively) and rise and recovery times for cultures where half 

medium was retained (19.54 ± 11.17 and 46.67 ± 14.2, respectively). 

Calcium handling was unaffected by the different treatments. Unpaired Student’s t-test, 

P=0.4 for peak relative fluorescence, P = 0.987 for rise time and P = 0.768 for recovery 

time. N=3 for cultures where all medium was changed and N=4 for cultures where half 

medium was retained. Three or four cultures were analysed per condition, and three or 

four cells were analysed per culture.  

 

4.1.4 Evaluating myogenicity of the fibroblast derived myotubes using myoblast derived 

myotubes 

In order to further evaluate the production of myocyte cultures, I cultured an 

immortalised human myoblast cell line (MRC biobank ID: i7403) which was produced at 

Institut Pasteur, Paris (Zhu et al, 2007). This cell line has been shown to produce 

myotubes that express desmin, as well as embryonic, fast and slow myosin to a level 
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comparable to that seen in the original cell line (Zhu et al, 2007). I compared the calcium 

handling in myotubes produced from immortalised myoblasts to that of myotubes 

produced by transfecting fibroblasts. The close correlation in calcium handling suggests 

that successful development of muscle characteristics was achieved in the fibroblasts. 

    

 

Figure 21: Calcium handling in myoblast-derived myotubes. Calcium handling analysis of 

myotubes derived from control immortalised myoblasts (MRC biobank ID: i7403). Cytosolic 

calcium was detected by confocal imaging of Fluo-4. (A) Micrograph showing a 

representative image of the myotubes before application of high potassium (40mM). (B) 

Micrograph showing a representative image of the myotubes at the peak of the response 

upon stimulation. (C) Line chart indicating Fluo-4 fluctuations in 6 cells from three 

separate cultures upon stimulation with 40mM potassium. The solid black line indicates 

the mean time course of the cell reaction.  

 

 

 

40mM K 

Figure (B) Figure (C) 
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Figure 22: Analysis of calcium handling in myoblast-derived myotubes. Analysis of 

calcium handling of myotubes derived from control immortalised myoblasts (MRC biobank 

ID: i7403) and of those derived from primary fibroblasts (biobank ID 8203). Cytosolic 

calcium was detected by confocal imaging of Fluo-4. (A) Scatter plot showing peak 

cytosolic calcium following application of high potassium (40mM); mean peak ± SD is 

given relative to a baseline of zero for fibroblast derived myotubes (F; 2.22 ± 0.359) and 

for myoblast derived myotubes (M; 3.71± 0.903). (B) Scatter plot showing the rise and 

recovery time constants for the increase and decrease of cytosolic calcium in the 

myotubes. Rise times are 25.52 ± 9.21 for F and 26 ± 3.92 for M. Recovery times are 51.89 

±15.32 for F and 37.1 ± 6.07 for M. 

Higher relative peak fluorescence was reached in myoblast derived myotubes than in 

fibroblast derived myotubes. Unpaired Student’s t-test, **P =  0.0020. Rise time and 

recovery time were not statistically significantly different for myoblast derived myotubes 

compared to fibroblast derived myotubes (yielding p values of 0.9193 and 0.0746, 

respectively). Six fibroblast derived cultures and five myoblast derived cultures were 

analysed, between three and four cells were analysed per culture. 

 

Cultures of myotubes derived from both the fibroblasts and the myoblasts included some 

unfused cells. A pure population of myotubes was not achieved. Furthermore some of the 

mono-nucleated cells did not exhibit calcium fluctuations in response to stimulation with 

potassium or caffeine. One method of increasing the proportion of multi-nucleated verses 

mono-nucleated cells could be to apply β-D-arabinofuranoside (araC, sigma: C1768). AraC 

interferes with DNA production and therefore reduces the proportion of proliferating 

 

F M

0

2

4

6

P
e

a
k

 r
e

la
ti

v
e

 f
lu

o
re

s
c

e
n

c
e

 (
'

F
-F

0
)

**

B A  

F M F M

0

2 0

4 0

6 0

8 0

R is e                   R e c o v e r y

T
im

e 
(s

e
c

o
n

d
s)



91 
 

cells. This leads to an increase in the proportion of myotubes which have left the cell 

cycle, while the growth of fibroblasts and myoblasts becomes stunted.  

I used 10mM araC, an amount which has been used successfully in myoblast cultures 

elsewhere to stunt growth of proliferating cells without causing toxicity (Patel et al, 1999; 

Hinterberger and Barald, 1990). I tried this method on the immortalised myoblast 

cultures and found that the proportion of multinucleated cells was increased. 

Approximately 22% of untreated cells were multinucleated, compared to 37% when 

treated with araC.  
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Figure 23: Evaluation of treatment with araC. Immunofluorescence image of 

immortalised myoblasts following differentiation. (A) Micrograph of a control culture 

stained with a Desmin antibody (green) and Hoechst (blue). (B) Micrograph of a culture 

treated with araC and stained with a Desmin antibody (green) and Hoechst (blue). (C) 

Micrograph of a control culture stained with a CaV1.1 antibody (red) and Hoechst (blue). 

(D) Micrograph of a culture treated with araC and stained with a CaV1.1 antibody (red) 

and Hoechst (blue). (E) Scatter plot indicating the proportion of myotubes in culture as a 

percentage of the total cell count. Staining with CaV1.1 and with Desmin allowed for cells 

to be visualised and thus for nuclei per cell to be determined. Mean percentage of cells ± 

SD is indicated for control cultures (22.24 ± 3.99) and for araC treated cultures (37.06 ± 

9.32). N = 4; four cultures were analysed per condition. A larger proportion of myotubes 

were detected following treatment with araC. Unpaired Student’s t-test,* P = 0.0265. 

 

This section demonstrates that araC increased the proportion of myotubes relative to 

mononucleated cells. Although the difference was small with regard to the proportion of 

nuclei found in myotubes, more homogeneity was observed. More homogeneity would 

be a useful feature when comparing different treatments. AraC may thus present a 

valuable addition to the treatment protocol when comparing myotubes cultures from 

patients and control subjects. 
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4.1.5 FACS analysis; a method of assessing cell fusion 

The methods outlined thus far produced mixed cultures containing both myotubes and 

mono-nucleated cells (myoblasts and/or fibroblasts). The extent of myotube maturation 

was determined for some of the cultures by performing immunofluorescence assays in 

order to confirm expression of mature muscle cell proteins. For example see SERCA1 

ATPase staining in figure 17. However immunofluorescence assaying is a lengthy process 

and was not performed for each culture under investigation.  

The presence of multinucleated cells can be determined by staining cells with Hoechst, as 

in figures 17 and 23, and this is a useful method of determining levels of multi-nucleation 

either before or after investigations. I was interested in developing a more efficient 

method of quantifying myotube maturation. To this end I developed a technique using 

flow cytometry for quantifying cell fusion. 

Propidium iodide (PI) is a fluorescent dye that can be used to stain DNA in fixed, 

permeabilised cells and can be detected by flow cytometry. It is used to quantify DNA 

copy number per particle, allowing for the cell cycle to be analysed (Pollack, 1990). The 

cell cycle can be described in phases denoted G0, G1, S, G2 and M. In G0 and G1 cells 

each have one copy of DNA in one nucleus, in M and G2 nuclear material is doubled. S 

phase refers to the time when DNA is being transcribed such that there are between one 

and two copies of DNA in the cell.  

This PI protocol also allows for the proportion of cells with more than two nuclei to be 

estimated in cultures containing myotubes by quantifying nuclear material per particle. 

This method could thus be used to estimate efficiency of myoblast fusion. Cells with two 

sets of nuclear material could be either cells in M or G2 phase that have not yet exited 

the cell cycle, or myotubes formed of two fused myoblasts. 
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Figure 24:  PI testing of multi-nucleation. Representative diagrams of PI test results 

indicating what the different peaks represent. (A) Diagrammatic representation of PI cell 

cycle analysis for proliferating cells, with a large peak representing cells containing one set 

of nuclear material (G0/G1), a small proportion undergoing DNA transcription (S) and a 

final peak corresponding to cells that have two sets of DNA because they are undergoing 

mitosis but have not yet become separate particles (M/G2). (B) Diagrammatic 

representation of what one would expect when running the same PI protocol during 

differentiation of myoblasts to myotubes. This diagram indicates that each consecutive 

peak has an extra set of DNA material due to cell fusion and also includes the possibility 

that some cells would not yet have left the cell cycle and could be in G0/G1/S/M/G2. 

 

The basic PI cell cycle analysis protocol was tested using control undifferentiated 

fibroblasts. Results from this investigation are presented in figure 25. Figure 25A shows 

that the general distribution of cell size and internal cell granularity were largely uniform, 

and that larger cells typically had greater internal granularity. Figure 25B indicates the cell 

count for particles containing different levels of PI, and it is apparent from this figure that 

the majority of the cells (approximately 83%) were in G0 or G1 phase with a single copy of 

DNA. Approximately 13% of cells were in M or G2 phase of the cell cycle with double the 

level of PI staining and thus two copies of DNA. A small proportion of cells (approximately 

2.3%) were in between the two peaks and thus in S phase with one full set of DNA and 

one set only partially transcribed.  

A remaining 0.9% of particles contained more than two copies of DNA. This is likely to be 

a result of particle aggregation rather than cell fusion given that the fibroblast cultures 

were not contaminated with myoblasts. It follows that when using the protocol to 

 

 

 

 

 

 

 

 

 

Q
ua

nt
ity

 o
f p

ar
tic

le
s  

Quantity of nuclear material 

M/G2 

S 

G0/G1 

 

 

 

 

 

 

 

 

3 nuclei 
S 

Q
ua

nt
ity

 o
f p

ar
tic

le
s  

Quantity of nuclear material 

2 nuclei/M/G2 

1 nucleus/G0/G1 

4 nuclei 

A B 



95 
 

quantify cells with more than two sets of nuclear DNA, a small proportion of the particles 

detected with multiple sets of DNA may correspond to aggregated cells rather than to 

myotubes. This method thus allows for the extent of cell fusion upon differentiation to be 

estimated.  

 

 

Figure 25: Cell cycle analysis for control fibroblasts. (A) Plot of side scattered light (SSC-A) 

on forward scattered light (FSC-A).  (B) Quantification of cells at a range of PI intensities. 

83% of detected particles contained one set of nuclear material and are considered to 

have been in G0 or G1 phase. 2.3% of cells were in the region associated with the S phase 

of the cell cycle. A further 13% of cells contained two sets of nuclear material and are thus 

considered to have been in M or G2 phase. A remaining 0.9% of particles contained more 

than two sets of nuclear material, possibly due to aggregation of cells. Data were 

gathered on a BD Accuri flow cytometer and analysed using BD Accuri C Flow software. 

 

PI was then used in the same way with cultures containing multinucleated cells. In figure 

26a below, the overall distribution of cell size and internal granularity is plotted. Points 

outside of region 1 near to zero on the axis were not considered, they result from cell 

particles or contaminants. Points in region 2 result from detection of cells that were 

larger than the majority of mono-nucleated cells. Figure 26B indicates the number of 

particles detected for a range of levels of PI staining; all particles in region 1 of figure 26A 

were considered. The peak corresponding to cells with two sets of nuclear material is 

obscured by the large peak produced by mono-nucleated cells. In figure 26c this peak 

could be observed by only analysing cells that were larger than the mono-nucleated cells 

(region 2 of figure 26A).  
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Figure 26: Flow cytometry analysis of fibroblast derived myotubes. Cells were fixed and 

stained according to the PI analysis protocol. (A) Plot of side scattered light (SSC-A) on 

forward scattered light (FSC-A). (B) Chart of all particles/cells in region 1 quantified at a 

range of PI intensities. Approximately 13.5% of cells/particles were shown to contain three 

or more nuclei. (C) Chart of all particles/cells in region 2 (see figure A) quantified at a 

range of PI intensities. In (C) a peak corresponding to cells with two sets of nuclear 

material can be seen whereas in (B) this peak is obscured by the larger peak 

corresponding to mono-nucleated cells. Data were gathered on a BD Accuri flow 

cytometer and analysed using BD Accuri C Flow software. 

 

Results presented in figure 26 above indicate that approximately 13.5% of particles that 

were detected by the flow cytometer contained more than two sets of nuclear material. It 

is likely that at least 0.9 % of these resulted from aggregation of mono-nucleated cells, as 

was observed for the undifferentiated fibroblast investigation. Under this assumption it 

can be estimated that the remaining particles, approximately 12.5%, were fused 

myoblasts containing more than two nuclei.  

However there are a number of issues that are likely to reduce accuracy of this technique. 

Myotubes are both large and long, whereas flow cytometry is designed for smaller cells 

that are not elongated. Indeed the nozzle of a flow cytometer is typically around 100µm 

whereas cultured myotubes are frequently around 300µm or more in length (McMahon 

et al, 1994). Due it its length, the fixation process and preparation for analysis may lead to 

fragmentation of myotubes, in particular of more mature myotubes that contain more 

nuclei. As a result, detection of particles with more than two sets of nuclei may include 
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fragments of multinucleated myotubes. This would make any quantification of multi-

nucleation an even more problematic method of monitoring myogenesis. Furthermore, 

such large, elongated particles could aggregate and form clumps in the flow cytometer. 

While I did not experience jamming of the machine during investigations, the possibility 

of myotube aggregation and fragmentation make this method less suitable for the 

purpose outlined above. 

4.1.6  Mitochondrial structure is affected by differentiation 

Mitochondria of different cell populations form structures that are characteristic of those 

cell populations (Banerjee et al, 2014). In mature muscle fibres, for example, 

mitochondria align in between sarcolemmal striations. This allows for the mitochondria to 

form important interactions with surrounding proteins such as desmin and with triadic 

structures during myotube formation (Smolina et al 2014). Nutrient depletion likewise 

induces changes in mitochondrial structure. During starvation, it has been observed that 

mitochondria elongate, and that this elongation can protect the mitochondria from 

autophagic degradation (Gomes & Scorrano, 2011).  

In my investigations, many of the myotube cultures that were developed, contained 

myotubes that looked well formed, but were unaffected by external stimulation (calcium 

was not released from the cytosol in response to stimulation with 40mM potassium or 

10mM caffeine). I also observed some variation in mitochondrial structure and decided to 

determine whether or not this can be correlated with successful differentiation of 

myotubes. During differentiation, the reduced serum levels had a similar effect to that 

observed by Gomes and Scorrano (2011) during starvation, namely, in more elongated 

mitochondria. Since such elongation of mitochondria can protect against autophagic 

degradation, mitochondrial elongation during differentiation could serve as an indicator 

of myotube integrity, where myotubes boasting more elongated mitochondria are more 

likely to be responsive to external stimulation. In this section I show how I tested whether 

or not the mitochondrial elongation that I observed in many of the myotubes could 

indeed be correlated with an ability to release cytosolic calcium in response to chemical 

stimulation. 
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Figure 27: Mitochondrial membrane potential of fibroblasts following MyoD treatment. Cells 

were stained with TMRM in order to visualise mitochondrial shape and distribution. (A) 

Mitochondrial membrane potential of fibroblasts following viral treatment with MyoD before 

differentiation. (B) Mitochondrial membrane potential in myotubes responsive to stimulation with 

40mM potassium. The myotubes were produced by viral treatment of fibroblasts with MyoD 

followed by differentiation. (C) Mitochondrial membrane potential in cells that were not responsive 

to stimulation with 40mM potassium. The cells were produced by viral treatment of fibroblasts with 

MyoD followed by differentiation. (D) Bar graph showing the correlation between cells that are 

responsive, non-responsive and undifferentiated to those with mitochondria that is mostly 

fragmented, mostly elongated or a mixed population. N=3, data were collected by double blinded 

visual testing – three subjects were given 30 figures each, depicting cultures of responsive myotubes 

(R), non-responsive myotubes (N) and undifferentiated fibroblasts (U) and were asked to allocate 

them visually as mostly fragmented (F),mostly elongated (E) or a mixed (M) population. The 

correlation between cell type and observed mitochondrial structure was assessed.(E) Mitochondria 

of myotubes that were responsive (89.26 ± 11.13 %) were significantly more likely to be identified as 

elongated than mitochondria of myotubes which were non-responsive (10.74 ± 11.13) or than 

mitochondria of undifferentiated fibroblasts (0 ± 0). One-way ANOVA followed by Tukey’s post hoc 

test, ***P=0.0001 and ****P<0.0001 respectively. (F) Myotubes that were non-responsive (79.37 ± 

18.03 %) were significantly more likely to be identified as having a mixed population of 

mitochondria than myotubes which were responsive (20.63 ± 18.02) or than undifferentiated 

fibroblasts (0 ± 0 %). One-way ANOVA followed by Tukey’s post hoc test, **P=0.0066 and 0.0014, 

respectively. (G) Mitochondria of undifferentiated fibroblasts (81.0 ± 20.27) were significantly more 

likely to be identified as fragmented than mitochondria of either responsive (8.10 ± 7.33) or non-

responsive (10 ± 17.32) myotubes. One-way ANOVA followed by Tukey’s post hoc test, **P=0.0032 

and 0.0036, respectively.  
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Mitochondria were imaged in 10 cultures of undifferentiated cells (“U”; figure 27A) and 

seven cultures of responsive myotubes (“R”; figure 27B). In each case the mitochondria 

were classified as either “mostly elongated”, “mostly fragmented” or “mixed”. Fibroblast 

cultures were typically classified as “mostly fragmented” and those of myotubes were 

typically classified as “mostly elongated”. Five cultures of unresponsive myotubes (“U”, 

where cytosolic calcium was not released upon exposure to 40mM potassium) were also 

labelled with TMRM (figure 27C). The mitochondria in these myotubes were typically 

classified as “mixed” (figure 27B). Overall I observed that among the myotubes, those 

that contained “mostly elongated” mitochondria were more likely to display calcium 

fluctuations in response to chemical stimulation than myotubes containing a “mostly 

fragmented” or a “mixed” population of mitochondria.   

These observations were made visually and there was consistency when doing so in a 

blinded set up (figure 27). The blinded set up was achieved by showing pictures of 

mitochondria from the different cultures to individuals and asking them to assign each to 

one of the three categories (“mostly fragmented”, “mostly elongated” or “mixed”). 10 

pictures of each culture type were used. 

I show that mitochondrial structures can help to distinguish between myotubes that 

release calcium in response to external stimuli and those that do not. Mitochondrial 

structure could thus be a useful indicator of successful myotube differentiation allowing 

for a more appropriate selection of cultures to be made on a visual basis. 
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Figure 28: Mitochondrial membrane potential and differentiation. Mean relative to 

maximum mitochondrial membrane potential ±SD as measured by TMRM fluorescence in 

myotubes that were responsive to chemical stimulation (0.330 ± 0.09), those that were 

not responsive (0.342 ± 0.057), and fibroblasts (0.354 ± 0.079). This scatter plot indicates 

that mitochondrial membrane potential of fibroblasts was not affected by transfection 

and differentiation. This was true whether or not the subsequent myotubes were 

responsive to stimulation using high (40mM) potassium. One-way ANOVA, P = 0.8045. 

N=6, between six and eleven preparations were analysed per category, approximately 4 

cells per preparation.  

 

Mitochondrial membrane potential, as measured by the TMRM, was not affected by the 

differentiation process. It was also not possible to distinguish between the mitochondrial 

membrane potential in myotubes that responded to chemical stimulation and those that 

did not (figure 28). 
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4.1.7 Concluding remarks for part 1 

I show that mitochondria become elongated during differentiation, suggesting that 

elongation may contribute to the successful formation of myotubes. I also show that 

lentiviral transduction with MyoD promotes the formation of myotubes more efficiently 

than adenoviral transduction.  

Unfortunately, due to an interruption of studies this work was not further pursued. Upon 

return to work the field of fibroblast transformation had advanced such that further 

optimisation of this technique would not have been constructive. A technique for 

transforming fibroblasts to IPS cells and thereafter to myoblasts has been developed and 

promises to be more efficient than the procedure used here (Iovino et al, 2016). 

Nevertheless, it is possible that the differentiation process will be similar and that the 

optimisation of differentiation presented here will be relevant to the IPS cell culture too.  

I also explored the possible use of flow cytometry for assessing cell fusion. I found that 

this was not a reliable tool for assessing cell fusion in myotubes, primarily because 

successfully differentiated myotubes are large and long. Such myotubes become easily 

damaged during analysis by flow cytometry. 
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4.2 MOUSE MODEL OF PERIODIC PARALYSIS 

In this chapter I describe investigations carried out on a mouse model of PP, both in vivo 

and ex vivo. Along with investigators at Harwell, I ran in vivo tests on a mouse model of PP 

with an I584V mutation in order to confirm that it exhibits characteristics of PP. This 

mutation is equivalent to a novel patient mutation (I588V) which results in myotonia and 

PP. The model is referred to as the Draggen (Dgn) model. The results presented here 

demonstrate that the model does reflect some characteristics of the disease. These 

results include published data which was generated with colleagues at Harwell 

(Corrochano et al, 2014; see introduction section 1.16.3). 

Following in vivo Dgn characterisation (see below) I isolated single fibres from the mice 

for in vitro investigation of disease progression. Investigations were carried out on hind 

limb muscle due to observations that the hind limb muscles were particularly affected in 

Dgn positive mice. Indeed during attacks, the mice were observed to drag their hind limbs 

which became paralysed. TA and EDL muscles were analysed in vivo while single fibres 

were extracted from FDB muscle for ex vivo investigations. Mitochondrial substrates were 

also quantified in tissue from TA and EDL muscles.  

Findings presented here include an indication that hind limb muscles of the affected mice 

were more resistant to fatigue, and that the mitochondrial membrane potential was less 

positive. In addition it appears that affected mice had fewer intermyofibrillar 

mitochondria. 

4.2.1  In vivo characterization of the Dgn model of periodic paralysis  

Female Dgn mice display a less severe phenotype than males, however due to low 

survival rates, male Dgn mice were not available at the time of the in vivo investigation. In 

vivo investigations were therefore performed on female mice. Tests were only carried out 

on females which had displayed at least one episode of muscle weakness. My in vivo 

investigations on the female mice contribute to a study published on the Dgn phenotype 

which I cite below (Corrochano et al, 2014).   

Female Dgn mice have a later average age of onset (25 weeks for females compared to 16 

weeks of age for males). Indeed all males displayed at least one episode of hind limb 

immobility by 60 weeks compared to only 38% of females (Corrochano et al, 2014). A 
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similar trend has been observed in patients of HypoPP, where males experienced 100% 

penetrance with 50 to 150 attacks per year compared to females who experienced less 

than 30% penetrance with 30 to 50 attacks per year (Ke et al, 2013). Age of onset is also 

earlier in male patients, although this effect is less pronounced than in the Dgn model. 

One study suggests onset at 8 years of age in males compared to 11.5 in females with 

HypoPP (Ke et al 2013).  

There was much variation in the age at which Dgn mice started showing symptoms, with 

first attacks occurring anywhere between 3 and 60 weeks of age (Corrochano et al, 2014). 

Initially I planned to carry out experiments at three time points in order to characterize 

progression of the disease. These were early (15 weeks), intermediate (45 weeks) and late 

(70 weeks), starting with the latest time point in order to gauge maximum effects of the 

mutation on females. However the early and intermediate time points were latterly not 

pursued because the effects observed in the aged group were small, and in some cases no 

effects were observed (see for example TA twitch force in figure 30). The late time point 

experiment was repeated by Dr Pete Joyce (working at the Institute of Neurology for 

Harwell) on male mice (figure 29; Corrochano et al, 2014). 

The tension generated by electrically stimulating a twitch in TA and EDL fibres (as 

described in methods section 3.8.2) was compared for fibres from mutant and those from 

WT control mice. A reduction in both twitch force and the rate of the twitch were 

anticipated for aged Dgn mice. This would be consistent with the human disease where 

muscle weakness develops in later stages of disease progression. However neither TA nor 

EDL twitch characteristics were clearly affected in Dgn compared to WT control muscle. 

Results presented in figures 30 and 31 indicate that the time taken to reach peak force 

(rise time) was not affected in either TA or EDL when comparing female Dgn to WT mice. 

Maximum twitch force was also not affected in the TA muscles of these mice. Maximum 

twitch force appeared to be greater for Dgn EDL than for WT EDL, however there were 

large variations in these measurements and WT EDL twitch force was not significantly 

different to that of controls. Furthermore this trend was inconsistent with the trend seen 

in data collected by my colleague Dr Pete Joyce from male mice (Corrochano et al, 2014). 

In the data collected from males, the maximum single twitch force was significantly 

greater for the WT controls. It may be that the weakness seen in males reflects the 

progressive weakness observed in later stages of PP in humans and that the females had 
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not reached the stage where such weakness was evident. Data collected from males by Dr 

Joyce is copied below (figure 29), as presented in Corrochano’s study (Corrochano et al, 

2014). While I contributed to the investigations presented in Corrochano’s study, the data 

that I collected show a weaker phenotype with more variable results because the females 

that I studied were less affected by the mutation than the males studied by Pete Joyce. I 

include results from investigations on both male (figure 29) and female (figures 30-32) 

mice below.  
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Figure 29: Draggen mice have muscle weakness, (Corrochano et al, 2014). Data and 

figure legend as presented in Corrochano’s paper (Corrochano et al, 2014). Draggen mice 

have muscle weakness. In vivo physiological assessment of hind-limb muscles of 60-week-

old male mice. Scn4a+/+ (n = 12); Scn4aDgn/+ (n = 14). (A) Tibialis anterior (TA) muscle force 

showed that the time to peak force (Tmax) and half-time relaxation time (T1/2R) were 

significantly longer in draggen mice than wild-type controls. For Tmax (Scn4a+/+ = 17.5 

ms; Scn4a+/+; Scn4aDgn/+ = 21.9 ms; P < 0.001). For T1/2R (Scn4a+/+ = 13.3 ms; Scn4aDgn/+ = 

20.6 ms; P < 0.001). Single twitch force for tibialis anterior muscles was not significantly 

different between wild-type and draggen muscles (Scn4a+/+ = 54.1 g; Scn4aDgn/+ = 45.7 g; P 

= 0.19). The two traces shown per image represent the right and left hind-limb from the 

same animal. (B) Extensor digitorum longus (EDL) muscles in draggen mice also took 

longer to reach both Tmax and T1/2R than wild-type (Tmax: Scn4a+/+ = 15.9 

ms; Scn4aDgn/+ = 20.0 ms; P < 0.001. T1/2R: Scn4a+/+ = 10.7 ms; Scn4aDgn/+ = 17.3 ms; P 

< 0.001). Single twitch force was also determined for extensor digitorum longus muscles, 

with wild-type muscles exerting more force than draggen muscles (Scn4a+/+ = 16.7 

g; Scn4aDgn/+ = 9.8 g; P < 0.001). (C) Extensor digitorum longus tetanic force generated by 

draggen mice (45.8) is reduced compared to wild-type littermates (60.5) (P = 0.003). (D) 

Representative traces of tetanic tension from wild-type and draggen extensor digitorum 

longus muscles. The fatigue index (FI) is increased for draggen muscle (0.48) when 

compared to wild-type (0.25) (P < 0.001). (E) High potassium levels diminish force 

generated by extensor digitorum longus muscles of draggen mice ex vivo. Scn4a+/+ (n 

= 7); Scn4aDgn/+ (n = 9) (P-values: 14 min: P = 0.017; 16–20 min: P < 0.003). The force 

generated by extensor digitorum longus was measured every 2 min with muscles 

submerged in a bath with normal (4.75 mM) and high (12 mM) potassium concentrations 

for 10 min in each condition. Data are expressed as mean ± SEM. *P < 0.05; **P < 0.01; 

***P < 0.001. 

 

Data presented in figure 29 above suggest that twitch force is greater in EDL and TA 

muscle of the Dgn mice, but that tetanic force is greater in the wildtype. My studies on 

females do not identify a difference in force produced in TA (figure 30), but indicate that 

twitch force is greater in EDL of control mice than EDL of Dgn mice (figure 31). Fatigue 

was delayed in males (figure 29), but no difference was identified in females (figure 32). 



107 
 

 

  

 

Figure 30: Mouse model – tibialis anterior single twitch force. (A) In vivo assessment of 

tibialis anterior (TA) single twitch force ±SD in Dgn mice compared to WT controls (3.62 ± 

0.98 for Dgn and 3.46 ± 0.84 for WT). (B) In vivo assessment of tibialis anterior (TA) twitch 

rise time ±SD in Dgn mice compared to WT controls (11.81 ± 1.75 for Dgn and 11.89 ± 2.22 

for WT). (C) Trace of TA twitch force in WT and Dgn mice. N= 3, the data are collected 

from three WT mice (+/+) and five Dgn mice (Dgn/+). Neither the peak TA twitch force nor 

the time taken to reach peak force, were affected in 70 week old females. Unpaired 

Student’s t-test, P=0.816 for TA twitch and p=0.958 for TA rise time.  
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Figure 31: Mouse model – extensor digitorum longus single twitch force. (A) In vivo 

assessment of extensor digitorum longus (EDL) single twitch force ±SD in Dgn mice 

compared to WT controls (0.680 ± 0.148 for Dgn and 1.484 ± 0.528 for WT). (B) In vivo 

assessment of EDL twitch rise time ±SD in Dgn mice compared to WT controls (11.47 ± 

0.824 for Dgn and 10.72 ± 1.071 for WT). (C) Trace of EDL twitch force in WT and Dgn 

mice. N= 3 for WT and N=5 for Dgn, the data are collected from three WT mice (+/+) and 

five Dgn mice (Dgn/+), where both hind limbs from each mouse were analysed. 

EDL single twitch force was increased in Dgn compared to WT controls in 70 week old 

females. Unpaired Student’s t-test, *P= 0.046. The time taken to reach peak force was not 

affected in Dgn mice compared to WT controls. Unpaired Student’s t-test, *P= 0.303.  

   
Muscle fatigue was measured in EDL muscle of Dgn and WT control mice in order to test 

for fatigue resistance. Muscle force typically reduces upon repeated stimulation, due to 

sodium channel inactivation. However in fatigue resistant tissue, the level of force 

produced upon repeated stimulation is better maintained. In males, EDL muscle from Dgn 

mice was more fatigue resistant than the EDL of WT mice upon repeated stimulation 

(figure 29D). Such a trend was also observed in females, however not at a statistically 

significant level (figure 32). 
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Control muscles fatigue quickly and thus do not become stimulated for prolonged periods 

of time. The delayed fatigue in HyperPP muscle likely leads to excessive force generation 

in antagonistic muscles, resulting in increased metabolic demands and in deterioration of 

muscle (Khogali et al, 2015). Data collected from male mice by Dr Pete Joyce provided 

further evidence that Dgn mice present with resistance to fatigue, because the males 

displayed a more exaggerated phenotype. In the males, the EDL force fatigue was 

increased for Dgn muscle (0.48) when compared to wild-type (0.25) (P < 0.001) (figure 29 

above). 

             

            

Figure 32: Mouse model – extensor digitorum longus force fatigue and maximum force. 

(A) Trace of tension fluctuations upon repeated stimulation of EDL in a WT mouse in vivo. 

(B) Trace of tension fluctuations upon repeated stimulation of EDL in a Dgn mouse in vivo. 

(C) Scatter plot of initial tetanic tension divided by the final tetanic tension (t180/t0) ± SD 

for Dgn and WT (0.362 ± 0.098 for WT and 0.471 ± 0.124 for Dgn). (D) Scatter plot of the 

maximum tension ±SD achieved in EDL of Dgn and WT in vivo during repeated 

stimulations (41.15 ± 2.582 for WT and 39.05 ± 5.496 for Dgn).  These differences were 

not significant. Unpaired Student’s t-test, P=0.1 for fatigue and P=0.5654 for maximum 

force. N= 3 for WT and N=5 for Dgn, the data are collected from three WT mice (+/+) and 

five Dgn mice (Dgn/+), where both hind limbs from each mouse were analysed. 
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Electromyography of hind limb muscle of these mice indicated that all mice with the 

mutation presented with myotonia, whether or not they presented with attacks of 

paralysis (Corrochano et al, 2014). If resistance to fatigue is indeed a feature of the Dgn 

muscle, this could lead to increased metabolic demand, which would be further 

pronounced as a result of the myotonia observed in the Dgn mice. 

The resistance may also indicate a change in the fibre type of affected muscles from fast 

twitch (type II) fibres to slow twitch (type I) fibres, as fatigue resistance is a hallmark of 

type I fibres. Type I fibres are typically more oxidative, which may point toward 

mitochondrial involvement in disease progression. This was tested in single fibres from 

FDB muscle. Fibres were isolated and mitochondrial membrane potential as well as 

calcium handling were assessed (see below; section 2.3). 

At the conclusion of each in vivo experiment the effect of the mutation on higher centres 

was assessed by determining the number of motor neurons innervating the EDL muscle. 

Because the mutation is muscle specific, there is no reason to believe that higher centres 

should be affected and that the motor neuron count should be reduced. Nevertheless, it 

may be that at later stages of disease progression motor neuron count would reduce due 

to a general deterioration of mouse health. Such a phenomenon was not observed: 

mutant and control mice had an average of 35 and 36 motor neurons innervating the EDL 

respectively, and so will be considered identical for the purpose of this investigation. This 

test was not repeated with male Dgn mice. 

4.2.2  In vitro characterization of the Dgn model of periodic paralysis 

As established by the investigations using the males, the Dgn mutation can lead to 

presentation of some characteristics of PP. A method of investigating disease progression 

ex vivo using tissue from male mice was then sought. To this end, single fibres from FDB 

were isolated and observed by fluorescence microscopy. Both calcium handling and 

mitochondrial membrane potential were investigated by fluorescence microscopy. 

Calcium handling was investigated because it may be affected by the unusual muscle 

stimulation patterns observed in PP and mitochondria were investigated because of the 

indications that there may be an oxidative aspect to disease progression. Having shown 

that only the males display statistically significant features of disease progression, further 

investigations were performed using male mice. 
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Cells were imaged during contractions and in some cases during addition of solutions. I 

therefore sought a protocol that would encourage secure adherence of myotubes to the 

imaging dish. Good adherence was achieved by coating a plastic dish for three hours with 

a dilute (1%) matrigel solution. Fibres were cultured in 20% controlled serum replacement 

medium (SRM, sigma), which resulted in the fibres remaining viable for up to 48 hours 

compared to approximately 12 hours when treated with 10% FBS. The SRM contains 

purified serum albumin, transferrin and insulin, but does not contain growth factors, 

steroid hormones and glucocorticoids. It thus allows for the fibres to be maintained 

without promoting their growth which could affect structure and function.  

Fibres from control mice were first used to optimise culturing conditions and to 

determine a suitable stimulation protocol. Fibres were imaged with transmitted light 

(figure 33A) and cells were loaded with Fluo4-AM in order to view cytosolic calcium 

(figure 33B). Cells were also loaded with TMRM in order to measure the mitochondrial 

membrane potential (figure 33C). 

4.2.3 Characterisation of mitochondria in vitro 

Measurements of TMRM fluorescence intensity were used both to analyse the 

mitochondrial membrane potential and to provide an indication of mitochondrial 

structure and distribution. The mitochondria formed networks along the striations 

(subsarcolemmal mitochondria), and in some areas intermyofibrillar mitochondria were 

visible along the cell length. This is consistent with an observation that mitochondria form 

reticular networks around sarcomeres (Picard et al., 2011). 
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Figure 33: Mouse model – a flexor digitorum brevis fibre. (A) Image of control FDB fibre 

taken with transmitted light to show striations. (B) Image of control FDB fibre taken by 

fluorescence microscopy with Fluo-4 to show cytosolic calcium.  (C) Image of control FDB 

fibre taken by fluorescence microscopy with TMRM to show mitochondrial membrane 

potential. These images demonstrate that mitochondria were aligned along striations, 

with some intermyofibrillar mitochondria perpendicular to striations (see arrows in figure 

C). Cells were imaged using a Zeiss 700 microscope with a 40x objective. 

 

TMRM fluorescence microscopy of the fibres led the observation that single fibres 

derived from Dgn mice typically had fewer subsarcolemmal mitochondria than those from 

controls. This was observed visually and confirmed by Fourier transform of images of 

TMRM fluorescence (figure 34). I analysed the proportion of intermyofibrillar 

mitochondria relative to combined intermyofibrillar and subsarcolemmal mitochondria by 

A B 

C 
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performing a spatial Fourier transform on images of TMRM staining, as described in 

methods section 3.9.3, page 72.  

 

Figure 34: Mouse model – intermyofibrillar mitochondria. Scatter plot indicating the 

mean proportions of intermyofibrillar (IMF) mitochondria ±SD in wild type (0.5354± 

0.0495) and Dgn fibres (0.423 ± 0.0463). Values were determined by Fourier transform 

analysis (method described in section 3.9.3, figure 13). N=7 for WT and N=6 for Dgn, with 

approximately 8 fibres analysed for each animal. The proportion of IMF mitochondria is 

significantly greater in fibres isolated from the seven WT mice than from the six Dgn mice. 

Unpaired Student’s t-test, **P = 0.0015.  

 

Intermyofibrillar mitochondria were more prevalent in fibres isolated from wild-type FDB 

muscle than in those from the Dgn FDB (p=<0.0001). Fourier transform of wild type 

muscle returned intermyofibrillar mitochondria at 31-56% of the total amount, while 

Fourier transform analysis of fibres from Dgn mice suggested that 41-75% of 

mitochondria are intermyofibrillar. Although these are large ranges, the trend is 

statistically significant.  Subsarcolemmal mitochondria in other studies are shown to 

typically make up 10-15% of the total mitochondrial content in control skeletal muscle 

(Damirchi et al, 2012). This Fourier transform analysis is a useful tool for identifying 

trends in mitochondrial populations, but has not been adjusted to produce exact values 

of the proportions of mitochondrial populations.  
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Mitochondrial membrane potential was also compared in fibres from control mice to that 

in fibres from Dgn mice. TMRM staining was typically stronger in fibres from WT mice 

(figure 35) suggesting that a more positive mitochondrial membrane potential was 

generated in WT than in Dgn fibres. A 

    

       

Figure 35: Mouse model – maximum TMRM fluorescence. (A) Micrograph showing 

intensity of TMRM fluorescence in single fibres of the wildtype control (WT) FDB muscle. 

(B) Micrograph showing intensity of TMRM fluorescence in single fibres of the Dgn FDB 

muscle. (C) The scatter plot shows average maximum TMRM fluorescence for WT and Dgn 

fibres ± SD (20.97 ± 3.84 and 16.43 ± 3.37, respectively). WT fibres typically have greater 

mitochondrial membrane potential and this difference is statistically significant (yielding a 

two-tailed unpaired Student’s t-test p-value of 0.0167). N=9, where fibres from nine male 

Dgn mice were compared to fibres from nine male controls. Cells were imaged using a 

Zeiss 700 microscope with a 40x objective.  
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4.2.4  Characterisation of oxygen consumption and complexes involved in oxidative 

phosphorylation 

I investigated the effects of the Dgn mutation on mitochondria further by analysing 

oxygen consumption. Oxygen consumption can be measured in freshly isolated and 

permeabilised fibre bundles using an Oroboros oxygen electrode. The activity of the 

different complexes in the electron transport chain (ETC) of Dgn and control fibres was 

determined by application of drugs; rotenone, for example, inhibits complex I and 

antimycin-A inhibits complex IV. Bundles of fibres from two WT and two Dgn mice were 

compared. However no differences were seen suggesting that the Dgn mutation did not 

affect the function of any of these mitochondrial complexes. Alternatively it may be that 

the tissue preparation, in particular the permeabilisation process required to measure 

oxygen consumption in freshly isolated fibres, also damaged them to some extent making 

it more difficult to distinguish between them. 

Another method of analysing activity of the mitochondrial complexes was employed in 

order to better understand if these were affected in Dgn mice. A colleague, Dr Iain 

Hargreaves (working at the Institute of Neurology, UCL, London) measured mitochondrial 

complex activity in tissue that I isolated from Dgn and WT male mice (figures 36-38). 

These investigations also suggested that mitochondrial complex activity was not affected 

in mice with the condition.  
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Figure 36: Mouse model – complex I activity. Complex I activity in hind limb TA and EDL 

of Draggen (Dgn) and control (WT) male mice. Activity is expressed as a ratio to citrate 

synthase activity. N=2; tissue from two Dgn and two WT mice aged 20+/-2 was analysed 

using data provided by Dr Iain Hargreaves (UCL, London). Mean activity of complex IV 

from TA of WT and Dgn mice ± SD is indicated (0.178 ± 0.008 and 0.1765 ± 0.0205, 

respectively). Mean activity of complex IV from EDL of WT and Dgn mice ± SD is indicated 

(0.1775 ± 0.0155 and 0.1615 ± 0.0345 respectively). Differences between activity levels of 

complex IV in WT and Dgn are not statistically significant yielding two-tailed unpaired 

Student’s t-test p-values of 0.9519 for TA and 0.7134 for EDL. 
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Figure 37: Mouse model – complex II-III activity. Complex II-III activity in hind limb TA and 

EDL of Draggen (Dgn) and control (WT) male mice. Activity is expressed as a ratio to 

citrate synthase activity. N=2; tissue from two Dgn and two WT mice aged 20+/-2 was 

analysed using data provided by Dr Iain Hargreaves (UCL, London). Mean activity of 

complex IV from TA of WT and Dgn mice ± SD is indicated (0.1505 ± 0.0005 and 0.1765 ± 

0.0205, respectively). Mean activity of complex IV from EDL of WT and Dgn mice ± SD is 

indicated (0.0875 ± 0.0185 and 0.0665 ± 0.0095 respectively). Differences between activity 

levels of complex IV in WT and Dgn are not statistically significant yielding two-tailed 

unpaired Student’s t-test p-values of 0.3325 for TA and 0.4189 for EDL. 
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Figure 38: Mouse model – complex IV activity. Complex IV activity in hind limb TA and 

EDL of Draggen (Dgn) and control (WT) male mice. N=2; tissue from two Dgn and two WT 

mice aged 20+/-2 was analysed using data provided by Iain Hargreaves (UCL, London). 

Mean activity of complex IV from TA of WT and Dgn mice ± SD is indicated (0.0155 ± 

0.0005 and 0.013 ± 0.001, respectively). Mean activity of complex IV from EDL of WT and 

Dgn mice ± SD is indicated (0.011 ± 0 and 0.0075 ± 0.0025 respectively). Differences 

between activity levels of complex IV in WT and Dgn are not statistically significant 

yielding two-tailed unpaired Student’s t-test p-values of 0.1548 for TA and 0.2965 for EDL.  

  

4.2.5 Characterisation of calcium handling in vitro 

Peak cytosolic calcium levels as well as rise and recovery times in response to chemical 

stimulation were recorded in order to evaluate effects of the mutation on calcium 

handling. Initially calcium handling in freshly isolated FDB fibres of control mice was 

assessed by loading with Fluo-4, AM. Relatively high levels of potassium stimulation 

(60mM) were required to produce a relatively slow (approximately 10 second) rise in 

cytosolic calcium (figure 39), making it a less suitable method of stimulation. In addition 

the potassium equilibrium potential plays an important role in PP (see introduction 

section 1.2) and it would thus not be appropriate for comparing calcium handling 

characteristics in fibres of WT and Dgn mice. Caffeine on the other hand produced a fast 

response (in the region of one millisecond). However caffeine acts by opening RyRs to 

release Ca from intracellular stores, a process that is less relevant to PP. Caffeine also 

resulted in super-contraction (a term borrowed from Cifelli et al., 2007; see example in 
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figure 40) of the fibres when applied at 10mM, but did not have an effect on the fibres at 

lower concentrations. Following super-contraction fibres did not relax and the cytosolic 

calcium concentration did not return to basal levels, indicating that reuptake was 

disrupted by the strong contraction (figure 40). Both potassium and caffeine were 

avoided for the investigation of calcium handling in PP.  

 

   

 

Figure 39: Single fibres – cytosolic calcium upon application of high potassium. Calcium 

release in response to application of 40mM potassium after 30 seconds. (A) Micrograph of 

single fibres from the FDB of control mice before application of 40mM potassium. Fibres 

are stained with Fluo-4 in order to visualise cytosolic calcium. (B) Micrograph of the single 

fibres during application of 40mM potassium. (C) Micrograph of the single fibres after 

application of 40mM potassium. Basal calcium levels were almost recovered within a 

minute of stimulation with potassium. Fibres were imaged using a Zeiss 700 microscope 

with a 10x objective. (D) Mean values of Fluo-4 fluorescence in six fibres ±SD. 
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Figure 40: Single fibres – cytosolic calcium upon application of caffeine. Fibre 

supercontraction and calcium release in response to application of 10mM caffeine. In 

figures A-C fibres are indicated by white arrows. (A) Cytosolic calcium, stained using Fluo-

4, in fibres at rest. (B) Cytosolic calcium, stained using Fluo-4, in fibres that have become 

supercontracted. (C) Cytosolic calcium, stained using Fluo-4, in fibres 5 minutes after 

becoming supercontracted – fibres remained supercontracted and basal calcium levels 

were not recovered. (D) Transmitted light image of a fibre at rest. (E) Transmitted light 

image of a fibre that has become supercontracted. (F) Transmitted light image of a fibre 2 

minutes after becoming supercontracted. Fibres were imaged using a Zeiss 700 

microscope with a 10x objective.  

Due to the difficulties involved in stimulating calcium release using caffeine or high 

potassium, I developed a protocol for stimulating release of cytosolic calcium electrically. 

Electrical stimulation resembles physiological initiation of excitation contraction coupling 

more closely. Both result in the depolarisation of the cell membrane, leading to opening 

of voltage gated sodium channels.  

Changes in cytosolic calcium levels were faster upon electrical stimulation compared to 

high potassium. As a result imaging settings had to be adjusted in order to record rise and 

recovery time of cytosolic calcium levels at a sufficient speed for the investigation of 

electrical stimulation. Highly detailed kinetics could be observed by selecting a section of 

a cell (10 scans/second; Figure 41A), however this was not practical because cells 

frequently move a little upon stimulation, resulting in readings being taken from different 
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parts of the cell rather than from the same area over a period of time. Blebbistatin is a 

muscle relaxant which acts by binding the myosin/ADP/phosphate complex and 

interfering with phosphate release. It thus blocks myosin when in an actin-detached state 

and prevents cross-linking of actin and myosin (Kova´cs et al, 2004). Blebbistatin could 

have been used to prevent contractions of single fibres during stimulation in order to 

achieve more stable imaging. Nevertheless the use of blebbistatin was avoided in order to 

limit disturbance of the fibres before imaging, as solution changes frequently dislodged 

fibres. The same speed of imaging (10 scans/second) was achieved for imaging whole cells 

by widening the pinhole of the confocal microscope (230µm instead of 70µm). These 

same settings could also be used with a lower objective (10x rather than 40x) to capture 

several cells without increasing the imaging speed. Although the latter settings resulted in 

less accurate monitoring of the fluctuation pattern, a good level of temporal change in 

cytosolic calcium could be tracked. These settings were thus used in some instances in 

order to gain data from a larger number of cells, even though such settings provide less 

detailed fluctuation patterns.  
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Figure 41: Single fibres – selecting an appropriate imaging method. (A) Diagram 

indicating the area of cells scanned in figures B and C. (B) Fluo-4 fluorescence detected in 

a thin, longitudinal section of a fibre. Recorded using a Zeiss 700 microscope with a 40x 

objective. (C) Fluo-4 fluorescence detected in the whole fibre. Recorded using a Zeiss 700 

microscope with a 40x objective (D) Fluo-4 fluorescence detected in several fibres. 

Recorded using a Zeiss 700 microscope with a 10x objective. 
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Figure 42: Single fibres – cytosolic calcium during electrical stimulation. (A) Typical 

response of a single FDB fibre to electrical stimulation at 20, 30, 40 and 50 mV. Five or six 

pulses of each voltage were applied at 100ms intervals with 8-10 seconds' interval 

between each set of stimulations. (B) More detailed view of calcium fluctuations in 

response to the six pulses at 30mV, with some evidence of inadequate sampling 

frequency. Fluorescence is given relative to background fluorescence. 

 

These imaging settings allowed for some level of comparison to be made between FDB 

fibres from Dgn and WT mice regarding the rate of cytosolic calcium release and recovery. 

However in some instances the peak could not be defined due to inadequate sampling 

frequency – the imaging speed is limited by the acquisition rate of the microscope 

system. The image acquisition was slower than the response rate and data points at the 

peak were missed (figure 42B). Figure 42A shows a typical response to electrical 

stimulation - calcium levels increase upon electrical stimulation, with larger fluctuations 

occurring in response to more intense stimulation. Some differences were observed in 

the intensity and rates of calcium release from WT and Dgn mice. Due to the small 

number of animals used, statistical analysis of these differences would not have been 

valuable, nevertheless the differences are worth highlighting. Calcium levels in fibres 

B 
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isolated from WT mice reached a maximal level of stimulation at lower voltages (34mV 

compared to 57mV in the fibres isolated from Dgn mice - taken as an average from 

electrical stimulation of 7 fibres). There was no trend in the rate of calcium re-uptake, but 

calcium release was typically slower in the WT fibres (a p-value of 0.025; figure 43A). 
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Figure 43: Single fibres – cytosolic calcium rise and recovery times upon electrical 

stimulation. (A) The mean time ±SD taken for cytosolic calcium to reach maximal levels 

following electrical stimulation in single fibres from WT (0.268 ± 0.046) and Dgn (0.187 ± 

0.039) mice. (B) The mean time ±SD taken until basal levels were reached once more 

following electrical stimulation in single fibres from WT (1.742±0.381) and Dgn 

(1.764±0.519) mice. Rise time is typically slower for WT fibres. Unpaired Student’s t-test, 

**P=0.025. Recovery does not differ between Dgn and WT fibres (Unpaired Student’s t-

test, P= 0.9298). N=7, fibres from seven Dgn and seven WT mice were analysed, two to 

four fibres were analysed per mouse.  

 

4.2.6  Concluding remarks for part 2 

Ex vivo investigations on male mice indicate that mitochondrial membrane potential was 

reduced in Dgn mice, and that the proportion of intermyofibrillar mitochondria is greater 

in controls. This differences were not correlated with any changes in the activity levels of 

mitochondrial complexes I, II, III and IV. The ex vivo investigations also indicate that 

calcium release into the cytosol was faster in Dgn fibres from males than in control fibres 

from males. Overall the ex vivo investigations indicate that calcium handling and 

mitochondrial membrane potential were affected in single muscle fibres. The in vivo 

investigations on the Dgn model of PP indicate that hind limbs of female Dgn mice do not 

display a statistically significant degree of resistance to fatigue. Investigations on males 

with the Dgn mutation indicate that males do display resistance to fatigue, as presented 

in Corrochano et al, (2014). 
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4.3 DEVELOPING A DRUG MODEL OF HYPOKALAEMIC PERIODIC PARALYSIS 

In this chapter I explored the potential of creating a drug model of PP where attacks of 

paralysis could be simulated. I used barium in combination with reduced potassium in 

order to simulate PP associated depolarisation in neonatal Sprague Dawley rat myotube 

cultures. Both the patient derived, and the ex vivo models of PP do not display 

spontaneous depolarisations. This drug model may help to identify effects of PP that are 

specifically a result of hypokalaemia associated depolarisations. Findings include some 

indication that spontaneous calcium release was potentiated by the drug treatment, but 

peak cytosolic calcium levels remained unaffected. 

Gramicidin has been used to simulate the aberrant pore present in hypoPP in rat 

diaphragm sections (Jurkat-Rott et al, 2009) where it had the effect of shifting the 

tendency for paradoxical depolarisation towards more physiological extracellular 

potassium concentrations (around 2.5mM compared to 1.5mM for controls; see figure 3, 

introduction section 1.1.4). Gramicidin is a linear pentadecapeptide antibiotic that acts by 

creating a pore allowing the passage of monovalent cations across the plasma membrane, 

similar to the aberrant pore found in HypoPP. Barium has also been used to simulate 

HypoPP as described in the introduction (section 1.16.4). Barium acts by blocking 

potassium channels and thereby induces the paradoxical depolarisation characteristic of 

HypoPP (Struyk et al, 2008). I explored the use of both gramicidin and barium as 

simulators of HypoPP in neonatal Sprague Dawley rat myotube cultures. 

In single fibres, reducing extracellular potassium concentration to 2mM barium did not 

have a discernible effect, but reducing it to 1mM potassium in the presence of 50µM 

barium was sufficient to cause paradoxical depolarization. Further reducing extracellular 

potassium to 0.5mM resulted in depolarization, even in the absence of barium. This effect 

is explained in introduction section 1.8 (see also Struyk et al, 2008). I initially tested the 

direct effects of these treatments on the neonatal cultures both electrophysiologically 

and using membrane potential sensitive dyes. I then focussed on the use of barium to 

simulate PP and studied the direct and the downstream effects of such a challenge on 

calcium handling and mitochondrial bioenergetics. 
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In addition I tested the possibility of using gramicidin to simulate HypoPP in neonatal 

cultures. Results from these tests were primarily negative. The use of barium as a drug 

model of HypoPP is thus the focus in this chapter of the results. 

4.3.1  The direct effects of barium challenge on membrane potential - electrophysiology 

Both whole cell and sharp electrode patch clamping were used to observe direct effects 

of the barium challenge. I initially used the method of whole cell patch-clamping in order 

to determine whether or not a paradoxical depolarisation would be observed if 

sufficiently low concentrations of potassium were applied. 1mM extracellular potassium 

has been shown elsewhere to produce depolarisation in dissociated fibres from 

interosseus muscle (Struyk & Cannon, 2008). I thus tried this concentration in my own 

investigations with the neonatal myotube cultures. I left cells to equilibrate for five 

minutes before taking measurements. Of the four cells that I successfully patched in this 

trial period, two did not show any response to the challenge of reduced extracellular 

potassium, one became marginally depolarized and one became marginally 

hyperpolarised (data not shown). This range of responses suggests that the experimental 

set up did not provide an appropriate approach for detecting subtle changes in the 

membrane potential such as those that were being sought. Although dialysation due to 

the whole cell patch configuration does not normally affect whole cell patching before 10 

minutes have elapsed, it may be that readings were affected by minor dialysation such 

that more subtle changes were not detectable.  

Tests were then carried out by sharp electrode patch clamping (see methods, section 

3.10). This protects the cell from dialysis as the sharp electrode limits the passage of ions 

in and out of the intracellular fluid. The sharp electrode technique was carried out with a 

colleague of mine, Michael Thor (UCL, London). Results obtained by sharp electrode patch 

clamping indicate that 1mM potassium did not produce paradoxical depolarisation on its 

own, nor in the presence of gramicidin. Cells tested with 1mM potassium in the presence 

of 50µM barium did become depolarised, see table 6.  
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Table 6: Resting membrane potential at different external potassium concentrations. 

The average values of resting membrane potentials were recorded for fibres exposed to 

4mM, 2mM or 1mM extracellular potassium, with or without 50µM barium (Ba2+). Fibres 

were allowed to stabilize for 15 minutes at 4mM and then to re-equilibrate for 5 minutes 

at each condition before recordings were taken. 

 

4.3.2  The direct effects of barium challenge on membrane potential – membrane potential 

sensitive dyes 

Membrane potential can also be estimated using voltage sensitive dyes. I used these to 

determine the effect that the barium treatment had on membrane potential. Although 

patch clamping should be more accurate for these purposes, using a dye allows for many 

more cells to be observed at once.  

I used two such dyes. Initially I used Fluovolt (Thermo Fisher) which is a fluorescent 

sensor. It acts by modulating photo-induced electron transfer via a synthetic molecular 

wire to a fluorophore (Miller et al, 2012) as described in methods (section 3.4.4, I.). It is 

characterised by fast kinetics making it appropriate for investigating responses to 

electrical stimulation. Fluovolt exhibits approximately 25% change in fluorescence in 

response to a depolarising voltage step of 100mV. The paradoxical depolarisation in 

response to potassium reduction on the other hand should result in a change in 

membrane potential of approximately 25mV and thus in an increase in dye fluorescence 

of approximately 5%. When tested on cells during depolarisation using 40mM potassium, 

there was a 20% increase in fluorescence – close to the predicted value of 25% (figure 

44). However, smaller depolarisations were difficult to track by this fluorescence method 

because of the low signal to noise ratio. In particular challenge with 1mM potassium and 

50µM barium should have resulted in a 5% increase in fluorescence but a change of only 

Mean VREST for fibres exposed to different [K] extra with or without 
BaCl2 or gramicidin 

[K+]extra Drugs VREST (mV) Number of 
fibres 

4mM none 62.2 ±6.8 11 
2mM 50µM Ba2+ 60.7 ±6.6 8 
1mM none 59.1 ±7.7 11 
1mM 50µM Ba2+ 53.2 ±8.9 3 
Errors represent ± SEM 
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0.2% was observed (figure 45). The effect of lowering external potassium to 2mM was not 

tested, having established that 1mM had such a marginal effect of FluoVolt fluorescence 

(figure 45). 

 
 

Figure 44: FluoVolt signal upon challenge with high potassium. Changes in FluoVolt 

fluorescence intensity upon challenging a neonatal culture with 40mM potassium. Values 

were collected from seven neonatal Sprague Dawley rat myotubes and are given relative 

to basal Fluovolt fluorescence.  
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Figure 45: FluoVolt signal upon challenge with low potassium and barium. (A) 

Representative trace of typical changes in FluoVolt fluorescence intensity upon challenge 

with 1mM potassium in the presence of 50µM barium. Values are given relative to basal 

Fluovolt fluorescence. The average relative Fluovolt fluorescence was measured for 10 

neonatal Sprague Dawley rat myotubes in culture before during and after challenge with 

1mM potassium in the presence of 50µM barium. During removal of the standard 

recording solution and addition of the low potassium solution there was much fluctuation 

in signal. A dotted line is introduced to indicate that there was an interval between the 

lower fluorescence levels before challenge and the higher levels after challenge with low 

potassium. (B) Mean relative FluoVolt fluorescence ±SD upon treatment with control 

medium (0.0237 ± 0.0497) and upon treatment with low 1mM potassium (0.248 ± 0.034). 

N=3, three neonatal Sprague Dawley rat cultures each containing approximately 10 

myotubes were analysed. Cultures were challenged with 1mM potassium in the presence 

of barium, and returned to control potassium levels. Relative Fluo-4 fluorescence 

increased upon challenge with low potassium. Unpaired Student’s t-test, *P = 0.0015.  
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The second membrane potential dye that I used was part of a kit designed for high 

throughput investigations using a Fluorescent Imaging Plate Reader (FLIPR). This dye, the 

FLIPR Membrane Potential Assay Kit (Molecular Devices) has a negative charge and thus 

enters the cell upon depolarisation following an inflow of positive ions which create an 

inward current. Hyperpolarisation on the other hand results in a decrease in fluorescence 

as positive ions flow out creating an outward current, followed by an outflow of the dye. 

A quenching dye is also included in the kit to reduce background fluorescence. There are 

two versions of the quenching dye, a red quencher and a blue quencher, and thus two 

versions of the assay kit – the “red” kit and the “blue” kit. Results from the blue kit were 

more variable, both within each condition and when comparing the different conditions. 

This suggests that the blue kit was less suitable for the neonatal myotube cultures (as 

indicated by the manufacturer, both versions should be tested with each cell line, and in 

many cases one of the kits will be more appropriate). As a result only the red kit results 

are presented here (figure 46). 

Paradoxical depolarization occurred in all cells that were treated with 0.5mM or 1mM 

potassium, it also occurred to some extent for the population treated with barium and 

2mM potassium but not without barium (figure 46). This suggests that barium did 

promote paradoxical depolarization to some degree. Those treated with 5mM potassium 

did not display depolarization whether or not barium was present (figure 46). 

Overall, results obtained using the membrane potential sensitive dyes support the 

hypothesis that low potassium will depolarise cells and that barium can contribute to 

such depolarisation. As with a study using a two electrode patch clamp technique carried 

out on dissociated muscle fibres (Struyk & Cannon, 2008) it appears that neonatal 

cultures challenged with 1mM extracellular potassium levels become depolarised (figure 

46). This was the case for investigations carried out using the membrane potential 

sensitive dyes. However the sharp electrode patch clamp investigations did not display 

this effect. Reduction of extracellular potassium concentration did not alter the 

membrane potential in the 11 myotubes that where tested. Data from three further 

myotubes that were exposed to low extracellular potassium (1mM) with 50µM barium, 

did display paradoxical depolarisation as expected (see table 6). This suggests that the 

barium may have increased sensitivity to paradoxical depolarisation. It is not clear why 

reduction of extracellular potassium concentrations to 1mM was not sufficient to produce 
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paradoxical depolarisation (table 6).  It may be that the interruption in membrane 

integrity caused by patch clamping affected sensitivity to the treatment.  

  

 

Figure 46: The Molecular Devices membrane potential “red” kit. Values are given as 

fluorescence intensity levels during treatment relative to basal fluorescence levels before 

treatment. (A) Trace showing fluorescence levels before, during and after treatment. Cells 

were initially bathed in 5.3mM potassium, followed by 0.5mM, 1mM, 2mM or 5.3mM 

potassium in the presence of barium, and finally with 5.3mM potassium in the presence of 

barium. Treatments were applied at 20 minutes and removed at 80 minutes. The initial 

peak is an artefact due to solution changes in the FLIPR machine. (B) The mean relative 

fluorescence levels during treatment for cells treated with 0.5mM, 1mM or 2mM 

potassium. The chart suggests that reducing extracellular potassium levels below 2mM 

potassium causes increased cytosolic calcium, and that this increase is not affected by the 

presence of barium, however this investigation was only carried out once and statistical 

significance cannot be calculated.  
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4.3.3  The effects of barium and gramicidin on spontaneous cytosolic calcium fluctuations 

Having observed that barium has a direct effect on mitochondrial membrane potential, I 

went on to investigate effects of the barium and gramicidin treatments on calcium 

handling in the myotubes. Cultures were treated with Fluo4, AM and imaged by 

fluorescence microscopy.  

I observed that the neonatal myotube cultures exhibited spontaneous calcium signals in 

culture upon reduction of extracellular potassium to 1mM (see figure 47A), but not at 

normal extracellular potassium levels, or even at 2mM extracellular potassium 

concentrations. I monitored these fluctuations in the presence and absence of both 

barium and gramicidin. A greater proportion of cells exhibited the calcium fluctuations in 

cultures treated with 50µM barium than in control cultures, and fewer exhibited such 

fluctuations upon treatment with gramicidin (figure 47B). Indeed in several cases the 

treatment with gramicidin resulted in cessation of all spontaneous calcium release as well 

as cessation of calcium signals in response to electrical stimulation. This may be related to 

the inhibitory effect of calcium ions on the gramicidin conductance (Gambale et al, 1987). 

Cells treated with a combination of 50µM barium and 0.1µM gramicidin did exhibit 

spontaneous calcium signals. Possibly due to the effects of barium in potentiating the 

calcium signals and despite the inhibitory effects observed when gramicidin was applied 

alone. Electrical stimulation was used as a positive control to ensure that cells were 

responsive.  

The average time taken for cytosolic calcium levels to recover following each spontaneous 

fluctuation is compared in figure 47C for barium treated and control myotubes. These 

recovery times were not significantly difference. 
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Figure 47: Drug models – spontaneous calcium fluctuations. (A) A trace of six cells that 

exhibit spontaneous cytosolic calcium signals. Where there was contact between the cells 

in culture the signals were electrically coupled. (B) Scatter plot indicating the proportion of 

cells exhibiting calcium release upon treatment with low extracellular potassium (1mM) in 

presence of gramicidin (GD), gramicidin and barium (GD + Ba), barium (Ba), or with 

neither barium nor gramicidin (control). Mean ±SD is indicated for GD (0.171 ± 0.128) for 

GD + Ba (0.833 ± 0.236), Ba (0.469 ± 0.210) and for control (0.316 ± 0.173). None of the 

myotubes exhibited such fluctuations before reduction of the extracellular potassium 

concentration from 5.3mM to 1mM. N=4 for gramicidin treated cultures, n=2 for 

gramicidin and barium treated cultures, n=5 for barium treated cultures and n=9 for the 

controls. The proportion of cells exhibiting calcium fluctuations upon treatment with 

Barium and gramicidin is statistically significantly greater than that of cells upon 

treatment with gramicidin and that of untreated cells. One-way ANOVA followed by 

Tukey’s post hoc test, **P = 0.0032 and *P = 0.0102, respectively. (C) Scatter plot of 

cytosolic calcium recovery times ±SD at the end of each transient calcium fluctuation. N=3, 

recovery times are compared for three barium treated myotubes (1.282 ± 0.210) and three 

control myotubes (1.062 ± 0.078). Recovery was typically slower in barium treated 

cultures. Unpaired Student’s t-test, P = 0.1646. 
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4.3.4  The effects of barium challenge on calcium handling and mitochondrial membrane 

potential 

In conjunction with testing the direct effects of the low potassium/barium challenge on 

membrane potential, other effects on calcium handling and mitochondrial membrane 

potential were also investigated. The same model of neonatal Sprague Dawley rat 

cultures was used for these investigations. Calcium handling was monitored using Fluo-4. 

TMRM was used to investigate effects on mitochondrial membrane potential as well as 

for characterising mitochondrial structure. 

Cultures were imaged both during treatment in order to monitor direct effects of the 

conditions, and following treatment in order to determine downstream effects. In 

addition cells were fixed for immunofluorescence assays and for Western blotting 

following treatment in order to better understand downstream effects of the treatment. 

Due to the inhibitory effects observed with use of gramicidin only barium was used for 

these downstream tests. 

Fluo-4 fluorescence was monitored in cells while challenging the culture with 5 electrical 

pulses administered at 40 millivolts at a frequency of 0.1 Hertz (see figure 48A for sample 

response). 10, 20, 30 and 50 millivolts were also used but responses to pulses at 40 

millivolts gave the most consistent results and are therefore considered here. I analysed 

the relative peak cytosolic calcium concentration reached following a set of 5 pulses 

(figure 48B). I compared cells that were pre-treated for an hour with 1mM, 2mM or 

5.3mM potassium in the presence or absence of barium. Cells were imaged three hours 

after application of the different conditions. Peak cytosolic calcium levels reached in the 

myotubes were not affected by pre-treatment with low potassium, whether or not 

barium was added (figure 48B).  
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 5.3mM 

K  
5.3mM K + 
Ba 

2mM 
K 

2mM K + 
Ba 

1mM 
K 

1mM  K + 
Ba 

Mean peak 11.73 10.77 9.553 9.865 10.62 20.06 
SD of peak 1.556 4.525 0.6083 1.253 2.043 14.86 
SEM of peak 1.101 3.199 0.4301 0.8861 1.445 10.51 
 

Figure 48: Drug model – peak cytosolic calcium. Neonatal Sprague Dawley rat myotube 

cultures were treated with medium containing 1mM, 2mM or 5.3mM potassium for one 

hour and imaged three hours after treatment. Relative Fluo-4 fluorescence intensity was 

measured while stimulating the cells electrically. Electrical stimulation was administered 

as 6 pulses of 40 millivolts at a frequency of 0.1 Hertz as indicated by arrows in A. (A) 

sample chart showing the fluctuations of Fluo-4 fluorescence in response to electrical 

stimulation in 3 cells from a single dish (pre-treated with 1mM potassium). (B) Peak 

cytosolic calcium levels in response to electrical stimulation. Relative peak cytosolic 

calcium levels were not affected by addition of barium in myotubes treated with 5.3mM, 

2mM or 1mM extracellular potassium. Interaction P value = 0.5029 (two-way ANOVA 

test). (C) Table of mean and SD values from B, along with SEM. N=2, two neonatal 

myotubes cultures were tested per condition. 
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 5.3mM K  5.3mM K + Ba 2mM K 2mM K + Ba 1mM K 1mM  K + Ba 
Mean Fluo-4 0.8147 1.038 0.731 0.8241 1.26 1.071 
SD of Fluo-4 0.02223 0.3655 0.002807 0.05999 0.2453 0.5721 
SEM of Fluo-4 0.01572 0.2584 0.001985 0.04242 0.1735 0.4045 
Mean TMRM 0.9613 0.9392 0.7739 0.9094 1.005 0.9813 
SD of TMRM 0.02089 0.03067 0.1583 0.09235 0.00985 0.07259 
SEM of TMRM 0.01477 0.02169 0.1119 0.0653 0.00697 0.05133 
 

Figure 49: Drug model – mitochondrial membrane potential. (A) Cytosolic calcium in 

neonatal myotube stained using Fluo-4. Myotubes were imaged three hours after 

treatment with low extracellular potassium (1mM) in the presence of barium for one hour. 

(B) Neonatal myotubes from figure A, stained with TMRM in order to visualise 

mitochondrial membrane potential. Imaged using a Zeiss 700 microscope with a 40x 

objective. (C)  Cytosolic calcium levels were not affected by addition of barium in 

myotubes pre-treated with 5.3mM (control potassium levels), 2mM or 1mM extracellular 

potassium. Interaction P value = 0.6264 (two-way ANOVA test). (D) Mitochondrial 

membrane potential levels were not affected by addition of barium in myotubes pre-

treated with 5.3mM (control potassium levels), 2mM or 1mM extracellular potassium. 

Interaction P value = 0.3535 (two-way ANOVA test). (E) Table of mean and SD values from 

C and D, along with SEM.N=2, two neonatal myotubes cultures were tested per condition. 
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Relative Fluo-4 fluorescence was not affected by pre-treatment with 1mM extracellular 

potassium compared to those pre-treated with 5.3mM extracellular potassium (p=0.01). 

The addition of barium had no discernible effect on either calcium signalling or on 

mitochondrial membrane potential (figures 48c and 48d). 

4.3.5 Barium challenge in single muscle fibres 

This investigation was repeated with FDB fibres – fibres were exposed to 1mM, 2mM and 

5.3mM potassium in the presence and absence of barium while imaging by fluorescence 

microscopy. TMRM was used to measure mitochondrial membrane potential during 

changes in extracellular potassium concentrations while cytosolic calcium concentration 

was measured with Fluo-4. No differences were detected in the mitochondrial membrane 

potential or in calcium handling in these fibres during treatment. Fibres were also treated 

with these conditions before imaging. Such pre-treatment did not affect mitochondrial 

membrane potential either (figure 50). 
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 5.3mM K  5.3mM K + Ba 2mM K 2mM K + Ba 1mM K 1mM  K + Ba 
Mean Fluo-4 145 156.1 191.8 171.5 151.7 142 
SD of Fluo-4 44.27 54.54 14.14 25.36 26.73 29.59 
SEM of Fluo-4 31.3 38.57 10 14.64 11.95 14.8 
 

Figure 50: Drug model in single fibres – mitochondrial membrane potential. (A) Cytosolic 

calcium in single FDB fibre stained using Fluo-4. Fibre was imaged three hours after 

treatment with low extracellular potassium (1mM) in the presence of barium for one hour. 

(B) Single fibre from figure A, stained with TMRM in order to visualise mitochondrial 

membrane potential. Imaged using a Zeiss 700 microscope with a 40x objective. (C) A 

sample chart of Fluo-4 fluorescence showing that levels of cytosolic calcium were 

unaffected by challenge with 1mM extracellular potassium and 50µM barium. (D) 

Mitochondrial membrane potential levels were not affected by addition of barium in fibres 

pre-treated with 5.3mM (control potassium levels), 2mM or 1mM extracellular potassium. 

Interaction P value = 0.7654 (two-way ANOVA test). (E) Table of mean and SD values from 

D, along with SEM.N=2, at least two fibres were tested per condition. 
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4.3.6  The effects of the barium challenge on protein expression 

The inward rectifier potassium (IRK-2.1) channels are essential for the occurrence of 

paradoxical depolarization. Their expression in the neonatal cultures was confirmed by 

immunofluorescence.   

Cells that had been treated with low potassium (1mM) expressed more IRK-2.1 channels 

than controls that were treated with 5.3mM potassium (figure 51). Such upregulation of 

IRK-2.1 channels in treated cells may help to counter the inhibition of IRK-2.1 channels by 

barium (Standen & Stanfield, 1978).  
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Figure 51: Drug model – IRK-2.1 expression. Quantification of fluorescence signal from 

immunofluorescence analysis of IRK-2.1 channels. (A-D) Neonatal Sprague Dawley rat 

myotube fixed one day after treatment and stained with a desmin antibody (greys) and an 

IRK-2.1 antibody (green/blue). (A-B) Cells treated for one hour with 50µM barium and 

either 5.3mM potassium. (C-D) Cells treated for one hour with 50µM barium 1mM 

potassium. More IRK-2.1 staining can be seen following treatment with low potassium (D) 

than control (B). Cells were imaged using a Zeiss 700 microscope at a 40x objective. (E) A 

sample intensity plot used to quantify and compare levels of fluorescence. Antibody levels 

were quantified by measuring the area under the curve of each plot of fluorescence 

intensity across a single myotube, relative to equivalent plots of levels of desmin in the 

myotube (not shown). (F) The level of IRK-2.1 antibody detected in cells following one hour 

of treatment. Mean levels of IRK-2.1 expression ± SD are indicated. Greater levels of IRK-

2.1 are expressed in myotubes treated with low potassium (0.378 ± 0.089) compared to 

controls(0.183 ± 0.026). Unpaired Student’s t-test, *P < 0.0304. N=3 for control and N=2 

for treated cultures, data were collected from three control cultures (treated with 5.3mM 

potassium), and from two cultures that had been treated with 1mM potassium.  

 

C o n tro
l [

K ]  (
5 .3

m
M

)

L o w
 [K

]  (
1m

M
)

0 .0

0 .1

0 .2

0 .3

0 .4

0 .5

A
re

a
 u

n
d

e
r 

c
u

rv
e

*

A B 

C D 

E F 



141 
 

 

Although several myotubes were analysed, data were only collected from a single culture 

of each condition. In addition immunofluorescence assays are less quantitative than 

Western blot analysis. Consequently, while results presented in figure 51 may indicate a 

significant increase in expression of IRK-2.1 channels following challenge with low 

extracellular potassium in the presence of barium, it is not clear that such a difference 

would persists with further testing. I tested IRK-2.1 expression by Western blotting in 

order to confirm this trend however the antibody did not produce sufficiently clear bands 

and will not be considered here. 

Western blotting analysis produced clearer results with TFAM and the mitochondrial 

respiratory complexes. TFAM is a regulator of mitochondrial transcription and also leads 

to increased oxidative phosphorylation. As demonstrated for the Dgn model of PP, 

affected fibres may shift toward a more oxidative phenotype. Such a shift could be 

detected in the drug model as an increase in TFAM levels or as an increase in levels of the 

mitochondrial respiratory complexes. 

Effects of culture in 0.5mM, 1mM and 5.3mM potassium were compared, where the 

condition was applied for four hours, one hour or half an hour. All cultures included 50µM 

barium. Cells were fixed for analysis after overnight incubation in normal culture 

conditions. The TFAM test suggests that expression of TFAM was increased in cells that 

were treated for four hours with 0.5mM potassium, but not for treatment with higher 

potassium concentrations or shorter periods of time.  
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Figure 52: Drug model – TFAM expression. (A) Western blot testing TFAM levels, relative 

to GAPDH. (B) Analysis of the Western blot. Values are given here relative to GAPDH 

expression. Cells were pre-treated with 50µM barium and 5.3mM (control), 1mM or 

0.5mM extracellular potassium, for four hours, one hour or half an hour. Cells were then 

incubated under normal growth conditions overnight before fixing for analysis. N=1, data 

from a single Western blot are presented and each of the 9 conditions is represented by a 

single neonatal Sprague Dawley rat myotube culture. 

 

Expression of the mitochondrial respiratory complexes were likewise quantified following 

four hours, one hour or half an hour of treatment where cells were cultured in medium 

containing 5.3mM (control), 1mM or 0.5mM potassium. 50µM barium was present in all 

cultures. Cells were then incubated in normal growth conditions overnight before fixing 

for analysis. Having shown that TFAM expression was upregulated, an upregulation of the 

mitochondrial respiratory complexes might have been predicted as a further indication of 

a shift toward a more oxidative phenotype in treated cells. Complexes I, II, III, IV and V 

were all tested for, however the bands of complex II were not clear enough to be 

quantified. 
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Figure 53: Drug model – mitochondrial complex expression. (A) Expression of the 

mitochondrial complexes in neonatal cultures following pre-treatment for one hour. (B) 

Expression of the mitochondrial complexes in neonatal cultures following pre-treatment 

for four hours. Cells were pre-treated with 5.3mM (control) 1mM or 0.5mM extracellular 

potassium. Cells were then incubated under normal growth conditions overnight before 

fixing for analysis. Proteins from complexes I, III, IV and V were quantified by Western blot 

analysis. Complex I was detected as subunit NDUFB8 of 20kD, complex III as subunit core 2 

of 47kDa, complex IV as subunit I of 39kDa and complex V as ATP synthase subunit alpha 

of 53kDa. GAPDH was used as a loading control, and values are given here relative to 

GAPDH expression. N= 1 for complexes I and III and N=2 for complexes IV and V; results for 

complexes I and III were produced using a single Western blot, whereas those for 

complexes IV and V were produced using data from two Western blots of two separate 

sets of cultures. Error bars for complexes IV and V indicate standard deviation. 
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Results presented in figure 53 are highly variable, suggesting that the challenge with 

barium and low extracellular potassium does not have a large effect on expression of the 

mitochondrial complexes. Nevertheless expression of the complexes does appear to 

increase following four hours of treatment in 0.5mM extracellular potassium in the 

presence of barium. This may provide further evidence that a shift toward a more 

oxidative phenotype develops following challenge of cells with low extracellular 

potassium in the presence of barium.  

4.3.7 Concluding remarks on part 3 

The value of drug treatment as a model to simulate HypoPP was tested by studying cells 

both during and following treatment. During treatment, spontaneous calcium fluctuations 

occurred upon reduction of extracellular potassium to 1mM, whether in the presence or 

absence of barium. This effect was clearer in the presence of barium.  The direct effects 

of treatment on membrane potential indicate that reducing extracellular potassium to 

1mM results in membrane depolarisation (figure 46). Investigations using the FLIPR 

membrane potential dye suggest that 1mM potassium was sufficient to depolarise the 

membrane in the presence or in the absence of barium, as has been previously shown in 

vivo (Struyk & Cannon, 2008). Calcium handling was not affected by exposure to barium 

and low extracellular potassium levels.  

Investigations were also performed following pre-treatment of the cultures with 1mM 

extracellular potassium. Such treatment did not affect basal calcium or basal 

mitochondrial membrane potential. There is some indication that treatment can lead to 

increased expression levels of TFAM and IRK-2.1. However these results are derived from 

a single Western blot in each case. Expression levels of the mitochondrial respiratory 

complexes were not affected at 1mM. The increase in TFAM may support the hypothesis 

that cells were shifting toward a more oxidative phenotype, as suggested by results from 

the animal model.  

Treatment in preparation for Western blotting was applied the day before imaging. It may 

be that a stronger effect would have been observed nearer the time of treatment, for 

example if cultures were fixed several hours after treatment. The overnight culture in 

regular medium could result in recovery from the treatment.  
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5. DISCUSSION 

The broad aim of this project was to explore the mechanisms by which PP progresses from 

intermittent attacks of paralysis into generalised muscle pathology. The work presented 

here sheds some light on this progression, primarily with regards to fibre type switching 

(see below - section 5.2, and results section 4.2.1). Data are presented from both cultured 

cells and animal work, and as well as being an investigation of PP progression, this project 

evolved into a comparative study of these different experimental models. I will discuss 

these below (section 5.1), evaluating their relevance to the study of PP progression as well 

as their limitations and potential follow-up investigations. 

Work presented here also contributes a method of analysing mitochondrial structure in 

single FDB fibres using Fourier transform analysis (which I will discuss below in section 

5.1.2), and possibly a method of monitoring cell fusion using flow cytometry (see section 

5.1.1). Finally, I will discuss progress that is being made in the study of PP along with future 

directions of this research (section 5.3). 

In vivo investigations focused on gross physiological effects of the PP mutations, while the 

spatiotemporal dynamics of calcium signals and mitochondrial structure and function were 

addressed in the ex vivo and in vitro investigations. The use of different experimental 

models in this study enabled me to look for common pathways leading to weakness and 

myopathy. If different models display the same phenotype it can be inferred that this 

phenotype results from a relevant feature of the disease progression. In PP this assumption 

is compounded if the same features are seen both in models of HypoPP and HyperPP, 

because of the distinct direct effect of their mutations and the common downstream 

pathological characteristics.  

 

5.1       MODELS FOR THE INVESTIGATION OF PERIODIC PARALYSIS PROGRESSION 

I used a range of different approaches to investigate periodic paralysis. The first model that 

I describe is a model prepared using fibroblasts from skin biopsies. These were acquired 

from control subjects and from patients. I generated myotubes from these fibroblasts by 

transfection with MyoD to produce myoblasts which I differentiated into myotubes. I tested 
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several different transfection and differentiation protocols in order to optimise this 

approach. I discuss this approach in section 5.1.1 below. 

The second model that I describe is a mouse model of PP. I initially carried out in vivo 

investigations in order to validate the model, and once I had done so I used this model to 

explore PP progression in vitro. In vivo investigations included tension testing and motor 

neuron count, while in vitro investigations involved the isolation of single fibres which I 

characterised by confocal fluorescence microscopy. 

The third model that I describe is a drug model of HypoPP, where treatment is applied to 

control neonatal cultures. In HypoPP, patients experience attacks of paralysis when their 

serum potassium levels are low, and in this model, such attacks are simulated by 

challenging the cultures with barium while reducing extracellular potassium concentrations.  

 

5.1.1 Fibroblast derived myotubes  

Due to the availability of a large cohort of patients, an attractive model for investigating PP 

was cultured cells derived from the patients. There are two major advantages to using 

myotubes derived from patient cells, compared to using animal or drug models of the 

disease. The first is that human physiology can be observed, rather than animal or cell line 

physiology. The second advantage is that the mutations in the model are identical to the 

mutations of interest in the patients and a range of such mutations can be investigated, 

according to the breadth of access to patients.  

Specific mutations could also be investigated by generating knock-in mice expressing the 

mutations. However it takes many months as well as many resources to generate even a 

single such knock-in mouse. Furthermore, the presentation of patients with PP is frequently 

associated with factors other than the point mutations associated with PP. There are other 

influences that affect susceptibility to the disease, leading to phenotypic variability within 

families that express identical PP-associated mutations. The use of patient cells allows for 

each mutation to be investigated within the wider genotype of the patient. Furthermore, 

such investigations enable a comparative study of immediate effects of mutations and the 

way these manifest with progression of the disease in individual patients. Because PP 

constitutes a spectrum of disorders, novel mutations may lead to unique characteristics in 
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different patients stemming from distinct ionic interactions (Joshi et al, 2015; Yoshinaga et 

al, 2015). 

Although patient cells have these advantages, investigations were carried out with 

fibroblasts from skin biopsies rather than using myoblasts from muscle biopsies.  The lack of 

access to patient myoblasts is a major deterrent to the use of patient cells in the study of 

PP. The mutations found in PP are specific to skeletal muscle, and fibroblasts must 

therefore be converted to myotubes in order to make any comparative studies between 

patient and control cells. I therefore worked on optimising the conversion of fibroblasts to 

myotubes using different viral vectors and different growth and differentiation media.  

I found that transducing cells with a lentiviral vector was more effective than with an 

adenoviral vector. There was also some indication that adding factors such as insulin, 

creatine and EGF to the medium during differentiation medium might increase levels of 

myosin expression in differentiated cells. Supplementing differentiation medium with araC 

also lead to the development of a higher proportion of myotubes in differentiated cultures 

(figure 23).  

Other methods of improving fibroblast to myoblast transduction have been extensively 

investigated. A comparative genome wide analysis of fibroblast, myoblast and MyoD 

transduced fibroblast genes indicates that MyoD mediated transduction of fibroblasts does 

not produce cells with a complete myoblast genome. Many myoblast genes are expressed 

in transduced cells however some genes expressed in these cells resemble fibroblasts more 

closely than myoblasts (Manandhar et al, 2017). This is associated with reduced affinity of 

MyoD to MyoD binding sites. This study also found that the transduction process can be 

improved by increasing the expression of other factors including the SAND-domain 

proteins. The Sand-domain proteins are nuclear proteins involved in chromatin dependent 

transcription. 

Although fibroblasts were the available patient derived cells for investigating PP, it is also 

possible to convert these to iPS cells prior to differentiating them into myotubes. This has 

been found to improve the proportion of myotubes in culture (Świerczek et al, 2015; Iovino 

et al, 2016). Iovino et al, used fibroblasts from patients with insulin resistance to generate 

iPS cells, and differentiated these to myotubes (2016). They did not find any differences in 
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cell viability or morphology in patient and control lines. This meant that differences arising 

from mutations could be investigated. While the myotube cultures produced by Iovino et al 

did not develop characteristic muscle striations, these have been produced using iPS cells in 

other studies (Skoglund et al, 2014). Although this technique is more demanding with 

regards to the time and resources it is likely to produce cultures that are more suitable for 

the investigation of muscle disease.  

Once a myoblast culture is achieved, many different methods have been developed to aid 

the successful differentiation of myoblasts to myotubes and the production of mature 

skeletal muscle cultures. One approach toward making skeletal muscle cultures for the 

investigation of muscle disease is the ‘tissue on a chip’ approach. Growth on different 

surfaces can aid the differentiation of cell types, by mimicking the surfaces found in vivo. 

For example, soft substrates that are microplated in parallel lanes have been found to 

support the differentiation of myoblasts (Zatti et al, 2012). Such differentiation ‘on a chip’ 

has been used to study dystrophin production by mesangioblast and myoblast derived 

myotubes in a model of muscular dystrophy (Serena et al, 2016). 

Because a primary focus was to improve myogenicity of cultures, I worked on several 

methods of assessing myogenicity. In particular, I investigated the options of using flow 

cytometry and protein expression. I tested the possibility of using flow cytometry to 

compare the efficiency of differentiation under different conditions. PI is routinely used to 

study cell cycle progression by flow cytometry, and I hoped to use this method of analysis 

to monitor the rate of cell fusion. I found that although flow cytometry may be useful for 

determining the proportion of cells with several nuclei, it is not a suitable tool for myoblast 

to myotube differentiation. Successfully differentiated myotubes are large and highly 

elongated, frequently reaching several hundred micrometres in length, such that it would 

only be able to pass through typical flow cytometry equipment lengthways. Particles of this 

size are also likely to become damaged and fragmented during the fixation and staining 

process. Myotubes and fragments of myotubes could also become aggregated and stuck in 

the flow cytometry equipment. Therefore, while the PI protocol may be a useful tool for 

analysing a limited degree of cell fusion, it is not appropriate for studying myoblast to 

myotube differentiation. A more appropriate method for studying such differentiation may 

be to stain with Hoechst and myosin. Although this method is more time consuming, it 
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would result in a more accurate estimation of fusion index. It may be that the PI protocol 

described here could be reserved for the initial stages of cell fusion, for example analysis on 

days one and two of differentiation could give an indication of the rate at which 

differentiation begins following transduction with MyoD and exposure to differentiation 

medium. In combination with microscopy it may be that this method could be used to 

determine the extent of myoblast fusion during the initial stages of differentiation. 

As well as determining levels of multi-nucleation, myotube maturation stage was assessed 

by testing for proteins that are present in mature muscle but not in myoblasts and 

fibroblasts, such as myosin heavy chain (figure 16). Other markers of myotube maturation 

include expression of tropomyosin and the formation of triad junctions and striations. Such 

structural characteristics did not develop in the cultures described here. The development 

of structural likeness to muscle would enable a more thorough investigation of ionic 

interactions in patient and control tissue as such interactions may depend on proximity of 

ion channels to each other and to organelles. In particular, the effects of PP-associated 

CaV1.1 mutations are likely to be influenced by the formation of triad junctions, where T-

tubule-bound CaV1.1 is associated with SR-bound RyRs. Due to the lack of striations, it is 

unclear whether triad junctions and other such structural characteristics developed. 

Successful differentiation leads to the expression of skeletal muscle associated channels. 

NaV1.4 and CaV1.1 are expressed in all skeletal muscle, and were expressed in the 

fibroblast derived myotubes (see figure 23 for immunofluorescence of CaV1.1). Their 

expression can also be predicted by the spontaneous calcium fluctuations in the cultures, as 

these rely on interplay between inward currents through NaV1.4 and CaV1.1 channels and 

an outward current through Kir2.1 channels (Sciancalepore et al, 2005).  

Patients of periodic paralysis express mutant NaV1.4, CaV1.1 or Kir2.1 in all their skeletal 

muscles, and expression can be even greater in muscle of affected patients than in control 

subjects (Cannon, 2015; Lucas et al, 2014). However not all skeletal muscles are affected by 

the condition. The diaphragm, for example, seems to be protected against features of 

periodic paralysis (Ammar & Renaud, 2015). It may be that the continuous activity of the 

diaphragm protects it, just as frequent moderate exercise can protect patients against 

attacks of PP. Alternatively, it may be that differences in the channelome, such as elevated 
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activity or expression of the sodium-calcium exchanger, protect the diaphragm (Ammar & 

Renaud, 2015). The diaphragm is more dependent on extracellular calcium for contraction 

than other skeletal muscles (Viires et al, 1988; Zavecz & Anderson, 1992). The sodium-

calcium exchanger may work in reverse mode in muscle of HyperPP patients, as 

sarcoplasmic sodium ion concentrations are increased, leading to increased calcium influx 

and increased force during contractions (Lucas et al, 2014).  

Similarly, pregnancy has a potassium lowering effect which can protect against HyperPP 

(Finsterer et al, 2017). Dynamics of potassium exchange across the plasma membrane of 

skeletal muscles are mediated by membrane transporters including the Na+, K+-ATPase and 

Kir2.1. Potassium uptake and release through these is regulated by circulating hormones, 

peptides and ions, as well as by muscle activity levels and changes in extracellular 

potassium concentration (Cheng et al, 2013).  

These studies highlight a limitation of using the viral transduction of patient fibroblasts, or 

even iPS cells to form myotubes. Although such conversion leads to the production of 

myotubes that express mutant channels, ionic dynamics within the myotubes may protect 

against features of PP by a mechanism similar to that found in the diaphragm or during 

pregnancy.  

5.1.2 Mouse Model of periodic paralysis 

PP was studied in an animal model both in vivo and ex vivo. In vivo studies showed that 

skeletal muscle was affected in mutant compared to control mice. However the nervous 

system was not affected, as demonstrated by equal motor neuron counts.  

As discussed in the results (section 4.2.1) female mice were used for in vivo characterisation 

of the model despite the greater penetrance and severity of the condition in males. This is 

because the extent of difference in presentation with features of PP in male and female 

mice was not yet established, and because the supply of males was low. Severely affected 

male mice were frequently killed by the mother at birth. A similar trend in gender 

segregation of disease severity has been found in patients, and although the cause is not 

clear, it has been hypothesised that oestrogen plays a protective role (Ke et al, 2013). Male 

mice were used for the ex vivo follow-up investigations.  
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The in vivo investigations that I carried out on females in contribution to the study by 

Corrochano et al (2014) indicate that EDL muscle of Dgn mice has a tendency to exhibit 

greater resistance to fatigue. Although these results did not reach statistical significance (p-

value of 0.1; figure 32) they were consistent with results from investigations carried out by 

my colleague Pete Joyce on males, where mutant EDL showed significant resistance to 

fatigue (p-value of 0.001; figure 29; Corrochano et al, 2014). Resistance to fatigue is a 

hallmark of type I fibres and also a feature of type IIa fibres, suggesting that a switch in fibre 

type was taking place in Dgn mice, with type IIb fibres being downregulated and type I 

upregulated (this is further discussed below in section 5.2). I also helped to demonstrate in 

this study that female mice are less affected by the Dgn mutation than males. Muscle 

weakness, for example, was a feature in TA and EDL of male mice, but was not observed in 

females where the Dgn phenotype is less severe (Corrochano et al, 2014). 

One advantage of using animals to study progressive diseases is that disease progression 

can be tracked with age and explored at different time points. Female mice were used at a 

late time point in disease progression, and earlier time points were subsequently not 

assessed in the females because even in the aged group the effects were modest. A follow 

up investigation using males of different age groups could help to illuminate how the 

disease progresses. Only males are currently being tested for this reason and as part of a 

study on sarcopenia, described below. Investigations presented here did indicate that 

mutants present with progressive changes associated with PP and thus validate the Dgn 

model. 

Having established that the mutant mice displayed features of PP and that males were 

more severely affected than females, I ran further investigations ex vivo on single fibres of 

FDB muscle dissected from male mice. I monitored calcium handling and mitochondrial 

structure and function in these single fibres in order to determine whether or not these are 

affected in PP.  

As indicated in figure 43, cytosolic calcium rise time was significantly faster in single fibres 

dissected from Dgn mice than in those from control mice (P=0.025). Cytosolic calcium 

recovery time was not affected (figure 43).  
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Changes in mitochondrial structure and membrane potential were also observed. The Dgn 

mice presented with reduced mitochondrial membrane potential (figure 35) and a reduced 

proportion of intermyofibrillar mitochondria (figure 34). A colleague is currently repeating 

these investigations on older male Dgn and control mice in order to confirm whether or not 

mitochondria are affected in mutants and to test whether such changes could be a feature 

of sarcopenia which is accelerated in mutants. As discussed in introduction (section 1.3.3, 

page 30) PP and sarcopenia are phenotypically similar, possibly reflecting a degree of 

accelerated aging in patients. I believe that in combination with these current 

investigations, this study can lead to a publication focussed on a possible change in the 

roles of IMF and SS mitochondria in skeletal muscles of Dgn mice and may contribute 

further evidence for a link between sarcopenia and PP. 

The reduced mitochondrial membrane potential may be connected to the reduced 

proportion of intermyofibrillar mitochondria. It may be that subsarcolemmal mitochondria 

of affected muscle display higher activity levels in order to compensate for the lack of 

intermyofibrillar mitochondria. The subsequent increase in ATP turnover could reduce the 

mitochondrial membrane potential, due to the associated influx of protons through ATP-

synthase.    

Alternatively, it may be that increased ATP turnover leads to increased generation of ROS 

and to oxidative stress (Satoh et al, 1997). Such a process would likely be exacerbated in 

fibres of Dgn mice which have a higher proportion of subsarcolemmal mitochondria, 

because subsarcolemmal mitochondria are more sensitive to oxidative stress than 

intermyofibrillar mitochondria (Ayswarya and Kurian, 2016). However, oxidative stress is 

associated with reduced activity of the mitochondrial complexes, and activity levels of 

complexes I, II, III and IV were not affected in tissue from the Dgn mice (results section 

4.2.4, figures 36, 37 and 38). This suggests that mitochondrial membrane potential was 

affected by increased ATP-turnover but not by oxidative stress.  

Fourier transform analysis was used to distinguish between the subsarcolemmal and the 

intermyofibrillar mitochondria. This method allowed for several fibres to be tested per 

animal and revealed a significant difference between mutant and control groups despite a 

wide range in observations (figure 34). Fourier transform has been used to analyse TMRM 
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staining in muscle in other work, although this work was  conducted in cardiac muscle using 

different methodology, and with different aims (Venable et al, 2013). This study therefore 

contributes a novel method of distinguishing between the different mitochondrial groups 

using Fourier transform analysis. 

Advantages and limitations of using animal models in the study of human diseases have 

been widely discussed in the literature.  As indicated above, an important advantage of 

using animal models is the ability to investigate PP as it progresses. Human and mouse 

genomes are 85% conserved (Chinwalla et al, 2002), and this similarity makes the mouse a 

valid experimental model for investigating human diseases. However there remain both 

physiological and metabolic differences between human and mouse tissue. Key differences 

between human and mouse tissue include differences in their circadian rhythms and their 

immunological defences (Mestas & Hughes, 2004). The oxidative metabolism of rodents 

and humans is also distinct; in humans the highest mitochondrial enzyme content is found 

in type I muscle fibres, but in rodents it is in type IIa muscle fibres (Fitts, 1994). Another 

major difference is that mice live for approximately 2 years and humans can live for more 

than 100. This is likely to be important in the study of progressive diseases, in particular PP 

which has a biphasic natural history. It is unclear whether the mice experience the second 

phase of PP, namely progressive weakness coupled with a reduction in attack frequency. 

 

5.1.3  Drug model of periodic paralysis 

Barium and low potassium were used to simulate the paradoxical depolarisation 

characteristic of HypoPP in cultures of myotubes from neonatal muscle. This method has 

been previously used to simulate key features of HypoPP in excised rat muscle fibres 

(Struyk & Cannon, 2007) and in vivo (Schott & McArdle, 1974). Struyk and Cannon found 

that paradoxical depolarisation could be initiated by reducing extracellular potassium levels 

to 1mM in the absence of barium or by reducing it to 2mM in the presence of barium 

(2007). Under normal physiological conditions extracellular potassium levels do not reach 

as low as 1mM, and this protects the muscle against paradoxical depolarisation. However in 

HypoPP, such depolarisation is potentiated and can occur at extracellular potassium 

concentrations as high at 2.5mM (Cheng et al, 2013).  



154 
 

Initial testing with a high throughput membrane potential sensitive dye (the FLIPR 

membrane potential assay kit) showed that in the presence of barium, membrane potential 

depolarises upon treatment with 1mM potassium, and to a lesser extent with 2mM 

potassium (see figure 46). Further testing of these treatments in the myotubes indicated 

that reducing extracellular potassium levels to 2mM did not have downstream effects 

whether in the presence or in the absence of barium.  

In the myotubes, reducing the extracellular potassium concentration to 1mM led to 

spontaneous SR calcium release. Cells treated with 50µM barium and gramicidin displayed 

more spontaneous calcium fluctuations, however the level of spontaneous fluctuations was 

not affected in cells treated with 50µM barium without gramicidin (figure 47B). 

Furthermore, no changes in mitochondrial membrane potential or in basal calcium levels 

were observed following pre-treatment of the cultures, whether with 1mM or 2mM 

extracellular potassium (figures 49C and 49D for cultured myotubes and figures 50D for 

single fibres). Likewise, no changes in the expression of mitochondrial complexes were 

observed in such pre-treated cultured myotubes, even when pre-treatment of 0.5mM 

extracellular potassium concentration was used (figures 53A and 53B). 

Pre-treatment of cultures with 1mM potassium in the presence of 50µM barium lead to 

higher expression levels of IRK2.1 (figures 51F). TFAM expression and peak cytosolic calcium 

levels reached upon electrical stimulation were not altered by pre-treated with 1mM or 

2mM potassium in the presence or absence of 50µM barium (figures 52 and 48).  

Overall these results show that treatment can accentuate calcium dynamics, but that 

downstream changes only occasionally occur in cultures exposed to more extreme and less 

physiological conditions (extracellular potassium concentrations lower than 2mM). Because 

such potassium levels are not physiological, they may have other effects on the ionic 

dynamics within the myotubes. This poses a major disadvantage of the model as it is 

unclear whether the effects of treating the myotubes with extracellular potassium 

concentrations of less than 2mM can be associated with PP progression.  

Perhaps if cultures were exposed to treatment for longer, or if less time was allowed for 

recover from treatment before fixation, changes in TFAM expression would have been 
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detected following treatment with 2mM extracellular potassium. The overnight culture in 

regular medium may have resulted in recovery from the treatment.  

There are several important advantages of using a drug model to study PP; it is readily 

available, the level as well as the frequency of “attacks of paralysis” can be controlled, and 

there is no genetic variability between models as the same cells are used for controls. A 

further advantage of using such a drug model is that it can be instrumental in clarifying 

pathways leading to any observed downstream effects associated with the disease. In 

models with a mutation, it is not always clear whether downstream observations are 

associated with direct effects of the mutation. For example, it is not clear whether muscle 

weakness observed in the Dgn model is associated with attacks of paralysis, or with some 

other effect of the mutation. Barium can also be used to simulate PP in vivo and 

investigations using single fibres from rats treated in this manner could provide a useful 

comparison to the single fibres that were used in the Dgn model.  

However this experimental model has its limitations. For example a drug model can be 

designed to mimic what we know about a condition, but not other aspects thereof. It may 

be that a desired effect is achieved in a model, but that the mechanism leading to that 

effect is unrelated to the clinical process. In such a case, downstream effects in the model 

are unlikely to be related to the condition. 

5.2 What do these results mean for periodic paralysis? 

In vivo data indicate that the skeletal muscle of affected mice displayed resistance to 

fatigue. It may thus be deduced that fatigue resistance is a feature of PP. Fatigue develops 

during intense exercise when ATP demands can no longer be met. Metabolic by-products 

accumulate and interfere with actin-myosin interaction, thereby preventing hydrolysis of 

ATP and preserving any remaining ATP (Layzer, 1990). It may be that in the absence of this 

protective mechanism, excessive stimulation damages the skeletal muscle leading to the 

observed muscle weakness.  

Several of the results presented here, including the resistance to fatigue in the male mice, 

suggest that skeletal muscle fibre type is affected by the progression of PP. EDL muscle is 

predominantly composed of fast twitch fibres (type IIa and IIb), but fatigue resistance is a 

hallmark of type I fibres (and is also a feature of type IIa fibres) due to their higher 
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mitochondrial content (Herbison et al, 1982; Fitts, 1994). The high fatigability of type IIb 

fibres results from low mitochondrial content, and dependence on anaerobic metabolism. 

The increased resistance to fatigue displayed by Dgn muscle suggests that the proportion of 

type IIb fibres was reducing in affected mice. In addition, immunostaining has shown that 

fibres switch from type IIb to type IIa in Dgn TA, displaying a more oxidative phenotype (see 

figure 54 below from Corrochano et al, 2014). The fibre characteristics changed whether or 

not the mice presented with attacks of paralysis (Corrochano et al, 2014).  

  

Figure 54: Muscle fibre type switch in Dgn fibres. Reproduction of published figure (figure 4g in 

Corrochano et al, 2014), showing that fibres switch to a more oxidative phenotype in Dgn TA. The 

total number of fibres was quantified, as well as the total number and the percentage of type 1a 

(oxidative) and type IIb (glycolytic) fibres. (Scn4a+/+ n = 8; Scn4aDgn/+ n = 6 mice, P = 0.002 for both 

comparisons).  

This shift in fibre type may be connected to the increased muscle activity observed in 

affected animals. Increased muscle activity leads to activation of transcriptional regulators 

such as PGC1α. Moreover, acute exercise specifically increases levels of PGC1α and TFAM in 

subsarcolemmal mitochondria, and this population of mitochondria respond more 

efficiently to exercise training (Smith et al, 2013). PGC1α induces mitochondrial biogenesis 

and increased oxidative metabolism by co-activating Nrf1 and Nrf2 and by promoting the 

expression of TFAM. TFAM translocates to the mitochondria and promotes transcription of 

mtDNA encoded proteins (figure 55). Therefore PGC1α activation of TFAM promotes a shift 

toward a more oxidative phenotype (Lin et al, 2002b). PGC1-α co-activates Mef2 to 

promote the expression of type I fibrillar proteins. The promotion of metabolic and 

contractile properties of type I fibres is thereby coordinated (Lin et al, 2002b).  

These interactions suggest that TFAM expression is increased following exposure to the 

drug treatment protocol. However results regarding TFAM expression are inconclusive. 
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Results from a single Western blot on TFAM expression (figure 52) suggest that exposure to 

0.5mM potassium for four hours can lead to such an increase in expression levels of TFAM 

but not exposure for shorter time periods or higher extracellular potassium levels.  

 

Figure 55: Muscle activity promotes a shift towards an oxidative phenotype. Muscle activity 

initiates mitochondrial biogenesis and oxidative metabolism as well as promoting the expression of 

type I fibrillar proteins. PGC1-α co-activates NRF1 and 2 and promotes the expression of TFAM. 

TFAM translocates to the mitochondria and promotes mitochondrial biogenesis and oxidative 

metabolism. PGC1-α also co-activates Mef2 to promote the expression of type I fibrillar proteins.  

Type I and IIa fibres are more oxidative than type IIb fibres, and this may point toward 

mitochondrial involvement in progression of PP. However FDB muscle primarily expresses 

type IIa fibres, and very few type IIb fibres, such that downregulation of type IIb fibres is 

unlikely to have an impact. There is a high presence of type IIx myosin which is found in the 

type IIa fibres because the type IIa fibres of the FDB muscle contain a mixed population of 

type IIa and type IIx myosin (Lucas et al, 2014). Lucus et al showed that proportions of the 

different myosin isoforms were not affected in FDB muscle. It may be concluded that in 

other muscles such as TA and EDL that have higher proportions of type IIb muscle fibres, a 

shift in fibre composition takes place in order to deal with increased oxidative demands 

that develop during PP, as demonstrated by their resistance to fatigue, but that in FDB 

where the proportion of type IIb muscle fibres is low, any increase in oxidative demands 
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can already be met by the existing type IIa fibres. Lucas et al also suggest that fibre type 

changes do not occur in FDB due to a lower NaV1.4 content than other skeletal muscles, 

and reduced tetrodotoxin-sensitive sodium ion influx (2014). 

A shift in mitochondrial sub-populations was observed in Dgn compared to control FDB 

single fibres – a reduced proportion of intermyofibrillar mitochondria was observed in 

fibres from Dgn mice. Crescenzo et al, show that intermyofibrillar mitochondria oxidise 

substrates at more than double the rate of subsarcolemmal mitochondria, in a study on rat 

skeletal muscle (2014). Protein synthesis, on the other hand, is more efficient in 

subsarcolemmal mitochondria (Hesketh et al, 2016). The shift from intermyofibrillar to 

subsarcolemmal mitochondria that was observed in FDB muscle may therefore be related 

to increased levels of protein synthesis and/or to lower oxidative demands. As discussed 

above in section 5.1.2, the reduced mitochondrial membrane potential in FDB fibres could 

result from increased ATP turnover in subsarcolemmal mitochondria as they compensate 

for reduced levels of intermyofibrillar mitochondria. This could dissipate the mitochondrial 

membrane potential because ATP turnover is associated with an influx of protons through 

ATP-synthase. 

Calderon et al, show that during a calcium transient, the calcium release and recovery from 

type I fibres is slower than from type II fibres, and that peak cytosolic calcium is lower 

(2010). Since the resistance to fatigue described here indicates a shift towards a more 

oxidative phenotype with a switch in muscle fibre type from type II to type I, I would have 

expected calcium transients to display slower calcium dynamics and lower peak cytosolic 

calcium. However in FDB this may not be relevant as there is no evidence for a fast to slow 

switch in muscle fibre type in FDB.  

The shift from fast to slow muscle fibre type is driven by calcineurin – a calcium/calmodulin-

dependent protein phosphatase (Chin et al, 1998). Therefore, had an effect on calcium 

handling been observed, it would have been important to test whether cyclosporine, an 

inhibitor of calcineurin, could protect against the switch in fibre type. The calcium handling 

results obtained in these investigations were not significantly altered in the models of PP 

compared to the controls. Nevertheless in the drug model recovery was typically (but not 

significantly) slower in barium treated myotubes than in the control myotubes. In the FDB 
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fibres of Dgn mice there was a slight tendency toward faster calcium release, and as 

discussed above, this in unlikely to be related to a change in fibre type. 

5.3 Current Progress in this field and future directions 

Reduction in type II fibres and development of tubular aggregates are both features of PP 

and of aging (Chevessier et al, 2004). In addition, results presented here give some 

indication that TFAM expression could be increased in PP (figure 52), and this is also a 

feature in aged human skeletal muscle (Lee & Wei, 2005). It may be that other clinical 

features found in aging muscle also present in PP. One mouse model of PP, for example, 

presents with triad disruption and with a reduced number of skeletal calcium channels (Wu 

et al, 2012). Triad disruption is also a feature of aging (Boncompagni et al, 2006). Data from 

these studies thus suggest that there is some clinical similarity between normal aging and 

the progression of PP. A comparative study of PP and aging may help to illuminate the 

pathological process that leads to weakness in PP, and whether this presents as a form of 

accelerated aging (Suetterlin, unpublished work). 

Fourier transform analysis was instructive in identifying a shift in mitochondrial populations 

resulting from the Dgn mutations. Skeletal intermyofibrillar mitochondria can also be 

distinguished from subsarcolemmal mitochondria by centrifugation, allowing for the 

subpopulations of mitochondria to be isolated (Ferreira et al, 2010). Centrifugation can be 

used to separate out particles of different mass in order to isolate mitochondria (Graham, 

2002). Mitochondrial fractions can be sub-fractionated by a combination of protease and 

mechanical treatment and centrifugation in order to isolate SS and IMF mitochondria 

(Ferreira et al, 2010). In this way mitochondrial enzyme activity could be assessed (Ferreira 

et al, 2010; Krieger et al, 1980) and electron microscopy of the subpopulations performed 

(Ferreira et al, 2010). Such methods do not allow for localisation of the subpopulations to 

be viewed within skeletal muscle, which is an advantage of the Fourier transform method. 

Nevertheless these methods could help to identify further differences in the mitochondrial 

subpopulations resulting from PP. One might expect mitochondrial complexes from 

subsarcolemmal mitochondria of affected FDB muscle to display higher activity levels in 

order to compensate for the lack of intermyofibrillar mitochondria. Furthermore one might 

expect to see damage to intermyofibrillar mitochondria associated with their reduced 

abundance in affected tissue. 
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It would also be informative to repeat the TMRM imaging in single fibres from a different 

muscle. The FDB muscle is mainly composed of type IIa fibres (90%), but as discussed in 

section 5.2, type IIb fibres appear to be downregulated in PP. A muscle expressing a larger 

proportion of type IIb fibres is therefore likely to be more severely affected. FBD single 

fibres were used rather than TA or EDL fibres because they are shorter and less likely to be 

damaged by the isolation process. The first dorsal interosseus muscle, could be a suitable 

alternative, as it is also composed of short fibres, and it has equal proportions of type I and 

type II muscle fibres (Johnson et al, 1973). 

One aspect of PP progression that was not addressed in the investigations presented here is 

that patients experience a reduction in attack frequency with age. This is a challenging 

problem to address. It is not clear whether the animal models could shed light on this 

feature of the disease, as they rarely present with any attacks at all. It could possibly be 

investigated by comparing age matched patient muscle biopsies from patients that have 

reached a stage of disease progression where their attacks subside and patients who 

regularly experience attacks. Mitochondrial complex activities from such samples could, for 

example, be compared. However this method would involve the extraction of a large 

number of biopsies from affected patients. Another approach could be a retrospective 

study of patients looking at other clinical features that develop or subside at the time when 

the frequency of their attacks reduces. 

5.4 Concluding remarks  

The models of PP that I used in this investigation can offer insight into different aspects and 

stages of development of the disease. I showed that fibroblasts from patients could be 

converted to myotubes expressing relevant disease associated channels. However these 

myotube cultures were not a useful tool for investigating the disease due to high levels of 

variability in their patterns of response to electrical and chemical stimulation, and due to 

the presence of fibroblasts. While myotube cultures derived from skin biopsies were not 

used to compare patient and control metabolism, there may be scope for using such 

biopsies if the fibroblasts are first converted to iPS cells. Muscle biopsies could likewise be 

used to compare patient and control, either by direct observation of the muscle biopsy 

histology or by producing myoblast cultures.  
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Using the Dgn mouse model of PP, I showed that mouse models of the disease can be used 

to highlight progressive features of the disease involving changes in oxidative metabolism. 

Although these investigations were carried out using a single age group, using animals of 

different ages could provide further insight into how changes in oxidative metabolism 

develop.  

Drug models may also help to highlight the downstream effects of attacks of paralysis. I 

developed such a model where barium could be used to potentiate paradoxical 

depolarisation in cultures in order to mimic HypoPP. Investigations using this model only 

showed a difference between treatment and control groups where cultures were subjected 

to extremely low extracellular potassium levels. As such the model may not reflect changes 

that develop in patients. Nevertheless changes observed following the treatment did alter 

metabolism in a manner that is consistent with features observed in the mouse model. 

Investigations using myotube cultures lacked structural characteristics of muscle. Further 

investigations into the progression of PP may be more informative if cultures with structural 

features of skeletal muscle are developed. In particular because of the differences found in 

the mitochondrial structure of fibres from Dgn and control mice. 

Together my results from the drug model and from TA and EDL muscles of Dgn and control 

mice suggest that changes in oxidative phosphorylation occur during PP progression, and 

that this involves a shift in fibre type. Oxidative phosphorylation is enhanced and the 

composition of muscle shifts towards a more oxidative phenotype with fewer type IIb 

fibres. Results from the FDB muscles of Dgn and control mice indicate a reduction in 

intermyofibrillar mitochondria and in mitochondrial membrane potential. 
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