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Abstract

GBA encodes the lysosomal enzyme glucocerebrosidase (GCase), an enzyme involved in

sphingolipid metabolism. Mutations in the GBA gene are numerically the most important risk

factor for developing Parkinson disease (PD) accounting for at least 5% of all PD cases.

Furthermore, loss of GCase activity is found in sporadic PD brains. Lysosomal dysfunction is

thought to play a principal role in PD pathogenesis and in particular its effect on the

metabolism of -synuclein. A hallmark of PD is the presence intraneuronal protein inclusions

called Lewy bodies, which are composed mainly of -synuclein. Cellular and animal models

of GCase deficiency result in lysosomal dysfunction, and in particular the autophagy

lysosome pathway, resulting in the accumulation of -synuclein. Some forms of mutant

GCase unfold in the endoplasmic reticulum activating the unfolded protein response, which

might also contribute to PD pathogenesis. It has also been suggested that accumulation of

GCase substrates glucosylceramide/glucosylsphingosine may contribute to GBA-PD

pathogenesis. Mitochondrial dysfunction and neuroinflammation are associated with GCase

deficiency and have also been implicated in the aetiology of PD. This review discusses these

points and highlights potential treatments that might be effective in treating GCase deficiency

in PD.

Glucocerebrosidase

The lysosomal enzyme glucocerebrosidase (GCase; also known as glucosylceramidase; EC.

3.2.1.45) is involved in sphingolipid metabolism catalysing the breakdown of

glucosylceramide (GlcCer) to glucose and ceramide. Ceramide is a precursor for complex

sphingolipids such as glycosphingolipids (e.g. GM1, GM2, GM3 gangliosides) and

sphingomyelin, and can also act as a second messenger [1].
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GCase is encoded by the GBA gene (1q22) and homozygous GBA mutations cause Gaucher

disease (GD), the most common lysosomal storage disorder. More than 300 GBA mutations

have been reported and can be point mutations, insertions, deletions, frame shifts, splice-site

alterations or recombinant alleles. The point mutations c.1226A>G (N370S) and c.1448T>C

(L444P) are the most commonly associated with GD [2]. The accumulation of GlcCer in

macrophages in visceral tissue is the principal feature of GD [3,4], leading to

hepatosplenomegaly, anaemia, thrombocytopenia and bone marrow infiltration [5]. There are

three types of GD: type 1 has the visceral manifestations above, while types 2 and 3 also

exhibit these symptoms but are also neuronopathic, with a median age of death at 9 months

(type 2) or childhood to early adult hood (type 3)[5]. The N370S allele in combination with

another GBA mutant allele (e.g. N370S or GBA compound heterozygote) is predictive of type

1 GD. L444P in combination with a complex allele (e.g. a GBA allele that has undergone

recombination such as RecNciI) tends to result in type 2, while homozygous L444P alleles or

compound heterozygote L444P with null alleles result in type 3 GD [2,5]. However, there is

wide heterogeneity in clinical manifestation, even between patients with the same genotype

[2,5]

Studies of endogenous GCase in fibroblasts or expression of recombinant proteins suggest

that the intrinsic catalytic activity of N370S and L444P mutant GCase is decreased by 80-

95% compared to wild-type [6–8]. Loss of GCase activity is not solely due to reduced

catalytic activity, but also a reduction in GCase protein levels. Several GCase mutations,

including N370S and L444P, unfold in the endoplasmic reticulum (ER) activating the

unfolded protein response (UPR). When they are unable to be refolded, the mutant protein is

extracted by chaperones and degraded by the proteasome [9–11], a process known as ER-

associated degradation (ERAD). It has also been reported that N370S GCase is less able to

associate with the physiological GCase activator saposin C and anionic phospholipids [7,12].
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GBA and Parkinson disease

Parkinson disease (PD) is the second most common neurodegenerative disorder. The disease

is characterised by the loss of dopaminergic neurons in the substantia nigra resulting in the

typical symptoms of PD: bradykinesia, resting tremor and rigidity [13]. The pathological

hallmark of PD is the presence in surviving neurons of protein inclusions known as Lewy

bodies, which are predominantly composed of the protein -synuclein.

Although type 1 GD patients were not thought to develop neurodegeneration, clinicians

started to report that a subset of GD patients exhibited typical parkinsonian features [14,15].

A multicentre genetic analysis by Sidransky et al in 2009 confirmed the association between

PD and GBA mutations [16]. This study calculated that the odds ratio of carrying a GBA

mutation in patients with PD (heterozygote or homozygote) was 5.4 versus controls [16]. A

smaller study in the British population reported an odds ratio of 3.7 [17]. The two most

frequent GBA mutations associated with PD are N370S and L444P, accounting for up to 17-

31% of all PD patients in the European Ashkenazi Jewish population, and 3% in non-

Ashkenazi populations [16–18]. In addition to pathogenic GD-causing mutations, the GBA

variant E326K predisposes to PD [19–21], with a high frequency (7.5%) in early age onset

(≤50 years old) British PD cases [19]. 

While GBA mutations are numerically the most important genetic risk factor for developing

PD, it should be noted that the majority of people with GD or heterozygote GBA mutations

do not develop PD. By the age of 80, it has been estimated that 9.1% of GD patients will

develop PD [22]. Estimates for heterozygote GBA mutation, range from 7.7% by age 80 in a

United States study [22] to 15% in a UK cohort [23] and 29.7% in a French population [24],
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although the latter study may be skewed as data was only from a familial PD cohort and

therefore may contain other genetic risk factors.

No differences in Lewy body pathology have been reported between PD with GBA mutations

(PD+GBA) and sporadic PD [17,25]. However the age of onset is approximately five years

earlier in PD+GBA patients [16,17,26]. Furthermore, onset of PD in GD patients is reported

to be earlier than heterozygote GBA carriers [22]. In addition to gene dosage, GBA mutations

have been stratified into mild (cause type 1 GD; e.g. N370S) or severe mutations (cause type

2 or 3; e.g. L444P). Analysis has suggested that carriers of severe mutations have an earlier

age of onset and a much greater odds ratio of developing PD, when compared to mild

mutations [27].

Cognitive impairment is also thought to be more frequent in PD+GBA patients, when

compared to sporadic PD [28–30], with carriers of severe mutations reported to be at greater

risk of dementia than mild mutations [31]. GBA mutations have also been associated with an

increased risk of developing dementia with Lewy bodies (DLB) and PD with dementia (odds

ratios of 8.3 and 6.5, respectively)[32].

GCase activity in PD

GCase activity was found to be significantly decreased in post-mortem brain tissue from PD

brains with heterozygote GBA mutations, with the greatest decrease of 58% found in the

substantia nigra [33]. Western blotting of the same samples indicated that this was not only

due to loss of catalytic activity, but also decreased protein expression. The mutations

included N370S and L444P and it is likely that this decrease in protein expression was due to
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ERAD. Markers of the UPR were increased in these brains [33], although other factors

including calcium dysregulation and -synuclein accumulation may contribute to this.

Analysis of sporadic PD brains also indicated a significant 33% decrease in GCase activity in

the substantia nigra and was concomitant with a decrease in protein levels of the enzyme

[33], The activities or expression of other lysosomal enzymes were not affected indicating

that the decrease in GCase activity was not simply due to a general loss of lysosomal content

or neuronal number. Other studies have also reported a decrease in GCase activity and

protein expression in the anterior cingulate cortex of sporadic PD brains, relative to other

lysosomal proteins except LAMP2 [34], and decreased GCase activity in the substantia nigra,

caudate, putamen and hippocampus [35,36]. It should be noted that in one of these studies

2/26 PD samples had a heterozygote GBA mutation [36]. Decreased GCase activity has also

been reported to be significantly decreased in the cerebrospinal fluid and dried blood spots of

sporadic PD patients [20,37]. Analysis of GCase activity in these two bodily fluids may

therefore be a useful biomarker for PD diagnosis.

GCase, lysosomal dysfunction and -synuclein metabolism

In recent years dysfunction of the autophagy lysosome pathway (ALP) has become a

principal suspect in PD pathogenesis. In particular, impairment in macroautophagy and

chaperone mediated autophagy (CMA) have been implicated in the accumulation,

aggregation and cell to cell transmission of -synuclein.

Macroautophagy degrades macromolecules such as protein and lipids, but also larger

structures, such as aggregated proteins and damaged organelles like mitochondria [38]. Cargo

for degradation is engulfed by a phagophore membrane, which then expands to form a
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double-membrane vesicle known as an autophagosome (AP). The AP then fuses with a

lysosome, resulting in degradation of the sequestered cargo [39,40].

CMA involves the degradation of soluble monomeric proteins containing the pentapeptide

motif KFERQ. Unfolded proteins are delivered to the lysosome by the chaperone hsc70,

where the protein is translocated directly in to the lysosome by the integral membrane protein

LAMP2A for degradation [38,41]. Degradation of  -synuclein can occur via both CMA and

macroautophagy, with both processes reported to be impaired in PD [42–44].

Given the lysosomal localisation of GCase and the link between lysosomal dysfunction and

PD, research has focused on the effect of decreased GCase activity on -synuclein

metabolism in cell and animal models.

Several papers have reported modest but significant increases in intracellular -synuclein

levels by western blotting in human midbrain neurons differentiated from inducible

pluripotent stem cells (iPS) taken from GD patients (with or without PD) or PD patients with

heterozygous GBA mutations [45–48]. These mutations included the common mutations

N370S, L444P, recombinant alleles and null mutants. In Schondorf et al [46] neither the

gene dosage, nor type of mutation, appeared to noticeably affect the degree of -synuclein

accumulation. Importantly they also showed that gene correction of GBA mutations lowered

-synuclein levels. Immunofluorescence for both -synuclein and tyrosine hydroxylase (TH)

suggested that in dopaminergic neurons with GBA mutations, the amount of -synuclein

detected in the soma was increased [47,49]. Cells differentiated from adipose stem cells taken

from PD patients with heterozygote GBA mutations also exhibited an increase in a-synuclein

levels [50]. The accumulation of -synuclein was coincident with impaired lysosomal

proteolysis of both long and short lived proteins and inhibition of macroautophagy flux

[45,46,50]. Pulse chase experiments in neurons isolated from mice expressing human -
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synuclein (wild-type (WT) or A53T) indicated that the half-life of -synuclein was increased

in neurons with heterozygote L444P Gba compared to cells expressing wild-type Gba [51].

One iPS study derived from WT/N370S PD patients, did report inhibition of macroautophagy

flux. However, instead of this resulting in accumulation of intracellular -synuclein, this

study found an increase in extracellular -synuclein [52]. It is established that -synuclein is

released from cells under physiological conditions [53,54], and can be increased following

ALP dysfunction [55]. Cell to cell transmission of a-synuclein has been implicated in the

spreading of -synuclein pathology in the brain [56,57] to account for the spread of Lewy

bodies proposed by Braak et al [58]. Inhibition of GCase activity in primary mouse cortical

neurons with the inhibitor conduritol β-epoxide (CBE) results in impaired macroautophagy 

flux, and both an increase in intracellular and extracellular-synuclein [59]. Similarly, SH-

SY5Y cells in which GBA expression was ablated using zinc finger nuclease technology,

caused lysosomal dysfunction, and promoted the cell to cell transmission of -synuclein

aggregates [60].

The accumulation of -synuclein has also been reported in mouse models, although these

tend to be GD models, rather than heterozygote Gba models. The Gba knock out (KO) mouse

models developed by Enquist et al die within weeks of birth [61]. However, evidence of

increased insoluble oligomeric a-synuclein in the midbrain and -synuclein deposits in the

brain stem were detected prior to the neurodegeneration and neuroinflammation observed in

this model [62]. Note that there was no evidence of -synuclein accumulation or

neurodegeneration in Gba+/- mice aged for 6 or 24 months [63,64]. A Gba KO model that

also expresses human -synuclein and does survive to adulthood exhibits increased

phosphorylated -synuclein (S129) in the CA3 region of the hippocampus and elevated

aggregated -synuclein species in brain homogenates [65]. Chronic administration of the



9

GCase inhibitor CBE to mice also results in -synuclein deposits in the substantia nigra

[66,67], including proteinase K insensitive aggregates [67].

Although Drosophila melanogaster do not express -synuclein, KO of the Drosophila GBA

homologs (dGBA1a/b), does result in accumulation of ubiquitin positive aggregates and

increased levels of Ref(2)P, the Drosophila homolog of the autophagic protein p62 [68,69].

Mice with pathogenic GD mutations also exhibit -synuclein pathology. Progressive

accumulation of -synuclein deposits was observed in the hippocampus and frontal cortex of

the Gba D409V/D409V mouse [63]. These deposits were also ubiquitin-positive and

proteinase K insensitive. Gba D409H or V394L GD mice that also bear a prosaposin

hypomorph exhibit -synuclein deposits [70]. Size exclusion chromatography and western

blotting studies suggested that there was an increase in both soluble monomeric -synuclein,

as well as both soluble and insoluble oligomeric -synuclein species in these mice [45].

In terms of heterozygote mutant Gba mouse models, total  -synuclein levels were the same

in mice expressing human A53T -synuclein regardless of whether it was WT or

heterozygous L444P Gba [51]. However, there was a trend for increased phosphorylated

S129 -synuclein in the hippocampus [51]. However, when heterozygous L444P mice with

endogenous -synuclein were aged for 24 months a significant increase in -synuclein was

observed in the striatum [64]. Furthermore, when these mice were injected with AAV virus

encoding human -synuclein immediately dorsal to the substantia nigra, the loss of TH

positive neurons was increased compared to wild-type mice

The use of viral vectors encoding GBA has reinforced the idea that GCase activity in the brain

is critical for -synuclein metabolism. Proteinase K insensitive -synuclein aggregates have
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been shown to be reduced in GD or A53T -synuclein mouse models following expression of

human recombinant GCase via viral vectors [71–73].

Mechanism for perturbed -synuclein metabolism

While it is apparent that loss of lysosomal GCase affects a-synuclein metabolism, the exact

mechanism is unclear and may differ according to genotype (e.g. GD versus heterozygote

GBA mutations). Various markers of lysosomal dysfunction such as altered lysosomal

content, abnormal lysosomal morphology and increased lysosomal pH have all been reported

in cell models irrespective of whether the background is heterozygote or homozygote GBA

mutations, KO, knockdown (KD) or CBE inhibition [45,46,52,59,60]. Inhibition of

macroautophagy flux is consistently reported in neuronal models, and in particular the fusion

of APs with lysosomes [46,52,59]. To date the effect of GCase deficiency on CMA has not

been directly measured (Figure 1).

Since GCase is involved in sphingolipid metabolism, it is tempting to speculate that changes

in the lipid composition of cells are affecting autophagy/lysosomal function. Whether this is

due to the accumulation of the GCase substrate GlcCer and/or the deacylated version

glucosylsphingosine (GlcSph), or changes in other lipids, is open to debate. The mouse

models in which -synuclein aggregates were observed are GD models with accumulation of

GlcSph/GlcCer [63,65,67,70]. However, heterozygote GBA carriers are not expected to have

substrate accumulation. Indeed analysis of GlcCer/GlcSph in homogenates of putamen and

cerebellum of PD brains with GBA mutations [74], or the primary motor cortex from patients

with GBA mutations and a variety of Lewy body disorders, including PD [75], did not exhibit

any increase in GCase substrate. In sporadic PD brains, where GCase activity is also

decreased, GlcCer has also been reported to be unchanged [76], while only one paper has
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shown an increased GlcSph levels in the substantia nigra and hippocampus, but not the

putamen, frontal cortex or cerebellum [35].

These studies were all on post-mortem tissue and therefore contain a mix of neurons and glia,

so it cannot be discounted that particular cell types do accumulate GCase substrates, or that

subtle changes in subcellular locations can have an effect on -synuclein metabolism.

Midbrain neurons differentiated from iPS with heterozygote GBA mutations have been

reported to either increase [46] or not accumulate GlcCer [52]. Further work is necessary to

clarify whether GlcCer and GlcSph does increase in heterozygote GBA PD patients.

Detergent resistant membranes (also referred to as lipid rafts) are cholesterol and

sphingomyelin-rich membrane domains. GlcCer has been reported to accumulate in this

fraction [77]. GlcCer can stabilise sphingomyelin/cholesterol-enriched liquid domains,

however as the proportion of GlcCer rises membrane order is increased [78]. Indeed

membrane fluidity is decreased in CBE-treated fibroblasts or GD type 1 fibroblasts [78].

Should this occur in PD brains, given that membrane dynamics are required for both

macroautophagy and CMA (see below) this could greatly affect -synuclein degradation. In

vitro studies have also suggested that GlcCer or GlcSph can directly cause monomeric -

synuclein to aggregate [45,65]. Furthermore, treatment of HEK293 cells with these -

synuclein species could act as a seed to propagate the aggregation of GFP-tagged -synuclein

expressed by these cells [65].

Trends or significant changes in a variety of sphingolipids (e.g. sphingomyelin, ceramide,

gangliosides) have been reported in PD brains with or without GBA mutations [34,74,75,79]

and could contribute to impairment of the ALP. Cell models of GCase deficiency, including

neurons, have also shown elevated cholesterol levels [59,80,81]. Changes in cholesterol are

well known to affect membrane rigidity and both the localisation and activity of proteins at
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discrete membrane locations. Increased lysosomal cholesterol can impair macroautophagy

flux, perhaps at the step of lysosome fusion with APs [82,83]. The LAMP2A translocation

pore is required for -synuclein degradation by CMA and is active in lysosomal membranes

outside of sphingolipid and cholesterol rich microdomains. Increased lysosomal cholesterol

content impairs this translocation and thus -synuclein degradation is decreased [84].

Another mechanism by which GCase deficiency may impair the ALP is via a process termed

autophagic lysosome reformation (ALR) [85,86]. Following the termination of

macroautophagy, proto-lysosomal tubules have been shown to extrude from the

autophagolysome which then mature into functional lysosomes and thus restore the cell’s

full complement of lysosomes [85,87]. This process is dependent on mTOR [85,86]. GBA

KO or KD has been shown to result in decreased mTOR activity in both cellular and

Drosophila models [59,69], with ALR appearing to be inhibited in GCase deficient MEFs,

SH-SY5Y cells and neurons [59]. In the latter two cell models, the decrease in ALR was

coincident with an inhibition of macroautophagy flux, elevated intracellular levels of -

synuclein and phosphorylated -synuclein (S129) and increased release of -synuclein in to

media.

Decreased GCase activity in sporadic PD

There are several possible mechanisms that might contribute to the decrease of GCase

activity and protein expression in sporadic PD brains. The greatest known risk factor for

developing PD is aging, and studies in humans, monkeys and mice have shown that GCase

activity declines with age in the midbrain regions such as the substantia nigra, striatum and

putamen [35,65,88]. The decrease in GCase activity in the striatum and hippocampus of
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monkeys was coincident with an increase in -synuclein oligomers in the striatum and

hippocampus [88].

The bidirectional relationship between GCase and -synuclein was first reported by Mazzulli

et al [45]. Following translation of GCase at the ER, GCase is transported via the Golgi to

lysosomes via the transporter protein LIMP2, undergoing several glycosylation modifications

on the way [89–91]. Analysis of the glycosylated forms of GCase in the cortex of control

human brains suggested that lysosomal maturation of GCase was diminished in brains with

higher amounts of -synuclein [45]. A correlation between increasing -synuclein levels and

decreasing GCase activity was then convincingly shown in sporadic PD brains [34].

In rodents, -synuclein KO mice have increased GCase activity [51], while two reports have

shown that expression of human A53T in mice caused a decrease in GCase activity [71,92].

However not all mouse models with increased expression of human -synuclein exhibit

decreased GCase activity [51,93].Cellular models in which human -synuclein is either over

expressed [33,94–96] or human midbrain neurons differentiated from iPS cells taken from

PD patients with triplication of the -synuclein gene [94] have also shown a reduction in

GCase protein levels and GCase activity. These studies indicate that increased -synuclein

levels interfere with the transport of GCase through the secretory pathway to the lysosome

(Figure 1). -synuclein has been reported to interrupt ER to golgi transport [97,98]. In the

triplication -synuclein neurons, accumulation of -synuclein in the cell body disrupted the

localisation of rab1a to the ER-Golgi, while overexpression of rab1a restored trafficking of

lysosomal enzymes such as GCase to the lysosome [94]. Increased intracellular -synuclein

levels are also known to induce ER stress [99,100] and this might be another mechanism by

which GCase transport to the lysosome is affected.
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Mitochondrial dysfunction and oxidative stress may also play a role in loss of GCase activity

in human dopaminergic neurons. Mitochondrial derived oxidant stress has recently been

shown to induce the oxidation of dopamine, which subsequently inhibited GCase activity,

resulting in lysosomal dysfunction [101]. GCase activity has also found to be reduced in SH-

SY5Y cells with constitutive KD of PINK1 [33]. Mutations in PINK1 are a cause of familial

PD, with loss of PINK1 activity known to cause mitochondrial dysfunction and oxidative

stress [102–106].

ER stress, mitochondrial dysfunction and neuroinflammation

In addition to the ALP dysfunction described above, loss of GCase activity could contribute

to the pathogenesis of PD via ER stress, mitochondrial dysfunction and neuroinflammation.

Activation of the UPR by GBA mutations such as L444P and N370S in GD fibroblasts has

been well documented [9,11,107,108]. Human midbrain neurons differentiated from iPS

derived from PD patients with GBA mutations have shown increased expression of

chaperones associated with the UPR, including BiP and calnexin, in addition to the activation

of the IRE arm of the UPR [52]. Increased release of calcium from the ER has also been

observed in iPS-derived neurons [46] or fibroblasts [109] from patients with GBA mutations

and PD. Drosophila models expressing PD associated GBA mutations have also exhibited

activation of the UPR [110–112]. Drosophila does not have a homolog of -synuclein, and

therefore the loss of dopaminergic neurons [112] and locomotor defects [112,113] were

independent of -synuclein pathology. Notably the locomotor deficits observed in these flies

were reversed when ER stress was alleviated.

Mitochondrial dysfunction has long been associated with PD pathogenesis [114] and has been

reported in GBA cell and animal models [62,80,115–118]. The cause for the dysfunction is
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unclear but is likely to be a secondary event, perhaps a result of impaired clearance of

damaged mitochondria by macroautophagy (mitophagy), accumulation of -synuclein and/or

dysregulation of calcium.

Neuroinflammation signalling pathways are increasingly being associated with PD

pathogenesis [119–121]. Animals in which the glucocerebrosidase gene is KO or mice were

treated with CBE show considerable neuroinflammation, and in particular activation of

microglia [67,115,122,123]. This is thought to be due to the accumulation of substrate in the

neurons, which can then activate microglia [61,124,125]. While it is uncertain to what extent

substrate accumulation occurs in GBA-associated PD, it is likely that glia are going to be

affected. As described above, neurons with GCase deficiency can increase the release of -

synuclein [52,59,60]. Not only is this extracellular -synuclein going to be transmitted to

neurons, but also astrocytes and microglia where it can be degraded [126,127]. Since loss of

GCase impairs the ALP in cells ranging from fibroblasts to neurons [46,52,59,80], it is likely

that glia containing heterozygote GBA mutations will also be affected, and may contribute to

increased spread of pathology. Furthermore, -synuclein has been shown to activate

microglia by binding to toll-like receptors [128–130], so increased release from GCase

deficient neurons may also activate glia this way.

Therapy for GCase deficiency in PD

Since GBA mutations are numerically the greatest known genetic cause of PD and that loss of

GCase activity also occurs in sporadic PD, treatments to restore GCase activity are an

attractive target for drug development (Table 1). While enzyme replacement therapy is an

effective treatment for type 1 GD patients. Unfortunately the enzyme cannot cross the blood
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brain barrier, and is therefore not a treatment for type 2 or 3 neuronopathic GD and will also

not be a suitable for PD therapy.

Studies in which virus encoding human recombinant GCase have been injected in to the

brain of mouse GD models have shown to be effective in reducing  -synuclein accumulation

[63,71,72]. Furthermore, a new AAV virus has been shown to be able to deliver GBA to the

brain via intravenous injection, reducing -synuclein inclusions in a human A53T mouse

model [73]. However, while neuronal transduction was very good to the cortex,

hippocampus, cerebellum and spinal cord, delivery to the substantia nigra was very limited.

Another approach being pursued is the use of blood brain barrier permeant molecules that can

either increase GCase activity in lysosomes or modulate the lipid imbalance as a result of

GCase deficiency. In the latter case, a potent and orally available inhibitor of GlcCer synthase

GZ667161 has been shown to decrease the levels of GlcCer and GlcSph in a GD mouse

model, resulting in a decreased number of proteinase K-resistant -synuclein aggregates

[131]. The drug was also effective in reducing -synuclein aggregation in mice expressing

human A53T -synuclein [131].

Small molecule chaperones for GCase bind mutant GCase in the ER, helping them refold,

and thus facilitate trafficking to the lysosome. This type of therapy for PD will in theory have

two effects: (a) improve lysosomal function and thus degradation of -synuclein (b) reduce

ER stress. Several drug screens have identified a number of candidates, including already

known drugs such as ambroxol and isofagomine [132,133] and novel chaperones [48,134].

These chaperones have been shown to increase the activity, protein expression and lysosomal

localisation of mutant GCase such as L444P and N370S in fibroblasts and neurons

[48,50,95,112,132,133,135,136]. Importantly in neurons containing either GBA mutations or
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triplication of the -synuclein gene, chaperone treatment reduced the aberrant accumulation

of -synuclein observed in these cells [48,50,95].

In Drosophila both ambroxol and isofagomine have been shown to effectively reduce the ER

stress induced by mutant human GBA [110,112,113] and also reverse the locomotor deficit

observed in these models [112,113].

Oral administration of ambroxol to heterozygote L444P Gba mice increased GCase activity

in the brain stem, midbrain, striatum and cortex [137]. Furthermore, ambroxol treatment

increased wild-type GCase activity in mouse brain, which in a transgenic mouse expressing

human -synuclein resulted in a decrease of -synuclein in the striatum and brainstem [137].

In a different transgenic mouse expressing human -synuclein, isofagomine has also been

shown to increase wild-type GCase activity, reduce -synuclein immunoreactivity in the

dopaminergic neurons of the substantia nigra, and improve motor and non-motor function

[93]. The observation that these two chaperones increase wild-type GCase activity in vivo,

and that ambroxol, isofagomine and other small molecule chaperones can increase wild-type

GCase activity in vitro [48,95,112,135,136,138] suggests that small molecule chaperones

could also be used as a treatment for sporadic PD.
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Treatment Strategy Drug Name References

Gene therapy Replace GCase activity in

brain

Viral-mediated

delivery of GBA

[63,71–73]

Substrate reduction Reduction of

glycosphingolipids in the

CNS

GZ667161 [131]

Small molecule

chaperones

Refolding mutant GCase in

the ER and thus improving

trafficking to the lysosome

and reducing ER stress

ambroxol

isofagomine

NCGC00188758

NCGC00241607

[48,50,93,95,110,

112,113,133,135,

137]

Table 1. Potential therapies for treating GCase deficiency in Parkinson disease
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Figure 1. The proposed bidirectional loop between GCase and -synuclein.

Wild-type GCase (WT, green) is translated in the ER and then transported to the lysosome

via the Golgi. Several point mutations of GCase (MUT, orange) unfold in the ER, activating

the UPR and ER stress [1]. When lysosomal GCase activity is decreased in neurons (via the

UPR or null alleles), the autophagy lysosomal pathway is inhibited leading to the

accumulation of -synuclein [2][3]. Autophagosome (AP) fusion with the lysosome is known

to be impaired during macroautophagy which degrades aggregated proteins such as -

synuclein and damaged organelles like mitochondria. The direct effect of GCase deficiency

on the degradation of monomeric -synuclein by chaperone mediated autophagy (CMA) is

unclear. In addition to intracellular accumulation of -synuclein, increased release from

neurons has been reported, which might be transmitted to neighbouring neurons [3].

Increased levels of -synuclein are thought to decrease WT GCase trafficking to the

lysosome [4]. This might be a mechanism by which GCase activity is decreased in sporadic

PD.


