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Abstract
1.	 To prevent further global declines in biodiversity, identifying and understanding key 
habitats is crucial for successful conservation strategies. For example, globally, seabird 
populations are under threat and animal movement data can identify key at-sea areas 
and provide valuable information on the state of marine ecosystems. To date, in order to 
locate these areas, studies have used global positioning system (GPS) to record position 
and are sometimes combined with time–depth recorder (TDR) devices to identify diving 
activity associated with foraging, a crucial aspect of at-sea behaviour. However, the use 
of additional devices such as TDRs can be expensive, logistically difficult and may ad-
versely affect the animal. Alternatively, behaviours may be resolved from measurements 
derived from the movement data alone. However, this behavioural analysis frequently 
lacks validation data for locations predicted as foraging (or other behaviours).

2.	 Here, we address these issues using a combined GPS and TDR dataset from 108 
individuals by training deep learning models to predict diving in European shags, 
common guillemots and razorbills. We validate our predictions using withheld data, 
producing quantitative assessment of predictive accuracy. The variables used to 
train these models are those recorded solely by the GPS device: variation in longi-
tude and latitude, altitude and coverage ratio (proportion of possible fixes acquired 
within a set window of time).

3.	 Different combinations of these variables were used to explore the qualities of differ-
ent models, with the optimum models for all species predicting non-diving and diving 
behaviour correctly over 94% and 80% of the time, respectively. We also demonstrate 
the superior predictive ability of these supervised deep learning models over other 
commonly used behavioural prediction methods such as hidden Markov models.

4.	 Mapping these predictions provides useful insights into the foraging activity of a 
range of seabird species, highlighting important at sea locations. These models 
have the potential to be used to analyse historic GPS datasets and further our un-
derstanding of how environmental changes have affected these seabirds over time.
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1  | INTRODUCTION

Marine ecosystems are under threat from anthropogenic pres-
sures such as climate change, ocean acidification and overfishing 
(Frederiksen, Edwards, Richardson, Halliday, & Wanless, 2006; Furness 
& Camphuysen, 1997; Halpern et al., 2008). Seabirds are the most 
threatened bird taxa globally (Croxall et al., 2012), with population 
sizes declining by 69.7% between 1950 and 2010 in response to these 
threats (Paleczny, Hammill, Karpouzi, & Pauly, 2015). As seabirds have 
a low reproductive output, high survival rate and deferred maturity 
(Gaston, 2004), they can be slow to recover from population crashes.

Gaining the information required for successful conservation strat-
egies can be difficult in highly mobile and broad-ranging species, such 
as pelagic seabirds. Compared with the extent of protected area desig-
nation of colonies on land, seabirds are less well protected at sea, and 
marine nature reserves are most frequently designated directly around 
colonies (Guilford et al., 2008). However, foraging areas are known 
to be vital for breeding success in seabirds (Thaxter et al., 2012) and 
potential marine-protected areas (MPAs) can be identified (Guilford 
et al., 2009) by monitoring seabird movements. BirdLife International’s 
Important Bird Area (IBA) Programme, a stepping stone to designating 
MPAs, provides a list of criteria and protocols for identifying areas crit-
ical for seabirds, which includes assessment through tracking (BirdLife 
International, 2010). Additionally, seabirds are valuable biological  
indicators for the marine environment, providing information on  
ecosystem health (Einoder, 2009; Furness & Camphuysen, 1997). The 
movements of these wide-ranging birds can inform us about the con-
dition of large parts of the often inaccessible ocean (Mallory, Robinson, 
Hebert, & Forbes, 2010), and seabirds are easy to monitor as during 
the breeding season, they return to the same colony (Einoder, 2009).

Traditional methods of monitoring movements and populations 
of elusive seabirds include ringing recoveries and at-sea surveys. 
However, these methods do not provide detailed information on be-
haviour or movements at important locations (Guilford et al., 2009; 
Maclean, Rehfisch, Skov, & Thaxter, 2013). Advances in telemetry 
and biologging systems have made it possible to monitor pelagic sea-
birds in more detail. Initially, only larger species over 1,000g, such as 
albatrosses, were tracked (Weimerskirch et al., 2002). The recent re-
duction in size of devices has enabled the tracking of smaller species, 
such as the Manx shearwater (Puffinus puffinus) (c. 400g) and Black-
legged Kittiwake, Rissa tridactyla, (c. 400g) using GPS loggers (Guilford 
et al., 2008, 2009; Kotzerka, Garthe, & Hatch, 2009). Early methods 
of determining depth use by seabirds only allowed the maximum 
depths reached to be recorded. More recently, however, time–depth 
recorder (TDR) devices have been used to record dive profiles contin-
uously (Dean et al., 2012; Shoji et al., 2015; Wanless, Harris, Burger, & 
Buckland, 1997).

Much of the information about foraging behaviour has been 
gained through the combined use of GPS and TDR devices; the latter 
cost up to ten times as much as GPS devices. The quantity of data a 
tracking device is able to collect has risen sharply in recent years, lead-
ing to challenges in how to analyse big data (Urbano et al., 2010). The 
use of several devices further exacerbates the problem, increasing the 

amount of data a single study produces. While we have learnt a great 
deal about seabird distribution, much of the potential information that 
may be gleaned from tracking studies about animal movements re-
mains unutilised and there is a substantial amount of historical GPS 
tracking data. Additionally, despite the reductions in size of transmit-
ters and loggers, adverse effects may still be observed in study ani-
mals. Animal ethics are an important consideration in tracking studies 
(Kays, Crofoot, Jetz, & Wikelski, 2015), using more than one logger 
increases total mass, as well as significantly increasing handling time. 
Therefore, developing accurate methods to identify foraging locations 
from a single device remains important.

There are several ways in which previous studies have attempted 
to identify foraging behaviour in seabirds, such as, multiscale straight-
ness index (Postlethwaite, Brown, & Dennis, 2013), first passage 
time (Fauchald & Tveraa, 2003), positional entropy (Roberts, Guilford, 
Rezek, & Biro, 2004), tortuosity (Benhamou, 2004; Dicke & Burrough, 
1988), speed (Meier et al., 2015) or tortuosity and speed (Dean et al., 
2015; Freeman et al., 2013; Guilford et al., 2008). Periods of low speed 
are generally associated with resting and high-speed directed move-
ment with travel between foraging or resting locations and the colony. 
Tortuous movements at high speed are usually considered to be asso-
ciated with foraging behaviour (Freeman et al., 2013; Guilford et al., 
2008). Additionally, modelling methods have been used to predict 
when particular behaviours occur in space and time such as Gaussian 
mixtures (Guilford et al., 2008) or hidden Markov models (HMMs) 
(Dean et al., 2012; Roberts et al., 2004). The latter are state-space 
models, which can be used to predict the sequence of behavioural 
states and account for the non-independent nature of tracking data 
(Jonsen, Myers, & Flemming, 2003; Patterson, Basson, Bravington, & 
Gunn, 2009) and have been widely used to classify animal behaviours 
from tracking data (e.g. Block et al., 2011; Breed, Costa, Jonsen, 
Robinson, & Mills-Flemming, 2012; Breed, Jonsen, Myers, Bowen, & 
Leonard, 2009; Breed et al., 2017; Forester et al., 2007; Maxwell et al., 
2011; Royer, Fromentin, & Gaspar, 2005). However, few studies are 
able to validate their predictions with true dive locations or with data 
withheld from predictive models. Dean et al. (2012) withheld a sub-
section of their data on which to validate their predictions for foraging 
behaviour in Manx shearwaters using known dive locations recorded 
by TDRs, revealing that their predictions were accurate.

Several studies have successfully used supervised machine learn-
ing (ML) methods (where a labelled dataset is used to learn to identify 
known classes) to predict animal behaviours from accelerometry data 
such as in cows (Martiskainen et al., 2009), cheetahs (Grünewälder 
et al., 2012) and penguins (Carroll, Slip, Jonsen, & Harcourt, 2014). 
Nathan et al. (2012) compare five supervised learning algorithms—
SVMs, linear discriminant analysis, random forest (RF), classification 
and regression trees and artificial neural networks (ANN)—to predict 
behavioural modes in vultures from GPS and accelerometer data. 
Unsupervised approaches (where self-similar patterns are identified 
within a dataset) such as hidden Markov models or Gaussian mixture 
models have also been used extensively in identifying and modelling 
biologging and telemetry data (e.g. Breed et al., 2012; Gibb et al., 
2017; Langrock et al., 2012; Michelot, Langrock, & Patterson, 2016; 
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Patterson et al., 2009). Across many of these cases, particular features 
(reduced metrics derived from the raw data) were extracted from the 
data to simplify the predictive task. This can be a laborious process and 
is often overlooked in the complexity of implementing such models.

Deep neural networks (a more complex, recent form of ANNs) can 
be used with very large input feature sets (e.g. complete pixel arrays 
for images or, as here, x/y values), often reducing the need for complex 
feature identification. This more automated form of feature extraction 
has been successfully applied in speech, audio and image recognition 
where they have outperformed other machine learning techniques 
(see LeCun, Bengio, & Hinton, 2015 for a review). Deep learning is 
a relatively new ML technique that to our knowledge has not been 
applied to animal tracking data or animal behavioural studies to date, 
but that has been suggested to be a potentially useful tool (Valletta, 
Torney, Kings, Thornton, & Madden, 2017).

Since 2010, the Royal Society for the Protection of Birds (RSPB) 
has been carrying out an extensive seabird-monitoring project around 
the UK and Ireland as part of the Future of the Atlantic Marine 
Environment (FAME, www.fameproject.eu) and Seabird Tracking and 
Research (STAR) projects. Included in these studies are three diving 
species: razorbills Alca torda, and common guillemots Uria aalge (here-
after guillemots), members of the auk family (Alcidae), and European 
shags Phalacocorax aristotelis (hereafter shags), a member of the cor-
morant family (Phalacrocoraidae). The foraging strategies of these 
three species all differ slightly as they utilise different portions of 
the water column to find prey: razorbills feed within the water col-
umn (Thaxter et al., 2010), whereas guillemots and shags are benthic 
feeders (Thaxter et al., 2010; Wanless et al., 1997), although the latter 
has been suggested to have a flexible foraging strategy (Wanless et al., 
1997).

Here, we aim to explore whether the location of diving behaviour 
can be predicted purely from GPS data across three seabird species. 
We accomplish this using supervised deep learning models. Deep 

learning is a newly developed method of supervised learning, by which 
the relationships within data may be found without prior manipula-
tion (LeCun et al., 2015). Our predictions are then validated using 

F IGURE  1 The locations of colonies where European shags (a), common guillemots (b) and razorbills (c) were tracked using either, GPS and 
TDR devices (yellow stars) or just GPS devices

F IGURE  2 Example of an interpolated GPS track collected from 
a single razorbill nesting on Colonsay Island off the east coast of 
Scotland (RAZO0668). The location of the colony in relation to the 
UK is shown. The green dots are interpolated GPS locations, and the 
blue open circles are locations where dives were recorded by the 
TDR device

http://www.fameproject.eu
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information collected by the concurrently deployed TDR devices. 
Additionally, we compare the performance of our models with that of 
other commonly used predictive methods such as HMMs and a naïve 
Bayes classifier.

2  | MATERIALS AND METHODS

2.1 | The dataset

Data used were collected between 2010 and 2014 from 108 indi-
viduals (15 shags, 31 guillemots and 62 razorbills; see Table 1) tracked 
at eight locations (Fair Isle, Colonsay, Fowlsheugh, Orkney, Skomer, 
Rathlin Island, Great Saltee Island and Whinnyfold) fitted with both 
GPS and TDR devices (Figure 1). Additionally, data were retrieved 
from 291 individuals tracked with only GPS devices (80 shags, 81 guil-
lemots and 130 razorbills).

TDR and GPS devices were attached to birds using the methods 
described in Dean et al. (2012) or Shoji et al. (2016). GPS devices were 
attached to individuals’ backs using cloth-backed tape. The TDRs were 
attached either to a plastic ring on the leg, tail-mounted, taped directly 
to the GPS tags or attached to the tail feathers (Shoji et al., 2016). 
CEFAS TDR loggers (Cefas G5, Cefas Technology Ltd) recorded pres-
sure data every second and temperature data either every second or 
every 15 s, whereas GPS devices collected data roughly every 100 s. 
Due to gaps in the GPS data acquisition, the tracks were interpolated 
using a linear method to generate points every 100 s (see Figure 2 

for an example interpolated GPS track). While previously the curvi-
linear method has been shown to accurately interpolate tracking data 
(Tremblay et al., 2006), here we found it often produced erroneous 
interpolations where GPS data were lost for a number of minutes. We 
discuss the impact of using a linear method in Appendix S2, supporting 
information, as well as the impacts more commonly used interpolation 
methods had on the data and model.

2.2 | Model data

The maximum depth in each interpolated 100-s window (note this 
is different to the window referred to below) was calculated from 
the TDR data. As the TDR device recorded depth in decibar, the re-
corded pressures were multiplied by 1.01974 to convert to metres 
(Cefas Technology Ltd, 2012) (see Appendix S1). Windows containing 
dives where the maximum depth was greater than 3 m were classi-
fied as containing diving behaviour (although we explored the impact 
of this threshold, see Appendix S3). This minimised the inclusion of 
non-foraging dives, where birds may be bathing or carrying out other 
activities (Thaxter et al., 2010). The percentage of interpolated fixes 
that were recorded as dives (>3 m) were 18.7%, 14.1% and 14.3% for 
guillemots, shags and razorbills, respectively (Table 1). As such, around 
81%–86% of each track contains non-diving behaviour. Two birds (a 
shag and razorbill) were removed from the dataset due to erroneous 
data, where the TDR device apparently malfunctioned and recorded 
depths of over 200 m. We also calculated the coverage ratio (hereafter 

F IGURE  3 Schematic of deep learning model, showing the window of 50 points and the structure of the neural network with three hidden 
layers of 500 nodes
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referred to as coverage), defined as the number of fixes acquired by 
the GPS over the number that could have been recorded for a given 
time period. A value of 1 would indicate no fixes had been missed 
and 0 would indicate all possible fixes were missed. All analyses were 
carried out using the computer programme r versions 3.1.2–3.4.2 (R 
Core Team, 2017).

The projection of the longitude and latitude recorded by the GPS 
devices was projected using the Universal Transverse Mercator (UTM) 
projection, giving an X and Y coordinate for each point and allowing 
distances to be calculated in metres.

2.3 | Model training

Deep learning models were used to predict behavioural states. H2O 
(Aiello, Kraljevic, & Maj, 2015), an open-source platform, was used 
in r to construct an artificial neural network and perform predictive 
modelling. A random hyperparameter search was conducted to deter-
mine the optimum model structure. The number of layers and hidden 
nodes per layer were varied, from one to four layers and from 20 hid-
den nodes to 1,000. The hyperparameter search was allowed to run 
for 24 hr, and automatically stopped when the top ten models had a 

log loss of at most 0.001. This resulted in an optimum neural network 
structure of on input layer, three layers of 500 hidden nodes (rectifier 
nodes), followed by a softmax binary output layer.

The size of the input layer depended on the number of input 
variables being used (we explored the impact of withholding certain 
variables on the predictive accuracy). In total, we consider four vari-
ables. These variables were defined as: variation in X and Y (hereafter 
referred to as Xbar and Ybar, respectively), over a window of 5,000 s 
(50 points in interpolated data—giving a total of 100 values here), raw 
altitude over 50 points and the coverage over 50 points (Figure 3). 
Therefore, models including all variables used 200 input neurons, 
those with three variables used 150 input neurons and so on. x̄ and ȳ 
were calculated as xi minus the mean of xi to xi+w (from i to i plus the 
window length, w) of interpolated data, where i is the value of X or Y 
at a given point.

Importantly, the variables used in the input layer were only those 
collected by the GPS logger—TDR data were subsequently used to val-
idate predictions. Models were trained on species individually, with all 
colonies grouped together, using different input combinations of these 
variables to determine which might best predict non-diving and diving 

x̄i=xi−μ
(

xi:x(i+w)
)

TABLE  1 The total number of birds tracked with both GPS and TDR devices, interpolated fixes, the percentage of fixes where dives deeper 
than 3 m were recorded and the percentage of dives recorded during the day for European shags, common guillemots and razorbills, and 
maximum mean maximum dive depth

Species
Number of 
birds

Number of 
interpolated fixes Dives (%)

Dives during the 
day (%)

Maximum dive 
depth (m)

Mean maximum 
dive depth (m)

European shag 15 37,379 14.08 75.77 64.88 38.46

Common guillemot 31 63,925 18.66 78.29 132.43 65.56

Razorbill 62 1,62,413 14.34 76.76 88.59 20.07

TABLE  2 The mean results of the 10-fold cross-validated models that produced the optimal predictions for common guillemots, European 
shags and razorbills. PPV is the positive predictive value; NPV is the negative predictive value

Species Model inputs Training AUC
Validation 
AUC Sensitivity Specificity PPV NPV

Common guillemot Coverage, Xbar, Ybar 0.99 0.96 80.26% 95.22% 0.74 0.97

Altitude, Xbar, Ybar 0.98 0.94 74.61% 93.56% 0.66 0.96

Coverage 0.95 0.91 72.67% 92.91% 0.70 0.94

Altitude, coverage 0.97 0.93 71.67% 94.93% 0.70 0.95

European shag Altitude, coverage, 
Xbar, Ybar

0.99 0.97 86.87% 96.76% 0.81 0.98

Coverage, Xbar, Ybar 0.99 0.97 84.21% 95.90% 0.76 0.98

Xbar, Ybar 0.98 0.95 77.16% 94.78% 0.70 0.96

Coverage 0.97 0.93 74.14% 93.74% 0.65 0.96

Razorbill Altitude, coverage, 
Xbar, Ybar

0.98 0.95 80.74% 94.14% 0.76 0.96

Coverage 0.98 0.95 82.97% 92.82% 0.73 0.96

Coverage, Xbar, Ybar 0.97 0.94 78.67% 92.75% 0.71 0.95

Altitude, coverage 0.86 0.84 72.78% 78.11% 0.44 0.93
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events. The impact of window size was explored; increasing it consis-
tently increases model performance (see Appendix S4).

The data for each model were randomly split into 10 equal parts 
for k-fold cross-validation. Each model was then trained on 90% of the 
data and validated on the remaining 10%; this was performed for each 
tenth of the data. Additionally, to determine how well these models 
might perform on data collected on birds from different colonies or 
studies, leave-one-out cross-validation was also carried out. This in-
volved removing a single bird from the dataset for each species, train-
ing the model on the other birds, and then validating the model on the 
single bird.

The area under the receiving operating characteristic curve (AUC) 
for training and validation data and sensitivity and specificity for each 
model was calculated, as were the positive predicted value (PPV) and 
negative predicted value (NPV). Sensitivity and specificity are the pro-
portion of positives and negatives correctly identified, respectively, 
in the withheld data. PPV is the number of true predicted positives 
divided by all predicted positives and NPV is the number of true neg-
atives divided by all predicted negatives. A perfect model, therefore, 
would have high sensitivity, specificity, PPV and NPV. These, along 
with validation AUC, were used to determine the optimal model for 
each species. The models were then used to predict the diving loca-
tions of birds monitored with only GPS devices.

2.4 | Alternative prediction methods

To compare predictions obtained from deep learning models with 
methods used in previous studies classifying foraging behaviour in 
seabirds HMMs, a naïve Bayes classifier and speed and tortuosity pre-
dictions were implemented on the data (see Appendix S8, supporting 
information for details of the latter). The Naïve Bayes classification, a 
supervised learning method, was implemented in r using the e1071 
package (Meyer, Dimitriadou, Hornik, Weingessel, & Leisch, 2015). 
The inputs were the same as used in the H2O model, and the depend-
ent variable (variable to be predicted) was the binary dive/not dive 
column.

HMMs are an unsupervised learning method that identifies dis-
crete states within time-series data and have been used extensively 
to model animal movement data (Franke, Caelli, & Hudson, 2004; 
Patterson et al., 2009). Here, we wished to explore how well an HMM 
would capture our independently recorded dive bouts from the TDR 
data (note: these are unsupervised models, where we wish to assess 
how well the independently predicted states capture diving). We 
trained HMMs on the GPS data (longitude, latitude) of each bird for 
each species using the moveHMM package in r (Michelot et al., 2016) 

F IGURE  4 Box plots of results of the 10-fold cross-validation 
optimal models for (a) guillemots, trained using coverage, Xbar and 
Ybar, and (b) shags and (c) razorbills, trained using altitude, coverage, 
Xbar and Ybar. T_AUC is the training AUC, V_AUC is the validation 
AUC, PPV is the positive predicted value and NPV the negative 
predicted value. The solid line in the middle of the boxes represents 
the mean for that value
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Orkney colony All GPS points

TDR recorded dives TDR recorded non-dives  

Correctly predicted dives Correctly predicted non-dives

Incorrectly predicted dives Incorrectly predicted non-dives

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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and explored how well each state predicted diving. In this case, step 
length and turning angle are derived from location information and 
used to construct the models. We initially tested between two and 
eight states, generally finding that three-state models produced the 
lowest AICs. We then constructed two- and three-state models, and, 
in each case, recorded the scores of the most accurately predicting 
state (as states are unlabelled and may be disordered across birds), 
therefore choosing the most generous prediction of diving from the 
two- and three-state models.

3  | RESULTS

3.1 | Model results

3.1.1 | 10-fold cross-validation

Nearly all models had high mean specificity values above 90%, mean-
ing they predicted non-diving events with high accuracy, and most 
had mean sensitivity values above 70%, indicating they also predicted 
diving events well (Table 2; see Appendix S5, supporting informa-
tion for the full results). The optimal models were used to predict 
diving locations from birds tracked only with GPS devices (Figure 
S7.1). In shags and razorbills, the models trained with all four vari-
ables (altitude, coverage, Xbar and Ybar) produced the most accurate 
predictions with the highest validation AUC values of 0.97 and 0.95, 
respectively (Figure 4). In shags, 86.9% and 96.7% of diving and non-
diving events were correctly predicted, respectively. In razorbills, 
80.7% and 94.1% of diving and non-diving events were correctly 

predicted, respectively. However, coverage alone in razorbills was a 
more accurate predictor of dives (83.0% correct), but non-dives were 
predicted 92.8% correctly. Coverage, Xbar and Ybar were the most 
accurate predictors for dives and non-dives in guillemots, with 80.3% 
and 95.2%, respectively (Figure 4). Altitude alone was a poor predictor 
for all species, although for razorbills, Xbar and Ybar were the model 
inputs that produced the poorest results.

Figure 5 shows an example of guillemot data at Orkney in Scotland 
and the correct predictions produced from the model trained with all 
variables. The locations with the highest number of correctly predicted 
dives match the locations with the greatest number of true dives. The 
false positives and negatives are also shown, demonstrating the accu-
racy of the model.

3.1.2 | Leave-one-out cross-validation

The results of models trained with leave-one-out cross-validation 
showed increased variation and slightly reduced accuracy compared 
to 10-fold cross-validated models (Table 3; see Appendix S6, support-
ing information for full results). In razorbills, the variation was greatest, 
although the mean model output values were higher, particularly for 
dive prediction accuracy (Figure 6). The models trained with altitude, 
Xbar and Ybar performed the best for shags (mean validation AUCs of 
0.85 and PPV 0.51) (Table 3); in guillemots, the models trained with 
coverage, Xbar and Ybar had the highest mean validation AUC (0.87) 
and coverage alone was the variable which produced the optimal 
model for razorbills with a mean validation AUC of 0.88 and a PPV of 
0.62 (Figure 6c and Table 3). Like with 10-fold cross-validation, there 

TABLE  3 The mean results of the leave-one-out cross-validated models that produced the optimal predictions for common guillemots, 
European shags and razorbills PPV is the positive predictive value; NPV is the negative predictive value

Species Model inputs Training AUC Validation AUC Sensitivity Specificity PPV NPV

Common guillemot Coverage, Xbar, Ybar 0.90 0.87 73.15% 86.94% 0.59 0.93

Coverage 0.82 0.80 63.99% 80.23% 0.46 0.93

Altitude, coverage 0.81 0.81 67.89% 78.24% 0.45 0.93

Xbar, Ybar 0.78 0.78 67.17% 77.88% 0.42 0.95

European shag Altitude, coverage 0.88 0.85 66.69% 88.12% 0.51 0.95

Altitude, coverage, 
Xbar, Ybar

0.91 0.84 65.15% 88.72% 0.50 0.95

Xbar, Ybar 0.86 0.82 68.80% 82.46% 0.39 0.94

Coverage 0.89 0.78 65.21% 81.80% 0.44 0.94

Razorbill Coverage 0.91 0.88 72.63% 87.58% 0.62 0.93

Coverage, Xbar, Ybar 0.91 0.88 71.25% 88.59% 0.61 0.93

Altitude, coverage, 
Xbar, Ybar

0.89 0.87 73.95% 85.70% 0.61 0.93

Altitude, coverage 0.77 0.77 82.49% 63.91% 0.35 0.95

F IGURE  5 Maps showing the distribution of common guillemot points around the colony at Orkney in Scotland (a) from the GPS and model 
predictions, darker shades indicate a greater number of locations. All recorded locations are shown in (b), dive locations are shown in blue (c, 
e, g) and non-dives in red (d, f, h). The true locations, recorded by the TDRs, of dives and non-dives(c and d), the true predicted locations (true 
positives and negatives) (e and f) and the false predicted locations (false positives and negatives, e.g. where no dive occurred but the model 
predicted one) (g and h) are shown. Note the different scales of the number of locations
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was variation in the optimum models between species; however, 
altitude and coverage together were also good predictors of diving 
behaviour in all species (Table 3). The weakest models remained the 
same as those using 10-fold cross-validation (Appendix S6).

3.2 | Alternative prediction methods

For several individuals of each species, the HMMs collapsed for both 
three- and two-state models. This meant that predictions were made 
for 31 and 26 guillemots, 11 and 9 shags and 41 and 37 razorbills, 
for two-  and three-states, respectively. Two-state models were as-
sumed to represent rest and foraging—or diving and non-diving-, and 
three-state models included an intermediate state. The HMMs did not 
predict diving behaviour as accurately as the deep learning models. 
Specificity, sensitivity, PPV and NPV were consistently lower for all 
species using both two- and three-state models (Table 4). The high-
est sensitivity was 81.41% for shags using a three-state HMM and 
specificity was 77.50% using two states. There was a trade-off where 
increasing the number of states increased sensitivity, so increasing the 
accuracy of dive behaviour prediction, but a decrease in non-diving or 
resting behaviour predictions, the specificity.

The predictions made using Naïve Bayes were poor for dives 
across all three species and variable combination, although non-dives 
were predicted well, with most specificity values between 0.85 and 
0.96. The sensitivity was highest for guillemots and shags using alti-
tude and coverage at 0.40. However, for razorbills, all variable combi-
nations resulted in sensitivity values of 0.70 and 0.90.

4  | DISCUSSION

Using the combined information from GPS and TDR devices, we were 
able to train deep neural networks to predict the diving behaviour of 
shags, guillemots and razorbills. The predictions are strong and well 
validated with known dive locations collected by TDR loggers. Our 
results show that we can correctly automatically predict non-diving 
events over 92% of the time and diving events over 80% of the time 
in shags, guillemots and razorbills. The use of Xbar, Ybar, altitude and 
coverage to predict diving shows how GPS data can be used to moni-
tor foraging successfully. Furthermore, both using 10-fold and leave-
one-out cross-validation we demonstrate that these predictions are 
robust across the dataset. We also show, for the species considered, 
that our method produces more accurate predictions than commonly 
used behavioural classification methods such as HMMs.

F IGURE  6 Box plots of the optimum models for (a) guillemots 
trained with coverage, Xbar and Ybar (b) shags trained with altitude 
and coverage and (c) razorbills trained with coverage, using leave-
one-out cross-validation. T_AUC is the training AUC, V_AUC is the 
validation AUC, PPV is the positive predicted value and NPV the 
negative predicted value. The solid line in the middle of the boxes 
represents the mean
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Under both cross-validation methods, the strongest models in all 
species used various combinations of the variables, from coverage 
alone to all four. This flexibility allows for the use of these models in 
a wider range of tracking studies as the data obtained can vary. For 
instance, the sampling rate of the logger may be unknown making the 
use of coverage not possible. Models using coverage, altitude or only 
Xbar/Ybar have predictive utility (see Appendices S5,S6). Altitude was 
included in the models as it may contain useful dive information, but 
inaccurate altitudes (often found with GPS devices) may make pre-
dictions here harder. However, it seems clear that combining altitude 
with other variables produces robust models that can predict more 
accurately. We hypothesised that coverage would be a powerful 
predictor as missed fixes may be indicative of diving and the models 
trained with coverage alone were in the top four for all three species. 
Indeed for razorbills, all the top models included coverage as an input. 
It should be noted that the coverage was calculated over a window 
of 10 possible points (1,000 s), whereas the window the model pre-
dicted dives in was 50 points (5,000 s). This implies that there is some 
interaction between the coverage over a 10-point window within a 
50-point window the model is able to discover; however, due to the 
‘black box’ nature of the method, it is not clear what this is.

Such ‘black box’ limitations are common to many supervised ma-
chine learning models, including some of the alternative methods 
presented here. While the complexity and volume of animal tracking 
data can hinder the use of more traditional statistical methods, it lends 
itself well to these more data-intensive machine learning approaches. 
However, structured models, such as HMMs, do present excellent op-
portunities for understanding some of the processes and mechanisms 
underlying the recorded data (e.g. extraction of behaviours). Here, 
however, we focus on the predictive power using a ‘black box’ method, 
demonstrating that diving is highly predictable, and thus highlighting 
the need for further understanding the processes that may underpin 
this relationship. In performing other supervised and unsupervised 
learning methods to predict, we further demonstrate the value of deep 
learning for predicting analysis of animal behaviour. Previous studies 
have used methods such as HMMs and speed and tortuosity to locate 
foraging patches in other seabird species and other animals, but these 
predictions frequently lack validation (Breed et al., 2009; Dean et al., 
2012; Freeman et al., 2013; Guilford et al., 2008). However, by vali-
dating predictions made using HMMs, here we show that our model is 
superior in predictive power for both diving and non-diving behaviour 
in the species considered. The alternative methods considered also 
produced poorer behavioural predictions, further demonstrating the 

promising application of deep learning methods for analysing animal 
movement datasets.

The computational power requirements and perceived complexity 
of constructing deep learning networks may have hindered their use in 
previous studies; Valletta et al. (2017) in their review highlight the po-
tential for using deep learning methods in predictive animal behaviour 
studies, but conclude that they must be packaged more accessibly be-
fore wider uptake. We argue that this is no longer a barrier and deep 
learning models may be relatively easily implemented using existing 
r packages and hope there will be further studies using this method.

As the cost and size of GPS devices decreases, there is an ever-
growing archive of GPS tracking data (see Kays et al., 2015 for a 
review) that remains largely unutilised, not only for seabirds but for 
other taxa as well. The robust deep learning models presented here 
may be used on much of this historical GPS data in order to determine 
foraging locations, providing valuable insight into patch use variation 
over time and indicating seabird responses to environmental change. 
Accurately mapping these sites is key for identifying candidate MPAs 
and informs marine developments such as the positioning of offshore 
wind farms (Thaxter et al., 2012).
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