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ABSTRACT
Recent work has studied the interplay between a galaxy’s history and its observable properties
using ‘genetically modified’ cosmological zoom simulations. The approach systematically
generates alternative histories for a halo, while keeping its cosmological environment fixed.
Applications to date altered linear properties of the initial conditions, such as the mean
overdensity of specified regions; we extend the formulation to include quadratic features,
such as local variance, that determines the overall importance of smooth accretion relative
to mergers in a galaxy’s history. We introduce an efficient algorithm for this new class of
modification and demonstrate its ability to control the variance of a region in a one-dimensional
toy model. Outcomes of this work are twofold: (i) a clarification of the formulation of genetic
modifications and (ii) a proof of concept for quadratic modifications leading the way to a
forthcoming implementation in cosmological simulations.
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1 IN T RO D U C T I O N

Mergers and accretion are thought to play a key role in shaping
the observed galaxy population; in the prevailing cosmological
paradigm merger histories are in turn seeded from random inflation-
ary perturbations. Numerical studies must make inferences about
the galaxy population from a finite sample of such histories. Due
to the limited computer time available, this generates a tension be-
tween resolution (for resolving the interstellar medium) and volume
(for adequately sampling histories).

One attempt to sidestep this problem is to create and study a
small number of carefully controlled tests of the relationship be-
tween a galaxy’s history and its observable properties. This has
long been attempted in idealized, non-cosmological settings (e.g.
Hernquist 1993; Di Matteo, Springel & Hernquist 2005; Hop-
kins et al. 2012). More recently, Roth, Pontzen & Peiris (2016)
proposed performing such tests within a fully cosmological envi-
ronment by constructing a series of closely related initial condi-
tions with targeted ‘genetic modifications’ (hereafter GMs). The
formalism resembles that of constrained realizations (Bardeen
et al. 1986; Bertschinger 1987; Hoffman & Ribak 1991) which
generates realizations of Gaussian random fields satisfying user-
defined constraints on initial densities, velocities or potentials (e.g.
Bertschinger 2001). Simulations based on constrained realizations
have been extensively applied to recreating the local universe us-
ing observed galaxy distributions as constraints (for recent exam-
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ples, see Heß, Kitaura & Gottlöber 2013; Sorce et al. 2016; Wang
et al. 2016; Hoffman et al. 2017).

Despite a resemblance, genetically modified simulations are
markedly different from constrained simulations. The process of
GM involves creating multiple versions of the initial conditions,
each with carefully selected small changes. By re-simulating each
scenario it becomes possible to study how the changes affect the
non-linear evolution of structure. For example, modifications can
be chosen such that they enhance or suppress merger ratios in in-
cremental steps and so vary a galaxy’s history in a systematic and
controlled way. The first application of this technique in a hydro-
dynamic simulation was made by Pontzen et al. (2017); that work
focuses on the response of a galaxy’s central black hole and its abil-
ity to quench star formation as the merger history is changed grad-
ually. Unlike studies based on fully idealized merger simulations,
the GM-based approach is able to capture the effects of gradual
gas accretion from filaments which is essential when probing the
balance between star formation and black hole feedback.

On a technical level, Pontzen et al. (2017) used multiple linear
modifications to alter the merger history. Such a method requires
human effort on two fronts: (i) to identify and track particles form-
ing the merging substructures; and (ii) to tune the modifications
and understand their effects on one another. For instance, GMs
suppressing a merger tend to increase the mass of other nearby
substructures, which complicates interpretation of the final results
(see section 2.3 and fig. 2 of Pontzen et al. 2017). Bypassing this
behaviour would be possible by individually identifying all sub-
structures and demanding the algorithm fix each one. However, the
spiralling complexity of the set-up makes this option unattractive.
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Another possibility, which is the primary aim of this paper, is
to find a new type of modification which automatically suppresses
the merger ratios of all large substructures in a target galaxy’s his-
tory. Such a modification would smooth the expected history while
keeping its final mass and overall environment fixed. These mod-
ifications must be applicable to cosmological simulations, so our
objective is an algorithm that remains tractable even working with
fields on multidimensional grids. To achieve this goal, we start by
clarifying the formulation of GMs (Section 2). We then expand the
framework to quadratic modifications (Section 3), allowing control
over the variance at different scales to tackle the problem of mul-
tiple mergers. We demonstrate the feasibility of our method on a
one-dimensional model (Section 4); in forthcoming work, we will
demonstrate the implementation for a full 3D zoom simulation.
Results are discussed in Section 5 and we conclude in Section 6.

2 LI N E A R C O N S T R A I N T S A N D M O D I F I E D
FIELDS

In this section, we contrast the method of constraints (Hoffman &
Ribak 1991) against that of linear GMs. The aim is to clarify the
status of the latter as a building block for non-linear GMs, which
are introduced in Section 3.

2.1 Constrained ensemble

We start by reviewing the construction of constrained ensembles
(see bottom panel of Fig. 1). In this case, constraints must be known
a priori, i.e. independently of any specific realization. Constrained
ensembles are therefore particularly useful when using observations
as external inputs to constrain numerical simulations.

Consider a Gaussian random field sampled at n points to create
a vector δ with covariance matrix C0 = 〈 δ δ† 〉. The Hoffman &
Ribak (1991) algorithm allows for an arbitrary number (denoted p)
of linear constraints to be placed on δ; these can be expressed as
A δ = b, where A is a p × n matrix and b is a length-p vector.

We start by constructing the ensemble of all fields δ satisfying
the constraint for a chosen b, i.e. P (δ|b). Applying Bayes’ theorem,
the probability reads

P (δ|b) = P (b|δ) P (δ)

P (b)
. (1)

Using the fact that P (δ) is Gaussian and disregarding normalization,
this relation becomes

P (δ|b) ∝ δD(A δ − b) exp

(
−1

2
δ†C−1

0 δ

)
, (2)

where δD is the (p-dimensional) Dirac delta function.
This expression suggests a brute force sampling solution: We

could draw many trial δs from the original ensemble and keep only
the ones satisfying the constraints (within some tolerance). This
solution is, however, computationally inefficient. Making use of the
fact that the Dirac delta function can be represented as the zero-
variance limit of a Gaussian, we can instead derive the following
results (Bertschinger 1987):

P (δ|b) ∝ e− 1
2 (δ−δ̄)†C−1(δ−δ̄) , with

δ̄(b) = C0 A† (AC0 A†)−1 b , and

C = C0 − C0 A†(AC0 A†)−1 AC0, (3)

where δ̄ and C are the expectation and the covariance of the
Gaussian distribution P (δ|b). By construction, all fields drawn from
this distribution will satisfy the constraints (Aδ = b).

Figure 1. GMs and constrained ensembles are two techniques to generate
targeted initial conditions for numerical simulations. They have markedly
different motivations and properties despite sharing similar mathematics.
We illustrate the differences by showing the flow of information in the two
cases. Upper Panel: In the GM case, a single initial realization (black) is
first drawn from the underlying ensemble. Next, modifications are designed
to alter chosen properties of this realization; each modification therefore
depends on the specific δ0. The modified fields are computed by demanding
minimal changes while satisfying the requested modifications. In the illus-
trated example, we create two modified fields with enhanced and reduced
mean values, corresponding to two different values of b inside the target
region. Lower panel: In the constrained ensemble case, the constraints are
independent of any particular realization and are used to define the ensemble
P (δ|b). This ensemble is efficiently sampled using the Hoffman & Ribak
(1991) technique. In this example, three fields are drawn and by construction
satisfy the same mean value inside the target region.

Hoffman & Ribak (1991) pointed out a convenient shortcut for
efficiently sampling from the distribution specified by equation (3).
Starting from a draw of the unconstrained ensemble, δ0, we calculate
b0 = A δ0. One can then rewrite δ0 as the sum of the mean field δ̄(b0)
from equation (3) and a residual term δresidual, defined by

δresidual ≡ δ0 − δ̄(b0)

= δ0 − C0 A† (AC0 A†)−1 b0. (4)

From here, a draw from the constrained ensemble δ1 can be gener-
ated by recombining the residuals with the corrected mean δ̄(b):

δ1 = C0 A† (AC0 A†)−1 b + δresidual. (5)

To verify that this procedure draws samples δ1 from the constrained
distribution, one first writes the mapping from δ0 to δ1 in a single
step:

δ1 = δ0 − C0 A† (AC0 A†)−1 (A δ0 − b). (6)

Then, by calculating 〈δ1〉 and 〈δ1δ
†
1〉, it is possible to check that the

ensemble has the correct mean and covariance from equation (3).
The fact that δ1 is Gaussian follows from its construction as a linear
transformation of δ0. The underlying efficiency of this method is that
the covariance matrix in equation (3) does not depend on the value
of b, allowing the δresidual term to be the same for both expressions.

In summary, the Hoffman & Ribak (1991) algorithm creates a
draw from the constrained ensemble in two steps, using the realiza-
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tion δ0 as an intermediate construction tool. It provides a computa-
tionally efficient way of generating Gaussian constrained fields.

2.2 Genetic modifications

We now turn to GMs (see the upper panel of Fig. 1) to contrast their
formulation with that of constrained fields. The GM procedure can
be summarized as follows.

(i) Draw the unmodified realization δ0.
(ii) Define the modifications by choosing which properties of

δ0 are to be modified. Unlike in the constrained field case, this is
accomplished with reference to specific features of the δ0 realiza-
tion (e.g. the location and properties of particular haloes). This re-
flects how GMs are intended for constructing numerical experiments
rather than for recreating observationally motivated scenarios. We
focus first on linear modifications, i.e. of the form A δ = b.

(iii) Create the modified field (or multiple modified fields with
different values of b). We require changes between fields to be as
small as possible, which relies on the definition of a distance in field
space. In the context of Gaussian fields, the only available metric is
defined by the χ2 distance,

χ2 ≡ || δ ||2
C−1

0
= δ† C−1

0 δ. (7)

Consequently, GMs can be formulated as finding the modified
field solution of the following optimization problem:

min
δ

|| δ − δ0 ||2
C−1

0
,

subject to A δ = b. (8)

The problem is solved by minimizing the Lagrangian:

L ≡ (δ − δ0)† C−1
0 (δ − δ0) + λ† (A δ − b), (9)

where λ is a vector of size p containing the Lagrange multipliers
for each modification.

By differentiating to find critical points with respect to δ and λ,
we obtain a system of two vector equations with the solution

δ1 = δ0 − C0 A† (AC0 A†)−1 (A δ0 − b), (10)

where δ1 is the modified field.
Equation (10) has regenerated equation (6) using a different mo-

tivation and derivation. To summarize:

(i) In the case of (6), δ0 is an intermediate construct that is never
used in a simulation; it only exists to aid finding δ1, which is a
sample from the distribution (3).

(ii) In the case of (10), δ0 and δ1 are put on equal footing. They
are both initial condition fields drawn from the original, underlying
ensemble P (δ). The fact that the modifications (choice of A and b)
depend on δ0, as emphasized by Porciani (2016), does not impact
this interpretation.

(iii) We show in Appendix A that in the case of non-linear con-
straints, there is no joint expression for GMs and Hoffman & Ribak
(1991), formalizing their intrinsic difference.

GMs should therefore be seen as a mapping between fields of the
same ensemble. A family of modified fields is generated by choos-
ing multiple values for b; the resulting mapping between members
of the family is continuous and invertible. These properties are
highly valuable for providing controlled tests, allowing for system-
atic exploration of the effects of formation history on a galaxy.

While the algorithm makes the minimal changes to the field,
δ1 may still not be a particularly likely draw from P (δ) if the

modifications are too extreme. To quantify the level of alteration,
the relative likelihood of the two fields is given by exp (− �χ2/2)
with

�χ2 = δ
†
1 C−1

0 δ1 − δ
†
0 C−1

0 δ0. (11)

As long as �χ2 stays small, we can regard the modified and unmod-
ified fields as similarly likely draws from �colddarkmatter initial
conditions.

Turning �χ2 into a precise quantitative statement about the rel-
ative abundance of a particular galactic history remains a topic for
future research. It relies on knowing the detailed Jacobian relating
the initial conditions to properties of the final galaxy. This can so
far only be estimated, and only in simple scenarios such as small
modifications to the halo mass (Roth et al. 2016). There are multiple
possible modifications (i.e. choices of A and b) leading to a given
effect in the target galaxy history (Porciani 2016); some will carry
a smaller �χ2 cost than others. Finding the minimum-cost route to
a given change in the non-linear universe is not the aim of GMs;
to perform galaxy formation experiments, we only need to find one
choice of modification with an acceptably small �χ2 penalty.

3 E X T E N S I O N TO QUA D R AT I C
M O D I F I C AT I O N S

The main aim of this paper is to formulate modifications that control
the variance of a field. The variance on scales smaller than the
parent halo scale relates to the number of substructures in haloes
(Press & Schechter 1974; Bond et al. 1991), and is therefore a
proxy for the overall importance of mergers. It is important to
distinguish variance modifications of a region from alterations to
the power spectrum. The power spectrum defines only the average
variance over the entire box, and over all possible realizations. We
propose on the other hand to modify the local variance, targeting
one region of interest and making minimal changes to the remaining
structures. Another way to picture this goal is as follows. In any
one stochastic ensemble, two realizations might by chance have
enhanced or reduced variance in an area. Our procedure aims to
map between such realizations rather than to modify the underlying
power spectrum.

Variance is quadratic in the field value and therefore the approach
in Section 2.2 cannot be applied directly. One natural formulation
of the problem is through a new minimization problem (analogous
to the original linear case):

min
δ

|| δ − δ0 ||2
C−1

0
,

subject to δ† Q δ = q, (12)

where Q is an n × n matrix and q is a scalar. We can assume without
loss of generality that Q is Hermitian. For a suitable choice of Q
(see Section 4), q specifies the variance of a chosen region.

Following a similar approach to the linear modifications, we
introduce the Lagrangian

L = (δ − δ0)† C−1
0 (δ − δ0) + μ (δ† Q δ − q), (13)

where μ is a scalar Lagrange multiplier associated with the quadratic
modification. Searching for critical points, we obtain two equations
relating the modified field δ1 and the multiplier:

δ1 = (I + μC0 Q)−1 δ0 and (14)

δ
†
0 (I + μC0 Q)−1 Q (I + μC0 Q)−1 δ0 = q. (15)
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Equations (14) and (15) provide a closed system for μ and δ1 given
a target q. Unlike the linear case, the system cannot be solved ana-
lytically. A possibility would be to solve equation (15) numerically
for μ but direct matrix inversions are prohibited due to their com-
putational cost. One would therefore need to perform approximate
matrix inversion at each step of a root-finding scheme for μ, making
the worst-case complexity of such method infeasible.

There are moreover deeper reasons why such procedures cannot
be straightforwardly adapted to GMs. In the linear case discussed
above, we defined GMs as a continuous and invertible mapping.
Both of these properties are lost when looking at equations (14) and
(15). First, it is not clear that equation (15) has a real solution for μ.
Consequently, a real-valued δ1 may not exist1 for any chosen value
of q.

Secondly, the relationship between δ0 and δ1 is asymmetric: if a
new field δ′ is constructed by taking q back to its original value q0,
we will have

δ′ = (
I + (μ + μ′)C0Q + μμ′ (C0Q)2)−1

δ0, (16)

for suitable choices of μ and μ′. To obtain a solution μ′ allowing
recovery of the initial field (δ0 = δ′), it must hold that C0Q ∝
(C0Q)2. This will not generally be the case for our applications, and
so we conclude that in general δ′ �= δ0. Such asymmetry would be
problematic for GM; the sense of a unique ‘family’ of fields is lost.

The combination of computational intractability and loss of key
properties for GMs lead us to focus on an alternate method. We de-
scribe next a Newton-like method which efficiently approximates a
solution to the optimization problem, equation (12), while reinstat-
ing the desired properties of the GM mapping.

3.1 Linearized solution

In this section, we restate the quadratic problem in a way that
has a guaranteed solution and that generates a single family as
a function of q. The trick is to make only infinitesimally small
changes to the value of q, building up finite changes by following
a path through field space that is locally minimal. This leads to an
iterative procedure for quadratic GMs, which we will demonstrate
is both unique and computationally tractable.

3.1.1 One infinitesimal step

We start by defining the displacement ε from the unmodified field
δ = δ0 + ε; for sufficiently small changes, we may then neglect
O(ε2) terms. We will discuss in Section 3.1.3 how to practically
decompose a macroscopic change into a series of such minor mod-
ifications.

At first order, the updated variance (or other quadratic property)
is given by

δ† Q δ = δ
†
0 Q δ0 + 2 δ

†
0 Q ε + O(ε2) (17)

where we have assumed δ is real and made use of the previously
stated Hermitian assumption, Q† = Q. Having linearized the mod-
ification, we can now find an analytic solution for the displacement
and the multiplier μ:

ε = μC0 Q δ0 , with (18)

1 We note in passing that, since variance is a positive quantity, Q is a positive
semi-definite matrix. By definition, C0 is positive definite. These conditions
ensure that δ1 is unique if it exists – but they do not guarantee existence.

μ = 1

2

q − δ
†
0 Q δ0

δ
†
0 QC0 Q δ0

. (19)

Equation (19) does not involve matrix inversions and can there-
fore be efficiently evaluated, even in a 3D cosmological simulation
context.

3.1.2 Building finite changes by successive infinitesimal updates

We now want to construct a macroscopic change in the field by
iterating the infinitesimal steps of equation (18). Performing a finite
number of steps N, the modified field reads

δ1 =
N∏

j=0

(
I + μj C0 Q

)
δ0, (20)

where μj is the Lagrange multiplier at step j. The value of each μj

depends on how the fixed interval is divided, i.e. implicitly on N. In
the limit of increasing number of steps, each individual μj becomes
infinitesimally small and the final solution is

δ1 = lim
N→∞
μj →0

N∏
j=0

(
I + μj C0 Q

)
δ0

=
∞∏

j=0

exp
(
μjC0 Q

) ≡ exp (αC0 Q) δ0, (21)

where α = ∑∞
j=0 μj is the overall displacement and is finite. The

right-hand side of equation (21) defines the matrix exponential op-
erator, which is guaranteed to exist and is invertible.

The matrix exponential is a useful formal expression to show that
there is a unique result, but does not help computationally since the
required value of α to reach the objective δ

†
1Q δ1 = q is unknown.

In practice, we use the finite approximation, equation (20). The μj

at each step are chosen by targeting N intermediate modifications
linearly spaced between the starting value q0 ≡ δ

†
0Q δ0 and the

target q. At each step, μj is calculated using equation (19); εj is
deduced with equation (18); and the field is updated, δ → δ + εj .

3.1.3 Step choice for a practical algorithm

When calculating equation (20) as an approximation to equation
(21), the accuracy will increase with the number of steps N. One
must choose a minimal N (for computational efficiency) while en-
suring that linearly approximating the modification at each step is
sufficiently accurate.

We first perform the calculation with a fixed number of steps
Ninitial. This gives rise to an initial estimate for the modified field
that we denote δ1,initial. The error on the resulting modification can
be characterized by the magnitude of ηinitial, where

ηinitial ≡ δ
†
1,initialQ δ1,initial − q. (22)

Because second-order terms are neglected in the modification, the
error term ηinitial should scale inverse-quadratically with the number
of steps Ninitial. We verified this behaviour numerically for a variety
of fields and modifications. If ηinitial is smaller than a desired pre-
cision, ηtarget, we retain the initial estimate as our final output field.
Otherwise, the calculation must be repeated; the required number
of steps to achieve the target precision is inferred from the quadratic
scaling as

N = Ninitial

√
ηinitial

ηtarget
. (23)
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Note that Ninitial should be kept small to avoid unnecessary iterations;
Ninitial = 10 has been chosen for our test scenarios below.

The final algorithm has a worst-case complexity of O(η−1/2
target n

3),
where n is the number of elements in the field δ. The n3 arises from
matrix multiplications required to compute each step; in practice,
the matrices will be sparse either in Fourier space (for the covariance
matrix) or in real space (for the variance Q matrix). Therefore,
one can speed up the matrix multiplications by transforming back
and forth from real to Fourier space, improving the complexity to
O(η−1/2

target n log n).
The final procedure shares numerous similarities with New-

ton methods, used in large-scale optimization (see Nocedal &
Wright 2006 for a comprehensive review). It retains quadratic infor-
mation in the objective and linear information in the modification
at each step and has a quadratic rate of convergence to the solution.

3.2 Joint quadratic and linear modifications

The algorithm above can be generalized to the case where we have
both a quadratic modification and p linear modifications of the form
A δ = b. We first apply the linear modifications using equation
(8), then turn to the iterative quadratic modifications. However, if
equation (20) is applied directly, the linear objective will no longer
be satisfied; in other words, we need to enforce A ε = 0 at each step.
Constructing and solving the appropriate minimization, expression
(18) is replaced by

ε = −μC0 Q δ + μC0 A† (AC0 A†)−1 AC0 Q δ, (24)

where

μ = 1

2

q − δ†Qδ

δ†QC0A†(AC0A†)−1AC0Qδ − δ†QC0Qδ
. (25)

These results can be iterated to achieve the final modified field in
exactly the same way as for the pure-quadratic modification.

Despite the complexity of these expressions, the evaluation will
remain O(η−1/2

target n log n) for reasons discussed previously. To help
interpret the method, there is a clear geometric meaning for each
term, which we present in Appendix B.

4 D E M O N S T R ATI O N

In this section, we demonstrate our algorithm in an n-pixel, one-
dimensional setting as a proof of concept and as a reference for
future implementation on cosmological simulations. We choose
an example of red power spectrum, as typically encountered on
the scales from which galaxies collapse. Specifically, we adopt
P(k) = P0 (k0 + k)−2, where P0 is an arbitrary normalization and
k0 = 2π/n, an offset that prevents divergence of P(k) at k = 0.

4.1 Defining an example modification

The framework developed in Section 3 can alter any property that
is quadratic in the field by suitable choice of Q. We now specialize
to the case that Q corresponds to the variance of a length-R region
of the field. We start by defining the windowing operator W as a
rectangular matrix picking out the desired R entries from the n pixels
in δ. To calculate the variance of the region, one then calculates
δ†Qσ 2 δ where Qσ 2 can be written

Qσ 2 = 1

R2
W† (R I − 1 ⊗ 1) W. (26)

Here, I is the R × R identity matrix and 1 is a length-R vector of
ones. Expression (26) is readily verified by constructing δ†Qσ 2 δ

and seeing that it does boil down to the variance of the chosen
region.

We wish to consider the field variance only on scales smaller than
the region size (corresponding to substructures with mass lower
than that of the parent halo). To achieve this, Qσ 2 can be high-pass
filtered; we use a standard Gaussian high-pass filter F where in
Fourier space the elements of F̃ are given by

F̃lm = δlm

(
1 − exp

[
−1

2

(
kl

kf

)2
])

. (27)

Here, kl = 2πl/n is the wavenumber of the lth Fourier series ele-
ment and kf, the filtering scale, is defined in our case by kf = 2π/R.
The most appropriate choice of filtering scales and shapes in the
context of cosmological simulations will be discussed in a forth-
coming paper.

In real space, the matrix F is defined by F = U†F̃U, where U is
the unitary Fourier transform matrix. Finally, to localize the target
modification fully, we can re-window the matrix after smoothing.
The operator W†W achieves this by setting pixels outside the target
window to zero. With this set of choices, the final quadratic objective
is set by

Q ≡ W†WF†Qσ 2FW†W

= 1

R2
W†WF†W† (RI − 1 ⊗ 1) WFW†W . (28)

In practice, we never calculate the matrix Q explicitly but rather
implement a routine to efficiently calculate Q δ for any field δ,
which is then used by the algorithm described in Section 3. The
ability to bypass storing or manipulating Q is essential to permit
the computation to operate on a 3D cosmological simulation.

4.2 Results

Fig. 2 shows examples of modified fields obtained with our algo-
rithm. We alter the variance of a region of width R = 100 pixels en-
closed by vertical lines, showing two quadratic modifications with
the variance reduced by a factor of 3 (light grey) and 10 (dark blue).
In both cases, the mean of the field is held fixed at the unmodified
value (horizontal line). In the setting of a cosmological simulation,
we expect to be able to fix the parent halo mass (through the mean
value) while modifying the smoothness of accretion (through the
variance).

We verified that these fields achieve the linear modification
A δ1 − b to within numerical accuracy and the quadratic modifi-
cation δ

†
1Qδ1 − q to ηtarget = 10−6 accuracy. The heights of small-

scale peaks inside the enclosed region are successfully reduced and
brought closer to the mean value for the modified fields. Visually, it
can be seen that the changes to the field are minimal, maintaining
as much as possible of the structure of the unmodified field in the
modified versions. This underlines how the analytic minimization
(equation 12), and its refinement to a linearized procedure (Sec-
tion 3.1) agrees with the intuitive sense of making minimal changes.
The different versions of the field form a continuous family as il-
lustrated by the smooth deformation when reducing the variance by
different factors.

Despite the modification objective Q being strictly confined to the
target region, modifications can be seen to ‘leak’ outside (beyond
the vertical lines). This effect, which is also seen in linear GMs, is
an intentional aspect of the minimization construction – any sharp
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50 M. P. Rey and A. Pontzen

Figure 2. Example GM of a Gaussian random field with power spectrum P(k) ∝ (k0 + k)−2. The unmodified and modified fields are shown, respectively, by
dashed and solid curves. The region targeted for alteration is enclosed by vertical lines. We use simultaneous linear and quadratic modifications to conserve
the mean value of this region (horizontal line) while reducing the small-scale variance by a factor of 3 (grey) and 10 (blue). In the context of galaxy formation,
this would maintain the mass of a galaxy and make its formation history smoother, while making minimal alterations to the large-scale environment.

discontinuities in the field value or its gradients would give rise to
a power spectrum inconsistent with the ensemble. In this specific
example, the leakage appears more significant to the left than to
the right of the target region. In general, the algorithm is spatially
symmetric but its effect in any given case is not.

5 D ISCUSSION

5.1 The advantage of quadratic over linear modifications

Pontzen et al. (2017) showed that using multiple linear modifica-
tions was sufficient to change the merger ratios in the history of a
galaxy; substructures can be diminished or enhanced by manually
modifying individual peak heights.

None the less, we expect the new quadratic approach to bring con-
siderable benefits when making such manipulations; the advantages
are illustrated in Fig. 3. The top panel shows a field representing
the density in initial conditions expected for a halo. The field has
a broad overdensity enclosed by vertical lines and two narrower
peaks labelled (1) and (2). According to the excursion-set formal-
ism (Bond et al. 1991), (1) and (2) will collapse to form two separate
haloes that later merge. This, together with smooth accretion, will
form the final halo.

Suppose we wish to generate a smoother accretion history by
reducing the heights of peaks (1) and (2) while maintaining the
large-scale overdensity. In the original approach, we use linear GMs
to set the mean values of the peaks to the mean value of the broad
overdensity (horizontal line). The middle panel of Fig. 3 presents
the resulting field. However, a number of problems arise when
performing the alteration using this approach.

(i) We had to identify (1) and (2) as the most interesting sub-
structures and define specific modifications for each. In the context
of N-body simulations, this requires manually identifying which
particles of the initial conditions constitute each individual subhalo.

(ii) More importantly, spatially neighbouring modifications inter-
act and create new substructures (peak labelled (3) in our example).
One solution to prevent the appearance of new substructures could
be to add a new linear objective forcing problematic regions such
as (3) to remain unmodified. Identifying and mitigating side effects
in this way adds a layer of complexity to the linear GM procedure.

Depending on the specific problem and the number of modifications
at play, time spent at this tuning phase can rise steeply.

On the other hand, a single quadratic modification can avoid
these problems by defining a variance target across the region. The
third panel of Fig. 3 shows the same field with variance reduced
by a factor of 10 (using the method from Section 4). The two local
peaks are successfully reduced in amplitude while conserving the
remaining small-scale structure of the parent halo. By construction,
the variance modification naturally avoids compensation problems
inherent to linear GMs. For this reason, quadratic GMs provide a
cleaner, streamlined way to control merger histories.

5.2 Multiple quadratic modifications

The formalism discussed so far applies a single quadratic modifi-
cation to a field (possibly in combination with linear objectives).
Simultaneously applying multiple quadratic modifications would
allow one to act concurrently on two separate haloes, or to further
fine-tune the merger history of a single object. For instance, de-
creasing the variance on intermediate scales while increasing on
small scales should increase the frequency of minor mergers.

To study this generalization, we introduce i = 1, . . . , P quadratic
modifications, each with matrix Qi . For an infinitesimal update, the
change in the field ε is then given by

ε =
∑

i

μiC0Qiδ, (29)

with δ†Qiδ + 2δ†Qiε = qi for all i, (30)

where μi are the Lagrange multipliers associated with each modifi-
cation. Equation (30) defines a system of P equations to be solved.
The resulting value of a specific μi depends on the whole set of qi

and Qi , i.e. modifications are interdependent.
In the same way as Section 3.1, the update (29) can be iterated to

create finite changes. Performing N steps, the modified field reads

δ1 =
N∏

j=0

(
I +

P∑
i=0

μij C0 Qi

)
δ0, (31)
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Figure 3. Comparison of pure linear against combined linear-quadratic
GMs. Top panel: The unmodified field contains three distinct features: a
broad overdensity that would generate a parent halo (enclosed by vertical
lines) as well as two localized substructures labelled (1) and (2) that would
lead to a merger during the formation history. The objective is to reduce the
peak heights of these substructures while conserving the mean height of the
parent (horizontal line). Middle panel: a GM field with linear modifications
designed to bring peaks (1) and (2) to the mean value of the broad region.
This approach has successfully smoothed the peak structure. However, as
explained in the text, it suffers from the creation of an artificial substructure
(3). Bottom panel: The same objective has been achieved through a vari-
ance modification. This quadratic modification does not require identifying
individual subhaloes and by construction prevents unhelpful compensations
such as (3).

where μij is the multiplier μi at step j. However, in the limit that the
number of steps N → ∞, convergence to the matrix exponential,

δ1 = exp

(∑
i

αiC0Qi

)
δ0, (32)

is only guaranteed if either the Qi commute with respect to C0

(i.e. QiC0Qj = QjC0Qi) or each μij is directly proportional to αi.
Because αis are not known in advance, the latter option is hard to
arrange; the previously noted interdependence of the μis on all qi

and Qi exacerbates the difficulty.
With our current algorithms, convergence to the matrix exponen-

tial is therefore only assured when the Qi matrices commute. The
easiest way to arrange for the commutation is to use orthogonal

modifications, i.e.

QiC0Qj ≈ 0. (33)

Physically, this requirement can be achieved by imposing modifi-
cations that are spatially separated by a sufficient number of cor-
relation lengths or address distinct Fourier modes. This condition
even allows one to apply the formalism of Section 3.1 to each mod-
ification one-by-one and still converge to the correct overall matrix
exponential of equation (32). We leave the case of non-orthogonal
multiple quadratic modifications to further work.

6 C O N C L U S I O N S

We have presented an efficient algorithm to modify the variance in
a particular region of a Gaussian random field realization, with the
aim of manipulating initial conditions for cosmological simulations.
The modification produces a field that is as close as possible to the
original realization. In this way, it provides a route for controlled
tests of galaxy formation where multiple versions of the same galaxy
are simulated within a fixed cosmological environment, but with
altered accretion history.

We argued that quadratic controls, as developed here, offer a use-
ful complement to the existing linear technique (Roth et al. 2016). In
particular, variance on different filtering scales relates to dark mat-
ter halo substructure and merging history (Press & Schechter 1974;
Bond et al. 1991). The new algorithm can construct GM fields with
simultaneous control on the mean value and filtered variance of a
region (Fig. 2). This provides a route to altering merger history and
accretion over the lifetime of a given halo in a way that is more
streamlined than modifying individual substructures (see Fig. 3).

In both linear and quadratic GM, the algorithm searches for fields
which are nearby in the sense of the χ2 distance measure. In the
quadratic case, this definition is further refined: For large shifts in
the control parameter q (which represents the variance in our test
cases), the path through field space is defined by following a series
of small shifts. Each of these individually minimize the χ2 distance
travelled. We demonstrated a formal convergence property for this
series and argued that the approach is desirable for (a) returning a
continuously deforming field δ as a function of the changing target
variance q; (b) being reversible, so that returning the variance to its
initial value also returns the field to its initial state; and (c) being
numerically tractable even for 3D zoom simulations.

In the process, we clarified the mathematical formulation of
GM, carefully distinguishing it from the constrained ensemble of
Hoffman & Ribak (1991); see Fig. 1 for an overview. The status
of fields constructed in the two approaches is distinct – unlike con-
strained realizations, GMs should be seen as a mapping between
two fields from the same ensemble. In the case of quadratic ob-
jectives such as variance, even the cosmetic similarities between
constraints and modifications are lost (Appendix A).

The next step is an implementation of the new algorithm in a full
N-body initial conditions generator, including on varying-resolution
grids appropriate to zoom simulations. This will be presented in
a forthcoming paper where we will evaluate the effectiveness of
quadratic GM (alongside the existing linear technique) for con-
structing controlled tests of galaxy formation.
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A P P E N D I X A : C O N S T RU C T I N G
CONSTRAINED ENSEMBLES FOR
QUA D R AT I C C O N S T R A I N T S

In Section 2, we contrasted the notion of a linearly constrained
ensemble (Section 2.1) against that of GMs (Section 2.2). While
conceptually different, constrained ensembles can be sampled us-
ing the Hoffman & Ribak (1991) procedure which can in turn be
seen as applying suitable modifications to realizations from the
unconstrained pdf.

In this appendix, we show that there is no such similarity be-
tween quadratically constrained ensembles and quadratically mod-
ified fields. To put it another way, there is no Hoffman & Ribak
(1991)-like method for generating samples from a quadratically
constrained ensemble.

Following the same Bayesian argument as in Section 2.1, we
define the quadratically constrained ensemble for a fixed Q and q
by

P (δ|q) ∝ exp

(
−1

2
δ†C−1

0 δ

)
δD(δ† Q δ − q). (A1)

We will show that the modification procedure does not generate
samples from the ensemble (A1), even when Q and q are known
and fixed in advance.

We start by defining the alternative ensemble P (δ1|q) to be that
sampled by drawing an unconstrained field from P (δ) and using the
GM procedure to enforce the constraint δ†Qδ = q. In Section 3.1,
the mapping δ0 → δ1 was given by

δ1 = exp (α(δ0, q) C0 Q) δ0, (A2)

where C0 is the covariance matrix of the Gaussian distribution P (δ)
and the value of α(δ0, q) is implicitly defined by the need to satisfy
the quadratic constraint δ

†
1 Q δ1 = q.

To incorporate this implicit requirement to choose the correct
value of α into an expression for the ensemble, we make use of

Bayes’ theorem:

P (δ1|q) =
∫

P (δ1|α)P (α|q) dα

=
“

P (δ1|α, δ0)P (α|q, δ0)P (δ0) dα dδ0

=
“

P (δ1|α, δ0)P (q|α, δ0)
P (α|δ0)

P (q)
P (δ0) dα dδ0. (A3)

Note that the constraint demands P (q|α, δ0) = δD(δ†1Qδ1 − q),
where δ1 and δ0 are related by the condition (A2). Writing out
the normalization condition for P (α|q, δ) then gives

1 = ∫
P (α|q, δ) dα = ∫

δD(δ†1Qδ1 − q) P (α|δ0)
P (q) dα. (A4)

Because Q and C0Q are positive semidefinite, q is a monotonically
increasing function of α; there is only one value of α which satisfies
the Dirac delta function on the right-hand side. Consequently, we
can perform the integration by a change of variables to yield

P (α|δ0)

P (q)

∣∣∣∣
δ
†
1 Qδ1=q

= ∂

∂α

∣∣∣∣
δ0

(
δ
†
1Qδ1

)
= 2δ

†
1QC0Qδ1. (A5)

Substituting this result back into equation (A3) and performing
the integral over δ0 using P (δ1|α, δ0) = δD(δ1 − exp (α C0 Q)δ0),
one obtains

P (δ1|q) ∝ δD(q − δ
†
1Qδ1) δ

†
1QC0Qδ1

×
∫

dα
∣∣e−αC0Q

∣∣ exp

(
−1

2
δ
†
1e−αQC0C−1

0 e−αC0Qδ1

)
, (A6)

where normalization factors depending only on C0 have been
dropped. This expression no longer has any explicit reference to
δ0, which was our primary aim. It can now be compared with the
distribution for a true constrained ensemble (equation A1). The two
distributions appear different (as expected, given our claim of in-
equivalence), but the comparison is complicated by the unsolved
integral over α which obscures the content of the expression.

We can see that this integral will never regenerate the true
quadratic constrained ensemble by taking an illustrative example.
Consider a three-dimensional field δ1 = (x, y, z) with unit power
spectrum (C0 = I). Let us further choose an explicit form for Q
such that

Q =
⎛
⎝ 0 0 0

0 −1 0
0 0 1

⎞
⎠ ⇒ eαC0Q =

⎛
⎝ 1 0 0

0 e−α 0
0 0 eα

⎞
⎠ . (A7)

Inserting these results into equation (A6) gives

P (δ1|q) ∝ δD(q + y2 − z2)(y2 + z2)

×
∫ ∞

0

dβ

β
exp

(
−1

2

(
x2 + β−2y2 + β2z2

))
, (A8)

where we have made the substitution β = e−α . The integral over β

has an analytical solution using the further substitution t = (βz)2/2
and introducing the modified Bessel function of the second kind

K0(x) = 1

2

∫ ∞

0

dt

t
e−t− x2

4 . (A9)

Equation (A6) can then be evaluated explicitly to obtain

P (δ1|q) ∝ e− x2
2 δD(q + y2 − z2) (y2 + z2) K0 (|yz|) . (A10)

For comparison, the quadratic constrained ensemble in this example
is given by

P (δ|q) ∝ e− x2
2 δD(q + y2 − z2) e− y2+z2

2 . (A11)
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The distributions defined by equations (A10) and (A11) have
identical x-dependence. This is a general property: degrees of free-
dom for which Q has a null direction are unconstrained and, sim-
ilarly, left unchanged by our GM transformation. The distribution
generated by these degrees of freedom will therefore coincide at
all times with the constrained ensemble. However, the y and z de-
pendences differ between equations (A10) and (A11). In general,
non-null directions in field space will behave differently between
the GM and constrained ensemble cases.

The result establishes that our formulation of quadratic GM as
a matrix exponential mapping does not reproduce a quadratically
constrained ensemble when used analogously to the Hoffman &
Ribak (1991) algorithm. A similar argument allows one to verify
that applying the alternative non-linear modification specified by
equation (14) also fails to regenerate the constrained result. In fact,
one can go even further and write a general power series expansion
for the mapping between δ0 and δ1, writing

δ1 =
∞∑
i=0

Ai(μC0Q)iδ0, (A12)

without further specifying the power series coefficients Ai. Even in
this case, which generalizes away from a specific mapping, it is not
possible to generate a constrained ensemble from the modification
procedure. This underlines that modifications and constraints need
to be regarded as entirely separate procedures. Only in the linear
case do they appear to be cosmetically related.

A P P E N D I X B: G E O M E T R I C A L
I N T E R P R E TATI O N

Throughout the main text, we used fields sampled at a finite number
of points n; the resulting algorithms can therefore be interpreted
geometrically as acting on vectors in an n-dimensional space. For
instance, Roth et al. (2016) noted that the linear GM procedure
is equivalent to an orthonormal projection of the unmodified field
on to a subspace defining the modification objective (see their ap-
pendix A). In this appendix, we provide the geometric interpretation
for our extended formulation of GM.

For the purposes of visualizing the connection, we use fields
with only two samples, δ = (x, y). The arguments of this appendix
generalize to higher dimensions but are easiest to visualize with
n = 2. Fig. A1 shows the resulting two-dimensional geometry in
terms of the displacements �x and �y from the unmodified field.
By construction, the unmodified field is at the origin.

The left-hand panel shows the elliptical geometry generated by
the covariance matrix in the �x–�y plane; specifically, the ellipses

are of constant distance �s2 from the origin, where

�s2 ≡ ( �x �y ) C−1
0

(
�x

�y

)
. (B1)

The linear objective Aδ = b defines a line in two dimensions. The
modification consists of finding the value of (�x, �y) lying on the
line, while minimizing �s2. Since �s2 is measured in terms of
C−1

0 , the solution does not correspond to the closest point on the
page but to the point at which a covariance ellipse is tangent to the
modification line.

Similarly, the quadratic modifications (right-hand panel of
Fig. A1) are associated with ellipses of constant q =
(x, y) Q (x, y)�. These targets are shown as dotted lines; note that
they are centred on (x, y) = (0, 0) and therefore appear offset from
the origin in the �x–�y plane.

The right-hand panel of Fig. A1 also illustrates the algorithm for
finding the modified field with a simultaneous quadratic and linear
objective. For visual clarity, an unrealistically small (N = 3) number
of steps are taken. We start by defining three intermediate ellipses
(red dotted) between the value of the modification at the unmodified
field and the target. As explained in Section 3.2, we first apply the
global linear modifications from equation (8)

δ → δ − C0 A† (AC0 A†)−1 (A δ − b)︸ ︷︷ ︸
a

. (B2)

The algorithm then iterates the step ε defined by equation (24)

ε = −μC0 Q δ︸ ︷︷ ︸
b

+ μC0 A† (AC0 A†)−1 AC0 Q δ︸ ︷︷ ︸
c

. (B3)

These operations can be understood geometrically as follows.

(a) A projection of the current field on the linear modification.
This term is similar to the case with linear modifications only.

(b) A displacement along the normal of the ellipse at the
current field value. This term is towards the next intermediate
ellipse.

(c) The projection of the previous term back on to the linear
modification to ensure that both are always satisfied.

Term (c) ensures that the current field at the end of each step
always lies on the linear constraint. Term (a) therefore vanishes
after the first step; it is an overall offset that needs to be applied
only once. Together (b) and (c) are locally orthogonalizing the
quadratic modification with respect to the global linear modifica-
tion. The orthogonalization must be repeated at each step since
the local linearization changes as we progress towards the final
value of q.
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Figure A1. Left-hand panel: geometry of linear GM for a field with two components δ = (x, y)�. The axes represent displacements �δ = (�x,�y)� from
the unmodified realization. The distance measure (equation B1) gives rise to elliptical surfaces of constant distance (blue). The linear target corresponds to a
line (green). The GM algorithm (arrow) takes the unmodified realization (black dot) to the first intersection between this line and ellipses of increasing distance,
defining the modified field. Right-hand panel: geometry of making simultaneous quadratic and linear modifications using the algorithm from Section 3.1. Two
target modifications are shown, a linear (green line) and a quadratic (green ellipse). The algorithm defines intermediate quadratic modifications (red dotted
ellipses) to step towards the final result. The first operation is the projection of the unmodified field on to the linear modification (a); each iterative step then
displaces the field along the normal of the ellipse (b), and projects it again on to the linear modification (c).
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