
This is a repository copy of From Hamiltonian to zero curvature formulation for classical 
integrable boundary conditions.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131614/

Version: Accepted Version

Article:

Avan, J, Caudrelier, V orcid.org/0000-0003-0129-6758 and Crampé, N (2018) From 
Hamiltonian to zero curvature formulation for classical integrable boundary conditions. 
Journal of Physics A: Mathematical and Theoretical, 51 (30). 30LT01. ISSN 1751-8113 

https://doi.org/10.1088/1751-8121/aac976

© 2018 IOP Publishing Ltd. This is an author-created, un-copyedited version of an article 
published in Journal of Physics A: Mathematical and Theoretical. IOP Publishing Ltd is not 
responsible for any errors or omissions in this version of the manuscript or any version 
derived from it. The Version of Record is available online at 
https://doi.org/10.1088/1751-8121/aac976.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


From Hamiltonian to zero curvature formulation for classical integrable
boundary conditions

Jean Avana, Vincent Caudrelierb, Nicolas Crampéc
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Abstract

We reconcile the Hamiltonian formalism and the zero curvature representation in the approach to
integrable boundary conditions for a classical integrable system in 1 + 1 space-time dimensions. We
start from an ultralocal Poisson algebra involving a Lax matrix and two (dynamical) boundary matrices.
Sklyanin’s formula for the double-row transfer matrix is used to derive Hamilton’s equations of motion for
both the Lax matrix and the boundary matrices in the form of zero curvature equations. A key ingredient
of the method is a boundary version of the Semenov-Tian-Shansky formula for the generating function of
the time-part of a Lax pair. The procedure is illustrated on the finite Toda chain for which we derive Lax
pairs of size 2× 2 for previously known Hamiltonians of type BCN and DN corresponding to constant and
dynamical boundary matrices respectively.

Introduction

Since the seminal paper [1] on integrable boundary conditions for classical systems1 (see also [2]) , a large
amount of work and progress has been made in describing models on the half-line or the interval2. It is
important to realise that [1] contains two distinct but related points of view on the question of integrability
in the presence of boundary conditions, each of which having evolved into rather separate areas.

The first point of view is purely Hamiltonian and rests upon two cornerstones of integrability: a
(quadratic/linear) Poisson algebra satisfied by a Lax matrix ℓ(j, λ)/ℓ(x, λ) (discrete/continuous case),
and the classical reflection equation for (constant) matrices k±(λ), λ being the spectral parameter. Both
structures involve a fundamental object: the classical r-matrix, encoding the class of systems one is working
with. The celebrated result is that, given the monodromy matrix L(λ) constructed from the ℓ’s and
solutions k±(λ) of the reflection equation, the quantity b(λ) = tra

(

k+a (λ) La(λ) k
−
a (λ) La(−λ)−1

)

Poisson
commutes with itself for different values of the spectral parameter. One therefore uses a Hamiltonian that
can be extracted from b(λ) to generate the time evolution on the fields and derive Hamilton’s equations
of motion. This aspect has been used to produce expressions for Hamiltonians with integrable boundary
terms, see e.g. [1, 3] and [4, 5] for examples of the so-called dynamical boundary case.

1In this paper, we only consider classical systems and hence the even larger literature on quantum integrable boundary
conditions, based on the seminal paper also by Sklyanin, will not be mentioned.

2We include both models with a discrete or continuous space variable under this terminology. For the former, fields depends
on an integer j and time t. For the latter, they depend on a real variable x and time t.
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The second point of view focuses on the Lax pair and the associated auxiliary spectral problem,
and attempts to provide what we could call a zero curvature description of an integrable systems with
boundaries. From this point of view, the central equation advocated in [1] involves the matrices k±(λ) and
the second matrix of the Lax pair for the bulk equations of motion, denoted M(j, λ)/M(x, λ). It reads

k±(λ)M(x±,±λ) = M(x±,∓λ)k±(λ) , (1)

where x± denotes the positions of the two boundaries defining the interval. This formed the basis of a line
of work initiated by Habibullin [6] which led eventually to the notion of nonlinear mirror image method
for tackling the Inverse Scattering Method on the half-line, see e.g. [7, 8, 9, 10, 11, 12]. Note also that
relation (1) has been revived more recently within the framework of the so-called Unified Transform [13]
where it is used to define the notion of linearizable boundary conditions.

Having a Hamiltonian and a zero-curvature point of view in classical integrable systems is far from
being an issue and has long been identified as one of the crucial aspect of the theory: there is a natural
connection between the two pictures and one can speak of Liouville integrability for a PDE. The central
object capturing this connection is the classical r-matrix [14, 15]. Using the r-matrix presentation, one can
derive the Semenov-Tian-Shansky formula which provides the time component of the Lax pair, see e.g. [16]
p.199. Thus, the zero-curvature representation of the theory at hand is a consequence of the Hamiltonian
formulation.

However, in the case with boundaries, the state of affairs is rather unsatisfactory for the following two
reasons:

1. Considering for instance the NLS equation, as in [1], one finds that relation (1) restricts the matrices
k±(λ) to be diagonal, of the form λσ3 + iθ±, θ± ∈ R, producing the well-known Robin boundary
conditions. However, in the rational case, the reflection equation allows for the general solution (up
to a multiplicative function of λ)

k(λ) = λA+ θ 1I2 , A ∈ sl(2,C) . (2)

In particular, even in the reduced case producing NLS, one can have a solution with nonzero off-
diagonal elements. How do we resolve this discrepancy?

2. In the boundary case, a systematic connection between the Hamiltonian approach and the zero-
curvature presentation is not available yet in full form, despite important results in [17, 18] where
the boundary version of the Semenov-Tian-Shansky formula was derived. This gap in the theory
has been described under various forms in the literature, with no satisfactory answer to the best of
our knowledge. For instance, in [19], the author reviews some results [20, 21] which took the view
of modifying in an ad hoc fashion the bulk Lax pair in order to accommodate integrable boundary
conditions. The dynamical generalisation of (1) appears as a consistency condition in this approach.
It is used to find admissible, time-independent, k matrices. To ensure that the approach is consistent
with the Hamiltonian point of view, it is checked a posteriori that these solutions are also solutions
of the reflection equation. That they do is described as “remarkable” as the k matrices are obtained
independently of the r-matrix from this point of view.

We have found that reconciling the mismatch in the first point requires the development of the system-
atic connection raised in point two, in turn providing an answer to the seemingly remarkable connection
between the r and k matrices. Analysing the mismatch in the first point also leads us naturally to consid-
ering dynamical k matrices even when one starts with solutions of the (non-dynamical) reflection equation
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originally considered in [1]. It is the purpose of this paper to present the general framework that addresses
the two aforementioned problems. We treat both the discrete and continuous cases as there is no concep-
tual difference between the two. All the details are given in the discrete case and the results go over to the
continuous case with the standard appropriate technical changes. Our main result is Theorem 1.1, and its
corollary, which establish the zero-curvature presentation of the equations of motion for both the bulk and
boundary fields from the Hamiltonian formalism, in the dynamical boundary case.

The paper is organised as follows. In Section 1, we first recall, in the discrete case, known constructions
that provide the link between the Hamiltonian and zero curvature presentations via the r-matrix formalism.
We then show how to modify this to accommodate k matrices describing the presence of boundaries and
obtain our main result Theorem 1.1. Section 2 contains the analogous formulas and results in the continuous
case, without details. The last section contains an example of our constructions: the Toda chain. We show
that we can deduce the Lax pair and zero curvature representation for the BCN type Toda chain with
open boundary conditions which, to the best of our knowledge, was given ad hoc in [22]. We also derive
dynamical boundary conditions for the Toda chain which can be matched to boundary conditions found
in [23] by a completely different method. This corresponds to the DN Toda chain whose Hamiltonian was
discussed in [4] and for which we obtain a Lax pair.

1 Hamiltonian and zero-curvature presentations for models with open

boundaries: Discrete case

1.1 Single-row formalism

We consider discrete models described by a Lax matrix ℓ(j, λ) and equipped with a Poisson structure, such
that the following ultralocal Poisson algebra relation holds

{ℓa(j, λ) , ℓb(k, µ)} = δjk [rab(λ− µ) , ℓa(j, λ)ℓb(k, µ)] . (3)

Here we use the so-called auxiliary space notation meaning3

ℓa(j, λ) = ℓ(j, λ)⊗ 1I2 , ℓb(j, λ) = 1I2 ⊗ ℓ(j, λ) , {ℓa(j, λ) , ℓb(k, µ)} = {ℓij(j, λ) , ℓkl(k, µ)}Eij ⊗Ekl (4)

where 1I2 = δijEij is the identity matrix and ℓ = ℓijEij is a 2 × 2 matrix (see Section 3 for an example).
The r-matrix is assumed to be skew-symmetric rab(λ) = −rba(−λ) and satisfies the classical Yang-Baxter
equation

[ rac(λ− ν) , rbc(µ− ν) ] + [ rab(λ− µ) , rac(λ− ν) ] + [ rab(λ− µ) , rbc(µ− ν) ] = 0 . (5)

One defines the single-row monodromy matrix by

L(λ) = ℓ(N,λ)ℓ(N − 1, λ) . . . ℓ(1, λ) , (6)

and the so-called single-row transfer matrix4 by taking the trace of L(λ)

t(λ) = tr L(λ) (7)

3Note that for our purposes, it is enough to work directly in End(C2
⊗ C

2) although in general, objects like ℓ or r live in
more abstract structures.

4The terminology transfer “matrix” comes from the quantum setting whereas here, it is clear that t(λ) is simply a scalar.
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Then the following holds

{La(λ), Lb(µ)} = [rab(λ− µ) , La(λ) Lb(µ)] , (8)

{t(λ), t(µ)} = 0 . (9)

The second relation allows us to take t(λ) as the generating function in λ of Poisson commuting Hamiltoni-
ans H(n). The Hamiltonian H of the system of interest is expressed in terms of the H(n) and we associate
to it an evolution time t according to

∂t · = {H, ·} (10)

In particular, Hamilton’s equations for the fields contained in ℓ(j, λ) are given by

∂t ℓ(j, λ) = {H, ℓ(j, λ)} . (11)

It is a fundamental result that these equations have a (discrete) zero curvature representation. Let us
define the partial monodromy for n ≥ m

La(n,m, λ) = ℓa(n, λ)ℓa(n− 1, λ) . . . ℓa(m,λ) . (12)

We use the convention L(n− 1, n, λ) = 1 and obviously one gets L(N, 1, λ) = L(λ). Following [15, 24], one
defines

Mb(j, λ, µ) = tra
(

La(N, j, λ) rab(λ− µ) La(j − 1, 1, λ)
)

(13)

Here, the notation tra means that we take the trace only over the first copy of C2. Then, using relation
(3), one finds

{t(λ), ℓ(j, µ)} = M(j + 1, λ, µ)ℓ(j, µ)− ℓ(j, µ)M(j, λ, µ) (14)

M(j, λ, µ) is the generating function in λ of the matrices M (n)(j, µ) associated to the Hamiltonians H(n).
Denoting by M(j, µ) the matrix associated to H and its corresponding time t, one finds that (11) has the
discrete zero curvature representation

∂tℓ(j, µ) = M(j + 1, µ)ℓ(j, µ)− ℓ(j, µ)M(j, µ) . (15)

In other words, the pair (ℓ(j, µ),M(j, µ)) is a Lax pair for the system under consideration.

1.2 Double-row formalism for models with open boundaries

In this section, we show how to obtain the boundary version of the above connection between Hamiltonian
and zero curvature representation. This is our main result, Theorem 1.1 and Corollary 1.1. Let us now
assume that the bulk and boundary fields contained in the matrices ℓ(j, λ) and k±(λ) satisfy the following
(ultralocal) boundary Poisson algebra.

{ℓa(j, λ) , ℓb(k, µ)} = δjk [rab(λ− µ) , ℓa(j, λ)ℓb(k, µ)] , (16)

{k−a (λ) , k−b (µ)} = rab(λ− µ)k−a (λ)k
−

b (µ)− k−a (λ) k
−

b (µ)rba(λ− µ)

+k−a (λ)rba(λ+ µ)k−b (µ)− k−b (µ)rab(λ+ µ)k−a (λ) , (17)

{k+a (λ) , k+b (µ)} = rba(λ− µ)k+a (λ)k
+
b (µ)− k+a (λ) k

+
b (µ)rab(λ− µ)

+k+a (λ)rab(λ+ µ)k+b (µ)− k+b (µ)rba(λ+ µ)k+a (λ) , (18)

{k−a (λ) , k+b (µ)} = 0 , (19)

{k±a (λ) , ℓb(j, µ)} = 0 . (20)
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Eqs (17)-(18) have the form of the classical limit of the reflection algebras appearing in [25]. They are exam-
ples of the general quadratic Poisson algebras introduced in [26]. More precisely they can be characterized
as dynamically-generalized “soliton-preserving” conditions.

Note that although we keep the same notation for the Poisson bracket as in the previous section, we
are in fact dealing with an enlarged Poisson manifold also containing the fields in the matrices k±(λ). The
double-row transfer matrix is defined by

b(λ) = tra
(

k+a (λ) La(λ) k
−

a (λ) La(−λ)−1
)

(21)

and satisfies, using (16)-(20),

{b(λ) , b(µ)} = 0 . (22)

Similarly to t(λ) in the single-row case, here b(λ) is the generating function in λ of Poisson commuting
Hamiltonians H(n). In general, the Hamiltonian of the system of interest is expressed in terms of the H(n)’s
and we associate a “double-row evolution time” T to it according to

∂T · = {H , ·} . (23)

The full set of Hamilton’s equations of motions for the bulk and boundary fields is now

∂T ℓ(j, λ) = {H, ℓ(j, λ)} , (24)

∂T k±(λ) = {H, k±(λ)} . (25)

We are now in a position to show that these equations have a zero curvature representation. This
involves using a formula that allows one to effectively compute algorithmically the second matrix of the
Lax pair involved in the zero curvature. Following the construction of [17] which we generalise to the
present case of dynamical k matrices, we define, for j = 1, 2, . . . , N + 1,

Mb(j, λ, µ) = tra
(

k+a (λ) La(N, j, λ) rab(λ− µ) La(j − 1, 1, λ) k−a (λ) La(−λ)−1
)

+ tra
(

k+a (λ) La(λ) k−a (λ) La(j − 1, 1,−λ)−1 rba(λ+ µ) La(N, j,−λ)−1
)

(26)

Then we prove

Theorem 1.1.

{b(λ) , ℓb(j, µ)} = Mb(j + 1, λ, µ) ℓb(j, µ)− ℓb(j, µ) Mb(j, λ, µ) (27)

{b(λ) , k−b (µ)} = Mb(1, λ, µ) k
−

b (µ)− k−b (µ) Mb(1, λ,−µ) (28)

{b(λ) , k+b (µ)} = Mb(N + 1, λ,−µ) k+b (µ)− k+b (µ) Mb(N + 1, λ, µ) (29)

Proof.

{b(λ) , ℓb(j, µ)} = tra
(

k+a (λ) La(N, j + 1, λ){ℓa(j, λ) , ℓb(j, µ)}La(j − 1, 1, λ) k−a (λ) La(−λ)−1
)

+tra
(

k+a (λ) La(λ) k
−

a (λ) La(j − 1, 1, λ)−1{ℓa(j,−λ)−1 , ℓb(j, µ)}La(N, j + 1, λ)−1
)

.

Upon inserting

{ℓa(j, λ) , ℓb(j, µ)} = [rab(λ− µ) , ℓa(j, λ)ℓb(j, µ)] , (30)

{ℓa(j,−λ)−1 , ℓb(j, µ)} = −ℓa(j,−λ)−1rab(−λ− µ)ℓb(j, µ) + ℓb(j, µ)rab(−λ− µ)ℓa(j,−λ)−1 (31)
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and using rab(−λ− µ) = −rba(λ+ µ), the right-hand-side can be rearranged into Mb(j + 1, λ, µ) ℓb(j, µ)−
ℓb(j, µ) Mb(j, λ, µ) as required. Note that we have also used the following property of the partial trace, for
any three matrices A, B, C,

tra(AabBbCa) = tra(AabCa)Bb , tra(BbAabCa) = Bb tra(AabCa) . (32)

Similarly,

{b(λ) , k−b (µ)} = tra
(

k+a (λ) La(λ) {k
−

a (λ) , k−b (µ)} La(−λ)−1
)

= tra
(

k+a (λ) La(λ) (rab(λ− µ)k−a (λ) + k−a (λ)rba(λ+ µ)) La(−λ)−1
)

k−b (µ)

−k−b (µ) tra
(

k+a (λ) La(λ) (k
−

a (λ)rba(λ− µ) + rab(λ+ µ)k−a (λ)) La(−λ)−1
)

= Mb(1, λ, µ) k
−

b (µ)− k−b (µ) Mb(1, λ,−µ)

The proof for {b(λ) , k+b (µ)} is similar.

As a direct corollary, if we denote M(j, µ) the matrix extracted from M(j, λ, µ) consistently with our
extraction of H from b(λ), we obtain the zero curvature representation of the equations of motion.

Corollary 1.1.

∂T ℓ(j, µ) = M(j + 1, µ)ℓ(j, µ)− ℓ(j, µ)M(j, µ) (33)

∂T k−(µ) = M(1, µ) k−(µ)− k−(µ) M(1,−µ) (34)

∂T k+(µ) = M(N + 1,−µ) k+(µ)− k+(µ) M(N + 1, µ) (35)

1.3 Discussion

In the non-dynamical case i.e. when k± satisfy

{k±(λ), k±(µ)} = 0 , (36)

we find that {b(λ) , k±b (µ)} = 0 and consequently,

M(1, µ)k−(u) = k−(u)M(1,−µ) (37)

M(N + 1,−µ)k+(u) = k+(u)M(N + 1, µ) . (38)

These look formally like (1) used in [1] but with one crucial difference; they involve the double-row matrices
M(1, µ), M(N+1, µ) and not the single-row matrix M(j, µ) evaluated at the end points. They are different
in general. This will be clear on the Toda chain used as an example below. The use of the single-row
matrix in (1) and its dynamical variant has been at the origin of the various discrepancies raised in the
introduction. Our results show that no such problems arise if we use the correct M matrix for the Lax
pair formulation of the system at hand. The latter should be derived from the boundary version of the
Semenov-Tian-Shansky formula.

From the Hamiltonian point of view, the previous discussion amounts to saying that the time flow T
on the bulk fields of the system induced by the double-row transfer matrix is different in general from the
time flow t induced by the single-row transfer matrix. Only in very special cases (when the solutions of the
reflection equation and of (1) coincide) can one reconcile the two flows by imposing boundary conditions
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on the fields that are dictated by (1). In retrospect, that this “extrinsic approach”5 was possible at all is
rather remarkable. In our approach, which we could call “intrinsic”, no boundary conditions are explicitely
imposed on the bulk fields. Instead, the coupling between bulk and boundary fields is governed by our zero-
curvature equations. It is sometimes possible to go from one approach to the other, as will be illustrated
on the Toda chain below, and the distinction becomes irrelevant.

2 Hamiltonian and zero-curvature presentations for models with open

boundaries: Continuous case

For continuous models described by a Lax matrix ℓ(x, λ) our starting point is the following ultralocal
Poisson algebra

{ℓa(x, λ) , ℓb(y, µ)} = δ(x− y) [rab(λ− µ) , ℓa(x, λ) + ℓb(y, µ)] , (39)

which we complement with the following boundary Poisson algebra

{k−a (λ) , k−b (µ)} = rab(λ− µ)k−a (λ)k
−

b (µ)− k−a (λ) k
−

b (µ)rba(λ− µ)

+k−a (λ)rba(λ+ µ)k−b (µ)− k−b (µ)rab(λ+ µ)k−a (λ) , (40)

{k+a (λ) , k+b (µ)} = rba(λ− µ)k+a (λ)k
+
b (µ)− k+a (λ) k

+
b (µ)rab(λ− µ)

+k+a (λ)rab(λ+ µ)k+b (µ)− k+b (µ)rba(λ+ µ)k+a (λ) , (41)

{k−a (λ) , k+b (µ)} = 0 , (42)

{k±a (λ) , ℓb(x, µ)} = 0 . (43)

Associated to ℓ(x, λ) is the transition matrix T (x, y, λ), y < x, defined by

∂xT (x, y, λ) = ℓ(x, λ) T (x, y, λ) , T (x, y, λ)|x=y = 1I . (44)

It satisfies

{Ta(x, y, λ) , Tb(x, y, µ)} = [rab(λ− µ) , Ta(x, y, λ) Tb(x, y, µ)] . (45)

The continuous double-row transfer matrix on the interval [0, L] is defined by

b(λ) = tra
(

k+a (λ) Ta(λ) k
−

a (λ) Ta(−λ)−1
)

(46)

where T (λ) = T (L, 0, λ), and satisfies

{b(λ), b(µ)} = 0 . (47)

Following the construction of [17] which we generalise to the present case of dynamical k matrices, we
define, for x ∈ [0, L],

Mb(x, λ, µ) = tra
(

k+a (λ) Ta(L, x, λ) rab(λ− µ) Ta(x, 0, λ) k
−

a (λ) Ta(−λ)−1
)

+ tra
(

k+a (λ) Ta(λ) k−a (λ) Ta(x, 0,−λ)−1 rba(λ+ µ) Ta(L, x,−λ)−1
)

(48)

Then, similarly to the discrete case, we prove

5By this we mean that boundary conditions are formulated on the bulk fields.
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Theorem 2.1.

{b(λ) , ℓb(x, µ)} = ∂xMb(x, λ, µ) + [Mb(x, λ, µ), ℓb(x, µ)] (49)

{b(λ) , k−b (µ)} = Mb(0, λ, µ) k
−

b (µ)− k−b (µ) Mb(0, λ,−µ) (50)

{b(λ) , k+b (µ)} = Mb(L, λ,−µ) k+b (µ)− k+b (µ) Mb(L, λ, µ) (51)

Denoting M(x, µ) the matrix extracted from M(x, λ, µ) consistently with an extraction of H from b(λ),
we obtain the zero curvature representation of the equations of motion.

Corollary 2.1.

∂T ℓ(x, µ) = ∂xM(x, µ) + [M(x, µ), ℓ(x, µ)] (52)

∂T k−(µ) = M(0, µ) k−(µ)− k−(µ) M(0,−µ) (53)

∂T k+(µ) = M(L,−µ) k+(µ)− k+(µ) M(L, µ) (54)

3 Example: the finite Toda chain revisited

3.1 Non dynamical boundaries and BCN Toda lattice

We consider the Toda chain with coordinates {xj | j = 1, . . . , N} and canonical momenta {Xj | j =
1, . . . , N} satisfying

{xj , xk} = {Xj , Xk} = 0 and {Xj , xk} = δjk . (55)

The Lax matrix

ℓ(j, u) =

(

u+Xj −exj

e−xj 0

)

(56)

satisfies relation (3) with r being the rational classical r-matrix :

r12(λ) =
P12

λ
. (57)

The most general solutions (up to an irrelevant overall function of λ) of the non-dynamical reflection
equations ((17)-(18) with {k±a (λ) , k±b (µ)} = 0) are

k−(λ) =

(

λθ1 + α1 λ
−β1λ −λθ1 + α1

)

and k+(λ) =

(

λθN + αN λβN
−λ −λθN + αN

)

, (58)

where α1, β1, θ1, αN , βN and θN are arbitrary parameters. In this case, we get the following Hamiltonian
from the coefficient in front of λ2N (multiplied by (−1)N/2) of the double-row transfer matrix (21),

H =
N
∑

j=1

1

2
X2

j +
N−1
∑

j=1

exj+1−xj +B−(x1, X1) +B+(xN , XN ) (59)

with

B−(x1, X1) = α1e
x1 +

β1
2
e2x1 + θ1X1e

x1 , B+(xN , XN ) = αNe−xN +
βN
2

e−2xN + θNXNe−xN . (60)
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To the best of our knowledge, this is the first time that these boundary conditions are presented but as we
show below, they produce equations of motion that are canonically equivalent to the known case θ1 = θN =
0. For θ1 = θN = 0, this Hamiltonian becomes the one studied in [1, 27]. For θ1 = θN = α1 = αN = 0, we
recover the Toda chain introduced in [28]. The associated Hamilton’s equations of motion are

ẋj = Xj , Ẋj = exj+1−xj − exj−xj−1 , for j = 2, . . . , N − 1 (61)

ẋ1 = X1 + θ1e
x1 , Ẋ1 = ex2−x1 − α1e

x1 − β1e
2x1 − θ1X1e

x1 , (62)

˙xN = XN + θNe−xN , ẊN = −exN−xN−1 + αNe−xN + βNe−2xN + θNXNe−xN , (63)

where the dot indicates differentiation with respect to T associated to H in (59). Now, from relation (26),
we can derive the second part of the Lax pair

M(j, µ) =





−
µ

2
exj

−exj−1
µ

2



 for j = 2, . . . , N (64)

M(1, µ) =





−
µ

2
+ θ1e

x1 ex1

µθ1 − α1 − β1e
x1

µ

2
− θ1e

x1



 (65)

M(N + 1, µ) =





−
µ

2
+ θNe−xN −µθN + αN + βNe−xN

−e−xN
µ

2
− θNe−xN



 . (66)

We recover the matrices given in [22] by adding the irrelevant term −µ/21I and using the canonical change
of variables x̃j = xj , j = 1, . . . , n, X̃j = Xj , j = 2, . . . , n− 1, X̃1 = X1 + θ1e

x1 and X̃n = Xn + θne
−xn . As

stated in the main theorem, the Hamilton’s equations of motion (61)-(63) are equivalent to the following
zero curvature equation, as can be checked directly,

ℓ̇(j, µ) = M(j + 1, µ)ℓj(µ)− ℓj(µ)M(j, µ) , j = 1, . . . , N , (67)

while the boundary equations

M(1, µ)k−(µ) = k−(µ)M(1,−µ) , (68)

M(N + 1,−µ)k+(µ) = k+(µ)M(N + 1, µ) , (69)

are trivially satisfied.

3.2 An example of dynamical boundaries and DN Toda lattice

In this subsection, we consider an example of a dynamical boundary for the Toda chain. We restrict

ourselves to the case where k−(λ) is dynamical and k+(λ) is non-dynamical and is given by k+ =

(

0 0
−1 0

)

.

Let us extend the symplectic space (55) by adding 3 generators E,F,H Poisson commuting with xj and
Xj and satisfying the sl(2) Poisson algebra

{H,E} = E , {H,F} = −F , {E,F} = 2H . (70)

Let us recall that there is a Casimir C = H2 + EF which we set to the value c1/4. Then

k−(λ) =

(

λ/2−H F
F λ/2 +H

)

(71)
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satisfies the dynamical reflection equation (17).
In this case, we get the Hamiltonian from the expansion of the double-row transfer matrix (21)

b(λ) = λ2N
H

(2N) + λ2N−2
H

(2N−2) + . . . (72)

as H = −1
2
H(2N−2)

H(2N) , yielding

H =

N
∑

j=1

1

2
X2

j +

N−1
∑

j=1

exj+1−xj +B (73)

with

B =
1

2(F − ex1)

(

ex2 +X2
1e

x1 − 2Hex1X1 − Ee2x1
)

. (74)

From this Hamiltonian, we can compute the equations of motion. In particular, we can show that Ḟ = ẋ1e
x1

which we can integrate to F = ex1 + c0/2, with c0 a constant, and eliminate F . It is convenient to use the
following change of coordinate

ex̃1 =
c0e

x1

c0 + ex1
(75)

to write down the equations of motion. After some algebraic manipulations, they read

ẍj = exj+1−xj − exj−xj−1 , for j = 3, . . . , N − 1 (76)

ẍ2 = ex3−x2 − ex2−x̃1 , (77)

¨̃x1 = ex2−x̃1 − ex̃1−x0 , (78)

ẍN = −exN−xN−1 , (79)

where we have introduced a coordinate x0 defined by

e−x0 =
ex2

c20
+

(( ˙̃x1)
2 − c1)e

x1

c20 − e2x̃1
. (80)

Here, the dot indicates differentiation with respect to T associated to H in (73). The use of x0 is a
realisation of the link between the intrinsic and extrinsic approach to boundary conditions mentiond in
the discussion above. The equations of motion could have been written without resorting to an extra
variable x0 (intrinsic viewpoint) and all the effect of the boundary would have appeared in extra terms in
the equation for x̃1. By introducing x0, we see that the equation for x̃1 takes the same bulk form as the
equation for xj , j = 3, . . . , N−1 and (80) plays now the role of a boundary condition (extrinsic viewpoint).

We recognize in (80) a particular case of the boundary condition introduced in [23]. As shown in [23],
this model can be seen as a generalization of the DN -Toda lattice. The double-row construction for this
Hamiltonian was also considered in [4].

With our constructions, we are now able to derive the second part of the Lax pair from relation (26),

M(j, µ) =





−
µ

2
exj

−exj−1
µ

2



 for j = 3, . . . , N (81)

M(2, µ) =





−
µ

2
ex2

ex1−2F
2ex1 (F−ex1 )

µ

2



 (82)

M(N + 1, µ) =





−
µ

2
0

−e−xN
µ

2



 , (83)
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and

M(1, µ) =
1

2(ex1 − F )

(

µF + ex1(2H −X1) ex1(ex1 − 2F )

µ2 + 2µH +
ex2+X2

1e
x1−2Hex1X1−Ee2x1−2EFex1

F−ex1
−µF − ex1(2H −X1)

)

. (84)

As stated in the corollary 1.1, the equations of motion can be obtained equivalently as a zero-curvature
condition using the above Lax matrices M(j, µ) and ℓ(j, λ) in (56). In particular, the equations of motion
of E,F and H are obtained from

k̇−(µ) = M(1, µ) k−(µ)− k−(µ) M(1,−µ). (85)

Perspectives

We have established here a complete picture for a description of the zero-curvature formulation (Lax
formulation) of a 1 + 1 dimensional integrable system on the interval, starting from a Lax matrix (i.e.
the space component of the flat connection) boundary matrices and their Poisson structure. The latter is
assumed to be ultralocal and parametrized by a skew-symmetric non dynamical r-matrix. The boundary
matrices obey a dynamical quadratic Poisson structure of soliton-preserving type.

Relaxing these restrictions may lead to formulating (Lax) zero-curvature conditions for more general
1 + 1 integrable systems with boundaries. The more obvious procedure is to consider so-called “soliton
non-preserving conditions” where the r matrices parametrizing the Poisson structure of the k matrices
are more generic, as in e.g. [17], the most general case being of course [26] where no connection is now
assumed between “outside” and “inside” matrices in the quadratic Poisson structure (17)-(18). In any
case, it is a priori required by the coaction properties of the quadratic Poisson algebra [26] that the bulk
single-row monodromy matrices L acting on k to generalize the double-row transfer matrix (21) still obey
a purely Sklyanin-type quadratic Poisson structure with a single skew-symmetric r matrix, typically one
of the “outside” matrices. Such a structure is indeed identified for bulk single-row monodromy matrices
even when derived from Lax matrices with non skew-symmetric, non ultralocal Poisson structures (see
[29]). Typical examples of such objects are theories on symmetric spaces for which a wealth of non skew
symmetric r matrices or r, s pairs are available (see e.g. [30]).

The next step is to consider the case of Lax matrices with dynamical r-matrices depending on the
field variables, and therefore not obeying the classical Yang-Baxter equation but some adequately modified
version of it [29]. A typical case is the complex sine-Gordon model. The issue is then to find actual
representations of the corresponding Poisson algebra to get consistent matrix k±. Since now the r-matrix
depends on the bulk fields at the limit point so would also k±, hence the statement (20) that k± has
zero Poisson brackets with the bulk fields may fail and so does our whole construction. Moreover in the
case of cSG even the exact formulation of a consistent Poisson structure for k matrices derived from such
dynamical r-matrices is lacking. This situation clearly requires some fundamental reconsideration. For
other dynamical r-matrices such as arising in Calogero-Moser [31] and Ruijsenaar-Schneider models [32],
the situation regarding the reflection algebra is much better understood [33, 34] but this time, non-trivial
field-theoretical Lax matrices obeying the co-action Poisson structure are lacking.
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