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Abstract

The recovery of pectic polysaccharides with higlannhogalacturonan | (RG-I)
branches from citrus canning processing water whgaed in a previous study aimed at
reducing chemical oxygen demand and benefiting hwthcess economics and the
environment. However, the large molecular size jpmak in vivo bioavailability of these
polysaccharides limit the application of these jegblysaccharides in functional foods.
We report the development of an ultrafast and giggproach to depolymerize pectic
polysaccharides using an ultrasound-acceleratedl+fiee Fenton chemistry, relying on
H,O./ascorbic acid. The results show that ultrasountiaeces the efficiency of
H.O,/ascorbic acid system to degrade pectin into 7.8 gBctic fragments within 38in
through both chemical effects (increasing the arhod@itnydroxyl radicals and lowering
activation energy of pD, decomposition) and mechanical effects (disaggnegat
polysaccharide clusters). The backbones of thdtmeguiragments mainly correspond to
RG-I patterns (molar ratio galacturonic acid (Gallamnose (Rhay 1.06:1) with a high
degree of rhamnose branching. Free radicals prefally act on the GalA backbone in the
HG region and maintain the RG-I region. Antitumatities, assessed using human
breast cancer cells (MCF-7), suggest that the tiegufragments significantly inhibit
cancer cell growth and that activity increases wd#treasing molecular weight. The
resulting ultralow molecular weight pectic fragmeihave potential application for the

development of functional foods and antitumor drugs
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1. Introduction

Canned citrus segments occupy an important settibweovorld’s fruit production,
with an annual trade value of nearly $900 millisoyrce: UN Comtrade). As the largest
citrus planting and harvesting country in the wpfthina accounts for near 70% canned
citrus segments on the international market (Wwalet2016) However, the industry
produces about one million pounds of solid andifiquaste (principally polysaccharides)
with high chemical oxygen demand (COD) (~10,000upgkery year, representing both
an economic and an environmental challenge (Chah,e£2017). The organic substances
present in the processing water mainly consisecfip polysaccharides (PPs) (Chen et al.,
2017) and these polysaccharides have potentiainugsod industry as thickeners and
gelling agents.

In our previous study, we recovered PPs from baster during the segment
membrane removal process, taking place in citrusliog factories. These PPs were
dominated by rhamnogalacturonan | regions with alrmm esterification (Chen et al.,
2017). RG-I enriched PPs, in dietary sources, amvk to demonstrate a broad range of
pharmacologic properties, such as antitumor (Zhalet2017), prebiotic (Karboune &
Khodaei, 2016), and immunomodulatory activitiesk@nan & Fahey, 2006). Despite
multiple biomedical uses, these PPs have high ml@eeveights and, thus, show poor
solubility and marginal bioavailability (Moreno, 24). Recent research has demonstrated

that low-molecular-weight pectin polysaccharideMRs) have improved bioavailability
4
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(Kapoor & Dharmesh, 2017), greater prebiotic po&iiBelén Gomez, 2016) and higher
immune-modulating (Shirkiyohara, Matsumoto, & Yamada, 1997; Matsumoto, Moriya,
Sakurai, Kiyohara, Tabuchi, & Yamada, 2008; Matstonduo, lkejima, & Yamada,
2003), anti-ulcer and anti-inflammatory activiti@herefore, the preparation of LMPs is
currently of great interest. However, to the belsbor knowledge, the preparation of
LMPs from citrus canning processing water has eenlreported.

Controlled chemical depolymerization processesnipaelying on acid or enzymatic
treatment (Khodaei & Karboune, 2016; KhotimchenR®12; Leclere, Cutsem, &
Michiels, 2013; Hao, 2013) and physical treatmestsh as ultrasound (Zhang et al.,
2013), heat (Leclere, Cutsem, & Michiels, 2013; Rarguilar et al., 2015), high
pressure microfluidization (Chen et al., 2013) amchigna-irradiation (Dogan, Kayacier, &
Ic, 2007) have been used to prepare LMPs. The tiondifor acid-catalyzed hydrolysis
are usually fairly drastic, leading to the cleavagdifferent glycosidic linkages with low
selectivity, and results in a variety of differ&MP preparations (Garna, Mabon, Wathelet,
& Paquot, 2004). Enzymatic hydrolysis of pectimisre selective, but requires the use of
different types of enzymes, increasing the costghef depolymerization process. In
addition, during hydrolysis, potential microbialntamination of LMP preparations can
result in decreased yields and lead to the formatib unwanted byproducts, further
limiting its broad industrial application (Grohmar@ameron, & Buslig, 1995). Among all

the physical treatments reported, ultrasound isidened one of the most effective of the
5
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“green” techniques (Ma et al., 2016) used to dapelyze diverse forms of
polysaccharides (Zhang et al., 2013). Howeverreldection of polysaccharide molecular
weight using ultrasound is typically limited to RDa due to the attenuation of energy
transmission under prolonged or high-intensityagitmic fields (Sun, Ma, Ye, Kakuda, &
Meng, 2010).

A combination of a Fenton process with ultrasourah ignificantly improve
degradation efficiency, as demonstrated in theipeepolymerization process (Zhi, et al.,
2017). However, strictly acidic conditions (pH <&k required in practical applications
(Garrido-Ramirez, Theng, & Mora, 2010) and acidanditions can also lead to the
hydrolysis of side-chains and the hydrolysis of éle&l-labile linkages between the GalA
and Rha residues in the RG-I region (Khalikov & Middinov, 2004, Levigne, Ralet, &
Thibault, 2002). Such acid-catalyzed hydrolysis samificantly impact both bioactivity
(Li, Li, & Gao, 2014) and gel forming properties.

Non-metal Fenton chemistry is emerging as an atammtechnology for the efficient
degradation of chemically stable, organic subsirat€hese systems operate at
near-ambient temperatures and pressures and at@yage strongly oxidizing radical
species (primarily HOe) The key non-metal Fenton-like chemistries include
H,O,/ascorbic acid and #D./ozone (Q). Although the HO,/ozone (Q) system can also
degrade organic substrates with high efficiencg, ltiigh cost of @ and its toxicity in

humans precludes its use. In comparison, the d¢d$t@,/ascorbic acid system is much
6
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lower and these reagents are currently used wiltl@rfood industry. The polysaccharide
degradation efficiency, using a®h/ascorbic acid system, is comparable to that ohmet
catalyzed Fenton system (Verma, Baldrian, & NeR@f)3). In addition, the #D,/ascorbic
acid system is eco-friendly and these reagentsasy to remove, can work in the absence
of trace metal and can act over a broad pH ramgeut previous study, we demonstrated
that ultrasound enhances the efficiency of the huetimlyzed Fenton reaction in
degrading PPs and we elucidated the relevant merhg#hi et al., 2017). However, it
is still unclear whether ultrasound can accelerdte polysaccharide degradation
efficiency of the non-metal Fenton chemistry.

The present study establishes ultrasound-accaleraen-metal Fenton-like
chemistry (HO./ascorbic acid) to depolymerize PPs from citrushaam processing water,
with aim of improving degradation efficiency. A nieemism is proposed for the efficient
degradation of PPs by non-metal Fenton-like chemi3te influence of ascorbic acid
concentration, the sonolysis intensities, the reademperature, and the combined effect
of sonolysis with HO./ascorbic acid redox system on the molecular weighbte
determined. The structural properties of the resyltMPs were characterized by Fourier
transform-infrared (FT-IR), nuclear magnetic reswm®& (NMR) spectroscopy and
monosaccharide composition analysis. In additieairtvitro tumor cell growth inhibitory

effects and cytotoxicity of PPs and LMPs, were eadd on MCF-7 human breast
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adenocarcinoma cells using 3-(4,5-dimethylthiazgl)22,5-diphenyltetrazolium bromide
(MTT) assay and lactate dehydrogenase (LDH) assay.

2. Materialsand Methods

2.1. Materials.

The basic water discharged from citrus canningofée$ during the segment
membrane removal process, was collected from cftwis canning factories (Ningbo,
China). Gel-filtration column Ultrahydrogel 250 ah8K-Gel G 4000 SWXL column was
from Waters and Tosoh Biosep, respectively. Hydnogeeroxide, ascorbic acid,
HPLC-grade methyl alcohol and deuterium oxide wetgained from Sinopharm
Chemical Reagent Co., Ltd. (Shanghai, China). % 9v/v) ethanol (food grade) and
other chemical reagent were acquired from Aladdier@ical Reagent Co., Ltd. (Shanghai,

China).

2.2. Pectic polysaccharide recovery.

Pectic polysaccharide was prepared following a iptesly reported method (Ye,
2017). Polysaccharide recovery initially involvesva-step filtration process with 200 and
400 meshes filters (siz& X h =1 mX 2 m) used to eliminate the suspended solid
particles. The filtrate is then pumped (13/m 11 kW) to the pH adjustment reactor
(volume: 8 nd, stirring power: 4 kW) for neutralization, followdy vacuum concentration

(size:5mX 6 m X 9m, 40 kW) at 70C. Precipitation (volume: 4 fnstirring power: 2
8
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kW) with ethanol at a final ethanol concentratidrb0 vol % was performed with gentle
stirring. After standing for 30 min, the precipitat was completed and a screw machine
(size: 3mX 0.6 m X 2m,0.75 kW) was applied to recover the precipgawhich were
the polysaccharides (insoluble in ethanol solutiany the filtrate was then transported to
the alcohol recovery unit (integrated with the camtecation unit, 12 kW). The precipitate
was washed once with 95% ethanol and again etlhanovered. Subsequently, vacuum
drying (size: 1.5 mX 1.5m X 1.7 m, 5 kW) was conducted on the precipitateo(alsh

ethanol recovery). The dry polysaccharide was gidnto a powder to obtain PPs.

2.3. Synergistic effect of ultrasonolysis and H,O,/ascorbic acid for depolymerization of
pectic polysaccharide.

Ultrasound treatments were performed (Scientz-Nihgbo Scientz Biotechnology
Co., Ningbo, China) with the following parametemsaximum ultrasound power output,
900 W, frequency, 22 kHz, intermittent type, 2 saod 2 s off, and horn micro tip diameter,
10 mm. Twenty-five milliliters of PPs solution (5gimL) were placed in a cylindrical
glass reactord§, 2.90 cm) and the generator probe was submergedt(d cm below the
liquid surface) to release ultrasonic energy.

Under the selected conditions, ultrasoundD#fascorbic acid (ultrasonic intensity,
3.8 W/mL, the concentration of ascorbic acid, 10 rahdl the concentration of,8,, 50

mM), the results were compared with: single ulttab treatments (3.8 W/mL),
9
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ultrasound (ultrasonic intensity, 3.8 W/mL) asgistgith H,O, (50 mM), ultrasound
(ultrasonic intensity, 3.8 W/mL) assisted with a®oo acid (10 mM), single O, (50
mM), single ascorbic acid (10 mM), single®/ascorbic acid system (the concentration
of H,O,, 50 mM and the concentration of ascorbic acid,ni). All the tests were

performed at the temperature of 30 °C for 60 min.

2.4. Effect of reaction conditions on the molecular weights (Mw) of depolymerized product.
The effects of the following parameters were ingaged: ultrasound intensity (3.8,
7.6, 11.4 and 15.2 W/mL), temperature (20, 30, 4@ &0 °C) and ascorbic acid
concentration (1.0, 10, 50 and 100 mM). The genggpgblymerization conditions of all
treatments were as follow: reaction time of 60 n@mperature at 30 °C, ascorbic acid
concentration of 10 mM, hydrogen peroxide of 50 niée ultrasound intensity of 3.8
W/mL. The Mw of pectin samples were determined by germeation chromatography
(GPC) according to our previously studies, with eamodifications (Guo, et al., 2014).
The average Mw determination was performed on &208-HPLC system (Shimadzu,
Kyoto, Japan) with an Ultrahydrogel 250 column (8vaf Milford, USA). Forty
microliters of the sample solution were injected atuted by 0.2 M NaCl at a flow rate of
0.5 mL/min. Standard dextrans (Sigma-Aldrich ChehiCo., St. Louis, MO, USA)
having different molecular weights (from 0.5 to &iDa) were used to obtain calibration

curves.
10
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2.5. Estimation of hydroxyl radicals.

A method, based on the reaction of deoxyribose Wi@» radicals (Verma et al.,
2003), was used for the study of the time coursprofluction of HOe radicals by the
optimized ultrasound/$D./ascorbic acid system. Aliquots of the reactiontomie (450 pL)
were taken at different time intervals and supplate with 50 pL deoxyribose (28 mM).
The reaction was stopped by the addition of 50@hidbarbituric acid (1% w/v in 50 mM
NaOH) and 500 pL of trichloroacetic acid (2.8% wafjer 5 min of incubation. The
deoxyribose degradation product reacted with thimhaic acid during a subsequent 30
min incubation at 80 °C, with the resulting fornaatiof a pink compound. The product of
the reaction was quantified by spectrophotomeétry $32 nm) after dilution with an equal
amount of water. The relative amount of HOe radicdketected was expressed in

absorbance units.

2.6. Determination of hydroxyl radicals by ESR spin-trapping technique.

ESR measurements were performed on an X-band E&Rremeter (JES-FA-200;
JEOL, Tokyo, Japan) at room temperature. The measnt conditions were as follows:
field sweep, 317.7 to 327.7 mT; field modulatioaguency, 100 kHz; field modulation
width, 0.1 mT; amplitude, 2; sweep time, 4 min; dimonstant, 0.03 s; microwave
frequency, 9.054 GHz; microwave power, 0.998 mW.eXperiments were performed in

triplicate at room temperature.
11
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2.7. Determination of monosaccharide composition.

Monosaccharide composition of oligosaccharide fragi:m was determined by the
1-phenyl-3-methyl-5-pyrazolone (PMP) high performatiquid chromatography (HPLC)
method (Wu et al., 2013). Briefly, approximatelyng of pectin samples was hydrolyzed
with 4 M trifluoroacetic acid (TFA) at 110 °C forl8 After cooling to room temperature,
TFA was then removed and the reaction solution adgissted to pH 7.0 with 2 M NaOH,
and then with 0.3 M NaOH. The hydrolysate was agized with 50 pL of 0.3 M NaOH
and 50 pL of 0.5 M PMP solution at 70 °C for 10in€hloroform was used to extract the
hydrolysate and the hydrolysate was analyzed byateM/ 2695 HPLC system (Waters,
USA) with an ZORBAX Eclipse XDB-C18 column (Agilers pm, 4.6 mm x 250 mm,
Santa Clara, CA, USA). Mobile phase A was aqueousaining sodium phosphate buffer
(0.05 M, pH 6.9) and acetonitrile (v/v; 85:15) andbile phase B was aqueous containing
sodium phosphate buffer (0.05 M, pH 6.9) and agetten(v/v; 60:40). The time program
of HPLC analysis was-810—30 min and the concentration program was8%—20%
of the mobile phase B at a flow rate of 1 mL/mim dhe samples were detected by UV

detection at 250 nm, and the injection volume wag P.

2.8. IR spectral analysis.
The FT-IR analysis was applied to obtain IR speofréhe pectin samples using a

Nicolet Avatar 370 instrument. Samples (~1 mg) wemind together with 200 mg KBr,
12
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pressed into pellets for IR scanning from 400 tdG@&m® with 32 scans and a 4

cm’ resolution. The degree of esterification and oftiectional groups were determined.

2.9. NMR analysis of low-molecular-weight pectin.

For NMR analysis, citrus pectin and LMP fractions (ng) were evaporated with 550
uL of DO (99.96%) twice by vacuum freeze drying beforalfisissolution in 55@L of
D,0O (99.96%). The samples were acquired p®DQvith chemical shifts expressed &s
PPM, using the resonances of {gtoups of acetone 30.2/2.22) as internal reference.
NMR spectra were collected by a 600 MHz NMR speugter (DD2-600; Agilent
Technologies Inc., CA, US) at 25 °C. The spectreevprocessed using the MestReNova

6.1.1 (MestreLab Research, Santiago de CompoSipéan).

2.10. Cell viability assay.

The antitumor activity of PPs and LMWP on MCF-7Isalvas evaluated using the
tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5ptienyltetrazolium bromide (MTT)
assay (Miao et al., 2013). The cells were incubatddulbecco's modified eagle medium
(DMEM) supplemented with 10% fatal bovine serun $B100 U/mL of penicillin and
100 g/mL of streptomycin at 37 98 a humidified incubator at 5% GBriefly, 100 uL of
the cells were incubated in a 96-well plate atreceatration of 2 x Icells/mL. After 24 h

of cultivation, various concentrations of PPs aiPL(0, 10, 50, 100, 250 and 500 pg/mL)
13
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were added slowly into the 96-well plate and catufor 48 h. Fluorouracil (5-FU, 50
png/mL) served as the positive control. At the efeach treatment, 20 pL of MTT (5
mg/mL) was added and the tumor cells were furthemlbated for 4 h for the formation of
the formazan crystals. A volume of 100 uL DMSO waedded to each well to dissolve the
formazan crystals after the medium was removeds&ylently, absorbance was measured
at 570 nm with a microplate reader (Thermo multidgk3, Thermo Fisher Scientific Inc.,
USA). The cell viability was expressed as

Cell viability (% control) = [(A — Ap)/(AcAp)] x 100

where A and A were the absorbance of the system without the tiaddbf
polysaccharides or 5-FU and cells, respectivelg, as was the absorbance of the system

only with polysaccharides or 5-FU.

2.11. Lactate Dehydrogenase (LDH) Assay

The cytotoxicity of the samples was assessed bysune@ the release of lactate
dehydrogenase (LDH) into the culture medium asdicator of cell membrane injury 30
using a commercial LDH assay kit (Jiancheng BioBegring, Nanjing, China) according
to manufacturer’s instructions. Briefly, at the eofl the incubation period, 20 pL
supernatant of the culture medium from differemiatments was used to assess LDH

leakage into the media. Subsequently, absorbance measured at 440 nm with a

14
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microplate reader (Thermo multiskan Mk3, ThermohEisScientific Inc., USA). The
LDH release ratio (% control) was expressed as;

LDH release ratio (% control) = [8Ap)/(Ac-Ap)] x 100

where A and A were the absorbance of the system without thetiaddpf
polysaccharides or 5-FU and cells, respectivelg, s was the absorbance of the system

only with polysaccharides or 5-FU.

3. Resultsand discussion
3.1. The synergetic effects of sonolysis and H,O,/ascorbic acid system to depolymerize
pectic polysaccharide.

We first examined whether J@./ascorbic acid each used on its own could
depolymerize PPs. The resultfFigure la) suggested pD./ascorbic acid could
depolymerize PPs and reduce their average molewglight from 791 kDa to 15.27 kDa
in 60 min. In stark contrast, a 60 min treatmerthwiltrasound or kD, alone resulted in
no apparent reduction of molecular weight. Intengdy, when HO,was combined with
ultrasound the molecular weight of pectin polysacictes could be reduced to below 20
kDa. These results suggest that whil®kascorbic acid system is an efficient system to
generate LMPs, ultrasound enhances the efficiehtrge radical depolymerization.

Further studies on ultrasound enhancegD4ascorbic acid depolymerize PPs

showed that not only that the degradation process waccelerated but also the
15
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degradation efficiency was greatly improved witk #ippearance of 14.26 kDa products

within 10 min.

3.2. Effects of reaction parameters on pectic polysaccharide depolymerization.

The effect of reaction temperature, ascorbic a@dcentration, and ultrasonic
intensity during the depolymerization process om thegradation efficiency was
examined to optimize the depolymerization cond#ioA neutral pH was applied in the
present study to prevent the acidic or basic hydislof the polysaccharides, as the
branching chain may important for the activity loé tPPs.

Increased temperatures result in higher averageti€ienergy as a result of more
molecular collisions per unit time (Yue et al., 8DOFurthermore, cavitation bubbles
formed during the ultrasonic treatment can deg@denics (Golash & Gogate, 2012).
As a result, degradation efficiency increased nulgkeby elevating the reaction
temperature from 20 to 40 °(Figure 1b). However, no obvious improvement in
degradation efficiency was observed when the teatpex was increased to 50 °C. At
high temperatures, the concentrations of bot®@and ascorbic acid can be reduced due
to their self-decomposition, thus, decreasing diagfian efficiency. Therefore, 40 °C was
selected as the optimal reaction temperature.

Reaction rates accelerate with the increasing curaténs of reactants. When the

concentration of bD,was 50 mM, increasing ascorbic acid concentratomfl to 10
16
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mM increased the degradation efficiency due to ihereasing amount of HOe.
Nevertheless, when the ratio of the concentratfdd,®, to the concentration of ascorbic
acid was < 5, higher concentrations of ascorbid &e10 mM) were not effective for the
depolymerization of PPd=(gure 1c). Under these reaction conditions, excess ascorbic
acid (HA) is susceptible to autoxidation to generate debgsicorbic acid anions (Egs. (1)
and (2)) that react with HOe, generated fromOblascorbic acid redox system (Eq. (3)),
(Bai & Wang, 1998) resulting in a decrease in dgmalrization efficiency. Therefore, 10

mM ascorbic acid was considered as the appropradrieentration.

H,A — HA + H 1)
HA +O, > Ao+ O, + H' 2
HA+ HOe — A’ +H,0 3)

Ultrasound intensity has been used as an imporbgetrational parameter in
ultrasonic processes for controlling the formatadrHOe» radicals and cavitation bubbles
(Joseph, Puma, Bono, & Krishnaiah, 2009). Degradaefficiency increases with
increasing ultrasound intensities from 3.8 to IMVAnL (Figure 1d). Nevertheless, no
further obvious improvement was detected when ttrasound intensity was increased
to 15.2 W/mL. In contrast to the ultrasound in thetal-catalyzed Fenton chemistry for
pectin depolymerization, which mainly functions ascatalyst accelerating pectin
depolymerization (Zhi, et al., 2017), the ultrast8.8-11.4 W/mL) in the pD,/ascorbic

acid system ultrasound reaction acts as both #sgtaccelerating the generation of free
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radicals, and also significantly changes the endtpw the reaction. Ultrasound of 11.4
W/mL was selected as a suitable value to maxinoreersion.

Based on results obtained, we set the optimal satfigl0 °C, 10 mM, 11.4 W/mL
as our reaction conditions. Ultrasoungld/ascorbic acid was used to generate hydroxyl
radicals in subsequent experiments. The involvenoéritydroxyl radicals during PPs
depolymerization is similar to the depolymerizatminPPs by copper (lI) and hydrogen
peroxide. Hydroxyl radicals react with PPs by aduging a hydrogen atom, leading to the
sugar chain scission (Zhi et al., 2017).
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Figure 1. Effect of different reaction conditions the molecular weights of depolymerized pectic
polysaccharides: (a) different degradation systéuisasound alone; ¥D, alone; ultrasound in
combination with HO,; HO./ascorbic acid redox system; ultrasound in comhinatwith
H,O./ascorbic acid system); (b) reaction temperatwemperature, 20C, 30 °C, 40 °C or 50 °C;
H,0, concentration, 50 mM; ascorbic acid concentratidhimM; ultrasound intensity, 3.8 W/mL); (c)
ascorbic acid concentration (1 mM, 10 mM, 20 mM 180 mM; HO, concentration, 50 mM;
temperature, 30 °C; ultrasound intensity, 3.8 W/n{d) ultrasound intensity (intensity, 3.8 W/mL67.
W/mL, 11.4 W/mL or 15.2 W/mL; KD, concentration, 50 mM; ascorbic acid concentratidhmM,

temperature, 30 °C).

3.3. Estimation of hydroxyl radicals.
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Ultrasound/HO,/ascorbic acid is an effective and environmentligndly method
to depolymerize PPs. The system produces hydraxijtals during the reaction and the
involvement of hydroxyl radicals during the depoBmization of PPs is similar to
decolorization of dyes by ascorbic acid, coppérdiid hydrogen peroxide (Verma et al.,
2003). HOe- radicals have an unpaired electron making theongtoxidizing agents
that react with polysaccharides causing their diégfan. The concentration of
HO « radicals in the ultrasoundfB./ascorbic acid system is the highest during the
reaction which explains the efficient degradation of PPsairtiese conditiong-igure
2). The concentration of H® radicals in the absence of ultrasound is obviolesher
than that observed in the ultrasoungilkllascorbic acid system. In the absence of
ascorbic acid the amount of HO radicals is considerably lower. It has been widely
acknowledged that low frequency ultrasonic degiadatf most water-soluble polymers
in aqueous solutions is mainly attributed to theadt midpoint scission by mechanical
effects induced by ultrasound (Koda, Taguchi, &arutira, 2011). Our results indicate
that low frequency ultrasound can also act as apeatalyst to speed up and increase the
total production of HO- radicals using non-metahtba chemistry, resulting in higher

PPs depolymerization.
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Figure 2. Concentrations of hydroxyl radicals dgrthe incubation of kD, (50 mM) + ascorbic acid
(10 mM)/H,0O, (50 mM) in the presence and absence of ultras¢lhd W/mL). The concentration is
expressed as absorbance of the deoxyribose deigragebduct with thiobarbituric acid.

Electron spin resonance (ESR) technique was emplégedetect HO in the
different reaction systems. The spin adduct 5,5etliyl-1-pyrroline N-oxide
(DMPO)-OH, an adduct of DMPO and the hydroxyl rats¢c was assigned based on
hyperfine coupling constants (hfcc). The hfcc ak¢ a aN = 1.49 mT, which is
consistent with those of previous reports (Mokutlisikamura, Kanno, & Niwano, 2012).
Relatively weak signals from DMPO-OH were detectéd both HO, and
ultrasonic/HO, systems Kigure 3). The addition of ascorbic acid resulted in the
appearance of a strong signal from DMPO-OH andé&urincrease of ultrasound energy

enhanced the signal from DMPO-OH. These ESR speaciggest that the amount of
22
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hydroxyl radical produced by the,8,/ascorbic acid system was significantly higher
than that of HO, alone or ultrasound4®, and that ultrasound could increase the
concentration of hydroxyl radicals in the,®b/ascorbic acid system. These data are

consistent with the hydroxyl radical concentratesmtimated in the assay above.

— US/H,0 /ascorbic acid
e HZOZIascorbic acid
—US/H,0,

HZOZ

ga
i

I M T T T T T T T
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Magnetic field (mT)

Figure 3. ESR spectra of reaction solution unddferdint systems. D, (50 mM); US (11.4
W/mL)/H,O, (50 mM); HO, (50 mM)/ascorbic acid (10 mM); US (11.4 W/mLY®B} (50

mM)/ascorbic acid (10 mM).

3.4. Monosaccharide composition analysis.
During the optimization process, three forms of rddgd PPs with distinct
molecular weights were obtained. PPs were depolyetrunder optimized conditions

from 791 kDa to 12.26 kDa (LMP2) within 60 min. Usdmilder (20 °C, 10 mM, 11.4
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W/mL) and more severe (50 °C, 10 mM, 11.4 W/mL) dibans, relatively higher
molecular weight (60.33 kDa) (LMP1) and lower mailec weight (7.65 kDa) (LMP3)
products were obtained, respectively.

Chemical compositional analysis indicated that G@Amole%) was the principle
component of the four polysaccharides, while araden(Ara) and galactose (Gal) were
the major neutral saccharides. All chemical compmss, determined in the native PPs,
were also detected in each of the three depolyexdrigroducts, suggesting that
ultrasound/HO,/ascorbic acid system did not alter the types ofosaccharides present.
With decreased molecular weights the total molegraage of neutral monosaccharides
increased and the GalA content decreasablé 1), suggesting that chain breakage
might occur at GalA residues.

All four samples were relatively rich in homogalacnans (HG) as opposed to
rhamnogalacturonans (RG), as deduced from the Rihat@tio (Arnous & Meyer, 2009).
The low ratio of 0.51 determined for the native Pirslicates that both the
homogalacturonans and rhamnogalacturonans are rpneake, whereas the increasing
ratio, close to 1, for three depolymerized prodsciggests that these contain a majority of
rhamnogalacturonan with a repeating unit e#2)-o-.-Rhgp-(1—4)-a-o-GalpA-(1—]
(wherep is pyranose). The ratio of (Ara + Gal) to Rha watculated to estimate the
relative importance of the neutral side-chaindh®rhamnogalacturonan backbone. These

ratios were at 5.48, 5.32, 5.04, 4.96 for PP, LMENIP2 and LMP3, respectively. The
24
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ratios Rha/GalA and (Ara + Gal)/Rha indicate thraefradicals generated preferentially
attack GalAresidues in the HG region of PPs, winiel similar to the reported preference
for free radical depolymerization of pectin catagzy ultrasound-Fenton chemistry (Zhi
et al.,, 2017). Thus, this method might be appliedbk the rapid preparation of RG-I
enriched LMPs.

Table 1. Monosaccharide composition of differertdtimepolysaccharides.

Monosaccharides PPs LMP1 LMP2 LMP3
(mol%)
Ara 44.55+1.08 47.95+1.14 47.46+1.33 48.2+1.46
GalA 22.3+0.92 17.32+0.86 15.43+0.68 14.36+0.63
Gal 18.4+0.24 18.74+0.18 18.82+0.36 18.58+0.16
Rha 11.49+0.08 12.54+0.24 13.1640.13 13.46+0.09
Fuc 2.3+0.16 2.34+0.08 3.91+0.28 4.22+0.11
Xyl 0.91+0.03 1.11+0.05 1.22+0.08 1.184+0.14
(Ara+Gal)/Rha 5.48 5.32 5.04 4.96
Rha/GalA 0.512 0.72 0.85 0.94

3.5. Degradation products analysis by IR.

The infrared spectra of the four samples are peavidFigure 4. Both native PPs and
its depolymerized products display similar spedbaaids as IR is relatively insensitive to
minor structural changes in large polymer moleculeéBhe major absorption at around
3405 cm* can be attributed to stretching of hydroxyl graufi®e peak at around 3422 ¢m
corresponds to C—H absorption, including CH, ,Gihd CH stretching and bending
vibrations and an absorption at 2932 tim assigned to CH stretching of g¢gfoups. The

degree of methylation (DM) of pectin can be estedaby dividing the signal ascribed to
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carboxylic ester by the sum of the signal ascriteedarboxylic ester and carboxylic acid
groups (Fellah, 2009; Gnanasambandam, 2000). Sighdl609 cit can be attributed to
the C=0 stretching vibration of ionic carboxyl gpsuand no absorption corresponding to
carboxylic ester could be found, indicating theeamu® of esterified pectins. The three
absorption peaks between 1010 and 1150 emdicated the presence of pyranose (Zhang,
2013) and the pyranose configuration of the pectid not change after

ultrasound/HO,/ascorbic acid treatment.

LMP3

LMP2

LMP1

40100 ' 35100 ' 30100 . 25100 ' 20l00 ' 15IOO ' 10l00 ' 5(I)0
Wavenumber/cm™*
Figure 4. IR spectra (% transmittance as a funatiamenumber) of native PPs and LMPs prepared by
ultrasound/HO,/ascorbic acid process. LMP1, LMP2 and LMP3 werppred by US/kD,/ascorbic

acid system (ultrasound intensity, 11.4 W/mL,QO4 concentration, 50 mM; ascorbic acid

concentration, 10 mM) in 20C, 30 °C and 50°C, respectively.

3.6. NMR spectra.
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The *H NMR spectra of PP, LMP1, LMP2 and LMP3 were ofe¢ai to better
understand the structural change of PPs duringatividl Figure 5). In comparison, the
depolymerized pectins exhibited similar spectréghonative polysaccharides, containing
characteristic signals. Specifically, the signaldd 81 ppm and 1.24 ppm were derived
from methyl groups of-rhamnose and were assigned to @&- and O-2,4-linked
rhamnose, respectively (Zhi et al.,, 2017). In tm®raeric region, the signals from
5.05-5.3 ppm correspond to the anomeric protofs@fand signals at 5.29 ppm and 4.67
ppm were assigned to the H-1 of Rha and H-1 of @apectively.

Some changes were observed following depolymeozatignals at 4.01 ppm and
4.46 ppm, assigned to the H-3 and H-4 of GalA, eetpely, showed a substantial
decrease in intensity under more stringent reaatmmditions, suggesting the selective
cleavage of GalA. These results are in agreemettt those from the monosaccharide
compositional assay (Section 3.4). Thus, basedi®t NMR data, it can be reasonably
inferred that the reaction temperature is the mgtortant factor in the system and
HO - generated by ultrasound/@®,/ascorbic acid process selectively attacks the
glycosidic bond without damaging the RG-I regionR®s, similar to metal-catalyzed

Fenton chemistry (Bokare & Choi, 2014).
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Figure 5."H NMR spectra (intensity and a function of chemishlft in ppm) of PPs and LMPs.
LMP1, LMP2 and LMP3 were prepared by UgDdascorbic acid system (ultrasound intensity, 11.4
W/mL; H,O, concentration, 50 mM; ascorbic acid concentratidhmM) in 20 °C, 30 °C and 50 °C,
respectively.

Due to the limited resolution of tHel NMR spectra of the polysaccharide mixtures,
2D NMR was employed to further determine the stireetof LMP3 as a representative
product. The assignments #1 and**C chemical shiftsTable 2) were made from total
correlation spectroscopy (TOCS¥Higure 6a), heteronuclear single quantum coherence
(HSQC) spectraHigure 6b) and nuclear Overhauser effect spectroscopy (NQESY
(Figure 6¢). The analysis of the COSY and TOCSY revealedrésedues withoa- and
B-galactopyranosidicy-rhamnopyranosidic and-arabinofuranosidic configuration. The
HSQC spectrum showed that the residue witpalacto-configuration corresponded to
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471 thea-galactopyranosyl uronic acid residues substitatgubsition 4 (Bushneva, Ovodova,
472  Shashkov, & Ovodov, 2002) andarabinofuranosidic residues were both non-suliettu
473 C5 (64.81 ppm) and 5-subsituted (C5 72.5 ppm). Tbeelation peak of H1/H4
474 (5.12/4.46) of the GalA residues in the NOESY spautfurther confirmed the presence
475 of o-1,4-linked galactopyranosyl uronic acid residu@$e correlation peaks of
476 H1(GabA)/H2(Rhg) at 5.12/4.32ppm, H1(AfHH4(Rhag) (wheref is furanose) at
477 5.14/4.45 ppm and H1(GalH4(Rha) at 4.67/4.45 ppm in NOESY spectra indicated
478 that some GalA residues are linked to the 2-positibRha residues and some Raad
479 Galp residues are linked to the 4-position of Rha ressdun addition, the correlation
480 peak of H1(Rhp)/H4(GapA) at 5.29/4.46 ppm confirmed that the residues of
481 rhamnopyranose are linked to the 4-position seGalA residues. Observation of
482 correlation signals B1/B5 at 5.11/3.93 in the NOES®¥ctrum suggested the presence of
483 a fragment. .—»5)-Araf-(1-5)-Araf-(1-. . .. Correlation signal at D1/C3 (5.27/4.15 ppm)
484 led to an unambiguous identification of substitataf residue (C) by terminal-Araf at
485 Ca3.

486 Because LMP3 is a LMP mixture it is not possibleagsign all of the signals in
487 NMR spectra. Based on the data obtained, we suggyebtat the core of the pectic
488 polysaccharide is composed of residues aef,4-galactopyranosyl uronic acid and
489 o-1,2-rhamnopyranose. The side chain of hair regias represent different blocks

490 composed of residues @f1,5- linked arabinofuranose and as well fa%,4- linked
29



491 galactopyranose, consistent with previous reptis neutral fragments of arabinan and
492 galactan are the most likely the side chain of ipegblysaccharides attached to the
493 backbone of rhamnogalacturonan (Bushneva et d2)2@rabinogalactans (AG I, AG II)
494 and possibly galactoarabinans are also typicalralestigar side chains of branched RG |
495 polysaccharides. The presencepet,3-linked-Gap units also suggests the presence of
496 arabinogalactans in LMP3 (Carlotto et al., 2016).

497  Table 2. 1H/13C NMR chemical shifts assignmentsMP3

Residue Chemical shift (ppm)

H1 H2 H3 H4 H5 H6

(C1) (C2) (C3) (C4) (C5) (C6)
—3)-a-Ara-(1— A 5.17 4.47 4.11 4.15 3.77/3.83

(111.18) (81.39) (80.15) (84.69) (64.81)
—5)-a-Ara-(1— B 5.11 4.31 4.13 4.19 3.83/3.93

(111.20) (85.32) (84.69) (81.29) (72.50)
—3,5)u-Ara-(1-> C 5.14 4.41 4.15 4.45 3.83/3.95

(110.97) (80.55) (85.99) (81.74) (72.66)
a-Ara-(1—3 D 5.27 4.35 4.12 4.25 3.77/3.83

(113.67) (81.74) (86.36) (85.99) (68.37)
—4)-0-GalA-(1-» E 5.12 3.95 4.01 4.46 4.69

(102.67) (69.92) (72.39) (81.39) (73.40)
—3)-f-Gal-(1— F 4.65 3.69 4.18 4.29 3.72 3.75

(107.98) (76.02) (85.05) (74.05) (78.22) (64.73)
—4)B-Gal-(1—~ F 4.67 3.59 3.77 4.43 3.72 3.75

(107.98) (77.06) (72.05) (80.96) (78.22) (64.73)
—2)—a-Rha-(1» G 5.29 4.32 4.03 3.95 3.92

(102.27) (80.39) (72.62) (73.03) (72.62)
—2,4)w-Rhap-(t> G’ 5.30 451 4.03 4.45 4.14

(102.27)  (81.74)  (72.62)  (82.52)  (73.98)

498

30



ACCEPTED MANUSCRIPT

£1 (ppm)

499

500

65
F70
75

80

1 (ppm)

185

+95
s 0
105

A1 B1, F115

54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33
2 (ppm)

501

502 (b)

31



503
504

505

506

507

508

509

510

511

512

513

514

515

516

£1 (ppm)

Figure 6. NMR spectra of LMP3 (a) TOCSY of LMP3) #SQC of LMP3; (c) NOESY of LMP3.
LMP3 were prepared by ultrasonig®}/ascorbic acid system (ultrasound intensity, 11/ H,O,

concentration, 50 mM; ascorbic acid concentratidhmM,; reaction temperature: 50 °C)

3.7. The proposed mechanism of pectic polysaccharide depolymerization by
ultrasound/H,O,/ascorbic acid system.

Based on the detailed analysis of chemical compositiR and NMR, the
mechanism of ultrasoundfB./ascorbic acid process to generate RG-l enriched
fragments can be propos@éigure 7). The radical degradation process occurs through
generation of free hydroxyl radical OHby ultrasound/KHO./ascorbic acid system.
Ultrasound induces acoustic cavitation and the esuosnt violent collapse of cavitation

at multiple locations in the system can increase tdmperature (about 5000 K) and
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pressures (2000 atm) significantly in the collagsbhubble and close vicinity of the
bubble, which gives rise to generation of ®+hnd He radicals, which can subsequently
form hydrogen peroxide @#D.) (Egs.(4)-(8)) (Czechowska-Biskup, Rokita, Lotfy,
Ulanski, & Rosiak, 2005; Gogate & Prajapat, 2018phelli & Mason, 2010), resulting
in an additive effect of ultrasonic treatment andOMascorbic acid redox system,
generating more HO- radicals. In addition, the astund can also lower activation
energy for HO, decomposition. The high temperature and pressdies to the
significant release of accumulated energy and potsswhen the bubble collapse can
significantly contribute to water ionization, leadito higher concentration of Hn the
system (Eg. (9)) (Marshall & Franck, 1981). Thé ¢an interact with carbonyl group
(C=0) in the ascorbic acid and C1 becomes a pestarbon ion following the electron
redistribution. Electronic cloud density distribari of C3 decreases the generation of
extended pi bond with C1, thus, contributing to twmplexation between C3 and
hydroxyl groups of HO, and redox reactions (Eg. (10)). It also has begorted that
ultrasound can depolymerize polysaccharide duéh¢ophysical effects (Zhang et al.,
2013). During the ultrasound treatment, the shearefcan lead to the disaggregation of
polysaccharide clusters, especially in the eardgetby breaking up the non-covalent
intra and inter-molecular bonds (Yan, Pei, Ma, &ni¢a2015) and the resulting flexible
structure makes the PPs more vulnerable to freealadttack. The reactive species

primarily attacks at the glycosidic bond and thdAGasidues on the HG domain are
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more reactive with hydroxyl radicals, resulting ¢hain scission and RG-I enriched
fragments, which is consistent with previous reptinat alduronic acid (GalA and GIcA,
etc.) residues of polysaccharides are very sudgepb free radical degradation (Li et al.,

2016; Uchiyama, Dobashi, Ohkouchi, & Nagasawa, 199@ng et al., 2013; Zhi et al.,

2017).

H,O 2 He + HOe 4)
He+O;2HO; (5)
He+HO« 2 HO, (6)
HOe + HOe2 H,0O, (7)
HOz *+ + HO, » 2 HyO; + O, (8)
H,O2 H" + OH 9)

HOCHCH-CH-0 _ HOCHCH-CH-O HOCH,-CH-CH-0

1O RC=? H* HO RC = C )=OH — Il o0 —
(l)H (I)H HO RC = ?
OH
HOCH,-CH-CH-0 ¢ HOCH,CH-CH-0 ¢ -
|1, R a0 P 3C=0 + HO» +H*
HO RC = — HO RC'=C — HO RC-C
OH HO-“OHOH On om (10)

Free radical generation by ultrasounglliifascorbic acid system is also suitable for
ultrafast preparation of other low molecular weigiadlymers and has been helpful in

unraveling the structure of unknown polysaccharides
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Figure 7. The schematic diagram of PPs degradatim by ultrasound/}D,/ascorbic acid system.
The ultrasound enhances the efficiency gDMascorbic acid system to degrade PPs through both
chemical effects (increasing the amount of hydraaglicals and lowering activation energy oiCH

decomposition) and mechanical effects (disaggregatolysaccharide clusters).

3.8. Cdll viahility assay and cytotoxicity assay.

The in vitro antitumor activity of both native PPs and LMP3 sveletermined at
different concentration (0, 10, 50 100, 250, 500mig by examining the proliferation of
MCF-7 cells. LMP3 significantly inhibited the prfdration of MCF-7 cells and the
inhibitory effect increased in a concentration-defent mannerHigure 8a). Intact PPs
exhibited a much lower inhibitory effect on MCF-&lls proliferation. LMP3 showed the
highest proliferation-inhibitory effect against MGFcells with a cell viability of 56.3%
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2.47% at the concentration of 500 pg/mL. While veatiPPs exhibited moderate
anti-proliferation effect against MCF-7 cells a050g/mL (34.71+ 3.24%). Neither PPs
nor LMP3 were comparable to the positive contrdying on 5-FU. Galactoside
containing molecules derived from pectin have bdemonstrated to interact with a
galectin 3-type lectin at the surface of prolifeargtmammalian cancer cells (Bushneva et
al., 2002; Nangia-Makker et al., 2002), thus prévmgntumor growth. Despite the similar
structures and compositions between the nativeaPBsLMP3, their antitumor activity
was distinct, suggesting the significance of madkacsize in polysaccharide binding to
galectin-3 of cancer cells (Sathisha, Jayaram, ky& Dharmesh, 2007). Moreover, the
uptake of oligosaccharides by cancer cells was mmuah better rate than that of intact
PPs from the same sources, thus affecting theuantit activity (Kapoor et al., 2017).

LDH content is an indicator of loss in cell membeantegrity (G. X. Ma, et al.,
2014) and loss in membrane integrity occurs dubdih necrosis and apoptosis death
events (Murthy, Jayaprakasha, Kumar, Rathore, &,P4111). The cytotoxicity of the
two polysaccharides was evaluated to further confire proliferation inhibitory effect of
native PPs and LMP3 on MCF-7 cells. LDH releasM@fF-7 cells into the medium was
significantly increased in a dose-dependent mannerthe presence of the two
polysaccharides (P<0.05Figure 8b). The content of LDH release triggered by LMP3
treatment at 500 pg/mL for 48 h was 162.8 + 5.12d¥mpared to the untreated cells,

much higher than that of PPs (138.3 + 2.5%). Tlkelte above indicated that LMP3 was
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585 endowed with higher cytotoxic effects against MCEells, which was consistent with

586 cell viability assay.

100 4 *

e

80

*x

60 —

40

Cell viability (% control)

20+

0 10 50 100 250 500
Concentrations of samples (ug/mL)

587
588 (@)
. FP
- LMP3 .
] 5-FU
180
S 160 T
IS | o
o =%
2 140 4 « LT
xR :
o 1 T
=) *
T 120 .
(]
2 |
©
2 100
o
< |
3 80
60 -
0 10 50 100 250 500 50
Concentrations of samples (ng/mL)
589
590 (b)

37



591 Figure 8. (a) Effects of native PPs and LMP3 onptddiferation of MCF-7 cells. Cells were cultured
592 in the presence of PPs and LMP3 (10-500 pg/mL}&h and the cell growth was determined by the
593 MTT assay. (b) Cytotoxic effects of native PPs aMP3 on MCF-7 cells. Cells were cultured in the
594  presence of PPs and LMP3 (10-500 pg/mL) for 48ch2nhu L supernatant of the culture medium was
595 used to assess LDH leakage into the media. Dataresented as mean + S.D. (*) P < 0.05 and (**) P
596 < 0.01 indicate statistically significant differerscversus blank control groups.

597

598 4. Conclusion

599 In the present study, an effective ultrasound a&catdd non-metal Fenton redox
600 system relying on pD./ascorbic acid was established for the controlleglotymerization
601 of PPs recycled from citrus canning processing watel the antitumor activity of
602 resulting fragment was determined. Ultrasound casagf@iregate PP clusters by
603 mechanical effects and ultrasoungdldascorbic acid system generates a greater
604 concentration of hydroxyl radical, depolymerizin@<$within minutes with these free
605 radicals preferentially cleaving the GalA in the Hé&gion. Thus, the HG region of PPs
606 decreases throughout the depolymerization. Stralkctamnalysis demonstrates that
607 ultrasound/HO,/ascorbic acid depolymerization of PPs affords Réatiched LMPs
608 with a highly branched structure of arabinan. Tin@itro antitumor activities of native
609 PPs and LMP3 were examined using MTT and LDH as$hg. results suggest that

610 LMP3 exhibited significantly higher antitumor agtivagainst MCF-7 human breast cells
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compared to native PPs and that activity might $soaated with their molecular size.
These results suggest that the LMPs obtained fittmsccanning processing water might
be suitable for use in functional foods and po#dritierapeutic agents for human cancer.
Thus, the free radical depolymerization of PPs mayide effective streams for either

biological or industrial upgrading strategies ain@aard wastewater valorization.
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Ultrasonically accelerated metal-free Fenton systes optimized.

The mechanism of ultrasound acceleratin@#hscorbic acid system was
clarified.

The structure characterization of the resultingrinant (LMP) was determined.
The molecular size of pectic polysaccharide is irtgodrfor its antitumor activity



