
This is a repository copy of Robust Bayesian Filtering Using Bayesian Model Averaging 
and Restricted Variational Bayes.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/131390/

Version: Accepted Version

Proceedings Paper:
Khalid, S., Rehman, N.U., Abrar, S. et al. (1 more author) (2018) Robust Bayesian Filtering
Using Bayesian Model Averaging and Restricted Variational Bayes. In: Proceedings of the 
International Conference on Information Fusion. International Conference on Information 
Fusion, 10-13 Jul 2018, Cambridge, UK. IEEE . ISBN 978-0-9964527-6-2 

10.23919/ICIF.2018.8455608

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Robust Bayesian Filtering Using Bayesian Model

Averaging and Restricted Variational Bayes

S. S. Khalid, N. U. Rehman

EE Department, COMSATS Institute

of Information Technology

Islamabad, Pakistan

{safwan khalid,naveed.rehman}
@comsats.edu.pk

Shafayat Abrar

School of Science and Engineering

Habib University, Karachi, Pakistan

shafayat.abrar@sse.habib.edu.pk

Lyudmila Mihaylova

Department of Automatic

Control and Systems Engineering

The University of Sheffield, UK

L.S.Mihaylova@sheffield.ac.uk

Abstract—Bayesian filters can be made robust to outliers if
the solutions are developed under the assumption of heavy-tailed
distributed noise. However, in the absence of outliers, these robust
solutions perform worse than the standard Gaussian assumption
based filters. In this work, we develop a novel robust filter that
adopts both Gaussian and multivariate t-distributions to model
the outliers contaminated measurement noise. The effects of these
distributions are combined within a Bayesian Model Averaging
(BMA) framework. Moreover, to reduce the computational com-
plexity of the proposed algorithm, a restricted variational Bayes
(RVB) approach handles the multivariate t-distribution instead
of its standard iterative VB (IVB) counterpart. The performance
of the proposed filter is compared against a standard cubature
Kalman filter (CKF) and a robust CKF (employing IVB method)
in a representative simulation example concerning target tracking
using range and bearing measurements. In the presence of
outliers, the proposed algorithm shows a 38% improvement
over CKF in terms of root-mean-square-error (RMSE) and is
computationally 2.5 times more efficient than the robust CKF.

I. INTRODUCTION

Target tracking deals with the estimation of unknown states,

such as position, velocity and acceleration of a moving tar-

get, using noisy measurements in a given coordinate space.

Algorithms that can accurately track the mobility of a target

offer numerous advantages in a wide range of applications.

The most obvious example is tracking an aircraft using radar

measurements. It is of immense importance in many military

applications and is also essential for air traffic control required

by civilian airlines. Some other examples include tracking of

a mobile node in a cellular network which is required for effi-

cient radio resource management and tracking in autonomous

cars and robots. Target tracking algorithms, despite having

a diverse range of applications, employ a common structure

based on the Bayesian filtering framework for extracting useful

information from the available data. The standard Bayesian

filtering solutions such as traditional Kalman filters (in case

of linear systems) and sigma-point filters (e.g., Cubature

Kalman Filter (CKF), Unscented Kalman Filter (UKF), etc.,

for nonlinear systems), assume that the noises have Gaussian

distribution [1]. In practice, however, large deviations (outliers)

occur in real data frequently and these cannot be modeled

accurately by a Gaussian distribution only [2]. As a result,

filters relying on the Gaussian assumption do not perform well

when outliers are present[3].

A Bayesian filter can be made robust to outliers if the

Gaussian assumption is dropped in favor of a heavy-tailed

distribution. A suitable choice is the use of multivariate gener-

alization of Student t-distribution [2–8]; hereafter, referred to

as t-distribution. However, the incorporation of t-distributed

uncertainties in a Bayesian framework is not trivial as the

required posterior probability becomes intractable. Recently,

a number of works [2, 5, 6, 9] have advocated the use

of variational Bayes (VB) framework to handle t-distributed

measurement noise in Bayesian filters. In the VB method, a

solution is obtained by approximating the intractable posterior

probability density function into a tractable factored form.

These state-of-the-art robust solutions, however, suffer from

two drawbacks: 1) The standard application of the VB method

results in an iterative procedure (IVB) that requires a number

of fixed-point iterations to converge to an admissible inference.

These iterations, though few in number (usually four or five),

may become prohibitive in real-time applications due to the

involvement of matrix inversion operations; 2) The resulting

solutions though indeed robust to outliers, do not perform well

in the absence of outliers, as compared to the conventional

filters based on Gaussian assumption.

In this work, we propose a filter able to deal with both these

challenges by,

1) Adopting a restricted VB (RVB) approach to get rid

of the iterative procedure, and develop an approximate

computationally-efficient recursive solution for Bayesian

filtering under t-distributed measurement noise.

2) Instead of modeling the observation noise using a sin-

gle t-distributed process, we advocate the use of two

separate models, one Gaussian distributed and one t-
distributed. The proposed filter then combines these two

models using a Bayesian Model Averaging (BMA) [7]

approach.

Note that BMA based particle filters have recently been

discussed in [7] and [10]. However, particle filters are known

to exhibit heavy computational expense and this leads to

challenges in many real-time applications. As we shall show in



this work, the proposed BMA-RVB method can easily be com-

bined with sigma-point methods to develop computationally

efficient robust solutions for nonlinear systems. The rest of this

paper is organized as follows: in Section II, we describe the

system models and develop the proposed filtering algorithm.

In section III, we present simulation results and in Section IV,

we draw conclusions.

A. Notations

We represent scalers using small letters. Column vectors

denoting states and measurements are represented by bold-

faced small letters. Matrices are represented using bold-faced

capital letters. A set of column vectors is also represented

using bold-faced capital letters. We use In to denote an n×
n identity matrix. We use T in superscript to represent the

transpose operation of a matrix. A variable x that is distributed

according to t-distribution is denoted as x ∼ St(µ,Σ, η), i.e.,

p(x) =
Γ((η + d)/2)

Γ(η/2)

1

(ηπ)d/2
√
Σ

(
1 +

δ2(x)

η

)−(η+d)/2

,

where δ2(x) = (x − µ)TΣ−1(x − µ), d = dim(x), µ is

the mean, η is the degree-of-freedom parameter, and Σ is the

scale matrix of the p(x).

Note that η is a shape parameter that determines tail-

behavior [11]. Heavier tails are obtained when η is close to

one. Conversely, for larger values of η, p(x) approaches the

standard normal distribution. Also note that t-distribution has

infinite variance for η < 2; therefore, throughout this work,

we shall assume that η > 2. Finally, the covariance matrix of

x ∼ St(µ,Σ, η) is given by η
η−2Σ for η > 2.

II. SYSTEM MODEL AND PROPOSED ALGORITHM

Let us consider the following dynamic system:

xk = f(xk−1) +wk, (1a)

yk = h(xk) + vk, (1b)

where xk ∈ R
n is the dynamic state vector, yk ∈ R

m is

the observation vector, f(·) and h(·) are arbitrary nonlinear

functions, wk ∼ N (0;Qk) models the uncertainties in the

system model and vk is the outliers contaminated observation

noise. To account for the effects of the outliers, we model

vk as a combination of a Gaussian and a t-distribution. The

transition between these two distributions is governed by a

first-order jump Markovian process sk that can take two

possible values s1 and s2, i.e., v
(sk=s1)
k ∼ N (0;Rk) and

v
(sk=s2)
k ∼ St(0;Σk; η), where Σk = η−2

η Rk. Hereafter, we

use the notation s
(i)
k to denote sk = si for i = 1, 2. We assume

that the transition probabilities p(s
(i)
k |s(j)k−1) = πji are known

a priori. Note that the noise sequences, {wk} and {vk}, are

assumed to be independent for each k.

Let Y k := {y1,y2, · · · ,yk} be the set of all available

observations at instant k; the task of a Bayesian filtering

algorithm is to recursively evaluate an estimate of the state

vector x̂k|k = E[xk|Y k] =
∫
xkp(xk|Y k)dxk

1. Noting that

at any instant, the observation noise vk may belong to one of

the two possible models, we expand p(xk|Y k) as follows:

p(xk|Y k) =

2∑

i=1

p(xk|Y k, s
(i)
k )︸ ︷︷ ︸

Posterior

p(s
(i)
k |Y k)︸ ︷︷ ︸

Weighting Factor

. (2)

Using Bayes theorem, p(xk|Y k, s
(i)
k ) can be written as a

product of a likelihood and a prediction density, as follows:

p(xk|Y k, s
(1i)
k ) ∝ p(yk|xk,Y k−1, s

(i)
k )︸ ︷︷ ︸

likelihood

p(xk|Y k−1, s
(i)
k )︸ ︷︷ ︸

Prediction

.

(3)

In the following, we derive expressions for the evaluation of

prediction, likelihood, posterior, and the weighting factor. We

discuss how the required probability p(xk|Y k) is approxi-

mated at each instant k and also discuss the computational

cost of the resulting algorithm.

A. Prediction

Let us first consider the evaluation of prediction density. By

introducing marginalization over xk−1, we can write

p(xk|Y k−1, s
(i)
k ) =

∫
p(xk|xk−1,Y k−1, s

(i)
k )×

p(xk−1|Y k−1, s
(i)
k )dxk−1

=

∫
p(xk|xk−1)p(xk−1|Y k−1)dxk−1,

(4)

where we have used the fact that the probability of xk

is completely specified given xk−1 and the value of sk at

kth instant does not affect the probability of xk−1. Ac-

cordingly, the prediction density is independent of the value

of s
(i)
k , i.e., p(xk|Y k−1, s

(i)
k ) = p(xk|Y k−1). In BMA

framework, we assume that p(xk−1|Y k−1) is approximated

using a single Gaussian distribution, i.e., p(xk−1|Y k−1) ≈
Nxk−1

(x̂k−1|k−1;P k−1|k−1), where x̂k−1|k−1 and P k−1|k−1

are known from previous recursion. Also, from (1a), we

note that p(xk|xk−1) = Nxk
(f(xk−1);Qk). To derive a

closed-form expression for (4), we still require to linearize

the nonlinear function f(·). To achieve this result, we apply

statistical linear regression (SLR) [12, 13] on f(xk−1) as

follows:

f(xk−1) ≈ F k−1xk−1 + bk−1 + e
f
k−1, (5)

where F k−1 ∈ R
n×n, bk−1 ∈ R

n are to be determined

and e
f
k−1 is the linearization error that is assumed to be a

zero-mean Gaussian distributed process with covariance equal

to Ω
f
k−1. We also assume that e

f
k−1 is independent from

xk−1 and wk. Note that bk−1 is introduced to make the

approximation in (5) unbiased, we evaluate bk−1 as

bk−1 = E[f(xk−1)− F k−1xk−1|Y k−1]

= x̄k|k−1 − F k−1x̂k−1|k−1,
(6)

1For nonlinear systems, the required expectation operator for the optimal
estimate does not admit a closed-form solution in general, and we work with
approximations only.



where

x̄k|k−1 =

∫
f(xk−1)p(xk−1|Y k−1)dxk−1. (7)

Now, from (5), the linearization error can be written as e
f
k−1 ≈

f(xk−1)−F k−1xk−1−bk−1. The value of F k−1 is evaluated

by minimizing the mean square of this linearization error, i.e.,

F
†
k−1 = argmin

F
E[(f(xk−1)− F k−1xk−1 − bk−1)

T×

(f(xk−1)− F k−1xk−1 − bk−1)|Y k−1]

= E

[{
(f(xk−1)− x̄k−1)− F k−1(xk−1 − x̂k−1|k−1)

}
×

{
(f(xk−1)− x̄k−1)− F k−1(xk−1 − x̂k−1|k−1)

}T |Y k−1

]
.

(8)

Let us define P
xf
k−1 := E[(xk−1 − x̂k−1|k−1)(f(xk−1) −

x̄k|k−1)
T |Y k−1], then taking the derivative of (8) with respect

to F k−1 and setting it to zero, we get

F
†
k−1 = (P xf

k−1)
TP−1

k−1|k−1. (9)

In the following, we simply use F k−1 instead of F
†
k−1, to

keep the notation simple. Using the expression for F k−1, the

covariance matrix of e
f
k−1 is evaluated as

Ω
f
k−1 := E[efk−1(e

f
k−1)

T |Y k−1]

= P
ff
k−1 − F k−1P k−1|k−1F

T
k−1,

(10)

where

P
ff
k−1 :=

∫
(f(xk−1)− x̄k|k−1)×

(f(xk−1)− x̄k|k−1)
T p(xk−1|Y k−1) dxk−1.

(11)

Inserting (5) in (1a), we can write

xk ≈ F k−1xk−1 + bk−1 + e
f
k−1 +wk. (12)

Consequently, we can approximate p(xk|xk−1) ≈
Nxk

(F k−1xk−1 + bk−1;Qk + Ω
f
k−1). Accordingly, the

expression in (4) becomes

p(xk|Y k−1, s
(1)
k )≈

∫
Nxk

(F k−1xk−1 + bk−1;Qk +Ω
f
k−1)

Nxk−1
(x̂k−1|k−1;P k−1|k−1) dxk−1.

(13)

To develop a closed-form expression of (13) we require the

following theorem:

Theorem 1 (Gaussian Product Theorem [14]): Let x1,µ1 ∈
R

n, H ∈ R
m×n, x2 ∈ R

m and P 1,P 2 be positive definite

matrices, then

Nx2
(Hx1;P 2)Nx1

(µ1;P 1) = Nx2
(Hµ1;P 3)Nx1

(µ;P ),

where P 3 = HP 1H
T + P 2, µ = µ1 + K(x2 − Hµ1),

P = P 1 −KHP 1 and K = P 1H
TP−1

3 .

Applying Gaussian Product Theorem (GPT) on (13), we get

p(xk|Y k−1) ≈
∫

Nxk
(F k−1x̂k−1|k−1 + bk−1;P k|k−1)×

Nxk−1
(µk;P k)dxk−1

= Nxk
(x̂k|k−1;P k|k−1),

(14)

where x̂k|k−1 = F k−1x̂k−1|k−1 + bk−1 = x̄k|k−1 and

P k|k−1 = F k−1P k−1|k−1F
T
k−1+Qk+Ω

f
k−1 = P

ff
k−1+Qk.

B. Likelihood

The expressions for likelihood can be found from (1b).

Firstly, we note that p(yk|xk,Y k−1, s
(i)
k ) = p(yk|xk, s

(i)
k ).

Now, when sk = s1 (i.e., vk is Gaussian), we have

p(yk|xk, s
(1)
k ) = Nyk

(h(xk);Rk). Similarly, for sk =

s2 (i.e., vk is t-distributed), we have p(yk|xk, s
(2)
k ) =

St(h(xk);Σk; η)

C. Posterior

From (3), we note that the posterior probability density

function is proportional to the product of likelihood and

prediction densities. Since the expression for likelihood is

dependent on s
(i)
k ; therefore, we evaluate p(xk|Y k, s

(i)
k ) sep-

arately for i = 1 and i = 2, in the following:

For sk = s1:

p(xk|Y k, s
(1)
k ) ∝ Nyk

(h(xk);Rk)Nxk
(x̂k|k−1;P k|k−1).

(15)

To apply GPT on (15), we first linearize h(xk). We apply SLR

on h(xk), as follows:

h(xk) ≈ Hkxk + ck + ehk . (16)

Using a procedure, similar to that outlined above, for f(xk−1),
we get ck = ȳk|k−1 −Hkx̂k|k−1, where

ȳk|k−1 =

∫
h(xk)p(xk|Y k−1) dxk. (17)

Also, Hk = (P xh
k )TP−1

k|k−1, where

P xh
k =

∫
(xk − x̂k|k−1)(h(xk)− ȳk|k−1)

T p(xk|Y k−1) dxk,

(18)

P hh
k =

∫
(h(xk)−ȳk|k−1)(h(xk)−ȳk|k−1)

T p(xk|Y k−1)dxk.

(19)

The linearization error ehk is assumed to be Gaussian dis-

tributed with zero mean and covariance equal to Ω
h
k , where

Ω
h
k = P hh

k −HkP k|k−1H
T
k . Inserting (16) in (1b), we get a

linearized observation model as follows:

yk ≈ Hkxk + ck + ehk + vk. (20)



Consequently, p(yk|xk, s
(1)
k ) ≈ Nyk

(Hkxk + ck;Ω
h
k +Rk).

Inserting (20) in (15) and applying GPT, we get

p(xk|Y k, s
(1)
k )

∝ Nyk
(Hkxk + ck;Ω

h
k +Rk)Nxk

(x̂k|k−1;P k|k−1)

∝ Nyk
(Hkx̂k|k−1 + ck;HkP k|k−1H

T
k +Rk +Ω

h
k)×

Nxk
(x̂

(1)
k|k;P

(1)
k|k).

(21)

Note that Nyk
(Hkx̂k|k−1+ck;HkP k|k−1H

T
k +Rk+Ω

h
k) is

a term independent of xk; hence, dropping Nyk
(·, ·) in (21),

we obtain p(xk|Y k, s
(1)
k ) = Nxk

(x̂
(1)
k|k;P

(1)
k|k), where

x̂
(1)
k|k = x̂k|k−1 +K

(1)
k (yk −Hkx̂k|k−1 − ck)

= x̂k|k−1 +K
(1)
k (yk − ȳk|k−1),

(22)

the expression for K
(1)
k is given as

K
(1)
k = P k|k−1H

T
k (HkP k|k−1H

T
k +Ω

h
k +Rk)

−1

= P xh
k (P hh

k +Rk)
−1,

(23)

and the term P
(1)
k|k can be evaluated as

P
(1)
k|k = P k|k−1 −K

(1)
k HkP k|k−1

= P k|k−1 − P xh
k (P hh

k +Rk)
−1(P xh

k )T .
(24)

For sk = s2:

Similar to the previous case, we write

p(xk|Y k, s
(2)
k ) ∝ p(yk|xk, s

(2)
k )p(xk|Y k−1)

∝ St(h(xk);Σk; η)p(xk|Y k−1).
(25)

By introducing a Gamma distributed auxiliary variable λk ∼
Gλk

(η2 ,
η
2 ), the density p(yk|xk, s

(2)
k ) may be expressed as

[2]:

p(yk|xk, s
(2)
k ) =

∫
p(yk|xk, s

(2)
k , λk)p(λk) dλk, (26)

where p(yk|xk, s
(2)
k , λk) = Nyk

(h(xk);
1
λk

Σk). Furthermore,

the joint density p(xk, λk|Y k, s
(2)
k ) may be expressed as:

p(xk, λk|Y k, s
(2)
k ) ∝ p(yk|xk, s

(2)
k , λk)p(xk|Y k−1)p(λk)

= Nyk

(
h(xk), λ

−1
k Σk

)
Nxk

(
x̂k|k−1,P k|k−1

)
Gλk

(η
2
,
η

2

)
,

(27)

where we exploit the facts that p(xk|λk,Y k−1) =
p(xk|Y k−1) and p(λk|Y k−1) = p(λk). Note that the required

posterior density p(xk|Y k, s
(2)
k ) can be evaluated by marginal-

izing (27) over λk. To make this tractable, we approximate

p(xk, λk|Y k, s
(2)
k ) as a product of two independent factors,

i.e., p(xk, λk|Y k, s
(2)
k ) ≈ f1(xk|Y k, s

2
k)f2(λk|Y k). In the

VB framework, f1(·) and f2(·) are determined by minimizing

Kullback-Leibler (KL) divergence between the true and the

approximate posteriors. If no fixed functional form is assumed

for f1(·) and f2(·) then minimizing KL divergence results

in coupling of moments of f1(·) and f2(·). Consequently,

a number of fixed-point iterations are required to arrive at

a solution (refer to iterative solutions in [2, 15]). These

iterations, however, may be avoided if a fixed functional form

is imposed on one of the distributions (say, as in our case,

f2(λk|Y k)). The other factor (i.e., f1(xk|Y k)) can then be

evaluated using the following proposition:

Proposition 1 ([15]): Let f(θ|Y ) be the posterior dis-

tribution of multivariate parameter θ, where the latter is

partitioned into two sub-vectors of parameters, θ = [θ1
t,θ2

t]t.
Let f̂(θ|Y ) be an approximation of f(θ|Y ) of the kind

f̂(θ|Y ) = f̂(θ1|Y )f̂(θ2|Y ), where f̂(θ2|Y ) be a posterior

distribution of θ2 of fixed functional form. Then, the minimum

KL divergence, i.e., KL(f̂(θ|Y )||f(θ|Y )), is reached for

f̂(θ1|Y ) ∝ exp
(
Ef̂(θ2|Y )[ln(f(θ|Y ))]

)
.

While the proposition is valid for any f̂(θ2|Y ), the choice of

the functional form, however, greatly affects the accuracy of

the resulting algorithm. Owing to [15], a reasonable choice is

to select the exact marginal distribution of the joint posterior,

i.e., using (27)

p(λk|Y k) ∝
∫
Nyk

(
h(xk), λ

−1
k Σk

)
Nxk

(
x̂k|k−1,P k|k−1

)
×

Gλk

(η
2
,
η

2

)
dxk.

(28)

However, the exact marginal in (28) does not yield a tractable

form. On the other hand, if we replace Nxk
(x̂k|k−1,P k|k−1)

in the marginalization integral by its certainty equivalence

approximation [16], i.e., δ(xk − x̂k|k−1), where δ(·) denotes

the Dirac delta function, then the resulting posterior becomes

Gamma distributed; this is shown below:

f2(λk|Y k) ∝
∫

Nyk

(
h(xk), λ

−1
k Σk

)
δ
(
xk − x̂k|k−1

)
×
(29a)

Gλk

(
η
2 ,

η
2

)
dxk (29b)

= Nyk

(
h(x̂k|k−1), λ

−1
k Σk

)
Gλk

(
η
2 ,

η
2

)
(29c)

∝ λ

(
η+m

2
−1

)
k exp

(
− λk

2

(
ǫtkΣ

−1
k ǫk + η

))
, (29d)

∝ Gλk

(
1
2

(
η +m

)
, 1
2

(
ǫtkΣ

−1
k ǫk + η

))
(29e)

where ǫk = yk − h(x̂k|k−1). The primary motivation behind

using the certainty equivalence approximation is that the

resulting posterior f2(λk|Y k) has the same functional form

(i.e., Gamma distribution) as that of the optimal VB-posterior

(refer to [2, eq (2)]). Next we apply the aforementioned

proposition to determine f1(xk|Y k), i.e., f1(xk|Y k) ∝
exp

(
Ef2(λk|Y )[ln(p(xk, λk|Y ))]

)
; we evaluate

Ef2(λk|Y )[ln(p(xk, λk|Y ))] =

− 1
2 (xk − x̂k|k−1)

TP−1
k|k−1(xk − x̂k|k−1)

− 1
2 λ̄k(yk − h(xk))

T
Σ

−1
k (yk − h(xk)) + C,

(30)

where C represents those terms which are independent of xk,

and λ̄k :=
(
η+m

)
/
(
ǫTkΣ

−1
k ǫk + η

)
denotes the mean of λk.



The argument (30) is quadratic in xk, and this is desirable for

obtaining a closed-form solution. Further, we evaluate

f1(xk|Y k, s
(2)
k ) ∝ exp

(
Ef2(λk|Y )[ln(p(xk, λk|Y ))]

)

∝ Nxk

(
x̂k|k−1,P k|k−1

)
Nyk

(
h(xk), λ̄

−1
k Σk

)
.

(31)

Now using the linearization of h(xk) as described in (16),

we approximate Nyk

(
h(xk), λ̄

−1
k Σk

)
≈ Nyk

(
Hkxk +

ck, λ̄
−1
k Σk +Ω

h
k

)
. Consequently,

f1(xk|Y k, s
(2)
k ) ∝Nxk

(
x̂k|k−1,P k|k−1

)
×

Nyk

(
Hkxk + ck, λ̄

−1
k Σk +Ω

h
k

)
.

(32)

Note that (32) is similar to (21) with the only differ-

ence that Rk is replaced with λ̄−1
k Σk; accordingly, we get

f1(xk|Y k, s
(2)
k ) ≈ Nxk

(x̂
(2)
k|k;P

(2)
k|k), where

x̂
(2)
k|k = x̂k|k−1 +K

(2)
k (yk − ȳk|k−1), (33a)

K
(2)
k = P xh

k (P hh
k + λ̄−1

k Σk)
−1, (33b)

P
(2)
k|k = P k|k−1 − P xh

k (P hh
k + λ̄−1

k Σk)
−1(P xh

k )T . (33c)

Remark 1: Note that if λ̄k is known, then

the variational Bayes approximation of (32) is

equivalent to approximating the likelihood as

p(yk|xk, s
(2)
k ) ≈ Nyk

(
Hkxk + ck, λ̄

−1
k Σk + Ω

h
k

)
. We

use this approximation in the evaluation of the weighting

factor p(s
(2)
k |Y k), in the next section.

Remark 2: Note that the evaluation of x̂k|k−1, P k|k−1

and consequently x̂
(i)
k|k, K

(i)
k and P

(i)
k|k, for i = 1, 2,

requires the evaluation of moment integrals x̄k|k−1, P
ff
k−1,

ȳk|k−1, P xh
k and P hh

k using (7) (11), (17), (18) and

(19), respectively. All these integrals are of the form

I(s) =
∫
s(x)Nx(x̂;P )dx, for some nonlinear function s(·).

The integral I(s), in general, does not admit a closed-form

solution. However, a large number of numerical integration

techniques have been suggested in literature to approximate

such integrals [1, and references therein], [17, 18] etc. In

this work, we shall employ the third degree cubature rules

[17, 19], to approximate the required moment integrals.

First, a change of variable is introduced to convert the

non-standard Gaussian density, in the integral, into a

standard one. Let x = x̂ +
√
Pc, where P =

√
P
√
P

T

[1]; then, the Gaussian weighted integral is written as∫
s(x̂ +

√
Pc)Nc(0, I)dc =

∫
g(c)Nc(0, I)dc =: I(g),

where g(c) := s(x̂ +
√
Pc). Note that

√
P is a lower

triangular matrix obtained from the Cholesky decomposition

of P . Now we approximate I(g) using the third-degree

cubature method as follows [19, eq (45)]:

I(g) =

∫
g(c)Nc(0, I)dc ≈ 1

2n

n∑

j=1

[g(
√
nej)+ g(−√

nej)],

(34)

where ej is an n-dimensional unit vector in the jth-coordinate.

D. Weighting Factor

We now consider the evaluation of the weighting factor

p(s
(i)
k |Y k) and denote it with µ

(i)
k ; we note that

p(s
(i)
k |Y k) = µ

(i)
k ∝ p(yk|s(i)k ,Y k−1)p(s

(i)
k |Y k−1). (35)

The second factor in (35), i.e., p(s
(i)
k |Y k−1) is expanded as

follows:

p(s
(i)
k |Y k−1) =

2∑

j=1

p(s
(i)
k |s(j)k−1,Y k−1)p(s

(j)
k−1|Y k−1)

=

2∑

j=1

πjiµ
(j)
k−1.

(36)

Note that πji is known a priori and µ
(j)
k−1 is available

from the previous recursion. The first factor in (35), i.e.,

p(yk|s(i)k ,Y k−1) can be written as

p(yk|s(i)k ,Y k−1) =

∫
p(yk|xk, s

(i)
k )p(xk|Y k−1) dxk (37)

Again, we evaluate p(yk|s(i)k ,Y k−1) separately for i = 1, 2,

in the following:

For sk = s1:

p(yk|s(1)k ,Y k−1)

≈
∫

Nyk
(Hkxk + ck;Ω

h
k +Rk)Nxk

(x̂k|k−1;P k|k−1) dxk

=

∫
Nyk

(Hkx̂k|k−1 + ck;HkP k|k−1H
T
k +Rk +Ω

h
k)

Nxk
(x̂k|k;P k|k) dxk

= Nyk
(Hkx̂k|k−1 + ck;HkP k|k−1H

T
k +Rk +Ω

h
k) = Λ

(1)
k ,

(38)

where the last equality in (38) is owing to GPT; also note that

Hkx̂k|k−1 + ck = ȳk|k−1 and HkP k|k−1H
T
k +Rk +Ω

h
k =

P hh
k +Rk, hence Λ

(1)
k = Nyk

(ȳk|k−1;P
hh
k +Rk).

For sk = s2:

Employing the approximation suggested in Remark 1, i.e.,

p(yk|xk, s
(2)
k ) ≈ Nyk

(
Hkxk + ck, λ̄

−1
k Σk + Ω

h
k

)
, we can

write

p(yk|s(2)k ,Y k−1) ≈
∫

Nyk
(Hkxk + ck;Ω

h
k + λ̄−1

k Σk)×

Nxk
(x̂k|k−1;P k|k−1) dxk

= Nyk
(ȳk|k−1;P

hh
k + λ̄−1

k Σk) = Λ
(2)
k .
(39)

Finally, an overall expression for µ
(i)
k may be written as

µ
(i)
k =

1

c
Λ
(i)
k

2∑

j=1

πjiµ
(j)
k−1, (40)

where c =
∑2

l=1 Λ
(l)
k

∑2
m=1 πmlµ

(m)
k−1 is the normalization

constant.



TABLE I
STEPS INVOLVED IN THE PROPOSED FILTERING ALGORITHM

Initialize : x̂0|0 = E[x0], P 0|0 = E[(x0 − x̂0|0)
t(x0 − x̂0|0)]

and µ
(i)
k

=
1

2
, for i = 1, 2.

Predict : Find x̄k|k−1 and P
ff
k−1 using (7), and (11), set

x̂k|k−1 = x̄k|k−1 and P k|k−1 = P
ff
k−1 +Qk.

Update : Find ȳk|k−1,P
xh
k and P hh

k , using (17), (18) and (19).

Find λ̄k =
η +m

ǫT
k
Σ

−1
k

ǫk + η
, ǫk = yk − h(x̂k|k−1),

m = dim(yk).

Find K
(1)
k

, x̂
(1)
k|k

and P
(1)
k|k

using (22), (23) and (24).

Find K
(2)
k

, x̂
(2)
k|k

and P
(2)
k|k

using (33a), (33b) and (33c).

Averaging : Find Λ
(1)
k

, and Λ
(2)
k

, using (38) and (39).

Find µ
(i)
k

=
Λ
(i)
k

∑2
j=1 πjiµ

(j)
k−1

∑2
l=1 Λ

(l)
k

∑2
m=1 πmlµ

(m)
k−1

, for i = 1, 2.

Outputs : x̂k|k =

2∑

i=1

x̂
(i)
k|k

µ
(i)
k

,

P k|k =
2∑

i=1

µ
(i)
k

{P
(i)
k|k

+ (x̂
(i)
k|k

− x̂k|k)(x̂
(i)
k|k

− x̂k|k)
T }.

E. Approximation

From (3), we note that the required probability p(xk|Y k)
is actually a sum of two weighted densities. However, in

the BMA framework, p(xk|Y k) is approximated using a

single Gaussian density at each instant k. Accordingly, we

approximate p(xk|Y k) ≈ Nxk
(x̂k|k;P k|k), where x̂k|k and

P k|k are obtained by matching moments as follows:

x̂k|k =

2∑

i=1

x̂
(i)
k|k µ

(i)
k ,

P k|k =
2∑

i=1

µ
(i)
k {P (i)

k|k + (x̂
(i)
k|k − x̂k|k)(x̂

(i)
k|k − x̂k|k)

T }.

(41)

This completes our derivation of the proposed filter; based

on this derivation, an algorithm is summarized in Table I.

F. Computational Complexity

The asymptotic complexity of the various operations in-

volved in the proposed algorithm is listed in Table II. Note

that we have used Cf and Ch to denote the complexity of eval-

uating nonlinear functions f(·) and h(·), respectively. Also,

n = dim{xk} and m = dim{yk}. We note that, for large n,

the time complexity will be dominated by O(n3) operations.

However, if either Cf or Ch is greater than O(n2), then time

complexity will chiefly depend upon function evaluations.

Also note that, some operations such as K
(i)
k , x̂

(i)
k|k and P

(i)
k|k

are evaluated for i = 1, 2 in the proposed method. Whereas,

these operations are performed only once in a standard CKF.

Also, the covariance mixing step in the output is owing to

model averaging and is not required in standard filters. Hence,

TABLE II
ASYMPTOTIC COMPUTATIONAL COMPLEXITY OF THE VARIOUS STEPS IN

PROPOSED ALGORITHM.

Operations Complexity O(·)

Sigma Points n3

Evaluation of f(·), h(·) nCf , nCh
x̂|k−1 n2

ȳk|k−1 nm

P k|k−1 n3

K
(i)
k

nm2 +m3

x̂
(i)
k|k

n2m

P
(i)
k|k

nm2 + n2m

P k|k n2

the complexity of the proposed algorithm is slightly greater

than that of standard CKF. However, for large n, both scale

according to either O(n3). Also, in an iterative VB procedure,

all of these operations (apart from covariance mixing) are

performed Nitr times, where Nitr is the number of iterations

required by the IVB filter to converge. Hence for Nitr > 2,

the proposed algorithm will always be computationally more

efficient than its IVB based counterparts.

III. SIMULATION RESULTS

In this section, we the performance of the proposed al-

gorithm is compared against a conventional CKF [17] and

a robust (to outliers) CKF that utilizes iterative variational

Bayes (IVB) technique to handle outliers [2, 5], using a

simulation example that considers target tracking based on

range and bearings measurements. We consider the cases of

Gaussian-only as well as Gaussian-with-outliers observation

noise models. The root-mean-square-error (RMSE) is used as

a figure-of-merit to compare the performance of the various

filters.

Let us consider a target that is moving with nearly constant

velocity [20], i.e.,

xk = Fxk−1 +wk, (42)

where xk = [ζk, ζ̇k, ǫk, ǫ̇k]
T , F = F 1⊗I2, [ζk, ǫk] denote the

position coordinates; whereas, ζ̇k and ǫ̇k denote velocities in

ζ and ǫ directions, respectively. We have F 1 =

[
1 T
0 1

]
and

the sampling time T is set to 0.5 sec. The uncertainty wk ∼
N (0;Q), where Q = (Q1 ⊗ I2)σ

2
w, Q1 =

[
T 4/4 T 3/2
T 3/2 T 2

]

and σw = 2 m/s2. The observation model is specified as

yk =

[ √
ζ2k + ǫ2k

tan−1
(

ǫk
ζk

)
]
+ vk. (43)

If there are no outliers in the observation noise then vk ∼
N (0;Rk), where Rk = diag{[σ2

r , σ
2
θ ]} with σr =

√
1000

m and σθ =
√
10 mrad for all k. To generate the effect of

outliers, we use a clutter model that has been widely used in

literature to simulate outliers [2, 3, 5, 6], i.e.,

vk ∼
{

N (0,Rk) with probability 0.95
N (0, 50Rk) with probability 0.05

(44)



TABLE III
COMPARISON OF RMSE VALUES AVERAGED OVER THE ENTIRE

SIMULATION TIME

RMSE CKF CKF-IVB Proposed

No
Outliers

Position (m) 12.7 13.4 12.7
Velocity (m/s) 3.6 3.7 3.6

With
Outliers

Position (m) 21.5 13.9 13.2
Velocity (m/s) 4.6 3.7 3.6

The state vector is initialized with x̂0|0 = [100, 10, 100, 5]T

and the initial covariance is set to P 0|0 =
diag{[100, 10, 100, 10]}. The parameter η is set to 4
(As suggested in [2]) and the total simulation time is 1 min.

The transition probabilities πji required for the proposed

filter are set as follows: π11 = 0.9, π12 = 0.1, π21 = 0.9 and

π22 = 0.12. The simulation results are averaged over a 1000
Monte-carlo runs.

In Figure 1 and 2, we depict the position and velocity

RMSE values, respectively, of the three filters when the

observation noise is sampled from Gaussian distribution only,

i.e., when there are no outliers present. We note that the

conventional CKF filter and the proposed filter have almost

similar performances in this case; however, the robust CKF-

IVB filter suffers performance degradation. It is owing to

the reason that a CKF-IVB filter is based on the assumption

of t-distributed observation noise and hence in the case of

a Gaussian distributed noise, it does not perform as well

as a conventional filter. On the other hand, the proposed

filter incorporates both the Gaussian as well as t-distributed

noise models in a BMA framework and hence performs as

good as a conventional CKF. In Figure 3 and 4, we plot the

RMSE values of the various filters for outliers contaminated

observation noise generated using (44). Note that, owing to the

effect of outliers, the CKF filter suffers a large degradation in

performance. Whereas the proposed filter as well as the CKF-

IVB filter show robust performance in the presence of outliers.

Also, the proposed filter is performing better than the CKF-

IVB filter even in the presence of outliers. In Table III, we

depict the RMSE values averaged over the entire simulation

time. We note that in the absence of outliers, the proposed filter

shows a 5% improvement in position RMSE over the CKF-

IVB filter; whereas, it shows a 38% improvement in position

RMSE, over the standard CKF, in the presence of outliers.

Finally, to compare the computational costs of these meth-

ods, we run these methods 1000 times under the same con-

ditions on MATLAB 2015a using a core-i7 2.6GHZ CPU

with 16GB RAM. The average computational times for a

single iteration are given in Table IV. Note that the proposed

filter is approximately 2.5 times faster than the robust CKF

filter based on IVB method; whereas, it takes about twice the

computational time as that required by a standard CKF.

2The values of πji essentially model the fact that outliers occur only
infrequently. We have set πji such that, irrespective of the previous noise
sample, the probability that the next noise sample comes from a Gaussian
distribution is 90%.

TABLE IV
COMPARISON OF AVERAGE COMPUTATIONAL TIME FOR ONE ITERATION

OF EACH METHOD

Filter CKF CFK-IVB Proposed

Time (msec) 25 109.2 43.7
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Fig. 1. Position RMSE values of CKF, CKF-IVB and the proposed filter,
when there are no outliers.
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Fig. 2. Velocity RMSE values of CKF, CKF-IVB and the proposed filter,
when there are no outliers.

IV. CONCLUSIONS

This paper proposes a novel robust-to-outliers Bayesian

filtering approach that adopts both Gaussian and t-distributed

densities to model the outliers contaminated observation

noise. The proposed solution combines these models within

the Bayesian Model Averaging framework, where the t-
distribution is handled using a restricted variational Bayes

approach. It was shown that, in the absence of outliers,

the standard iterative variational Bayes (IVB) algorithm does

not perform well. However, the proposed filter gives accu-

rate estimates, comparable with the conventional Gaussian
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Fig. 3. Position RMSE values of CKF, CKF-IVB and the proposed filter, in
the presence of outliers.
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Fig. 4. Velocity RMSE values of CKF, CKF-IVB and the proposed filter, in
the presence of outliers.

assumption (GA) cubature Kalman filter. In the presence of

outliers, the proposed algorithm outperformed both the GA

filter as well as the robust IVB filter. Moreover, from the

perspective of computational cost, the proposed algorithm

was found to be approximately 2.5 times more efficient than

the standard IVB based robust solution. Consequently, the

proposed filter appears to be an admissible substitute for its

traditional counterparts.
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