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Active Thermal Management for Interior Permanent 

Magnet Synchronous Machine (IPMSM) Drives 

Based on Model Predictive Control 
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Member, IEEE  

 
Abstract—This paper proposes an active thermal management 

scheme for Interior Permanent Magnet Synchronous Machine 

(IPMSM) drives based on the model predictive control concept. 

The proposed control scheme can adaptively set torque limit based 

on the thermal state of the machine to limit the machine winding 

and end-winding temperatures. The proposed control scheme is 

assessed by experiments on a laboratory machine drive system and 

simulated for traction drives over Worldwide Harmonized Light-

duty Test Cycle (WLTC). Compared with conventional traction 

control scheme, the proposed scheme can effectively reduce peak 

temperature and hence thermal stress of the machine for 

improving its lifetime. 

Keywords— Temperature control; motor thermal model; model 

predictive control; machine drive; IPMSM 

I. INTRODUCTION  

Permanent magnet (PM) machines have increasingly been 

employed in a variety of applications ranging from automotive, 

aerospace and industrial automation to renewable power 

generation [1], [2]. In many these applications, PM machines 

often have to operate under transient conditions that can vary 

significantly in terms of cooling, ambient temperature, and 

power/torque output [3]. Consequently, the winding, end-

winding and magnet temperatures of the machines can change 

over a very wide range.  

Although it is possible to predict machine thermal behaviour 

against the worst operating conditions and to take design 

measures to avoid overheating [4], these may lead to overly 

conservative designs or to underestimate real operating 

conditions which may cause excessive thermal stress. It is well 

known that the insulation lifetime of machine winding is very 

sensitive to cumulative thermal stress and temperature cycling 

as the frequent overheating can lead to significant reductions in 

lifetime and reliability. For PM machines, overheating may 

result in partial demagnetisation and this would further increase 

the thermal stress as torque capabilities reduces and hence 

current increases for the same load torque. The vicious circle 

may continue and result in more severe consequence.  

It is, therefore, essential to manage the thermal stress of PM 

machines in real operating conditions. A constant current limit 

is often imposed on machine drives to prevent overheating [5]. 

However, this does not account the thermal state of the machine 

in real operation. If the machine temperature is relatively low, 

the limit can be relaxed to allow for higher output torque or 

power. On the other hand, if the machine temperature is already 

very high, the current limit will not be able to prevent 

overheating. In some applications, temperature sensors are used 

to disable the machine drives if the machine or inverter 

temperature exceeds a predefined limit, this leads to complete 

loss of the machine output torque/power and potentially 

uncontrolled rectification, which is not acceptable in many 

applications. 

Various attempts have been made to improve thermal 

management of electrical machines. In applications where a 

large contribution to the machine torque is due to acceleration 

and deceleration, a trade-off between drive control effort (motor 

torque) and performance (position or speed tracking error) may 

be possible [6]. When the machine operates at high temperature, 

relaxation in drive performance requirements makes it possible 

to reduce control effort (torque) and hence machine temperature. 

The trade-off can be formulated in the form of the linear 

quadratic regulator (LQR) based on measured or estimated 

machine temperature [6]. However, the technique is effective 

only if the majority of the torque is for acceleration/deceleration. 

In [7], model predictive control (MPC) was adopted to estimate 

the current limit of induction machines to keep temperature 

within predefined constraints over a specified prediction horizon 

based on a lumped-parameter thermal network (LPTN) model 

[8], [9]. However, the relatively complex lumped-parameter 

thermal model increases the computation load. In addition, the 

experimental results indicated that the thermal management 

scheme leads to a long-time estimation error which leads to 

further drift with time [7]. In [10], a model predictive thermal 

overload control scheme was proposed to actively control the 

temperatures of switched reluctance motors based on a 41 nodes 

thermal model proposed in [11]. This control scheme also 

suffers from the excessive computational load and cannot update 

thermal parameters according to the operating conditions.  
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In this paper, a thermal management scheme based on a 

three-node-lumped-parameter thermal model for interior 

permanent magnet machine drive is proposed. The proposed 

control scheme combines the maximum torque per ampere 

(MTPA) control scheme [12] and voltage-constrained MTPA 

(VCMTPA) control scheme [13] with the model predictive 

control based on a 3-node-lumped-parameter thermal network 

model [14] to generate an adaptive torque limit according to the 

thermal state of the machine in order to reduce its thermal stress. 

The proposed thermal control scheme is verified by simulations 

and experiments. 

The rest of the paper is organized as follows. Section II 

describes the active thermal management strategy for IPM 

machines based on a three-node thermal network. Section III 

presents simulations of the proposed thermal management 

strategy for a traction drive over WLTC cycle and discusses the 

results. Section IV presents experimental results from testing of 

a prototype IPM drive in the laboratory. The conclusions are 

drawn in section V. 

II. ACTIVE THERMAL MANAGEMENT  

A. Active Thermal Management Scheme 

The schematic of the active thermal management scheme is 

shown in Fig. 1. The innermost is a current control loop where 

the d- and q-axis currents are controlled by two PI current 

controllers whose inputs are the error between the measured 

currents and reference currents. The outputs of the current 

controller are the reference voltages with decoupling 

compensation and they are fed to the inverter. The outer loop is 

the speed control loop where the reference speed and measured 

speed are fed to a PI speed controller to generate the reference 

torque command, 𝑇𝑒∗. In order to limit the motor temperature, 

the reference torque is limited by the proposed MPC control 

block in Fig. 1 and the limited reference torque (𝑇𝑒_𝑙𝑖𝑚) is fed to 

a look-up table to generate the d- and q-axis current commands 

for MTPA or VCMTPA control.  

 
Fig. 1.  Schematic of the motor control loops 

As shown in Fig. 1, 𝑇𝑒_𝑙𝑖𝑚 is generated by an MPC control 

block to prevent the motor temperature from exceeding the 
maximum reference temperature. In this paper, the MPC control 
is based on a 3-node-lumped-parameter thermal network. The 
overall schematic of the model predictive thermal management 
based on the 3-node thermal network is shown in Fig. 2.  

 
Fig. 2.  The overall schematic of the 3 nodes lumped model MPC based 

active thermal management. 

As can be seen in Fig. 2, the MPC-based active thermal 
management mainly consists of five blocks. The first block is 
the loss model which estimates the winding copper loss (𝑃𝑊), 
end-winding copper loss (𝑃𝐸𝑊), the rotor loss (𝑃𝑟𝑜𝑡), the iron 
losses in stator (𝑃𝑓𝑒𝑠) and rotor (𝑃𝑓𝑒𝑟) under a given operating 

condition. The second block is the temperature estimator which 
estimates the rotor temperature ( 𝑇𝑟𝑜𝑡 ) based on ambient 
temperature (𝑇𝐸 ), coolant temperature (𝑇𝐶 ) and the estimated 
power losses from the loss model. The third block is the model 
predictive control which calculates the maximum copper loss 

(𝑃𝑐𝑢_𝑚𝑎𝑥) to prevent the motor temperature from exceeding the 

maximum reference temperature based on the measured 
winding, end-winding, ambient and coolant temperatures, and 
the estimated rotor temperature as well as the estimated losses. 

The maximum copper loss (𝑃𝑐𝑢_𝑚𝑎𝑥) is fed to a look-up table in 

the fifth block to generate the adaptive torque limit for MTPA 
or VCMTPA control under the temperature constraint. The 
details of each block will be described below. 

B. Power Loss Model 

The losses in the motor can generally be divided into the iron 

loss, mechanical loss, copper loss and stray loss. Among these 

losses, the copper loss, iron loss, and the mechanical and 

magnetic losses are the main contributors to the winding, end-

winding, and rotor temperature increases.  

The copper losses are caused by the current flow in the stator 

resistance. The stator resistance can be calculated by (1): 𝑅𝑆 = 𝑅𝑆0[1 + 𝛼(𝑇𝑊∗ − 𝑇0)] (1) 

where 𝑅𝑆0  is the stator resistance at temperature 𝑇0 ; 𝛼 is the 

temperature coefficient of the resistance; 𝑇𝑊∗  is the 

instantaneous winding temperature. The copper losses can be 

expressed as follows: 𝑃𝑐𝑢 = 𝑅𝑆(𝑖𝑑2 + 𝑖𝑞2) (2) 

where, 𝑖𝑑  and 𝑖𝑞  are the d- and q-axis currents, respectively. 

The iron losses comprise hysteresis and eddy current loss 

components and they are calculated by the model described in 

[15]. The iron loss can be calculated by the component 

associated with the voltage magnitude in (3) and the component 

associated with the demagnetising field in (5) : 



 

𝑃𝑓𝑒𝑂𝐶 = 𝛼1 𝑉𝑚2𝜋𝛹𝑚 + 𝛼2 ( 𝑉𝑚2𝜋𝛹𝑚)2 + 𝛼3 ( 𝑉𝑚2𝜋𝛹𝑚)1.5
 (3) 

where 𝑉𝑚  is the voltage magnitude. (𝛼1 , 𝛼2 , 𝛼3 ) are losses 

coefficients related to machine characteristics in open-circuit 

which are extracted from finite element (FE) analysis. 𝛹𝑚   is 

the flux-linkage due to permanent magnets. 𝑉𝑚  in (3) can be 

evaluated by (4). The 𝛹𝑑  and 𝛹𝑞  in (4) are obtained by FE 

analysis and stored in look-up tables which relate the stator flux 

linkages with stator currents. |𝑉𝑚| = 𝜔𝑒√𝛹𝑑2 + 𝛹𝑑2 (4) 

𝑃𝑓𝑒𝑆𝐶 = 𝑏1 𝑉𝑑𝛼2𝜋𝛹𝑚 + 𝑏2 ( 𝑉𝑑𝛼2𝜋𝛹𝑚)2 + 𝑏3 ( 𝑉𝑑𝛼2𝜋𝛹𝑚)1.5
 (5) 

The voltage associated with the demagnetising field 𝑉𝑑𝛼  is 

equal to: |𝑉𝑑𝛼| = |𝜔𝑒(𝛹𝑑 − 𝛹𝑚)| (6) 

The coefficients (𝑏1, 𝑏2, 𝑏3) are obtained by FE analysis of the 

iron loss in short-circuit conditions. The total iron loss at a 

given operation condition is the sum of 𝑃𝑓𝑒𝑂𝐶  and 𝑃𝑓𝑒𝑆𝐶 .  More 

details on the iron loss calculation can be found in [16]. 

It is worth noting that machine temperature variations may 

influence some variables in the iron loss calculations above. 

Therefore, taking into account the thermal effects into the iron 

losses calculation [17] may give a better temperature 

estimation.   

After the copper loss and iron loss are calculated, the power 

losses distribution at windings, end-windings, and rotor can be 

obtained by (7) to (9): 𝑃𝑊 = 𝑎𝑃𝑐𝑢 + 𝑃𝑓𝑒𝑠 (7) 𝑃𝐸𝑊 = 𝑏𝑃𝑐𝑢 (8) 𝑃𝑟𝑜𝑡 = 𝑃𝑓𝑒𝑟 + 𝑃𝑚𝑒𝑐ℎ + 𝑃𝑚𝑎𝑔 (9) 

where, 𝑃𝑓𝑒𝑠 is the stator iron losses, 𝑃𝑓𝑒𝑟  is the rotor iron losses 

and they can be calculated separately from the general 

equations (3) and (5) by only changing the coefficients.  The 𝑃𝑚𝑒𝑐ℎ  is the mechanical losses which can be calculated from 

bearing friction. The magnet loss 𝑃𝑚𝑎𝑔 as a function of rotor 

speed and stator currents are obtained from FE and it is lumped 

into the rotor loss. For the machine under consideration, the 

magnet loss is quite small because the magnets are buried in the 

rotor lamination which shields the high frequency magnetic 

field seen by the magnets. The coefficients a and b are 

parameters dependent on machine active length and end 

winding length.   

C. Three Nodes Lumped Parameter Thermal Network 

For both the temperature estimator block and the model 

predictive control block in Fig. 2, a motor thermal model is 

needed. In this section, a low-order LPTN model [14], [18] is 

adopted as shown in Fig. 3. The temperatures of the winding, 

end-winding and rotor are represented by 𝑇𝑊 , 𝑇𝐸𝑊  and 𝑇𝑟𝑜𝑡 , 

respectively, and their thermal capacitances are denoted by 𝐶𝑊, 𝐶𝐸𝑊 , and 𝐶𝑟𝑜𝑡 . The power losses (𝑃𝑊 , 𝑃𝐸𝑊 , and 𝑃𝑟𝑜𝑡 ) are 

injected in parallel at each node. The three nodes are 

interconnected through thermal resistances (𝑅𝑊−𝐸𝑊 , 𝑅𝑊−𝑟𝑜𝑡 , 𝑅𝑊−𝐶 , 𝑅𝑟𝑜𝑡−𝐸), as shown in Fig. 3. This model is simple for 

computation while preserving the main motor thermal 

characteristics.   

 
Fig. 3.  Lumped parameter thermal network model.  

 

The state space equations of the thermal network shown in 

Fig. 3 are listed in (10)-(16): 

[ 𝑇𝑊̇𝑇𝐸𝑊̇𝑇𝑟𝑜𝑡̇ ] = 𝐴 ∙ [ 𝑇𝑊𝑇𝐸𝑊𝑇𝑟𝑜𝑡] + 𝐵 ∙ [  
  𝑃𝑊𝑃𝐸𝑊𝑃𝑟𝑜𝑡𝑇𝐶𝑇𝐸 ]  

  
 (10) 

where: 𝐴 = [𝐶𝑊 0 00 𝐶𝐸𝑊 00 0 𝐶𝑟𝑜𝑡]
−1 [a11 𝑎12 𝑎13𝑎21 a22 0𝑎31 0 a33] (11) 

𝑎11 = −( 1𝑅𝑊𝐶 + 1𝑅𝑊−𝐸𝑊 + 1𝑅𝑊−𝑟𝑜𝑡) (12) 𝑎12 = 𝑎21 = −𝑎22 = 1𝑅𝑊−𝐸𝑊 (13) 𝑎13 = 𝑎31 = 1𝑅𝑊−𝑟𝑜𝑡 (14) 𝑎33 = −( 1𝑅𝑊−𝑟𝑜𝑡 + 1𝑅𝑟𝑜𝑡−𝐸) (15) 

𝐵 = [𝑏1100 0𝑏220 00𝑏33
𝑏1400 00𝑏35] (16) 𝑏11 = 1 𝐶𝑊⁄  (17) 𝑏22 = 1 𝐶𝐸𝑊⁄  (18) 𝑏33 = 1 𝐶𝑟𝑜𝑡⁄  (19) 𝑏14 = 1 (𝐶𝑊𝑅𝑊𝐶)⁄  (20) 𝑏35 = 1 (𝐶𝑟𝑜𝑡𝑅𝑟𝑜𝑡−𝐸)⁄  (21) 𝑇𝐶  and 𝑇𝐸  are the coolant temperature and ambient 

temperatures, respectively. 𝑃𝑊 , 𝑃𝐸𝑊  and 𝑃𝑟𝑜𝑡  are the losses 

associated with the active part of the stator, the end-winding 

and the rotor, respectively, and they are calculated by (7)-(9).  

Since the iron loss in a PM machine depends more strongly 

on motor speed than on the current, it can be separated from the 

copper loss. Therefore, matrix 𝐵  in (10) can be divided into 𝐵𝑐𝑜𝑛  and 𝐵𝑣𝑎𝑟  as shown in (22).  

[ 𝑇̇𝑊𝑇̇𝐸𝑊𝑇̇𝑟𝑜𝑡] = 𝐴 ∙ [ 𝑇𝑊𝑇𝐸𝑊𝑇𝑟𝑜𝑡] + 𝐵𝑐𝑜𝑛 ∙ [  
  𝑃𝑓𝑒𝑠𝑃𝑓𝑒𝑟𝑃𝑚𝑒𝑐ℎ𝑇𝐶𝑇𝐸 ]  

  + 𝐵𝑣𝑎𝑟𝑃𝑐𝑢 (22) 



 

𝐵𝑐𝑜𝑛 = [𝑏𝑐𝑜𝑛1100 00𝑏𝑐𝑜𝑛32
00𝑏𝑐𝑜𝑛33

𝑏𝑐𝑜𝑛1400 00𝑏𝑐𝑜𝑛35] (23) 𝑏𝑐𝑜𝑛11 = 1 𝐶𝑊⁄  (24) 𝑏𝑐𝑜𝑛14 = 1 (𝐶𝑊𝑅𝑊−𝐶)⁄  (25) 𝑏𝑐𝑜𝑛32 = 𝑏𝑐𝑜𝑛33 = 1 𝐶𝑟𝑜𝑡⁄  (26) 𝑏𝑐𝑜𝑛35 = 1 (𝐶𝑟𝑜𝑡𝑅𝑟𝑜𝑡−𝐸)⁄  (27) 𝐵𝑣𝑎𝑟 = [ 𝑎 𝐶𝑊⁄𝑏 𝐶𝐸𝑊⁄0 ] (28) 

Based on (22), the motor winding, end-winding 

temperatures, and the rotor temperature can be predicted as 

described in the following section.  

D. Motor Temperature Estimator 

By discretising (22), the temperature vector at kth time step 

can be predicted by (29). 

[ 𝑇𝑊(𝑘)𝑇𝐸𝑊(𝑘)𝑇𝑟𝑜𝑡(𝑘)] = 𝐴𝑑 ∙ [ 𝑇𝑊(𝑘 − 1)𝑇𝐸𝑊(𝑘 − 1)𝑇𝑟𝑜𝑡(𝑘 − 1)] + 𝐵𝑐𝑜𝑛_𝑑 ∙ [  
  𝑃𝑓𝑒𝑠𝑃𝑓𝑒𝑟𝑃𝑚𝑒𝑐ℎ𝑇𝐶𝑇𝐸 ]  

  
 

+𝐵𝑣𝑎𝑟_𝑑𝑃𝑐𝑢 (29) 

Where 𝐴𝑑 , 𝐵𝑐𝑜𝑛_𝑑, 𝐵𝑣𝑎𝑟_𝑑 are the discretized forms of 𝐴, 𝐵𝑐𝑜𝑛, 

and 𝐵𝑣𝑎𝑟  in (22). Since 𝑃𝑓𝑒𝑠, 𝑃𝑓𝑒𝑟  can be calculated by (3) and 

(5), 𝑃𝑚𝑒𝑐ℎ  can be calculated from bearing friction and 𝑇𝐶  and 𝑇𝐸  are known, the motor winding temperature, end-winding 

temperature and rotor temperature can be estimated based on 

the temperatures estimated at the previous time step.      

E. MPC Based Active Thermal Management 

Equation (29) provides the means of predicting motor 

temperatures over one time step; hence, by repeating the 

prediction for a number of steps, it is possible to predict the 

copper loss over a specified prediction horizon. According to 

(29), the future thermal state vector (temperature vector) after N 

time steps can be formulated by (30) through iteration where 𝑃𝑐𝑢(𝑘 + 𝑗) is the copper loss at the jth time step (0<j<N-1).  

𝑇⃑ (𝑘 + 𝑁) = [ 𝑇𝑊(𝑘 + 𝑁)𝑇𝐸𝑊(𝑘 + 𝑁)𝑇𝑟𝑜𝑡(𝑘 + 𝑁)] = 𝑋 + 𝑌𝑃 (30) 

𝑋 = 𝐴𝑑𝑁 ∙ [ 𝑇𝑊(𝑘)𝑇𝐸𝑊(𝑘)𝑇𝑟𝑜𝑡(𝑘)] + ∑ 𝐴𝑑𝑁−𝑗−1 ∙ 𝐵𝑐𝑜𝑛_𝑑 ∙ [  
  𝑃𝑓𝑒𝑠𝑃𝑓𝑒𝑟𝑃𝑚𝑒𝑐ℎ𝑇𝐶𝑇𝐸 ]  

  𝑁−1
𝑗=0  

 (31) 𝑌𝑃 = ∑ 𝐴𝑑𝑁−𝑗−1 ∙ 𝐵𝑣𝑎𝑟_𝑑𝑁−1
𝑗=0 ∙ 𝑃𝑐𝑢(𝑘 + 𝑗) (32) 

Since the future motor speed variation is unknown over the 

prediction horizon, the iron loss is assumed to be the value at 

the kth time step and does not change over the N steps of the 

prediction horizon. In this way, for each time step 𝑘 , the 

predicted temperature vector at the end of the prediction 

horizon is updated for the new value of (𝑘 +  𝑁) based on the 

temperature vector of the kth time step and (30). The thermal 

model parameters of (30) are also updated from look-up tables 

in each time step k based on operating conditions.  

By employing a parameter identification technique, the 

thermal resistances and capacitances of the three-node model 

can be obtained either from experimental data or simulated data 

with a sophisticated model (lumped parameter or FE) for 

different cooling schemes. The degree of the model fitting to 

these data can be used to determine if the model structure 

should be changed or not for a given cooling scheme. The 

model can also cope with changes in the cooling condition 

during operation. The machine under study in this paper is an 

air-cooled motor designed for EV traction. Its cooling condition 

is dependent on vehicle speed. Hence the model parameters can 

be identified at a given set of speeds and used in a look-up table. 

Similar treatment may be employed for other cooling schemes 

to account changes in cooling conditions. Since the ambient 

temperature and coolant temperature vary slowly and do not 

change significantly during the short prediction horizon, the 𝑇𝐶  

and 𝑇𝐸  can be measured by temperature sensors and assumed as 

constant during the N steps.   

 It is worth noting that the temperatures at the three nodes of 

the thermal model may closely represent the hotspot 

temperatures of the active winding, the end-winding, and the 

rotor if the parameters of the model are identified from the 

measured or simulated temperatures close to the hotspot 

temperatures. The differences between the model-predicted 

temperatures and the actual hotspot temperatures can be 

assessed by more sophisticated thermal model or 3D FEA. And 

a safety margin may be considered by setting the actively 

managed temperature limits.      

F. Maximum Copper Loss Calculation 

By employing the model predictive control concept [10], the 

optimal maximum permissible copper loss sequence 𝑃𝑐𝑢_𝑚𝑎𝑥 

can be obtained by letting the predicted temperature vector at the 

end of the predictive horizon ( 𝑇⃑ (𝑘 + 𝑁)  in (30)) equal the 

maximum permissible temperature vector 𝑇⃑ 𝑚𝑎𝑥 . Therefore, 

based on (30), the maximum permissible copper loss sequence 

can be calculated by minimizing the cost function in (33) :  𝐽(𝑁) = ∑‖𝑇⃑ (𝑘 + 𝑗|𝑘) − 𝑇⃑ 𝑚𝑎𝑥‖2𝑁
𝑗=0  (33) 𝑇⃑ (𝑘 + 𝑗|𝑘) is the predicted motor temperature at the jth time 

step within the N time steps of prediction. The cost function can 

be further simplified based on the following assumptions: Since 

in most applications it is not possible to know the future load 

condition over the prediction horizon, the maximum 

permissible copper loss is assumed to be constant over the 

prediction horizon [9]. Consequently, the motor temperatures 

increase or decrease monotonically. Therefore, only the 

temperature at the end of the prediction horizon needs to be 

considered. The cost function in (33) can be simplified in (34).  𝐽(𝑁) = ‖𝑇⃑ (𝑘 + 𝑁|𝑘) − 𝑇⃑ 𝑚𝑎𝑥‖2
  



 

= (𝑇⃑ (𝑘 + 𝑁|𝑘) − 𝑇⃑ 𝑚𝑎𝑥)𝑇 ∙ (𝑇⃑ (𝑘 + 𝑁|𝑘) − 𝑇⃑ 𝑚𝑎𝑥) (34) 

Where the superscript T denotes vector transposition. The 

maximum permissible copper loss can be obtained by letting 𝜕𝐽(𝑁) 𝜕𝑃𝑐𝑢⁄ = 0 and the result is given in (35). 𝑃𝑐𝑢_𝑚𝑎𝑥 = (𝑌𝑇 ∙ 𝑌)−1 ∙ 𝑌𝑇 ∙ (𝑇⃑ 𝑚𝑎𝑥 − 𝑋) (35) 

where Y is given by 𝑌 = ∑ 𝐴𝑑𝑁−𝑗−1 ∙ 𝐵𝑣𝑎𝑟_𝑑𝑁−1
𝑗=0  (36) 

𝑃𝑐𝑢_𝑚𝑎𝑥 is calculated at every time step when the MPC output 

is updated. Once 𝑃𝑐𝑢_𝑚𝑎𝑥  is obtained, the maximum current 

amplitude can be set according to (37).  

𝐼𝑚𝑎𝑥 = √𝑃𝑐𝑢_𝑚𝑎𝑥𝑅𝑆(𝑘)  (37) 

The predicted maximum current amplitude is further fed to 

the look-up table to obtain the maximum torque limit, 𝑇𝑒_𝑙𝑖𝑚. In 

this way, the torque limit is changed adaptively according to 

thermal state of the machine. It is worth noting that 𝑋 obtained 

in (31) is calculated based on 𝑇𝑊(𝑘) , 𝑇𝐸𝑊(𝑘) , 𝑇𝑟𝑜𝑡(𝑘) . The 𝑇𝑊(𝑘)and 𝑇𝐸𝑊(𝑘)  may be obtained by temperature sensors 

embedded in the winding and end-winding. 𝑇𝑟𝑜𝑡(𝑘)  can be 

obtained by the temperature estimator in Fig. 2 or set as a 

constant equals to the maximum magnet temperature reference. 

In the latter case, (35) will minimize only the differences 

between the winding and end-winding temperatures and their 

respective limits. Some methods have been proposed for 

measuring the rotor temperature directly using e.g. wireless 

sensors [19], [20]. If these are employed, the 𝑇𝑟𝑜𝑡(𝑘) can be set 

as the measured temperature. 

III. SIMULATION STUDY 

To assess the performance of the proposed active thermal 

management scheme, simulations have been performed based 

on a 10 kW IPMSM drive designed for wide constant power 

operation in traction applications. The machine specification is 

given in Table I.  

 
TABLE I.            IPMSM PARAMETERS 

Number of pole-pairs 3 

Phase resistance 51.2 mΩ 

Continuous/Maximum current 58.5/118 A 

Peak power at base speed 10 kW 

DC link voltage 120 V 

Based/maximum speed 1350/4500 rpm 

Continuous/peak torque 35.5/70 Nm 

Peak power at maximum speed 7 kW 

 

The thermal behaviour of the machine in the simulation was 

represented by a 48 nodes high fidelity computationally efficient 

electro-thermally coupled model [17]. Thus, the effects of  

temperature on the loss components and torque were fully 

accounted for. Simulations of different torque and speed were 

performed based on this model and the variations of 𝑃𝑊, 𝑃𝐸𝑊, 

𝑃𝑟𝑜𝑡 , 𝑇𝑊, 𝑇𝐸𝑊, 𝑇𝑟𝑜𝑡  with time are recorded. Because the motor 

thermal characteristics may vary with rotor speed, the 

parameters of the 3-node thermal network at different rotor 

speed were identified respectively and stored in look-up tables. 

The identification procedure is similar to the one reported in 

[21]. The parameter identification for the three-node-lumped 

thermal model was performed using the MATLAB parameter 

estimation tool with 𝑃𝑊 , 𝑃𝐸𝑊 , 𝑃𝑟𝑜𝑡  set as the inputs and 𝑇𝑊 , 𝑇𝐸𝑊 , 𝑇𝑟𝑜𝑡  set as the output. It worth noting that since the 

temperatures vary inside the rotor, winding and end winding, the 

hot-spot temperatures of winding, end winding and rotor 

obtained by simulations or experiments were recorded as the 𝑇𝑊 , 𝑇𝐸𝑊 , 𝑇𝑟𝑜𝑡 , respectively. [19], [20] proposed methods to 

measure rotor temperature, however, the parameter 

identifications for the three-node-lumped thermal model in this 

paper are based on the 𝑇𝑟𝑜𝑡  obtained by simulations of the 48 

nodes electro-thermally coupled model. The accuracy of the 

model is verified against the experimentally measured winding 

temperature as illustrated in Fig. 4. 

Fig. 4. The measured torque, measured motor winding temperature and 

estimated motor winding temperature. 

The proposed active thermal management scheme has been 

simulated when the drive was employed in a distributed traction 

for a micro electric vehicle (sub-segment A class). The mass of 

the micro electric vehicle in the simulation was deliberately set 

much larger than its rated value to make the motor generate more 

heat during the acceleration and deceleration to highlight the 

characteristics of the proposed control method. Simulations 

were performed against the Worldwide Harmonized Light 

Vehicles Test Cycle (WLTC) on a 0° gradient slope. To 

guarantee the braking performance, the torque limit imposed by 

the active thermal management scheme was disabled when the 

reference torque was negative. The simulation time step of the 

MPC was set to 10 s, and the number of steps in the prediction 

horizon was set to 10. The ambient temperature was set at 45 °C. 

The torque command was generated by a PI speed controller so 

that the vehicle speed follows the WLTC. Since the current loop 

in Fig. 1 is much faster than the motor thermal response, the 

current loop dynamic was neglected in the simulation. The 

maximum reference temperature was set at 135 °C so that the 

winding temperature and magnet temperature would not exceed 

their insulation class and grade limits. In order to reach cyclic 

temperature steady state, the simulation was performed over 10 

WLTC cycles and the resultant winding and magnet 

temperatures together with the maximum reference temperature 

are shown in Fig. 5.  



 

Fig. 6 shows the vehicle speed response in the first and last 

WLTC cycles. For the purpose of comparison, the speed 

responses when the active thermal management was not 

activated are also shown. The corresponding torque references, 

actual torques and torque limiting profiles generated from the 

active thermal management are shown in Fig. 7. As can be seen 

from Fig. 6 and Fig. 7, the vehicle speed followed the WLTC 

profile quite well in the first cycle when the motor winding 

temperature was lower than the reference, and the torque limit 

profile shown in Fig. 7 (a) generated by the active thermal 

management was greater than the reference torque. As the motor 

temperature continued to increase under this adverse driving 

condition, the adaptive torque limit generated by the active 

thermal management shown in Fig. 7 (b) was imposed on the 

traction system to maintain the winding and end-winding 

temperature close to the reference maximum of 135 °C. As 

mentioned above, in order to control the temperatures and 

guarantee the braking performance, the actual torque was only 

limited by the active thermal management scheme when torque 

demand was positive. Consequently, the vehicle speed deviated 

from the WLTC. The speed deviation from the WLTC is clearly 

seen in Fig. 6 (b). Therefore, the active thermal management is 

a trade-off between the drive performance (speed tracking 

accuracy in this case) and the machine thermal states to maintain 

the temperatures around the maximum reference temperature. In 

the case of electric vehicle traction, this trade-off is worthwhile 

for preserving the lifetime and safety of the traction system. It is 

worth noting that at between t=1.78 × 104 s and 1.79 × 104 s 

in Fig. 7(b), the torque limit dropped approximately to zero, 

forcing the actual torque also approximately to zero. This was 

due to the fact that the vehicle mass was set much higher than 

the rated value in the simulation. This would be avoided during 

powertrain design. For this extreme condition, whether the 

torque limit imposed by the active thermal management scheme 

should be disabled or not can be decided by the vehicle control 

unit (VCU) according to a comprehensive analysis of the data 

obtained from sensors on the vehicle body to guarantee driver’s 
safety.  

 
Fig. 5.  The winding, end-winding and magnet temperatures. 

 
(a) First cycle 

 
(b) Last cycle 

Fig. 6.  WLTC reference speed and actual speed with active thermal 

management.  

 
(a) First cycle 

 
(b) Last cycle 

Fig. 7.  Reference torque, Adaptive torque limiting profile and the actual torque. 
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Fig. 8.  Comparison between winding temperatures with and without active 

thermal management. 

 

The comparison of the resultant winding temperatures over 

the driving cycles with and without the active temperature 

control is shown in Fig. 8. As can be seen, due to the active 

thermal management, the winding temperatures were controlled 

close to the maximum reference temperature (135 °C). The 

relatively small deviation was due to the assumptions made to 

simplify the cost function in (34). In contrast, the resultant 

temperature without active temperature control was much 

higher than the maximum reference temperature, and the peak 

temperature was over 200 °C. Given that the average life 

expectancy of winding insulation is reduced approximately by 

half for every 10 °C rise in temperature [6], the temperature 

difference shown in Fig. 8 will significantly affect the lifetime 

of the motor winding when the excessive winding temperature 

is not managed with the proposed active temperature 

management scheme.  

IV. EXPERIMENTAL RESULTS 

In order to validate the active thermal management method 
discussed above, experiments were performed based on the 10 
kW IPMSM described in section III with the test rig shown in 
Fig. 9. The active thermal management scheme in conjunction 
with field-oriented control operated in torque control mode was 
implemented in the drive controller while the machine is loaded 
by a dynamometer in speed control mode. A high precision 
torque transducer measured the resultant torque. The ambient 
temperature was regulated by the air conditioning system of the 
test cell to 23 °C. The winding and end-winding temperatures 
were measured by temperature transducers and recorded. The 
temperature transducers were installed at the centre of the 
winding and end winding stacks to measure the hot spot 
temperatures. In the tests, air cooling was applied to the stator 
housing using a cooling fan with average air flow rate of 8.4 m/s. 
The ambient and coolant temperatures were measured and fed 
to the input 𝑋 in (35). Since the time of ambient temperature 
and coolant temperature changes is much longer than the 
prediction horizon, the 𝑇𝐶  and 𝑇𝐸  in 𝑋  were assumed to be 
equal and constant during the N steps.  

 

Fig. 9.  Test rig. 

 
The tests were performed with the maximum reference 

temperature set to 90 °C. It was deliberately set to a lower value 
than the winding rated temperature to assess how the proposed 
scheme responds to the thermal limit. 𝑇𝑊(𝑘)  and 𝑇𝐸𝑊(𝑘)  in 
(31) for the model predictive block were the measured winding 
and end-winding temperatures. 𝑇𝑟𝑜𝑡(𝑘) in (31) was set to the 
reference maximum temperature (90℃), therefore, the MPC was 
only minimizing the errors of 𝑇𝑊(𝑘) and 𝑇𝐸𝑊(𝑘). The time step 
of the MPC was set to 10 s and the number of prediction steps, 
N, was set to 10. Indeed, N is a tuning parameter of the MPC 
control. With a large N, the temperature correction action will 
be slower, and the reduction in the torque limit will be more 
gradual. The effect will be opposite if N is small. In addition, 
since (30) is obtained from iterations, a larger N may bring more 
errors to (30) due to the thermal model error, motor loss 
calculation error and the assumptions used to simplify the cost 
function in (37).   

The proposed active thermal management was performed on 
an ADSP-TS201 digital signal processor (DSP). According to 
(35), the 𝑌 in (36) should be calculated at every time step before 
the output of the MPC is updated and the calculation of 𝑌 

requires a (𝑁 − 1)𝑡ℎ  order matrix multiplication, i.e., the 

calculation of 𝐴𝑑𝑁−1 , which significantly increases the 
computational load. In order to decrease the computational load, 𝐴𝑑𝑥  is calculated based on 𝐴𝑑𝑥−1 which, in turn, is calculated in 
the previous execution of the main loop. In this way, the DSP 
only need to perform a 1st order matrix multiplication within one 

main loop execution. The resultant 𝐴𝑑𝑥  is added to ∑ 𝐴𝑑𝑥−1𝑥−1𝑗=0  

obtained in the previous main loop execution until x increased 

to 𝑁 − 1. Therefore, the ∑ 𝐴𝑑𝑁−𝑗−1𝑁−1𝑗=0  can be obtained within 𝑁 

main loop executions. After ∑ 𝐴𝑑𝑁−𝑗−1𝑁−1𝑗=0  is obtained, 𝑌 can be 

calculated in one main loop execution and 𝑃𝑐𝑢_𝑚𝑎𝑥 in (35) can 

be calculated in another main loop execution. Therefore, in the 
experiment, the update of the MPC output takes (𝑁 + 2) main 
loop executions. Since the motor temperature varies much more 
slowly than the execution time of the main loop, the update time 
is negligible.   

Fig. 10 shows the reference torque, actual torque, torque limit 

profile generated by the MPC control and the measured motor 

speed. At the beginning, the motor is running at the speed of 

1000 r/min and the reference torque is set to 65 Nm. As can be 

seen in Fig. 10, before t=500s, the actual torque is equal to the 

reference torque. After t=500s the actual torque begins to 

decrease due to the torque limit, 𝑇𝑒_𝑙𝑖𝑚, which is imposed by the 

MPC thermal control scheme since the measured motor 

temperature increases. At t=1760 s, the reference torque is set to 

10 Nm, and the motor speed decreases to 400 r/min at t=1790s. 



 

Since the reference torque, e.g., 10 Nm, is smaller than the 

torque limit generated by MPC thermal control scheme, the 

actual torque follows the reference torque and the motor 

temperature decreases which allows for the increase of 𝑇𝑒_𝑙𝑖𝑚. 

At t=2125 s, the reference torque increases to 65 Nm again and 

the speed is kept at 400 r/min. As can be seen in Fig. 10, the 

actual torque is limited by the MPC thermal control scheme 

again.  

 
Fig. 10.  Reference torque, actual torque, speed when reference maximum 

temperature is set to 90℃. 

 

To study the speed influence on the MPC thermal control 

scheme, after t=3320 s, the motor speed was controlled to vary 

between 400 r/min and 1000 r/min every 20 s. As can be seen in 

Fig. 11, the MPC thermal control can still limit the actual torque 

effectively.  

 
Fig. 11.  The zoom in the speed variation between t=3400 s to 3600 s. 

 

The resultant winding and end winding temperatures are 

shown in Fig. 12 along with the maximum reference temperature 

(𝑇𝑒_𝑙𝑖𝑚 in Fig. 2). As can be seen from Fig. 12, the average of 

the measured winding and end-winding temperatures are close 

to the maximum reference temperature. This is because the cost 

function in (35) minimizes the error of winding and end-winding 

temperatures. Therefore, the control performance of the 

proposed active thermal management has been validated.  

Fig. 12.  The measured winding, end-winding temperatures and the 

maximum reference temperature. 

 

V. CONCLUSION 

This paper has proposed an active thermal management 
control scheme based on a model predictive control concept. 
The performances of the proposed scheme have been assessed 
by simulations for EV traction over WLTC driving cycles and 
experiments with step changes in torque. In both cases, the 
winding temperatures can be effectively limited to a value close 
to the maximum reference temperature. It is shown that 
imposing a thermal limit results in deterioration of torque or 
speed tracking performance. Thus, a trade-off between the 
active thermal management and drive performance must be 
appreciated. In traction applications, imposing a thermal limit 
would reduce the torque capability and hence acceleration and 
maximum speed in adverse driving conditions in favour of lower 
temperature stress and longer lifetime.  
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