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In underwater optical wireless communication (UOWC) channels, impulse response is widely used to de-
scribe the temporal dispersion of the received signals. In this paper, we propose a new function to model
the impulse response in most realistic cases in the UOWC channels. By exploiting the inherent properties
of such channels, our newly proposed model is superior to the conventional weighted double Gamma
functions (WDGF) model in explaining the behavior of the channel. We use Monte-Carlo simulation to
verify that our newly proposed model has a better accuracy of numerical fitting in most cases. Therefore,
this new modeling approach offers a more convenient way to evaluate the performance of different kinds
of UOWC channels. © 2018 Optical Society of America

OCIS codes: (010.4455) Oceanic propagation, (010.4458) Oceanic scattering, (290.4210) Multiple scattering.
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1. INTRODUCTION

Underwater optical wireless communication (UOWC) systems
have received a great deal of attention due to the advantages
of a much higher data rate, security, and a much lower latency
compared to the traditional underwater acoustic communica-
tion systems. Although the transmit length is relatively short
as the light beam suffers from absorption, scattering and tur-
bulence induced fading, UOWC is still a promising technology
in many applications such as the underwater wireless sensor
networks (UWSNs) to satisfy the increasing demands for ocean
exploration with high data rate transmission [1].

Prior studies have shown that the optical beam will suffer
from absorption and scattering, the properties of which can be
described by the inherent optical properties (IOPs) of the water
[2]. The absorption will cause an inevitable power loss and
therefore the blue-green spectrum is used due to its minimum
absorption by seawater. On the other hand, the scattering effect
will change the direction of the transmit beams. In a turbid
environment such as coastal and harbor waters, the photons
will be undergo scattering more than once. This effect is called
the multiple scattering effect which is studied in [3] and exerts
a positive impact on the overall received power [4]. However,
this effect will also increase the temporal dispersion which is a
negative impact, particularly in very turbid water (e.g. harbor
and coastal water).

On the other hand, the optical beam will also suffer from tur-
bulence induced fading, which is caused by the random changes
of water temperature and salinity, as well as the randomly dis-

tributed air bubbles in the water [5–10]. Moreover, experiments
have shown that turbulence can be separated from particle scat-
tering and absorption [11]. Therefore, it is reasonable to treat
these two effects separately to reduce the complexity of the anal-
ysis.

In this paper, we focus on the temporal dispersion of the
fading-free line-of-sight (LOS) UOWC channel and investigate
the channel impulse response in turbid water. Recently, Monte-
Carlo simulations have been carried out to analyze the properties
of the impulse response in UOWC channels [12–15]. Further-
more, there has also been comparison of the Monte-Carlo results
with Mullen’s experimental study to validate the efficiency of
the simulation results [13, 16]. Inspired by Mooradian’s work on
modeling the impulse response in clouds by the double Gamma
functions (DGF), Tang applied the DGF to model the impulse
response in UOWC links [17]. Moreover, Dong and Zhang mod-
ified the DGF model by adding parameters and terms to apply
it to multiple-input-multiple-output (MIMO) UOWC channels
[18, 19].

However, the channel properties of seawater differ from
clouds to some extent. Therefore, we can observe a considerable
degree of difference between the DGF model and the simulation
results in Tang’s work [17]. Although Dong and Zhang mod-
ified the DGF model by adding parameters and terms so that
it thus better fits the simulation results, these models still did
not explain the inherent properties of the impulse response in
UOWC channels. Moreover, they added a number of parameters
to be solved and thus severely degraded the efficiency of the

http://dx.doi.org/10.1364/ao.XX.XXXXXX


Research Article

curve fitting process. To the best of our knowledge, no previous
work has attempted to explain the connections between the IOPs
and the impulse response models. In this work, we focus on
explaining such questions and proposing a new model to fit the
impulse response in most realistic situations. We also conclude
by numerical results that the newly proposed model is superior
to Dong’s model in most cases. Moreover, we can also explain
the similarities and differences of the impulse response in differ-
ent types of water by the natural decomposition of absorption
and scattering in our model. This provides a better approach
to the estimation and analysis of the characteristics of UOWC
channels.

This paper is organized as follows: Section 2 describes the
optical characterizations and the scattering phase functions of
seawater. In Section 3 we describe the basic rules of our Monte-
Carlo simulation as well as discussing our newly proposed
model. Simulation results and data analysis are presented in
Section 4 followed by conclusions in Section 5.

2. PRELIMINARIES

A. Optical Characterizations of Seawater
According to Mobley’s statement [2], absorption and scattering
are two major effects in the underwater optical channel. The for-
mer will cause an inevitable loss of optical power by converting
it into other forms such as heat. Meanwhile, the latter arises from
the interaction of photons with the small particles in the water
and will change the transmission path of the light. The energy
loss caused by these two effects can be expressed by the absorp-
tion coefficient a (λ) and the scattering coefficient b (λ) respec-
tively. Moreover, the attenuation coefficient c (λ) = a (λ) + b (λ)
is also defined to describe the overall energy loss in the channel.
It is worth mentioning that the values of a (λ), b (λ) and c (λ)
will vary with the water type as well as the wavelength of the
light λ.

B. Scattering Phase Function of Seawater
Unlike the optical wireless communication channel in the at-
mosphere, the light in the underwater optical channel will en-
counter a large number of particles and the scattering effect will
be much more significant. As a consequence, multiple scatter-
ing effects will play a significant role in the received power. To
study this kind of phenomenon, the scattering phase function
(SPF) β (λ, θ, φ) is introduced to describe the energy distribu-
tion of the scattering effect, where θ is the polar angle and φ is
the azimuthal angle of the scattering respectively. The SPF is
constrained so that:∫ 2π

0

∫ π

0
β (λ, θ, φ) sin (θ)dθdφ = 1. (1)

Moreover, it is often assumed that the particles are spherical and
the scattering is azimuthally symmetric. Therefore, Eq. (1) can
be rewritten as:

2π
∫ π

0
β (λ, θ) sin (θ)dθ = 1, (2)

where the 2π comes from the integral over the azimuthal angle.
Several models have been proposed to describe the SPF of

the underwater environment. Among them there are two most
widely used models.

The first is the long-standing Henyey-Greenstein phase func-
tion (HGPF) which was first proposed by Henyey to describe

the scattering effect in astrophysics [20]. This can be expressed
as:

βHG (θ) =
1− g2

4π(1 + g2 − 2g cos (θ))
3
2

, (3)

where g is the average cosine of θ. Although this is very conve-
nient for numerical calculation and acceptable to approximate
the shape of the actual phase function in a multiple scattering
channel, it differs from Petzold’s long established measurements
[21] in both small forward angles (θ < 20◦) and large backward
angles (θ > 130◦) [22]. Therefore, use has been made of the
Two-Term HGPF to improve the fitting performance. Although
this does indeed enhance the fit, it also underestimates Petzold’s
measurement when θ < 1◦ because of the inherent property of
such functions in small angle situations.

As a result, the HGPF has now been supplanted by the more
complicated but more realistic and widley used Fournier-Forand
phase function (FFPF). This was derived by Fournier and Forand
as an approximate analytic form under two assumptions [23].
Firstly, the particles have a hyperbolic size distribution. Sec-
ondly, each particle scatters according to the anomalous diffrac-
tion approximation to the exact Mie theory. By applying the two
approximations to the analytic form, the FFPF can also reveal
some of the inherent properties of the underwater channel. The
phase function is given by [24]:

βFF (θ) =
1

4π(1− δ)2δν
{ν (1− δ)− (1− δν)

+ [δ (1− δν)− ν (1− δ)] sin−2
(

θ

2

)}
+

1− δν
180

16π (δ180 − 1) δν
180

(
3cos2 (θ)− 1

)
,

(4)

where ν =
3−µ

2 and δ = 4
3(n−1)2 sin2

(
θ
2

)
. Here ν is the slope

parameter of the hyperbolic distribution, n is the refractive index
of the water, and δ180 is δ evaluated at θ = 180◦.

We illustrate the performance of the two models by compari-
son with the experimental data from Petzold’s previous work
[21]. Thus, the comparison of the HGPF, the FFPF and Petzold’s
experimental data is shown in Fig. 1. As may be seen in Fig. 1,
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Fig. 1. Comparison of different phase functions.

the FFPF does a much better job of reproducing the shapes of



phase functions in the underwater environment than the HGPF,
especially at very small angles. Therefore, we apply the FFPF to
model the scattering effect in the rest of this paper.

3. IMPULSE RESPONSE MODELING

A. Monte-Carlo Simulation
To fully explore light propagation in the underwater environ-
ment it is necessary to solve the radiative transfer equation
(RTE) [2]. Analytical solutions of the RTE are only available for
a limited range of geometries and so Monte-Carlo Simulation is
widely used to evaluate underwater channel performance. The
method is much more convenient for application to the under-
water environment given the paucity of analytical results for the
RTE.

We adopt a Monte-Carlo approach similar to Cox and Tang’s
previous work [12, 17]. However, their modeling utilized the
synthesis law of Poisson processes but violated the decomposi-
tion law of Poisson processes. Therefore, our Monte-Carlo simu-
lation is modified in the transmission part to make it consistent
with the definition of the absorption and scattering coefficients
in [25]. On the other hand, we have also introduced some mod-
ifications in the receiving part to obtain a stabler result when
analyzing the off-axis situation. The illustration of our system is
shown in Fig. 2.
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Fig. 2. The illustration of the Monte-Carlo Simulation.

The Monte-Carlo simulation of the system, which is illus-
trated in Fig. 2, is composed of three main parts: the initial part,
the transmission part, and the receiving part.

In the initial part, we consider the collimated laser-based
source. And the photon position is set at the origin of the Carte-
sian coordinates (x0, y0, z0) = (0, 0, 0) and the photon emission
angle is set as (θ0, ϕ0) = (0, 0).

In the transmission part, the light will travel for a random
distance obeying a negative exponential distribution, which can
be expressed as:

p (∆s) = b · e−b∆s. (5)

Therefore, the distance of the transmission path can be gener-
ated by:

∆s = − ln (1−U [0, 1])
b

, (6)

where U [0, 1] is a uniformly distributed random variable.

Then the light will encounter a scattering effect. The zenith
angle can be generated as follows. Firstly, the piecewise nu-
merical approximation of the cumulative distribution function
(CDF) FFF (θ) can be calculated by using Eq. (4). Secondly, a
uniform distributed random number X ∼ U [0, 1] can be gener-
ated. Thirdly, we can generate the zenith angle by applying the
equation:

θ = F−1
FF (X) . (7)

And the azimuth angle can be obtained by:

ϕ = 2π ·U [0, 1] . (8)

Meanwhile, the light will also suffer from the attenuation ef-
fect, and the power remaining before the nth scattering can be
expressed as:

Pn = Pn−1 · e−a∆s. (9)
We should also transfer the zenith angle and the azimuthal angle
into Cartesian coordinates. In this step, we allow as many as
300 scattering events to ensure that more than 99 percent of the
paths are received in our simulation. Moreover, we have verified
that this value is sufficient for all scenarios in this paper.

According to the analysis above, the absorption and the scat-
tering effects have independent influences on the transmitted
light. By distinguishing the differences between these two ef-
fects, we can analyze them separately in different steps. The first
step is to construct the scattering path of the photon without con-
sidering the absorption effect. The second step is to calculate the
absorption effect directly using the path length generated by the
first step and Eq. (9). This will also influence our understanding
of the impulse response modeling in Sec. 3 . B.

It is worth mentioning that the scattering path is determined
by the scattering effect rather than the absorption effect. In-
spired by this phenomenon, we introduce the term “scattering
length" which is defined as bL in this paper. This is utilized to
substitute the commonly used term “attenuation length" which
is defined as cL, where L is the transmission distance between
the transmitter and the receiver. In what follows, it is much more
convenient to compare different water types by the application
of this scattering length.

In the receiving part, we generalize the simulation and adapt
it to both the on-axis and the off-axis situations. In order to
achieve this goal, we have improved the structure of the simu-
lation system which is shown in Fig. 2. Assuming the circular
symmetric property of the azimuthal angle, we can collect all the
photons reaching the receiving spherical surface with a radius
of L and an off-axis zenith angle of θt ∈ [θt0 − ∆θt0, θt0 + ∆θt0]
to estimate the performance of the receiver which is located at
a distance of L and an off-axis zenith angle of θt0 with a radius
of r0 = ∆θt0L (when θt0 ≤ ∆θt0, the closed interval will be re-
duced to [0, 2∆θt0] and thus represent the on-axis situation). By
applying this system, we can collect more photon paths when
analyzing the off-axis situation so as to help us to obtain a sta-
bler simulation result. It is worth mentioning that we should
also normalize the receiver aperture when comparing the data.
Moreover, only the photons within the receiving area as well as
arriving from angles less than half of the receiver field-of-view
(FOV) can be detected.

B. Functions for Impulse Response Modeling
Double Gamma functions (DGFs) have first been adopted to
model the impulse response in clouds by Mooradian [26]. The
form of such a function can be written as:

h (t) = C1∆te−C2∆t + C3∆te−C4∆t, (10)



where C1, C2, C3, and C4 are the four parameters to be solved;
∆t = t− t0 > 0, where t is the time scale and t0 = L/v is the
non-scattering propagation time which is the ratio of the link
range L over the light speed in water v.

Inspired by the dispersive nature of both cloud and underwa-
ter channels, Tang applied double Gamma functions to model
the impulse response in UOWC links [17]. However, such func-
tions are only applicable with relatively large values of the atten-
uation length where the multiply scattered light is dominant. In
order to generalize these functions, Dong added 2 parameters to
the double Gamma functions and proposed the weighted double
Gamma functions (WDGF) [18]:

h (t) = C1∆tαe−C2∆t + C3∆tβe−C4∆t, (11)

where α and β are the 2 newly added parameters to be deter-
mined. Eq. (11) is applicable for both small and large values of
the attenuation length. Moreover, it is also applicable to model
a 2× 2 UOWC MIMO channel with a relatively large attenua-
tion length. This function has also been extended to the general
MIMO UOWC channel by Zhang [19].

However, by carefully inspecting the results of the Monte-
Carlo simulation which is plotted on a logarithmic scale as Fig. 3,
we can conclude that the tail of the impulse response should
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Fig. 3. Monte-Carlo simulation of impulse response in harbor
water. L=10.93 m, FOV=40◦.

be convex. This phenomenon implies that the tail decays more
slowly than the exponential function. However, the weighted
Gamma function is a strictly concave function. Although a fit
can be made to the experimental data using Eq. (11), it will
constantly underestimate the intensity of the tail because of this
difference of convexity.

Inspired by the above mentioned problem, we propose a new
function which can be written in the form of a combination of
exponential and arbitrary power function (CEAPF) as below:

h (t) = C1
∆tα

(∆t + C2)
β
· e−a·v(∆t+t0), (12)

where C1 > 0, C2 > 0, α > −1, and β > 0 are the four param-
eters to be found and v is speed of light in water. To ensure
that the function tends to 0 when ∆t approaches infinity with
arbitrary attenuation coefficient a we need to also apply the
constraint β > α. These parameters can be calculated from

Monte-carlo simulation results using the nonlinear least square
criterion as:

(C1, C2, α, β) = arg min
(∫

[h (t)− hmc (t)]2dt
)

, (13)

where h (t) is the CEAPF model in Eq. (12) and hmc (t) is the
results of the Monte-Carlo simulations.

It is easy to compare the CEAPF to the WDGF. Some of the
most important conclusions are listed as below:

B.1. Convexity

We can rewrite Eq. (12) as:

ln [h (t)] = ln C1 + α ln ∆t− β ln (∆t + C2)− a · v (∆t + t0) .
(14)

The second derivative of Eq. (14) is:

d2 ln [h (t)]
d∆t2 = − α

∆t2 +
β

(∆t + C2)
2 . (15)

When ∆t is sufficiently large, which is the situation of the tail,
CEAPF will be convex in accordance with the simulation result.

B.2. Decomposition of Absorption and Scattering

Since absorption and scattering are two independent effects in
the underwater optical channel, the form of our newly proposed
model naturally decomposes these two effects.

Absorption will convert optical power into other forms; this
effect can be expressed by Eq. (9). By multiplying all the power
loss of a certain trace, we can interpret the exponential term of
Eq. (12) as the total loss of the trace.

On the other hand, the scattering effect will influence the
distribution of the length of the received traces, and we can de-
scribe it by the arbitrary power term of Eq. (12). Specifically, C1
describes the amplitude of the impulse response, the numera-
tor of the term describes the rising edge and the denominator
contributes to the falling edge of the function.

Moreover, by rewriting Eq. (12) as

h (t) = C′1
(b∆L)α

(b∆L + C′2)
β
· e−

a
b ·b∆L · e−

a
b ·bL, (16)

where ∆L = v∆t, C′1 = (bv)β−αC1, and C′2 = bvC2, we can
compare different water types with the same scattering length.
Firstly, although the distributions of the scattering path geom-
etry are different with different scattering lengths, they will be
similar with the same scattering length and thus the parameters
of the arbitrary power term will be similar. This is in spite of
the time dispersion typically being more pronounced with a
longer scattering length due to the stronger multiple scattering
effect and different parameter value solutions. It may be seen
nevertheless, that value of the time dispersion ∆t, which is pro-
portional to ∆L, will be roughly inversely proportional to b as
bL is a constant and L is proportional to ∆L with the same dis-
tribution of the scattering path geometry. Secondly, we can find
that the value of a

b in the second exponential term is responsible
for the intensity of the received signal. Thirdly, we can conclude
from the first exponential term that the suppression of the tail
will be stronger with a clearer water type (i.e. with a larger a

b ra-
tio) when the scattering length is the same. Considering that the
temporal dispersion is stronger with a greater scattering length
(i.e. ∆L = v∆t is larger), we can also predict via this term that
the suppression effect will be more pronounced as the scattering
length increases.



B.3. Accuracy of the Estimation

By exploiting the inherent properties of the simulation results,
we can expect a more accurate estimation than the WDGF model
when applying our CEAPF model. As a result, when the mul-
tiple scattering effect dominates, and the transmit and receive
apertures are precisely aligned, the performance of our newly
proposed model is better in the sense of root-mean-square devia-
tion (RMSE). Moreover, the CEAPF model will do a much better
job when we are trying to predict the power in the tail.

Nevertheless, the CEAPF is also applicable for fitting the
impulse response of a relatively smaller scattering length where
the trajectory path still plays a significant role. Moreover, the
CEAPF is able to accurately capture the off-axis behavior.

All the above mentioned scenarios are discussed in detail in
Sec. 4.

B.4. Efficiency of the Estimation

Compared to the WDGF model with 6 parameters, the CEAPF
model with 4 parameters can be computed more quickly when
using the nonlinear least square criterion.

B.5. Integrability

In order to calculate the overall received power, we may need to
integrate the CEAPF. By using Eq. (3.383.5.11) in [27], and then
representing the Laguerre polynomials by confluent hypergeo-
metric functions, which are standard built-in functions in most
well-known mathematical software packages, given by:

1F1 (a; b; z) =
∞

∑
n=0

a(n)zn

b(n)n!
, (17)

where a(0) = 1 and a(n) = a (a + 1) (a + 2) · · · (a + n− 1) when
n 6= 0, we can represent the overall received power as:

P =C1e−aL · π · csc ((α− β)π)

·
{

C1+α−β
2 Γ (1 + α) 1F1 (1 + α; 2 + α− β; avC2)

Γ (β) Γ (2 + α− β)

− (av)−1−α+β
1F1 (β;−α + β; avC2)

Γ (−α + β)

}
,

(18)

where Re {a} > 0, Re {α} > −1, and Re {C2} > 0. And all these
constraints are consistent with our assumptions.

4. NUMERICAL RESULTS

We consider a UOWC system with 514 nm wavelength to cor-
respond with that used in [21] and a photon detector with an
aperture of 40 cm in diameter. Moreover, we choose a collimated
source to receive the maximum power as would customarily be
the case in experimental systems. On the other hand, we choose
a typical value of v = 2.237 × 108 m/s as the speed of light
in water. The Monte-Carlo simulation is depicted in Sec. 3 . A;
109 transmissions are simulated to obtain the impulse response
hMC (t) using MATLAB. Based on the settings above, we sim-
ulated the beam propagation for a range of link lengths, FOVs
and off-axis angles in coastal (a = 0.179 m−1, b = 0.220 m−1)
and harbor (a = 0.366 m−1, b = 1.829 m−1) water. We then
produced a fit to the impulse response using Eq. (12) with the
nonlinear least square criterion depicted by Eq. (13). The pa-
rameters of the CEAPF and WDGF are listed in TABLE 1 and
TABLE 2 respectively.

Fig. 4 shows the normalized impulse response for FOV val-
ues of 20◦, 40◦ and 180◦ in harbor water. Fig. 4 demonstrates

Table 1. parameters of CEAPF in different UOWC channels

FOV C1 C2 α β

L=5.47 m (bL=10), on-axis, harbor water.
20◦ 5.244e-8 5.015e-2 -3.681e-2 3.019
40◦ 7.937e-7 2.957e-2 -3.595e-2 1.793
180◦ 1.390e-6 2.331e-2 -1.966e-2 1.564

L=10.93 m (bL=20), on-axis, harbor water.
20◦ 1.677e-6 0.2730 0.6577 3.169
40◦ 1.320e-5 0.6657 0.4871 3.216
180◦ 9.072e-6 0.4374 0.4798 2.005

L=16.40 m (bL=30), on-axis, harbor water.
20◦ 2.168e-6 0.6994 1.569 3.793
40◦ 3.207e-5 1.463 1.514 4.211
180◦ 2.236e-5 1.818 1.255 3.039
L=10.93 m (bL=20), off-axis angle=10◦, harbor water.
20◦ 9.653e-6 0.3661 3.947 7.765
40◦ 1.900e-4 0.8292 2.830 7.129
180◦ 2.800e-5 0.4760 3.007 5.183

L=45.45 m (bL=10), on-axis, coastal water.
20◦ 4.888e-7 0.4169 -3.681e-2 3.019
40◦ 5.525e-7 0.2458 -3.595e-2 1.793
180◦ 5.754e-7 0.1938 -1.966e-2 1.564

that the CEAPF fits well with the simulated impulse response
regardless of the propagation distance, FOV and off-axis angle.
We set the bL product to be 10, 20 and 30, and these represented
propagation distances of 5.47 m, 10.93 m and 16.40 m with on-
axis impulse response results as shown in Fig. 4(a), (b) and (c)
respectively. We can firstly conclude from these figures that the
impulse response is more dispersive as L increases, which would
be expected intuitively because the photons suffer more scatter-
ing over a longer propagation distance. Secondly, the impact of
the FOVs will also increase with a larger L for the same reason.
Thirdly, the received power will decrease with an increasing
propagation distance as the photons undergo more attenuation.
On the other hand, the impulse response of an off-axis angle of
10◦ is shown in Fig. 4(d). By comparing Fig. 4(b) and (d), we can
also conclude that the impulse response disperses more heavily
on an off-axis angle than an on-axis angle. Simultaneously, the
received power will decrease on an off-axis angle due to the
misalignment.

Moreover, in a typical situation of turbid water with a rel-
atively long transmission distance of 10.93 m and a relatively
small receiver FOV of 20◦, a comparison between our result and
the WDGF fitting result given by Eq. (11) is shown in Fig. 5. We
can conclude from Fig. 5 that in such a situation, the CEAPF
model performs better than the WDGF model, especially in the
“tail” area. This result is in accordance with our analysis in
Sec. 3 . B. Although this phenomenon is not always pronounced
enough to be shown in figures, we can numerically compare our
results with the WDGF fitting results. On one hand, We apply
the rooted-mean-square deviation (RMSE) criterion, which is
also used in Tang’s previous work [17], to compare the overall
performance. The RMSE criterion can be written as:

RMSE =

√√√√ N

∑
n=1

[h(t0 + n · ∆t0)− hmc (t0 + n · ∆t0)]
2, (19)
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Fig. 4. Impulse response in harbor water.

where ∆t0 is the unit time interval, N is the number of time
intervals, hmc (·) represents the impulse response obtained by
Monte-Carlo simulation, and h (·) represents Eq. (11) when ap-
plying the WDGF and Eq. (12) when applying the CEAPF. On
the other hand, in order to emphasize the improvement in esti-
mating the tail of the impulse response, we also compared the
power deviation of the tail (PDT), which can be written as:

PDT =
Ptail,h − Ptail,MC

Ptail,MC
× 100%, (20)

where Ptail represents the overall power of the tail which is be-
yond the scope of the figures, Ptail,h is calculated from the fitting
curve, and Ptail,h is calculated from the Monte-Carlo simulation
result. The numerical results corresponding to Fig. 4 are listed
in TABLE 3. We can conclude from TABLE 3 that the CEAPF
model is better in most listed cases in the sense of RMSE. But
the numerical data of Fig. 4(a) shows that the performance of
the CEAPF model is slightly worse than the WDGF model in the
sense of RMSE, but both error values are very small (≤ 0.36%),
effectively negligible. On the other hand, the numerical data
of Fig. 4(d) shows that the performance of the CEAPF model

is slightly worse only in the case of FOV = 20◦. As a result,
the maximum RMSE deviations of the CEAPF model and the
WDGF model are 1.03% and 1.34% respectively in all the cases
listed in this paper. Moreover, the RMSE deviation of the DGF
model is reported to be less than 5% in Tang’s previous work
(the maximum deviation listed is 4.276%, which is much larger
than the CEAPF model) [17].

Another significant advantage of our new model is that it
significantly increases the accuracy when estimating the overall
power of the tail which is beyond the end of the subfigures in
Fig. 4. we designed our simulation to collect all the received
optical power so that we can calculate the power of the tail. By
comparing the experimental results with the calculation results
of the CEAPF (given by Eq. (18)) and the WDGF (which can
be easily calculated by exploiting the properties of the gamma
functions), we can numerically compare the PDT using both
models. These results are also listed in TABLE 3. We can easily
conclude that the WDGF model severely underestimates the
power of the tail, but the CEAPF model does a much better
job, which is in accordance with our analysis in Sec. 3 . B. By
exploiting the inherent property of the impulse response in the



Table 2. parameters of WDGF in different UOWC channels

FOV C1 C2 C3 C4 α β

L=5.47 m (bL=10), on-axis, harbor water.
20◦ 3.67e-5 57.9 1.44e-5 17.5 -8.32e-2 3.21e-2
40◦ 3.09e-5 64.7 2.13e-5 15.7 -8.68e-2 3.88e-3

180◦ 3.17e-5 63.8 2.03e-5 13.8 -8.50e-2 3.89e-3
L=10.93 m (bL=20), on-axis, harbor water.

20◦ 9.41e-7 8.68 1.49e-7 2.38 0.556 0.444
40◦ 6.06e-7 5.37 2.23e-7 1.67 0.474 0.461

180◦ 5.13e-7 4.51 2.02e-7 1.07 0.441 0.413
L=16.40 m (bL=30), on-axis, harbor water.

20◦ 4.65e-9 2.45 5.13e-10 0.640 1.12 0.673
40◦ 6.44e-9 1.77 9.84e-10 0.575 1.24 0.890

180◦ 4.79e-9 1.30 1.36e-10 0.432 1.10 0.998
L=10.93 m (bL=20), off-axis angle=10◦, harbor water.

20◦ 4.36e-6 6.83 9.52e-8 2.35 2.46 1.84
40◦ 2.33e-6 4.73 1.65e-7 2.00 2.24 1.99

180◦ 1.84e-6 4.34 1.69e-7 1.49 2.17 1.82
L=45.45m (bL=10), on-axis, coastal water.

20◦ 1.37e-9 7.00 4.22e-10 2.13 -8.32e-2 3.21e-2
40◦ 1.16e-9 7.82 6.61e-10 1.92 -8.68e-2 3.88e-3

180◦ 1.19e-9 7.70 6.31e-10 1.69 -8.50e-2 3.89e-3

UOWC system (which is described in Sec. 3. B), the CEAPF
model outperforms the WDGF model in all the cases.

We also examined the impulse response in coastal water,
with results that are shown in Fig. 6. The CEAPF model also
fits well in this type of water. To compare the results with the
harbor water situation, we have used an appropriate range of ∆t
values in Fig. 6 so that the similarities in curve shapes between
Fig. 4(a) and Fig. 6 (which have the same bL values) may be
observed. Firstly, it is seen from the two figures that the intensity
at the receiver is smaller in the coastal water situation. Seen from
Eq. (16), we can find that the value of a

b in the second exponential
term is responsible for the smaller intensity. Moreover, the same
receiver configuration will result in a smaller receive solid angle
when the propagation length is larger in coastal water. Secondly,
because of the same scattering length of bL = 10, both situations
have similar scattering path distribution geometric at the scale
of scattering length (this can be explained by the arbitrary power
term in Eq. (16)). Nevertheless, the value of L and ∆L is larger
in the situation of coastal water, resulting in a larger temporal
dispersion as this is proportional to ∆L. By using the appropriate
scale of the intensity and ∆t in Fig. 6, we can find the shape of the
impulse response is almost the same as Fig. 4(a). Actually, we can
conclude from the numerical analysis that the impulse response
decays slightly more quickly in the coastal water. This can be
explained by the first exponential term in Eq. (16). Although
∆L = v∆t is too small to apparently change the shape, the bigger
a
b will result in a stronger suppression of the tail in coastal water.

5. CONCLUSIONS

In this paper, we have investigated the channel impulse response
of fading-free LOS UOWC links due to the multiple scattering
effect in different types of water. Inspired by the convexity of
the simulation results in the logarithmic coordinate, we have
presented a new function which can be written in the form
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Fig. 6. Impulse response in coastal water. L=45.45 m (bL=10).
on-axis.

of a combination of exponential and arbitrary power function
(CEAPF) to model the impulse response. This newly proposed
model fits well with the simulation results and beats the widely
used WDGF model in most cases according to the numerical
analysis. This is particularly true when capturing the tail of the
impulse response, where the CEAPF model reduces the power
deviation in the tail by at least 20% and often more.

On the other hand, by naturally decomposing the two in-
dependent effects of absorption and scattering, we can use the
newly proposed model to explain the similarities of the impulse
responses in different types of water when the scattering length
is the same.

Considering that the CEAPF model has fewer parameters to
be solved, there are also some additional advantages such as a
more efficient estimation with a shorter time consumption in
parameter fitting. Based on all the analysis and results listed
above, we can conclude that the newly proposed model is more
efficacious than the conventional WDGF model. It provides a
more convenient way to evaluate the performance of different
kinds of UOWC systems.



Table 3. numerical performance comparison of CEAPF and
WDGF in different UOWC channels.

RMSE Power Deviation of the Tail
FOV CEAPF WDGF FOV CEAPF WDGF

L=5.47 m (bL=10), on-axis, harbor water.
20◦ 0.18% 0.10% 20◦ -13.65% -28.65%
40◦ 0.36% 0.11% 40◦ 30.61% -42.87%
180◦ 0.18% 0.11% 180◦ 15.25% -54.48%

L=10.93 m (bL=20), on-axis, harbor water.
20◦ 0.52% 0.95% 20◦ 15.19% -87.59%
40◦ 0.92% 1.01% 40◦ 17.12% -63.63%
180◦ 0.98% 1.15% 180◦ 34.84% -55.12%

L=16.40 m (bL=30), on-axis, harbor water.
20◦ 0.83% 1.34% 20◦ -2.30% -66.04%
40◦ 0.66% 0.93% 40◦ -13.29% -51.75%
180◦ 0.83% 1.05% 180◦ 5.54% -39.71%

L=10.93 m (bL=20), off-axis angle=10◦, harbor water.
20◦ 1.03% 0.52% 20◦ -36.62% -64.70%
40◦ 0.39% 0.46% 40◦ -24.06% -49.61%
180◦ 0.30% 0.56% 180◦ 0.73% -52.00%

L=45.45 m (bL=10), on-axis, coastal water.
20◦ 0.18% 0.10% 20◦ -13.58% -27.40%
40◦ 0.36% 0.11% 40◦ 23.39% -41.16%
180◦ 0.18% 0.11% 180◦ 8.51% -51.32%

By applying this model to UOWC system, Our future work
may be focused on the equalizer design of the high speed under-
water wireless communication systems. Moreover, we may also
carry out a research on estimating the performance of the under-
water MIMO system by applying our model and analyzing each
SISO sub-channel separately.
Funding. China Scholarship Council (CSC) (No. 201706070081)
and the University of Warwick
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