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In 2016 the World Health Organization identified 21 countries that could eliminate malaria by
2020. Monitoring progress towards this goal requires tracking ongoing transmission. Here
we develop methods that estimate individual reproduction numbers and their variation
through time and space. Individual reproduction numbers, R, describe the state of trans-
mission at a point in time and differ from mean reproduction numbers, which are averages of
the number of people infected by a typical case. We assess elimination progress in El
Salvador using data for confirmed cases of malaria from 2010 to 2016. Our results
demonstrate that whilst the average number of secondary malaria cases was below one
(0.61,95% CI 0.55-0.65), individual reproduction numbers often exceeded one. We estimate
a decline in R. between 2010 and 2016. However we also show that if importation is
maintained at the same rate, the country may not achieve malaria elimination by 2020.
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reat strides have been made since 2000 in reducing the

burden and mortality of malaria. The World Health

Organisation (WHO) estimates that 57 out of the 106
countries with endemic malarja transmission in 2000 reduced
their incidence of malaria by >75% between 2000 and 2015, As a
result, malaria elimination at the national level, defined as the
absence of local transmission within a country?, is now one of the
targets in the WHO Global Strategy for Malaria 2016-2030°. In
2016 the WHO identified 21 countries for which it would be
realistic to eliminate malaria within the next five years?.

As countries attempt to move towards malaria elimination,
tracking progress through quantifying changes in transmission
over space and time is key. This information is necessary to
effectively target resources to remaining ‘hotspots’ and ‘hotpops’
where transmission remains, decide if and when it is appropriate
to scale back interventions, and to evaluate the success of existing
interventions. However, as countries approach zero cases,
increasing focality in transmission and the impact of imported
cases pose challenges to both reaching elimination® and mea-
suring progress towards that goal. Increased spatial and temporal
heterogeneity in malaria cases’™ in low transmission settings
reduces the usefulness of national or regional level trends in
incidence or prevalence, which can mask small areas of high
transmission intensity. Furthermore, end-game surveillance and
control measures are increasingly expensive per case. Therefore,
while interventions must be targeted efficiently to be cost-
effective”®10, the identity of areas driving remaining transmission
and their stability over time are poorly understood.

A wide variety of contextually varying factors have been
hypothesised to drive transmission in low transmission settings,
including increased risk in concentrated populations due to fac-
tors such as occupation (e.g., agricultural workers)®, asympto-
matic individuals acting as reservoirs of infection'"!2, changes in
vector behaviour!® and resistance to antimalarial'* and insecti-
cidal interventions'®. Importation of malaria cases from neigh-
bouring countries poses an additional challenge in many
elimination settings. If many cases of malaria are imported,
control measures may appear less effective due to small numbers
of locally acquired cases arising from imported cases'®!”. If there
is sufficient importation, local cases can continue to occur even
when the reproduction number of malaria under control, R, is
below 1. Conversely areas with a high underlying R. but little
importation may see sudden outbreaks of cases following a rare
importation event due to their receptivity to malaria infection'$,
Challenges arise in measuring the sustainability of elimination®!7,
both in terms of quantifying the impact of control measures on
transmission in the lead up to elimination, and in determining the
risk of resurgence once elimination is achieved!*~2!. This infor-
mation is also important when deciding if, when, and how to
scale back intervention and surveillance methods'.

Meeting these challenges requires measuring changes in
transmission, often at fine spatial scales. However, existing
methods used to quantify malaria transmission are poorly suited
to elimination settingsg. Parasite prevalence rates (PR) are not
accurate below a PR of 1-5%2>23 due to the large sample sizes
necessary for precise estimates at low prevalence. The entomo-
logical inoculation rate (EIR), often seen as the ‘gold standard’ in
measures of transmission intensity, is not reliable when trans-
mission is highly focal and potentially unstable since EIR is very
sensitive to heterogeneities in vector populations*#?°, Use of
serological data, while promising®®~28, is not currently feasible for
use in many near-elimination contexts, as suitable cross-sectional
survey data and/or appropriate markers to determine changes in
malaria transmission are not available in all contexts.

A possible alternative, or complementary, measure of malaria
transmission is the incidence of malaria cases, obtained through
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routine surveillance by Ministries of Health. Surveillance data are
widely collected and sensitive to short term changes in trans-
mission. While utilising these data can pose challenges, particu-
larly in low-resource settings due to limitations in surveillance
infrastructure and difficulty in establishing completeness of
reporting, they can provide a wealth of information when such
challenges are overcome. Individual level incidence data can be
used to reconstruct the most likely pathways of transmission and
estimate individual reproduction numbers, providing fine-scale
insights into spatiotemporal transmission characteristics. While
individual level surveillance data is often used in outbreak ana-
lysis of epidemic infections®>*?, robust methods are rarely
applied to vector-borne diseases such as malaria, with a few
notable exceptions!'”*132,

Here we aim to estimate individual reproduction numbers over
time and space by adapting methods from the study of infor-
mation diffusion processes. These methods address the general
problem of reconstructing information transmission using known
or inferred times of infection by a ‘contagion’>*~3¢, They provide
an adaptable framework to integrate multiple data types®’,
identify likely unobserved cases/external infection sources, and
have been evaluated using real and simulated transmission pro-
cesses at multiple scales and network structures>®.

El Salvador provides a promising context to explore this
approach. In 1980, El Salvador had the highest incidence of
malaria amongst all Mesoamerican countries—with 95,835 cases
and a 38% share of all cases in Mesoamerica. However, by 1995,
the country contributed just 2%, maintaining low incidence until
the present day. The country is now in the elimination phase and
saw seven malaria cases in 2015 (0.1% of cases in Mesoamerica)3®.
Epidemiologists in El Salvador have kept records at a high spatial
and temporal resolution throughout their malaria control and
elimination efforts. In addition there has been a long history of
reactive and active case detection, testing and treating all patients
with fever with antimalarials and an extensive network of com-
munity malaria workers has been in place since the 1950538, evi-
dence suggesting that case detection and treatment is strong. A full
understanding of elimination in El Salvador could therefore pro-
vide useful insights for other countries as they aim to achieve and
sustain elimination. Using the epidemiological line-list maintained
by the Ministry of Health, we applied our methods to these data to
estimate how transmission varied over space and time in El Sal-
vador between 2010 and 2016.

Our results suggest a decline in R, between 2010 and 2016, with
seasonal peaks during the wet season and during holiday periods.
However we find that, based on the observed distribution of R.
over time, with individual reproduction numbers often exceeding
one R.>1), we cannot say with 95% confidence the country will
achieve malaria elimination by 2020, assuming that importation
is maintained at the same rate. Our results illustrate the role of
importation in driving transmission dynamics in this country and
provide independent estimates of the likelihood that El Salvador
can eliminate malaria by 2020.

Results

Network reconstruction and estimated R values. Between 2010
and the first two months of 2016, a total of 91 cases of malaria
were confirmed by microscopy in El Salvador, of which 30 were
classified as imported. There were a total of six cases of P. falci-
parum, all of which were imported. Our estimated transmission
network is shown in Fig. 1. Overall, the temporal dimension,
informed by the prior distribution for the serial interval (Fig. 1a),
dominates the identification of infector-infectee pairs (Fig. 1b).
We identified two locally acquired cases which could not be
plausibly linked to other cases within the dataset (Fig. 1c). These
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Fig. 1 a Serial interval (SI) distribution used in the analysis. Thin blue lines represent 300 realisations of the Sl distribution resulting from draws from the
distributions of the parameters determining the shape of the Sl and incubation period. The serial interval distribution is the distribution of the time between
the onset of symptoms (fever) in a case and the onset of symptoms in the case(s) it infects. The thicker blue line represents the expected Sl distribution.
For comparison, the grey line represents the S| distribution estimated for symptomatic, treated P. falciparum infection from*’ and the black line shows the
expected S| for P. falciparum from'’. b Heatmap showing likelihood of transmission occurring between infector and infectee pairs. The X axis represents all
possible infectors (all reported cases) of the observed cases, organised by symptom onset date. The Y axis represents all possible infectees (all locally
acquired cases, as by definition we assume imported cases were infected outside of the country). Each square represents a potential infector/infectee pair.
The colours of the heatmap represent the normalised likelihood of infector j having been the infector of infectee i. where red is 1and grey is 0. Grey squares
show where cases were not likely to be infected by to any observed case, and therefore presumably infected by an individual who was not detected by
surveillance. These could be asymptomatic or unreported clinical cases. € Reconstructed network, where numbers represent the ID of cases in temporal
order. The strength of likelihood of connection represented by weight of edges linking cases. The two locally acquired cases identified to be infected by

unobserved sources of infection are highlighted

were estimated in periods in which a clear gap in the data was
apparent, and may therefore represent unidentified importations,
relapse cases or unreported locally acquired sources of infection.
We estimated the mean individual reproduction number over
2010-2016 to be 0.61 (95% CI=0.56,0.65). This is consistent
with the ratio of locally acquired to total cases (61:91 = 0.66),
which has been proposed elsewhere as an approximate estimate of
R2. When fitting a generalised additive model (GAM) to the data,
the overall trend was a decline from a fitted R. of 0.73 at the start
of the observation to 0.47 by the end of the period (Fig. 2).
Individual reproduction numbers showed seasonal fluctuations
through time, with regular peaks observed in December, which
coincides with the end of harvest season for many crops in El
Salvador and Guatemala, and August, which coincides with a
period of national holiday and the end of the rainy season.

Spatial distribution of cases and R.. Data were highly focal, with
70% of cases originating from two adjacent administrative
departments neighbouring Guatemala, and 32% of cases origi-
nating from just two municipalities within these regions (Jujutla
and Acajutla) (Fig. 3a, b). This pattern was also reflected in the
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spatial distribution of R.. While most areas of the country are
predicted to have a low risk of R. reaching above one over the
time observed, several regions have a much higher predicted risk
of R. > 1 (Fig. 3¢). In these regions, the majority of cases imported
into the region could be expected to result in at least one
onward transmission event. However it is important to note
that uncertainty in these predictions is high in areas where we
have not seen cases. The area where we have the least uncertainty
in our estimate, around the borders of Guatemala, suggest that
most cases occurring there did not contribute to onward
transmission.

Impact of imported cases on transmission. The mean marginal
gain to the likelihood of including infections from imported
cases into the constructed transmission networks was much
higher than including locally acquired cases (0.081 compared to
3.44e77), suggesting that imported cases are a major driver of
transmission. Visual inspection of the most likely chains of
transmission (Fig. 1c) also are suggestive of this, where the
index case in a cluster of linked cases was almost always an
imported case.
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Fig. 2 a Individual reproduction numbers plotted over time. Individual, or case reproduction numbers (R.) are the estimated number of individuals a given
case is likely to have gone on to infect. Dashed line shows R. =1, blue line shows fitted Generalised Additive Model. b Posterior estimates of R. by month of
year. Bars show 95% credible interval. Blue line shows the mean estimated R, the individual reproduction number, for the observation period. Key holidays,
seasons and agricultural patterns are labelled. ¢ Extended trendline to 2030 showing predicted R. Shaded area shows 95% credible interval from prediction
and solid line shows mean threshold of P=0.05 of cases occurring with an R, above one. Dashed lines show 97.5 and 2.5th quartiles for this threshold

from 10000 simulations

Endgame predictions based on R, and stochasticity. To inves-
tigate potential timelines to elimination (i.e., the absence of local
transmission) we characterised heterogeneity in the reproduction
number using a Gamma distribution which, when fitted to the
data, suggests a threshold mean R. of 0.22, below which there
would a <5% chance of any individual reproduction number
exceeding one. Using our fitted trend in the mean R., we expect
this level to be reached by 2023, assuming no change in the rate of
importation (Fig. 2c).

Discussion

Understanding how transmission varies over time and space is
critical to efforts to achieve and maintain elimination of infec-
tious diseases such as malaria. Reconstructing transmission
chains and estimating individual reproduction numbers has been
used widely within epidemiological analysis®®**%, but rarely
used to study vector-borne or endemic diseases, albeit with a few
notable exceptions®">32. Separately, similar problems have been
approached within human social network analysis, throu%h a
family of approaches known as independent cascade models®*~3,
Here we have adapted these methods to routine data from an
eliminating Central American context, El Salvador, in order to
inform progress towards their malaria elimination goals.

Our results suggest that the time-averaged R. has been below 1
in El Salvador since 2010, suggesting that sustained endemic
transmission at the country level has already been interrupted.
However, we estimated individual reproduction numbers
exceeding one, resulting in ongoing outbreaks of transmission.
Assuming the downward trend observed in R, between 2010 and
2016 continues, we expect the probability of such outbreaks to be
<5% by 2023 if current levels of malaria importation and control
continue. However, because we found imported cases to have
higher reproduction numbers and their inclusion in the trans-
mission tree increased the overall likelihood of the tree much
more than locally acquired cases, it is important to note that the
rate of importation is likely to affect the distribution of R.. With
increased importation this timeline to elimination could lengthen.
Conversely, if importation was reduced, the timeline would be
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shortened. Thus the levels of malaria importation from neigh-
bouring countries would likely need to be decreased in order to
achieve elimination by 2020, following current WHO certification
policy of three years of zero locally acquired cases.

Given the extensive surveillance of migrants already carried out
by El Salvador, as well as the free-movement and trade agree-
ments which exist between El Salvador, Guatemala, Honduras
and Nicaragua, the most efficient way of achieving this is likely to
be through reducing the prevalence of malaria throughout Cen-
tral America. However, given the seasonal peaks in R. we esti-
mated to occur in August and December, which coincide with
national holidays and the end of harvest season, there could
additionally be an opportunity to increase surveillance activities
and interventions during these key periods of high human
mobility.

The Elimination of Malaria in Mesoamerica and Hispaniola
(EMMIE) initiative aims to eliminate local malaria transmission
from the entire Mesoamerican region by 2020%!. Our results
support the need for a regional approach to elimination. The clear
impact of importation in driving residual transmission in El
Salvador highlights the need for cross-border collaboration. In
order to drive transmission down, areas of the highest ‘receptivity’
to intervention and ‘vulnerability’ to importation of cases must be
identified. Approaches such as ours, which map transmission risk,
could be combined with information about human movement to
identify foci for increased surveillance, vector control and other
interventions. Our approach using El Salvador as a case study
could be adapted and used in other Central American countries
or other contexts aiming for elimination.

We identified two cases with no clear source. When raising the
threshold likelihood for linking observed cases as part of our
sensitivity analysis and reducing the number of possible edges in
the network, we find 7 missing cases. There is evidence in some
low transmission contexts, especially where rapid declines of
malaria have been seen recently, of significant asymptomatic and/
or submicroscopic reservoirs of infection which may transmit to
onwards transmission*2. These could be sources of the missing
infections identified in our study. However, El Salvador is unlikely
to have a large amount of asymptomatic cases due to a long
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Fig. 3 a Distribution of R, values by location of residential address. Red points represent an R. (individual reproduction number) below one, blue points
represent an R, value above 1. b Distribution of imported and locally acquired cases by location of residential address. Yellow points represent locally
acquired cases, green points represent imported cases. € Map of risk of R. exceeding 1 if a case were to occur in an area. Note this estimate does not
consider risk of importation, but estimates receptivity to transmission if importation were to occur. d Standard deviation in risk estimates from ¢

history of low numbers of cases. If our missing source of infec-
tions was mainly indigenous asymptomatic infections, it would
signify that there is an asymptomatic reservoir contributing to
onward transmission and that must be controlled to reach
elimination. This could be achieved through PCR-based screening
and treatment or increased vector control in focal areas. An
alternative explanation is that there may be a small number of
unreported symptomatic cases or relapse cases which were not
reported or detected, which could be indigenous or imported. If
due to importation this would further support the need for strong
regional cooperation via initiatives such as EMMIE to reduce
burden in neighbouring countries, and to maintain vigilance over
extended periods in a near-elimination stage.

There are several limitations to this work. First, while we use
epsilon edges to identify potential external sources of infection,
this approach is only appropriate for smaller numbers of missing
cases. Given the long history of small numbers of cases and
testing and treating ~100,000 febrile patients per year (of which
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only 6 were positive for malaria in 2015), and the programme of
active case detection we feel this is a reasonable assumption,
however in other contexts this may be a larger concern and
methods such as reversible jump MCMC methods for data aug-
mentation and inference may be appropriate.

Second, by the nature of a near elimination context our sample
size is very small. The methods we use for estimating R. are well
suited to small, well observed infection cascades, however this
small sample size does provide a limitation for mapping, meaning
our maps have relatively high levels of uncertainty outside of the
areas of El Salvador where cases are seen principally around the
pacific coast, Guatemalan border and in San Salvador. There is
scope to incorporate expert knowledge to refine the map in areas
where data are lacking.

It is important to consider whether methods presented here
can be used in low resource settings that are earlier in the elim-
ination process. In these contexts the number of cases is likely to
be higher and there may be less complete reporting data and
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potentially a higher reservoir of asymptomatic infection. In order
to address these challenges several adaptations to the methods
presented here may be required. First, there may be a need to
incorporate more sources of information, e.g., demographic,
spatial and possibly genetic data’®. Second, Bayesian data
augmentation techniques** may be required to explore the
implications of large amounts of missing infection and potential
reporting biases. In the case of more asymptomatic or untreated
malaria there may be more uncertainty in the serial interval of
malaria, however using our current approach can propagate this
uncertainty through the model. Generalisations to full likelihood
based or Bayesian hierarchical inference’® can be beneficial by
providing flexibility through parametric forms by allowing for the
incorporation of additional factors (e.g., genetic distance) specific
to the disease and context.

This work provides a novel framework for making use of
routine surveillance data, and allows quantification of malaria
transmission and its variation over space and time in contexts
where traditional methods such as parasite prevalence are unsui-
table. This is key in designing optimal strategies to accelerate,
achieve and maintain elimination. To apply to other contexts
several adaptations and extensions may be required. Firstly, in this
dataset there were no confirmed relapse cases, however in many
contexts we may see P. vivax relapse, in which case the algorithm
could be adapted to allow for a likelihood for ‘reinfection’ or a
looped network edge. Second, in settings where transmission links
are less clearly identifiable or different data sources are available,
this approach can be adapted to incorporate additional features
such as spatial or genetic distance weightings into the likelihood
function®”, following on from work based on Wallinga and Teunis
approaches®%3#4 Finally, asymptomatic reservoirs and causes of
missing cases, as well as their impact on transmission dynamics
could be explored in more detail to consider surveillance system
design and evaluation of its strength.

In conclusion, this work adapts concepts from network theory
to build and apply novel methods to map transmission over space
and time in a near-elimination setting, using only routine malaria
surveillance data. Such approaches offer opportunities to better
understand transmission dynamics and their heterogeneities in
near elimination settings to better target interventions for elim-
ination. We estimated timescales for reaching elimination and
clarified the effect of importation on the speed and feasibility of
achieving and maintaining zero cases. In the context of El Sal-
vador, our results highlight the impact of importation on sus-
tained transmission and highlight the need for cross-border
collaboration. Our approach could be useful in a wide range of
contexts where good quality routine surveillance data are col-
lected, such as outbreaks and endemic diseases nearing
elimination.

Methods

Data. The data, obtained from the Salvadorian Ministry of Health (MINSAL),
consisted of all confirmed cases of malaria between 2010 and the first two months
of 2016 (N =91 cases, of which 30 imported, 6 P. falciparum, 85 P. vivax). All but
two cases had an address listed. For these cases the location was available at the
municipio, or municipality level, and the coordinates of the centroid of the
municipality (which for both were cities) were used as the geo-location. Two cases
had addresses listed outside of El Salvador (in Guatemala). The latitude and
longitude of cases with residential addresses in El Salvador (N = 85) were found to
caserio (hamlet level) using Open Street Map (https://www.openstreetmap.org/)
(Supplementary Note 1). Ethical approval was not required for analysing these data
as the data were not individually identifiable and could not be traced back to a
single person or household. This is because the patient’s residence was geo-located
to hamlet level, creating a buffer and meaning we do not identify an individual’s
exact residential location.

Data were captured through El Salvador’s national epidemiological surveillance
system (VIGEPES). These include cases reported by 30 public hospitals, 746 health
facilities and thousands of community health workers stationed throughout the
country (~3246 in 2010)**4>. During this period, the number of blood slides tested
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per year remained similar (Supplementary Table 1). The line-list featured a unique
patient identifier, address, age, sex, symptom onset date, and treatment seeking
date, as well as details about treatment and diagnostic testing. All confirmed cases
were treated. Detailed case investigation was carried out by MINSAL and cases
were identified as imported or locally-acquired based on travel history, as well as
primary, secondary, tertiary or orphan cases without clear sources, based on
relationship with and proximity to previous cases. We obtained the latitude and
longitude of the address, accurate to caserio (hamlet) level, using Open Street
Map (https://www.openstreetmap.org/). El Salvador carries out reactive case
detection following presentation at health facilities. However, in 2011, of

4500 slides examined through reactive case detection (representing 4.5% of all
slides examined), just one additional case was detected. Both passive and active
screening of migrants at key border crossings and in agricultural areas near borders
also takes place. In these targeted areas, individuals are monitored for fever in the
past 30 days, tested, and a single dose of chloro-primaquine prophylaxis is
provided. In 2011, the Ministry of Health reported that 33,000 migrants were
reached through active and passive case detection and an additional four cases of
malaria were found*’. Most cases were detected through passive surveillance in
health facilities, at borders and by community health workers in rural areas.

Serial interval distribution. The serial interval is defined as the time between a
given case showing symptoms and the subsequent cases they infect showing
symptoms™®. For a given individual jat time t;, showing symptoms before indivi-
dual i at time ¢;, the serial interval distribution specifies the normalised likelihood
or probability density of case 7 infecting case j based on the time between symptom
onsets, ¢,-t;. The serial interval summarises a number of distributions including the
distribution of (a) the times between symptom onset and infectiousness onset, (b)
the time for humans to transmit malaria parasites to mosquito vectors, (c) the
period of mosquito infectiousness, and (d) the human incubation period.

We defined a prior range of possible serial interval distributions for malaria.
The serial interval distribution of treated, symptomatic P. falciparum malaria,
previously characterised using empirical and model based evidence?” was adapted
to inform the prior distribution for the relationship between time and likelihood of
transmission between cases in El Salvador. Two cases imported from West Africa
were P. falciparum, however the remainder of cases were P. vivax. As a result the
prior distribution was altered to better reflect the biology of P. vivax and the
dominant vector species in El Salvador, Anopheles albimanus, but was
uninformative enough to allow for possible variation in transmission dynamics, for
example due to imported infections with P. falciparum. In addition, there is a
possibility of a small number of asymptomatic or undetected and therefore
untreated infections contributing to ongoing transmission, which will take on a
longer serial interval. By defining a prior distribution for the serial interval
distribution we can account for some of this uncertainty.

We use a shifted Rayleigh distribution to describe the serial interval of malaria,
which can be varied by changing two parameters: a and y. The parameter a governs
the overall shape of the distribution, and y is the shifting parameter accounting for
the incubation period between receiving an infectious bite and the onset of
symptoms (Fig. 1a). The y shifting parameter was defined as ranging between 10
and 15 days to account for the minimum extrinsic incubation period within the
mosquito and the minimum time between infection and suitable numbers of
gametocytes in the blood to lead to symptom onset*3. The prior for the a parameter
determining the shape of the distribution was given a Uniform distribution and
bounded, giving an expected time between symptom onset of one case and
symptom onset of the case it infects of 29 days (95%CI = 16-300 days, sd =
+7 days), with the lower bound having an expected serial interval of 25 days (95%
CI=16 - 299 days, sd = +4 days) and the upper bound 47 days (95% CI=
16-300 days sd = +18 days). By comparison the expected values for treated P.
falcipaq,;m from existing literature range between 337 and 49.1 days (95%CI =
33-69)47.

Determining the transmission likelihood. We assume cases were classified cor-
rectly from case investigation as imported or locally-acquired based on recent
travel history. Following this assumption, locally acquired cases could have both
infected others and been infected themselves. However imported cases could only
infect others, as we assume their infection was acquired outside of the country.
There were no confirmed relapse cases in the dataset, and all cases were treated
with primaquine and chloroquine (radical cure) after being detected. Treatment is
initiated before cases are confirmed by microscopy (see Supplementary Fig. 1).
Active case detection is initiated locally following a confirmed case and in active
foci in which local surveillance is believed to be weak. In these scenarios blood
slides are examined within 24 h of being taken*’. Given this, we assume that an
individual can only be infected once by a case that has shown symptoms earlier in
time.

Our data input consisted of a time series of symptom (fever) onset
t € {t,... ,t,}, time ordered such that ¢,<t,, ... , <t,. While the times of
symptom onset are known, the data do not indicate who infected whom and the
underlying transmission chain, 7". The goal of our model is to infer the most
probable network structure, G, connecting these n infections. We can view cases
as nodes in a network G, and possible transmission events as the edges linking
nodes. We infer G solely from the symptom onset times ¢, a serial interval
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distribution, and prior probability distributions for the serial interval distribution
parameters.

G contains all possible spanning transmission chains over which an infection
could spread given the observed times. G therefore includes the most likely
transmission tree, but also includes, other possible trees supported by the data. We
therefore can view a particular transmission tree 7 as a realisation of a stochastic
diffusion process generated over an underlying network G. Crucially, G, accounts
for competing edges and is sparse (only includes plausible edges).

For a given transmission tree 7 describing infection events linking cases
and assuming the independent cascade model®*, the (upper triangular) likelihood
of observing our times of symptom onset is simply the product of all permissible
pairwise transmission likelihoods in the tree’>. Qur exposition until this point
is the same as that introduced by Wallinga and Teunis® and extended to a
wide variety of contexts by others®0-32434450 However, in contrast to previous
methods based on Wallinga and Teunis we maximise the likelihood f(¢|G)
conditional on an underlying G, a problem that is NP-hard>!. Previous approaches
have either allowed all possible connections in G?%, sampled from the likelihood*? or
explored a limited number of pathways>, Here, by following the approach
introduced by Rodriguez and Scholkopf>”, we find the most likely underlying
transmission network given the timing of symptom onset for a set of k transmission
events linking cases. The computational hardness of maximising f(¢|G) meant
that an optimal solution could only be found by exploring every possible
transmission tree on G. However, due to the submodularity of the independent
cascade model®® a near optimal solution could be found using a greedy algorithm.
Briefly, the greedy algorithm used starts with an empty graph, and then add edges
sequentially such that the marginal gain in the likelihood of the transmission tree for
each iteration is maximised. The marginal gain measures of importance for each
edge of the network through the gain that each edge provides to the total solution
over competing edges, and therefore applies shrinkage to the raw pairwise likelihood
with the likelihood of competing edges. We stop when we have reached k edges (see
Supplementary Fig. 2). Stopping at k edges ensures that the resulting network is
sparse which not only ensures a parsimony but removes unnecessary edges that
could influence R, calculations. An appropriate value of k is defined by adding edges
until the marginal gain in likelihood of adding additional edges is below a given
threshold (0.0005). We carried out a sensitivity analysis and find our results are
robust to changes in this threshold between 0.001 and le—10 (Supplementary
Note 2, Supplementary Fig. 3).

Accounting for missing cases. Assuming all cases reaching community health
workers or health facilities are recorded, missing cases may be generated by two
processes. Symptomatic cases may be missed by not seeking care or being found
through active case detection, and or cases may be asymptomatic and therefore
unlikely to seek care or be detected. The latter may have densities of parasites in
their blood which are too low to be detectable by microscopy if active case
detection occurs. These processes apply to both imported cases or locally acquired
cases. We assume the pool of asymptomatic cases in the country is low and has a
small contribution to ongoing transmission. To estimate the proportion of cases
which may be going undetected within our independent cascade framework, we
consider outside sources of infection, 7 that represent unobserved individuals who
can infect any observed individual, i, in a transmission chain. Every observed
individual 7 can get infected by unobserved individuals, 7, with an arbitrarily small
probability e. This so called e-edge is connected to every node in our network and
do not, by design, participate in the diffusion propagation. The e-edges prevents
breaks in the network diffusion cascade where the likelihood of transmission
between observed cases is sufficiently low, and instead the case is linked to an
external source. The specific value of & was set at 0.0005, aiming to find a balance
between false positives and false negatives when linking cases by infection events.
The higher the value of &, the larger the number of nodes that are assumed to be
infected by an external source.

Estimating R.. We can establish individual reproduction numbers for each case by
creating a matrix, R, where each column represents a potential infector and the
rows represent a potential infectee, describing which infector edges are connected
to infectees and the normalised marginal gain of that edge. Intuitively then, by
taking the row sums of R we get the (fractional) number of secondary infections
and therefore a point estimate of the time varying reproduction number R_(t)
This reflects for an individual, how many people they are likely to have gone onto
infect. When multiple individuals have been infected at a given time and/or place,
we can take the mean individual R. and uncertainty in this value as an indicator of
reproduction numbers for a given time and/or location.

In contrast of traditional methods based on Wallinga and Teunis~ using the
marginal gain in this way encapsulates not only the pairwise likelihood of
transmission between two cases, but conditions this likelihood on the impact of
competing edges in the inferred network. Given the provable near optimal solution
of the greedy algorithm and the use of marginal gains in calculating R, our
estimates of R. provide more rigorous estimates of reproduction numbers than just
using standard Wallinga and Teunis®® approaches, which do not consider the
overall transmission tree in optimisation and do not account for missing cases (see
Supplementary Note 3 for full derivation of methods).
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Estimating timelines towards elimination. To explore trends in R, over time, we
fitted a generalised additive model (GAM) to the estimated R_(t) values and
extended this line beyond the period of observation to 2030. We then also fitted
Gamma, Power law and Exponential distributions to the estimated R.(f) values,
and found they were best represented by Gamma distribution according to AIC
scores. To explore the likelihood of elimination by a given time point, we randomly
drew 10,000 R, values from Gamma distributions with increasingly small mean
reproduction numbers, keeping the fitted shape parameter constant. We then
found the threshold mean R. below which the probability of an individual R.
exceeding one is <5%. By extending the current fitted trendline for R values to
2030, we identified the expected timepoint for R, to reach this threshold value,
given the observed decline in R, observed over the study period.

Mapping R.. To map estimates of transmission risk, individual reproduction
numbers were divided into those above and below one. The latitude and longitude
of the reproduction numbers were included in a geospatial hurdle model imple-
mented in rINLA>* where demographic and environmental covariates were used to
estimate the likelihood of a case having a reproduction number above 1 if imported
into the area in 2010 (Supplementary Note 4, Supplementary Table 2)). This is a
measure of malaria ‘receptivity’ or underlying transmission potential rather than
overall malaria risk, as importation likelihood is not quantified in this analysis.
AUC scores from leave one out cross validation were used to assess model fit
(Supplementary Fig. 4).

Code availability. The source code used for this analysis are available from the
authors upon reasonable request.

Data availability. Case data are not publicly available because they are nationally-
owned data therefore the authors do not have the permission to host them but they
are available from the authors upon reasonable request and with permission of the
Ministry of Health, El Salvador (MINSAL).
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