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SUMMARY

Protein complexes are assemblies of subunits that
have co-evolved to execute one or many coordinated
functions in the cellular environment. Functional
annotationofmammalianprotein complexes is critical
to understanding biological processes, as well as
disease mechanisms. Here, we used genetic co-
essentiality derived from genome-scale RNAi- and
CRISPR-Cas9-based fitness screens performed
across hundreds of human cancer cell lines to assign
measures of functional similarity. From these mea-
sures, we systematically built and characterized func-
tional similarity networks that recapitulate known
structural and functional features of well-studied pro-
tein complexes and resolve novel functional modules
within complexes lacking structural resolution, such
as the mammalian SWI/SNF complex. Finally, by inte-
grating functional networks with large protein-protein
interaction networks, we discovered novel protein
complexes involving recently evolved genes of un-
known function. Taken together, these findings
demonstrate theutility ofgeneticperturbationscreens
alone,and incombinationwith large-scalebiophysical
data, to enhance our understanding of mammalian
protein complexes in normal and disease states.

INTRODUCTION

The derivation of gene-gene relationships is a central goal of

systems genetics (Baliga et al., 2017). Several gene properties

including co-temporal expression, co-evolution, and physical

interaction between protein products have proven to be infor-

mative in the identification of functionally related genes such

as those coding for subunits of protein complexes (de Juan

et al., 2013; Gingras et al., 2007; Jansen et al., 2002; Ramani

et al., 2008). One particularly powerful approach is to define ge-

netic interactions by probing for epistatic relationships between

genes for which the phenotypic readout of a genetic perturba-

tion depends on the status of a second gene (Baryshnikova

et al., 2013).

Genetic interaction mapping has been most extensively pur-

sued in S. cerevisiae, in which crosses between gene knockout

strains coupled with cellular fitness readouts enabled systematic

measurements of genetic interactions (Pan et al., 2004;

Schuldiner et al., 2005; Tong et al., 2004). Studies have indicated

that genes functioning within similar biological processes tend to

share genetic interaction partners (Collins et al., 2007; Kelley and

Ideker, 2005; Schuldiner et al., 2005), which motivated the con-

struction of genome-scale functional similarity networks for

yeast (Costanzo et al., 2010; Costanzo et al., 2016). In these net-

works, functionally related genes share an edge based on the

similarity of their genetic interaction profiles, ultimately yielding

a modular, hierarchical model of the cell, in which genes with

coordinated functions, such as members of the same protein

complex, cluster into functional modules.

Given the utility of this approach for inferring gene function, a

major interest in the field lies in deriving global functional similar-

ity maps for human cells. However, the generation of such data-

sets faces major limitations. In addition to the roughly 16-fold

increase in combinatorial space of all possible double knockouts

in human cells compared with yeast (due to the 4-fold increase in

genes), human screening libraries for simultaneously knocking

out multiple genes of interest are relatively new and still face

technical challenges (Boettcher et al., 2018; Du et al., 2017;

Cell Systems 6, 555–568, May 23, 2018 ª 2018 The Authors. Published by Elsevier Inc. 555
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

mailto:cigall_kadoch@dfci.harvard.edu
https://doi.org/10.1016/j.cels.2018.04.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cels.2018.04.011&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Han et al., 2017; Najm et al., 2018; Shen et al., 2017). In contrast,

genome-scale single-gene knockout libraries are technically

more advanced and have been used extensively in pooled

fitness screens (Doench, 2018). In theory, performing an equiva-

lent double-knockout experiment with a single-gene knockout

library would require screening for fitness effects across a

massive cell line collection, in which each cell line contains a pre-

cise genetic knockout stably derived from an isogenic back-

ground. Instead, we hypothesized that an analogous approach

may be feasible using a collection of cancer cell lines with suffi-

cient diversity in fitness responses, in which diversity does not

arise from single knockouts but rather through genomic and

transcriptomic variation en masse.

We and others have observed that cancer cell lines exhibit

highly variable genetic dependencies for cellular fitness (Berto-

meu et al., 2018; Blomen et al., 2015; Hart et al., 2015, 2017a;

McDonald et al., 2017; Meyers et al., 2017; Tsherniak et al.,

2017; Wang et al., 2015, 2017b) in a manner that reflects the

diverse genomic and transcriptomic alterations a cell may accu-

mulate during tumorigenesis. Project Achilles (Broad Institute)

seeks to systematically map genetic vulnerabilities across large

collections of cancer cell lines, including the Cancer Cell Line

Encyclopedia (Barretina et al., 2012), and has recently performed

genome-scale perturbation screens in 501 cancer cell lines using

RNAi (Tsherniak et al., 2017) and in 342 cancer cell lines using

CRISPR-Cas9 (Meyers et al., 2017). Because the genomic and

transcriptomic state of each cancer cell line gives rise to a unique

overall fitness response upon perturbation of each gene, these

datasets may provide an opportunity derive gene-gene func-

tional relationships and to construct a modular network of cell

function.

In this study, we evaluate the use of large-scale RNAi and

CRISPR-Cas9 genetic perturbation datasets for the construc-

tion of a human functional similarity network. We focused on

protein complexes because of their modular composition, coor-

dinated function, and involvement in many biological processes

(Pereira-Leal et al., 2006). Following validation that correlated

fitness profiles between gene pairs in both RNAi- and

CRISPR-Cas9-based screens represent informative measures

of known functional relationships, such as physical interactions,

we then developed a network permutation approach to evaluate

whether gene modules coding for protein complex subunits are

significantly correlated in their fitness profiles. After bench-

marking against a gold standard protein complex dataset

(Core CORUM), we find that �40% of gold standard protein

complexes form significantly connected functional modules in

our networks. We find that these functional similarity networks

reproduced structural features of known protein complexes,

as well as identified intra-complex functional modularity in

complexes with no known structure. Finally, we applied this

approach to a set of computationally predicted but unvalidated

protein complexes (hu.MAP), and describe a pair of functionally

related but uncharacterized genes whose protein products form

a novel protein complex. Taken together, these findings estab-

lish the utility of large-scale fitness screening in cancer cell lines

to reveal functional and structural features of protein com-

plexes, and prime the field for the global derivation of a human

functional similarity network from large-scale genetic perturba-

tion screens.

RESULTS

Interacting Proteins Exhibit Coordinated Fitness Effects
upon Genetic Depletion in Cancer Cell Lines
Protein complexes execute specific molecular functions that

require the proper assembly and activity of their interacting sub-

units (Figure 1A, left). Depletion of individual subunits required for

complex function would be predicted to produce similar pheno-

typic effects on fitness (Figure 1A, right). To assess this premise

systematically in human cells, we analyzed recently generated

datasets from large-scale RNAi- and CRISPR-Cas9-based

fitness screening efforts of hundreds of cancer cell lines via Proj-

ect Achilles (https://portals.broadinstitute.org/achilles) (Cowley

et al., 2014; Meyers et al., 2017; Tsherniak et al., 2017). Over

600 cancer cell lines from 23 different lineages were screened

across the RNAi and CRISPR-Cas9 datasets, representing

an extremely diverse set of cellular contexts (Figure S1A and

Table S1).

As an illustration of this premise, the fitness effects upon

CRIPSR-Cas9 knockout of subunits of various protein com-

plexes across 342 cell lines are shown (Figure 1B). The fitness

effects upon gene knock out varied widely across cell lines,

and analysis of both RNAi and CRISPR-Cas9 datasets demon-

strated that genes coding for Core CORUM protein complex

subunits exhibited significantly greater fitness variation than

genes that do not (Wilcoxon rank-sum test, p < 1e�3) (Fig-

ure S1B; Table S2). In addition, fitness profiles for genes encod-

ing subunits of the same protein complexes are strikingly

concordant, and correlation clustering by fitness profile resulting

in genes being grouped by protein complex membership (Fig-

ure 1B). Across both datasets, pairs of genes sharing Core

CORUM protein complex membership exhibit significantly

greater correlations of fitness profiles than protein subunits

from different complexes (Figure S1C, Kolmogorov-Smirnov

test, p = 2.2e�16 for both RNAi and CRISPR-Cas9). This result

suggests the potential to use correlated fitness effects across

cancer cell lines as a measure of functional similarity, and there-

fore identify and resolve functional relationships within and

between protein complexes.

To test this observation for interacting proteins in general, we

collated large-scale, annotated protein-protein interaction (PPI)

datasets generated by individual or joint research groups over

the past 5 years (Drew et al., 2017; Hein et al., 2015; Huttlin

et al., 2017; Rolland et al., 2014; Thul et al., 2017; Wan et al.,

2015), including Core CORUM as the gold standard literature

reference (Ruepp et al., 2010). We again found that gene pairs

with an annotated PPI consistently exhibited greater fitness pro-

file correlations across all datasets than gene pairs that did not

have an annotated interaction (Figure S1D). Furthermore, after

binning gene pairs by the strength of their fitness correlations

in the RNAi and CRISPR datasets (as performed in Hart et al.,

2017a, using the KEGG Pathway Database), we found that the

most strongly correlated gene pairs were the most enriched for

interacting protein products across PPI datasets (Figure S1E).

Taken together, these results demonstrate that interacting

proteins tend to exhibit correlated fitness profiles in large-scale

genetic perturbation screens, and that top-ranked fitness corre-

lations were highly enriched for interacting proteins, suggesting

that many protein complexes may exist as correlated modules
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within these fitness screening datasets. To further test this, we

analyzed both the RNAi and CRISPR-Cas9 screening data in

parallel. From these screening data, all collected at one

screening facility and subjected to statistical models that elimi-

nate off target effects, we filtered for genes whose depletion

had significant fitness effects to obtain 6,300 genes in the

RNAi dataset and 8,161 genes in the CRISPR-Cas9 dataset (Fig-

ure 1C). We then performed Pearson correlations on fitness pro-

files for all pairwise combination of genes, rank-order normalized

the vector of correlations for each gene, symmetrized by taking

the best rank across gene pairs, and used these data as the ba-

sis for all networks generated below.

Using RNAi and CRISPR-Cas9 Screening Data to
Generate Functional Similarity Networks for Hundreds
of Human Protein Complexes
To systematically assess the extent to which fitness screening

data can inform the biology of protein complexes, we developed

a network-based approach for analyzing both RNAi and CRISPR

fitness datasets (Figure 2A [summary], Figure S2 [detail], see the

B

C

A

Figure 1. Genes Encoding Protein Complex Subunits Display Coordinated Fitness Variation across Genetic Screens Performed in Human
Cancer Cell Lines

(A) Schematic of normal and perturbed protein complex biogenesis.

(B) Fitness profiles for genes encoding subunits of five different protein complexes screened in the CRIPSR-Cas9 fitness dataset, annotated by their gene name

abbreviations and cellular localization. Both rows (genes) and columns (cell lines) are hierarchically clustered.

(C) Graphical representation of RNAi- and CRISPR-Cas9-based screening datasets and analysis pipelines (n = 501 and n = 342 cell lines, respectively; Project

Achilles, Broad Institute).

Cell Systems 6, 555–568, May 23, 2018 557



STARMethods). We represent a protein complex as a functional

similarity network consisting of nodes for each protein subunit

and edges when the measure of functional similarity between

two subunits exceeds a given threshold. We define functional

similarity using the symmetric rank-normalized correlations as

above. At any given rank threshold, edgesmay connect two sub-

units within a protein complex of interest (internal edges), or they

may connect subunits between two different complexes

(external edges). To determine the set of protein complexes

whose subgraphs are statistically enriched for internal edges in

this network, we calculated the ratio of internal edge density

versus external edge density for each protein complex across

D

E

A

C

F

B

Figure 2. A Statistical Framework for Nominating Significant Protein Complex Fitness Correlation Networks

(A) Overview of the statistical framework for identifying significant protein complex fitness correlation networks (see Figure S2).

(B) Fraction of human protein complexes recalled at FDR < 0.05 in fitness correlation datasets (RNAi, CRISPR, Gecko, and Wang et al.) and a gene expression

correlation dataset (COXPRESdb), plotted against a log range of rank correlation thresholds. Fraction of CORUM complex recall is defined as the fraction of

CORUM protein complexes (n = 1,331) that exhibit correlations at or above that rank threshold.

(C) Precision-recall curve for the protein complexes in each dataset.

(D) Venn diagram depicting overlap between CORUM protein complexes statistically enriched with top-ranked correlations in CRISPR and RNAi datasets.

(E) Biologic properties of protein complexes with significant correlations in RNAi, CRISPR, or both datasets. Lower and upper hinges of boxplots show first and

third quartiles, respectively. Lower and upper whiskers extend to the smallest and largest values, respectively, that are within 1.53 the interquartile range

(difference between first and third quartiles) from the nearest hinge. Wilcoxon rank-sum test, **p < 1e�2, *** p < 1e�3, N.S., not significant.

(F) Statistical framework in (A) applied to a yeast correlation dataset derived from a genome-scale pairwise interaction map (Costanzo et al., 2016). A cumulative

total of 373 yeast protein complexes with statistically significant fitness networks were recalled at rank 256, representing 64% of total yeast protein complexes.
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several rank thresholds (Figures S2A–S2C). We then determined

the statistical significance of this ratio using an empirical null

distribution generated from 10,000 randomly rewired networks

while preserving node degree. Finally, we visualized the func-

tional similarity network for protein complexes that exceed

statistical significance (false discovery rate [FDR] < 0.05) (Fig-

ure S2D) and analyzed their functional and structural features.

To compare the performance of our methodology on the RNAi

and CRISPR fitness datasets described above, we included two

additional recently published CRIPSR-Cas9 screening datasets:

one consisting of 14 CRISPR-Cas9-based screens performed in

acute myeloid lymphoma cancer lines (Wang et al., 2017b), and

the other consisting of 33 cancer cell lines of diverse lineage

screened with the GeCKOv2 sgRNA library (Aguirre et al.,

2016) (Figures 2A, S3A, and S3B). In addition, to draw compari-

sonswith previous studies of correlated gene expression profiles

of protein complexes, we included a large-scale mRNA co-

expression dataset, COXPRESdb (Okamura et al., 2015),

containing pairwise correlations across 5,000+ publically avail-

able RNA sequencing datasets (Figure 2A). We generated the

gene networks for each of these five datasets and determined

the set of Core CORUM protein complexes whose subgraphs

are significantly enriched for internal edges at various rank

thresholds.

The CRISPR-Cas9 and RNAi fitness datasets both captured a

greater fraction of human protein complexes than the smaller

GeCKOv2 or Wang et al. datasets––likely due to the scale of

cancer cell lines screened––and also outperformed the

COXPRESdb network across top rank thresholds (Figures 2B

and 2C). Specifically, by rank 256, 17% of all Core CORUM

protein complexes were captured at statistical significance in

the RNAi dataset and 35% of all complexes in the CRISPR data-

set. The distribution of the cellular localization of protein com-

plexes enriched in both RNAi or CRISPR datasets was similar

to the localization distribution for all human protein complexes

(Core CORUM), indicating that protein complexes from a variety

of processes and pathways exhibit significant functional similar-

ity networks (Figure S3C).

In total, we found that 494 out of 1,331 Core CORUM com-

plexes had statistically significant fitness networks in either

RNAi or CRISPR dataset, with 228 complexes from RNAi, 465

from CRISPR, and 199 overlapping between the two (Figure 2D;

Table S3). We identified features of protein complexes that un-

derpin differences in recall between the two genetic perturbation

datasets. Protein complexes recalled only in the CRISPR dataset

were significantly depleted of core essential genes (Hart et al.,

2015, 2017b), had lower median gene expression levels, and

had lower sequence conservation (Wilcoxon rank-sum test, p <

1e�3) than those recalled in both RNAi and CRISPR datasets

(Figure 2E; Table S3).

To further benchmark this performance against a large-scale

functional mapping effort in a model organism, we generated

the functional similarity network from a dataset generated by

Costanzo et al. (2016) in their effort to map all pairwise genetic

interactions in S. cerevisiae. Applying our methodology to this

functional similarity network, which is derived by calculating

pairwise correlations of genetic interaction profiles, we captured

64% (373/581) of all yeast complexes as significantly correlated

subgraphs (Figure 2F).

We visualized individual functional similarity networks for each

of the 494 Core CORUM protein complexes recalled in either

dataset, first by determining the dataset in which that protein

complex exhibits the greatest enrichment for internal edges (Fig-

ure S3D), and second by choosing a rank threshold specifically

for the complex that optimizes the ratio of internal to external

edges (see the STAR Methods). We found that these functional

similarity networks vary greatly in their network topology (Fig-

ure S3E) and included many well-studied protein complexes

(26S Proteasome, Mediator, RNA polymerase II, STAGA,

mammalian SWI/SNF, and others) with structural or functional

features that we sought to examine in greater depth.

Functional Similarity Networks Recapitulate Structural
and Functional Modules of Protein Complexes
Large protein complexes are often hierarchically assembled from

smaller sub-assemblies that have specificmodular functions.We

hypothesized that for protein complexes with a sufficient number

of subunits and sufficiently distinct functional componentry, this

modular structuremay be reflected in the functional similarity net-

works. TheMediator complex is an evolutionarily conserved tran-

scriptional activator composed of three stable modules––the

Head, Middle, and Tail (Figure 3A)––and one detachable, cell-cy-

cle-specific module (cyclin kinase module, not crystallized) (No-

zawa et al., 2017; Tsai et al., 2017). Recent biochemical and

genetic studies have demonstrated that the Head, Middle and

Tail modules exhibit differential genomic targeting and have

specialized roles in the context of Mediator complex global func-

tion (Jeronimo et al., 2016; Petrenko et al., 2016). Depletion of

subunits belonging to the Head, Middle and Tail modules results

in distinct cell fitness effects across cancer cell lines (Figure 3B).

Correspondingly, theCRISPR functional similarity network for the

Mediator complex largely contains edges between subunits

belonging to the same structural module at various rank thresh-

olds (Figure 3C). Comparatively, a gene expression similarity

network for the Mediator complex derived from the COXPRESdb

dataset captured few correlations between the Head or Middle

modules, even at a lenient rank threshold of 50 (Figure S4A).

We sought to understand whether or not there were additional

protein complexes that displayed overlapping physical and func-

tional modularity. After restricting our analysis to large protein

complexes (ten or more subunits) that displayed significant

fitness networks, we compared fitness network communities

with those inferred from PPI networks, using the Bioplex 2.0 da-

taset and a PDB structural interaction network (Figures S4B and

S4C; Table S4). In comparison with the 29 protein complexes

displaying overlapping modularity between these structural

interaction networks and hu.MAP (another protein interaction

network), we found that 12 protein complexes showed signifi-

cantly overlapping fitness network modules versus their struc-

tural counterparts, and only two displayed overlapping structural

and mRNA co-abundance network modularity (Figure S4D and

Table S5). Several of these protein complex assemblies,

including the 26S proteasome, RNA Pol holoenzyme, and the

COP9 signalosome (Figure S4D, inset), showed overlapping

functional and physical modularity over recognizable sub-com-

plexes and assembly modules.

The 26S proteasome is composed of the 19S regulatory and

20S core sub-assemblies joined by a common interface

Cell Systems 6, 555–568, May 23, 2018 559
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Figure 3. Fitness Correlation Networks Highlight Functional Modules of Protein Complexes with Solved Structures

(A) The Mediator complex (PDB: 5U0P) is a modular complex composed of functionally distinct sub-assemblies (Head, Middle, and Tail modules).

(B) Fitness profiles from the CRISPR-Cas9 dataset of representative subunits of the Mediator complex Head, Middle, and Tail modules, colored as in (A). Both

rows (genes) and columns (cell lines) are hierarchically clustered.

(C) CRISPR-Cas9 fitness correlation network for Mediator complex, with subunits colored bymodule membership, and edges between nodes thresholded either

at rank one (left) or rank four (right).

(D) The 26S proteasome is composed of the 20S core and 19S regulatory particles, shown here asmodules in a structural interaction network, in which each node

represents a subunit and each edge represents a physical interaction (buried surface area, Å2) between subunits in the solved structure (PDB: 5GJR).

(E) Fitness correlation networks in the RNAi dataset at different fitness rank thresholds reflect the sub-complex structural organization of the proteasome.

Sequentially including edges across rank levels reveals edges preferentially linking genes within the same sub-complex. Proteasome subunit names are

abbreviated to their shortest identifying sequence (ex: PSMA1/A1).

(F) The RNA polymerase II complex (PDB: 5FLM), represented as a structural interaction network. The protein complex is composed of four distinct sub-as-

semblies, in particular, two functionally obligate heterodimeric subunits: the assembly core (POLR2C-J) and the detachable recognition stalk (POLR2D-G).

(G) The fitness correlation network for RNA Pol II in the RNAi dataset at different rank thresholds. The overlap between structural edges and functional edges

present between protein complex subunits is statistically significant (Fisher’s exact test, p = 8.9e�3).
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(Figure 3D). The RNAi functional similarity network clearly distin-

guished the subunits of the 19S and 20S particles; of the 31

genes encoding proteasome subunits included in this dataset,

20were involved in a top-ranked correlation with another protea-

some subunit, largely within the same particle (Figure 3E, left).

This is consistent with the fact that depletion of the 19S and

20S particles was previously shown to have differing effects on

cancer cells, despite both particles being part of the same

macromolecular assembly (Dambacher et al., 2016). While co-

expression networks of 26S proteasome subunits are strongly

connected, they fail to reach significance using amodule overlap

test for structural networks (Figure S4E).

Heteromeric complexes follow energetically favorable ordered

assembly pathways, forming intermediate configurations during

this process (Ahnert et al., 2015). The RNA Pol II subunits

POLR2C and POLR2J form a heterodimer that acts as an assem-

bly platform to nucleate the remainder of the assembly pathway,

which occurs via three sub-assembly intermediates (Figure 3F)

(Wild and Cramer, 2012), while the POLR2D-G detachable heter-

odimeric recognition stalk selectively associates with the com-

plex via POLR2A during transcription elongation (Werner and

Grohmann, 2011). The RNAi functional similarity network of the

RNA Pol II complex identified the POLR2C-J and POLR2D-G

heterodimers as rank 1 pairwise correlations (Figure 3G, left).

The network further highlighted functional relationships between

the sub-assembly three components that anchor the recognition

stalk to the complex (Tan et al., 2003) and the assembly platform

component POLR2K and its binding partner POLR2B, which

assemble together on the POLR2C-J heterodimer (Figure 3G,

right) (Wild and Cramer, 2012). The observed overlap between

edges in the functional similarity network and the structural inter-

action network is statistically significant (two-sided Fisher’s

exact test, p = 8.9e�3). The co-expression network for RNA

Pol II does not resolve this functional modularity (Figure S4F).

To test the extent to which such heterodimers exhibit correla-

tion in fitness profiles globally, we curated a set of 271 heterodi-

meric interactions from the full PDB structural interaction dataset

(Table S4) and found significantly higher ranked correlations

in both the RNAi and CRISPR datasets than in COXPRESdb

dataset (Kolmogorov-Smirnov test, RNAi versus COXPRESdb,

p = 4.7e�3, CRISPR versus COXPRESdb, p = 5.2e�4; Fig-

ure S4G). Taken together, these results suggest that stably inter-

acting, functionally obligate subunits, such as those in hetero-

dimers or structural submodules of protein complexes, exhibit

highly ranked fitness correlations in these fitness datasets.

Functional Similarity NetworksResolveSharedSubunits
with Functionally Diverged Protein Complexes
Novel complexes can form over evolutionary time via partial

duplication and divergence of specific subunits, which can

adopt new function while maintaining stable interactions with

shared subunits from the original complex (Pereira-Leal et al.,

2006). The eukaryotic RNA Pol I, II, and III arose according to

this paradigm, with select subunits duplicating and diverging

between Archaea and Eukaryotes (Carter and Drouin, 2009) (Fig-

ure S5A). Hierarchical clustering performed on fitness profiles of

RNA Pol I, II, and III subunits in the RNAi dataset functionally

distinguish RNA Pol III from RNA Pol I and II (Figure S5B). Inter-

estingly, components of the heterodimeric POLR1C-D assembly

platform (homologous to POLR2C-J) show functional similarity

to both Pol I and Pol III in the functional similarity network for

the three polymerases (Figure S5C). This heterodimer is shared

between both complexes, and blocking their dimerization pre-

cludes assembly of either complex in S. cerevisiae (Mann

et al., 1987).

The functional similarity network of the STAGA/ATAC family of

complexes, which are known to deposit acetylation marks

genomewide (Spedale et al., 2012), reveals structural modularity

and suggests distinct functional characteristics (Figure S5D).

Although members of the STAGA complexes cluster distinctly

frommembers of the ATAC complex in the CRISPR dataset (Fig-

ure S5E), three subunits shared between both complexes––

KAT2A, CCDC101, and TADA3––appear centrally in the func-

tional similarity network, bridging the two complexes (Fig-

ure S5F). The gene co-expression network did not recapitulate

this modularity or shared subunit membership for the RNA Pol

and the STAGA/ATAC family of complexes (Figures S5G and

S5H). These results collectively demonstrate the resolution

with which RNAi- and CRISPR fitness networks report on the

modularity and assembly of protein complexes within defined

complex families.

Functional Similarity Identifies a Novel Functional
Module of the Mammalian SWI/SNF Complex
We next turned to a complex of unknown structure and incom-

pletely defined subunit composition, the mammalian SWI/SNF

(mSWI/SNF or BAF) ATP-dependent chromatin remodeling com-

plex. mSWI/SNF complexes are combinatorially assembled into

12–15 subunit heteromorphic�1.5–2MDacomplexes (Figure 4A),

which utilize the energy of ATP hydrolysis to remodel nucleosomal

architecture and oppose Polycomb repressive complexes, thus

facilitating DNA accessibility and gene expression activation (Ka-

doch et al., 2017). Recent human genetic studies have unmasked

recurrent mutations in the genes encoding mSWI/SNF subunits in

over 20%of human cancers and in neurodevelopmental disorders

such as intellectual disability syndromes (Kadoch and Crabtree,

2015). The mechanistic interpretation of the mSWI/SNF muta-

tional spectrum is complicated by the incomplete functional char-

acterization of several recently identified subunits, as well as the

combinatorial subunit configurations produced by several paralo-

gous, even tissue-specific, subunits (Kadoch et al., 2013). There-

fore, we sought to apply our methodology to study themSWI/SNF

complex. The mSWI/SNF functional similarity network from both

RNAi and CRISPR datasets revealed three distinct functional

modules (Figures 4B, 4C, and S6A). The first corresponds to a

core set of BAF complex components (ARID1A, SMARCB1, and

SMARCE1 and the SMARCA4 ATPase subunit), while a second

module is composed of distinguishing subunits of the PBAF

variant of mSWI/SNF complexes (PBRM1, ARID2, and BRD7).

The third functional module that did not correspond to any known

configuration of the mSWI/SNF complex and is composed of one

established mSWI/SNF subunit, SMARCD1; one recently discov-

ered subunit, BRD9 (Kadoch et al., 2013); and one putative sub-

unit, GLTSCR1 (Ho et al., 2009), whose highest ranked fitness cor-

relations were with SMARCD1 and BRD9 (Figures 4B and S6A).

To experimentally determine whether these three functional

modules exist as distinct biochemical entities, we performed

size fractionation followed by immunoblot on nuclear extracts
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isolated from CCRF cells. BAF- and PBAF-specific subunits

separated into assemblies of different sizes, as shown by their

migration in distinct fractions of 10%–30% glycerol gradients

(Figure 4D). BRD9 migrated in lower-molecular-weight fractions

of the gradient, indicating an unexpected smaller sub-assembly

with SMARCD1. Immunoprecipitation studies further confirmed

that the novel module binds the catalytic subunit SMARCA4

but fails to bind subunits found exclusively in other-sized frac-

tions, such as ARID1A, ARID2, and BRD7 (Figure S6B). Immuno-

precipitation of the SMARCA2 mSWI/SNF ATPase subunit from

cancer cell line nuclear extracts coupled with mass spectrom-

etry-resolved high numbers of peptides of GLTSCR1 with mini-

mal background signal (Figure S6C). These results are supported

by large-scale published co-fractionation (Figure S6D) (Wan

et al., 2015) and co-immunoprecipitation datasets (Figure S6E)

(Huttlin et al., 2015), which suggest binding interactions but do

not resolve mSWI/SNF modularity.

Together, the functional organization of mSWI/SNF subunits

unveiled by functional similarity networks suggests the existence

of three concurrently expressed mSWI/SNF family complexes

BA

C

E

D

Figure 4. Fitness Correlation Mapping Identifies Biochemically Distinct Modules of Mammalian SWI/SNF Complexes

(A) Schematic depicting subunits of the mammalian SWI/SNF family of ATP-dependent chromatin remodeling complexes.

(B) Fitness correlation network (from RNAi dataset) between mSWI/SNF subunits resolves three functional modules: core BAF (SMARCA4, ARID1A, SMARCB1,

and SMARCE1), PBAF (PBRM1, ARID2, BRD7, and PHF10) and a novel functional module that contains two previously characterized subunits (SMARCD1 and

BRD9) and one putative subunit (GLTSCR1).

(C) Hierarchical clustering performed on fitness profile correlations from the RNAi dataset groups subunits into distinct modules.

(D) Density sedimentation experiments using 10%–30%glycerol gradients performed on nuclear extracts fromCCRF cells links two functional modules to known

complexes, BAF (blue bar) and PBAF (red bar), and one to a novel assembly of distinct size and composition (green bar).

(E) Rare cancers characterized by mSWI/SNF perturbations exhibit mutually exclusive loss of one of the BAF core module genes or paralog families (containing

SMARCA4, ARID1A, SMARCB1, and SMARCE1). SCCOHT, small cell carcinoma of the ovary, hypercalcemic type. In addition, specific intellectual disability

syndromes are caused by heterozygous mutations in BAF core module genes.

562 Cell Systems 6, 555–568, May 23, 2018



F

IH DAPIPericentrin V5 Merge Inset

D. m
ela

no
ga

ste
r

S. c
er

ev
isi

ae

L.
 ch

alu
m

na
e

L.
 o

cu
lat

us

P. 
m

ar
inu

s

M
. m

us
cu

lus

H. s
ap

ien
s

C14orf80

C16orf59

C16orf59 correlations:

1. TUBE1 0.651
2. C14orf80 0.614
3. TUBD1 0.555
4. SASS6 0.549
5. STIL 0.529
6. SPATA5L1 0.497
7. C1orf109 0.497
8. CINP 0.492

Jawless
vertebrate

Jawed
vertebrate

−1.2

−0.8

−0.4

0.0

−1.0 −0.5 0.0 0.5
C16orf59 CERES score

C
14

or
f8

0 
C

E
R

E
S

 s
co

re

C14orf80-V5

C16orf59-V5

Novel C16orf59-C14orf80 heterodimer

G

Protein Mock TUBE1-V5

TUBE1 0 352
TUBD1 0 25
C16orf59 0 22
C14orf80 0 10

TUBE1-V5
IP-mass spectrometry

Interactome of TUBD1 and TUBE1

Bioplex - 6 proteins
hu.MAP - 12 proteins
Mann - 35 proteins

D E

CRISPR
fitness
similarity
network

Novel
CCT
Chaperone
Epsilon/Delta
Tubulin

C14orf80

C16orf59

TUBD1

TUBE1

Rank 1 correlations Rank 4 correlations

C14orf80

C16orf59

TUBD1

TUBE1

CCT4

TCP1

STIP1

HSP90AB1

Protein Mock C16orf59-V5 C14orf80-V5

0
0
0

C16orf59
C14orf80

0
0
0
0
0
0
0

C16orf59-V5; C14orf80-V5
IP-mass spectrometry

PRKDC
TUBB6
KRBA1
DDX3Y
NKRF
CALM1
GCN1L1
RTCB

517
131
14
5
5
5
5
5
4
4

14
281
162
35
16
4
5
3
86
7

A

Meyers et al., 2017

CRISPR-Cas9

Human genetic
perturbation dataset:

Predicted
protein complexes:

Fitness networks for putative
protein complexes

HuMAP (Drew et al., 2017) 

Integrated machine learning

B

+

2. Annotate predicted complexes that have 
overlap with CORUM complexes

1. Calculate statistical significance of
4000+ fitness networks in CRISPR correlations

for predicted protein complexes

C Fitness networks for putative (hu.MAP) protein complexes 

KICSTOR

WTAP

In hu.MAP only

In CORUM

tRNA
Ligase

Unknown

Commander

WASH

NEK-
C21orf2

ZW10
complexes

Peptide counts

Peptide counts

0.0

0.1

0.2

0.3

0.4

1 2 4 8 16 32 64
Rank Threshold

R
ec

al
l o

f C
om

pl
ex

es

hu.MAP specific
410/3,674 complexes

CORUM-overlap
164/526 complexes

All hu.MAP
574/4,200 complexes

Figure 5. A Combined Physical-Functional Interaction Map Highlights Validated and Novel Interactions

(A) Strategy for the generation of fitness similarity networks for putative protein complexes. The statistical framework for identifying significant protein complex

fitness correlation networks (Figure 2A) was applied to the hu.MAP complex dataset. Hu.MAP exhibits high level of complex enrichment within the CRISPR-Cas9

correlation dataset (Figure S1E).

(B) Fraction of hu.MAP protein complexes recalled in the CRISPR fitness correlation datasets. Of the 4,200 predicted complexes, 574 exhibit significant fitness

networks.

(C) Statistically significant fitness correlation networks for hu.MAP complexes. Recently discovered protein complexes consisting of genes of unknown function

are highlighted in magenta, and complexes with novel components that were selected for validation are labeled in orange and blue. Proteins found in the Core

CORUM set are marked in gray, while proteins unique to the hu.MAP complex list are marked in green.

(D) To discover novel elements of the epsilon- and delta-tubulin interactome, 53 putative TUBE1 and TUBD1 interactors from three different large-scale protein-

protein interaction networks were assembled and used to generate a fitness similarity network from the CRISPR-Cas9 dataset. Out of all 53 putative interactors,

only two proteins, C16orf59 and C14orf80, exhibited top-ranked correlations with TUBE1 and TUBD1.

(E) Proteins exhibiting top-ranked fitness correlations with C16orf59 are predominantly centrosomal. One of the top-ranked correlations to C16orf59 is with

another gene of unknown function, C14orf80. A scatterplot showing the correlation between CRISPR-Cas9 CERES scores of the C16orf59 andC14orf80 proteins

across 300+ cell lines is shown.

(F) Immunoprecipitation (IP)/mass spectrometry results for V5-tagged C16orf59 and C14orf80 immunoprecipitations. Total peptide counts are indicated, ranked

by overall abundance in the C16orf59 purification.

(G) IP/mass spectrometry of transiently transfected epsilon-tubulin (TUBE1) co-precipitates TUBD1 as well as the C16orf59-C14orf80 heterodimer.

(legend continued on next page)
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that have distinct function and are assembled on a common cat-

alytic subunit or module. Mechanistic dissection of this novel

mSWI/SNF functional module on chromatin will require further

study, particularly given recent advances in small molecule-

based targeting of the BRD9 subunit (Hohmann et al., 2016).

Importantly, functional SNF complexes were not/SNF com-

plexes were not explained by co-expression; for example,

ARID1A and ARID2 assemble into mutually exclusive mSWI/

SNF complexes (BAF and PBAF, respectively), are functionally

distinct, and bind different sets of subunits, but exhibit one of

the highest co-expression profiles among mSWI/SNF subunits

in human normal tissue samples (Figures S6F and S6G). Finally,

several rare diseases that are near-uniformly characterized by

mSWI/SNF complex loss-of-function perturbations, spanning

both rare cancer types and intellectual disability syndromes,

contain homozygous or heterozygous mutations in genes which

comprise the core BAF functional module (Figure 4E).

Discovery of Novel Subunits and Protein Complexes
from a Combined Physical-Functional Network
Approach
Given the degree to which functional similarity networks recapitu-

late CORUM protein complex features, we conducted a second

analysis on a set of predicted, non-validated protein complexes

to nominate targets for further discovery. Based on the highly en-

riched overlap between the hu.MAP-predicted PPI network and

theCRISPR functional similarity network at top ranks (Figure S1E),

as well as the correlations in more lowly expressed, evolutionarily

recent complexes (Figure 2E) captured in the CRISPR dataset, we

used this dataset to identify significant fitness correlations among

4,000+ predicted hu.MAP protein complexes (Figure 5A). Our

methodology identified 574 complexes recapitulated in the func-

tional similarity network representing a recall of 14% at an FDR of

0.05 (Figure 5B). Of the 526 hu.MAP protein complexes showing

>80% subunit overlap with annotated CORUM complexes, 164

protein complexes (31%) were recalled in the functional similarity

network, compared with 410 of 3,674 protein complexes (11%)

without CORUM overlap.

This set of 574 recalled complexes in the functional similarity

network (Figure 5C; Table S6) is comprised of 1,962 total pro-

teins, 1,478 of which do not appear in the Core CORUM dataset.

Notably, we found that many of these fitness networks corre-

spond to hu.MAP complexes that have been recently validated

as novel protein complexes (i.e., C12orf66-SZT2 heteromer of

the KICKSTOR complex [Wolfson et al., 2017] and C16orf62-

COMMD [Phillips-Krawczak et al., 2015]) (Figures S7A and

S7B). The recently discovered Commander complex (Wan

et al., 2015) correlates with the WASHC4 and WASHC5 compo-

nents of its known interacting complex, the WASH complex, and

the KICKSTOR components SZT2 and C12orf66 correlate

strongly with its mTOR pathway interactor, GATOR1 (Peng

et al., 2017; Wolfson et al., 2017). The gene co-expression net-

works for the same complexes did not reveal these interactions

(Figures S7C–S7F).

To identify novel interactions among these functional similarity

networks for experimental validation, we scored each protein

complex by taking the averaged products between the CRISPR

correlation value and the hu.MAPprobability weight over all gene

pairs in the protein complex. We then ranked significant protein

complexes by this score and identified complexes or subunits

with no known literature annotation (Figure S8A and Table S6).

Based on this strategy, we selected two unknown genes each

with multiple interaction predictions for validation studies:

C16orf59 (interaction pairs: TUBD1 and TUBE1), and C19orf25

(interaction pairs: NRZ complex members).

C16orf59 and C14orf80 Form a Heterodimeric Complex

that Binds Delta- and Epsilon-Tubulins

Tubulins are major elements of the eukaryotic cytoskeleton and

are critical for cellular processes such as cell division andmotility

(Turk et al., 2015). Of the many characterized isoforms within

the tubulin protein superfamily, the delta- and epsilon-tubulin

variants remain incompletely understood. Recent work has sug-

gested that these isoforms exist as an evolutionarily conserved

module (Turk et al., 2015) and may be involved in forming triplet

microtubules that are critical for centriole assembly (Wang

et al., 2017a).

We assembled a combined TUBD1 and TUBE1 interactome

consisting of 53 purported interactors from three different

mass spectrometry datasets (Figures 5D and S8B). The

CRISPR functional similarity network for these genes identified

only 2 of the 53 purported interactors, and both were genes of

no annotated function: C16orf59 as annotated above, and addi-

tionally, C14orf80 (Figure 5E). The fitness profile of C16orf59

also correlated strongly with SASS6, a core centrosome

component that is necessary for centrosomal duplication (Lei-

del et al., 2005), suggesting that the function of C16orf59 is

centrosome related (Figure 5E). Since one of the top fitness cor-

relations of C16orf59 was C14orf80, a reported interactor in the

Bioplex 2.0 network (Huttlin et al., 2017), we lentivirally intro-

duced V5-tagged versions of C16orf59 and C14orf80 into

HEK293T cells and performed immunoprecipitation with subse-

quent mass spectrometry-based proteomics. C16orf59 and

C14orf80 reciprocally immunoprecipitated one another, sug-

gesting that they form a heterodimeric protein complex (Figures

5F and S8C; Table S7). Both proteins precipitated with TUBE1

in a TUBE1-V5 immunoprecipitation (Figures 5G and S8C; Table

S8), further supporting the evidence that the C16orf59 and

C14orf80 heterodimer is a centrosomal interactor with delta-

and epsilon-tubulin. To determine the subcellular localization

of the C16orf59 and C14orf80 proteins, we performed immuno-

fluorescence experiments in HEK293T cells containing V5-

tagged C16orf59 and C14orf80 constructs. Consistent with

the strong fitness correlation between C16orf59 and centro-

some components, both C16orf59 and C14orf80 were found

in the centrosomal components of nuclei marked by pericentrin

as a centrosomal control (Figure 5H). Given the relatively recent

evolutionary history of these two proteins––C14orf80 arose

during jawless vertebrates, while C16orf59 arose in jawed

(H) Immunofluorescence performed for pericentrin (centrosomal marker) and V5 (C14orf80 and C16orf59), with DAPI nuclear stain. Both proteins exhibit cen-

trosomal localization. Panel magnification: 603.

(I) Evolutionary history of the C14orf80 and C16orf59 genes. Both are evolutionarily recent, with C16orf80 present only after the jawless-jawed vertebrate

transition, while C14orf80 is present from jawless vertebrates forward.

564 Cell Systems 6, 555–568, May 23, 2018



vertebrates (Figure 5I)–our data suggest that the two uncharac-

terized proteins C16orf59 and C14orf80 form a vertebrate-spe-

cific centrosomal protein complex.

C19orf25 Selectively Binds the Cytoplasmic Module of

the ZW10 Protein Complex Family

The mammalian NRZ complex is composed of NBAS, ZW10,

and RINT1 and is descended from its yeast predecessor,

Dsl1. Both NRZ and Dsl1 complexes are involved in transport

between the ER and the Golgi in their respective organisms

(Tagaya et al., 2014). The ZW10 protein evolutionarily diverged

to assemble into a second, nuclear-localized complex, RZZ,

which facilitates dynein recruitment to the kinetochore (Vleugel

et al., 2012). The RZZ complex is composed of four subunits:

Rod (KNTC1 in humans), ZWILCH, and ZWINT, and the shared

ZW10 subunit (Figure S9A). Previous efforts to purify ZW10

precipitated a factor, C19orf25, that did not appear to have

kinetochore localization, despite binding ZW10 (Kops et al.,

2005). We hypothesized that the C19orf25 functional similarity

network would discern which form of the ZW10-nucleated com-

plexes it associates with. The top fitness correlations of

C19orf25 all are members of either NRZ, or the STX18 SNARE

complex, which transiently docks NRZ on the ER membrane

(STX18 and BNIP1) (Figures S9B and S9C). The ‘‘moonlighting’’

ZW10 protein is strongly correlated with both protein complex

configurations, while C19orf25 forms specific correlations with

the NRZ and STX18 complexes (Figures S9D and S9E). Consis-

tent with the prediction that C19orf25 is functionally associated

with NRZ and not RZZ, immunofluorescence experiments with

V5-tagged C19orf25 confirmed cytoplasm-specific localization

(Figure S9F). Finally, we were able to reproduce the previously

observed interaction between C19orf25 and RINT1/ZW10 using

immunoprecipitation/mass spectrometry of V5-C19orf25 from

cytoplasmic extract (Figures S9G and S8C; Table S8). Given

that C19orf25 is an evolutionarily recent protein complex sub-

unit (Figure S9H), present only in bony vertebrates, our data

suggest that C19orf25 is an evolutionarily recent addition to

the cytoplasmic NRZ complex that arose concurrently with

members of the RZZ complex.

DISCUSSION

The ability to functionalize individual subunits and modules of

protein complexes remains a major challenge, especially for

those complexes with incompletely resolved protein subunit

membership and structural information. Here, we demonstrate

that protein complex componentry, as well as differential func-

tion between subunits, can be elucidated using large-scale ge-

netic perturbation screens across diverse cellular contexts––in

this case, hundreds of cancer cell lines. This study, to the best

of our knowledge, represents the largest and most comprehen-

sive analysis of protein complexes using fitness screening in

human cells to date. These studies provide a conceptual frame-

work for further study of functional relationships between pro-

teins in both normal and disease-associated states (associated

with genetic mutations, gene variants, or gene expression

changes) as increasing fitness datasets continue to emerge.

Future work to merge disease genetics with physical and

functional interactions may help reveal the molecular basis of

certain human diseases. Indeed, examining disease-associated

alleles coding for interacting proteins may define convergent

pathways and novel targets for therapeutic intervention. For

instance, the putative hu.MAP-interacting subunits, C15orf41

and CDAN1, display strongly correlated CRISPR-Cas9 fitness

profiles (Table S6), and the genes encoding these two proteins

harbor mutually exclusive mutations in the majority of congen-

ital dyserythropoietic anemias (Babbs et al., 2013). Similarly,

our findings with respect to the core BAF functional module

(SMARCA4, SMARCB1, SMARCE1, and ARID1A) are particu-

larly timely and relevant to disease biology. Intriguingly, all

rare cancer types known to be driven by mSWI/SNF complex

perturbation (defined as R70% of tumors with protein-level

loss of a single mSWI/SNF subunit) exhibit mutually exclusive

and complete loss of one of the genes or paralog families in

the core functional module of BAF complexes identified in our

analysis (Figure 4E). The small percentage of these human tu-

mor types not explained by their prevailing characteristic

perturbation instead exhibit loss of one of the other members

of the core BAF functional module we identified (Hasselblatt

et al., 2011; Schneppenheim et al., 2010; van den Munckhof

et al., 2012). Finally, both Coffin-Siris and Nicolaides-Baraitser

intellectual disability syndromes are driven by germline hetero-

zygous mutations of core BAF module genes in a mutually

exclusive manner (Figure 4E). Understanding the convergent

functional contributions of mSWI/SNF subunits mutated in the

specific cancers and intellectual disability syndromes high-

lighted above has remained a major recent challenge in the

field. Our findings suggest a synergistic function between these

four mSWI/SNF subunits, informing future studies to address

the structural basis underlying these convergent functional cor-

relations and disease-associated mutational patterns.

Several challenges still remain with respect to expanding the

degree of protein complex capture from these or similar data-

sets, particularly for those complexes that do not demonstrate

variable essentiality for cellular fitness. Additional approaches

and screening readouts, such as cellular morphology (Rohban

et al., 2017), may be able to better classify complex subunits

that predominantly have morphological effects rather than

fitness effects. This is particularly relevant for the utility of these

datasets in the context of emerging genes-to-variants studies,

and for the functional characterization of other human disease-

linked genetic mutations. In addition, as similar genome-scale

genetic perturbation screens are performed across increasingly

larger and diverse sets of cell lines (and normal cell types),

commensurate bioinformatic approaches will be required to

address normalization methods, and to enable further integra-

tion with machine learning-based PPI classifiers and other

ensemble approaches. We provide all fitness correlations from

both RNAi and CRISPR-Cas9 datasets as well as the statistically

significant fitness networks for both CORUM and hu.MAP com-

plexes as resources for the larger research community.
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CCRF ATCC ATCC #CCL-119

A549 ATCC ATCC #CCL-185

Recombinant DNA

pLX_TRC317 TUBE1 Broad GPP TRCN0000479747

pLX_TRC317 C16orf59 Broad GPP TRCN0000481386

pLX_TRC317 C14orf80 Broad GPP TRCN0000472525

pLX_TRC317 C19orf25 Broad GPP TRCN0000473718

psPAX2 Addgene https://www.addgene.org/12260/

pMD2.G Addgene https://www.addgene.org/12259/

Software and Algorithms

IGraph http://igraph.org

ggiraph David Gohel http://davidgohel.github.io/ggiraph

Ggraph Thomas Lin Pedersen https://github.com/thomasp85/ggraph

Ggjoy Claus O. Wilke https://cran.r-project.org/web/packages/

ggjoy/index.html

Cytoscape Institute for Systems

Biology

http://cytoscape.org; RRID:SCR_003032

Computational Project No. 4: Software for

Macromolecular X-Ray Crystallography

http://www.ccp4.ac.uk/; RRID:SCR_007255

Gplots https://cran.r-project.org/web/packages/

gplots/index.html

ImageJ NIH https://imagej.nih.gov/ij/; RRID:SCR_003070

Other

Polybrene transfection reagent Millipore Sigma TR-1003-G

Gammabind G Sepharose beads GE 17088501

14 x 89 mm polyallomer centrifuge tube Beckman Coulter 331327

NuPAGE 4-12% Bis-Tris Protein Gels, 1.0 mm,

12-well

Thermo Fisher Scientific NP0322BOX
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

293T (ATCC #CRL-3216) and A549 (ATCC #CCL-185, male) cell lines were passaged and grown in DMEMmedia, supplemented with

Glutamax and pen/strep and 10% FBS. CCRF-CEM (ATCC #CCL-119, female) cells were grown in suspension in RPMI 1640

supplemented with 10% FBS, glutamine, and pen/strep.

METHOD DETAILS

Lentiviral Packaging and Infection
pMD2.G and psPAX2 lentiviral packaging vectors was co-transfected with pLX317 vector containing the clone of interest into HEK-

293T cells, using polyethylenimine as a transfection reagent. Cells were incubated for 72 hours, and the media was filtered with a

0.4 uM filter before being either concentrated with an ultracentrifuge (20,000 RPM for 2.5 hours) or added directly to cells plated

at 70% confluence with 1:1000 Polybrene.

Nuclear Extract Isolation, Immunoprecipitation, and Mass-Spectrometry of BAF Complex Subunits
Harvested cells were incubated in Buffer A (25mMHEPES pH 7.6, 5mMMgCl2, 25mMKCl, 0.05mMEDTA, 10%glycerol and 0.1%

NP40with protease inhibitor (Roche), 1 mMDTT and 1mMphenylmethylsulfonyl fluoride (PMSF)) for 10minutes and the pellets were

resuspended in 600 ml of Buffer C (10 mM HEPES pH 7.6, 3 mMMgCl2, 100 mM KCl, 0.5 mM EDTA and 10% glycerol with protease

inhibitor, 1 mM DTT and 1 mM PMSF) with 67 ml of 3 M (NH4)2SO4 for 20 minutes. The lysates were spun down using a tabletop

ultracentrifuge at 100,000 rpm at 4�C for 10 minutes. Nuclear extracts were precipitated with 200 mg of (NH4)2SO4 on ice for 20 mi-

nutes and finally purified as pellets by ultracentrifugation at 100,000 rpm at 4�C for 10 minutes. The pellets were resuspended in IP

Buffer (150 mM NaCl, 50 mM Tris-HCl pH 7.5, 1 mM EDTA and 1% Triton-X100 with protease inhibitor, 1 mM DTT and 1 mM PMSF)

for the subsequent experiments. Immunoprecipitation was performed with antibodies targeting BRD7 (Bethyl, A302-304A), BRD9

(Abcam, ab137245), ARID1A (Bethyl, A301-041), SMARCA4 (Abcam, [EPNCIR111A], ab110641) and SMARCA2 (Bethyl,

A301-015A).

For proteomic analysis, antibodies were crosslinked with dimethyl pimelimidate (DMP) to Gammabind G Sepharose beads (GE)

prior to immunoprecipitation from nuclear extract. Captured protein was eluted using 6M urea/600 mM NaCl and digested with

trypsin. Mass spectrometry was performed (using a Thermo Exactive Plus Orbitrap) by the Taplin Mass Spec Facility (Harvard Med-

ical School). To analyze the results, peptides that were present in control precipitations (mock) were removed from the bait peptide

list, and each protein was then ranked according to the number of total peptides captured.

Density Sedimentation (10-30% Glycerol Gradients)
Nuclear extract (800 mg, quantified by Bradford assay) was resuspended in 200 ul of 0% glycerol HEMG buffer (supplemented with

protease inhibitors and DTT) and overlaid onto a 11 ml 10%–30% glycerol (in HEMG buffer) gradient prepared in a 14 x 89 mm poly-

allomer centrifuge tube (Beckman Coulter). Tubes were centrifuged in an SW40 rotor at 4�C for 16 hr at 40,000 rpm. Fractions

(0.550 ml) were collected and used in immunoblot analyses.

Immunoblot
Protein was loaded onto Bis-Tris 4-12% gradient Novex gels and run for 150 V for 90 minutes. A wet transfer was performed for

2.5 hours at 165 mA at 4 degrees Celsius onto PVDF membranes. After transfer, membranes were blocked in 5% milk for 1 hour

at room temperature before applying primary antibody (see below) and fluorescently labeled secondary antibodies for visualization

using the LI-COR Odyssey.

Antibodies Used

Subunit Company Catalog #

SMARCA4 Santa Cruz sc-17796

ARID1A Bethyl A301-041

SMARCE1 Bethyl A300-810A

SMARCB1 Santa Cruz sc-166165

SS18 Cell Signaling #21792

DPF2 Abcam ab134942

SMARCD2 Santa Cruz sc-101162

SMARCC1 Santa Cruz sc-10756

(Continued on next page)
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Large-Scale Purification of Factors for Mass Spectrometry (C14orf80, C16orf59, C19orf25, TUBE1)
After lentiviral introduction and selection, 293T cells with V5 tagged bait proteins were expanded to 15-20 confluent 15 cm dishes, or

about 1E9 cells per preparation. Cells were scraped off the dishes and pelleted at 3000 rpm for 5 minutes at 4 degrees C. Cells were

then resuspended in complete hypotonic buffer (10mMTris pH 7.5, 10mMKCl, 1.5mMMgCl2, 1mMDTT, 1mMPMSF, 1x protease

inhibitor cocktail) and lysed for 5 minutes on ice. Lysate was then pelleted at 3000 rpm for 5 minutes at 4 degrees C and the upper

cytoplasmic layer was collected, to which 3MKCl was added to a final concentration of 150mMKCl, and rotated at 4 degrees C for 1

hour. After rotation, the cytoplasmic extract was spun at 20,000 RPM for 1 hour at 4�C in SW28 tubes in an ultracentrifuge. The lipid

phase was removed and discarded, and the remaining extract was filtered through a 0.45 uM filter (Steriflip). This was then incubated

with V5 beads and rotated overnight at 4 degrees C. Beads were then pelleted and washed 6 times with 12 mL of high salt buffer

(50 mM Tris pH 7.5, 1 mM EDTA, 300 mM KCl, 1 mM MgCl2, 1% NP-40, 1 mM DTT, 1x protease inhibitor cocktail, 1 mM PMSF).

After the last wash, beads were transferred into a 500 uL tube. For V5 elution, immunoprecipitations with V5 antibodies were eluted

off of beads with 100 mM glycine pH 2.5 and quenched with 1M Tris pH 8.0 buffer (final 200 mM).

Immunoflourescence (IF)
Cells with overexpression of a tagged bait were split to 30-60%confluency onto a 24-well plate with appropriately sized and sterilized

coverslips. Cells were allowed to adhere overnight. When cells were at the appropriate density and treatment time, cells were washed

once with PBS in the plate and covered with either -20 degree Celsius methanol for 5 minutes (for C14orf80 and C16orf59 overex-

pression) or with 4% paraformaldehyde for 20 minutes (for C19orf25 overexpression), and then washed twice with IF wash buffer

(0.1% NP40, 1 mM sodium azide, PBS 1X) and blocked overnight in blocking buffer (IF wash buffer + 10% FBS, filtered through

0.2um filter). After blocking was complete, antibodies were diluted into blocking buffer and this solution was placed on the coverslips

for 3 hours at room temperature. The dilutions were performed as follows:

This was followed by 3washes with IF buffer (rinse, 5minute incubation, repeat). Secondary antibody was diluted in blocking buffer

1:1000 and the slides were incubated for 1 hour. This was followed by a second round of 3 IF wash buffer washes (rinse, 5 minute

incubation, repeat). Slides were then removed from the 24 well plate and mounted onto coverslips with mounting media containing

DAPI stain (Prolong Gold [Invitrogen]).

Imaging and Analysis
Images were captured at 60xmagnification on a spinning disc confocal microscope. Imageswere taken as an 11 layer z-stack, which

was then z-projected using the maximal value per pixel across stacks. ImageJ software was used for image processing and figure

generation.

Continued

Subunit Company Catalog #

PBRM1 Bethyl A301-591A

ARID2 Santa Cruz sc-166117

BRD7 Santa Cruz sc-376180

SMARCD1 Santa Cruz sc-135843

BRD9 Abcam ab66443

Antibody Manuf. Cat. Species Dilution

Pericentrin Abcam ab4448 Rabbit 1:4000

V5 Thermo R960-25 Mouse 1:1500

V5 Cell Signalling #13202 Rabbit 1:3000

Anti-KDEL Abcam ab50601 Rat 1:300

Antibody Manuf. Cat. Dilution

Goat anti-Mouse IgG Alexa Fluor Plus 555 Thermo A32727 1:1000

Goat anti-Rat IgG Alexa Fluor 647 Thermo A-21247 1:1000

Goat anti-Rabbit IgG Alexa Fluor 546 Cell Signaling A-11010 1:1000
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QUANTIFICATION AND STATISTICAL ANALYSIS

Using Fitness Thresholds to Define Genes for Analysis
Fitness screening data from RNAi screens in 501 cell lines (Tsherniak et al., 2017) and from CRISPR screens in 342 cell lines (Meyers

et al., 2017) were downloaded from the Project Achilles Data Portal (https://portals.broadinstitute.org/achilles). Copy-number

corrected versions of two additional CRISPR-Cas9 screening datasets, Wang et al. (Wang et al., 2017b) and GeCKO (Aguirre

et al., 2016), were also used as comparisons (Meyers et al., 2017). Genes for downstream analysis were filtered for the presence

of fitness effects upon genetic depletion across cancer cell lines: for both of the main datasets used in the paper (Project Achilles

RNAi and CRISPR), genes were only included if the cell line most dependent on that gene exceed a cutoff (-2 for the RNAi dataset,

-0.3 for CRISPR dataset) and expresses that gene above a threshold of 0 RPKM. This resulted in a final set of 6300 genes in RNAi and

8161 genes in CRISPR. For parallel analyses involving gene expression (COXPRESdb Hsa3.c1-0, http://coxpresdb.jp/download.

shtml), a union of the RNAi and CRISPR fitness genes was used.

Fitness Profile Plots
For each of the selected genes in Figures 1B and 3B, their CRISPR-Cas9 fitness profiles were scaled between 0 and 1, where 0 rep-

resents the minimum essentiality and 1 represents the maximum essentiality of that gene across cell lines. A soft threshold was

applied (scores were taken to the 3rd power), and both genes and cell lines were hierarchically clustered using complete linkage

and correlation as a distance measure. Profiles were plotted using the ggjoy R package.

Fitness Variation
For each gene in the RNAi and CRISPR datasets, the variance of that gene’s fitness scores was calculated across all cell lines in

which the gene was screened. For Figure S1B, genes were then binned by their membership or absence in the CORUM dataset

(RNAi: No interaction, n = 4,850. Interaction: 1,455. CRISPR: No interaction, n = 6,502. Interaction, n = 1,659). Significance was

assessed using the Wilcox rank sum test.

Enrichment of Correlated Gene Pairs among Protein-Protein Interactions
Pearson correlations between the fitness profiles of all gene pairs were calculated in both RNAi and CRISPR datasets, using pairwise

complete observations only (i.e. only in cell lines where both genes were screened). For Figure S1C, genes present in the Core

CORUM dataset of literature curated protein complexes were paired and broken into two bins: gene pairs from the same complex,

and gene pairs from different complexes. The resulting distributions were compared using a two-sample KS test. In Figure S1D, for

each protein-protein interaction dataset, each possible gene pair with was binned into one of two groups: interacting protein prod-

ucts or non-interacting protein products, and boxplots were then shown for these two groups across each of the available protein-

protein interaction datasets. For Figure S1E, enrichment of protein-interactions among correlated gene pairs of varying strengthswas

calculated in the same way as previously done for pathways (Hart et al., 2017a). Correlated protein pairs were binned into 1000 bins

based on their ranked correlation. The cumulative log likelihood of protein pairs to interact was calculated for all bins for all protein-

protein interaction datasets. Log likelihoods for the first 100,000 ranked correlations are shown.

Similarity Network Significance for Protein Complexes
For each correlation dataset (RNAi, CRISPR, COEXPRESdb , GeCKO and Wang et al. and Costanzo et al. http://thecellmap.org/

costanzo2016/) we performed a row-wise rank-transformation on the gene-gene correlation matrix, and symmetrized by taking

the maximum rank between gene pairs.

For a given collection of genesets (Core CORUM, hu.MAP complexes, yeast complexes) and a similarity network at a given rank

threshold, the significance of the observed internal-to-external edge density of each of the genesets in the collection is determined by

calculating an empirical p-value using degree-preserved randomized networks. For the observed network and each of 10,000 ran-

domized networks with preserved degree sequence, we calculated the ratio of the internal edge density to the external edge density

(Figure S2) of each of the subgraphs of the genesets under consideration. We determined the empirical p-values representing the

significance of each geneset as the fraction of shuffled networks for which this ratio in the null models exceeds that of the ratio in

the observed network. We then apply a false discovery rate (FDR) correction to the p-values per correlation dataset. We used a

FDR cutoff of 0.05 for significance.

To generate protein complex dataset recall plots, the cumulative percentage of protein complexes with significant fitness networks

was plotted as a function of the rank threshold. We also plot the fraction of complexes recalled as a function of FDR for each cor-

relation dataset.

To further characterize protein complexes that scored as significant in RNAi only (n = 29), CRISPR only (n = 266), or both (n = 199) in

Figure 2E, we assembled a set of gene features. Core essential genes were defined as the union of the CEG1 (Hart et al., 2015) and

CEG2 (Hart et al., 2017b) datasets. Gene expression data was taken from the CCLE RNA-seq data for these cell lines (Barretina et al.,

2012), and human-mouse dN/dS was obtained from BioMart (Smedley et al., 2015). Differences between the three groups of protein

complexes were assessed with the Wilcoxon rank sum test.
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For protein complexes that showed significant correlations in both RNAi and CRISPR datasets, we calculated the edge density

ratio for that complex over all ranks in both datasets. Each protein complex was then assigned to either RNAi or CRISPR datasets

as shown in Figure S3D, depending on which showed the largest edge density ratio for that complex over all rank thresholds.

Network Visualizations
Global Fitness Network Plots

Functional similarity networkswere plotted in Cytoscape. In order to systematically choose rank thresholds for network visualizations

for protein complex genesets in Figures S3E and 5C, we took the difference between the cumulative sum of internal edges (weighted

by the inverse rank) and the cumulative sum of weighted external edges at each possible rank threshold, and chose the threshold that

maximizes this difference.

Individual Complex Similarity Plots

For individual complexes, network visualizations were generated using edges weighted by the inverse rank of the correlation.

Functional similarity networks shown for individual complexes were shown with the top ranked correlation thresholds. For similarity

networks highlighting shared subunits, we chose more lenient rank thresholds within the top 10% of ranked correlations. For coex-

pression networks, we chose a uniform rank 50 threshold, as many of the coexpresion networks did not have internal edges to be

shown at more stringent rank thresholds.

Networks were plotted with ggraph and ggiraph using the Fruchterman and Reingold force-directed layout algorithm as

implemented in igraph R package. Node colors were chosen based on literature curated annotations (protein complex composition,

functional modules, assembly components).

Interface Size Dataset
Using the entire set of heteromeric protein complex structures in the PDB as of 2017-03-13, we identified polypeptide chains

with >90% sequence identity to a human protein-coding gene. The sizes of all interfaces formed between pairs of subunits were

calculated between all pairs of subunits using AREAIMOL as implemented in the CCP4 suite (Winn et al., 2011). For each pair of hu-

man protein-coding genes, the largest physical interface identified in the PDBwas used for our analyses, and interactions with buried

surface areas < 200 Å^2 were filtered from the dataset.

Structural heterodimers were defined to be protein pairs with at least 40%of each subunit’s total surface area involved in the buried

surface interface between subunits. A KS test was performed on the scaled rank correlations for each of the 271 structural hetero-

dimers across the three datasets compared (RNAi, CRISPR, COXPRESdb).

Modularity Overlap Enrichment
Protein complexes that had significant fitness networks in either RNAi or CRISPR and between 10 to 150 subunits were considered

for modularity analysis. For each of these 133 protein complexes, we generated networks using the following structural edgelists

(Bioplex 2.0, PDB, and huMAP), as well as genetic edgelists (RNAi or CRISPR, CoxpresDB) with optimal thresholds chosen as stated

above.

For each protein complex, we performed Louvain community detection as implemented in the igraph R package across networks

derived from these datasets. We then assessed overlap significance between module assignments using two-sided Fisher’s exact

tests. For each of the three datasets shown (Coexpression, Fitness, and huMAP), networks were compared to available PDB or

Bioplex physical networks. FDR correction was applied across p-values in each of the three groupings, and a threshold of FDR <

0.2 was used.

Heatmaps and Clustering
Hierarchical clustering was performed on fitness profile correlation matrices using the Euclidian distance metric and complete link-

age clustering. Heatmaps were visualized using the heatmap.2 function in the gplots R package.

Scoring Significant hu.MAP Complexes
Predicted protein complexes from hu.MAP were obtained from their website (http://proteincomplexes.org/download). The hu.MAP

interaction network is weighted by a predicted pairwise probability of interaction between each protein, ranging from 0.75 (the

significance cutoff) to 1 (maximumprobability). In order to score protein complexes by a combination of physical interaction evidence

and correlation strength, we took the pairwise product of the CRISPR correlations and predicted interaction probability for all gene

pairs, and ranked significant complexes by the average of those products. We then selected protein complexes for validation that

included one or more subunits of uncharacterized function. The top 300 protein complexes by this scoring paradigm were included

as a supplement (Table S6).

Gene Evolution Tables
The following ENSMBL gene trees were used as references for Figures 5I and S9H:

C14orf80: ENSGT00390000011474

C16orf80: ENSGT00390000011149

RINT1: ENSGT00390000017006
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NBAS: ENSGT00390000012474

ZW10: ENSGT00390000016427

C19orf25: ENSGT00390000007991

ZWILCH: ENSGT00390000013696

ZWINT: ENSGT00390000017639

KNTC1: ENSGT00390000007883

DATA AND SOFTWARE AVAILABILITY

All code used to generate figures in the manuscript are available through an online repository: https://github.com/robinmeyers/pan-

meyers-et-al. All data from this manuscript are available at: https://doi.org/10.6084/m9.figshare.6005297.
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