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Complexities of post-transcriptional regulation and the modelling of 

ceRNA crosstalk 

Control of gene and protein expression is required for cellular homeostasis and is 

disrupted in disease. Following transcription, mRNA turn-over and translation is 

modulated, most notably by microRNAs. This modulation is controlled by 

transcriptional and post-transcriptional events that alter the availability of 

microRNAs for target binding. Recent studies have proposed that some 

transcripts – termed competitive endogenous RNAs (ceRNAs) – sequester a 

microRNA and diminish its repressive effects on other transcripts. Such ceRNAs 

thus mutually alter each other’s abundance by competing for binding to a 

common set of microRNAs. Some question the relevance of ceRNA crosstalk, 

arguing that an individual transcript, when its abundance lies within a 

physiological range of gene expression, will fail to compete for microRNA 

binding due to the high abundance of other microRNA binding sites across the 

transcriptome. Despite this, some experimental evidence is consistent with the 

ceRNA hypothesis. In this review we draw upon existing data to highlight 

mechanistic and theoretical aspects of ceRNA crosstalk. Our intent is to propose 

how understanding of ceRNA crosstalk mechanisms can be improved and what 

evidence is required to demonstrate a ceRNA mechanism. A greater 

understanding of factors affecting ceRNA crosstalk should shed light onto its 

relevance in physiological states.  

Keywords: microRNA, competing endogenous RNA, post-transcriptional 

regulation, RNA-induced silencing complex, cooperativity, subcellular 

localization 
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Introduction 

RNA and protein abundance is regulated by transcription and translation, as well as by 

the turnover and processing of both mRNAs and proteins. Although most studies focus 

on the transcriptional control of gene expression, the importance of post-transcriptional 

regulation in cellular homeostasis is becoming increasingly clear. MicroRNAs 

(miRNAs) are key modulators of post-transcriptional regulation and have been 

implicated in stress responses and human disease (Leung & Sharp 2010; Mendell & 

Olson 2012). These are small, ~22 nucleotide, non-coding RNAs (Bartel 2004) that 

when incorporated into a member of the Argonaute (AGO) family of proteins, as part of 

the RNA-induced silencing complex (RISC), bind to transcripts at sites sharing partial 

complementarity to that of the miRNA, and downregulate expression via a mechanism 

of mRNA degradation and/or translational inhibition (Valencia-Sanchez 2006) (Figure 

1). Approximately 60% of all human protein-coding transcripts are evolutionarily 

conserved targets of miRNAs (Friedman et al. 2008), suggesting that the role of 

miRNAs in post-transcriptional regulation is important, ancient and widespread. 

Recently, it washas been proposed that the repressive actions of miRNAs are 

themselves modulated by the pool of mRNAs that contain miRNA binding sites. Here, 

each additional miRNA binding site reduces the availability of the miRNA to other 

binding site containing transcripts, thereby reducing the extent to which these latter 

transcripts could be repressed. This mechanism is supported by evidence that artificially 

expressed mRNAs containing a high number of high affinity miRNA binding sites are 

indeed able to alter miRNA-mediated gene repression (Ebert et al. 2007). Furthermore 

in Arabidopsis thaliana a non-coding RNA, ISP1, was shown to sequester miR-399 

thereby increasing the accumulation of other miR-399 target transcripts (Franco-Zorrilla 

et al. 2007). Such early evidence eventually led to the competitive endogenous RNA 
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(ceRNA) hypothesis. This proposes that mRNAs that share binding sites for the same 

set of miRNAs can indirectly regulate one another’s cellular abundance through their 

competition for miRNA binding (Salmena et al. 2011; Marques et al. 2011). The 

ceRNA hypothesis, however, is controversial. The critical unresolved issue is whether 

physiological changes in the abundance of a miRNA’s target transcript are sufficient to 

substantially alter the abundance of other miRNA targets, particularly owing to the high 

abundance and diversity of target transcripts expected for each miRNA.  

Here we focus on aspects of miRNA targeting and ceRNA crosstalk that we 

believe deserve further investigation, how they relate to our current understanding of the 

ceRNA mechanism, and how modelling of these molecular mechanisms could be 

improved. Our view is that, on balance, the experimental evidence is in favour of the 

notion that ceRNA crosstalk can be physiologically relevant. Further experimental 

evidence, however, clearly is required to enhance our understanding and to demonstrate 

the prevalence of such ceRNA crosstalk. 

Current models of ceRNA crosstalk 

The stoichiometry between miRNAs and their target sites that is able to promote 

ceRNA crosstalk has been investigated using mathematical models. These were created 

assuming a titration reaction among: (i) a transcript defined as the ceRNA, (ii) the 

mediating miRNA, and (iii) one or more other mRNAs targeted by the miRNA. Some 

studies conclude that ceRNA crosstalk has greatest effect when the ceRNA and miRNA 

target transcript(s) are expressed at equimolar concentrations, and when miRNAs are 

neither lowly nor highly abundant (Figliuzzi et al. 2013; Ala et al. 2013). Others 

conclude that ceRNA crosstalk is maximal when the abundances of the ceRNA and 

mediating miRNA are equimolar (Hausser & Zavolan 2014) or when the ceRNA 

effectively doubles the number of miRNA target sites (Jens & Rajewsky 2014). These 

Page 4 of 38

URL: http:/mc.manuscriptcentral.com/bbmg  Email: pfeffer@biochem.wisc.edu

Critical Reviews In Biochemistry & Molecular Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

5 

 

contrasting conclusions appear to depend on the model used, and include variables such 

as the numbers of ceRNAs, miRNAs and miRNA targets that are considered, and 

whether the miRNA is released intact or degraded following target repression. 

Importantly, most of these mathematical models assume that the number of miRNA 

molecules exceeds the number of target sites, which is counter to what has been shown 

experimentally (Bosson et al. 2014). These mathematical models thus have not resolved 

the question of the relative abundances of various RNA species required to permit 

physiological ceRNA crosstalk. 

The stoichiometric relationships among miRNAs and their targets have also 

been investigated experimentally although with contrasting results (Figure 2). Bosson et 

al. (2014) suggested that miRNAs bind their target mRNAs hierarchically, 

preferentially binding to rare high affinity target sites over the more abundant, lower 

affinity sites (Figure 2a). This hierarchy effectively reduces the pool of available 

miRNA target sites with the consequence that a ceRNA with high affinity miRNA 

binding sites has to contribute fewer such sites in order to cause derepression of other 

miRNA-targeted transcripts. Through the use of reporter genes, the study then showed 

that a ceRNA can contribute sufficient miRNA binding sites to derepress other miRNA 

targets when its abundance lies within a physiological range, but only for miRNAs with 

a low or intermediate miRNA:target ratio. 

A contrasting model was proposed by Denzler et al. (2014, 2016), which 

suggests that the spread of miRNA binding across target transcripts is independent of 

the affinity of the miRNA binding sites (Figure 2b). They show that a ceRNA has to 

contribute a similar, and thus very large, number of miRNA binding sites to those 

already present in the transcriptome if it is to alter the repression of miRNA targets. The 

authors focused on miR-122, the most abundant liver miRNA (Tang et al. 2011; Ludwig 
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et al. 2016), to show that no transcript, or collective changes in transcript abundance, 

could contribute a sufficiently high number of additional binding sites to alter miR-122 

target repression (Denzler et al. 2014). They then extrapolated from these findings to 

conclude that ceRNA crosstalk is not possible within a physiological range of transcript 

abundance. 

Mathematical models and experimental results thus provide no consensus as to 

whether ceRNA crosstalk can occur under physiological cellular conditions. 

Evidence supporting the ceRNA hypothesis 

 Despite the controversy over the physiological relevance of ceRNA crosstalk 

there are a growing number of transcripts that have been proposed to act as ceRNAs. 

The first experimentally supported mammalian ceRNA was that of PTENP1, a 

transcribed pseudogene which regulates the mRNA and protein abundance of the 

tumour suppressor gene PTEN (Poliseno et al. 2010). It does this in a miRNA 

dependent manner owing to its sharing of multiple conserved miRNA binding sites with 

PTEN. PTENP1 was further shown to have a suppressive role in cell proliferation and is 

selectively lost in human cancer (Poliseno et al. 2010). Since then, many mRNAs 

(Jeyapalan et al. 2011; Sumazin et al. 2011; Tay et al. 2011; Gao et al. 2016), lncRNAs 

(Wang et al. 2010; Cesana et al. 2011; Johnsson et al. 2013; Wang et al. 2013; Tan et al. 

2014; Tan et al. 2015), pseudogene transcripts (Marques et al. 2012; Karreth et al. 2015; 

Ye et al. 2015; Straniero et al. 2017) and circular RNAs (Hansen et al. 2013; Memczak 

et al. 2013) have been suggested to act as ceRNAs. Many of these diverse transcripts 

have proposed roles in human disease including in various types of cancer (Wang et al. 

2010; Jeyapalan et al. 2011; Sumazin et al. 2011; Tay et al. 2011; Johnsson et al. 2013; 

Karreth et al. 2015; Ye et al. 2015; Gao et al. 2016) and in neurodegenerative diseases 

(Tan et al. 2014; Straniero et al. 2017). It is also proposed that ceRNAs modulate the 
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differentiation of embryonic stem cells (Wang et al. 2013; Tan et al. 2015). 

Unfortunately, many of these studies fail to provide substantial evidence of 

physiological effects that are explicable by a ceRNA mechanism. For example, some 

studies do not demonstrate that the effects of a potential ceRNA are miRNA-dependent, 

or else fail to address whether the number of additional binding sites provided by the ex 

vivo overexpression of a ceRNA exceeds the number achievable under physiological 

levels of gene expression. An exception is a recent investigation of CDR1as, a circular 

RNA which is highly expressed in the mouse brain and contains >70 binding sites for 

miR-7. Removal of this locus in mice disrupted miR-7 mediated gene repression, 

altering mRNA abundance by up to 2-fold and leading to dysfunction of neuronal 

activity (Piwecka et al. 2017). This study provided the first in vivo evidence of a 

functional circular RNA and of a physiologically relevant ceRNA mechanism in 

mammals. 

Formation and activity of the miRNA:RISC complex 

Resolution of the ceRNA controversy requires a better understanding of the molecular 

specificity and dynamics of miRNA-mediated target repression. Several mathematical 

models of ceRNA action (as introduced above) require miRNA molecules to outnumber 

target sites. Furthermore, both mathematical and experimental models additionally 

assume that cells contain an aqueous solution wherein all miRNA, RISC and target 

transcript molecules diffuse freely, are active and are fully available for interaction. 

However experimental observations imply that these assumptions are violated. In 

particular, the repressive effect of a miRNA cannot be accurately predicted from its 

cellular abundance alone (Mullokandov et al. 2012). A miRNA’s association with RISC 

is a better indicator of miRNA activity (Flores et al. 2014) yet only a small proportion 

of miRNA:RISC complexes have been shown to be actively engaged in target 
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repression in adult tissues (La Rocca et al. 2015). Conversely, in cell lines the majority 

of miRNA:RISC complexes are involved in target repression, which highlights an 

important distinction between cell lines and the adult tissues that they represent (Figure 

3) (La Rocca et al. 2015). Finally, models of ceRNA crosstalk do not account for recent 

unexpected observations that the association of a miRNA to RISC can be modulated by 

the number of high affinity mRNA targets of this miRNA:RISC complex (Flores et al., 

2014). These findings indicate, first, that not all miRNA molecules within a cell are 

involved in active repression of target transcripts and, second, that the repressive action 

of a miRNA can be altered through its activity, independent of changes in miRNA 

abundance. 

Such discoveries have an important implication for ceRNA models: if the 

proportion of active miRNA molecules in a cell is small then there is an increased 

likelihood that changes in the abundance of a ceRNA transcript will alter its interaction 

with sufficient miRNA molecules to affect the extent of repression of other target 

transcripts. 

Heterogeneity of miRNA targets, target sites and binding 

Modelling ceRNA crosstalk becomes increasingly complex in light of the fact that 

ceRNAs will bind and sequester miRNAs with unequal efficiency. Any investigation of 

how the number of additional miRNA binding sites contributed by a ceRNA influences 

the repression of other miRNA targets will therefore be relevant to that ceRNA only. 

Here we discuss processes that alter the efficiency of miRNA targeting and repression, 

thereby altering the potential effectiveness of a ceRNA. 

An important factor in determining the recognition of miRNA targets, the 

efficacy of repression and the potential for a transcript to act as a ceRNA, is the extent 

of base pairing between the 3’ UTR of a mRNA and nucleotides 2-8 at the 5’ end of the 
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miRNA, termed the miRNA seed region (Lewis et al. 2005). The most effective 

canonical site types are the 8mer site (base pairing to nucleotides 2-8 of the miRNA 

with an A opposite nucleotide 1), followed by 7mer sites (base pairing to nucleotides 2-

8 of the miRNA or nucleotides 2-7 with an A opposite nucleotide 1) and the much 

weaker efficacy 6mer sites (base pairing to nucleotides 2-7 of the miRNA) (Lewis et al. 

2005) (Figure 4). As these site types determine the effectiveness of miRNA repression, 

they are also expected to determine the effectiveness of a miRNA binding site 

containing transcript to act as a competitor (Figure 5a). The number of additional 

binding sites that a ceRNA needs to contribute before derepression is observed for of 

other miRNA target transcripts is observed is variable, differing by site type. One study 

reported that 7mer sites are 50% as effective, and 6mer sites are 20% as effective, as 

8mer sites (Denzler et al. 2016). ceRNAs containing high affinity miRNA binding sites 

should thus be more efficient at crosstalk. 

miRNA binding sites with extensive complementarity to the miRNA are the 

most effective, of the site types currently tested, in causing derepression of miRNA 

targets, being approximately 4-fold more effective than 8mer sites (Denzler et al. 2016). 

Binding to such highly complementary sites tends to trigger miRNA degradation 

(Ameres et al. 2010), implying that this causes derepression of miRNA target genes 

primarily through a reduction in miRNA activity rather than competition for binding. 

Interestingly, the effectiveness of any ceRNA containing such highly complementary 

miRNA binding sites depends on the initial abundance of the miRNA, and not on the 

abundance of competing miRNA binding sites, in contrast to the model of competition 

proposed for canonical 8-6mer miRNA binding sites (Denzler et al. 2016). Although 

transcripts containing such an extensively paired miRNA binding site have an increased 
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potential as a ceRNA, such sites are thought to be rare in mammals (Bartel 2009) and 

therefore are unlikely to contribute substantially to ceRNA crosstalk. 

In addition to miRNA binding site complementarity the number and location of 

miRNA binding sites are also important factors for explaining the variable efficacy of 

miRNA-mediated repression (Doench et al. 2003; Grimson et al. 2007) and the potential 

for a miRNA target transcript to act as a ceRNA (Figure 5b) (Denzler et al. 2016). A 

miRNA target transcript that contains more miRNA binding sites will cause a larger 

change in total site count when its abundance is altered, and thus it will have a greater 

potential to act as a ceRNA when expressed within a physiological range of gene 

expression. The effectiveness of these multiple sites can also be altered by their spacing. 

Conserved miRNA binding sites tend to be separated by 10-130 nucleotides (Sætrom et 

al. 2007), with 8-40 nucleotides demonstrated experimentally to be optimal (Sætrom et 

al. 2007; Grimson et al. 2007). It is expected that miRNA binding sites separated by 

fewerless than 8 nucleotides are less likely to be simultaneously occupied due to steric 

hindrance between adjacent miRNA:RISC complexes. Why sites within 40 nucleotides 

of each other act more cooperatively is, however, less clear perhaps being due to 

complex formation at one site either actively recruiting or aiding in the stabilization of 

another. 

Proximal miRNA binding sites have been shown to act cooperatively in ceRNA 

crosstalk. A reporter gene was created containing a miRNA binding site for let-7 and a 

miRNA binding site for miR-122 separated by 58 nucleotides. Derepression of 

endogenous targets of these miRNAs was then shown to require the addition of 20-50% 

fewer reporter transcripts than when separated miRNA binding sites were tested 

(Denzler et al. 2016). Interestingly, this effect was observed for endogenous transcripts 

targeted by both of these miRNAs, as well as endogenous transcripts targeted by only 
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one. Two observations are of particular note here. First, a transcript with multiple 

cooperatively spaced miRNA binding sites appears to have a greater potential as a 

ceRNA. Second, binding of multiple miRNA species to a ceRNA could occur 

synergistically, so that the presence of a cooperative binding site for one miRNA can 

influence competition for binding of an alternate miRNA. Thus the potential of a 

transcript to act as a ceRNA may depend on the total number and identity of all miRNA 

binding sites not just the number of binding sites present for a particular miRNA. 

These are the currently known factors that affect not just the efficacy of 

repression of a miRNA target but also the potential for that target to act as a ceRNA. 

Transcripts that are most effective at competing for miRNA binding are expected to 

contain a large number of high affinity miRNA binding sites with some degree of 

optimal spacing. The potential for ceRNA crosstalk has been tested for only a relatively 

small number of reporter transcripts, each typically containing 1-3 cooperatively spaced 

high affinity miRNA binding sites (Bosson et al. 2014; Denzler et al. 2014; Denzler et 

al. 2016), and hence these may not represent the most effective ceRNAs. Similarly, as 

endogenous targets of miRNAs are unequal in their efficacy of repression, studies that 

employ an endogenous miRNA target may not be investigating an effective ceRNA. 

Consequently, despite the conclusions of others (Denzler et al. 2016), it remains 

plausible that ceRNA crosstalk occurs within a physiological range of gene expression 

but only for a subset of transcripts that are distinguished by their efficiency at recruiting 

and binding miRNAs. In support of such effective transcripts, Werfel et al. (2017) 

recently demonstrated that some miRNA target transcripts are preferentially bound and 

repressed by miRNAs. Furthermore, they found that these targets are neither enriched 

for a higher number of miRNA binding sites, nor have particularly high expression 

levels, suggesting that there are unstudied factors that enhance miRNA binding (Figure 
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5c). For future studies of ceRNA crosstalk it may therefore be more instructive to utilize 

either endogenous transcripts that have already been proposed to act as a ceRNA, or a 

reporter transcript based on such a ceRNA. Alternatively, the approach used in Werfel 

et al. (2017), using RNA-seq following miRNA inhibition and Argonaute-2 (AGO2)-

RIP, could be used to determine the miRNA target transcripts with the greatest level of 

miRNA binding, and thus the greatest potential as a ceRNA. Derepression of 

endogenous targets should also be studied on a target-by-target basis, because some 

targets are likely to be more susceptible than others to ceRNA-mediated derepression. 

Dynamics of miRNA targeting and repression 

In order to repress miRNA target genes the miRNA:RISC complex has first to be 

efficient at encountering miRNA targets from among the complex pool of cellular 

RNAs, and then to bind these targets with sufficient affinity to mediate repression. The 

mechanisms by which miRNA:RISC complexes are able to efficiently engage with 

target sites are poorly understood, but are thought to involve both diffusion through the 

cytoplasm and lateral diffusion along RNA transcripts, similar to the facilitated 

diffusion mechanism initially proposed for transcription factors searching for DNA 

target sites (Berg et al. 1981). Diffusion of a miRNA:RISC complex through the 

cytoplasm is slower than lateral diffusion across an RNA transcript, yet would allow 

miRNA:RISC complexes to sample a greater proportion of binding sites. Therefore a 

mixture of these two diffusion processes appears to be vital for efficient miRNA 

targeting. Single molecule fluorescence studies show that miRNA:RISC complexes use 

lateral diffusion to sample multiple binding sites along the length of a target RNA with 

greater than 90% of initial miRNA:RISC binding events being resolved by shuttling to 

an alternate target site (Chandradoss et al. 2015). Although the target search is more 

effective using both long distance and local diffusion, the speed of the search process is 
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in conflict with the specificity of binding: the more stable the binding of the 

miRNA:RISC complex to a target, the more stable the binding will be to similar off-

target sequences thus slowing the target search. To be efficient, a miRNA:RISC 

complex should therefore initiate its search for a target using a low affinity binding 

strategy before switching to a repressive mode in which binding to the target site is of 

higher affinity (Klein et al. 2017).  

Recent evidence in support of this hypothesis suggests that human AGO2 

recognizes target sites in a step-wise manner: nucleotides 2-5 (the sub-seed region) of 

the miRNA are first exposed for base pairing with the target before a conformational 

change permits further bonds to form between the miRNA seed region and the target 

site (Schirle et al. 2014). It is this sub-seed region of the miRNA that is used for initial 

screening of target sites (Chandradoss et al. 2015; Salomon et al. 2015). Only when 

additional nucleotides of the miRNA are exposed for base pairing with the target is the 

level of stability sufficient to permit repression of its target transcript. 

Consequently, an increased density of sub-seed sites on a miRNA target site-

containing transcript may increase the efficiency by which that transcript is targeted and 

may modulate the efficacy of a ceRNA independently of its number of full seed-

matching target sites. If so, then this would alter how we currently assess the potential 

of a transcript to act as a ceRNA because, in one model, for a ceRNA to exhibit 

effective crosstalk it needs to contribute an equivalent number of seed-matched target 

sites to those already present within the transcriptome (Denzler et al. 2016).  

Binding affinity is not the only factor determining miRNA-mediated target 

repression. The distribution of miRNA:RISC across target sites is also regulated by 

phosphorylation of AGO2 (Golden et al. 2017). Binding of AGO2 and an associated 

miRNA to a target site induces AGO2 phosphorylation which then promotes its 
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dissociation from the target site. Loss of AGO2 phosphorylation impairs miRNA-

mediated gene repression and dramatically expands the number of target sites bound to 

AGO2:miRNA under steady-state conditions, showing that under normal conditions 

AGO2:miRNA complexes target only a subset of the potential target pool. Interestingly, 

some target transcripts retain the ability to be bound by AGO2 when it is unable to be 

phosphorylated, despite the greatly expanded target pool. It is possible that these 

preferentially bound targets could represent transcripts that are highly efficient at 

recruiting and binding miRNAs and would make good candidate ceRNAs. These targets 

contain a mixture of higher affinity 8mer sites, as well as lower affinity 7mer and 6mer 

target sites. Thus it is not affinity of the miRNA binding site that determines the ability 

of a transcript to retain miRNA binding upon expansion of the target pool. Indeed, the 

only difference observed between transcripts that retained miRNA binding upon loss of 

AGO2 phosphorylation and transcripts that lose both miRNA binding and repression 

was the rate of transcript decay, with slower decay rates associated with the 

preferentially bound transcripts. This result suggests that the AGO2 phosphorylation 

cycle is a timing mechanism that limits the residency time of AGO:miRNA:target 

interactions.  

Nevertheless, how this AGO2 phosphorylation cycle promotes efficient miRNA-

mediated repression remains unclear. It is possible that conformational changes of 

AGO2 upon target binding trigger AGO2 phosphorylation thereby limiting the 

residency time of the AGO2:target interaction. Alternatively, additional transcript 

features, such as sites for RNA binding proteins, may specifically promote AGO2 

phosphorylation, and thus AGO2:target dissociation (Golden et al. 2017). Whatever the 

mechanism, it now appears that AGO2:miRNA complexes typically target only a subset 

of all possible targets in the transcriptome. An important consequence of such a 
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reduction in effective miRNA binding site number is that, theoretically, it enhances the 

potential for ceRNA crosstalk, provided that the ceRNA is one of the subset of 

transcripts thatwhich are efficiently targeted by the miRNA.  

Subcellular localization 

Efficient miRNA-mediated repression requires cellular co-localization of the interacting 

components of the silencing pathway: miRNAs, components of the RISC and miRNA 

target transcripts (Figure 6). As pre-miRNAs are processed into mature miRNAs within 

the cytoplasm it is likely that the majority of miRNA:target interactions also occur 

there, although whether these interactions typically occur diffusely throughout the 

cytoplasm or within specific cytoplasmic locales remains unclear. Here we discuss 

evidence that miRNAs localize to many of the subcellular compartments of the 

cytoplasm, such as processing bodies and several cellular organelles, as well as the 

potential functions of this subcellular compartmentalization.  

AGO2 is localized to discrete cytoplasmic foci termed cytoplasmic bodies or 

processing bodies (P-bodies) (Sen & Blau 2005) that contain factors involved in the 

RNA decay process (Cougot et al. 2004) including many components of the miRNA 

silencing pathway such as miRNAs (Liu et al. 2005), their target transcripts (Liu et al. 

2005) and the AGO-interacting protein GW182 (Eystathioy 2002). Although AGO2 is 

found at a much higher concentration in P-bodies than the surrounding cytoplasm, only 

around 1% of AGO2 is actually localized within P-bodies (Leung et al. 2006) and P-

body formation is not required for normal miRNA-mediated repression and degradation 

of target mRNAs (Eulalio et al. 2007), suggesting that most miRNA activity occurs 

elsewhere in the cell. 

Other potential locations for miRNA-mediated gene silencing are cellular 

organelles, such as the endoplasmic reticulum (ER). Although major components of 
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RNA-mediated gene silencing are found in many subcellular compartments and 

throughout the cytoplasm, miRNAs which are incorporated into AGO2 predominantly 

co-sediment with membranes of the rough ER (Stalder et al. 2013). In one model 

(Stalder et al. 2013), loading of the miRNA into AGO2 and interaction of the RISC with 

a target mRNA co-occur at the ER’s cytosolic membrane surface, allowing highly 

efficient repression particularly of translating mRNAs containing miRNA binding sites.  

Some miRNAs (Barrey et al. 2011; Bandiera et al. 2011; Zhang et al. 2014), as 

well as AGO2 (Bandiera et al. 2011; Zhang et al. 2014), are localized to mitochondria. 

In the undifferentiated myoblast cell line C2C12 approximately 13% of total AGO2 

localized to mitochondria (Zhang et al. 2014). However, miRNA-mediated repression in 

mitochondria is in doubt because it apparently lacks GW182, a RISC component 

required for miRNA-mediated repression (Zhang et al. 2014). Furthermore, although 

interactions have been reported between AGO2 and mitochondrial genome-encoded 

mRNA targets, some miRNAs are reported to have opposing effects, specifically on 

COX1 abundance (Das et al. 2012; Zhang et al. 2014) with one miRNA enhancing 

translation of COX1 in sharp contrast to the canonical role for miRNAs (Zhang et al. 

2014).  

Most studies examining the cellular localization of miRNAs and other 

components of the RNA-mediated silencing pathway have been performed under steady 

state conditions. The fluctuating concentrations of these components throughout the cell 

over time, or following cellular stimuli, are thus largely unknown. Nevertheless, it is 

likely that local changes in miRNA, miRNA target transcript and RISC component 

levels influence miRNA activity. In neurons, stimulation of a single synapse caused 

increased processing of a pre-miRNA into mature miRNA, which in turn resulted in 

decreased protein synthesis of a target mRNA in a spatially restricted manner 
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(Sambandan et al. 2017). The spatiotemporal dynamics of miRNA:target interactions 

therefore are likely complex. ceRNAs may exhibit enhanced crosstalk within 

subcellular compartments in which it need not compete for miRNA binding with all 

other target transcripts present elsewhere in the cell.  

miRNA-to-target ratio and the potential for ceRNA crosstalk 

The effect of miRNA-to-target ratio on the repression of miRNA target transcripts is 

relatively well understood: a miRNA with a large number of targets, relative to its own 

abundance, typically shows a weaker repression of its targets than a miRNA with a 

smaller target abundance (Arvey et al. 2010). Thus, only highly expressed miRNAs, 

those that are more abundant than their high affinity (e.g. 8mer) target sites, show 

appreciable binding to these sites and confer repressive activity (Bosson et al. 2014). 

Even these active miRNAs are typically not expressed sufficiently to bind to the large 

number of lower affinity sites (e.g. 6mers) above background rates (Bosson et al. 2014), 

which may begin to explain the lower efficacy of repression of these sites (Grimson et 

al. 2007).  

The miRNA-to-target ratio’s effect on ceRNA crosstalk potential is less clear 

and has led to two opposing models of ceRNA crosstalk (as discussed above). A key 

difference in the models proposed by Bosson et al. (2014) and Denzler et al. (2014) is 

the effect that miRNA abundance has on the potential for ceRNA crosstalk. In the 

hierarchical model proposed by Bosson et al. (2014) a miRNA’s abundance determines 

its spread across the total pool of target sites. Consequently it is miRNA abundance that 

determines the size of the effective target pool and thus the number of sites with which 

a ceRNA’s sites compete. By contrast, in the non-hierarchical model proposed by 

Denzler et al. (2014) the potential for ceRNA crosstalk is relatively unaffected by 

miRNA abundance, provided that the number of target sites is in excess of the number 
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of miRNA molecules. When tested experimentally, the number of additional miRNA 

binding sites required to cause derepression of a miRNA target reporter showed little 

change upon increased or decreased miRNA abundance (Denzler et al. 2016), in line 

with the non-hierarchical model. However, this has only been demonstrated for a small 

number of miRNAs. Furthermore, it has been assumed that altering the abundance of 

miRNA molecules similarly alters the abundance of miRNA:RISC complexes that are 

actively involved in targeting, which may not be the case (Mayya & Duchaine 2015). 

Overall, it is difficult to reconcile these two models (Denzler et al. 2014; Bosson 

et al. 2014) and draw a comprehensive conclusion regarding the effect of miRNA:target 

ratio upon the potential for ceRNA crosstalk. Both studies investigated the potential for 

ceRNA crosstalk using similar reporter constructs for the same miRNAs and in the 

same cell lines. Nevertheless, substantial differences were observed in the number of 

additional miRNA binding sites required to observe target gene derepression (Table 1). 

Interestingly, the conclusions drawn regarding the physiological relevance of ceRNA 

crosstalk by both Bosson et al. (2014) and Denzler et al. (2014, 2016) rely on 

assumptions that are at odds with experimental observations. Specifically, they have not 

accounted for the unequal efficiency of miRNA target transcripts containing the same 

number and affinity of binding sites to bind miRNA. As we discuss above, targets with 

a similar number and affinity of binding sites for one miRNA may exhibit contrasting 

levels of miRNA binding due to presence of sub-seed sites or clustered binding sites for 

an alternate miRNA. Consequently, some miRNA target transcripts will be more 

effective than others at competing for miRNA binding, thereby increasing the potential 

for these transcripts to act as ceRNAs. 

The majority of studies investigating ceRNA crosstalk use a single ceRNA 

reporter transcript containing one or more miRNA binding sites for a single miRNA. 
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Upon expanding our consideration to multiple ceRNAs, miRNAs and miRNA target 

transcripts the effects of abundance upon ceRNA crosstalk potential are even less well 

understood. The downstream consequences of increasing the abundance of a ceRNA 

that contains miRNA binding sites for multiple miRNAs are expected to be far more 

complex than those for a ceRNA with binding sites for just one miRNA. It is also 

possible that under certain conditions, for example during cellular differentiation or 

upon disease progression, multiple ceRNAs could be co-regulated thereby altering the 

abundance of miRNA binding sites more than is possible by an individual ceRNA. This 

issue of collective changes in transcript abundance was investigated for miR-122 in the 

liver, and transcriptome wide changes in a disease state were found to contribute an 

insufficient number of miRNA binding sites to cause observable derepression of other 

miRNA target transcripts (Denzler et al. 2014). Nevertheless, such transcriptome-wide 

effects on ceRNA crosstalk have not been investigated more broadly. It is therefore 

likely that the reporter systems in current use represent a simplistic form of ceRNA 

crosstalk that do not reflect the more complex physiological state. 

Strategies to identify and characterize a ceRNA mechanism 

An increasing number of publications propose transcripts as ceRNAs. Nevertheless, 

most provide insufficient evidence to demonstrate conclusively a physiologically 

relevant ceRNA mechanism. Here we consider what evidence is required to identify and 

characterize a ceRNA (Table 2), and discuss how characterized ceRNAs could assist in 

improving the modelling of ceRNA crosstalk.  

An initial indicator that a transcript may act as a ceRNA under physiological 

conditions could be that its abundance is positively correlated with the abundance of 

transcripts that share binding sites for one or more miRNA species. Large datasets of 

physiological gene expression information such as GTEx (Lonsdale et al. 2013) will be 
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useful for assessing positive correlation in gene expression across multiple samples 

from specific tissues. A second indicator could be that transcripts with positively 

correlated co-expression share an unexpectedly high density of miRNA binding sites 

predicted using computational algorithms such as TargetScan (Agarwal et al. 2015) and 

miRanda (Enright et al. 2003). These programs predict the presence of miRNA binding 

sites via the degree of transcript sequence complementarity to the miRNA seed region, 

along with other contextual factors such as predicted site accessibility and local AU 

content (Agarwal et al. 2015). However, in silico predictions of miRNA-target 

interactions suffer from high rates of both false positive (46-63%) and false negative 

(44-82%) predictions (Steinkraus et al. 2016). If seeking ceRNAs for a specific miRNA 

an alternative method could be to identify the strongest binding partner of that miRNA 

experimentally using the AGO-RIP method described in Werfel et al. (2017). 

Transcripts identified in this manner as preferential binding partners of a miRNA are 

hypothesized to be the most likely to be able to compete for miRNA binding when 

expressed within a physiological range. 

Predicted ceRNA crosstalk requires experimental confirmation in the cell or 

tissue type of interest. Ideally experiments would be performed using tissue samples or 

primary cell lines;, however, many experimental techniques are not possible in these 

model systems. Therefore, a cell line derived from the tissue of interest, which are 

easier to experimentally manipulate, may be the better choice as a model. As cell lines 

do not completely recapitulate the gene expression observed in the tissues they 

represent (Forrest et al. 2014), an important initial step will be to confirm the expression 

of any potential ceRNAs, their mediating miRNAs and the miRNA’s target transcripts. 

The ceRNA interaction can then be tested by first overexpressing the ceRNA, ideally 

within its physiological range of expression, and observing whether this leads to an 
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increase in the abundance of transcripts targeted by the same miRNA(s), and then by 

observing the reciprocal relationship upon knockdown of the proposed ceRNA. 

However, the method chosen to alter abundance of the ceRNA may depend on the 

location of the ceRNA locus in the genome and whether the miRNA binding transcript 

also codes for protein. If the ceRNA is observed to alter a miRNA’s target transcripts’ 

abundance this should also be examined at the level of protein abundance for protein-

coding genes. For a ceRNA to be functionally important the changes in abundance of 

other transcripts and proteins should be sufficient to perturb the activity of a cellular 

process. For example, in Cdr1as knockout mice, spontaneous vesicle release was 

upregulated in neuronal cells (Piwecka et al. 2017).  

 Although the experimental workflow described above could identify potential 

ceRNAs and implicate their importance in a particular cellular process, it does not alone 

provide sufficient evidence that the altered cellular phenotype is mediated by a ceRNA 

mechanism. For this, the cellular effect needs to be shown to be miRNA-dependent, for 

example using Dicer knockout cell lines (where available) which are deficient in 

miRNA biogenesis: altering the abundance of a potential ceRNA in these Dicer-null 

cells should have no effect on other transcripts that share binding sites for the same 

miRNA(s). The identity of the specific miRNA that mediates ceRNA crosstalk should 

then be confirmed. If the potential ceRNA has been predicted to contain binding sites 

for multiple miRNAs, these can be tested systematically by altering the abundance of 

each miRNA in turn and then observing whether this affects the abundance of the 

ceRNA and other miRNA target transcripts. 

Once mediating miRNAs have been identified, the predicted binding sites for 

these miRNAs should be mutated. It is expected that altering the abundance of the 

ceRNA will produce no effect upon gene expression or cellular processes when its 
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binding sites for the mediating miRNA are abolished. Ideally, this miRNA binding site 

mutagenesis should also be performed on the endogenous transcript, perhaps via the use 

of CRISPR genome editing, to show that the presence or absence of the miRNA binding 

site has an effect on the abundance of other miRNA target transcripts when the ceRNA 

is expressed at endogenous levels. Direct binding of the mediating miRNA to the 

ceRNA and other target transcripts should also be demonstrated, for example via 

pulldowns using biotinylated miRNA as bait (Ørom & Lund 2007).  

The final step to confirming that a transcript can act as a ceRNA is to 

demonstrate that a ceRNA mechanism that has been characterized in vitro, using the 

steps described above, is replicated in vivo. For example, if a human ceRNA has an 

orthologous sequence in mice, a mouse model could be created in which levels of the 

potential ceRNA are knocked down. Other targets of the mediating miRNA would be 

expected to be altered in abundance and that this would, in turn, affect downstream 

physiological processes. The effect of abolishing the miRNA binding site on the ceRNA 

transcript should also be investigated in vivo. Lastly, in order to demonstrate that the 

abundance of the ceRNA transcript is responsible for altering cellular processes, rescue 

experiments could be performed with this model via the addition of the wild-type 

ceRNA transcript containing a functional miRNA binding site. If the ceRNA affects 

cellular homeostasis at a particular time point during development, however, rescue 

experiments performed at a later time point are likely to be ineffective. 

The above lines of evidence should suffice to demonstrate convincingly that a 

transcript can alter the in vivo abundance and activity of other transcripts through a 

mechanism of ceRNA crosstalk. Any transcript conclusively shown to act as a ceRNA 

would be useful as a model for gaining a greater understanding of the crosstalk 

mechanism. It would be of interest to compare the number of copies of a transcript, and 
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thus the number of additional miRNA binding sites, that are required to cause 

derepression of other miRNA target transcripts, specifically for a transcript identified to 

act as a ceRNA compared with other miRNA target transcripts with lower predicted 

potential as a ceRNA. 

Concluding Remarks 

Although the ceRNA hypothesis has provoked substantial interest, currently there is 

little conceptual concordance between studies modelling ceRNA mechanisms and 

others that propose specific ceRNA transcripts. This derives from our limited 

understanding of the factors affecting both miRNA-mediated repression and ceRNA 

crosstalk. 

In this review we propose that recently discovered aspects of miRNA targeting 

and efficacy of miRNA-mediated repression will also likely affect the potential for 

ceRNA crosstalk. We suggest that the field will need to take a more nuanced view of 

miRNA-mediated repression and ceRNA crosstalk, specifically by considering 

mechanistic models that are not solely based on the number and affinity of seed-

matched target sites, but also account for altered RISC activity and subcellular 

molecular colocalization. Furthermore, understanding how stoichiometry between 

active miRNA:RISC complexes and miRNA target sites varies for different miRNA 

species or under different cellular conditions will be critical for demonstrating the 

relevance of ceRNA crosstalk as a physiological mechanism.  

Similarly, in-depth characterization of bona fide ceRNAs may reveal factors that 

enhance crosstalk, such as presence of sub-seed and protein binding sites or specific 

sites of subcellular colocalization. Whilst these factors remain obscure, and because 

they are likely to vary across different miRNAs and under variable cellular conditions, 

we suggest that any proposal that a transcript acts as a ceRNA should be considered 
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according to its individual merits and available experimental evidence, rather than 

whether it accords with a generalised theoretical model.  
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Figure 1. Pathway of miRNA biogenesis. The canonical pathway of miRNA biogenesis initiates with 
transcription of the miRNA sequence to form the pri-miRNA. The pri-miRNA is then cleaved by the 

microprocessor complex (Drosha-DGCR8) to form a hairpin precursor termed the pre-miRNA. Exportin-5-

Ran-GTP exports the pre-miRNA from the nucleus into the cytoplasm where it is further cleaved by Dicer. 
The functional strand of the mature miRNA is then incorporated into an Argonaute protein as part of the RNA 
induced silencing complex. This complex is then able to target mRNAs and repress them via a mechanism of 

mRNA degradation or translational inhibition.  
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Figure 2. Models of miRNA targeting and effect upon ceRNA crosstalk potential. A comparison of models of 
miRNA targeting and how each relates to the potential for ceRNA crosstalk. In the non-hierarchical model 
miRNA molecules bind target transcripts independently of their affinity for their miRNA binding sites. As a 
result a ceRNA has to contribute an equivalent number of miRNA binding sites to those already present in 
the transcriptome before significant derepression of endogenous miRNA target transcripts will be observed. 
Due to such a high requirement for additional miRNA binding sites the potential for ceRNA crosstalk is low. 
In the hierarchical model miRNA molecules preferentially bind higher affinity sites (8mers) before spreading 
across low affinity sites. A ceRNA with a high affinity miRNA binding site therefore only has to contribute 

miRNA binding sites at a number similar to the miRNA molecule count before significant derepression of 
targets will be observed. Therefore, there is potential for ceRNA crosstalk provided that the miRNA is not 
highly abundant in comparison to the number of its high affinity binding sites. In the preferential targeting 
model certain transcripts are preferentially targeted and repressed by miRNA molecules. In this model the 
potential for ceRNA crosstalk is high if the ceRNA is a preferentially targeted transcript. However, it is 
currently unclear what factors may contribute to preferential targeting. Color version of the figure is 

available online.  
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Figure 3. Availability and activity of miRNA molecules. Not all miRNA molecules present within a cell are 
active and available for target gene repression. A) In cell lines, for example, the majority of AGO:miRNA 
complexes are actively involved in targeting and repression (La Rocca et al. 2015). B) In contrast, within 
tissues, the majority of AGO:miRNA complexes are inactive (La Rocca et al. 2015). The effect of a ceRNA 

will depend on the number of active AGO:miRNA complexes, with greater crosstalk predicted when a smaller 
number of AGO:miRNA complexes are active. Color version of the figure is available online.  

 
68x39mm (600 x 600 DPI)  

 

 

Page 34 of 38

URL: http:/mc.manuscriptcentral.com/bbmg  Email: pfeffer@biochem.wisc.edu

Critical Reviews In Biochemistry & Molecular Biology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

  

 

 

Figure 4. Types of miRNA binding sites. Alternate types of miRNA binding sites. Each site type has a 
different affinity based upon the extent of base pairing to the miRNA. Color version of the figure is available 

online.  
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Figure 5. Relative efficacy of miRNA binding site types. The relative efficacy of miRNA mediated repression 
of various site types. It is hypothesized that sites with a greater efficacy of miRNA binding and repression 
also show a greater efficacy for ceRNA crosstalk. A) Relative efficacy of canonical site types. B) Relative 

efficacy of a single site, versus two sites or two cooperatively spaced sites. C) Hypothesized efficacy of 
unstudied site types (e.g. preferential binding sites and additional sub-seed sites) versus a canonical 7mer 

site. Color version of the figure is available online.  
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Figure 6. Subcellular localization of components of the miRNA silencing pathway. Subcellular localization of 
miRNAs, and other components of the miRNA silencing pathway could alter the extent of miRNA-mediated 

repression and thus potential for ceRNA crosstalk. A) Both miRNA target transcripts and AGO:miRNA 
complexes are localized throughout the cytoplasm. The miRNA, therefore, is able to bind and repress its 

target transcripts. B) The miRNA target transcripts are localized throughout the cytoplasm but AGO:miRNA 
complexes are predominantly localized elsewhere, for example, within mitochondria. Consequently miRNA 

mediated-repression of the target transcript would be minimal. Color version of the figure is available online. 
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 Bosson et al. (2014) Denzler et al. (2016) 

Model proposed Hierarchical model where 

AGO:miRNA complexes are 

predominantly bound by high 

affinity target sites.  

Non-hierarchical model where 

AGO:miRNA complexes are 

evenly distributed across all 

target sites, independent of their 

affinity.  

Potential for ceRNA 

crosstalk 

Defined by the ratio of the 

abundance of miRNA molecules 

to the number of their high 

affinity binding sites. 

Defined by the abundance of 

miRNA binding sites in the 

transcriptome. 

Method of defining the 

number of additional 

miRNA binding sites 

require for target 

derepression 

Data grouped into bins by 

number of miRNA binding sites 

added. Derepression threshold 

defined as the lowest bin at 

which significant target 

derepression was observed.  

Derepression threshold defined 

as the point at which targets 

were derepressed by 10% of the 

total repression observed when 

no additional binding sites were 

present. 

Number of additional 

miRNA binding sites 

required for target 

derepression in mouse 

embryonic stem cells 

miR-294: No derepression 

observed at 10800 additional 

sites 

miR-294: 22000 additional sites 

miR-293: 3000 additional sites miR-293: 9000 additional sites 

miR-92/25: 3000 additional sites miR-92/25: 13000 additional 

sites 

Conclusions ceRNA crosstalk is possible 

within physiological conditions 

provided that the miRNA:target 

pool ratio is low. 

ceRNA crosstalk is not possible 

within physiological conditions. 
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Steps to identify a ceRNA Possible methodology Advantages and limitations of 

methodology 

Identify a positive correlation 

in expression for a candidate 

ceRNA and transcripts with 

which it shares one or more 

miRNA binding sites. 

Use of existing expression 

datasets e.g. GTEx, EMBL-EBI. 

Differences in gene expression may 

occur between the tissue type of interest 

and cell lines used for further 

experimental characterization of a 

ceRNA. 

Analysis of gene expression in 

tissues/cells of interest e.g. qRT-

PCR, RNA-seq. 

Well established experimental 

techniques. 

Analysis of  miRNA binding 

sites predicted computationally 

e.g. TargetScan, miRanda. 

miRNA binding site prediction 

algorithms suffer from high rates of both 

false positive and false negative 

predictions. 

Alter abundance of candidate 

ceRNA and observe the effect 

upon abundance of other 

miRNA target transcripts. 

Increase abundance via an 

overexpression plasmid. 

May produce non-physiologically high 

levels of gene expression. 

System is flexible and can be used to 

overexpress particular transcript 

(including mutated) isoforms, or the 3’-

UTR alone. 

Decrease abundance via 

shRNAs/siRNAs. 

Known off-target effects. 

May alter availability of AGO2. 

Increase/decrease abundance via 

CRISPRa/CRISPRi. 

Cannot differentiate between transcripts 

sharing promoter regions. CRISPRi may 

cause unintended transcriptional 

repression due to heterochromatin 

spread. 

Confirm miRNA-dependence 

of ceRNA crosstalk 

Alter ceRNA abundance in 

Dicer knockout cells. 

Dicer knockout lines not available for 

many cell types. 

 

Mutagenize miRNA binding 

site(s) on the ceRNA e.g. site 

directed mutagenesis, CRISPR. 

More applicable to certain cell types 

depending on chromosome copy number 

and ability of cells to survive selection 

process. 

Confirm direct binding of 

miRNA to ceRNA and other 

target transcripts. 

Pulldown using biotinylated 

miRNA as bait. 

miRNA abundance cannot be kept at 

endogenous levels. 

High-throughput RNA:RNA 

interaction assays e.g CLASH, 

CLIP. 

Low sensitivity: not all miRNA:target 

interactions will be identified. 

Confirm effects of ceRNA in 

vivo. 

Create mouse models with 

knockout of the proposed 

ceRNA and with a mutagenized 

miRNA binding site. 

Requires mouse orthologue. 

miRNA binding sites, and the miRNAs 

involved, may not be conserved between 

human and mouse. 
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