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Abstract 44 
 45 

The terrestrial carbon and water cycles are intimately linked: the carbon cycle is driven by 46 

photosynthesis, while the water balance is dominated by transpiration, and both fluxes are 47 

controlled by plant stomatal conductance. The ratio between these fluxes, the plant water 48 

use efficiency (WUE), is a useful indicator of vegetation function. WUE can be estimated 49 

using several techniques, including leaf gas exchange, stable isotope discrimination, and 50 

eddy covariance. Here we compare global compilations of data for each of these three 51 

techniques. We show that patterns of variation in WUE across plant functional types are 52 

not consistent among the three datasets. Key discrepancies include: (1) Leaf-scale data 53 

indicate differences between needle-leaf and broadleaf forests, but ecosystem-scale data 54 

do not; (2) leaf-scale data indicate differences between C3 and C4 species, whereas at 55 

ecosystem scale there is a difference between C3 and C4 crops but not grasslands; and (3) 56 

isotope-based estimates of WUE are higher than estimates based on gas exchange for most 57 

PFTs. Our study quantifies the uncertainty associated with different methods of measuring 58 

WUE, indicates potential for bias when using WUE measures to parameterise or validate 59 

models, and indicates key research directions needed to reconcile alternative measures of 60 

WUE.   61 

 62 

Keywords: stomatal conductance, water use efficiency, plant functional type, stable 63 

isotopes, leaf gas exchange, eddy covariance 64 

 65 
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Introduction 67 

 68 

One of the fundamental trade-offs governing plant growth is the exchange of water for 69 

carbon: land plants must open their stomata to take up carbon dioxide in order to grow, 70 

but at the same time water vapour is lost via transpiration, with the concomitant risk of 71 

desiccation (Cowan & Farquhar 1977). This trade-off can be characterised by the plant’s 72 

water-use efficiency (WUE), defined as the amount of carbon taken up per unit water 73 

used (Sinclair et al. 1984). Combining as it does the key processes of photosynthesis and 74 

transpiration, WUE is a widely-used parameter indicating vegetation performance.   75 

 76 

Water-use efficiency can be estimated using several methods that operate at different 77 

temporal and spatial scales. Community research efforts have led to the compilation of 78 

global datasets based on each of these methods. These datasets are increasingly being 79 

utilised to constrain and evaluate global vegetation models (e.g. Groenendijk et al. 2011, 80 

Saurer et al. 2014, Kala et al. 2015, Dekker et al. 2016). However, there has to date been 81 

little comparison across methods. It is often assumed that values obtained at one scale 82 

should be relatable to values obtained at other scales, but this assumption has not been 83 

explicitly tested across ecosystems. Our goal in this paper is to compare three 84 

independent global datasets of WUE, obtained using leaf gas exchange, stable isotope, 85 

and eddy covariance techniques, and investigate whether global patterns obtained using 86 

these different techniques are consistent with our current understanding of scaling. 87 

Specifically, we focus on patterns of variation across plant functional types (PFTs), 88 

which are used to represent vegetation in global vegetation models, and ask whether the 89 

three datasets indicate consistent differences among PFTs.  90 

 91 

WUE is known to vary with atmospheric vapour pressure deficit (VPD) (Monteith 1986). 92 

To compare across datasets, a metric of WUE is required that accounts for this variation. 93 

One commonly-used metric is the intrinsic WUE (iWUE), defined as photosynthetic C 94 

uptake divided by stomatal conductance to water vapour (A/gs). Another related metric is 95 

the ratio of intercellular to atmospheric CO2 (Ci/Ca ratio). However, both iWUE and the 96 

Ci/Ca ratio also vary with VPD, meaning that values obtained under different VPD 97 
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conditions cannot be directly compared. In this work, we account for variation in VPD 98 

conditions by using the parameter, g1, of a recent model of stomatal conductance (gs mol 99 

m-2 s-1), derived from the theory of optimal stomatal behaviour (Medlyn et al. 2011): 100 

 101 

𝑔𝑠 = 1.6 (1 +  
𝑔1

√𝐷
)

𝐴

𝐶𝑠
 

(1) 

 102 

where A is the net assimilation rate (μmol m-2 s-1), Cs (μmol mol-1) and D (kPa) are the 103 

CO2 concentration and the vapour pressure deficit at the leaf surface, respectively. The 104 

model parameter g1 (kPa0.5) represents normalised plant water use efficiency. The model 105 

parameter g1 is inversely related to iWUE but accounts for VPD, by assuming a √𝐷 106 

dependence of the Ci/Ca ratio, as found for leaf gas exchange (Medlyn et al. 2011) and 107 

eddy covariance data (Zhou et al. 2015). and can thus be directly compared across 108 

datasets. This parameter also corrects for increases in WUE driven by changes in Ca. If 109 

the ratio Ci/Ca is constant with increasing Ca, then g1 is also constant (Medlyn et al. 110 

2011). Assuming that these relationships accurately account for environmental effects on 111 

WUE, the parameter g1 is then a measure of WUE that can and can thus be directly 112 

compared across datasets. 113 

 114 

We apply this model to three major global data compilations. Lin et al. (2015) compiled a 115 

global database of leaf gas exchange measurements, including photosynthetic rate and 116 

stomatal conductance, and used these data to estimate instantaneous values of g1. Lin et 117 

al. (2015) found systematic differences in g1 among PFTs, with high values of g1 (and 118 

thus low iWUE) in crops, C3 grasses and deciduous angiosperm trees, and low values in 119 

C4 grasses and gymnosperms. Leaf-level gas exchange data such as these are commonly 120 

used to parameterise stomatal behaviour in vegetation models (e.g. Bonan et al. 2014). 121 

The differences among PFTs observed by Lin et al. (2015) have important consequences 122 

for modelled vegetation function at large scales, including changes in predicted surface 123 

cooling and consequent heatwave development (Kala et al. 2015, 2016).   124 

 125 
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Stable isotope methods can be applied to plant tissue to estimate iWUE and g1 values 126 

over monthly to annual time scales (Farquhar et al. 1989, Cernusak et al. 2013). Long-127 

term stable isotope records from tree rings are widely used to constrain model predictions 128 

of WUE at large spatial and temporal scales (e.g. Frank et al. 2015, Saurer et al. 2015, 129 

Dekker et al. 2016). A compilation of leaf 13C discrimination measurements indicated 130 

differences in stomatal behaviour among PFTs (Diefendorf et al. 2010). Here, we 131 

estimated g1 values from a global database of nearly 4,000 measurements of bulk leaf 13C 132 

discrimination (13C), taken from 594 sites spread across all seven continents (Cornwell 133 

et al, in review). We predicted that values of g1 estimated from this dataset would show 134 

similar rankings across PFTs as the leaf gas exchange data set, but that values would be 135 

lower, due to mesophyll resistance to CO2 diffusion (Seibt et al. 2008).  136 

 137 

At larger spatial scales, eddy flux measurements can be used to estimate whole-138 

ecosystem gross primary productivity (GPP) and evapotranspiration (ET), and their ratio 139 

GPP/ET, which is the whole-ecosystem water-use efficiency (Law et al. 2002, Beer et al. 140 

2009, Keenan et al. 2013). These data are also being widely applied to constrain and 141 

evaluate vegetation models (e.g. Groenendijk et al. 2011, Bonan et al. 2012, Haverd et al. 142 

2013). We predicted that g1 values estimated from these data would show similar 143 

rankings across PFTs as the leaf gas exchange and stable isotope datasets, but that 144 

estimated values of g1 would be higher due to the contribution of non-transpiratory water 145 

vapour fluxes to evapotranspiration (i.e. free evaporation from soil and canopy). 146 

 147 

 148 

Methods 149 

 150 

Datasets 151 

We synthesised three independent datasets to estimate values of g1. All datasets, and our 152 

analysis code, are available online; web addresses are given below under “data deposition 153 

statement”. Leaf gas exchange data were taken from Lin et al. (2015), who collated 154 

measurements under ambient field conditions from 286 species, covering 56 sites across 155 

the globe. The majority of these data are measurements on upper-canopy leaves during 156 
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the growing season. Isotope data came from a global database of leaf carbon isotopes 157 

measurements from natural and semi-natural habitats, across 3985 species-sites 158 

combinations (Cornwell et al. in review). Flux measurements were taken from the global 159 

collection of eddy flux measurements that comprise the FLUXNET “La Thuile” Free and 160 

Fair dataset (http://www.fluxdata.org). This dataset contains gap-filled, half-hourly 161 

measurements of carbon dioxide, water vapour and energy fluxes; following filtering (see 162 

below) we were able to use data from 120 sites. The global distribution of the three 163 

datasets is shown in Figure 1.  164 

 165 

Estimating g1 166 

g1 was estimated from leaf gas exchange data using non-linear regression to fit the 167 

unified stomatal optimisation model (Medlyn et al. 2011, eqn 1) to gs measurements for 168 

each species. Here we followed the methods of Lin et al. (2015). All model fits were 169 

done using the “minimize” function of the python “lmfit” library, using the Levenberg-170 

Marquardt method (Newville et al. 2014).  171 

 172 

Cornwell et al. (in review) estimated carbon isotope discrimination (Δ) values from bulk 173 

leaf 13C and estimates of source air 13C composition.  From these data, we estimated 174 

the ratio of the intercellular to ambient carbon dioxide concentration (Ci/Ca) following 175 

Farquhar et al. (1989) for C3 species: 176 

 177 

𝐶𝑖

𝐶𝑎
=

Δ − 𝑎

𝑏 − 𝑎
 

(2) 

 178 

where 𝑎 represents the fractionation caused by gaseous diffusion (4.4%o) and 𝑏 is the 179 

effective fractionation caused by carboxylating enzymes (assumed to be 27%o) (Cernusak 180 

et al. 2013). Note that we were unable to utilise values for C4 vegetation from this 181 

dataset. For C4 plants, the relationship between Ci/Ca and 13C depends on bundle sheath 182 

leakiness,  (Henderson et al. 1998; Cernusak et al. 2013). Adopting a value for  of 0.21 183 
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for C4 vegetation, as suggested by Henderson et al. (1998), yielded unrealistic estimates 184 

of Ci/Ca < 0 for more than half (79/140) of the dataset.  185 

 186 

Values of g1 for C3 species were estimated following Medlyn et al. (2011): 187 

 188 

𝑔1 =
(

𝐶𝑖
𝐶𝑎

√𝐷)

(1− 
𝐶𝑖
𝐶𝑎

)
  

(3) 

 189 

Mean daytime growing season VPD was estimated from monthly mean and maximum 190 

temperature and relative humidity data obtained from the Climatic Research Unit (CRU 191 

1.0) 0.5-degree gridded monthly climatology (New et al. 2002). Growing season was 192 

defined as the time period during which the daytime mean temperature is above zero. All 193 

values were estimated on a monthly basis then linearly interpolated to a daily basis. Daily 194 

VPD estimates could then be averaged over the growing season.   195 

 196 

Values of g1 were estimated from FLUXNET data as follows.  First, canopy stomatal 197 

conductance (Gs) was estimated from LE flux (J m-2 s-1) as  198 

 199 

𝐺𝑠 =
𝐿𝐸/𝜆

𝐷/𝑃
      (4) 200 

 201 

where 𝜆 is the latent heat of water vapour (J mol-1), 𝐷 (Pa) is the vapour pressure deficit 202 

and P is the atmospheric pressure (Pa). Pressure was estimated using the hypsometric 203 

equation based on site elevation data. Where site elevation information was missing, 204 

values were gap-filled using the 30-arc seconds (~1 km) global digital elevation model 205 

GTOPO30 data from the United States Geological Survey (USGS). Values of g1 were 206 

then estimated by fitting eqn (1) to data, taking Gs for gs and gross primary productivity 207 

(GPP) for A.  208 

 209 

FLUXNET data were screened as follows: (i) data flagged as “good”; (ii) data from the 210 

three most productive months, in terms of flux-derived GPP (to account for the different 211 

timing of summer in the Northern and Southern hemispheres); (iii) daylight hours 212 
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between 9 am and 3 pm; (iv) time slices with precipitation, as well as the subsequent 48 213 

half-hour time slices, were excluded (to minimise contributions from soil/wet canopy 214 

evaporation); (v) time slices with missing CO2 data were gap-filled with the global 215 

annual mean from averaged marine surface (http://www.esrl.noaa.gov/gmd/ccgg/trends/). 216 

If the entire year’s data were missing, or if the annual mean departed from the global 217 

mean by ±15 %, data were replaced with the global mean. This screening check was used 218 

to address possible errors in locally recorded CO2 concentrations in 14 site-year 219 

combinations, which showed drops against a global trend of increasing CO2 220 

concentrations (1995–2004: 1.87 ppm yr-1). In addition, fitted g1 values with an R2 < 0.2 221 

were excluded, as were fitted g1 values that were ± 50 % from the site average.  222 

 223 

We used equation (4) to estimate canopy conductance as this approach is taken in a 224 

number of other studies (e.g. Beer et al. 2009, Keenan et al. 2013) and the equation can 225 

be applied to all Fluxnet datasets. However, the use of equation (4) to estimate canopy 226 

conductance is a simplification because it assumes that the vegetation is fully coupled to 227 

the surrounding atmosphere, and therefore that water vapour exchange is directly 228 

proportional to stomatal conductance. There is also an aerodynamic resistance to gas 229 

exchange, resulting in a partial decoupling of canopy-atmospheric gas exchange, 230 

particularly in short-statured vegetation (Jarvis & McNaughton 1986). To estimate values 231 

of g1 accounting for aerodynamic resistance, Gs was estimated by inverting the Penman-232 

Monteith equation from measured LE flux: 233 

 234 

𝐺𝑠 =
𝐺𝑎𝛾𝜆𝐸

𝑠(𝑅𝑛 − 𝐺) − (𝑠 +  𝛾)𝜆𝐸 + 𝐺𝑎𝑀𝑎𝑐𝑝𝐷
 

(5) 

 235 

where 𝐺𝑎 (mol m-2 s-1) is the canopy aerodynamic conductance, 𝜆 is the latent heat of 236 

water vapour (J mol-1), 𝐸 (mol m-2 s-1) is the canopy transpiration, 𝛾 is the psychrometric 237 

constant (Pa K-1), 𝑠 is the slope of the saturation vapour pressure curve at air temperature 238 

(Pa K-1), 𝑅𝑛 (W m-2) is the net radiation, 𝐷 (Pa) is the vapour pressure deficit, 𝐺 (W m-2)  239 

is the soil heat flux, 𝑀𝑎 (kg mol-1) is molar mass of air, 𝑐𝑝 is the heat capacity of air (J kg-240 

1 K-1). At sites where values of 𝐺 were not available, 𝐺 was set to zero. Ga was calculated 241 
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as P / (Rgas Tk) / (u/u*2 + 6.2u*-2/3) where u*
 (m s-1) is friction velocity and u (m s-1) is wind 242 

speed (Thom et al. 1972). P is atmospheric pressure (Pa), Rgas is the gas constant ( J mol-1 243 

K-1), Tk is the air temperature in Kelvin, and the term P / (Rgas Tk) converts from units of 244 

m s-1 to mol m-2 s-1. Equation (5) was applied to all datasets where Rn and u* were 245 

available. Inspection of equation (5) shows that, under most conditions, incorporating a 246 

finite Ga value will lead to a lower estimate of Gc than would be obtained with infinite 247 

Ga.   248 

 249 

Ancillary data 250 

The isotope dataset does not contain information on PFTs; these were determined from 251 

species information online. If we were unable to assign a PFT, data were excluded from 252 

further analysis. For Fluxnet data, the PFTs WSA (woody savannah) and SAV 253 

(savannah) were combined into SAV, and PFTs OSH (open shrublands) and CSH (closed 254 

shrublands) were combined into SHB. PFT MF (mixed forest) was omitted. Data 255 

screening led to a loss of 12% from the isotope dataset and ~35% from the FLUXNET 256 

dataset.  257 

 258 

Estimates of the relative fraction of C4 present at each FLUXNET site were derived from 259 

the closest matching 0.5-degree pixel in the North American Carbon Program (NACP) 260 

Global C3 and C4 SYNergetic land cover MAP (SYNMAP) (Jung et al. 2006).  261 

 262 

Peak LAI for FLUXNET sites was obtained from the site-level ancillary data when 263 

available in the supporting documents contributed to the La Thuile Synthesis Collection 264 

(see www.fluxdata.org).   265 

 266 

Statistics 267 

We tested for statistical differences among methods by applying one-way ANOVA to 268 

log-transformed values of g1-leaf, g1-isotope and site-averaged g1-flux for each PFT. For each 269 

method, we used a mixed-model approach to test for differences among PFTs, taking site 270 

as a random factor. Similarly, a mixed-model approach was used to test for statistical 271 
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differences among PFTs for a given method. Differences among methods and among 272 

PFTs were identified using Tukey’s Honest Significant Difference. 273 

 274 

  275 
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Results 276 

 277 

Values of g1 estimated using the three alternative methods differed significantly within 278 

most PFTs (Figure 2). In addition, the variation in g1 across PFTs was not consistent 279 

among the three methods (Table 1). 280 

 281 

Forest PFTs 282 

Among the four forest PFTs, median values of g1 derived from leaf gas exchange (g1-leaf) 283 

were lowest in evergreen needleleaf forest (ENF), intermediate in evergreen broadleaf 284 

forest (EBF) and highest in deciduous broadleaf forest (DBF) and tropical rainforest 285 

(TRF). Isotope-derived values of g1 (g1-isotope) mostly had similar variation across forest 286 

types as g1-leaf values: they were lowest in ENF, intermediate in EBF and DBF, but were 287 

significantly larger in TRF. In clear contrast to other two datasets, there were no 288 

significant differences among forest types for values of g1 derived from flux data (g1-flux). 289 

Values of g1-flux for ENF and EBF were higher than those of the other datasets.  290 

 291 

Values of g1-isotope were generally lower than values of g1-leaf for a given PFT, with the 292 

exception of TRF (Figure 2). The largest difference between g1-leaf and g1-isotope was 293 

observed for DBF species, whereas there was no significant difference in mean values for 294 

EBF and TRF species. For the TRF PFT, g1-isotope values were often unrealistically high; 295 

inferred values of Ci/Ca > 0.95 resulted in values of g1-isotope > 20 kPa0.5.  Such high 296 

values were not limited to one dataset, but were observed in a number of TRF datasets.  297 

 298 

Non-forest PFTs 299 

Among the non-forest PFTs, g1-leaf values were significantly higher in C3 grasses (C3G) 300 

than C4 grasses (C4G), intermediate in shrubs (SHB), and rather variable in savannah 301 

(SAV) trees. The variability of g1-leaf in SAV is likely related to the high seasonality in 302 

these systems: this instantaneous measure of WUE can vary considerably between wet 303 

and dry seasons. Note that the comparison among methods for the SAV PFT is somewhat 304 

biased because eddy covariance data are from the whole ecosystem and thus include both 305 

trees and understorey, whereas leaf gas exchange for this PFT is from trees only while 306 
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isotope data are principally from trees and shrubs. As with forest PFTs, values of g1-isotope 307 

for non-forest PFTs were on average lower than values of g1-leaf, but the rankings of PFTs 308 

differed: C3 grasses had lower g1-isotope values than SAV or SHB, an unexpected result. 309 

We were unable to estimate values of g1-isotope for C4 species (see Methods) although 310 

13C values clearly differed between C3 and C4 vegetation (Cornwell et al. in review).  311 

 312 

Photosynthetic pathway had a significant effect on g1-flux values for crop vegetation: g1-flux 313 

was significantly lower in C4 crops (C4C) than C3 crops (C3C). Values of g1-flux were 314 

high for grasslands (C3G), similar to g1-leaf values and much higher than g1-isotope values. 315 

We did not find evidence that the presence of C4 grasses reduced g1-flux in grasslands 316 

(Figure 3); grassland g1-flux values were not correlated with estimated C4 fraction.  317 

 318 

Comparison of forest and non-forest PFTs 319 

Apart from C4C, median values of g1-flux were somewhat higher for non-forest than forest 320 

vegetation, and were particularly high for SHB. It is possible that the contribution of soil 321 

evaporative flux to total evapotranspiration is higher in these more open systems, 322 

resulting in larger g1-flux values. This conclusion is supported by an examination of the 323 

influence of leaf area index (LAI) on g1-flux for forest and non-forest vegetation, for sites 324 

where LAI estimates were available (Figure 4). At lower LAI (up to 3 m2 m-2), values of 325 

g1-flux were more variable for non-forest than forest sites, with several non-forest sites 326 

showing values of g1-flux greater than 8 kPa0.5, providing some support for the inference 327 

that soil evaporative fluxes play a larger role in non-forest ecosystems. 328 

 329 

Exploration of inconsistent patterns among datasets 330 

The lack of difference among g1-flux values for forest PFTs was unexpected. The 331 

consistent evidence from g1-leaf and g1-isotope values suggests that leaf-scale g1 is low for 332 

ENF. We had anticipated that this difference would scale to canopy behaviour, yet there 333 

is no evidence that g1-flux values were lower for this PFT. It is possible that sampling 334 

biases lead to different results for the three methodologies. To investigate this possibility, 335 

we first compared the latitudinal distributions of the three datasets, using latitude as an 336 

indicator of climatic conditions (Figure 5). Clear differences in sampling coverage with 337 
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latitude can be seen. However, Figure 5 demonstrates that irrespective of latitude, values 338 

of g1-leaf and g1-isotope are lower in ENF than in DBF, whereas values of g1-flux are similar 339 

between ENF and DBF.  340 

 341 

To further rule out sampling bias, we also compared half-hourly leaf gas exchange data 342 

and eddy flux data for eight sites where both kinds of data were available (Figure 6). This 343 

direct comparison shows that g1-leaf and g1-flux values were in a similar range for DBF and 344 

TRF forest types but that g1-leaf was lower than g1-flux for EBF and ENF forest types, 345 

further confirming that the discrepancy between g1-leaf and g1-flux is not simply a result of 346 

sampling bias.  347 

 348 

We tested whether decoupling of canopy-atmosphere gas exchange could explain the 349 

discrepancy between the cross-PFT patterns in g1-leaf and g1-flux values. We estimated 350 

canopy stomatal conductance from eddy flux data using the Penman-Monteith (PM) 351 

equation (equation 5), which incorporates an aerodynamic resistance term. Applying the 352 

PM equation results in a large reduction in estimated values of g1-flux for all PFTs (Figure 353 

7). For PFTs where g1-flux previously exceeded g1-leaf, the values become comparable (e.g. 354 

ENF). However, for PFTs where g1-fluxwas previously comparable with g1-leaf, the values 355 

become significantly lower (e.g. DBF, C3G). Thus, consideration of decoupling does not 356 

resolve the inconsistency in cross-PFT patterns between g1-leaf and g1-flux.  357 

 358 

Discussion 359 

 360 

Our comparison of g1 values across three global datasets provides a number of new 361 

insights into patterns of water use efficiency across scales, and highlights some important 362 

inconsistencies in the datasets. The parameter g1 is inversely related to water-use 363 

efficiency, such that plants with high WUE have low g1 and vice-versa. We had predicted 364 

that g1 values would vary consistently across PFTs in all three datasets, but our results did 365 

not support this prediction, as there were significantly different patterns across PFTs in 366 

each dataset. We also predicted that g1 values would vary across methods, with the lowest 367 

values obtained from isotope data, and the highest values obtained from flux data. The 368 
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first part of this prediction was largely supported, with lower g1-isotope than g1-leaf for most 369 

PFTs, but the second part of the prediction was not, as g1-flux values were not in general 370 

higher than g1-leaf, particularly when decoupling between the canopy and atmosphere was 371 

taken into account.  372 

 373 

Cross-PFT patterns compared among datasets 374 

For forest vegetation, there was an important discrepancy in cross-PFT patterns between 375 

leaf and ecosystem-scale estimates of g1. At leaf scale, a difference between needle-leaf 376 

(ENF) and deciduous broad-leaf (DBF) forests is seen in both leaf gas exchange and 377 

stable isotope data, as has also been found in previous studies (e.g. Lloyd & Farquhar 378 

1994, Diefendorf et al. 2010). Our current understanding of scaling between leaves and 379 

ecosystems suggests that a similar difference between these PFTs should be seen in g1 380 

estimated from eddy covariance data. Intriguingly, however, no such difference was 381 

observed; values of g1-flux were similar for all forest PFTs (Figures 2, 6). This 382 

inconsistency between datasets has important consequences for our ability to model water 383 

use efficiency at larger scales, since it implies that models parameterised with leaf gas 384 

exchange or stable isotope data will not agree with flux data, or with models 385 

parameterised using flux data.  386 

 387 

Consideration of decoupling between stomata and atmosphere (sensu Jarvis & 388 

McNaughton 1986) did not help to explain this discrepancy (Figure 7). We found that 389 

there was no difference in g1-flux among forest types irrespective of whether the estimation 390 

of g1-flux incorporated a decoupling factor. We found that median g1-flux approached 391 

median g1-leaf for needle-leaf forests when decoupling was considered, and for broadleaf 392 

forests when it was not. This observation is supported by previous studies of scaling on 393 

single forests: a study on water-use efficiency in Scots pine found congruence between 394 

leaf and canopy water-use efficiency using a scaling approach incorporating decoupling 395 

(Launiainen et al. 2011) whereas studies in broadleaf forests find congruence using 396 

approaches that do not consider decoupling (Linderson et al. 2012, Barton et al. 2012).  397 

However, it is generally thought that decoupling should be smallest in needleleaf 398 

canopies (Jarvis & McNaughton 1986). This discrepancy clearly requires further 399 
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investigation. Refining estimates of canopy stomatal and non-stomatal conductances from 400 

eddy flux data is one potential way forwards (e.g. Wehr et al. 2017).  401 

 402 

Leaf gas exchange also indicates a large difference in g1 between C3 and C4 species, as 403 

expected from their physiology. Although there was a clear difference in 13C between 404 

these two groups of species, we were unable to estimate g1-isotope for the C4 species and 405 

hence unable to substantiate this difference in g1 at leaf level using isotopic data. The 406 

issues involved in estimating Ci/Ca from 13C in C4 plants are discussed by Cernusak et 407 

al. (2013). A simple linear relationship was proposed by Henderson et al. (1992) but 408 

requires an estimate of bundle-sheath leakiness, . Cernusak et al. (2013) suggest that  < 409 

0.37 under most environmental conditions.  With this value of , the linear relationship 410 

yields unrealistic values of Ci/Ca for much of the dataset, as the majority of measured 411 

values have  13C  > 4.4%o.  These data imply that either a value for  > 0.37 is more 412 

commonly found in field conditions, or else that the simple linear relationship between 413 

13C and Ci/Ca is inaccurate for leaf dry matter. Further research is needed to establish 414 

more widely-applicable relationships between stable isotope data and water-use 415 

efficiency for C4 species.  416 

 417 

Nonetheless, a difference in leaf-level g1 between C3 and C4 species is well-documented 418 

in the literature (e.g. Morison & Gifford 1983; Ghannoum et al. 2010). Earlier studies 419 

synthesising water-use efficiency from eddy covariance data did not explicitly address 420 

photosynthetic pathway (Law et al. 2002, Beer et al. 2009), and thus it was not known 421 

whether this fundamental leaf-level difference in g1 is reflected in canopy scale gas 422 

exchange. Zhou et al. (2016) reported a difference in “underlying WUE”, an index 423 

similar to g1, between C3 (corn) and C4 (soybean) crops at 5 Ameriflux sites. Similarly, 424 

we found a significant difference in g1-flux between C3 and C4 crops that is consistent 425 

with the difference in g1-leaf (Figure 2). However, we did not find any evidence for lower 426 

g1-flux for grasslands with a C4 component (Figure 3). The difference in g1-flux between C3 427 

and C4 crops demonstrates that differences in g1-leaf can scale to whole canopies, and that 428 

photosynthetic pathway must be considered when interpreting fluxes from crop canopies. 429 

The lack of an influence of photosynthetic pathway on grassland g1-flux, in contrast to 430 



 16 

crops, has several potential explanations. It is possible that there are significant 431 

evaporative fluxes from soil in grasslands that compensate for differences in transpiration 432 

between C3 and C4 vegetation. However, we also note that, owing to a lack of 433 

information at site scale, we were obliged to estimate C4 fraction in grasslands from a 434 

global dataset with relatively coarse resolution, suggesting that our characterisation of C4 435 

fraction may have been inaccurate. To correctly interpret fluxes from grasslands with a 436 

significant C4 component requires better quantification of vegetation C3/C4 fraction at 437 

the site level. Furthermore, the estimated grassland C4 fraction did not exceed 0.4; data 438 

from grasslands known to have high C4 fraction is needed to test robustly for this effect. 439 

Finally, there is very high variability across site-years in g1-flux estimates for C3-only 440 

grasslands (Figure 3), meaning our test lacks power; a better understanding of the reasons 441 

for this variability is needed to design fairer comparisons between C3 and C4-dominated 442 

grasslands.   443 

 444 

Relative g1 values from different methods 445 

We predicted that g1-flux values would exceed g1-leaf values, due to additional water vapour 446 

loss from soil or canopy evaporation (cf .Figure 4). In contrast to our prediction, we 447 

found that once decoupling was taken into account, values of median g1-flux were lower 448 

than values of g1-leaf for several PFTs (Figure 7). Significant within-canopy gradients in 449 

g1-leaf can occur (e.g. Campany et al. 2017), but consideration of these gradients would 450 

also result in larger g1-flux than canopy-top g1-leaf. One potential explanation may be 451 

related to the use of GPP in the calculation of g1-flux, rather than net photosynthesis (i.e. 452 

gross photosynthesis, less leaf respiration) as is used in the calculation of g1-leaf. Recent 453 

work by Wehr et al. (2016) also suggests that the current method used to estimate GPP 454 

can over-estimate daytime foliar respiration, which would tend to exaggerate the 455 

difference between GPP and net canopy photosynthesis. Further research is required to 456 

quantify the effect of including foliage respiration in estimation of g1-flux, to determine if 457 

this mechanism is sufficient to account for low g1-flux values.  458 

 459 

We also predicted that g1-isotope values would be somewhat lower than those of g1-leaf due 460 

to mesophyll conductance (gm), which is neglected in the simplified isotopic theory used 461 
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here to relate leaf isotopic composition to Ci/Ca ratio (Seibt et al. 2008). (Evans et al. 462 

1986), though it has been suggested that the value of b used here (Eq. 2) should at least 463 

partially account for gm effects (Seibt et al. 2008, Cernusak et al. 2013). In support of 464 

this our prediction, median values of g1-istope were lower than median values of g1-leaf for 465 

all PFTs other than tropical rainforest (Figure 2). The size of this effect should increase 466 

with increasing drawdown of CO2 from the intercellular airspace to the site of 467 

carboxylation; this drawdown is high in plants with low mesophyll conductance 468 

(typically ENF and EBF species, Niinemets et al. 2009) and/or high photosynthetic rates. 469 

Nonetheless, we were surprised by the magnitude of the difference, which was substantial 470 

in most PFTs. Previous smaller-scale studies have found a good correspondence between 471 

leaf isotope and gas exchange measurements of Ci/Ca (e.g. Farquhar et al. 1982, Orchard 472 

et al. 2010). The size of this difference in our global data comparison suggests that use of 473 

the values of g1-isotope to constrain large-scale models requires that gm be taken into 474 

account. To do so, models will need a general quantitative knowledge of the drawdown 475 

of CO2 from the intercellular space to the mesophyll, which depends on both gm and the 476 

photosynthetic rate (Evans et al. 1986). As woody tissue is generally 13C enriched 477 

compared to leaf tissue (Cernusak et al. 2009), values of g1 estimated from tree ring 478 

stable isotopes would likely be lower still. 479 

 480 

One exception to this general pattern of lower g1-isotope values was the TRF PFT (Figure 481 

2). Very high g1-isotope values were obtained for tropical rainforest species by comparison 482 

with other PFTs. These high values may indicate that the leaves used for these 483 

measurements were exposed to air with a signature of recent respiration and a 484 

correspondingly low 13C fraction, although previous studies suggest that this effect 485 

should only be important in the lower canopy (Buchmann et al. 2002). A further potential 486 

explanation is that our estimates of long-term average daytime VPD, taken from a global 487 

climate dataset (see Methods), do not reflect in-canopy VPD values experienced by 488 

sampled leaves, particularly in high-humidity conditions typical of the TRF PFT.  489 

 490 

Dataset biases 491 

Formatted: Subscript



 18 

Each of the three datasets used in this study represents an enormous global scientific 492 

effort, and each is extremely valuable in advancing our understanding of the role of 493 

terrestrial vegetation in global carbon and water cycles. Nonetheless, each approach is 494 

subject to limitations. Leaf gas exchange measures are a direct and relatively accurate 495 

measure of the performance of a single leaf at a given point in time, but are inevitably 496 

restricted in sampling coverage. Measurements are often made only at the top of the 497 

canopy, for example, or only on a few days per season. There are some more extensive 498 

datasets in the Lin et al. (2015) database that were gathered through the use of in-situ 499 

cuvettes (e.g. Kolari et al. 2007, Op de Beeck et al. 2010, Tarvainen et al. 2013), but 500 

these remain the exception rather than the rule, and in any case cannot capture all 501 

potential sources of variation in the canopy. Stable isotope measures are more extensive 502 

(Figure 2) but are less direct measures of gas exchange, and, as our results show, may be 503 

influenced by other sources of isotopic discrimination. Other potential sources of error in 504 

interpreting stable isotope data are the values assumed for long-term average daytime 505 

VPD, which are estimated from a global climate dataset (see Methods), and values 506 

assumed for source air 13C. Eddy flux measurements have the advantage of measuring 507 

the behaviour of entire ecosystems, rather than individual leaves. However, these 508 

measurements are also subject to noise, and errors may be introduced in the estimation of 509 

GPP from measurements of net ecosystem CO2 exchange (Desai et al. 2008). 510 

Furthermore, eddy flux data are known to suffer from an unresolved energy balance 511 

problem, in that the sum of latent and sensible heat fluxes is generally less than net 512 

radiation (Wilson et al. 2002, Foken 2008). The cause of this imbalance is not yet 513 

understood but may differ across sites. There are thus significant uncertainties associated 514 

with each of the three datasets. It is also important to be aware of potential bias 515 

introduced by different spatial coverage of the three datasets (Figure 1). While we have 516 

been able to make some comparisons of different methodologies at specific sites (Figure 517 

6), more such comparisons – and comparisons with isotopic data – would be valuable 518 

(e.g. Monson et al. 2010).  519 

 520 

With global change accelerating, it is more important now than ever to make use of all 521 

available datasets to develop and constrain predictive models of vegetation function. 522 
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Cross-comparison of methodologically independent datasets, as we have done here, is a 523 

crucial step forward. It highlights areas of inconsistency that should be high priorities for 524 

further research. It also quantifies the uncertainty associated with different measurement 525 

methods. Finally, our comparison indicates a need for understanding of potential biases 526 

when using any or all of these three datasets to constrain or validate ecosystem models 527 

that predict WUE. 528 

 529 
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Table 1:  Significant differences among PFTs by Method  775 

 776 

Linear mixed models with site as a random factor were applied to gas exchange, isotope 777 

and flux data sets separately, and Tukey’s HSD used to determine significant differences 778 

across PFTs. PFTs with different letters for a given measurement type are significantly 779 

different for that measurement type: for example, in the “gas exchange” column, ENF 780 

(letter ‘a’) is significantly different from DBF (letters ‘bc’) but not EBF (letters ‘ac). 781 

Isotope values were log-transformed before analysis. Values of n in table indicate number 782 

of sites used for each PFT.  783 

 784 

PFT 

Gas 

exchange 

n Isotope n Flux n 

ENF (evergreen 

needleleaf forest) 

a 13 a 85 cd 38 

EBF (evergreen 

broadleaf forest) 

ac 9 bd 139 bd 7 

DBF (deciduous 

broadleaf forest) 

bc 12 bc 108 bc 17 

TRF (tropical 

rainforest) 

ab 4 e 95 abd 1 

SAV (savanna) bc 7 de 31 bd 6 

SHB (shrub) ab 6 cd 215 d 4 

C3G (C3 grass) b 2 b 208 d 25 

C4G (C4 grass) a 5 - - - - 

C3C (C3 crops) bc 4 - - b 15 

C4C (C4 crops) - - - - a 7 
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Table 2: Datasets used for leaf-canopy comparison at individual sites 787 

Details of FLUXNET sites and leaf gas exchange datasets used for leaf-canopy comparison shown in Figure 6.  788 

 789 

FLUXNET 

Site ID 

Lat. Long. FLUXNET 

time period 

Gas exchange sampling FLUXNET 

reference 

Gas exchange 

reference 

AU-Tum -35.66 148.15 12,1,3 / 2002 Diurnal spot measurements, mid-canopy, 

3 campaigns (Nov-01, Feb-02, May-02) 

Leuning et al. (2005) Medlyn et al. (2007) 

DK-Sor 55.49 12.10 5,6,7 / 1999 Diurnal spot measurements, upper 

canopy, 11 dates during Jun-Aug 99 

Pilegaard et al. (2003) Linderson et al. 

(2012) 

FI-Hyy 61.85 24.29 5,6,7 / 2006 Automated shoot cuvette, upper canopy, 

continuous measurements, Jul-06 
Vesala et al. (2005) 

Kolari et al. (2007) 

FR-LBr 44.72 -0.77 6,7,8 / 1997 Automated branch cuvette, upper canopy, 

continuous measurements, Sep-97  
Berbigier et al. (2001) 

Bosc (1999) 

Fr-Pue 43.74 3.60 5,6,10 / 2006 First point of A-Ci curves, upper canopy, 

11 dates during Apr-Dec 09 
Rambal et al. (2003) 

Martin-StPaul et al. 

(2012) 

GF-Guy 5.28 -52.93 6,7,8 / 2006 Light-saturated photosynthesis, upper 

canopy, Oct-10 
Bonal et al. (2008) 

J. Zaragoza-Castells, 

O. Atkin, P. Meir, 

pers. comm.  

UK-Gri 56.61 -0.86 5,6,7 / 2001 Automated branch cuvette, upper and 

mid-canopy, Jul-01 
Clement et al. (2003) 

Wingate et al. (2007) 

US-Ha1 42.54 -72.17 6,7,8 / 1992 Diurnal spot measurements, upper 

canopy, monthly Jun-Sep 91/92 
Urbanski et al. (2007) 

Bassow & Bazzaz 

(1999) 
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Figure Captions 792 

 793 

Figure 1: Global distribution of datasets used in the study. 794 

 795 

Figure 2: Box and whisker plot (line, median; box, inter-quartile range) showing the 796 

estimated g1 values from leaf gas exchange, leaf isotope and FLUXNET data, grouped by 797 

plant functional type. Whiskers extend to 1.5 times the inter-quartile range, with dots 798 

outside of the whiskers showing outliers. Plant functional types are defined as: ENF - 799 

evergreen needleleaf forest, EBF - evergreen broadleaf forest, DBF - deciduous broadleaf 800 

forest, TRF - tropical rainforest, SAV - savanna, SHB - shrub, C3G – C3 grass, C4G – 801 

C4 grass, C3C – C3 crops, C4C – C4 crops. Values of n indicate no of species for leaf 802 

gas exchange and leaf isotope datasets, and no of site-years for FLUXNET. Different 803 

letters below boxes denote significant differences among methods for each PFT (Tukey's 804 

Honest Significant Difference test, p < 0.05). Data shown have been clipped to a 805 

maximum g1 of 14, which excludes 0.0%, 3.18% and 0.22% of leaf gas exchange, leaf 806 

isotope and FLUXNET datasets, respectively. 807 

 808 

Figure 3: Values of g1-flux for grasslands as a function of the estimated fraction of C4 809 

vegetation. 810 

 811 

Figure 4: Values of g1-flux for forest and non-forest vegetation as a function of peak LAI. 812 

 813 

Figure 5: Estimated g1values from leaf gas exchange, leaf isotope and FLUXNET data, 814 

shown as a function of latitude. Where several values were obtained at the same site 815 

(different species for leaf gas exchange and isotope, different years for Fluxnet), values 816 

have been averaged and standard error bars show variability. Plant functional types are 817 

defined as: ENF - evergreen needleleaf forest, EBF - evergreen broadleaf forest, DBF - 818 

deciduous broadleaf forest, TRF - tropical rainforest, SAV - savanna, SHB - shrub, C3G 819 

– C3 grass, C4G – C4 grass, C3C – C3 crops, C4C – C4 crops. Data shown have been 820 

clipped to a maximum g1 of 14. 821 

 822 
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Figure 6: Comparison for individual sites between measured leaf-scale stomatal 823 

conductance and canopy conductance estimated from FLUXNET as a function of a 824 

stomatal index (for gas exchange: A / (Ca D) and for FLUXNET: GPP / (Ca D) ). 825 

Background points show data, darker points show fitted values. Details of gas exchange 826 

and FLUXNET measurements are given in Table 2. Measurements were taken from the 827 

same year whenever overlapping data were available. The g1 values shown are the values 828 

fitted to the corresponding data. 829 

 830 

Figure 7: Box and whisker plot (line, median; box, inter-quartile range) showing the 831 

estimated g1 values from leaf gas exchange, and FLUXNET data calculated using eqn (4) 832 

to estimate canopy stomatal conductance (FLUXNET) or the Penman-Monteith equation 833 

(eqn 5, FLUXNET-PM). The Fluxnet data are a subset of the data shown in Figure 1 and 834 

include only those sites for which eqn 5 could be applied. Whiskers extend to 1.5 times 835 

the inter-quartile range, with dots outside of the extent of the whiskers showing outlying 836 

values. Plant functional types are defined as: ENF - evergreen needleleaf forest, EBF - 837 

evergreen broadleaf forest, DBF - deciduous broadleag forest, TRF - tropical rainforest, 838 

SAV - savanna, SHB - shrub, C3G - C3 grass, C4G - C4 grass, C3C - C3 crops, C4C - 839 

C4 crops. 840 

 841 
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