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Abstract 61 

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a central 62 

role of Th22-derived IL-22 in its pathogenesis. Although prostaglandin E2 (PGE2) is known 63 

to promote inflammation, little is known about its role in processes related to AD 64 

development, including IL-22 up-regulation. 65 

 66 

Objectives: To investigate whether PGE2 has a role in IL-22 induction and development of 67 

allergic contact dermatitis (ACD), a disease related to AD. 68 

 69 

Methods: T-cell cultures and in vivo sensitization of mice with hapten were used to assess the 70 

role of PGE2 in production of IL-22. The involvement of PGE2 receptors and their 71 

downstream signals were also examined. The effects of PGE2 were evaluated using the 72 

oxazolone (OXA)-induced ACD mouse model. The relationship of PGE2 and IL-22 signaling 73 

pathways were also investigated using genomic profiling in human lesional AD skin. 74 

 75 

Results: PGE2 induces IL-22 from T cells through its receptors EP2 and EP4 and involves 76 

cyclic adenosine monophosphate (cAMP) signaling. Selective deletion of EP4 in T-cells 77 

prevents hapten-induced IL-22 production in vivo, and inhibition of PGE2 synthesis limits 78 

atopic-like skin inflammation in the OXA-induced ACD model. Moreover, both PGE2 and 79 

IL-22 pathway genes were coordinately up-regulated in human AD lesional skin, but were 80 

below significant detection levels after corticosteroid or ultraviolet band B (UVB) treatments. 81 

 82 

Conclusions: Our results define a crucial role for PGE2 in promoting ACD by facilitating IL-83 

22 production from T-cells.  84 
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Clinical Implications: (<30 words) 85 

Atopic dermatitis is a common disabling disease characterized by elevated IL-22. The 86 

identification of a tightly regulated PGE2 driven pathway controlling IL-22 dysfunction offers 87 

a novel target for therapeutic intervention. 88 

 89 

Capsule Summary: (<35 words) 90 

Prostaglandin E2 promotes IL-22 production from T cells that mediates IL-22-driven 91 

development of atopic dermatitis. 92 

 93 

Key words 94 

Atopic dermatitis, Prostaglandin E2, CD4+ T cells, Th22 cells, Th17 cells, Interleukin 22, 95 

Abbreviations used 96 

ACD: Allergic contact dermatitis 97 

AD: Atopic dermatitis 98 

AHR: Aryl hydrocarbon receptor 99 

ANOVA: Analysis of variance  100 

cAMP: Cyclic adenosine monophosphate  101 

CCR: Chemokine receptor 102 

COX: Cyclooxygenases  103 

Db-cAMP: Dibutyryl cAMP  104 

DC: Dendritic cell 105 

DNFB: Dinitrofluorobenzene  106 

IL-22: Interleukin 22 107 

ILC3: Group 3 innate lymphoid cells 108 

LN: Lymph node 109 
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mPGES: Microsomal prostaglandin E synthases  110 

OXA: Oxazolone 111 

PGE2: Prostaglandin E2  112 

PKA: Protein kinase A  113 

Th: Helper T cells 114 

UVB: Ultraviolet band B   115 
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Introduction 116 

Atopic dermatitis (AD) is a common chronic inflammatory skin disease, with a prevalence of 117 

up to 3-7% in adults and up to 25% among children1,2. Histologic features of affected 118 

eczematous skin include epidermal hyperplasia and spongiosis, and infiltration of immune 119 

cells (T-cells, dendritic cells/DCs, eosinophils, etc) in the dermis1,3,4. Barrier dysfunction is 120 

also recognized as important for development of AD5-7. Environmental allergens can 121 

penetrate through the skin in AD due to a dysfunctional epidermal barrier, where they are 122 

taken up by antigen presenting cells (such as dendritic cells) which in turn activate and 123 

polarize T-cells, resulting in AD initiation1. Dysregulation of the balance of type 1 and 2 124 

helper T (Th1 and Th2) cells, characterized by production of IFN-γ or IL-4/IL-13, 125 

respectively, has traditionally been thought to contribute to AD pathogenesis8. However, 126 

recent studies have shown that IL-17 and IL-22, produced by Th17 and other activated T 127 

cells including Th22 cells, are also critical in mediating the initiation and progression of AD9-128 

13. IL-22 levels in serum from patients with AD are higher than those from healthy 129 

individuals14,15, and IL-22+ T cells infiltrate into lesional AD skin16 where IL-22 induces 130 

epidermal hyperplasia and inhibits epidermal differentiation17,18. Importantly, a neutralizing 131 

anti-IL-22 antibody (NCT01941537) or targeting components of the IL-23/Th17 pathway, are 132 

currently being tested in clinical trials3,19. To refine future therapies, there is a need to better 133 

understand the mechanisms that drive IL-22 production in response to cutaneous antigen 134 

stimulation. 135 

Prostanoids, including prostaglandin D2 (PGD2), PGE2, PGF2α, PGI2 and 136 

thromboxane A2, are bioactive lipid mediators that are generated from arachidonic acid by 137 

cyclooxygenases (COX) and then respective PG synthases. PGs have various roles in 138 

inflammatory skin diseases through regulating functions of immune cells, including 139 

Th1/Th17 T-cells, T regulatory cells, mast cells and DCs20. PGE2 is synthesized by 140 
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microsomal prostaglandin E synthases (mPGES1 and mPGES2) and has essential roles in 141 

modulating various inflammatory responses by binding to PG receptors (EP1-4) on cell 142 

surfaces. Many cutaneous cells, including keratinocytes, mast cells, eosinophils, fibroblasts, 143 

DCs and lymphocytes, express PGs and PG receptors21. Increased PGE2 expression in 144 

biologically active amounts has been reported in both lesional and non-lesional skin from AD 145 

patients22. Blockade of PG production by a COX2 inhibitor was reported to enhance 146 

eosinophil infiltration and elevate IL-4 expression in lesions of an OVA-sensitized mouse 147 

model23. In contrast, PGE2 was also suggested to induce AD by favoring a Th2 immune 148 

milieu and directly enhancing B-cell production of IgE24,25. Furthermore, we and others have 149 

recently reported that PGE2 through EP2 and EP4 receptors augmented IL-17 and IL-22 150 

productions, and blockade of PGE2 signaling during T-cell differentiation limited acute 151 

contact hypersensitivity26-28. These findings suggest that PGE2 may have both suppressive 152 

and provocative roles in the development of AD21. However, it is unclear how PGE2 153 

regulates IL-22 production and chronic, atopic skin inflammation. 154 

Here we report that PGE2 promotes IL-22 production from Th17 and Th22 T-cells 155 

through its receptors EP2 and EP4. This effect is mediated by cAMP-protein kinase A (PKA) 156 

signaling and induction of aryl hydrocarbon receptor (AHR), a transcription factor critical for 157 

both adaptive and innate IL-22 expression29. T-cell specific EP4 deficiency diminishes 158 

hapten-induced IL-22-expressing T cells in skin-draining lymph nodes (LNs). Accordingly, 159 

inhibition of PGE2 production limits skin inflammation in an animal model for ACD induced 160 

by repeated OXA challenges in mice. Furthermore, genes related to PGE2 signaling are over-161 

expressed in human atopic lesional skin, and positively correlate with expression of IL-22 162 

pathway genes. This relationship between expression of PGE2 and IL-22-related genes is no 163 

longer evident after successful corticosteroid or UVB treatments. These findings suggest that 164 

PGE2 facilitates ACD through promoting adaptive IL-22 signaling.  165 
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Methods 166 

Mice 167 

Wild-type C57BL/6 mice were purchased from Harlan UK. Lck-Cre mice were crossed to 168 

lox-flanked Ptger4 (EP4-floxed) mice30 to generate mice with selective EP4 deficiency in T 169 

cells (EP4cKO) as previously reported27,28. All mice were bred and maintained under specific 170 

pathogen-free conditions in accredited animal facilities in the University of Edinburgh and 171 

Kyoto University. Mice were aged >7 weeks old at the beginning of use and sex-matched. All 172 

experiments were conducted in accordance with the UK Scientific Procedures Act of 1986 173 

and had local institutional ethical approval. 174 

 175 

Reagents 176 

Antibodies to mouse CD3 (clone 145-2C11), CD28 (clone 37.51), CD45 (clone 30-F11), 177 

CD4 (clone L3T4), CD8 (clone 53-6.7), IL-17A (clone eBio17B7), IL-22 (clone IL22J0P) 178 

and to human CD3 (clone OKT3) and IL-22 (clone 142928) were from eBioscience or 179 

Biolegend. Anti-human IL-22 was from R&D Systems. Mouse CD4 microbeads were from 180 

Miltenyi Biotec. Recombinant human TGF-β1 and recombinant mouse IL-6 and IL-23 were 181 

purchased from Biolegend. PGE2, 17-phenyl trinor PGE2 (EP1/3 agonist), Butaprost (EP2 182 

agonist), CAY10598 or L-902,688 (EP4 agonist), PF-04418948 (EP2 antagonist), and L-183 

161,982 (EP4 antagonist) were from Cayman. Db-cAMP, PKA Inhibitor 14-22 (PKI), CH-184 

223191, oxalozone, indomethacin, phorbol myristate acetate (PMA), Ionomycin were from 185 

Sigma or Calbiochem.  186 

 187 

Oxazolone-induced ACD model 188 

The OXA-induced mouse ACD model was induced as reported11. Briefly, mice were 189 

sensitized with 3% OXA in EtOH on shaved abdominal skin and after 5 days were repeatedly 190 
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challenged with 0.6% OXA in EtOH on one ear once every two days for a total of 5 191 

challenges. The opposing ear was challenged with vehicle (pure EtOH) to serve as a control. 192 

Mice were culled at 6 h after the last challenge and the ears and ear-draining LNs collected 193 

for further analysis. Ear samples were fixed with 10% neutral buffered formalin solution 194 

(Sigma), embedded in paraffin wax, and 5µm sections used for staining with hematoxylin and 195 

eosin (H&E). In some experiments, EP4cKO or control mice were sensitized with 0.5% 196 

dinitrofluorobenzene (DNFB), and 5 days later skin-draining LNs were collected for further 197 

analysis. 198 

 199 

T-cell isolation and culture 200 

Mouse CD4+ T-cells were isolated from spleens using autoMACS (Miltenyi). Cells were 201 

cultured in complete RPMI1640 medium containing 10% FBS and stimulated with plate-202 

bound anti-CD3 (5 µg/ml) and anti-CD28 (5 µg/ml) antibodies plus various cytokines and 203 

other compounds as indicated in figures. For certain experiments, Th17 cells were 204 

differentiated from CD4+ T-cells by TGF-β1 and IL-6 for 3-4 d. IL-22 levels in supernatants 205 

were measured using mouse IL-22 enzyme-linked immunosorbent assay (ELISA) Ready-206 

SET-Go!® kits (eBioscience).  207 

 208 

Surface and intracellular staining 209 

For surface staining, cells were stained on ice for 30 min with anti-CD45, anti-CD3e, anti-210 

CD4 and anti-CD8 Abs. For intracellular staining of IL-22, cells were stimulated with PMA 211 

and ionomycin for 4-5h in the presence of GolgiPlug (BD Bioscience). Cells were then 212 

harvested and fixed by BD Cytofix/Cytoperm Fixation Buffer (BD Bioscience) for 30min 213 

and then stained with anti-human/mouse IL-22 (clone IL22JOP, eBioscience) or anti-human 214 
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IL-22 in BD Perm/Wash Buffer for 1h. Flow cytometry was performed on a BD LSRFortessa 215 

(BD Bioscience) and analyzed by FlowJo software (Tree Star). 216 

 217 

Real-time PCR 218 

RNA purification from T-cells was performed using the Rneasy Mini Kit (Qiagen). cDNA 219 

was obtained by reverse transcription using High-capacity cDNA Reverse Transcription Kits 220 

(ABI). Samples were analyzed by real-time PCR with SYBR Premix Ex Taq II (Tli RNase H 221 

Plus) kit (Takara) or GoTaq qPCR Master Mix (Promega) on the Applied Biosystem 7900HT 222 

Fast machine. The following primers were used. Gapdh forward, 5’-223 

TGAACGGGAAGCTCACTGG-3’; Gapdh reverse, 5’-TCCACCACCCTGTTGCTGTA-3’. 224 

Il22 forward, 5'-CATGCAGGAGGTGGTACCTT-3'; Il22 reverse, 5'-225 

CAGACGCAAGCATTTCTCAG-3'. Ahr forward, 5’-TGCACAAGGAGTGGACGA-3’; Ahr 226 

reverse, 5’-AGGAAGCTGGTCTGGGGTAT-3’. Ccr4 forward, 5’-227 

TGTCCTCAGGATCACTTTCAGA-3’; Ccr4 reverse, 5’-GGCATTCATCTTTGGAATCG-228 

3’. Expression was normalized to mouse glyceraldehyde-3-phosphate dehydrogenase 229 

(Gapdh) and presented as relative expression to control group by the 2–ΔΔCt method. 230 

 231 

Gene expression of human skin biopsies from microarray datasets 232 

Microarray gene expression data of human skin biopsies were retrieved from Gene 233 

Expression Omnibus datasets (GSE16161, GSE32924, GSE36842, GSE32473 and 234 

GSE27887)31-35. Patients information and skin sample have been described previously31-33,35. 235 

In brief, skin biopsy specimens were collected from patients with moderate-to-severe AD 236 

(Scoring of Atopic Dermatitis 20-97) and healthy volunteers under institutional review 237 

board–approved protocols (written consent obtained). Patients (age 16-81, mean age 40 from 238 

three cohorts) with an acute exacerbation of chronic AD and without any therapy for more 239 
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than 4 weeks were included. Biopsy specimens were obtained from acute lesional skin which 240 

was actively involved, and erythematous lesions with atopic dermatitis and were frozen in 241 

liquid nitrogen for RNA extraction31-33,35. To standardize data across a wide range of 242 

experiments and to allow for the comparison of microarray data independent of the original 243 

hybridization intensities, gene expression levels were transformed to z-score values36. P 244 

values were calculated by nonparametric Wilcoxon-Mann-Whitney test, paired 245 

nonparametric tests with post-hoc Dunn’s multiple comparisons or paired 2-way analysis of 246 

variance (ANOVA) test with post-hoc Bonferroni's multiple comparisons test. Correlations 247 

between expression levels of two genes were calculated by nonparametric Spearman 248 

correlation test. 249 

 250 

Statistical analyses 251 

All data were expressed as mean ± SEM or scatter dot-plots in which each dot represents one 252 

mouse, one AD patient or healthy individual. Statistical significance between two groups was 253 

examined by the Student’s t-test or Mann-Whitney test, while the one-way and two-way 254 

ANOVA with post-hoc Bonferroni’s multiple comparisons test were used to evaluate 255 

multiple groups unless otherwise indicated in figure legends. Statistical analyses were 256 

performed using Prism 6 software (GraphPad) and a P<0.05 was considered as statistically 257 

significant.  258 
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Results 259 

PGE2 promotes IL-22 production in vitro through its receptors EP2 and EP4 260 

We have recently reported that PGE2 promotes IL-22 production from group 3 innate 261 

lymphoid cells (ILC3s)28. We thus evaluated whether PGE2 also promoted IL-22 production 262 

from T-cells. To address this question, we isolated CD4+ T-cells from mouse spleens, 263 

activated with anti-CD3 and anti-CD28 antibodies (Abs), and co-cultured with various 264 

cytokines. Addition of exogenous PGE2 enhanced Il22 gene expression with IL-6 or IL-23 265 

alone, IL-6 + IL-23 (Th22 priming condition) or IL-6 + IL-23 + TGF-β (Th17 priming 266 

condition) (Fig 1A). IL-22 protein production in supernatants of primary cell cultures was 267 

also elevated by PGE2 in the presence of IL-23 or IL-23 + IL-6 (Fig 1B). It is important to 268 

note that these data are in agreement with previous findings37 that TGF-β inhibits IL-22 269 

production even in the presence of PGE2 (Fig 1A,B). Moreover, when same numbers of 270 

PGE2-stimulated T-cells and control T-cells were washed and then re-stimulated with T-cell 271 

receptors (i.e. anti-CD3 and anti-CD28), PGE2-stimulated T-cells produced more IL-22 than 272 

control T-cells even in the presence of TGF-β (Fig 1C), suggesting that PGE2-treated cells 273 

have higher capability to produce IL-22 at the single cell level.  274 

 275 

To define which PGE2 receptor mediates IL-22 production, we cultured T-cells under Th22-276 

priming conditions and selectively activated EP2 and EP4. Both EP2 and EP4 agonists 277 

individually mimicked augmentation of IL-22 production (Fig 1D). To further confirm the 278 

roles of PGE2-EP2/EP4 signaling in inducing IL-22 production of T-cells, we also cultured 279 

differentiated Th17 T-cells and found that PGE2 still promotes IL-23-driven IL-22 gene and 280 

protein expression (Fig 1E and 1F). Moreover, enhancement of IL-22 production by EP2 or 281 

EP4 agonists was prevented by co-treatment of antagonists against EP2 or EP4, respectively 282 

(Fig 1F); elevated IL-22 production by PGE2 was also diminished by co-administration of 283 
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EP2 and EP4 antagonists (Fig 1F). In addition, PGE2 also increased IL-22 production in 284 

Th17 cells in the absence of other cytokines (Fig 1E and 1F), suggesting a potentially direct 285 

action of PGE2 to promote Il22 gene expression. These data indicate the involvement of EP2 286 

and EP4 in PGE2 facilitation of IL-22 production from T cells in vitro. 287 

 288 

Cyclic AMP promotes IL-22 production from T cells through the transcription factor 289 

aryl hydrocarbon receptor (AHR). 290 

As both EP2 and EP4 receptors activate cAMP-PKA pathway in T cells26, we next examined 291 

whether cAMP mediates PGE2 facilitation of adaptive IL-22 production. Like PGE2, db-292 

cAMP promoted IL-22 production in a concentration-dependent manner in either presence or 293 

absence of IL-23 (Fig 2A), confirming a direct action of cAMP on IL-22 induction. The 294 

increased IL-22 production by cAMP was prevented by PKI, a PKA inhibitor, in a 295 

concentration-dependent manner (Fig 2B). Cyclic AMP also up-regulated Il22 gene 296 

expression in IL-23-stimulated T-cells, which was prevented by cycloheximide, an inhibitor 297 

for eukaryote protein synthesis (Fig 2C and 2D), suggesting that the PGE2-cAMP pathway 298 

promoted adaptive IL-22 production through synthesis of new protein(s).  299 

 300 

The transcription factor AHR has been reported to regulate IL-22 production in both T-cells 301 

and ILC3s29. We thus investigated whether AHR contributes to PGE2-cAMP signaling-302 

dependent increase in adaptive IL-22 production. We first checked that both PGE2 and cAMP 303 

up-regulated AHR gene expression in T-cells independently of cytokine stimuli (Fig 2E and 304 

2F). Importantly, a small-molecule AHR inhibitor CH-223191 effectively suppressed cAMP-305 

dependent IL-22 gene expression and protein production from T cells (Fig 2G and 2H) 306 

although it had no effect on AHR expression itself (Fig 2F). These results suggest that PGE2-307 

cAMP signaling promotes IL-22 production from T-cells through induction of AHR. 308 
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 309 

PGE2-EP4 signaling promotes adaptive IL-22 production in vivo 310 

To investigate whether PGE2 promotes adaptive IL-22 production in vivo, we topically 311 

sensitized the abdominal skin of control mice and mice with specific EP4 deletion in T cells 312 

(EP4cKO mice27) with DNFB and measured IL-22-producing T-cells in skin-draining LNs 5 313 

days after sensitization using flow cytometry. Both percentages and absolute numbers of IL-314 

22-producing T-cells were markedly reduced in EP4cKO compared to control mice (Fig 3A 315 

and 3B). Furthermore, EP4 deficiency reduced Il22 gene expression in skin-draining LN 316 

CD4+ T cells (Fig 3C). These data indicate that PGE2-EP4 signaling promotes adaptive IL-22 317 

production in vivo. 318 

 319 

Endogenous PGE2-EP4 signaling in T cells promotes allergic contact dermatitis 320 

We next investigated whether PGE2 has a pathogenic role in development of allergic skin 321 

inflammation. To address this question, we used an animal model mimicking human ACD. 322 

We sensitized wild-type C57BL/6 mice with 3% oxalozone (OXA) on abdominal skin and 323 

after 5 days we repeatedly challenged mice with 0.6% OXA every two days for a total of 5 324 

challenges. Indomethacin was administrated to mice in drinking water to inhibit endogenous 325 

PGE2 production. Once DCs in the skin capture the antigen OXA, they migrate to skin dLNs 326 

and present antigen to T cells for their activation. Because the migration of antigen-capturing 327 

DCs to skin dLNs peaks between 18-24h requires PGE2-EP4 signaling38, we only treated 328 

mice with indomethacin 24 h post the OXA sensitization (Fig 4A). Consistent with previous 329 

reports11, repeated challenge with OXA induced allergic skin inflammation (Fig 4B and 4C). 330 

Ears of OXA-challenged, indomethacin-treated mice showed decreased swelling compared to 331 

vehicle-treated mice (Fig 4B). Indomethacin had no effect on the thickness of vehicle 332 

(EtOH)-challenged ears. Compared to EtOH-challenged ears, histology of OXA-challenged 333 
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ear skin showed features of eczema, namely parakeratosis, acanthosis and focal spongiosis 334 

with a dense and diffuse dermal infiltrate containing eosinophils (Fig 4C). However, in skin 335 

from the indomethacin-treated mice the epidermal changes are less pronounced, and the 336 

dermal infiltrates are markedly reduced (Fig 4C). Furthermore, whilst repeated OXA 337 

challenge recruited CD4+ and CD8+ T cells to ear-draining LNs (Fig 4D), indomethacin 338 

treatment reduced both this recruitment and the T-cell capacity to produce IL-22 (Fig 4E). To 339 

further investigated whether this pro-inflammatory effect of PGE2 on OXA-induced ACD 340 

development was mediated by EP4 and T cells, we performed this model on EP4cKO and 341 

control (EP4fl/fl) mice. OXA induced significantly less ear skin inflammation in EP4cKO 342 

mice compared to control mice (Fig. 4F), suggesting that PGE2-EP4 signaling in T cells 343 

promotes ACD development. 344 

 345 

PGE2-dependent IL-22 production and signaling in human atopic lesional skin 346 

We next investigated whether PGE2-dependent adaptive IL-22 production and signaling can 347 

be found in human atopic skin. We analyzed mRNA expression of genes related to PGE2 348 

metabolism (Fig 5A) and IL-22 signaling pathways in human lesional AD and normal skin 349 

biopsies. As reported previously32, mRNA expression levels for Th17/Th22 related genes 350 

(IL17A, IL22, IL23R, AHR), IL-22-induced products (e.g. S100A7, S100A8, S100A9), and 351 

skin-homing chemokines (CCR4) were over-expressed in lesional AD compared to normal 352 

skin (Fig 5B). Strikingly, mRNA expression levels for PGE2 synthases (PTGS2, PTGES, 353 

PTGES2) were also up-regulated in human atopic lesional skin, and expression levels for the 354 

PGE2 degradation enzyme HPGD (hydroxyprostaglandin dehydrogenase 15-(NAD)) was in 355 

contrast down-regulated in lesional AD skin (Fig 5B). These gene expression data are 356 

consistent with previous reports showing increased PGE2 levels in lesional AD skin21. There 357 

was a trend that expression of PTGER4 gene (encoding PGE2 receptor EP4) was up-regulated 358 
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in lesional AD skin, but expression of PTGER2 (encoding PGE2 receptor EP2) was 359 

significantly down-regulated in lesional AD skin (Fig. 5B).  Expression of Th2 cytokines 360 

(e.g. IL4, IL5, IL13) were not significantly up-regulated in lesional AD skin, however Th2 361 

chemokines such as CCL26, CCL18, CCL22, CCL17, CCL11 and CCL5 were up-regulated in 362 

lesional AD skin compared to normal skin (Fig 5B). Interestingly, expression of IL-22 363 

pathway genes showed strongly positive correlation with those of PTGES in biopsy samples 364 

from lesional AD but not normal skin (Fig 5C). There were no correlations between PTGES 365 

expression and Th2 cytokines (data not shown). However, weak correlations between PTGES 366 

gene expression and Th2 chemokines in lesional AD skin were observed (Fig 5D). These 367 

results suggest that PGE2 signaling is activated and positively correlates with the IL-22 368 

signaling pathway and, probably, the Th2 pathway in human atopic skin. 369 

 370 

Finally, we investigated whether current therapies for atopic dermatitis modulate PGE2 371 

signaling in human AD. We analyzed changes in expression levels of IL-22 and PGE2 372 

signaling genes in lesional AD skin before and after treatments such as betamethasone (a 373 

corticosteroid) by re-analyzing a public microarray dataset34. Compared to baseline levels, 374 

treatments with betamethasone reduced IL22 gene expression in atopic lesional skin. 375 

Betamethasone also significantly reduced expression of IL-22-related genes such as AHR, 376 

S100A8, S100A9 (Fig 6A). Expression of PGE2 synthases (e.g. PTGES, PTGES2) and EP4 377 

receptor (PTGER4) was significantly downregulated by betamethasone treatment, while EP2 378 

receptor (PTGER2) expression was not changed (Fig 6A). This observation is consistent with 379 

findings that betamethasone treatment reduces PGE2 production39,40. Interestingly, expression 380 

of PTGES, PTGES2 and PTGER4, but not PTGER2, positively correlated with IL22 381 

expression in atopic biopsies at baseline, while expression of HPGD, which mediates PGE2 382 

degradation, negatively correlated with IL22 expression  (Fig 6B). Furthermore, we have also 383 
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reanalyzed gene expression of skin biopsies before and after treated with UVB from our 384 

previous dataset35. Expression of PGE2 synthases PTGS1 and PTGES in lesional AD skin 385 

were down-regulated after treatment with UVB (Fig 6C). Interestingly, although IL-22 gene 386 

expression was not changed by UVB treatment, most likely due to the small number of 387 

samples, changes in expression of IL-22 activated genes (e.g. S100A8 and S100A9) positively 388 

correlated with changes in expression of PGE2 synthases (i.e. PTGS1, PTGES and PTGES2) 389 

in atopic lesional, but not in non-lesional biopsies (Fig 6D and data not shown). Together, 390 

these data indicate that PGE2, most likely through the EP4 receptor, plays a role in IL-22 391 

regulation in human skin.  392 
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Discussion 393 

The cytokine IL-22, notably produced by Th22 and Th17 T-cells, is emerging as a key player 394 

in AD3,12,16, leading to a new therapy targeting IL-22 signaling in AD clinical trials 395 

(NCT01941537). Genome-wide association studies have identified that gene polymorphisms 396 

of the PGE2 receptor EP4 were associated with T cell-mediated human autoimmune and 397 

allergic inflammatory diseases41,42. However, the role of PGE2 in promoting IL-22 production 398 

and development of AD remain to be determined. Therefore, in this study, we examined this 399 

using in vitro cell cultures and in vivo ACD mouse model as well as interrogating gene 400 

expression in human AD lesional skin before and after common treatments for AD. 401 

 402 

We show that PGE2 markedly stimulates IL-22 production from T-cells, which complements 403 

our previous findings that PGE2 promotes innate IL-22 production from ILC3s28. It is worth 404 

noting that PGE2 promotes IL-22 production from freshly activated CD4+ T-cells under 405 

various conditions including Th17 and Th22-priming conditions. The effect of PGE2 was 406 

mimicked by activation of EP2 and EP4 receptors and was prevented by antagonists against 407 

these receptors, confirming the involvement of these two receptors in adaptive IL-22 408 

production in vitro. Further studies showed that the cAMP-PKA signaling pathway, activated 409 

by engagement of EP2 and EP4, mediates PGE2 enhancement of IL-22 production through 410 

induction of newly expressed AHR. Our results thus uncover a new, targetable molecular 411 

mechanism for regulation of adaptive IL-22 by the PGE2-cAMP-AHR axis.  412 

 413 

The role of PGE2 in promoting adaptive IL-22 production was also confirmed in vivo. T-cell 414 

specific EP4 deficiency led to large reduction of IL-22+ T-cells in skin-draining LNs in 415 

response to hapten sensitization and attenuated repeated OXA challenge-induced allergic skin 416 

inflammation in the mouse model of ACD, indicating a critical role of endogenous EP4 417 
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signaling in T-cells for IL-22 expression and function in vivo. This is similar to innate IL-22 418 

expression which also requires PGE2-EP4 signaling28, suggesting a shared mechanism for 419 

regulating both the adaptive and innate IL-22 responses. Inhibition of endogenous PGE2 420 

production by a COX inhibitor successfully prevented accumulation of T-cells in ear-draining 421 

LNs, reduced T-cell production of IL-22 and attenuated allergic skin inflammation induced 422 

by repeated OXA challenges. Given that PGE2 also promotes IL-17 production from both 423 

mouse and human Th17 T-cells26,43 and that IL-17 may participate in creating the ACD 424 

phenotype9-12, IL-17 may also be involved in the PGE2-facilitated ACD pathogenesis.  425 

 426 

Facilitation of IL-22 production by PGE2 may contribute to several human inflammatory 427 

diseases such as AD and psoriasis44. Indeed, parallel up-regulations of IL-22 pathway genes, 428 

PGE2 synthases were observed in human atopic lesional skin, whereas the PGE2 degrading 429 

enzyme 15-PGDH (encoded by HPGD) was down-regulated in AD skin. This is consistent 430 

with previous observations showing increased PGE2 levels in lesional AD skin22. Moreover, 431 

our data indicate that IL-22 signaling positively correlated with PGE2 signaling in atopic 432 

lesional skin, and these correlations were absent in both normal skin or in lesional AD skin 433 

following successful steroid or UVB treatments. These findings potentially suggest a PGE2-434 

dependent IL-22 production and signaling in human atopic skin.  435 

 436 

Besides IL-22+ T-cells, Th2 cells (especially cutaneous lymphocyte antigen-positive 437 

population with skin-homing capacity) are expanded in severe AD45. Th2 cells suppress 438 

major terminal differentiation proteins (i.e. filaggrin and loricrin) and predominates in the 439 

acute phase of AD through production of cytokines (e.g. IL4 and IL13) and chemokines (e.g. 440 

CCL17, CCL18, CCL26, etc)33,46. The Th2 response is thus critical for AD pathogenesis. 441 

Inhibition of COX2 has been reported to enhance Th2 cytokine production and Th2 response 442 
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to ovalbumin-induced epicutaneous sensitization23, suggesting a potential inhibitory role of 443 

PGs in Th2 cell-driven allergic inflammation. In human lesional AD skin, however, there was 444 

no correlations between the PGE2 pathway and Th2 cytokines and, in contrast, weak positive 445 

correlations between the PGE2 pathway and Th2 chemokines, suggesting a possible 446 

promoting role of PGE2 in Th2 response in AD. This may be because PGE2 promotes IL-17 447 

and IL-22 production26-28,42 and subsequently IL-17 exacerbates Th2 type inflammation 448 

during the initiation of AD11,47. 449 

 450 

We acknowledge this report has several limitations. For example, our analysis of gene 451 

expression profiles in human skin biopsies were retrieved from public GEO datasets and 452 

confirmation of these findings was not performed by methods with higher sensitivity such as 453 

real-time PCR using fresh biopsies. Moreover, cytokine expression in protein levels in 454 

different T-cell subsets were not measured by flow cytometry in skin of patients and animals. 455 

Furthermore, although in mice, the OXA-repeated challenge-induced chronic allergic skin 456 

inflammation represents a robust model, additional animal models are required in attempt to 457 

fully mimic most pathogenic and physiologic processes during the development of human 458 

AD. In addition, due to limitation of resources, the effects of PGE2 signaling in T cells, 459 

especially the involvement of both EP2 and EP4 in T cells, on initiation and progression of 460 

ACD could not be interrogated, e.g. using mice with T cell-specific deficiency of both EP2 461 

and EP4 receptors. Future prospective studies are therefore required to further understand not 462 

only the role of PGE2 during perpetuating AD skin inflammation but also during its onset.  463 

 464 

In conclusion, our data ascertain that PGE2 acts as a potent promoter of both adaptive and 465 

innate IL-22 production. We have previously found that PGE2 signaling promotes DC 466 

production of IL-23, a cytokine essential for IL-22 expression, as well as for proliferation and 467 
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maturation of Th17 T-cells26. Taken together, our results highlight the PGE2 signaling 468 

pathway as an important stimulus of T-cell responses and AD development. Thus targeting 469 

PGE2 synthesis or its receptors may represent a possible therapeutic strategy for the treatment 470 

of AD, and other inflammatory skin diseases such as psoriasis with an active role for IL-22, 471 

such as psoriasis. 472 

  473 
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Figure Legends 604 

Figure 1. PGE2 promotes T cell production of IL-22 through its receptors EP2 and EP4. 605 

A, Il22 mRNA expression in naïve CD4+ T cells stimulated with anti-CD3 and anti-CD28 606 

(anti-CD3/CD28) antibodies (Abs) with indicated cytokines in the absence or presence of 607 

PGE2 (100 nM) for 3 days. B, IL-22 levels in supernatants of cultures in A. C. IL-22 levels in 608 

supernatants of naïve CD4+ T cells were cultured as in A and then the same numbers of T 609 

cells were re-stimulated with anti-CD3/CD28 Abs for another 3 days. D, IL-22 levels in 610 

supernatants of naïve CD4+ T cells were stimulated with anti-CD3/CD28 Abs with IL-6+IL-611 

23 with or without an EP2 agonist (butaprost, 1 µM) or EP4 agonist (L-902,688, 1 µM) for 3 612 

days and then the same numbers of T cells were re-stimulated with anti-CD3/CD28 Abs for 613 

another 3 days. E, IL-22 levels in supernatants from Th17 cells re-stimulated with anti-614 

CD3/CD28 Abs without or with IL-23 and various small molecule compounds activating or 615 

inhibiting PGE2 receptors for 3 days. F, Il22 mRNA of re-stimulated Th17 cells with PGE2 616 

and/or IL-23 for 3 days. EP1/3 agonist 17-phenyl trinor PGE2 was used at 1 µM while EP2 617 

antagonist PF-04418948 and EP4 antagonist L-161,982 were used at 10 µM. All experiments 618 

were performed in duplicates or triplicates and repeated for 2-3 times independently. 619 

*P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. 620 

 621 

Figure 2. Cyclic AMP promotes IL-22 production from T cells through induction of aryl 622 

hydrocarbon receptor (Ahr). A, IL-22 levels in supernatants from Th17 cells re-stimulated 623 

with anti-CD3/CD28 Abs without or with IL-23 and indicated concentrations of db-cAMP 624 

for 3 days. B, IL-22 levels in supernatants from Th17 cells re-stimulated with anti-625 

CD3/CD28 Abs with IL-23, db-cAMP (100 µM) and indicated concentrations of PKI for 3 626 

days. C,D, Il22 mRNA expression levels in Th17 cells re-stimulated with anti-CD3/CD28 627 

Abs with IL-23 and db-cAMP in the absence (C) or presence (D) of cycloheximide (CHX, 1 628 
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µM) for 3 days. E, Ahr mRNA expression in naïve CD4+ T cells cultured with anti-629 

CD3/CD28 Abs and indicated cytokines in the absence or presence of PGE2 for 3 days. F-H, 630 

Ahr (F) and Il22 (G) mRNA expression and IL-22 levels (H) in supernatants of Th17 cells 631 

cultured with anti-CD3/CD28 Abs, IL-23, db-cAMP and CH-223191 (10 µM) for 3 days. All 632 

experiments were performed in duplicates or triplicates and repeated for 2-3 times 633 

independently. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. ns, non significant. 634 

 635 

Figure 3. PGE2-EP4 signaling in T cells facilitates IL-22 production in vivo. A, 636 

Representative flow cytometry dot-plot of IL-22 and IL-17 expression in skin-draining LN 637 

CD4+ T cells from T cell-specific EP4 deficient (EP4cKO, n=9) mice or control mice (n=10) 638 

5 days post sensitization with 0.5% DNFB. B, Percentages and numbers of IL-22+ CD4+ T 639 

cells. Each dot represents one mouse. C, Il22 mRNA expression levels in CD4+ T cells 640 

isolated from skin-draining LNs of EP4cKO (n=6) or control (n=6) mice. Each dot represents 641 

one mouse. *P<0.05. 642 

 643 

Figure 4. PGE2 exacerbates atopic skin inflammation in the repeated oxalozone (OXA) 644 

challenge model. A-E, WT C57BL/6 mice were sensitized with 3% OXA on abdominal skin 645 

on (day 0) and then challenged with 0.6% OXA or EtOH on ears 5 days later. Challenge with 646 

OXA was repeated once every two days for a total of 5 challenges. Ears and ear-draining LNs 647 

were collected 6 h after the last OXA challenge (n=4-5). A, Schematic representation of the 648 

experimental protocol. B, Ear thickness. C, Ear histology. Scale bar, 50 µM. D, CD4+ and 649 

CD8+ T cells in ear-draining LNs. E, IL-22 production by ear-draining LN cells cultured with 650 

soluble anti-CD3 or medium only in vitro for 3 days. F, Swelling of ears from control and 651 

EP4cKO mice (n=9-13) sensitized and repeatedly challenged with OXA as in A but without 652 

indomethacin treatment. *P<0.05; ***P<0.001 and ****P<0.0001. 653 
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 654 

Figure 5. Over-expression of PGE2 signaling genes in human lesional AD skin which 655 

positively correlate with expression of IL-22 signaling genes. A, Schematic depicting 656 

synthesis and metabolism of PGE2 mediated by COX2 (encoding by PTGS2), PGE synthases 657 

(encoding by PTGES or PTGES2) and 15-PGDH (encoding by HPGD), respectively. A PGE2 658 

receptor EP4 (encoding by PTGER4) is also shown. B, Heat map of expression profiles of 659 

Th2 cytokine and chemokine genes and genes related to IL-22 and PGE2 pathways in human 660 

lesional AD skin (n=38) and normal skin (n=32). A color scale bar indicates the Z-score 661 

transformed values of microarray gene expression data31-33. Z-ratios represent the changes in 662 

gene expression levels between the normal and AD lesional groups36. P values were 663 

calculated by nonparametric Wilcoxon-Mann-Whitney tests. Probes with the largest Z-ratios 664 

were chosen when several probes represented single genes. C,D, Correlations of PTGES gene 665 

expression versus expression of IL-22 pathway genes (C) or Th2 chemokines (D) in atopic 666 

lesional and normal skins. P value was calculated by nonparametric Spearman correlation 667 

test.  668 

 669 

Figure 6. Steroid and UVB therapies down-regulate PGE2 and IL-22 signaling pathway 670 

genes in human atopic lesional skin. A, Expression profiles of genes related to PGE2 and 671 

IL-22 pathways in human lesional AD skin (n=10) at baseline (AD Base) or after treatment 672 

with betamethasone for 3 weeks. The z-score transformed values of microarray gene 673 

expression data34 were used. P value was calculated by paired nonparametric tests with post-674 

hoc Dunn’s multiple comparisons test. B, Correlations of PTGES, PTGES2, HPGD, PTGER4 675 

gene expression versus that of IL22 gene in human atopic lesional skins at baseline. P value 676 

was calculated by nonparametric Spearman correlation test. C, Expression of genes related to 677 

PGE2 and IL-22 signaling in human atopic lesional (AL, n=8) and non-lesional (ANL, n=7) 678 
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skin before (PRE) or 12 weeks after (POST) treatment with UVB. The z-score transformed 679 

values of microarray gene expression data35 were used. P value was calculated by paired 2-680 

way ANOVA test with post-hoc Bonferroni's multiple comparisons. D, Correlations of 681 

changes in expression of IL-22-induced genes (S100A8, S100A9) and PGE2 synthase genes 682 

(PTGS1, PTGES and PTGES2) before (PRE) and after (POST) UVB therapy in atopic AL or 683 

NL skins. P value was calculated by nonparametric Spearman correlation test.  684 
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