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Abstract 

Hypomethylation of LINE-1 repeats in cancer has been proposed as the main mechanism behind 

their activation; this assumption, however, was based on findings from early studies that were 

biased towards young and transpositionally active elements. Here, we investigate the relationship 

between methylation of two intergenic, transpositionally inactive LINE-1 elements and 
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expression of the LINE-1 chimeric transcript (LCT) 13 and LCT14 driven by their antisense 

promoters (L1-ASP). Our data from DNA modification, expression, and 5’RACE analyses 

suggest that colorectal cancer methylation in the regions analyzed is not always associated with 

LCT repression. Consistent with this, in HCT116 colorectal cancer cells lacking DNA 

methyltransferases DNMT1 or DNMT3B, LCT13 expression decreases, while cells lacking both 

DNMTs or treated with the DNMT inhibitor 5-azacytidine (5-aza) show no change in LCT13 

expression. Interestingly, levels of the H4K20me3 histone modification are inversely associated 

with LCT13 and LCT14 expression. Moreover, at these LINE-1s, H4K20me3 levels rather than 

DNA methylation seem to be good predictor of their sensitivity to 5-aza treatment. Therefore, by 

studying individual LINE-1 promoters we have shown that in some cases these promoters can be 

active without losing methylation; in addition, we provide evidence that other factors (e.g., 

H4K20me3 levels) play prominent roles in their regulation. 

Key words 

retrotransposons/ L1PA2/ LINE-1/ LCT/ colorectal cancer/ CRC/ L1-ASP/ methylation/ 

chromatin/ H4K20me3  
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List of abbreviations 

LINE-1: long interspersed element 1 

LCT: LINE-1 chimeric transcript 

L1-ASP: LINE-1 antisense promoter 

5-aza: 5-azacytidine 

hMeDIP: hydroxymethylated DNA immunoprecipitation 

5hmC: 5-hydroxymethylcytosine 

ChIP: chromatin immunoprecipitation 

Introduction 

Long interspersed element 1 (LINE-1) regions are repetitive DNA sequences that comprise about 

17% of the human genome, equivalent to approximately eight times the protein coding portion of 

the genome (1). LINE-1s are autonomous mobile elements that carry their own promoters and 

the information to copy and paste themselves to different locations in the genome, a phenomenon 

known as retrotransposition (2). Of the about 516,000 LINE-1s present in the human genome, 

just around 7000 have retained potentially intact promoters; of these, nearly 5000 are full-length 

but only up to 20 so called ‘hot-L1s’ have been shown to be able to retrotranspose (3-5). 

It is now becoming more widely accepted that LINE-1s can also contribute to tumor in ways that 

are not related to their mobilization (6-8). Some of these effects (e.g., the ability of LINE-1 
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promoters to act as alternative promoters for protein coding genes (9)) are due to transcription 

from the LINE-1 promoters and therefore can be exerted by all elements carrying intact 

promoters and not restricted to the few hot-L1s. LINE-1s contain an internal bidirectional 

promoter within their 5’ untranslated region (L1-5’UTR): a sense promoter (L1-SP) responsible 

for transcription of the element itself, and an antisense promoter (L1-ASP) driving transcription 

away from the element (10,11). L1-ASP activity has been mapped between positions 400 and 

600 of the L1-5’UTR using transgenic constructs carrying retrotransposition competent LINE-1s 

(12). L1-ASP activity in this region was further confirmed in human embryonic stem and 

carcinoma cells (13). More recently, this activity has been shown to drive expression of the 

ORF0 protein with transposition enhancing properties and coded by about 781 LINE-1 loci in the 

human genome (14). Transcription initiation from L1-ASP in cancer has also been found 

between position 160 and 200 of the L1-5’UTR, in particular for intergenic, retrotransposition 

deficient LINE-1s (10,15). 

It has been proposed that DNA methylation has evolved to prevent potentially damaging effects 

by silencing endogenous retrotransposons (16,17). Indeed, in somatic cells these elements are 

silenced and heavily methylated (18-20). By contrast, hypomethylation of LINE-1s is a common 

feature of cancer cells (21), which has been associated with LINE-1’s activation and consequent 

further promotion of genome instability and cancer progression (22-24). In general, LINE-1 

methylation levels decrease as the severity index of the cancer increases (25-27). LINE-1 activity 

and new somatic LINE-1 insertions have been described in a number of cancers of epithelial cell 

origin and happen at particularly high frequencies in colorectal tumors (28). These observations 
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have led to the notion that hypomethylation is the primary cause of activation of LINE-1 

promoters in cancer. However, the evidence supporting this order of events is not conclusive. 

Given their abundance and propensity to be methylated, LINE-1 methylation levels have been 

often used as a surrogate measure for global DNA methylation (29,30). However, until recently, 

the majority of LINE-1 methylation studies have looked at global levels using methods that favor 

detection of young and transpositionally active elements (31). These global studies lack 

resolution and assume one general regulatory network or machinery for all LINE-1 elements 

within the genome irrespective of cellular context. This is an unlikely scenario since LINE-1 

elements can be found in a variety of loci and carry individual or familial SNPs. In agreement 

with this, there are numerous individual examples of LINE-1 elements that do not conform to the 

global methylation trends. Smith et al. (32) identified a subset of LINE-1 elements that were 

hypomethylated in oocytes despite the majority of transcription elements maintaining a heavy 

methylation status. In cancer, Phokaew et al. (33) showed that some LINE-1s are not affected by 

global hypomethylation. Similarly, generalized activation of LINE expression was not observed 

in mouse hypomethylation models (34,35). 

These observations highlight the importance of studying individual LINE-1 elements in order to 

advance our understanding of their regulatory mechanism. Despite this, locus-specific LINE-1 

studies are sparse and they are mainly focused on elements located within the body of annotated 

genes (intragenic LINE-1s) and their immediate effect on their host gene (36,37). We previously 

identified transcripts initiating at L1-ASP, which we referred to as LINE-1 chimeric transcripts 

or LCTs because they contain within the same molecule both LINE-1 and unique sequences (15). 
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Of particular interest, two LCTs (LCT13 and LCT14) were found to initiate at the antisense 

promoter (L1-ASP) of transpositionally inactive L1PA2 elements located at intergenic regions 

(between genes) on human chromosomes 7 and 5 respectively (15,38). We further demonstrated 

that in up to 50% of colorectal cancers lacking expression of the tumor suppressor gene TFPI-2, 

this silencing is associated with the presence of the overlapping anti-sense LCT13 transcript, 

suggesting that its expression may have a functional consequence in cancer (38). In an ES cell 

line model an antisense transcript can silence TFPI-2 expression prior to de novo methylation of 

its promoter in differentiated cells (38). Our initial observations in MCF10A non-neoplastic 

breast cells suggested that in breast hypomethylation is involved in activation of the promoters of 

these intergenic L1PA2s (15); however, it remains unclear whether loss of DNA methylation is 

always necessary to activate them in cancer. In this study, we have investigated at a locus-

specific level if loss of DNA methylation within the L1-5’UTR of the LINE-1s driving LCT13 

and LCT14 is always associated with their expression, and we have also compared the presence 

of histone marks associated with active and inactive chromatin states to transcriptional activity 

and DNA methylation levels at these sites. 

Results 

Relationship between activity and methylation of LCT13 in cancer 

We previously showed that aberrant activation of LINE-1 antisense promoters in cancer can 

occur at older and transposition deficient elements (15), such as the L1-ASP of the L1PA2 that 

drives expression of LCT13 (Figure 1A) (38). To determine whether this activity was associated 

with a decrease in methylation, we compared expression of LCT13 to its methylation in matched 
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normal and tumor tissues from six colorectal cancer (CRC) donors (26, 29, 30, 33, 65 and 104). 

In addition, three microsatellite instable (MSI: HCA-7, HCT116, RKO) and three microsatellite 

stable (MSS: CaCo-2; SW480 and SW620) CRC cell lines were tested as higher levels of 

methylation at LINE-1s have been reported in MSI relatively to MSS lines (36). The patients 

used for this study were chosen based on their LCT13 expression profile: 29 expresses LCT13 in 

the normal mucosa (N) but not in the tumor (T); 26 and 33 express LCT13 in N and at increased 

levels in T; 30, 65 and 104 expressed LCT13 only in T, the most commonly found pattern 

(Figure 1B, left panel) (38). Using the same quantitative RT-PCR approach in the CRC cell lines, 

we found that HCT116 express the highest levels of LCT13, followed by CaCo-2, HCA-7 and 

SW620; by contrast, LCT13 expression in RKO and SW480 is not detectable (Figure 1B, right 

panel). We then studied, by PCR on bisulfite treated DNA, the methylation of a region of the L1-

5’UTR of the LINE-1 driving expression of LCT13 (bisulfite, Figure 1A middle diagram) in the 

same patient tissues and cell lines used for the expression analysis. With the exception of patients 

33 and 30, where there was a decrease in methylation in the tumor tissue (T) samples, LCT13 is 

surprisingly highly methylated (>80%) in both normal (N) and T samples from all other patients 

studied (Figure 1C, left panel; Supplementary Figure 2A). Moreover, this L1-5’UTR region is 

also highly methylated in the six CRC cell lines, regardless of their expression profile (Figure 

1C, right panel; Supplementary Figure 2A). Interestingly, in breast cancer (BC) cell lines the 

expected relationship between levels of methylation and expression of LCT13 was observed, 

with increasing amounts of expression corresponding to decreasing levels of methylation. 

However, whilst T47D are unmethylated, MCF7 and HCC1954 retain >55% methylation 

(Supplementary Figure 2B and C). These findings suggest that, at least in CRC, loss of 
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methylation may not be necessary for LINE-1 promoter activation, or, alternatively, that LCT13 

expression in methylated tissues and cell lines may initiate at a different promoter. 

LCT13 transcription is driven by L1-ASP 

To address whether LCT13 transcription was driven by L1-ASP in the expressing cell lines, we 

performed 5’RACE anchored in the second exon of the LCT13 transcript (Figure 1A, bottom 

diagram). We first optimized conditions in MCF7 cells as we have previously been able to 

identify LCT13 transcription start sites (TSS) in these cells (15). The use of a variety of 

conditions highlighted the presence of weak and strong TSSs all within L1-5’UTR 

(Supplementary Figure 3). Using conditions optimal for the major TSS, we obtained 5’RACE 

products for all cell lines analyzed with the exception of RKO and SW480, consistent with the 

lack of expression of LCT13 in these two lines. In all positive cell lines LCT13 transcripts have a 

major transcription start site (TSS) within L1-5’UTR, confirming that L1-ASP drives LCT13 

expression in these cells (Figure 2A). We next analyzed each TSS in the context of the average 

methylation of L1-5’UTR within the respective cell line. This revealed that the major TSS was 

situated within the methylated region of L1-5’UTR in HCT116 and MCF7, while in CaCo-2 and 

SW620 it lies just outside the CpG rich region studied by bisulfite sequencing (Figure 2B). In 

addition, HCC1954 has two TSSs that, judging by the relative amounts of 5’RACE products, 

seem to be used at similar levels: one TSS is in a similar location to that of MCF7 cells; the other 

is close to the TSS identified in HCT116 and T47D cells and situated within a methylated region 

(Figure 2B). This data suggest that, similar to many other RNA polymerase II promoters, the L1-

ASP driving LCT13 has scattered TSSs and that in some cases (e.g., HCT116) transcription 
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initiation may occur despite the presence of DNA methylation; alternatively, the detection of 

methylation by bisulfite may indicate the presence of hydroxymethylated cytosine. 

The co-occurrence of DNA methylation and expression of LCT13 and LCT14 is not due to 

increased levels of hydroxymethylcytosine 

To address whether the observations made at LCT13 were unique to this particular locus, we 

analyzed the relationship between DNA methylation and expression of another intergenic LCT 

(LCT14), which we previously identified as initiating from the L1-ASP of an intergenic L1PA2 

on chromosome 5 (Figure 3A) (15). We selected matched normal (N) and tumor (T) tissues from 

four CRC donors, two that did not show any LCT14 expression in N or T (148 and 218), one that 

expressed LCT14 in both N and T (153) and one that did not express LCT14 in N but did in T 

(205) (Figure 3B, left panel). DNA methylation levels were above 80% in all tissue samples, 

including those expressing LCT14 (Figure 3C left panel; Supplementary Figure 4A). We also 

compared LCT14 expression and methylation in five CRC and four BC cell lines. We could 

detect expression of LCT14 only in CaCo-2 and SW620 (Figure 3B, right panel); however, all 

CRC lines showed >85% methylation at this LCT (Figure 3C, right panel; Supplementary Figure 

4A). In BC cells, we observed the predicted pattern of no expression and high methylation in 

HMEC, and high expression and no methylation in T47D; however, we saw expression of 

LCT14 in MCF7 cells that have levels of methylation comparable to those in HMEC, and some 

expression in HCC1954 with about 45% methylation (Supplementary Figure 4B and C). These 

observations are consistent with those made at LCT13 suggesting that at least in the context of 

CRC, transcription and methylation of LCT14 are not always mutually exclusive (Supplementary 

Figure 5). However, caution must be taken when interpreting these results because we used 



 

 10 

bisulfite sequencing to assess the levels of methylation. It has been shown that this method is not 

able to distinguish between methylated (5mC) and hydroxymethylated (5hmC) cytosines, an 

intermediate product of cytosine demethylation (39). In order to address this issue, we performed 

hydroxymethylated DNA immunoprecipitations (hMeDIP) on the six CRC cell lines and on 

T47D cells that are not methylated at either LCTs. When compared to the levels detected for the 

hydroxymethylated DNA control, the levels of 5hmC at the two LCTs are very low in all cell 

lines (Figure 4), consistent with the reported loss in 5hmC in cultured cells (40). To better 

appreciate differences between the cell lines, we plotted the results removing the positive control 

and found that levels are very low, below 5% of Input, with slightly higher levels found at 

LCT14 than at LCT13 (Figure 4, inset). Interestingly, the three MSS lines and T47D have higher 

5hmC levels when compared to the MSI lines, though these differences do not reach statistical 

significance for LCT13. It is important to note that T47D that has very low to undetectable DNA 

methylation by bisulfite sequencing at LCT14 shows levels of 5hmC that are comparable to 

those seen at SW480 which do not express LCT14 and have high levels of DNA methylation. 

Similarly, SW480 has the highest levels of 5hmC at LCT13, but do not express this LCT. These 

data indicate that there is no 5hmC enrichment at the L1-5’UTR of LCT13 and LCT14 

suggesting that in some cell lines these LCTs can be active and methylated. 

Effects of DNA methylation inhibition on LCT13 expression 

To further investigate the relationship between methylation and expression of LCT13 we focused 

on HCT116 and RKO cells, established cell lines that have been widely used to study DNA 

methylation using inhibitors (41,42). We treated these cells with the DNA methylation inhibitor 

5-azacytidine (5-aza) and confirmed that the treatment did not affect expression of the three 
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reference genes used for quantification of RT-PCR (Supplementary Figure 6A). Expression of 

TFPI-2 upon 5-aza treatment, a gene known to be induced in cancer cells upon this treatment 

(43), confirmed its effectiveness (Supplementary Figure 6B). Comparison of LCT13 expression 

and methylation profiles in untreated, 5-aza or vehicle alone (DMSO) treated cells revealed that 

the 5-aza treatment has no effect on LCT13 expression (Figure 5A) or levels of DNA 

methylation (Figure 5B; Supplementary Figure 6C) in either cell lines. 

The apparent lack of direct relationship between DNA methylation and regulation of LCT13 was 

further supported by the analysis of LCT13 expression in HCT116 lacking the maintenance 

(DNMT1) or de novo (DNMT3B) or both DNA methyltransferases (44,45). Surprisingly, a 

statistically significant decrease in the levels of LCT13 is seen in HCT116 cells lacking either 

DNMT1 or DNMT3B relatively to wild type cells whilst no significant differences are seen in 

HCT116 lacking both DNMTs (Figure 5C), consistent with the data from 5-aza treatment. Taken 

together these data suggest that in HCT116 cells regulation of the promoter of LCT13 relies on a 

more complex regulatory mechanism including factors other than DNA methylation. 

Profile of histone modification at LCT13 and LCT14 in cancer cells 

To gain a deeper insight into the epigenetic regulation of LCT13 and LCT14, we performed 

chromatin immunoprecipitation (ChIP) assays using antibodies raised against the active 

chromatin histone modification H3K4me3, and the heterochromatin associated marks H3K9me3, 

H3K27me3, and H4K20me3. We tested CRC cell lines HCT116 that express LCT13 but not 

LCT14, and RKO that are negative for both LCTs (Figures 1 and 3). As a comparison, we also 

analyzed the BC cell lines T47D and MCF-7, that express both LCTs but show no or some 
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methylation at the two L1-5’UTR, respectively (Supplementary Figures 2 and 4). The 

modification showing a more evident difference between expressed and non-expressed LCTs in 

the CRC lines is H4K20me3. LCTs that are not expressed (LCT14 in HCT116 and LCT13 & 14 

in RKO) have an enrichment in H4K20me3 that is >25% Input (Figure 6, top and bottom left 

panels), a finding consistent with this modification being enriched at LINE-1 sequences (46). 

Surprisingly we found that enrichment in H3K4me3 at LCT13 in HCT116 cells was very 

modest, despite the fact that this LCT is expressed in these cells (Figure 1B); however, this 

finding is in agreement with the high levels of DNA methylation at LCT13 in HCT116 cells 

(Figure 1C) and with the reported mutual exclusivity of these two modifications (47,48). BC 

cells T47D that are not methylated at either loci, show the highest levels of H3K4me3 at both 

L1-5’UTRs (Figure 6, top right panel), while lower levels are seen in MCF-7 cells (Figure 6, 

bottom right panel). Levels of H4K20me3 at the LCT13 5’UTR are lower than those of 

H3K4me3 in both T47D and MCF-7 cells; by contrast, levels of H4K20me3 at the LCT14 

5’UTR in both cell lines are comparable to those of H3K4me3 (Figure 6, top and bottom right 

panels). Interestingly, LCT13 that is not upregulated by 5-aza in RKO cells (Figure 4A) has low 

H3K4me3 and high H4K20me3 similar to what observed at the silenced LCT14 in HCT116 cells 

(Figure 6, top and bottom left panels). Instead, LCT14 that is expressed upon 5-aza treatment in 

RKO (Supplementary Figure 7A), displays comparable H3K4me3 and H4K20me3 levels of 

enrichment in these cells (Figure 6, bottom left panel), a pattern similar to that observed at the 

expressed LCT13 in HCT116 and at the expressed LCT14 in T47D and MCF-7 cells (Figure 6). 

Although no overall changes in methylation levels are observed between treated and untreated 

cells (Supplementary Figure 7B), LCT14 expression in 5-aza treated RKO cells is associated 
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with decrease in methylation at a specific CpG site (Supplementary Figure 7C). This data 

suggest that that the relative enrichment in H4K20me3 at LCTs is better than DNA methylation 

at predicting whether a LINE-1 promoter is active or likely to be sensitive to 5-aza treatment. 

Discussion 

Cancer is a complex genetic disease, resulting from the accumulation of a number of genetic 

mutations and epigenetic changes that allow cells to overcome the normal biological hurdles and 

defense mechanisms limiting growth and division. Decreases in methylation at repetitive DNA is 

probably the most accepted paradigm among the global changes in cancer, so much so that loss 

of LINE-1 methylation is repeatedly used as a surrogate biomarker for measuring global DNA 

hypomethylation (49-52). Nevertheless, a significant decrease in LINE-1 methylation has not 

been seen in all cancer types. Susceptibility to LINE-1 hypomethylation appears to be cell and 

tissue specific and might be dependent on cancer type or subsets of a specific cancer type (53-

55). Moreover, emerging evidence suggest that not all LINE-1s are regulated in the same way 

(56). Global LINE-1 methylation studies are unable to provide evidence for a relationship 

between methylation at individual LINE-1 and their activity. The observation that genes 

commonly downregulated in cancer are more likely to contain an intragenic LINE-1 indicates 

that the positioning of the LINE-1 is an important factor in its regulation (57). In agreement with 

genome-wide studies, loss of methylation at intronic LINE-1 situated within c-MET, RAB3IP, 

and CHRM3 genes was found to lead to activation of transcription from L1-ASP (36,37,58). 

However, recent reports have shown that in mouse adult, embryonic and primordial germ cells 

loss of LINE-1 methylation does not always coincide with activation of transcription (34,35,59). 

In addition, the repressive role of DNA methylation at LINE-1 promoters was questioned in a 
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study in early development in mouse embryos that identified loss of the active histone H3K4me3 

mark as the reason for decrease in L1 expression at the 8-cell stage compared to the 2-cell stage 

(60). Although these observations were made in mouse, which have LINE-1s that are different 

from humans, the majority of the studies in human colorectal cancer also point to the lack of a 

direct linear relationship between LINE-1 hypomethylation levels and tumor stage (27,61-63), 

suggesting that, in man and in mouse, DNA methylation cannot be the key regulator of 

expression from all LINE-1s. 

In this study, methylation levels at the L1-5’UTR of two intergenic LINE-1s were investigated 

and compared to the levels of their specific LCT transcripts, LCT13 and LCT14. It must be noted 

that we were able to analyze region 1--436 of the L1-5’UTR of the two LCTs and, therefore, we 

did not include the L1-ASP promoter core activity that has been proposed to map between 

positions 450 and 600 of the 5’UTR (13,14). A direct correlation was not observed between 

LCT13 or LCT14 expression and methylation in the CRC patient samples, where, except for two 

individuals, LCT13 and LCT14 methylation levels were found to be high in both tumors and 

matched normal tissues regardless of their expression (Figures 1 and 3). The lack of a direct 

relationship between DNA methylation and promoter activity within the L1-5’UTRs of LCT13 

and LCT14 was also observed in the breast and colon cancer cell lines analyzed, albeit in breast 

cells there was evidence of an inverse correlation between methylation and expression levels. 

Differential methylation and expression levels of LINE-1 elements in different cell lines and 

during different stages of development have been documented previously (64-66). However, it is 

also possible that changes in LINE-1 methylation levels can have different effects on an 

individual LINE-1 promoter activity depending not only on its unique location and surrounding 
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DNA but also on the cell type and whether the transcription machinery or silencing complexes 

are available. We have further characterized LCT13 by 5′RACE in these cell lines and we found 

that LCT13 transcription starts within L1-5’UTR in all expressing cell lines, and DNA 

methylation alone does not seem to be sufficient to prevent transcription (Figure 2). Consistent 

with a lack of relationship between methylation and expression of LCT13, 5-aza treatment did 

not appear to affect L1-ASP methylation levels nor LCT13 expression in HCT116 or RKO cells; 

however, caution must be taken when interpreting these data given that at the dose used there 

was no reduction of methylation at the LCT loci tested. Nevertheless, in agreement with the 5-

aza findings, we found that HCT116 cells lacking both DNMT1 and DNMT3B show no changes 

in LCT13 expression relative to wild type cells; however, knock-out of either DNMTs led to a 

significant decrease in LCT13 expression (Figure 5). 

Histone modification profiling at the LCT13 and LCT14 L1-5’UTRs (Figure 6) suggest 

H4K20me3 as a better indicator than DNA methylation to determine LCT expression or 

sensitivity to 5-aza. This modification has been previously shown to be enriched at LINE-1s in 

CRC (67), and a recent study has reported variation in the levels of H4K20me3 at different 

LINE-1 subtypes (68). We found that in HCT116 and RKO cells we could not induce expression 

of the LCTs that had a relative enrichment in H4K20me3 at levels above 40% of Input (LCT14 

and LCT13, respectively) with 5-aza under the conditions used (Figure 5 and Supplementary 

Figure 7). Future experiments will be necessary to demonstrate the correlation between 

H4K20me3 and LCT activation, for example, by testing if loss of H4K20me3 (SUV4-20 

knockdown) in cells in which LCTs are repressed is sufficient to upregulate expression. 

Moreover, extending the repertoire of unique LINE-1s analyzed will be necessary to confirm the 
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generality of this finding. This knowledge will be very important in the context of clinical 

applications of therapeutic agents such as 5-aza. For example, a therapy likely to promote 

activation of the LINE-1 promoter driving LCT13 or that intragenic to cMET could increase the 

risk of developing cancer by promoting silencing of the metastasis suppressor gene TFPI-2 or 

expression of the oncogenic isoform L1-MET (37,38). 

In conclusion, our data indicate that DNA methylation may not always play a key role in 

silencing the L1-5’UTRs of intergenic LINE-1s similar to those driving LCT13 and LCT14. It is 

more likely that the regulation of these promoters is achieved by a dynamic network and 

interplay between several factors that are compromised in some but not all cases of breast and 

colorectal tumors. Further investigations are needed to establish the other regulatory factors 

involved in LINE-1 promoter control and the exact role of DNA methylation in this process. 

Materials and Methods 

Patient details and ethics 

Ethical approval for this study was granted by the Derbyshire Research Ethics Committee for the 

collection of normal and cancer colorectal tissues from patients who underwent surgical 

resection at the Royal Derby Hospital (Derby, UK) after informed written consent was obtained. 

All tumors collected were large specimens of size ranging from 2.25 cm
3
 to 42 cm

3
; the sections 

used had ≥75% tumor cells 



 

 17 

Cell lines cultures and 5-azacytidine treatment 

Cancer cell lines were obtained from ECACC (HCA-7, HCT116, CaCo2, SW620, SW480, 

MCF-7) or ATCC (RKO, HCC1954) and cultured according to the guidelines from the 

providers. HMEC (Invitrogen) were kindly provided by Dr. Allegrucci as frozen cell pellets 

ready for nucleic acid extraction. DNA samples from the cell lines were sent to Bio-Synthesis, 

Inc. for STR profiling to confirm cell line identity. 

HCT116 and RKO Cells were treated for 72 hours with 1 µM 5-azacytidine (Sigma, Cat. no. 

A2385) replacing the media every 24 hours with fresh media containing 1 µM 5-aza. The 

HCT116 DNMT knockout cells were kindly donated by B. Vogelstein for the work published in 

(69) and their identity confirmed at that time via expression analysis and DNA methylation 

profiles. Cell pellets used for the analyses described in the present manuscript were prepared by 

Dr. Ottaviano from the same cultures, subsequently checked by expression analysis and DNA 

methylation profiles (manuscript in preparation). 

Nucleic acids extractions and RT-PCR 

DNA and total RNA was extracted from tissues and cell lines using Allprep RNA/DNA mini kit 

(QIAGEN, Cat. no. 80204) according to the manufacturer’s instructions, including the on 

column DNaseI treatment (QIAGEN, Cat. no. 79254) for RNA extraction. RNA integrity was 

evaluated by agarose gel electrophoresis. Reverse transcription was carried out on 60 ng of RNA 

with random primers using High Capacity cDNA Reverse Transcription Kit (Applied 

Biosystems, Cat. no. 4374966) in a final volume of 20 l and following manufacturer’s 

instructions. An aliquot (2 l) of the reverse transcription reaction was used for real-time PCR 
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and each sample was analyzed in triplicate. Real time PCR was performed using custom 

designed Taqman assays for the LCTs and commercially available Taqman assays for the house 

keeping genes (Applied Biosystems). The thermocycling parameters were as follows: 10 minutes 

at 95°C, followed by 45 cycles of 15 seconds at 95°C, and 1 minute at 60°C. Details of all 

Taqman assays used can be found in Supplementary Table 1. Processing and analysis of real-

time PCR data was carried out on GenEx software (bioMCC, Germany). Levels of LCT RNA 

expression were expressed relatively to the geometric mean of three reference genes (HPRT, 

PGK, and GAPDH; see Supplementary Methods and Supplementary Figure 1). 

Bisulfite 

Bisulfite conversion of DNA was carried out using EZ DNA Methylation-Gold Kit (Zymo 

research, Cat. no. D5005) according to the manufacturer’s protocol. Primary and secondary 

PCRs were carried out using ZymoTaq (Zymo Research, Cat. no. E2001) in a final volume of 25 

µl, under the following conditions: 10 min incubation at 95°C prior to 40 cycles of 30 sec at 

95°C, 1 min at 48°C (49°C for TFPI2 primary primer pair) and 1 min at 72°C. Finally, the 

samples were incubated at 72°C for 10 min. Bisulfite treated DNA (40 ng) was used in the 

primary PCR reaction; 1 µl of the primary PCR was used as template for the secondary PCR. All 

primers were used at a final concentration of 0.6 µM (see Supplementary Table 2 for details of 

primers). PCR products were purified from the gel using QIAquick Gel Extraction kit (QIAGEN, 

Cat. no. 28704) and cloned using pGEM®-T Easy Vector System I (Promega, Cat. no. A1360). 

Transformation was carried out using XL10 Gold ultra-competent cells (Agilent Technologies, 

Cat. no. 200315) followed by selection on ampicillin (Sigma-Aldrich, Cat. no. A9518) 

containing plates following standard protocols. Plasmid purification was performed using 
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QIAprep Spin miniprep kit (QIAGEN, Cat. no. 27106) or PureYield™ Plasmid Miniprep System 

(Promega, Cat. no. A1223). Plasmid DNA was sent to Source Biosciences for Sanger 

sequencing. Sequencing data was analyzed using MacVector
TM

 8.0 and bisulfite analysis was 

carried out using the BIQ analyzer excluding clones with estimated conversion rates below 90% 

and clones 100% identical to another clone unless the overall methylation state was close to 0% 

or 100% (70). 

5’RACE 

5’RACE was carried out as previously described(15), except that the LCT13 reverse 

transcription primer (NV009: 5’TTTGTCCTTTTCTGTCAGGTCCTC3’) and the gene specific 

primers for primary (NV010: 5’GCATCTTTTTGCCTGTTGTGGA3’) and secondary (NV011: 

5’ATCTTTTTGCCTGTTGTGGAGG3’) PCR amplification were designed within exon 2 

(Figure 1A, bottom diagram). APRT was used as a positive control using the previously 

published primers (15). PCR products were gel purified, cloned, and sequenced as described 

above. 

hMeDIP 

Immunoprecipitation of hydroxymethylated DNA was performed with a mouse monoclonal 

antibody against 5-hydroxymethylcytosine (5hmC) using the hMeDIP kit (Diagenode, Cat. no. 

C02010031) following the manufacturer’s instructions. DNA samples were sheared at 4°C using 

a Diagenode Bioruptor. DNA (1 g) was used for each IP; recovered DNA was analyzed by 

real-time PCR (Supplementary Table 3). Hydroxymethylated, methylated, and unmethylated 

DNA controls and primers for their amplification were provided with the kit. 
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Chromatin IPs 

Chromatin Immunoprecipitation (ChIP) assays were performed using EZ-Magna ChIP™ A kit 

(Millipore, Cat. no. 17--408) according to the manufacturer’s instructions. Antibodies raised in 

rabbit against H3K4Me3, H3K9me3, H3K27me3, and H4K20me3 were purchased from 

Diagenode (Cat. no. pAb-003-050, pAb-056-050, pAb-069-050 and pAb-057-050, respectively). 

Rabbit IgG was provided with the ChIP kit. Cells were crosslinked in their culture vessel with 

the appropriate media containing 1% formaldehyde (Sigma, Cat. no. F8775) for 10 minutes at 

room temperature. Cells were sonicated at 4°C using a Diagenode Bioruptor. Cells (10
6
) were 

used for each IP and the recovered material was analyzed by real-time PCR using custom 

designed Taqman assays for LCT13, LCT14, and APRT (Supplementary Table 3). GAPDH 

primers were provided in the kit. 
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Figure 1. Relationship between methylation and expression of LCT13 L1ASP in CRC. (A) 

Top: Schematic diagram of the LCT13 genomic locus on human chromosome 7 

(chr7:93,204,042-93,540,485; center) with indicated the positions of the CALCR, TFPI-2, and 

GNGT1 genes and of the two intact intergenic LINE1s (L1) present in this region. Middle: 

enlargement of the LINE-1 (L1PA2: chr7:93,213,393-93,221,079, with an SVA_D spanning the 

interval 93,214,544-93,216,214) from which LCT13 originates with the regions (black bars) 

tested by bisulfite or hMeDIP and ChIP. Bottom: enlargement of the LCT13 spliced transcript 

with indicated its exon structure [LINE-1 5’UTR fragment in light grey (chr7:93,220,882-

93,221,083) and, in dark grey, the two GNGT1 exons (93,536,051-93,536,154 and 93,540,102-
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93,540,235), part of the LCT13 transcript]. Also indicated are the positions of the Taqman assay 

used for LCT13 expression studies located at the splice junction (black bar) and of the primers 

used for 5’RACE (arrows). All coordinates are from hg19 annotations; scale is in kilobase pairs 

(kb). (B) Bar charts showing the expression of LCT13 measured by real time RT-PCR and 

expressed relatively to the geometric mean of three reference genes in matched normal (dark 

grey, N) and tumor (light grey, T) tissues from six colorectal cancer patients (left panel) and six 

cell lines (right panel). NC: normal colon, commercially sourced total RNA from seven healthy 

donors pooled together. (C) Bar charts of the methylation levels measured by bisulfite 

sequencing in the tissues of the six patients and cell lines presented in B.  



 

 35 

 

Figure 2. Relationship between L1-5’UTR methylation and LCT13 transcription start sites 

in cell lines. (A) Schematic diagram showing the 5’UTR of the L1PA2 driving LCT13 (chr7: 

93,220,579-93,221,079) with indicated the regions analyzed by bisulfite sequencing (black bar; 

chr7: 93,220,643-93,221,121) and the positions of the 29 CpG sites (vertical black lines) within 

it. All coordinates are from hg19 annotations and the scale is in base pairs (bp). Indicated are all 

the transcription start sites (TSS; bent arrows) identified in the cell lines by 5’RACE 

demonstrating scattered transcription initiation (light grey) (see also Supplementary Figure 3). 

(B) Diagrams combining the lollipops summarizing the average methylation at each of the 29 

CpG site analyzed in the panels of colorectal (CRC) and breast (BC) cancer cell lines (see 
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Supplementary Figure 2) with the stronger TSS site identified for the particular cell line (thick 

bent arrows). No TSS was identified by 5’RACE in RKO and SW480 cell lines, consistent with 

lack of detectable LCT13 transcripts in these cells (Figure 1B, right panel).  
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Figure 3. Relationship between methylation and expression of LCT14 in CRC. (A) 

Schematic diagram of the LCT14 genomic locus on human chromosome 5 (coordinates: 

24,487,209-27,038,689) with indicated positions of the annotated genes CDH10, 

LOC105374693, and CDH9 and of the intact intergenic LINE1 (L1) that drives transcription of 

LCT14. At the bottom is an enlargement of the region including the LINE-1 (L1PA2; 

chr5:25,378,639-25,384,665) from which LCT14 originates with the regions (black bars) tested 

by bisulfite or hydroxymethylated DNA (hMeDIP) and chromatin (ChIP) immunoprecipitations 

and, below these, the LCT14 transcript (chr5: 25,384,485-25,384,958) and the region amplified 

for expression studies. All coordinates are from hg19 annotations; scale is in kb. (B) Expression 
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of LCT14 measured by real-time RT-PCR and expressed relatively to the geometric mean of 

three reference genes in matched normal (dark grey) and tumor (light grey) tissues from four 

colorectal cancer patients (left panel) and of five colorectal cancer cell lines (right panel). (C) 

Methylation levels measured by bisulfite sequencing in the paired normal and tumor tissues of 

the four patients (left panel) and cell lines (right panel) described in B.  
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Figure 4. Analysis of 5hmC at LCT13 and LCT14 in cancer cell lines. Levels of 

hydroxymethylcytosine (hmeC) obtained by hMeDIP and expressed as % of Input. hmeCTRL: 

hydroxymethylated control DNA; meCTRL: methylated control DNA; unCTRL: unmethylated 

control DNA. The inset shows an enlargement of the region of the graph without the positive 

hmeCTRL indicating that some cell lines (Caco-2, SW480, SW620 and T47D) show minor 

enrichment at LCT13 and LCT14 L1ASPs, relative to the negative controls and the negative cell 

lines.  
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Figure 5. Effects of DNA methylation inhibition in colon cancer cell lines. Expression (A) 

and methylation (B) of LCT13 in HCT116 cells untreated or treated with DMSO vehicle alone or 

1 M 5-aza in DMSO. Treatment with 5-aza has no effect on LCT13 expression levels; no 

overall changes in the levels of DNA methylation are seen in either cell line. (C) Expression 

profile of LCT13 in HCT116 that are either wild type or lacking DNA methyltransferase 1 

(DNMT1-KO), or 3B (DNMT3B-KO), or both DNMT1 and 3B (DKO). P values were 

calculated by one-way ANOVA. ***: P<0.001  
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Figure 6. Histone modifications at LCT13 and LCT14 in cancer cell lines. ChIP assays 

performed using antibodies against active (H3K4me3) and repressive (H3K9me3, H3K27me3, 

H4K20me3) histone marks in LCT13 positive and LCT14 negative HCT116 cells (top left 

panel), in LCT13 and LCT14 negative RKO cells (bottom left panel), and in LCT13 and LCT14 

positive T47D (top right panel) and MCF-7 (bottom right panel) cells. GAPDH is a promoter 

Taqman assay used as a positive control for H3K4me3 and APRT-3’UTR has been previously 

shown to be enriched at repressive mark H4K20me3. 


